
Achieving Determinism in
SystemVerilog 3.1 Scheduling
Semantics

Phil Moorby, Arturo Salz, Peter Flake
Surrendra Dudani, Tom Fitzpatrick

Synopsys, Inc.

DVCon 2003

Achieving Determinism in SystemVerilog 3.1 Scheduling Semantics, DVCon 2003 (2)

Motivation
• Enable SystemVerilog 3.1 charter

Increase the verification capabilities of Verilog
One language for design, testbench and assertions

• Reduce the need to use PLI to get verification
environment to work

• Predictable semantics across all tools
Simulation
Synthesis
Formal verification

• No performance degradation

• Backwards compatible with Verilog IEEE 1364-2001

Achieving Determinism in SystemVerilog 3.1 Scheduling Semantics, DVCon 2003 (3)

Can IEEE 1364-2001 do the job?

• Problems
Verilog zero-delay simulation races
• Lack of predictability

Lack of consistency across design and verification tools
• Different semantics between event-driven and cycle-accurate

• Proposed solution
Extend the scheduling semantics of the Verilog 2K1 standard
Apply partial ordering of design, testbench and assertion-
based code using 3 new event scheduling regions

Achieving Determinism in SystemVerilog 3.1 Scheduling Semantics, DVCon 2003 (4)

Proposed new scheduling algorithm
• Why?

Simulation races between design, testbench and assertion-
based event executions are hard to avoid
Users resort to the PLI for synchronizing and de-racing the
interactions
• Synchronize at beginning of time slot to sample data
• Synchronize at beginning of time slot react and drive new

stimulus

• Proposed solution uses three new event regions
Preponed
Observe
Reactive

• Allows non-zero delay models to work with cycle-
accurate models

• Enables significant performance improvements

Achieving Determinism in SystemVerilog 3.1 Scheduling Semantics, DVCon 2003 (5)

Verilog standard flow of event regions
within a time slot

active

inactive

NBA

pre-NBA
pre-active

PLI

post-NBA

from previous
time slot

iterative
regions

Read-only
to next
time slot

Achieving Determinism in SystemVerilog 3.1 Scheduling Semantics, DVCon 2003 (6)

2-stage shift register

drive here
sample here

a b

clk

cFF1 FF2

clock trigger

Achieving Determinism in SystemVerilog 3.1 Scheduling Semantics, DVCon 2003 (7)

drive heresample here

clock trigger

FF1

dffGate FF1(b, a, clk);
dffGate FF2(c, b, clk);

FF2b ca

clk

Achieving Determinism in SystemVerilog 3.1 Scheduling Semantics, DVCon 2003 (8)

drive heresample here

clock trigger

FF1

dffUdp FF1(b, a, clk);
dffUdp FF2(c, b, clk);

FF2b ca

clk

active

clk

inactive

b c

read-only

Achieving Determinism in SystemVerilog 3.1 Scheduling Semantics, DVCon 2003 (9)

drive heresample here

clock trigger

FF1

dffUdp FF1(b, a, clk);
dffUdp FF2(c, b, gclk2);
and G1(gclk2, clk, w1);

FF2b ca

clk

active

clk

inactive

gclk2 b

read-only

Achieving Determinism in SystemVerilog 3.1 Scheduling Semantics, DVCon 2003 (10)

drive heresample here

clock trigger

FF1

always @(posedge clk) begin
c = b; // FF2
b = a; // FF1

end

always @(posedge clk)
b = a; // FF1

always @(posedge clk)
c = b; // FF2

FF2b ca

clk

active

inactive

read-only

Achieving Determinism in SystemVerilog 3.1 Scheduling Semantics, DVCon 2003 (11)

drive heresample here

clock trigger

FF1

assign #1 c = cTemp;
always @(posedge clk) cTemp = b;
assign #1 b = bTemp;
always @(posedge clk) bTemp = a;

assign #0 c = cTemp;
always @(posedge clk) cTemp = b;
assign #0 b = bTemp;

FF2b ca

clk

always @(posedge clk) bTemp = a;

active

inactive

read-only

Achieving Determinism in SystemVerilog 3.1 Scheduling Semantics, DVCon 2003 (12)

drive heresample here

clock trigger

FF1

always @(posedge clk) c <= b;
always @(posedge clk) b <= a;
always @(posedge clk) c <= b;
always @(posedge gclk2) b <= a;
and G1(gclk2, clk, w1);

FF2b ca

clk
active

inactive

NBA

read-only

Achieving Determinism in SystemVerilog 3.1 Scheduling Semantics, DVCon 2003 (13)

Continuous invariant assertions
on non-overlapping clocks

what order?

active

inactive

NBA

observe
assert ((clk1 && clk2) == 0);

must read
and evaluate
here

clk2

clk1

clk2 = clk;

clk1 <= clk;

non-overlapping clocks
clk1

clk2

read-only

Achieving Determinism in SystemVerilog 3.1 Scheduling Semantics, DVCon 2003 (14)

a b

clk

cFF1 FF2

assign #0 gclk = clk;
always @(posedge gclk) b = a; // FF1
always @(posedge clk) c = b; // FF2

assert (p) pass_statement;
else; fail_statement;

active

inactive

NBA

postponed

preponed

observeproperty p = (sa => [2] sc); // clocked assertion

sequence @(posedge clk) sa = (!a ; a ; !a);
sequence @(posedge clk) sc = (!c ; c ; !c);

010 010

sample
here

evaluate
here

reactive
react
here

drive heresample here

clock trigger

Achieving Determinism in SystemVerilog 3.1 Scheduling Semantics, DVCon 2003 (15)

Conclusions

• SystemVerilog 3.1 charter brings together design,
testbench, and assertion-based code into one
language

• Need for consistent semantics and results across
design and verification tools, from simulation to
formal verification

active

inactive

NBA

postponed

preponed

observe

reactive

• A new event scheduling algorithm has been proposed
that enables design and verification code to
consistently work together without the need to resort
to PLI synchronization

	Achieving Determinism in SystemVerilog 3.1 Scheduling Semantics
	Motivation
	Can IEEE 1364-2001 do the job?
	Proposed new scheduling algorithm
	Verilog standard flow of event regions within a time slot
	2-stage shift register
	Continuous invariant assertions on non-overlapping clocks
	Conclusions

