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Motivation
• Enable SystemVerilog 3.1 charter

Increase the verification capabilities of Verilog
One language for design, testbench and assertions

• Reduce the need to use PLI to get verification 
environment to work

• Predictable semantics across all tools
Simulation
Synthesis
Formal verification

• No performance degradation

• Backwards compatible with Verilog IEEE 1364-2001
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Can IEEE 1364-2001 do the job?

• Problems
Verilog zero-delay simulation races
• Lack of predictability

Lack of consistency across design and verification tools
• Different semantics between event-driven and cycle-accurate

• Proposed solution
Extend the scheduling semantics of the Verilog 2K1 standard
Apply partial ordering of design, testbench and assertion-
based code using 3 new event scheduling regions
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Proposed new scheduling algorithm
• Why?

Simulation races between design, testbench and assertion-
based event executions are hard to avoid
Users resort to the PLI for synchronizing and de-racing the 
interactions
• Synchronize at beginning of time slot to sample data
• Synchronize at beginning of time slot react and drive new 

stimulus

• Proposed solution uses three new event regions
Preponed
Observe
Reactive

• Allows non-zero delay models to work with cycle-
accurate models

• Enables significant performance improvements
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Verilog standard flow of event regions 
within a time slot

active

inactive

NBA

pre-NBA
pre-active

PLI

post-NBA

from previous 
time slot

iterative 
regions

Read-only
to next 
time slot
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2-stage shift register

drive here
sample here

a b

clk

cFF1 FF2

clock trigger
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drive heresample here

clock trigger

FF1

dffGate FF1(b, a, clk);
dffGate FF2(c, b, clk);

FF2b ca

clk
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drive heresample here

clock trigger

FF1

dffUdp FF1(b, a, clk);
dffUdp FF2(c, b, clk);

FF2b ca

clk

active

clk

inactive

b    c

read-only
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drive heresample here

clock trigger

FF1

dffUdp FF1(b, a, clk);
dffUdp FF2(c, b, gclk2);
and G1(gclk2, clk, w1);

FF2b ca

clk

active

clk

inactive

gclk2  b

read-only
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drive heresample here

clock trigger

FF1

always @(posedge clk) begin
c = b; // FF2
b = a; // FF1

end

always @(posedge clk) 
b = a; // FF1

always @(posedge clk)
c = b; // FF2

FF2b ca

clk

active

inactive

read-only
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drive heresample here

clock trigger

FF1

assign #1 c = cTemp;
always @(posedge clk) cTemp = b;
assign #1 b = bTemp;
always @(posedge clk) bTemp = a;

assign #0 c = cTemp;
always @(posedge clk) cTemp = b;
assign #0 b = bTemp;

FF2b ca

clk

always @(posedge clk) bTemp = a;

active

inactive

read-only
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drive heresample here

clock trigger

FF1

always @(posedge clk) c <= b;
always @(posedge clk) b <= a;
always @(posedge clk) c <= b;
always @(posedge gclk2) b <= a;
and G1(gclk2, clk, w1);

FF2b ca

clk
active

inactive

NBA

read-only
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Continuous invariant assertions 
on non-overlapping clocks 

what order?

active

inactive

NBA

observe
assert ((clk1 && clk2) == 0);

must read 
and evaluate 
here

clk2

clk1

clk2 = clk;

clk1 <= clk;

non-overlapping clocks
clk1

clk2

read-only
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a b

clk

cFF1 FF2

assign #0 gclk = clk;
always @(posedge gclk) b = a; // FF1
always @(posedge clk) c = b; // FF2

assert (p)   pass_statement; 
else;   fail_statement;

active

inactive

NBA

postponed

preponed

observeproperty p = (sa => [2] sc); // clocked assertion

sequence @(posedge clk) sa = (!a ; a ; !a);
sequence @(posedge clk) sc = (!c ; c ; !c);

010 010

sample 
here

evaluate 
here

reactive
react 
here

drive heresample here

clock trigger
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Conclusions

• SystemVerilog 3.1 charter brings together design, 
testbench, and assertion-based code into one 
language

• Need for consistent semantics and results across 
design and verification tools, from simulation to 
formal verification

active

inactive

NBA

postponed

preponed

observe

reactive

• A new event scheduling algorithm has been proposed 
that enables design and verification code to 
consistently work together without the need to resort 
to PLI synchronization
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