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SystemVerilog 3.1
VeraLite

1 Introduction
This document specifies VeraLite, the test-bench extensions to SystemVerilog that have
been accepted by the Accellera committee to become part of SystemVerilog 3.1. VeraLite
is a subset of verification constructs from the Vera hardware verification language.  Vera
was initially designed as a set of enhancements to “Verilog 1.0”, thus, the syntactical and
lexical elements of both languages are the same.  While many of the test-bench constructs
are unique to Vera, the semantics of the constructs common to both languages, including
data-types and operators, remain largely the same. This makes VeraLite an ideal
candidate for inclusion into SystemVerilog.  Nonetheless, Vera, since  its inception, has
evolved as a separate language.  Verilog too has evolved, first into “Verilog  2001”, and
more recently into SystemVerilog-3.0.  As such, Vera and SystemVerilog exhibit several
conflicts and areas of functional overlap.  This document includes resolutions to all
known conflicts between SystemVerilog and Vera, as well as improvements that simplify
the language.  Since Vera was based largely on “Verilog 1.0”, the first set of conflicts is
resolved by updating VeraLite to be compatible with “Verilog 2001”, thus, allowing
VeraLite to become a natural extension to SystemVerilog.

VeraLite enhances SystemVerilog in the following important areas:
� Verification Functionality:  Reusable, reactive test-bench data-types and functions.

� Built-in types: string, associative array, and dynamic array.
� Pass by reference subroutine parameters.

� Synchronization: Mechanisms for dynamic process creation, process control, and
inter-process communication.
� Enhancements to existing Verilog events.
� Built-in synchronization primitives: Semaphore, Mailbox.

� Classes:  Object-Oriented mechanism that provides abstraction, encapsulation, and
safe pointer capabilities.

� Dynamic Memory: Automatic memory management in a re-entrant environment that
frees users from explicit de-allocation.

� Cycle-Based Functionality: Clocking domains and cycle-based attributes that help
reduce development, ease maintainability, and promote reusability.
� Cycle-based signal drives and samples
� Synchronous samples
� Race-free program context

Note that VeraLite constructs are applicable only in the behavioral context. The usage of
VeraLite makes sense and should be allowed only in initial or always blocks.
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2 Lexical Elements

VeraLite source code consists of a stream of lexical tokens. Lexical tokens consist of one
or more characters.  The types of lexical element in VeraLite are:

� White Space
� Comments
� Statement Blocks
� Operators
� Identifiers
� Strings
� Numbers
� Keywords

2.1 White Space
White space is any sequence of spaces, tabs, newlines, and formfeeds. White space is
used in VeraLite as a token separator. Except within a string, white space is ignored.

2.2 Comments
VeraLite supports two forms of comments: a single-line comment and a block comment.
A single-line comment starts with a // (double slash) and ends with a newline.
A block comment starts with /* and ends with a */.  Everything between the start and
end tags is a comment.  Block comments cannot be nested.

2.3 Statement Blocks
VeraLite supports two forms of execute statement blocks: “begin … end” and “fork …
join” blocks.  Empty execute blocks statements are illegal. For example, the
following generates a syntax error:

if(1) begin 
    ; 
end 

The syntax for fork/join statement blocks is:
fork
    process1();
   process2();

...
  processN();

join
VeraLite introduces two new declaration statement blocks: “class … endclass” and
“program … endprogram”.  These are decribed later.
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2.4 Operators
Operators are sequences of one, two, or three characters.  Operators, which are used in
expressions, have three forms: Unary, Binary, and Conditional.  Unary operators appear
to the left of their operand.  Binary operators appear between their two operands.  The
conditional operator has two operator character (? :) separating three operands.

2.5 Identifiers
An identifier is a sequence of letters [a-zA-Z], digits [0-9], dollar signs [$], or underscore
characters [ _ ].
Identifiers are case-sensitive and cannot begin with a digit or $.
Strings
A string literal is a sequence of characters enclosed by double quotes( “ “).  A string
literal must be contained in a single line unless the new line is immediately preceded by a
\ (back slash). In this case, the back slash and the new line are ignored. There is no
predefined limit to the length of a string literal.
VeraLite also includes a string data-type to which a string literal can be assigned.
Variables of type string have arbitrary length; they are dynamically resized to hold any
string.  String literals are packed arrays (of a width that is a multiple of 8 bits), and they
are  implicitly converted to the string type when assigned to a string type or used in an
expression involving string type operands (see Section 6).

2.7 Numbers
A number can be expressed in two forms, a simple DECIMAL form and a NUMBER
form that may specify size and base.
The DECIMAL form is a simple decimal number specified as a sequence of digits from 0
to 9.  An optional plus or a minus sign at the start of the number can be used to specify
positive or negative numbers. Underscores are ignored and may be used for clarity.

The NUMBER format takes this form:
<size>’<base><digits>

<size> is a non zero decimal number that specifies the number of bits in the constant.  If
<size> is omitted and the high order bit is X or Z then they are extended to the size of the
expression containing the number. The maximum size is 65535.

<base> is a single case-insensitive character specifies the numerical base of the number.
Legal base specifications are d, h, o, b for decimal, hexadecimal, octal, and binary
respectively.

<digits> is a sequence of digits that are legal for the specified base format.  These are:
’b (binary): [01xXzZ_]
’d (decimal): [0123456789_]
’o (octal): [01234567xXzZ_]
’h (hexadecimal): [0123456789abcdefABCDEFxXzZ_]
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X and x represent unknown values, and Z and z represent high impedance values in
binary, octal, or hexadecimal form. The underscores are ignored and can be used to
increase readability.
If the most significant specified digit of a number is X or Z, then they are extended to fill
the higher order digits. 
For example, 4’bx is equivalent to 8’bxxxx, and 8’bz00 is equivalent to 8’bzzzzzz00.
If not all the bits are specified and the highest specified bit is not x or z, then zero filling
takes place.

2.8 Keywords
Keywords are predefined identifiers used to define language constructs. The VeraLite
subset recognizes the keywords shown in the table below.  Keywords unique to VeraLite
(not in SystemVerilog 3.0) are shown in boldface.

all 
any 
async
begin
bit
break
case
casex
casez
class
clocking
continue
default
else
end

endclass
endclocking
enfunction
endprogram
endtask
enum
event
extends
extern
for
fork
function
if
inout
input

integer
join
local 
negedge
new
none
null
or
output
posedge
program
protected
public
reg
repeat

return
static
string
super
task
this
typedef
var
void
virtual
while

2.8.1 VeraLite Predefined Constants
VeraLite introduces several predefined constants.  The table below lists the predefined
constant identifiers

ALL
ANY
CHECK

HAND_SHAKE
OFF
ON

ONE_BLAST
ONE_SHOT
ORDER

These predefined constants are defined using the following enumerated types:

enum TriggerModes { OFF, ON, ONE_SHOT, ONE_BLAST, HAND_SHAKE };
enum CheckMode { CHECK = 0 };
enum SyncModes { ALL = 1, ANY, ORDER };
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3 Data Types and Variable Declaration
VeraLite supports all the SystemVerilog standard types and user defined types.  It also enhances
several existing data types, and extends the user defined types by providing support for object-
oriented class.  VeraLite supports all of the following standard data types listed below. The data
types introduced or enhanced by VeraLite are underlined.

3.1 Basic integer data types
� char 2-state 8 bit signed integer (SystemVerilog 3.0)
� shortint 2-state 16 bit signed integer (SystemVerilog 3.0)
� int 2-state 32 bit signed integer (SystemVerilog 3.0)
� longint 2-state 64 bit signed integer (SystemVerilog 3.0)
� byte 2-state 8 bit signed integer (SystemVerilog 3.0)
� bit 2-state user-defined vector size (SystemVerilog 3.0)
� logic 4-state user-defined vector size (SystemVerilog 3.0)
� reg 4-state user-defined vector size (Verilog)
� integer 4-state 32 bit signed integer (Verilog)

3.2 Other basic data types
� Time 64-bit time step (SystemVerilog 3.0)
� real Floating point (SystemVerilog 3.0)
� shortreal Floating point (SystemVerilog 3.0)
� event Enhanced Verilog events (Verilog/VeraLite)
� string Arbitrary length character string (VeraLite)

3.3 User Defined data types
� struct Structures (SystemVerilog 3.0)
� union C-like union (SystemVerilog 3.0)
� enum Enhanced Enumerations (SystemVerilog 3.0)
� class Object-Oriented class (VeraLite)

Variables of basic integer type, string, event, and enum can be declared with an optional initial
value.  For example:

integer count = 7;
bit [8:1] address = 8‘hff;

3.3.1 Integral Types
The term integral is used throughout this document to refer to the data types that can represent a
single integral value.  These are all the basic integer data types, packed struct, packed union,
enum, and Time.

3.4 String
The string data type is variable size array of characters.  VeraLite offers a wide range of
methods and operators that manipulate strings.
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The syntax to declare a string is:
string variable_name [= initial_value];

where variable_name is a valid identifier and the optional initial_value can be a string literal or
the value “” for an empty string.  For example:

string myName = “John Smith”;
If an initial value is not specified in the declaration, the variable is initialized to “”, the empty
string.

String operators and semantics are discussed in detail in Section 8.4.

3.5 Event
The event data type is an enhancement to Verilog named events. VeraLite events provide a
handle to a synchronization object. Like Verilog, event variables can be explicitly triggered and
waited for, however, VeraLite events can also have a persistent triggered state, that is, the
synchronization object can be either ON or OFF.  Also, event variables can be assigned the
special value null, which breaks the association between the synchronization object and the
event variable, or be assigned another event variable, in which case more than one event variable
will refer to the same synchronization object.  Events can be passed as arguments to tasks.

The syntax to declare an event is:
event variable_name [= initial_value];

where variable_name is a valid identifier and the optional initial value can be another event
variable or the special value null.
If an initial value is not specified then the variable is initialized to a new synchronization object
whose triggered state is OFF.

If the event is assigned null, the event behaves as if it were permanenty triggered (ON state).

Event operations and semantics are discussed in detail in Section 12.4.

3.6 Enumerations
An enumerated type provides the capability to declare sets of integral named constants.

To declare an enumeration, SystemVerilog-3.0 uses the following syntax:
enum [integer_type [signing] {packed_dimension}] { value_list }
and, value_list is:  enum_value [= constant ]{,enum_value [= constant]} 

For example:
enum {red, yellow, green} light1, light2; // anonymous int type
enum logic [1:0] {red = 2, yellow, green, unknown = ‘x};

And, to create an enumerated type, SystemVerilog requires the use of typedef. For example:
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typedef enum { red, green, blue } Colors;

VeraLite extends SystemVerilog with a shorthand notation for declaring enumerated types:
enum enum_type [integer_type [signing]{packed_dimension}] { value_list };

This modified form declares the enumeration and creates a type called enum_type.  This
shorthand notation is similar to the way in which C++ extends C, and allows an enumerated type
to be created as part of the enumeration declaration, without the need for a  typedef.

Create an enumerated type called StreetLight:
enum StreetLight {red, yellow, green};

Create an enumeration type called Colors  whose values are of type bit[1:0]. 
enum Colors bit [1:0] { unknown = ‘x, red = 1, green, blue };

The modified form cannot be used to declares both a type and variables of that type.  For
example, the following is an error:

enum Boolean { FALSE, TRUE } myvar;

Both the enumeration names and their integer values must be unique.  The values can be set to
any integral constant value, or auto-incremented from an initial value of 0.  It is an error to set
two values to the same name, or to set a value to the same auto-incremented value.

Enumerated variable are type-checked in assignments, arguments, and relational operators.
Enumerated variables are auto-cast into integral values, but, assignment of arbitrary expressions
to an enumerated variable requires an explicit cast.

Enumerated types are discussed in more detail in Section 4.9.

3.7 Class
A class is a collection of data and a set of subroutines that operate on that data.  The data in a
class is referred to as properties, and its subroutines are called methods. The properties and
methods, taken together, define the contents and capabilities of a class instance or object. 
The object-oriented class extension allows objects to be created and destroyed dynamically.
Classes can also be passed around by reference via handles, adding a safe-pointer capability.

A Class is declared using the class … endclass keywords.  For example:
class Packet

int  address; // Properties are address, data, and crc
bit [63:0] data;
shortint crc;
Packet  next; // Handle to another Packet

function new(); // Methods are send and new
function bit send();

endclass : Packet



TestBench Donation SystemVerilog 3.1

November 25, 2002 8

Any data type can be declared as a class member.

Classes are discussed in more detail in Section 7.
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4 Arrays
An array is a collection of variables, all of the same type, and accessed using the same name plus
one or more indices.  VeraLite supports fixed-size arrays, dynamic arrays, and associative arrays.
Fixed-size arrays can be multi-dimensional and have fixed storage allocated for all the elements
of the array.  Dynamic arrays also allocate storage for all the elements of the array, but the array
size can be changed dynamically.  Dynamic and associative arrays are one-dimensional.  Fixed-
size and dynamic arrays are indexed using integer expressions, while associative arrays can be
indexed using arbitrary data types. Associative arrays do not have any storage allocated until it is
needed, which makes them ideal for dealing with sparse data.

4.1 Fixed-size Arrays
SystemVerilog 3.0 supports multi-dimensional fixed-size arrays.  These arrays can be packed or
unpacked, but their sizes are fixed and must be specified by constant expressions.  Packed arrays
can only be made of single bit types (2-state or 4-state): bit, logic, reg, wire, or net-type, and are
stored as a continuous set of bits.  A packed array declaration has the dimensions specified to the
left of the variable being declared.  Unpacked arrays can be made of any variable type; their
dimensions are specified to the right of the variable being declared.

bit [16:1] p_a;   //  ‘p_a’ is a packed array of 16 bits
int u_a [16:1];   // ‘u_a’ is an unpacked array of 16 int’s
reg [7:0] bytes [9:0];   // ‘bytes’ is an unpacked array of 10 packed arrays of 8 reg’s.

Fixed-size arrays can have multiple dimensions in both their packed and unpacked dimensions.

bit [1:10][1:2] xyz [1:5][1:10]; // ‘xyz’ is an array of 5 * 10  packed array of 10 * 2 bit’s

Packed arrays allow arbitrary length integer types that can be used in arithmetic expressions.
The maximum size of a packed array is at least 65536 bits.

The result of using an expression containing unknown bits (X or Z) as an array index depends on
the operation and on type of the array.  A read returns X if the array is of a 4-state type, and 0 if
the array is of a 2-state type.  A write is ignored and causes a warning to be issued regardless of
the array type.
If an index expression is out of bounds, a run-time warning is issued.  These bounds checks are
always enabled by VeraLite, but may be disabled in SystemVerilog.

Unpacked arrays can be made of any scalar (non-unpacked-array) type. VeraLite enhances fixed-
size unpacked arrays in that in addition to all other SystemVerilog types, unpacked arrays may
also be made of object handles (see Section 7.1) and events (see Section 12.5).

Note: VeraLite accepts a single number (not a range) to specify the size of an unpacked arrays,
like C.  SystemVerilog should accept this type of declaration as a shorthand notation, that is
[size] becomes the same as [size-1:0].  For example:

int Array[8][32]; is the same as:      int Array[7:0][31:0];
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4.2 Array Initialization
An array can be initialized as part of its declaration.  The values used for array initialization are
subject to the same rules as the initialization of the scalar variables that make up the array.
Array initialization in SystemVerilog uses braces {} to denote each array dimension, but unlike
C, the nesting of braces of must follow the number of dimensions.

For example, a single dimensional array can be initialized as:
integer array[5:1] = {0, 1, 2, 3, 4};

And a multi-dimensional array can be initialized as:
int arr_2_by_3 [1:2][1:3] = {{0,1,2},{5,6,67}};

Fixed-sized array can be initialized as part of their declaration provided that only constant
expressions are used as initializers.  Thus, arrays of events or object handles may not be
initialized in their declaration.
Concatenation and replication of constant expressions can be used in array initialization.

4.3 Dynamic Arrays
Dynamic arrays are one-dimensional arrays whose size can be set or changed at runtime.  The
space for a dynamic array doesn’t exist until the array is explicitly created at runtime.

The syntax to declare a dynamic array is:
data_type array_name [*];

data_type
The data type of the array elements. Dynamic arrays support the same types as fixed-size
arrays.

For example:
bit [3:0] nibble[*];   // Dynamic array of 4-bit vectors
integer mem[*]; // Dynamic array of integers

The new[] operator is used to set or change the size of the array.

The size() built-in method returns the current size of the array.
The delete() built-in method clears all the elements yielding an empty array (zero size).

4.3.1 new[]
The built-in function new allocates the storage and initializes the newly allocated array elements
either to their default initial value or to the values provided by the optional argument.

The syntax of the new function is:
array_identifier = new[size] [(src_array)];

size
The number of elements in the array. Must be a non-negative integral expression.
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src_array
Optional. The name of an array with which to initialize the new array. If src_array is not
specified, the elements of array_name are initialized to their default value.  src_array must
be a dynamic array of the same data type as array_name, but it need not have the same size.
If the size of src_array is less than size, the extra elements of array_name are initialized to
their default value. If the size of src_array is greater than size, the additional elements of
src_array are ignored.
This parameter is useful when growing or shrinking an existing array.  In this situation,
src_array is array_name so the previous values of the array elements are preserved. For
example:

integer addr[*]; // Declare the dynamic array.
addr = new[100]; // Create a 100-element array.
...

// Double the array size, preserving previous values.
addr = new[200](addr);

4.3.2 size()
The syntax for the size() method is:

function int size();
The size() method returns the current size of a dynamic array, or zero if the array has not been
created.

int j = addr.size;
addr = new[ addr.size() * 4 ] (addr); // quadruple addr array

 Note: The size method is equivalent to $length( addr, 1 ).

4.3.3 delete()
The syntax for the delete() method is:

function void delete();
The delete() method empties the array, resulting in a zero-sized array.

int ab [*] = new[ N ]; // create a temporary array of size N
// use ab
ab.delete; // delete the array contents
$display( “%d”, ab.size ); // prints 0

4.4 Array Assignment
Assigning to a fixed-size unpacked array requires that the source and the target both be arrays
with the same number of unpacked dimensions, and the length of each dimension be the same.
Assignment is done by assigning each element of the source array to the corresponding element
of the target array, which requires that the source and target arrays be of compatible types.

int A[10:1]; // fixed-size array of 10 elements
int B[0:9]; // fixed-size array of 10 elements
int C[24:1]; // fixed-size array of 24 elements
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A = B; // ok. Compatible type and same size
A = C; // compile-time error: different sizes

A dynamic array can be assigned to a one-dimensional fixed-size array of a compatible type, if
the size of the dynamic array is the same as the length of the fixed-size array dimension.  Unlike,
a fixed size array, this operation requires a run-time check.

int A[100:1]; // fixed-size array of 100 elements
int B[*] = new[100]; // dynamic array of 100 elements
int C[*] = new[8]; // dynamic array of 100 elements

A = B; // ok.  Compatible type and same size
A = C; // run-time error: different sizes

A dynamic array or a one-dimensional fixed-size array can be assigned to a dynamic array of a
compatible type.  In this case, the assignment creates a new dynamic array with a size equal to
the length of the fixed-size array.  For example:

int A[100:1]; // fixed-size array of 100 elements
int B[*]; // empty dynamic array
int C[*] = new[8]; // dynamic array of size 8

B = A; // ok.  B has 100 elements
B = C; // ok.  B has 8 elements

The last statement above is equivalent to:

B = new[ C.size ] (C);

Similarly, the source of an assignment can be a complex expression involving array slices or
concatenations.  For example:

string d[5:1] = { “a”, “b”, “c”, “d”, “e” };
string p[*];
p = { d[1:3], “hello”, d[4:5] }; 

This example creates the dynamic array p with contents: “a”, “b”, “c”, “hello”, “d”, “e”.

4.5 Arrays as Arguments
Arrays can be passed as arguments to tasks or functions.  The rules that govern array argument
passing by value (see Section 9.3) are the same as for array assignment.

Passing fixed-size arrays as parameters to subroutines requires that the actual parameter and the
formal argument in the function declaration be of the compatible type and that all dimensions be
of the same size. 
For example, the declaration: 

task fun(int a[3:1][3:1]);
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declares task fun that takes one parameter, a two dimensional array with each dimension of size
three.  A call to fun must pass a two dimensional array and with the same dimension size 3 for all
the dimensions. For example, given the above description for fun, consider the following actuals:
� int b[3:1][3:1]; // ok: same type, dimension, and size
� int b[1:3][0:2]; // ok: same type, dimension, and size (different ranges)
� reg b[3:1][3:1]; // error: incompatible type
� int b[3:1]; // error: incompatible number of dimensions
� int b[3:1][4:1]; // error: incompatible size (3 vs 4)

A subroutine that accepts a one-dimensional fixed-size array can also be passed a dynamic array
of a compatible type of the same size.
For example, the declaration:

task bar( string arr[4:1] );
declares a task that accepts one parameter, an array of 4 strings.  This task will accept the
following actual parameters:
� string b[4:1]; // ok: same type and size
� string b[5:2]; // ok: same type and size (different range)
� string b[*] = new[4]; // ok: same type and size – requires a run-time check

A subroutine that accepts a dynamic array can be passed a dynamic array of a compatible type or
a one-dimensional fixed-size array of a compatible type
For example, the declaration:

task foo( string arr[*] );
declares a task that accepts one parameter, a dynamic array of 4 strings.  This task will accept
any one-dimensional array of strings or any dynamic array of strings.

4.6 Associative Arrays
Dynamic arrays are useful for dealing with contiguous collections of variables whose number
changes dynamically.  When the size of the collection is unknown or the data space is sparse, an
associative array is a better option. Associative arrays do not have any storage allocated until it is
used, and the index expressions is not restricted to integral expressions, but can be of any type.

An associative array implements a lookup table of the elements of its declared type.  The data
type to be used as an index serves as the lookup key, and imposes an ordering.

The syntax to declare associative an associative array is:
data_type  array_id  [ [index_type] ];

data_type The data type of the array elements. Can be any type allowed for fixed-size arrays.
array_id The name of the array being declared.
index_type Optional.  The data-type to be used as an index.

If no index is specified then the array is indexed by any integral expression of
arbitrary size.
An index type restricts the indexing expressions to a particular type.
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Examples of associative array declarations are:
    integer i_array[];     // associative array of integer (unspecified index)
    bit [20:0] array_b[string];     // associative array of 21-bit vector indexed by string
    event ev_array[myClass];     // associative array of event indexed by class myClass

Array elements in associative arrays are allocated dynamically: an entry is created the first time
it is written. The associative array maintains the entries that have been assigned values and their
relative order according to the index data type.

4.6.1 Unspecified Index Type
Example:  int array_name [];

Associative arrays that do not specify an index type have the following properties:
� The array can be indexed by any integral data type, including integers, packed arrays of

arbitrary length, string literals, and packed structs.  Since the indices can be of different sizes,
the same numerical value may have multiple representations, each of a different size.
VeraLite resolves this ambiguity by detecting the number of leading zeros and computing a
unique length and representation for every value.

� Non-integral index types are illegal and result in a compiler error.
� A 4-state Index containing X or Z is invalid.
� Indices are unsigned.
� Indexing expressions are self-determined: signed indices are not sign extended.
� A string literal index is auto-cast to a bit-vector of equivalent size.
� The ordering is numerical (smallest to largest).

4.6.2 String Index
Example:  int array_name [ string ];

Associative arrays that specify a string index have the following properties:
� Indices can be strings or string literals of any length.  Other types are illegal and result in a

compiler error.
� An empty string “” index is valid.
� The ordering is lexicographical (lesser to greater).

4.6.3 Class Index
Example: int array_name [ some_Class ];

Associative arrays that specify a class index have the following properties:
� Indices can be objets of that particular type or derived from that type.  Any other type is

illegal and results in a compiler error.
� A null index is invalid.
� The ordering is deterministic but arbitrary.

4.6.4 Integer (or Int) Index
Example: int array_name [ integer ];

Associative arrays that specify an integer index have the following properties:
� Indices can be any integral expression.
� Indices are signed.
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� A 4-state Index containing X or Z is invalid.
� Indices smaller than integer are sign extended to 32 bits.
� Indices larger than integer are truncated to 32 bits.
� The ordering is signed numerical.

4.6.5 Signed Packed Array
Example: typedef bit signed [4:1] Nibble; 

 int array_name [ Nibble ];
Associative arrays that specify a signed packed array index have the following properties:
� Indices can be any integral expression.
� Indices are signed.
� Indices smaller than the size of the index type are sign extended.
� Indices larger than the size of the index type are truncated to the size of the index type.
� The ordering is signed numerical.

4.6.6 Unsigned Packed Array or Packed Struct
Example: typedef bit [4:1] Nibble;

 int array_name [ Nibble ];
Associative arrays that specify an unsigned packed array index have the following properties:
� Indices can be any integral expression.
� Indices are unsigned.
� A 4-state Index containing X or Z is invalid.
� Indices smaller than the size of the index type are zero filled.
� Indices larger than the size of the index type are truncated to the size of the index type.
� The ordering is numerical.

If an invalid index (i.e., 4-state expression has X’s) is used during a read operation or an attempt
is made to read a non-existent entry then a warning is issued and the default initial value for the
array type is returned, as shown in the table below:

4-state integral type ’X
2-state integral type ’0
enumeration first element in the enumeration
string “”
class null
event null

If an invalid index is used during a write operation, the write is ignored and a warning is issued.

4.7 Associative Array Methods
In addition to the indexing operators, several built-in methods are provided that allow users to
analyze and manipulate associative arrays, as well as iterate over its indices or keys.

4.7.1 num()
The syntax for the num() method is:

int num();
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The num() method returns the number of entries in the associative array.  If the array is empty it
returns 0.

int imem[];
imem[ 2’b3 ] = 1;
imem[ 16’hffff ] = 2;
imem[ 4b’1000 ] = 3;
$display( “%0d entries\n”, map.num ); // prints “3 entries”

4.7.2 delete()
The syntax for the delete() method is:

task delete( [input index] );
Where index is an optional index of the appropriate type for the array in question.

If the index is specified then the delete method removes the entry at the specified index.  If the
entry to be deleted does not exist, the task issues no warning.
If the index is not specified then the delete method removes all the elements in the array.

int map[ string ];
map[ “hello” ] = 1;
map[ “sad” ] = 2;
map[ “world” ] = 3;
map.delete( “sad” ); // remove entry whose index is “sad” from ‘map’
map.delete; // remove all entries from the associative array ‘map’ 

4.7.3 exists()
The syntax for the exists() method is:

function int exists( input index );
Where index is an index of the appropriate type for the array in question.

The exists() function checks if an element exists at the specified index within the given array.  It
returns 1 if the element exists, otherwise it returns 0.

if( map.exists( “hello” ))
map[ “hello” ] += 1;

else
map[ “hello” ] = 0;

4.7.4 first()
The syntax for the first() method is:

function int first( var index );
Where index is an index of the appropriate type for the array in question.

The first() function assigns to the given index variable the value of the first (smallest) index in
the associative array.
It returns 0 if the array is empty, and 1 otherwise.

string s;
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if( map.first( s ) )
$display( “First entry is : map[ %s ] = %0d\n”, s, map[s] );

4.7.5 last()
The syntax for the last() method is:

function int last( var index );
Where index is an index of the appropriate type for the array in question.

The last() function assigns to the given index variable the value of the last (largest) index in the
associative array.
It returns 0 if the array is empty, and 1 otherwise.

string s;
if( map.last( s ) )

$display( “Last entry is : map[ %s ] = %0d\n”, s, map[s] );

4.7.6 next()
The syntax for the next() method is:

function int next( var index );
Where index is an index of the appropriate type for the array in question.

The next() function finds the entry whose index is greater than the given index.  If there is a next
entry, the index variable is assigned the index of the next entry, and the function returns 1.
Otherwise, index is unchanged, and the function returns 0.

string s;
if( map.first( s ) )

do
$display( “%s : %d\n”, s, map[ s ] );

while( map.next( s ) );

4.7.7 prev()
The syntax for the prev() method is:

function int prev( var index );
Where index is an index of the appropriate type for the array in question.

The prev() function finds the entry whose index is smaller than the given index.  If there is a
previous entry, the index variable is assigned the index of the previous entry, and the function
returns 1.  Otherwise, index is unchanged, and the function returns 0.

string s;
if( map.last( s ) )

do
$display( “%s : %d\n”, s, map[ s ] );

while( map.prev( s ) );
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If the argument passed to any of the four associative array traversal methods first, last, next, and
prev is smaller than the size of the corresponding index then the function returns –1 and will
copy only as much data as will fit into the argument.  For example:

string  aa[];
char    ix;
int     status;
aa[ 1000 ] = “a”;
status = aa.first( ix );

// status is –1
// ix is 232 (least significant 8 bits of 1000)

4.8 Associative Array Assignment
Associative arrays can be assigned only to another associative array of a compatible type and
with the same index type.  Other types of arrays cannot be assigned to an associative array, nor
can associative arrays be assigned to other types of arrays, whether fixed-size or dynamic.

Assigning an associative array to another associative array causes the target array to be cleared
of any existing entries, and then each entry in the source array is copied into the target array.

4.9 Associative Array Arguments
Associative arrays can be passed as arguments only to associative arrays of a compatible type
and with the same index type.  Other types of arrays, whether fixed-size or dynamic, cannot be
passed to subroutines that accept an associative array as an argument.  Likewise, associative
arrays cannot be passed to subroutines that accept other types of arrays.  
Passing an associative array by value causes a local copy of the associative array to be created.
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5 Enumerated Types
Enumerated types are user-defined sets of named integral valued constants (see Section 3.6).

For example:
enum Colors { red, green, blue, yellow, white, black };

This operation assigns a unique number to each of the color identifiers, and creates the new data
type Colors.  This type can then be used to create variables of that type.

Colors  c;
c = green;
c = 1;  // Invalid assignment
if( 1 == c ) // OK. c is auto-cast to integer

In the example above, the value green is assigned to the variable c of type Colors. The second
assignment is invalid because of the strict typing rules enforced by enumerated types.  VeraLite
enumerated types are strongly typed, thus, a variable of type enum cannot  be assigned a value
that lies outside the enumeration set.  This is a powerful type-checking aid that prevents users
from accidentally assigning nonexistent values to variables of an enumerate type. This restriction
only applies to an enumeration that is explicitly declared as a type. The enumeration values can
still be used as constants in expressions, and the results can be assigned to any variable of a
compatible integral type.

Elements within enumerated type definitions are assigned identifiers, which are numbered
consecutively, starting from 0.  In the Colors example above, red is assigned 0, green is assigned
1, and so on.  An explicit value in an enumerated type declaration affects all subsequent values
that have no explicit value.
A range of enumeration elements can be specified automatically, via the following syntax:

name Associates the next consecutive number with name.
name = N Assigns the constant N to name
name[N] Generates N names in the sequence: name0, name1, ..., nameN-1

N must be a constant expression
name[N:M] Creates a sequence of names starting with nameN and incrementing or

decrementing until reaching name nameM.

For example:
enum opcode { add=10, sub[5], jmp[6:8] }

This example assigns the number 10 to the enumerated type add. It also creates the enumerated
types sub0,sub1,sub2,sub3,and sub4, and assigns them the values 11..15, respectively.
Finally, the example creates the enumerated types jmp6,jmp7, and jmp8, and assigns them
the values 16-18, respectively.
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5.1 Enumerated Types in Numerical Expressions
Elements of enumerated type variables can be used in numerical expressions. The value used in
the expression is the numerical value associated with the enumerated value.  For example:

Colors col;
integer a, b;

a = blue * 3;
col = yellow;
b = col + green;

From the previous declaration, blue has the numerical value 2. This example assigns a the
value of 6 (2*3). Next, it assigns b a value of 4 (3+1).

5.2 Dynamic Casting: $cast()
VeraLite provides the $cast() system task to assign values to variables that might not ordinarily
be valid because of differing data type. $cast() can be called as either a task or a function.

The syntax for $cast() is:
function int $cast( scalar dest_var, scalar source_exp );

or
task $cast( scalar dest_var, scalar source_exp );

dest_var:
The dest_var is the variable to which the assignment is made.  It can be any scalar (non-
unpacked array) type (bit, integer, string, enumerated type, event, or object handle).

source_exp:
The source_exp is the expression that is to be assigned to the destination variable.

Use of  $cast() as either a task or a function determines how invalid assignments are handled.
When called as task, $cast() attempts to assign the source expression to the destination variable.
If the assignment is invalid, a fatal runtime error occurs.
When called as a function, $cast() attempts to assign the source expression to the destination
variable, and returns 1 if the cast is legal.  If the cast fails, the function does not make the
assignment and returns 0.  When called as a function, no runtime error occurs, and the
destination variable is set to its corresponding uninitialized value, which depends on the type of
the variable.

It’s important to note that $cast() performs a run-time check.  No type checking is done by the
compiler, except to check that the destination variable and source expression are scalars.
For example:

enum Colors { red, green, blue, yellow, white, black };
Colors col;
$cast( col, 2 + 3 );
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This example assigns the expression (5 => black) to the enumerated type. Without $cast(), this
type of assignment is illegal.
To check if the assignment will succeed one can use:

if( ! $cast( col, 2 + 8 ) ) // 10: invalid cast
$display( “Error in cast” );

Alternatively, users can specify this operation using a static SystemVerilog cast operation:
col = Colors’(2 + 3);

However, this is a compile-time cast, i.e, a coercion that always succeeds at run-time, and does
not provide for error checking or warn if the expression lies outside the enumeration values.
Allowing both types of casts gives full control to the user.  If users know that it is safe to assign
certain expressions to an enumerated variable, they can choose the faster compile-time cast.  If
users need to check if the expression lies within the enumeration values, they need not write a
lengthy switch statement manually, the compiler automatically provides that functionality via the
$cast function.  By allowing both types of casts, users can control the time/safety tradeoffs.

Note: $cast is similar to the dynamic_cast function available in C++, but $cast allows users to
check if the operation will succeed, whereas dynamic_cast always raises a C++ exception.

5.3 Increment and Decrement Operators on Enumerated Types
VeraLite attaches a special semantics to the operators ++,--,+=, and -= when applied to
variables of enumerated type, as described below:

Operator Description
++enumVar Assigns the next enumeration member (according to the definition

order) to enumVar.  A wrap around to the first enumeartion value
occurs when incrementing the last enumeration value.

--enumVar Assigns to enumVar the previous enumeration member (according to
the definition order).  A wrap around to the last enumeartion value
occurs when decrementing the first enumeration value.

enumVar += N Assigns to enumVar its Nth next value. A wrap to the start of the list
occurs when the end of the list is reached.

enumVar -= N Assigns to enumVar its Nth previous member. A wrap to the end of the
list occurs when the start of the list is reached.

Note that "enumVar += 5;" is different from "enumVar = enumVar + 5;".  The former is
legal while the latter is illegal and requires an explicit cast (see Section 5.2), either as:

enumVar = EnumType’(enumVar + 5); // static cast (fast, unsafe)
$cast ( enumVar, enumVar + 5); // dynamic cast (safe, slower)
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6 String
VeraLite introduces the string data type, a variable size, dynamically allocated array of
characters. Verilog supports string literals, but only at the lexical level.  In Verilog string literals
behave like packed arrays (of a width that is a multiple of 8 bits).  In VeraLite a string literal
behaves the same way. However, VeraLite also supports the string data type to which a string
literal can be assigned.  In SystemVerilog, a string literal assigned to a packed array is truncated
to the size of the array, whereas in VeraLite, strings can be of arbitrary length and no truncation
occurs.
In VeraLite string literals behave exactly the same as in Verilog, except that they are implicitly
converted to the string type when assigned to a string type or used in an expression involving
string type operands (see Section 8.4).
Variables of type string can be indexed from 0 to N-1 (the last element of the array) , and they
can take on the special value “”, which is the empty string.  Uninitialized variables of type string
are initialized to “”.

6.1 String Methods
In addition to the operators allowed on strings (see Section 8.4), VeraLite supports a wide range
of methods that operate and manipulate variables of string type.  These methods use an object-
oriented-like notation, which may appear as a departure from Verilog, that allow creation of a
large number of built-in, type-specific functions without cluttering the global namespace. These
methods are described in the following sections.

6.1.1 len()
function integer len()
� str.len() returns the length of the string, i.e., the number of  characters in the string (excluding

any terminating character).
� if str is “” then str.len() returns 0.

6.1.2 putc()
task putc(integer i, string s)
task putc(integer i, char c)
� str.putc(i, c) replaces the ith character in str with the given integral value.
� str.putc(i, s) replaces the ith character in str with the first character in s.
� s can be any expression that can be assigned to a string.
� putc doesn’t change the size of str: If i < 0 or i >= str.len() then str is unchanged.
Note: str.putc( j, x )  is identical to str[ j ]  = x.

6.1.3 getc()
function int getc(integer i)
� str.getc(i) returns the ASCII code of the ith character in str.
� if i < 0 or i >= str.len() then str.getc(i) returns 0.
Note: x = str.getc( j )  is identical to x = str[ j ].
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6.1.4 toupper()
function string toupper()
� str.toupper() returns a string with characters in str converted to uppercase.
� str is unchanged.

6.1.5 tolower()
function string tolower()
� str.tolower() returns a string with characters in str converted to lowercase.
� str is unchanged.

6.1.6 compare()
function compare(string s)
� str.compare(s) compares str and s, character by character and returns the difference between

the first character in which they differ.
� If the strings are equal str.compare(s) returns 0. (like strcmp in ANSI C).
See the relational string operators in Table 3.

6.1.7 icompare()
function icompare(string s)
� str.icompare(s) behaves is similar to compare(), but the comparison is case insensitive.

6.1.8 substr()
function string substr(integer i, integer j)
� str.substr(i, j) returns a sub-string formed by characters in position i through j of str.
� If 0 <= i <= j < str.len(), substr() returns “” (the empty string).

6.1.9 atoi(), atohex(), atooct(), atobin()
function integer atoi()
function integer atohex()
function integer atooct()
function integer atobin()
� str.atoi() returns the integer corresponding to the ASCII decimal representation in str.

Example: str = “123”;
 int i = str.atoi(); // assigns 123 to i.

The string is converted until to the first non-digit is encountered.
� atohex interprets the string as hexadecimal.
� atooct interprets the string as octal.
� atobin interprets the string as binary.

6.1.10  atoreal()
function real atoreal()
� str.atoreal() returns the real number corresponding to the ASCII decimal representation in str.

6.1.11 itoa()
task itoa(integer i)
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� str.itoa(i) stores the ASCII decimal representation of i into str (inverse of atoi).
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7 Classes
SystemVerilog-3.0 includes structs for data encapsulation.  VeraLite adds the object-oriented
class framework.  Classes allow objects to be dynamically created and deleted, to be assigned,
and to be accessed via handles, which provide a safe pointer-like mechanism to the language.
With inheritance and abstract classes, this framework brings the advantages of C function
pointers with none of the type-safety problems, thus, bringing true polymorphism into Verilog.

A class is a collection of data and a set of subroutines that operate on that data. A class’s data is
referred to as properties, and its subroutines are called methods, both are members of the class.
The properties and methods, taken together, define the contents and capabilities of some kind of
object.

For example, a packet might be an object. It might have a command field, an address, a sequence
number, a time stamp, and a packet payload. In addition, there are various things one can do with
a packet: initialize the packet, set the command, read the packet’s status, or check the sequence
number. Each Packet is different, but as a class, packets have certain intrinsic properties that one
can capture in a definition.

class Packet ; 
bit [3:0] command; // data portion 
bit [40:0] address;
bit [4:0] master_id;
integer time_requested;
integer time_issued;
integer status;

function new(); // initialization
command = IDLE;
address = 41'b0;
master_id = 5'bx; 

endfunction

task clean(); 
command = 0; address = 0; master_id = 5'bx; 

endtask
// public access entry points 

task issue_request( int delay );
// send request to bus 

endtask

function integer current_status();
current_status = status; 

endfunction
endclass
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A common convention is to capitalize the first letter of the class name, so that it is easy to
recognize class declarations.

7.1 Objects (Class Instance)
The last section only provided the definition of a class Packet. That is a new, complex data type,
but one can’t do anything with the class itself. First, one needs to create an instance of the class,
a single Packet object. The first step is to create a variable that can hold an object handle:

Packet p;
Nothing has been created yet. The declaration of p is simply a variable that can hold a handle of
a Packet object. For p to refer to something, an instance of the class must be created using the
new task.

Packet p;
p = new;

Uninitialized object handles are set by default to the special value null.  One can detect an
uninitialized object by comparing its handle with null.
For example: The task task1 below checks if the object is initialized. If it is not, it creates a new
object via the new command.

class obj_example;
...

endclass

task task1(integer a, obj_example myexample);
if (myexample == null) myexample = new;

endtask

7.2 Object Properties
After having created an object in the last section, one can use its data fields by qualifying
property names with an instance name. Looking at the earlier example, the commands for the
Packet object p can be used as follows:

Packet p = new;
p.command = INIT;
p.address = $random;
time = p.time_requested;

7.3 Object Methods
An object’s methods can be accessed using the same syntax used to access properties:

Packet p = new;
status = p.current_status();

Note that we did not say:
status = current_status(p); 

The focus in object-oriented programming is the object, in this case the packet, not the function
call. Also, objects are self-contained, with their own methods for manipulating their own
properties. So the object doesn’t have to be passed as an argument to current_status().  A class’
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properties are freely and broadly available to the methods of the class, but each method only
accesses the properties associated with its object, i.e., its instance.

7.4 Constructors
VeraLite does not require the complex memory allocation and deallocation of C++. Construction
of an object is straightforward and garbage collection, as in Java, is implicit and automatic. There
can be no memory leaks or other subtle behavior that is so often the bane of C++ programmers.
VeraLite provides a mechanism for initializing an instance at the time the object is created.
When an object is created, for example

Packet p = new;

The system executes the new function associated with the class: 

class Packet;
integer command;

function new();
command = IDLE; 

endfunction
endclass

Note that new is now being used in two very different contexts with very different semantics.
The variable declaration creates an object of class Packet. In the course of creating this instance,
the new function is invoked, in which any specialized initialization required may be done.  The
new task is also called the class constructor.

The new operation is defined as a function with no return type, thus, it must be non-blocking.
Even though new does not specify a return type, the left-hand side of the assignment determines
the return type.

Every class has a default (built-in) new method. The default constructor first calls its parent class
constructor (super.new() as described in Section 7.10) and then proceeds to initialize each
member of the current object to its default (or uninitialized value).

It is also possible to pass arguments to the constructor, which allows run-time customization of
an object:

Packet p = new(STARTUP, $random, $time);

where the new initialization task in Packet might now look like:
   function new(int cmd = IDLE, bit[12:0] adrs = 0, int time );

command = cmd;
address = adrs; 
time_requested = time;

   endfunction

The conventions for arguments are the same as for procedural subroutine calls, including the use
of default arguments.
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7.5 Class Properties
So far, we have only declared instance properties. Each instance of the class (i.e., each object of
type Packet), has its own copy of each of its six variables. Sometimes one needs only one version
of a variable to be shared by all instances. These class properties are created using the keyword
static. Thus, for example, in a case where all instances of a class need access to a common file
descriptor:

class Packet ;
static integer fileId = $open( “data”, “r” );

Now, semId will be created and initialized once. Thereafter, every Packet object can access the
file descriptor in the usual way:

Packet p;
c = $fgetc( p.semId );

7.6 this 
There are times when one needs to unambiguously refer to properties or methods of the current
instance. For example, the following declaration is a common way to write an initialization task:

class Demo ;
integer x;

function new (integer x) 
this.x = x;

endfunction
endclass

The x is now both a property of the class and an argument to the function new.  In the function
new, an unqualified reference to x will be resolved by looking at the innermost scope, in this
case the subroutine argument declaration. To access the instance property, we qualify it with this
to refer to the current instance.
Note that in writing methods, one can always qualify members with this to refer to the current
instance, but it is usually unnecessary.

7.7 Assignment, Re-naming and Copying
Declaring a class variable only creates the name by which the object is known.  Thus:

Packet p1;
creates a variable, p1, that can hold the handle of an object of class Packet, but the initial value of
p1 is null.  The object does not exist, and p1 will not contain an actual handle, until an instance
of type Packet is created:

p1 = new;
Thus, if one declares another variable and assign the old handle, p1, to the new one:

Packet p2;
p2 = p1;

then there’s still only one object, which can be referred to with either the name p1 or p2. Note,
new was executed once, so only one object has been created.
If, however, the last expression above is re-written slightly differently, it will make a copy of p1:

p2 = new p1;
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This statement has new executing twice, thus creating two objects, p1 and p2. With this syntax,
however, p2 will be a copy of p1, but it will be what is known as a shallow copy. All of the
variables are copied across: integers, strings, instance handles, etc. Objects, however, are not
copied, only their handles; as before, two names for the same object have been created. This is
true even if the class declaration includes the instantiation operator new:

class A ;
integer j = 5; 

endclass

class B ;
integer i = 1;
A a = new;

endclass

task test;
B b1 = new; // Create an object of class B
B b2 = new b1; // Create an object that is a copy of b1

b2.i = 10; // i is changed in b2, but not in b1
b2.a.j = 50; // change a, shared by both b1 and b2
test = b1.i; // test is set to 1 (b1.i has not changed)
test = b1.a.j; // test is set to 50 (a.j has changed)

endtask

Several things are noteworthy. First, properties and instantiated objects can be initialized directly
in a class declaration. Second, the shallow copy does not copy objects.  Third, instance
qualifications can be chained as needed to reach into objects or to reach through objects:

b1.a.j // reaches into a, which is a property of b1
p.next.next.next.val // chain through a sequence of handles to get to val

To do a full (deep) copy, where everything (including nested objects) are copied, custom code is
typically needed. Thus, we might have

Packet p1 = new;
Packet p2 = new;
p2.copy(p1);

where copy(Packet p) is a custom method written to copy the object specified as its argument
into its instance.

7.8 Inheritance and Subclasses
The previous sections defined a class called Packet. Assume one wanted to extend this class so
that the packets can be chained together into a list. One solution would be to create a new class
called LinkedPacket that contains a variable of type Packet called packet_c.
To refer to a property of Packet, one needs to reference the variable packet_c.
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class LinkedPacket;
Packet packet_c;
LinkedPacket next;

function LinkedPacket get_next();
get_next = next;

endfunction
endclass

Since LinkedPacket is a specialization of Packet, a more elegant solution is to extend the class
creating a new subclass that inherits the members of the parent class. Thus, for example, we
could have:

class LinkedPacket extends Packet;
LinkedPacket next;
function LinkedPacket get_next();

get_next = next;
endfunction

endclass

Now, all of the methods and properties of Packet are part of LinkedPacket - as if they were
defined in LinkedPacket – and LinkedPacket has additional properties and methods.
One can also override the parent’s methods, changing their definitions.

The mechanism provided by VeraLite is called Single-Inheritance, that is, each class is derived
from a single parent class.

7.9 Overriden Members
Subclass objects are also legal representative objects of their parent classes.  For example, every
LinkedPacket object is a perfectly legal Packet object.
One can assign the handle of a LinkedPacket object to a Packet variable:

LinkedPacket lp = new;
Packet p = lp;

In this case, references to p access the methods and properties of the Packet class. So, for
example, if properties and methods in LinkedPacket are overridden, when one references these
overridden members through p one gets the original members in the Packet class. From p, new
and all overridden members in LinkedPacket are now hidden.

class Packet;
integer i = 1;
function integer get();

get = i;
endfunction

endclass

class LinkedPacket extends Packet;
integer i = 2;
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function integer get();
get = -i;

endfunction
endclass

LinkedPacket lp = new;
Packet p = lp;
j = p.i;  // j = 1, not 2
j = p.get();  // j = 1, not -1 or –2

To get the overridden method, the parent method needs to be declared virtual (see below).

7.10  super 
The super keyword is used from within a derived class to refer to properties of the parent class.
It is necessary to use super when the property of the derived class has been overridden and
cannot be accessed directly.

class Packet; //parent class
integer value;
function integer delay();

delay = value * value;
endfunction

endclass

class LinkedPacket extends Packet; //derived class
integer value;
function integer delay();

delay = super.delay()+ value * super.value;
endfunction

endclass

The property may be a member declared a level up or a member inherited by the class one level
up.  There is no way to reach higher (for example, super.super.count is not allowed).
Subclasses are classes that are extensions of the current class.  Whereas super-classes are classes
that the current class is extended from, beginning with the original base class.

Note: When using the super within new, super.new  must be the first executable statement in
the constructor.  This is because the super-class must be initialized  before the current class and if
the user code doesn’t provide an initialization, the compiler will insert a call to super.new
automatically.

7.11  Casting
It is always legal to assign subclass variable to a variable of a class higher in the inheritance tree.
It is never legal to directly assign a super-class variable to a variable of one of its subclasses.
However, it may be legal to place the contents of the superclass handle in a subclass variable.
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To check if the assignment is legal, the dynamic cast function $cast() is needed (see Section 5.2).

The syntax for $cast() is:
task $cast( scalar dest_handle, scalar source_handle );

or
function int $cast( scalar dest_handle, scalar source_handle );

This function checks the hierarchy tree (super and subclasses) of the source_handle to see if it
contains the class dest_handle. If it does, $cast() does the assignment; if it is not, $cast()
generates a fatal error.

The second version of this function allows checking the results without generating an error:
int success = $cast(destination_handle, source_handle );

This version does the assignment and returns 1 if the assignment is valid.  Otherwise, it sets the
destination handle to null and returns 0.

7.12  Chaining Constructors
When a subclass is instantiated, one of the system’s first actions is to invoke the class method
new().  The first, implicit action new() takes is to invoke the new() method of its super-class, and
so on up the inheritance hierarchy.  Thus, all the constructors are called, in the proper order,
beginning with the base class and ending with the current class.
If the initialization method of the super-class requires arguments, one has two choices. To always
supply the same arguments or to use the super keywors.  If the arguments are always the same
then they can be specified at the time the class is extended:

class EtherPacket extends Packet(5);

This will pass 5 to the new routine associated with Packet.

A more general approach is to use the super keyword, to call the super-class constructor:

function new();
super.new(5);

endfunction

To use this approach, super.new(…) must be the first executable statement in the function new.

7.13  Data Hiding and Encapsulation
So far, all class properties and methods have been made available to the outside world without
restriction. However, for most data (and subroutines) one wants to hide them from the outside
world. This keeps other programmers from relying on a specific implementation, and it also
protects against accidental modifications to properties that are internal to the class. When all data
becomes hidden - being accessed only by public methods - testing and maintenance of the code
becomes much easier.
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In VeraLite, unlabeled properties and methods are public, available to anyone who has access to
the object’s name.
A member identified as local is available only to methods inside the class. Further, these local
members are not visible even to subclasses and cannot be inherited. Of course, non-local
methods that access local properties or methods can be inherited, and work properly as methods
of the subclass.
A protected property or method has all of the characteristics of a local member, except that it
can be inherited; it is visible to subclasses.
Note that within the class, one can reference a local method or property of the class, even if it is
in a different instance. For example

class Packet;
local integer i;
function integer compare (Packet other);

compare = (this.i == other.i);
endfunction

endclass

A strict interpretation of encapsulation might say that other.i should not be visible inside of this
packet, since it is a local property being referenced from outside its instance. Within the same
class, however, these references are allowed. In this case, this.i will be compared to other.i and
the result of the logical comparison will be returned.

In summary:
� Wherever possible, use local members. Hide members that the outside world doesn’t need to

know about.
� Use protected members if the outside world doesn’t have a need to know, but subclasses

might.
� Public access should only be allowed when it is absolutely necessary, and the access should

be limited as much as possible. Generally, don’t provide direct access to properties but rather
provide access methods - provide, for example, only read access if a variable should never be
written. This provides an extra level of protection and preserves flexibility for future
changes.

7.14  Constant Properties
Class properties can be made read-only by a const declaration like any other SystemVerilog
variable.  However, because class objects are dynamic objects, class properties allow two forms
of read-only variables: Global constants and Instance constants.

Global constant properties are those that include an initial value as part of their declaration.
They are similar to other const variables in that they cannot be assigned a value anywhere other
than in the declaration.

class Jumbo_Packet;
const int max_size = 9 * 1024; // global constant
byte payload [*];
function new( int size );
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payload = new[ size > max_size ? max_size : size ];
endfunction

endclass

Instance constants do not include an initial value in their declaration, only the const qualifier.
This type of constant can be assigned a value at run-time, but the assignment can only be done
once in the corresponding class constructor.

class Big_Packet;
const int size; // instance constant
byte payload [*];
function new();

size = $random % 4096; //one assignment in new -> ok
payload = new[ size ];

endfunction
endclass

Typically, global constants are also declared static since they are the same for all instances of the
class.  However, an instance constant cannot be declared static, since that would disallow all
assignments in the constructor.

7.15  Abstract Classes and Virtual Methods
Often one creates a set of classes that can be viewed as all derived from a common base class.
For example, we might start with a common base class of type BasePacket that sets out the
structure of packets but is incomplete; one would never want to instantiate it.  From this base
class, though, one might derive a number of useful subclasses: Ethernet packets, token ring
packets, GPSS packets, satellite packets. Each of these packets might look very similar, all
needing the same set of methods, but they could vary significantly in terms of their internal
details.
The first step is to create the base class that sets out the prototype for these subclasses. Since the
base class doesn’t need to instantiate the base class, it can be declared to be abstract by declaring
the class to be virtual:

virtual class BasePacket;

By themselves, abstract classes are not tremendously interesting, but abstract classes can also
have virtual methods. Virtual methods provide prototypes for subroutines, all of the information
generally found on the first line of a method declaration: the encapsulation criteria, the type and
number of arguments, and the return type if it is needed. Later, when subclasses override virtual
methods, they must follow the prototype exactly. Thus, all versions of the virtual method will
look identical in all subclasses:

virtual class BasePacket;
virtual protected function integer send(bit[31:0] data);
endfunction

endclass

class EtherPacket extends BasePacket;
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protected function integer send(bit[31:0] data);
// body of the function
...

endfunction
endclass

EtherPacket is now a class that can be instantiated. In general, if an abstract class has several
virtual methods, all of the methods must be overridden for the subclass to be instantiated. If all of
the methods are not overridden, the subclass needs to be abstract.
Methods of normal classes can also be declared virtual. In this case, the method must have a
body. If the method does have a body, then the class can be instantiated, as can its subclasses.
However, if the subclass overrides the virtual method, then the new method must exactly match
the super-class’s prototype.

7.16  Polymorphism: Dynamic Method Lookup
Polymorphism allows one to use super-class variables to hold subclass objects, and to reference
the methods of those subclasses directly from the super-class variable. As an example, consider
the base class for the Packet objects, BasePacket. Assuming that it defines, as virtual functions,
all of the public methods that are to be generally used by its subclasses, methods such as send,
receive, print, etc. Even though BasePacket is abstract, it can still be used to declare a variable:

BasePacket packets[100];

Now, one can create instances of various packet objects, and put these into the array just created:
EtherPacket ep = new;
TokenPacket tp = new;
GPSSPacket gp = new;
packets[0] = ep;
packets[1] = tp;
packets[2] = gp;

If the data types were, for example, integers, bits and strings, one couldn’t store all of these types
into a single array, but with polymorphism one can do it. In this example, since the methods were
declared as virtual, one can access the appropriate subclass methods from the superclass variable
even though the compiler didn’t know - at compile time - what was going to be loaded into.  For
example, packets[1]:

packets[1].send();

will invoke the send method associated with the TokenPacket class.  At run-time, the system
correctly binds the method from the appropriate class.
This is a typical example of polymorphism at work, providing capabilities that are far more
powerful than what is found in a non-object-oriented framework.
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7.17  Out of Block Declarations
It is generally good coding practice to keep the class declaration to about a page. This makes the
class easy to understand and to remember; declarations that go on for pages are hard to follow,
and it is easy to miss short methods buried among the multi-page declarations.

To make this practical, it is best to move long method definitions out of the body of the class
declaration. This is done in two steps. Declare, within the class body, the method prototypes -
whether it is a function or task, any attributes (local, protected, public, or virtual), and the full
argument specification plus the extern qualifier. The extern qualifier indicates that the body of
the method (it’s implementation) is to be found outside the declaration.  Then, outside the class
declaration, declare the full method – like the prototype but without the attributes - and, to tie the
method back to its class, qualify the method name with the class name and a pair of colons:

class Packet;
Packet next;
function Packet get_next(); // single line

get_next = next;
endfunction

// out-of-body (extern) declaration
extern protected virtual function int send(int value);

endclass

function int Packet::send(int value);
// dropped protected virtual, added Packet::
// body of method

...
endfunction

The first lines of each part of the method declaration are nearly identical, except for the attributes
and class-reference fields.

7.18  Parameterized Classes
It is often useful to define a generic class whose objects can be instantiated to have different
array sizes or data types.  This avoids writing similar code for each size or type, and allows a
single specification to be used for objects that are fundamentally different, and (like a templated
class in C++) not interchangeable.

The normal Verilog parameter mechanism is used to parameterize a class:

class vector #(parameter int size = 1;);
bit [size-1:0] a;

endclass

Instances of this class can then be instantiated like modules or interfaces:
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vector #(10) vten; // object with vector of size 10
vector #(.size(2)) vtwo; // object with vector of size 2
typedef vector#(4) Vfour; // Class with vector of size 4

This feature is particularly useful when using types as parameters:

class stack #(parameter type T = int;);
local T items[*];
task push( T a ); ... endtask
task pop( var T a ); ... endtask

endclass

The above class defines a generic stack class that can be instantiated with any arbitrary type:

stack is; // default: a stack of int’s
stack#(bit[1:10]) bs; // a stack of 10-bit vector
stack#(real) rs; // a stack of real numbers

Any type can be supplied as a parameter, including a user-defined type such as a class or struct.

The combination of a generic class and the actual parameter values is called a specialization (or
variant).  Each specialization of a class has a separate set of static member variables (this is
consistent with C++ templated classes).  To share static member variables among several class
specializations, they must be placed in a non-parameterized base class.

class vector #(parameter int size = 1;);
bit [size-1:0] a;
static int count = 0;
function void disp_count();

$display( “count: %d of size %d”, count, size );
endfunction

endclass

The variable count in the example above can  only be accessed by the corresponding disp_count
method.  Each specialization of the class vector has its own unique copy of count.

To avoid having to repeat the specialization either in the declaration or to create parameters of
that type, a typedef should be used:

typedef vector#(4) Vfour;
typedef stack#(Vfour) Stack4;
Stack4  s1, s2; // declare objects of type Stack4
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7.19  Typedef class
Sometimes a class variable needs to be declared before the class itself has been declared. For
example, two classes may each need a handle to the other. When, in the course of processing the
declaration for the first class, the compiler encounters the reference to the second class, that
reference is undefined and the compiler flags it as an error. 
This is resolved using typedef to provide a forward declaration for the second class:

typedef class C2; // C2 is declared to be of type class
class C1 

C2 c;
endclass
class C2 

C1 c;
endclass

In this example, C2 is declared to be of type class, a fact that is re-enforced later in the source
code.  Note that the class construct always creates a type, and does not require a typedef
declaration for that purpose (as in typedef class …).  This is consistent with common C++ use.

Note that the class keyword in the statement typedef class C2; is not necessary, and is used
only for documentation purposes.  The statement typedef C2; is equivalent and will work the
same way.

7.20  Classes, Structs, and Unions
SystemVerilog-3.0 includes struct and union.  VeraLite adds the object-oriented class construct.
On the surface, it might appear that class and struct provide equivalent functionality, and only
one of them is needed.  However, that is not true; class differs from struct in four fundamental
ways:
1. SystemVerilog struct are strictly static objects; they are created either in a static memory

location (global or module scope) or on the stack of an automatic task.  Conversely, VeraLite
objects (i.e., class instances) are exclusively dynamic, their declaration doesn’t create the
object; that is done by calling new.

2. SystemVerilog structs are type compatible so long as their bit sizes are the same, thus
copying structs of different composition but equal sizes is allowed.  In contrast, VeraLite
objects are strictly strongly-typed.  Copying an object of one type onto an object of another is
not allowed.

3. VeraLite objects are implemented using handles, thereby providing C-like pointer
functionality.  But, VeraLite disallows casting handles onto other data types, thus, unlike C,
VeraLite handles are guaranteed to be safe.

4. VeraLite objects form the basis of an Object-Oriented framework that provides true
polymorphism.  Class inheritance, abstract classes, and dynamic casting are powerful
mechanisms that go way beyond the mere encapsulation mechanism provided by structs.



TestBench Donation SystemVerilog 3.1

November 25, 2002 39

7.21  Memory Management
Memory for objects, strings, and dynamic and associative arrays is allocated dynamically.  When
objects are created, VeraLite allocates more memory.  When an object is not needed anymore,
VeraLite automatically reclaims the memory, making it available for re-use.  The automatic
memory management system is an integral part of VeraLite.  One might be tempted to think that
a manual memory management system, such as the one provided by C’s malloc and free, might
be sufficient.  However, SystemVerilog’s multi-threaded, re-entrant environment create many
opportunities for users to shoot themselves in the foot.  For example, consider the following
example:

myClass  obj = new;
fork

task1( obj );
task2( obj );

join none

In this example, the main process (the one that forks off the two tasks) doesn’t know when the
two processes might be done using the object obj.  Similarly, neither task1 nor task2 knows when
any of the other two processes will no longer be using the object obj.  It is evident from this
simple example that no single process has enough information to determine when it is safe to
free the object.  The only two options available to the user are (1) play it safe and never reclaim
the object, or (2) add some form of reference count that can be used to determine when it might
be safe to reclaim the object.  Adopting the first option will cause the system to quickly run out
of memory.  The second option places a large burden on users, who, in addition to managing
their test-bench, must also manage the memory using less than ideal schemes.  To avoid these
shortcomings, VeraLite manages all dynamic memory automatically. Users no longer need to
worry about dangling references, premature deallocation, or memory leaks.  The system will
automatically reclaim any object that is no longer being used.  In the example above, all that
users do is assign null to the handle obj when they no longer need it.  Similarly, when an object
goes out of scope the system implicitly assigns null to the object.
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8 Operators and Expressions
VeraLite supports all the “SystemVerilog 3.0” operators plus a few additional ones.
Table 1 lists all VeraLite operators. Operators common to VeraLite and SystemVerilog have the
same semantics as in “SystemVerilog 3.0”. Operators that do not exist in “SystemVerilog 3.0” or
that have extended behavior are shown in boldface.

Operator Description Semantics
{} RHS numeric concatenation Same as SystemVerilog 3.0
{} LHS numeric concatenation Same as SystemVerilog 3.0
{{}} Numeric Replication Same as SystemVerilog 3.0
{} String concatenation Not in SystemVerilog 3.01

{{}} String replication Not in SystemVerilog 3.0
+ - * / Arithmetic Same as SystemVerilog 3.0
% Modulus Same as SystemVerilog 3.0
++ -- Increment/Decrement (post) Same as SystemVerilog 3.02 
++ -- Increment/Decrement (pre) Same as SystemVerilog 3.0
+= -= *= /= %=
<<= >>= &= |= ^=
~&= ~|= ~^= <<<=
>>>=

Compound assignment Same as SystemVerilog 3.0

= Simple Assignment Same as SystemVerilog 3.0
< <= > >= Relational Same as SystemVerilog 3.0
! && || == != Logical operators Same as SystemVerilog 3.0
=== !== Case equality, inequality Same as SystemVerilog 3.0
=?= !?= Wild equality, inequality Not in SystemVerilog 3.0
~ Bit-wise negation Same as SystemVerilog 3.0
& | ^ ^~ Bit-wise binary operators Same as SystemVerilog 3.0
& | ^ ~& ~| ~^ ^~ Reduction operators Same as SystemVerilog 3.0
<< >> Shift Same as SystemVerilog 3.0
<<< >>> Arithmetic Shift Same as SystemVerilog 3.0
** Exponentiation Same as SystemVerilog 3.0
?: Conditional Same as SystemVerilog 3.0

Table 1: VeraLite Operators

8.1  Operator Precedence
Table 2 lists the precedence and associativity of all VeraLite operators.  Highest precedence
operators are listed first.  Precedence is the same as in SystemVerilog 3.0.

Operator Associativity
() [] .   left
Unary   ! ~ ++ -- & ~& | ~| ^ ~^ right

                                                
1 These operators don’t exist in SystemVerilog when applied to string variables (see Section 8.4).
2 The behavior of ++ and -- is incompletely specified in SystemVerilog (see Section 8.3).
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** left
*  /  % left
+  - left
<<  >>  <<<   >>> left
<  <=  >  >= left
==  !=  ===  !==  =?=  !?= left
&  &~ left
^  ~^ left
|  |~ left
&& left
|| left
?  : right
= += != *= /= %= &= |= ^= <<= >>= <<<= >>>= none

Table 2: Operator Precedence

8.2 Wild Equality and Wild Inequality
VeraLite introduces the wild-card comparison operators to SystemVerilog, as described below.

Operator Usage Description
=?= a =?= b a equals b, X and Z values act as wildcards
!?= a !?= b a not equal b, X and Z values act as wildcards

The wild equality operator (=?=) and inequality operator (!?=) treat X and Z values in a given
bit position as a wildcard.  A wildcard bit matches any bit value (0, 1,Z, or X) in the value of the
expression being compared against it.
These operators compare operands bit for bit, and return a 1-bit self-determined result.  If the
operands are not the same length, the shorter operand is zero-filled.  If the relation is true, the
operator yields a 1. If the relation is false, it yields a 0.

The three types of equality (and inequality) operators in SystemVerilog behave differently when
their operands contain unknown values (X or  Z).  The == and != operators will result in X if any
of their operands contains an X or  Z. The === and !=== check the 4-state explicitly, therefore,
X and Z values will either match or mismatch, never resulting in X.  Finally, the =?= and !?=
operators treat X or Z as wildcards that match any value, thus, they too never result in X.

8.3 Side effecting operators: ++ and --
The behavior of the ++ and –- operators (pre/post increment/decrement) is incompletely defined
in SystemVerilog 3.0.  This can lead to unexpected behavior when a single statement modifies
the same variable more than once.  The ANSI-C standard specifically leaves this behavior
undefined, allowing every compiler to do it differently, and indeed they do. For example, the
following C code fragment produces the output shown below:
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  int i = 1;
  printf( "%d %d %d %d %d %d\n", i++, i++, ++i, --i, i--, i-- );
 

VeraLite 1  2  4  3  3  2 gcc -g 1  2  4  3  3  2
cc (solaris) 1  2  1  1  3  2 gcc -O2 1  2  1  1  3  2
cc (dec) 1  1  2  1  1  1 cc (linux) 0  -1  -1  -2  0  1

VeraLite defines the semantics for computing all arguments and operands. The size of the ++
and – operators is self-determined.  Arguments with the same precedence are evaluated in strict
left-to-right order.  In addition, the ++ and –- operators operate on their corresponding variables
as they are evaluated.  Thus, the semantics of  post and pre increment (++) is roughly equivalent
to the code shown below  (decrement is analogous).

function integer pre_inc (var integer a); begin // ++a
a += 1;
pre_inc = a;

end
endfunction

function integer post_inc (var integer a); begin // a++
post_inc = a;
a += 1;

end
endfunction

The above description states a semantic definition for these operators. VeraLite’s semantics are
compatible with Verilog operators, which are also left to right associative, and may have side-
effects.  For example: 

$display( f( a ) + g( b ) );
If functions f() and g() have side effects on variables a or b, Verilog must enforce the left-to-right
semantics to avoid the ambiguous results.

8.4 String Operators
VeraLite introduces the string data type, and provides a set of operators that can be used to
manipulate combinations of string variables and string literals. The basic operators defined on
the string data type are listed in Table 3.

In VeraLite a string literal is implicitly converted to string type when it is assigned to a variable
of type string or is used in an expression involving string type operands. A string literal and a
concatenation or replication of string literals are the only types of packed arrays that are allowed
to be assigned to variables of type string.

For example:
reg [15:0] r;
integer i = 1; 
string a = {“Hi”, b};
string b = “”;
r = a; // OK
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b = r; // Error
b = “Hi”; // OK
b = {5{“Hi”}}; // OK
a = {i{“Hi”}}; // OK (non constant replication)
r = {i{“Hi”}}; // invalid (non constant replication)
a = {i{b}}; // OK
a = {a,b}; // OK
a = {“Hi”,b}; // OK
a[0] = “h”; // OK (same same as a[0] = “hii” )

Operator Semantics

Str1 == Str2

Equality.  Checks if the two strings are equal. Result is 1 if they are
equal and 0 if they are not. Both strings may be of type string. Or
one of them may be a string literal.  If both operands are string
literals, the expression is the same Verilog equality operator for
integer types.  The special value “” is allowed.

Str1 != Str2 Inequality.  Logical Negation of  ==

Str1 < Str2
Str1 <= Str2
Str1 > Str2
Str1 >= Str2

Comparison.  Relational operators return 1 if  the  corresponding
condition is true using the lexicographical ordering of the two
strings Str1 and Str2.  The comparison behaves like the ANSI C
strcmp function (or the compare string method). Both operands may
be of type string. Or one of them may be a string literal.

{Str1,Str2,...,Strn}

Concatenation.  Each Stri may be of type string or a string literal (it
will be implicitly converted to string).  If at least one Stri is of type
string, then the expression evaluates to the concatenated string and is
of type string.  If all the Stri are string literals then the expression
behaves like Verilog concatenation of integral types; if the result is
then used in an expression involving string types, it is implicitly
converted to string type.

{multiplier{Str}}

Replication.  Str may be of type string or a string literal. Multiplier
must be of integral type and can be non-constant. If Str is a literal
and the multiplier is constant, the expression behaves like numeric
replication in Verilog (if the result is used in another expression
involving string types, it is implicitly converted to string type). 

Str.method(...)
The dot (.) operator is used to invoke a specified method on strings.
See Section 6.1 for detailed descriptions of the various string
methods available.

Table 3: String Operators
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8.5 Concatenation and Replication
The concatenation operation is specified using braces ( { } ), as in Verilog.  The concatenation is
treated as a packed vector of bits (or logic if any operand is of type logic).  Concatenation can be
used on the left hand side of an assignment or in an
expression.

logic a, b, c;
{a, b, c} = 3’b111;
{a, b, c} = {1’b1, 1’b1, 1’b1}; // same effect as 3’b111

In addition, VeraLite enhances the concatenation operation to allow concatenation of variables of
type string.  In general, if any of the operands is of type string, the concatenation is treated as a
string, and all other arguments are implicitly converted to string type (as described in Section
8.4).  String concatenation is not allowed on the left hand side of an assignment, only as an
expression.

string  hello = “hello”;
string  s;
s = { hello, “ ”, “world” };
$display( “%s\n”, s ); // displays ‘hello world’
s = { s, “ and goodbye” };
$display( “%s\n”, s ); // displays ‘hello world and goodbye’

Note that unlike bit concatenation, the result of a string concatenation is not truncated.  Instead,
the destination variable (of type string) is resized to accommodate the resulting string.

The replication operator (also called a multiple concatenation) form of braces can also be used
with variables of type string.  In the case of string replication, a non-constant multiplier is
allowed.

int n = 3;
string  s = {n { “boo ” }};
$display( “%s\n”, s ); // displays ‘boo boo boo ’

Note that unlike bit concatenation, the result of a string concatenation or replication is not
truncated.  Instead, the destination variable (of type string) is resized to accommodate the
resulting string.
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9 Subroutines
Like Verilog, VeraLite supports two means of encapsulating often-executed program fragments:
� Functions Execute the subroutine whenever called and returns a value right away
� Tasks Execute the subroutine whenever called, returns no value, and may block.

VeraLite extends SystemVerilog-3.0 subroutines with:
� Lifetime attribute for modules 
� Discarding function values
� Parameter passing by Value or Reference
� Default arguments

9.1 Scope and Lifetime
In SystemVerilog-3.0 Subroutines declared outside a module or interface have global scope, are
available everywhere and exist in the $root scope.  Subroutines definitions cannot be nested,
they must be made either at the top level ($root scope) or within a module (module scope).

Verilog-2001 allows tasks and functions to be declared as automatic, making all storage within
the task or function automatic. SystemVerilog-3.0 allows specific data within a static task or
function to be explicitly declared as automatic. Data declared as automatic has the lifetime of
the call or block, and is initialized on each entry to the call or block.  Subroutines with
automatic variables are re-entrant and can be called recursively.

SystemVerilog-3.0  also allows data to be explicitly declared as static. Data declared as static in
an automatic task, function or in a process has a static lifetime and a scope local to the block.

In SystemVerilog-3.0 the default lifetime for tasks and functions is static.  Yet,  most test-bench
subroutines are automatic, and having to explicitly declare each of them so can be cumbersome.
This is resolved by adding an optional module attribute to specify the default lifetime of all tasks
and functions declared within the module.  The lifetime attribute can be set  to automatic or
static.  The default is static for modules, and automatic for the program block (see Section 14).

Also, class methods are by default automatic, regardless of the lifetime attribute of the module in
which they are declared.  Classes are discussed in Section 7.

9.2 Discarding Function Return Values
Values returned by functions must be assigned or used in an expression. Calling a function as if
it has no return value results in a compilation error.  VeraLite allows using the void data type to
discard a function’s return value.  In SystemVerilog-3.0, this can be done with a cast to the void
type:

void’(some_function());

VeraLite provides a different syntactical alternative in which the return value is assigned to the
void keyword:

void = some_function();
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The VeraLite form is preferred since it shows the intent more clearly than a cast, and doesn’t
force users to use an extra set of parenthesis.

9.3 Parameter Passing
VeraLite provides two means for passing arguments to functions and tasks: by value and by
reference.

9.3.1 Pass By Value
Pass by value is the default mechanism for passing arguments to subroutines, it is also the only
one provided by SystemVerilog-3.0.  This argument passing mechanism works by copying each
argument into the subroutine area.  If the subroutine is automatic
then the subroutine retains a local copy of the arguments in its stack.  If the arguments are
changed within the subroutine, the changes are not visible outside the subroutine.  When the
arguments are large, it may be undesirable to copy the arguments.  Also, programs sometimes
need to share a common piece of data that is not declared global.
For example, calling the function bellow will copy 1000 bytes each time the call is made.

function int crc( char [1000:1] packet );
for( int j= 0; j < 1094; j++ ) begin
crc ^= packet[j];

end 
endfunction

9.3.2 Pass By Reference
Arguments passed by reference are not copied into the subroutine area, rather, a reference to the
original argument is passed to the subroutine.  The subroutine can then access the argument data
indirectly via the reference.  To indicate argument passing by reference, the argument declaration
is preceded by the var keyword.  The general syntax is:

subroutine( var type argument );

For example, the example above can be written as:

function int crc( var char [1000:1] packet );
for( int j= 0; j < 1094; j++ ) begin

crc ^= packet[j];
end 

endfunction

Not that in the example, no change other than addition of the var keyword is needed.  The
compiler knows that packet is now addressed indirectly vi a reference, but users do not need to
make these references explicit either in the callee or at the point of the call.  That is, the call to
either version of the crc function remains the same:

char packet[1000:1];
int k = crc( packet1 ); // pass by value or by reference: call is the same
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Also, because the argument is passed by reference, both the caller an the callee share the same
representation of the argument, so any changes made to the argument either within the caller or
the callee will be visible to each other.

Arguments passed by reference must match exactly, no promotion, conversion, or auto-casting is
possible when passing arguments by reference.  In particular, array arguments must match their
type and all dimensions exactly.  Fixed-size arrays cannot be mixed with dynamic arrays and
vice-versa.

Passing an argument by reference is a unique parameter passing qualifier, different from input,
output, or inout.  Combining var with any other qualifier is illegal.  For example, the following
declaration results in a compiler error:

task incr( var input int a ); // incorrect: var cannot be qualified

9.4 Default Arguments
To handle common cases or allow for unused arguments, VeraLite allows a subroutine
declaration to specify a default value for each scalar (non-packed-array) argument.

The syntax to declare a default argument in a subroutine is:
subroutine( type argument = default_value );

default_value is any expression that is visible at the current scope.  It may include any
combination of constants or variables visible at the scope of both the caller and the callee.

When the subroutine is called, arguments with default values can be omitted from the call and
the compiler will insert their corresponding values. Unspecified (or empty) arguments can be
used as placeholders for default arguments, allowing use of non-consecutive default arguments.
If an unspecified argument is used for an argument that does not have a default value, a compiler
error is issued.

    task read(int j = 0, int k, int data = 1 );
        ...
    endtask;

This example declares a task read() with two default arguments, j and data.

The task can the be called using various default arguments:
  read(  , 5 ); is equivalent to read( 0, 5, 1 );
  read( 2, 5 ); is equivalent to read( 2, 5, 1 );
  read(  , 5,   ); is equivalent to read( 0, 5, 1 );
  read(  , 5, 7 ); is equivalent to read( 0, 5, 7 );

  read( 1, 5, 2 ); is equivalent to read( 1, 5, 2 );
  read( ); // error -> k has no default value
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9.5 Argument Passing by Name
VeraLite allows arguments to tasks and functions to be passed by name as well as by position.
This allows specifying non-consecutive default arguments and easily specifying the parameter to
be passed at the call.  For example:

function int fun( int j = 1, string s = “no” );
...

endfunction

The fun function can be called as follows:
fun( .j(2), .s(“yes”) ); // fun( 2, “yes” );
fun( .s(“yes”) ); // fun( 1, “yes” );
fun( , “yes” ); // fun( 1, “yes” );
fun( .j(2) ); // fun( 2, “no” );
fun( 2 ); // fun( 2, “no” );
fun( ); // fun( 1, “no” );

If the arguments have a defaults, they are treated like parameters to module instances.  If the
arguments do not have a default then they must be given or the compiler will issue an error.
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10 Sequential Control
This section reviews the behavioral constructs for sequential flow control.  These are all fully
compatible with SystemVerilog.  VeraLite enhances the SystemVerilog for loop by allowing
multiple assignment statements as the initial and increment statements.

10.1  if-else Statements
The if-else statement is used to decide whether a statement is executed or not. 
The syntax to declare an if-else statement is:

if (expression) if_block [else else_block]
where expression is any valid expression that evaluates to true, false, or perhaps X.
The if_block or else_block can be any statement or block of statements. If a code block is used,
the entire block is executed.
If the expression evaluates to true, the if_block  is executed. If it evaluates to false (or X) the
else_block is executed.
If  the else_block is omitted, the expression is evaluated and the if_block  is executed only if it
evaluates to true. Otherwise, the program continues execution with the first line after the
if_block.  If-else statements can be nested.

if (operator == 0) y = a+b;
else if (operator == 1) y = a-b;
else if (operator == 2) y = a*b;
else y = ’bx;

This example uses several if-else statements. The final else statement is associated with the
if_block immediately preceding it.

10.2  case Statements
The case statement provides for multi-way branching.
The syntax to declare a case statement is:

case (primary_expression) 
case1_expression : statement
case2_expression : statement
...
caseN_expression : statement
[default : statement]

endcase

The primary_expression is evaluated and its value is successively checked against each
case_expression. When an exact match is found, the statement corresponding to the matching
case is executed, and control is passed to the first line of code after the endcase. If other matches
exist, they are not executed.

The case_expression can be any valid expression.  Expressions separated by commas allow
multiple expressions to share the same statement block.
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All case expressions must have the same bit length X and Z values are actual values and are not
ignored.

The statement(s) can be any valid statement or block of statements. If a code block is used, the
entire block is executed.
A case statement must have at least one case item aside from the default case, which is optional.
The default case must be the last item in a case statement. 

case( bus[3:0] ) 
4’b00ZZ: packet = NONE;
4’b0001, 4’b1001: packet = READ;
4’b0010, 4’b1010: packet = WRITE;
4’b00XX: packet = UNKNOWN;
default: $display("Bad packet %h detected\n", bus[3:0]);

endcase

The casex and casez statements allow treating as wildcards any X or Z values in both the
primary_expression and each case_expression. casex, treats both X or Z values as don’t-care in
both primary_expression and each case_expression, while casez treats Z values as don’t-care.
Like in the case statement, if no match is found, the default statement is executed.

The if-else, case, casez and casex statements can be preceded by the unique or priority
qualifiers to indicate that only one statement is allowed to match the expression or that the
expressions be evaluated in the given order, respectively.

10.3  repeat loops
The repeat loop executes a statement an integral number of times. 
The syntax to declare a repeat loop is:

repeat (expression) statement

The expression can be any valid integral expression, including constants.
The statement can be any valid statement or block of statements. If a code block is used, the
entire block is executed.
The value of the expression is evaluated before the loop starts. Changing a variable within the
expression does not change the number of times to be executed.

repeat(4) shift_op <<= 3;

10.4  for loops
Generalized looping construct that controls execution of its associated statement via the three
constructs initial, condition, and increment.   The syntax to declare a for loop is:

for(initial; condition; increment) statement

The initial statement is one or more comma-separated assignment statements that are executed
before the loop starts. Normally used to control the number of loops to be executed. The first
initial statement can optionally declare a single loop control variable.
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The condition can be any valid expression that can be evaluated as a boolean.  It is evaluated
each time the loop executes,
The increment specifies one or more assignments, normally used to modify the value of the loop-
control variable.  They execute each time the loop executes, after statement.
The statement  can be any valid statement or block of statements. If a code block is used, the
entire block is executed.
The for loop sets the initial value of the loop control variable. It evaluates the condition. If the
condition is true, the loop executes a one time. When the loop finishes one iteration, the update
expression is executed. Typically this expression changes the value of the loop control variable.
Then the condition is checked again and the process continues. The loop continues as long as the
condition evaluates to true. When it does not evaluate to true, the loop stops and control is passed
to the first line after the loop.

for( int count = 0; count < 3; count++ )
value = value +((a[count]) * (count+1));

for( int count = 0, done = 0, int j = 0; j * count < 125; j++ )
$display("Value j = %d\n", j );

VeraLite enhances SystemVerilog-3.0 by allowing the initial and increment statements to contain
more than one assignment statement; these statements separated by commas (,).  Initial
statements may alos declare and initialize more than one variable.

10.5  while loops
The syntax to declare a while loop is:

while (condition) statement

The condition can be any valid expression that can be evaluated as a boolean.
The statement can be any valid statement or block of statements. If a code block is used, the
entire block is executed.
The loop iterates while condition is true. When the condition is false or X, control passes to the
first line of code after the loop. The condition is checked at the start of each loop.

operator = 0;
while (operator < 5) begin

operator += 1;
end

10.6  do loops
The syntax to declare a do loop is:

do statement while (condition)
The condition can be any valid expression that can be evaluated as a boolean.
The statement can be any valid statement or block of statements. If a code block is used, the
entire block is executed.
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The loop executes statement and then iterates while condition is true. When the condition is false
or X, control passes to the first line of code after the loop. The condition is checked at the end of
each loop.

do
operator <<= 1;

while (nshift < 5)

10.7  Jump Statements
The C-like break and continue statements can be used for flow control within loops.  The
return statement allows termination of a task or function.

10.7.1 break
The break statement forces immediate termination of a loop.  A break statement can only be
executed from inside a loop.  Executing break terminates the loop immediately and passes
control to the first line after the loop.

while (test_flag) begin
if (done)

break;
end

10.7.2 continue
The continue statement forces the next iteration of a loop to take place.
A continue statement can only be executed from inside a loop.  In a repeat loop, the continue
statement passes control back to the top of the loop. If the loop is complete, control is then
passed to the first line after the loop. 
In a for loop the continue statement passes control to the increment statement. 
In a while loop, the continue statement passes control to the condition.

for ( int j = 0; j < 10; j++ ) begin
if (skip_loop) continue;

...
end

10.7.3 return
Normally, functions and tasks return control to the caller after executing the last statement of the
block.  The return statement exits the subroutine and passes control back to the caller.
The return statement takes two forms:
� return;
� return expression;
The first form is allowed in a task or function.
The second form is only allowed in a function, and causes expression to be implicitly assigned to
the function’s return variable.
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If a return statement with no expression is executed inside a function, the value returned is the
default (or uninitialized) value for the corresponding data type.
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11 Processes
Verilog-2001 provides always and initial blocks that define static processes.
An always block is used to model combinational logic.  SystemVerilog-3.0 enhances always
blocks with specialized always_comb, always_latch, and always_ff blocks, which indicate
combinational behavior, latched behavior, or sequential logic behavior, respectively.  

In systems modeling, one of the key limitations of Verilog is its inability to create processes
dynamically, as happens in an operating system. Verilog has the fork .. join construct, but this
still imposes a static limit.  SystemVerilog-3.0 adds dynamic processes, which are introduced by
the process statement.  VeraLite adds dynamic processes by enhancing the fork .. join construct,
in a way that is more natural to Verilog users.

SystemVerilog creates a thread of execution for each initial or always block, for each parallel
statement in a fork...join block and for each dynamic process.  Each continuous assignment may
also be considered its own thread.  Each thread executes uninterrupted until it encounters a
blocking statement, such as waiting for an event, a delay statement, etc…

Verilog provides process control via the disable construct, but is limited to processes associated
with named blocks and cannot distinguish between different processes executing the same block.
VeraLite introduces dynamic process control constructs that can terminate or wait for processes
using their dynamic, parent-child relationship.  These are $wait_child(), $suspend_thread(),
and $terminate.

11.1  fork .. join
The fork .. join construct provides the primary mechanism for creating concurrent processes.
The syntax to declare a fork…join block is:

fork
statement1;
statement2;
...
statementn;

join [all | any | none]

The statement(s) can be any valid statement or block of statement enclosed by begin .. end.
One or more statements can be specified, each statement will execute as a concurrent process.
The spawned processes start executing in strict source order: the first statement (statement1),
starts executing first, followed by the second (statement2), and so on.

In Verilog a fork .. join block always causes the process executing the fork statement to block
until all the forked off processes terminate. VeraLite adds join options that control how the fork
is to be carried out.

The join option (all, any, none) specifies when the parent (forking) process resumes execution.
If the join option is not specified, the VeraLite uses the Verilog default, which is the same as all.
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Option Description
all The parent process blocks until all the processes spawned by this fork

complete.  This is the same as a Verilog fork .. join .
any The parent process blocks until any one of the processes spawned by

this fork complete.
none The parent process continues to execute concurrently with all the

processes spawned by the fork. The spawned processes do not start
executing until the parent thread executes a blocking statement.

A fork .. join none statement causes all the spawned processes as well as the parent process to
execute concurrently, but the children processes do not start executing until the parent process
executes a blocking statement (see $suspend_thread in Section 11.5).  Nevertheless, the
spawned processes will start executing in source order: starting with the first statement first, and
ending with the last.

When defining a fork..join block, encapsulating the entire fork within a begin..end block causes
the entire block to execute as a single process, with each statement executing sequentially.

fork 
  begin

statement1; // one process with 2 statements
statement2;

  end
join

Example: In the following example, two processes are forked off, the first one will wait for 20ns
and the second will wait for the named event eventA to be triggered.  Because no join was
specified (same as all), the parent process will block until the two prcesses complete, that is,
20ns have elapased and eventA has been triggered.

fork
begin

$display( “First Block\n” );
# 20ns;

end
begin

$display( “Second Block\n” );
@eventA;

end
join

A return statement within the context of a fork .. join statement is illegal and results in a
compilation error.  For example: 
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    function int wait_20;
fork

# 20;
return 4; // Illegal: cannot return function lives in another process

join none
    endfunction

The fork..join none construct overlaps with SystemVerilog-3.0’s process statement.  While the
two can coexist, we propose deprecation of process in favor or the more natural VeraLite form.

11.2  Process Control
VeraLite provides several constructs that allow one process to terminate or wait for the
completion of other processes.

The $wait_child() construct waits for the completion of processes. The $terminate construct
stops the execution of processes. The $suspend_thread() system task temporarily suspends a
thread.

11.3  $wait_child()
The $wait_child() system task is used to ensure that all child processes (processes created by the
calling process) have completed their execution.
 
The syntax for $wait_child() is:

task $wait_child();

Calling $wait_child() causes the calling process to block until all its sub-processes have
completed.
By default, VeraLite terminates a simulation run when all its programs finish executing (i.e, they
reach the end of their execute block), regardless of the status of any child processes.  The
$wait_child() task allows a program to wait for the completion of all its concurrent threads
before exiting.

Example:  In the task do_test, the first two processes are spawned and task blocks until one of
the two processes completes (either exec1, or exec2).  Next, two more processes are spawned in
the background.  The call to $wait_child will ensure that the task do_test waits for all four
spawned processes to complete before returning to its caller.

task do_test;

fork

exec1();

exec2();

join any

fork

exec3();

exec4();
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join none

$wait_child(); // block until exec1 ... exec4 complete

endtask

11.4   $terminate
The terminate statement terminates all active descendants (sub-processes) of the calling process. 
The syntax for $terminate is:

$terminate;

The $terminate command terminates all descendants of the calling process, as well as the
descendants of the process’ descendants, that is, if any of the child processes have descendants of
their own, the $terminate command will terminate them as well.

Example: In the code below the function get_first spawns three versions of a function that will
wait for a particular device (1, 7, or 13).  The function wait_device function waits for a particular
device to become ready and then return the device’s address.  When the first device becomes
available, the get_first function will resume execution and proceed to kill the outstanding
wait_device processes.

function integer get_first();
fork

get_first = wait_device( 1 );
get_first = wait_device( 7 );
get_first = wait_device( 13 );

join any
$terminate;

endfunction

Verilog supports the disable construct, which will end a process when applied to the named
block being executed by the process.  However, $terminate differs from disable in that
$terminate considers the dynamic parent-child relationship of the processes, whereas disable
uses the static syntactical information of the disabled block.  Thus, disable will end all processes
executing a particular block, whether the processes were forked by the calling thread or not,
while $terminate will end only those processes that were spawned by the calling thread.

11.5  $suspend_thread()
The $suspend_thread() system task temporarily suspends the current thread.

The syntax for $suspend_thread() is:
task $suspend_thread();

The $suspend_thread() system task temporarily suspends the current process allowing other
ready processes to execute.  Calling $suspend_thread() is conceptually similar to a zero delay
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statement (#0), however, $suspend_thread() conveys the intent more clearly and may also be
called after non-blocking assignments (see Section 14.5) where a zero delay is ill-advised.

Example: This example forks multiple threads each calling my_task().  After each thread is
forked the calling thread is suspended, which allows the newly forked thread to start start
executing (call my_task) before forking the next thread.

for( int j=0; j<10; j++ )
begin

fork 
my_task(i);

join none
$suspend_thread();

end
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12 Inter-Process Synchronization and Communication
High-level and easy-to-use synchronization and communication mechanism are essential to
control the kinds of interactions that occur between dynamic processes used to model a complex
system or a highly reactive test-bench.  Verilog provides basic synchronization mechanisms
(i.e., -> and @), but they are all limited to static objects and are adequate for synchronization at
the hardware level, but fall short of the needs of a highly dynamic, reactive test-bench.  At the
system level, an essential limitation of Verilog is its inability to create dynamic events and
communication channels, which match the capability to create dynamic processes.

VeraLite brings to SystemVerilog a powerful and easy-to-use set of synchronization and
communication mechanisms, all of which can be created and reclaimed dynamically.  VeraLite
adds a semaphore primitive, which can be used for synchronization and mutual exclusion to
shared resources, and a mailbox primitive that can be used as a communication channel between
processes. VeraLite also enhances Verilog’s named event data type to satisfy many of the
system-level synchronization requirements. Lastly, VeraLite adds the wait_var mechanism that
can be used to synchronize processes using dynamic data.

12.1  Semaphores
Conceptually, a semaphore is a bucket. When a semaphore is allocated, a bucket that contains a
fixed number of keys is created.  Processes using semaphores must first procure a key from the
bucket before they can continue to execute. If a specific process requires a key, only a fixed
number of occurrences of that process can be in progress simultaneously. All others must wait
until a sufficient number of keys is returned to the bucket. Semaphores are typically used for
mutual exclusion, access control to shared resources, and for basic synchronization.

Semaphore is a built-in class that provides the following methods:
� Create a semaphore with a specified number of keys: new()
� Obtain a key from the bucket: get()
� Return a key into the bucket: put()
� Try to obtain a key without blocking: try_get()

12.1.1 new()
Semaphores are created with the new() method.

The syntax for semaphore new() is:

function new(int key_count = 0 );

The key_count specifies the number of keys initially allocated to the semaphore bucket.
The number of keys in the bucket can increase beyond key_count when more keys are put into
the semaphore than are removed.  The default value for key_count is 0.

The new() function returns the semaphore handle, or null if the semaphore cannot be created.
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12.1.2 put()
The semaphore put() method is used to return keys to a semaphore.
The syntax for put() is:

    task put(int keyCount = 1);

keyCount specifies the number of keys being returned to the semaphore.  The default is 1.

When the semaphore.put()task is called, the specified number of keys are returned to the
semaphore.  If a process has been suspended waiting for a key, that process will execute if
enough keys have been returned.

12.1.3 get()
The semaphore get() function is used to procure a specified number of keys from a semaphore.
The syntax for get() is:

    task get(int keyCount = 1);

keyCount specifies the required number of keys to obtain from the semaphore.  The default is 1.

If the specified number of keys are available, the task  returns and execution continues.  If the
specified number of key are not available, the process blocks until the keys become available.

The semaphore waiting queue is First-In First-Out (FIFO).

12.1.4 try_get()

The semaphore try_get() method is used to procure a specified number of keys from a
semaphore, but without blocking.
The syntax for try_get() is:
    function int try_get(int keyCount = 1);

keyCount specifies the required number of keys to obtain from the semaphore.  The default is 1.

� If the specified number of keys are available, the task  returns 1 and execution continues.  If
the specified number of key are not available, the function returns 0.

12.2  Mailboxes
A mailbox is a communication mechanism that allows messages to be exchanged between
processes.  Data can be sent to a mailbox by one process and retrieved by another.
Conceptually, mailboxes behave like real mailboxes. When a letter is delivered and put into the
mailbox, one can retrieve the letter (and any data stored within). However, if the letter has not
been delivered when one checks the mailbox, one must choose whether to wait for the letter or
retrieve the letter on subsequent trips to the mailbox.  Similarly, VeraLite’s mailboxes processes
to transfer and retrieve data in a controlled manner.  Mailboxes are created as having either a
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bounded or unbounded queue size.  A bounded mailbox becomes full when it contains the
bounded number of messages.  A process that attempts to place a message into a full mailbox
will be suspended until enough room becomes available in the mailbox queue.  Unbounded
mailboxes never suspend a thread in a send operation.

Mailbox is a built-in class that provides the following methods:
� Create a mailbox: new()
� Place a message in a mailbox: put()
� Try to place a message in a mailbox without blocking: try_put()
� Retrieve a message from a mailbox: get() or peek()
� Try to retrieve a message from a mailbox without blocking: try_get() or try_peek()

12.2.1 new()
Mailboxes are created with the new() method. 
The syntax for mailbox new() is:

    function new(int bound = 0);

The new() function returns the mailbox identifier, or null if the mailboxes cannot be created.  If
the bound argument is zero then the mailbox is unbounded (the default) and a put operation will
never block.  If bound is non-zero, it represents the size of the mailbox queue.

12.2.2 num()
The number of messages in a mailbox can be obtained via the num() method.
The syntax for num() is:

function int num();

The num() method returns the number of messages currently in the mailbox.

12.2.3 put()
The put() method places a message in a mailbox.

The syntax for put() is:

task put(scalar message);

The message is any scalar (non-unpacked array) expression, including object handles.

The put() method stores a message in the mailbox in strict FIFO order.  If the mailbox was
created with a bounded queue the process will be suspended until there is enough room in the
queue.
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12.2.4 try_put()
The try_put() method attempts to place a message in a mailbox.

The syntax for try_put() is:

function int try_put(scalar message);

The message is any scalar (non-unpacked array) expression, including object handles.

The try_put() method stores a message in the mailbox in strict FIFO order.  This method is
meaningful only for bounded mailboxes.  If the mailbox is not full then the specified message is
placed in the mailbox and the function returns 1.  If  the mailbox is full, the method returns 0.

12.2.5 get()
The get() method retrieves a message from a mailbox.
The syntax for get() is:

task get( var scalar message );

The message can be any scalar (non-unpacked array) expression, and it must be a valid l-value.

The get() method retrieves one message from the mailbox, that is, removes one message from
the mailbox queue.  If the mailbox is empty then the current process blocks until a message is
placed in the mailbox. If there is a type mismatch between the message variable and the message
in the mailbox, a runtime error is generated.

Simple mailboxes are type-less, that is, a single mailbox can send and receive any type of data.
Thus, in addition to the data being sent (i.e., the message queue), a mailbox implementation must
maintain the message data type placed by put().  This is required in order to enable the runtime
type checking.

The mailbox waiting queue is FIFO.

12.2.6 try_get()
The try_get() method attempts to retrieves a message from a mailbox without blocking.
The syntax for try_get() is:

function int try_get( var scalar message );

The message can be any scalar (non-unpacked array) expression, and it must be a valid l-value.

The try_get() method tries to retrieve one message from the mailbox.  If the mailbox is empty
then the function returns 0.  If there is a type mismatch between the message variable and the
message in the mailbox, the function returns –1.  If a message is available and the message type
matches the type of the message variable, the message is retrieved and the function returns 1.
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12.2.7 peek()
The peek() method copies a message from a mailbox without removing the message from the
queue.
The syntax for peek() is:

task peek( var scalar message );

The message can be any scalar (non-unpacked array) expression, and it must be a valid l-value.

The get() method copies one message from the mailbox without removing the message from the
mailbox queue.  If the mailbox is empty then the current process blocks until a message is placed
in the mailbox. If there is a type mismatch between the message variable and the message in the
mailbox, a runtime error is generated.

Note that calling peek() may cause one message to unblock more than one process.  As long as a
message remains in the mailbox queue, any process blocked in either a peek() or get() operation
will become unblocked.

12.2.8 try_peek()
The try_peek() method attempts to copy a message from a mailbox without blocking.
The syntax for try_peek() is:

function int try_peek( var scalar message );

The message can be any scalar (non-unpacked array) expression, and it must be a valid l-value.

The try_peek() method tries to copy one message from the mailbox without removing the
message from themailbox queue.  If the mailbox is empty then the function returns 0.  If there is
a type mismatch between the message variable and the message in the mailbox, the function
returns –1.  If a message is available and the message type matches the type of the message
variable, the message is copied and the function returns 1.

Mailboxes are a built-in type, nonetheless, they are classes, and can be used as base classes for
deriving more higher level classes.

12.3  Parameterized Mailboxes
The default mailbox is type-less, that is, a single mailbox can send and receive any type of data.
This is a very powerful mechanism that, unfortunately, can also result in run-time errors due to
type mismatches between a message and the type of the variable used to retrieve the message.
Frequently, a mailbox is used to transfer a particular message type, and, in that case, it is useful
to detect type mismatches at compile time.

Parameterized mailboxes, use the same parameter mechanism as parameterized classes (see
Section 7.18), modules, and interfaces:

mailbox#(type = dynamic_type)
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Where dynamic_type represents a special type that enables run-time type-checking (the default).

A parameterized mailbox of a specific type is declared by specifying the type:

typedef mailbox #(string) s_mbox;

s_mbox   sm = new;
string      s;

sm.put( “hello” );
…
sm.get( s ); // s <- “hello”

Parameterized mailboxes provide all the same standard methods as dynamic mailboxes:
num
new

get
peek

put
try_get

try_peek
try_put

The only difference between a generic (dynamic) mailbox and a parameterized mailbox is that
for a parameterized mailbox the compiler ensures that all put and get calls are compatible with
the mailbox type so that all type mismatches are caught by the compiler and not at run-time.

12.4  Event
In Verilog, named events are triggered via the -> operator, and processes can block until an
event is triggered via the @ operator.  A Verilog event is a VeraLite event that uses a
ONE_SHOT trigger. But, a VeraLite event is much more general than a Verilog event.  The
most salient semantic difference is that Verilog named events do not have a value nor a duration,
whereas VeraLite events have a value (ON, OFF) and a persistency that can be controlled via the
trigger options.  Also, VeraLite events are handles to synchronization objects, thus, they can be
passed as arguments to tasks, and they can be dynamically allocated and reclaimed, whereas
named events are static and cannot be passed as arguments.  More than a basic data type,
VeraLite events behave like object handles; they can be assigned to one another, they can be
assigned the value null, they can be arguments to tasks (but not functions), and they can be
dynamically allocated and reclaimed.

Existing Verilog event operations (@ and ->) are backward compatible and will continue to work
the same way, but they will be restricted to named events with static lifetime.  The new
functionality described below will work with all events, static or dynamic.

A VeraLite event provides a handle to a synchronization object, the $sync() system task can be
used to wait for an event (like @), and the $trigger() can be used to trigger the event.

12.4.1 $sync()
The $sync() system task is used to either check the persistent status of an event, or to block the
caller until one or more events are triggered.
$sync() can be called either a as task or as a function.   The syntax to call $sync() is:
    task $sync(ALL | ANY | ORDER, event ev_id1, ..., ev_idN);
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or
    function int $sync(CHECK, event ev_id1, ..., ev_idN);

Where ev_id1, ..., ev_idN  are the event identifiers on which $sync is to operate.

The first argument determines the type of operation that $sync() is to perform, as described by
the table below.

ALL Suspends the calling process until all of the specified events are triggered.
For example:
    $sync(ALL, a, b, c);
suspends the current process until the 3 events a, b, and c are triggered.

ANY Suspends the calling process until any one of the specified events are triggered.
For example:
    $sync(ANY, a, b, c);
suspends the current process until either event a, or event b, or event c is triggered.

ORDER Suspends the calling process until all of the specified events are triggered (like
ALL) but the events must be received in the given order (left to right).  If an event
is received out of order, the process unblocks and generates a run-time error.
When $sync() is called, only the first event in the list can be in the ON state.  If any
other event is ON, it generates a run-time error.
For example:
    $sync(ORDER, a, b, c);
suspends the current process until events trigger in the order a –> b –> c.

CHECK Called as a function that returns 1 if all the specified events are in the ON state, and
0 otherwise.
This call is only meaningful with persistent events; those triggered via the ON or
OFF trigger option (see Section 12.4.2).
For example:
    if ( $sync(CHECK, eventA) )
        $display("The event A is ON\n");
The message is only displayed if eventA is in the ON state.

12.4.2 $trigger()
The $trigger() system task is used to change the triggered state of event variables.  This state
may be persistent or not, depending on the trigger option.  A non-persistent trigger state is not
visible, only its effect can be felt.  Like the way in which a clock edge triggers a latch but the
state of the edge can not be ascertained: if( posedge clock ) is illegal.

The syntax to call $trigger() is:
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task $trigger( option, event ev_id1, ..., ev_idN );

option: ONE_SHOT | ONE_BLAST | HAND_SHAKE | ON | OFF

Where ev_id1, ..., ev_idN  are the event identifiers on which $trigger is to operate.

The first argument determines the type of operation that $trigger() is to perform, as described by
the table below.

ONE_SHOT Triggers the specified events by turning them ON momentarily, causing all
processes currently waiting on the specified events to unblock.  Subsequent
calls to $sync() on the specified events will block. 
In order for this call to $trigger() to unblock a $sync() call, the call to
$sync() must execute before the call to $trigger().
This trigger option is the same as a Verilog -> operation, except that
$trigger()  can atomically trigger more than one event.

ONE_BLAST Similar to ONE_SHOT except that the ON state persists until simulation
time advances.  Thus, a ONE_BLAST $trigger() will unblock processes
that execute $sync() either before or at the same simulation time as
$trigger().

HAND_SHAKE Unblocks only one process, even if more than one $sync() call is blocked
waiting on the same event.  The first process to have executed the $sync()
call is unblocked (FIFO ordering).

If at least one process is blocked in $sync() waiting on the specified event,
the $trigger(HAND_SHAKE) unblocks one process.

If there are no processes blocked no the specified event, the event will store
the trigger, keeping track of how many times the event has been triggered
using HAND_SHAKE.  Then, when a process eventually calls $sync() on
the given event, the trigger is removed from the event (its count is
decremented) and the process unblocks immediately.

ON Turns the event ON. All currently waiting as well as subsequent calls to
$sync() on the specified event will unblock.
The ON condition persist until it is explicitly set to OFF.

OFF Turns the event OFF. Subsequent calls to $sync() on the specified event
will block.

12.5  Event Variables
Event variables serve as the link between $trigger() and $sync(). They are a unique data type
with several important properties.
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12.5.1 Disabling Events
If an event variable is assigned the special null value, the event is ignored in subsequent calls to
$sync(). That is, when the event is set to null, no process can wait for the event again.
 
For example:

event E1 = null;
$sync(ALL, E1);

The call $sync doesn’t block because event E1 is no longer blocking.

12.5.2 Merging Events
When one event variable is assigned to another, the two become merged.  Thus, calling
$trigger() on either variable affects $sync() calls waiting on both event variables.

For example:
event a, b, c;
a = b;
$trigger(ON, c);
$trigger(ON, a); // also triggers b
$trigger(ON, b); // also triggers a
a = c;
b = a;
$trigger(ON, a); // also triggers b and c
$trigger(ON, b); // also triggers a and c
$trigger(ON, c); // also triggers a and b

When merging events, the assignment only affects subsequent calls to $trigger() and $sync().  If
a process is blocked waiting for event1 when another event is assigned to event1, the call to
$sync() will never unblock.  For example:

fork
T1: while(1) $sync(ALL, E2);
T2: while(1) $sync(ALL, E1);
T3: begin

E2 = E1;
while(1) $trigger(ON, E2);

end
join

This example forks off three concurrent processes. Each process starts at the same time. Thus, at
the same time that process T1 and T2 are blocked, process T3 assigns event E1 to E2. This
means that process T1 will never unblock, because the event E2 is now E1. To unblock both
threads T1 and T2, the merger of E2 and E1 must take place before the fork.

12.6  $wait_var()
The $wait_var() system task is a procedural blocking statement that waits for any of the
variables in its argument list to change (the value of the variables must change, assigning the
same value to a variable does not cause a change).
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The syntax for $wait_var() is:
task $wait_var(scalar variable1,..., variableN);

The variables variable1,..., variableN  can be any one of the integral data types (see Section 3.3.1)
or string. Each variable may be either a simple variable, or a var parameter (variable passed by
reference) or a member of an array, associative-array, or object (class) of the aforementioned
types.  Objects (handles) are not allowed.

Arguments to $wait_var() can be an array subscript expressions, in which case the index
expression is evaluated only once when wait_var() is executed.  Likewise, passing an object data
member to $wait_var() will block until that particular data member changes value, not when the
handle to the object is modified.  For example:

Packer p = new; // Packet 1
Packet q = new; // Packet 2

fork
$wait_var(p.status); // Wait for status in Packet 1 to change
p = q; // Has no effect on the wait in Process 1.

join none

//  $wait_var continues to wait for status of Packet 1 to change.

Example: The example below forks two concurrent processes. The first process is suspended
until the second element of array data changes. The second process randomly changes the values
within array data. When data[2] changes value, the first process prints its message.

bit[7:0] data [100];

fork
  begin

$wait_var(data[2]);
$display( "Data[2] has changed to: %d\n", data[2]);

  end
  begin

for( int j = 0; j < 100; j++ )
  begin

data[i] = $random;
#10;

  end
  end
join
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13  Clocking Domains
In Verilog, the communication between blocks is specified using module ports.  SystemVerilog
adds the interface, a key construct that encapsulates the communication between blocks, thereby
enabling users to easily change the level of abstraction at which the inter-module communication
is to be modeled.

An interface can specify the signals or nets through which a test-bench communicates with a
device under test.  However, an interface does not explicitly specify any timing disciplines,
synchronization requirements, or clocking paradigms. VeraLite adds the clocking construct that
identifies clock signals, and captures the timing and synchronization requirements of the blocks
being modeled.

A clocking domain assembles signals that are synchronous to a particular clock, and makes their
timing explicit.  The clocking domain is a key element in a cycle-based methodology, which
enables users to write test-benches at a higher level of abstraction.  Rather than focusing on
signals and transitions in time, the test can be defined in terms of cycles and transactions.
Depending on the environment, a test-bench may contain one or more clocking domains, each
containing its own clock plus an arbitrary number signals.

13.1  Clocking Domain Declaration : clocking
The syntax for the clocking construct is:

clocking_decl ::= clocking [identifier] clocking_event ; { clocking_item } endclocking

cloking_item ::= default default_skew
   | clocking_direction signal_or_assign_list ;

default_skew ::= input skew
    | output skew
    | input skew output skew

clocking_direction ::= input [ skew ]
      | output [ skew ]

| input [ skew ] output [ skew ]
| inout

signal_or_assign_list ::= signal_or_assign { , signal_or_assign }

signal_or_assign ::= signal_identifier [ = hierarchical_expression ]

skew ::= [edge] # delay_expression // edge valid only if event_expression is simple edge

edge ::= posedge | negedge
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delay_expression ::= unsigned_number | time_literal

The identifier specifies the name of the clocking domain being declared.

The signal_identfier identifies a port in the scope enclosing the clocking domain declaration, and
declares the name of a signal in the clocking domain. Unless a hierarchical_expression is used,
both the port and the interface signal will share the same name.

The clocking_event designates a particular event to act as the clock for the clocking domain.
Typically, this expression is either the posedge or negedge of a clocking signal.  The timing of
all the other signals specified in a given clocking domain are governed by the clocking event.
All input or inout signals specified in the clocking domain are sampled when the corresponding
clock event occurs.  Likewise, all output or inout signals in the clocking domain are driven
when the corresponding clock event occurs.  Bi-directional signals (inout) are sampled as well as
driven.

The skew parameters determine how many time units away from the clock event a signal is to be
sampled or driven.  Input skews are implicitly negative, that is, they always refer to a time before
the clock, whereas output skews always refer to a time after the clock (see Section 13.2).  When
the clocking event specifies a simple edge, instead of a number, the skew may be specified as the
opposite edge of the signal.  A single skew may be specified for the entire domain by using a
default clocking item.

The hierarchical_name specifies that, instead of a local port, the signal to be associated with the
clocking domain is specified by its hierarchical name (cross-module reference).

Example:

clocking bus @(posedge clock1);
default input #10ns output #2ns
input data, ready, enable = top.mem1.enable;

 output negedge ack;
input #1step addr;

endclocking

In the above example, the first line declares a clocking  domain called bus that is to be clocked
on the positive edge of the signal clock1.  The second line specifies that by default all signals in
the domain will use a 10ns input skew and a 2ns output skew.  The next line adds three input
signals to the domain: data, ready, and enable;the last signal refers to the hierarchical signal
top.mem1.enable.  The fourth line adds the signal ack to the domain, and overrides the default
output skew so that ack is driven on the negative edge of the clock.  The last line adds the signal
addr and overrides the default input skew so that addr is sampled one step before the positive
edge of the clock.

Unless otherwise specified, the default input skew is 1step and default output skew is 0.  A step
is a special time unit defined to be the smallest possible delay throughout the simulation. A 1step
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input skew allows input signals to sample their steady-state values immediately before the clock
event (i.e., at read-only-synchronize immediately before time advanced to the clock event).

13.2  Input and Output Skews
Input (or inout) signals are sampled at the designated clock event.  If an input skew is specified
then the signal is sampled at skew time units before the clock event.  Similarly, output (or inout)
signals are driven skew simulation time units after  the corresponding clock event. Figure A
shows the basic sample/drive timing for a positive edge clock.

Figure A: Sample and drive times including skew with respect to the positive edge of the clock.

A skew must be a constant expression and can be specified either as an unsigned integer value or
as a time literal.  If a number is used, the skew is interpreted using the timescale of the current
scope.

clocking dram @(changed clk);
input #1ps address;
input #5 output #6 data;

endclocking

An input skew of 1step indicates that the signal is to be sampled an infinitesimal delta before the
clock event.  That is, the value sampled is always the signal’s last value immediately before the
corresponding clock edge.

When skews are not specified, input signals default to a skew of 1step, and output signals
default to a skew of #0.

An input skew of #0 forces a skew of zero.  Input signals with zero skew are sampled at the
same time as their corresponding clock edge, but to avoid races the sampling is done after all
non-blocking assignments (NBA) have been processed (see Section 14.5).  Likewise, output
signals with zero output skew are driven at the same time as their specified clock edge, but
immediately before read-only synchronize time (before advancing time).  A detailed explanation
for this event ordering is covered in Section 14.5. 

input skew output  skew

signal driven heresignal sampled here

clock
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13.3  Hierarchical Expressions
Any signal in a clocking domain can be associated with an arbitrary hierarchical expression.  As
described above, a hierarchical expression is introduced by appending an equal sign (=) followed
by the hierarchical expression:

clocking cd1 @(posedge phi1);
input #1step state = top.cpu.state;

endclocking

However, hierarchical expressions are not limited to simple names or signals in other scopes.
They can be used to declare slices, concatenations, or combinations of signals in other scopes or
in the current scope.

clocking mem @(changed clock);
input instruction = { opcode, regA, regB[3:1] };

endclocking

13.4  Signal in Multiple Clocking Domains
The same port may be used in more than one clocking domain.  For input signals, the semantics
are clear; each clocking domain samples the signal using a different clock.  However, for output
signals, there are two possibilities, the output port is either driven to a resolved value or to the
latest value assigned (as a procedural assignment).  Typically, this is not an issue since signals in
different clocking domains truly are separate signals and each corresponds to a separate port (in a
different module or program).  But, sometimes the same port signal may be driven by more than
one clock edge, for example, dual-data-rate memories are driven on both positive and negative
clock edges. Output signals implement logic semantics, that is, the last signal write determines
the value.  These semantics are typically useful, but users can easily accomplish value resolution
by using separate ports for the same net.

13.5  Clocking Domain Scope and Lifetime
A clocking construct is both a declaration and an instance of that declaration.  A separate
instantiation step is not necessary.  Once declared, the clocking signals are available via the
clock-domain name and the dot (.) operator:

dom.sig // signal sig in clocking dom

Clocking domains cannot be nested.  They cannot be declared inside functions or tasks, or at the
global ($root) level.  Clocking domains can only be declared inside a module or a program (see
Section 14).

Clocking domains have static lifetime and scope local to their enclosing module or program.

13.6  Multiple Clocking Domain Example
In this example, a simple test module includes two clocking domains.
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program3 test ( input phi1, input [15:0] data, output write,
input phi2, inout [8:1] cmd, input enable

);

clocking cd1 @(posedge phi1);
input data;
output write;
input state = top.cpu.state;

endclocking

clocking cd2 @(posedege phi2);
input #2 output #4ps cmd;
input enable;

endclocking

// program begins here
. . .

// user can access cd1.data , cd2.cmd , etc…
endprogram

And, the test module can be instantiated and connected to a device under test (cpu and mem).

module top;
logic phi1, phi2;

test main( phi1, data, write, phi2, cmd, enable );
cpu cpu1( phi1, data, write );
mem mem1( phi2, cmd, enable );

endmodule

13.7  Interfaces and Clocking Domains
A clocking encapsulates a set of signals that share a common clock, therefore, specifying a
clocking domain using a SystemVerilog interface can significantly reduce the amount of code
needed to connect the test-bench.  Furthermore, since the signal directions in the clocking
domain within the test-bench are with respect to the test-bench, and not the design under test, a
modport declaration can appropriately describe either direction. Conceptually, one can envision
a test-bench program as being contained within a program module, and whose ports are
interfaces that correspond to the signals declared in each clocking domain.  The interface’s wires
will have the same direction as specified in the clocking domain when viewed from the test-
bench side (i.e., modport test), and reversed when viewed from the device under test (i.e.,
modport dut).

For example, the previous example could be re-written using interfaces as follows:

interface bus_A (input clk);
wire [15:0] data;
wire write;
modport test (input data, output write);

                                                
3 The program construct is discussed in Section 14.  In this example it can be considered a module.
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modport dut (output data, input write);
endinterface

interface bus_B (input clk);
wire [8:1] cmd;
wire enable;
modport test (input enable);
modport dut (output enable);

endinterface

program test( bus_A.test a, bus_B.test b );

clocking cd1 @(posedege a.clk);
input a.data;
output a.write;
inout state = top.cpu.state;

endclocking

clocking cd2 @(posedege b.clk);
input #2 output #4ps b.cmd;
input b.enable;

endclocking

// program begins here
. . .

// user can access cd1.a.data , cd2.b.cmd , etc…
endprogram

And, the test module can be instantiated and connected as before:

module top;
logic phi1, phi2;

bus_A a(phi1);
bus_B b(phi2);

test main( a, b );
cpu cpu1( a );
mem mem1( b );

endmodule

Alternatively, the clocking domain can be written using both interfaces and hierarchical
expressions as:

clocking cd1 @(posedege a.clk);
input data = a.data;
output write = a.write;
inout state = top.cpu.state;

endclocking

clocking cd2 @(posedege b.clk);
input #2 output #4ps cmd = b.cmd;
input enable = b.enable;

endclocking
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And this would allow using the shorter names (cd1.data, cd2.cmd, …) instead of the longer
interface syntax (cd1.a.data, cd2.b.cmd,…).

13.8  Clocking Domain Events
The clocking event of a clocking domain is available directly by using the clocking domain
name, regardless of the actual clocking event used to declare the clocking domain.

For example.

clocking dram @(posedge phi1);
inout data;
output negedge #1 address;

endclocking

The clocking event of the dram domain can be used to wait for that particular event:
@( dram );

The above statement is equivalent to @(posedge phi1).

13.9  Cycle Delay: ##
The ## operator can be used to delay execution by a specified number of clocking events, or
clock cycles.

The syntax for the cycle delay statement is:
## expression [ @ clocking_name ] ;

The expression can be any SystemVerilog expression that evaluates to a positive integer value.

The optional clocking_name must be the name of a clocking domain.  If it is not specified then
the default clocking is used (see Section 13.9.1).  If neither clocking_name nor default clocking
has been specified then the compiler will issue an error.

Example:
## 5 @busA; // wait 5 cycles using clocking busA
## j + 1 @busB // wait j+1 cycles using clocking busB
## 3; // wait 3 cycles using the default clocking

13.9.1 Default ##
One clocking event can be specified as the default for all cycle delay operations within a given
module or program.

The syntax for the default cycle specification statement is:

default ## clocking_name ;
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The clocking_name must be the name of a clocking domain.

Only one default clocking can be specified in a program or module. Specifying a default
clocking more than once in the same program or module will result in a compiler error.
A default clocking specified in a module is only valid in that particular module and not in any of
its sub-modules.

program test( input bit clk, input reg [15:0] data )

clocking bus @(posedge clk);
inout data;

endclocking

default ## bus;

## 5;
if( bus.data == 10 )

## 1;
else

...

endprogram
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Signal Operations
The clocking domain separates the timing and synchronization details from the structural,
functional, and procedural elements of a test-bench.  Thus, the timing for sampling and driving
clocking-domain signals is implicit and relative to the clocking-domain’s clock.  This enables a
set of key signal operations to be written very succinctly, without explicitly using clocks or
specifying timing.  These signal operations are:
� Synchronization
� Sampling
� Driving

13.10  Synchronization
Explicit synchronization is done via the @ operator, which allows a process to wait for an
explicit signal value change.

The syntax is for the synchronization operator is:

@([specific_edge] signal {or [specific_edge] signal});

Where specific_edge identifies the edge at which the synchronization occurs and can be:
� negedge : a negative (or falling) edge of the given (1-bit) signal
� posedge : a positive (or rising) edge of the given (1-bit) signal.
If no edge is specified, the synchronization occurs on the next change in the specified signal.

The signal specifies the clocking-domain signal to which the synchronization is linked. It can be
any signal in a clocking domain, or a slice thereof.  If the signal or the slice represents a 1-bit
value, it’s possible to synchronize to posedege or negedge, otherwise the synchronization is only
to the next change. Slices can include dynamic indices, which are evaluated once, when the @
expression executes.

If the operator has more than one expression, joined by the or keyword then the synchronization
occurs when any of the expressions is satisfied.

These are some example synchronization statements:
� Wait for the next change of signal ack_1 of clock domain ram_bus

  @(ram_bus.ack_l);

� Wait for the next clocking event in clock-domain ram_bus
  @(ram_bus);

� Wait for the positive edge of the signal ram_bus.enable
  @(posedge ram_bus.enable);

� Wait for the falling edge of the specified 1-bit slice dom.sign[a]. Note that the index a is
evaluated at runtime.
  @(negedge dom.sign[a]);
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� Wait for either the next positive edge of dom.sig1 or the next change of dom.sig2, whichever
happens first.
  @(posedge dom.sig1 or dom.sig2);

� Wait for the either the negative edge of dom.sig1 or the positive edge of dom.sig2, whichever
happens first.
  @(negedge dom.sig1 or posedge dom.sig2);

The values used by the synchronization primitive are the synchronous values, that is, the values
sampled at the corresponding clocking event. 

13.11 Signal Sampling
All input (or inout) signals in a clocking domain are sampled at the clocking event of the
corresponding clocking. If the signal has a non-zero input skew then the value of the signal is
sampled skew time units before the clock edge (see Figure A).

Samples happen immediately (the calling process does not block).  When a signal appears in an
expression, it is replaced by the signal’s sampled value, that is, the value that was sampled at the
last sampling point.

13.12  Signal Drives
Drives are used to propagate the value of output (or inout) signals at their corresponding clock
edge. A drive is an assignment in which the left hand side is a signal in a clocking domain.

The syntax to drive a signal is:
@delay signal_expression = expression;

or
signal_expression <= expression;

The delay optionally specifies the number of clocking events (i.e. cycles) that pass before the
signal is driven.  When no delay is specified, the default is @0, i.e., the current cycle.

The signal_expression is either a bit-select, slice, or the entire signal in a clocking that is to be
driven (concatenation is not allowed):
� dom.sig entire signal
� dom.sig[2] bit-select
� dom.sig[8:2] slice

The expression can be any valid expression that is  type compatible with the signal.
For example:

bus.data[3:0] = 4’h5; // drive on current cycle
@1 bus.data = 8’hz; // wait 1 cycle and then drive
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The value driven onto an output signal is not applied until the signal’s drive edge (typically the
clocking event) plus any output skew has transpired.

13.12.1 Blocking and Non-Blocking Drives
All zero-delay signal drives (no cycle delay and no skew) are queued and propagated in one fell
swoop, right before read-only synchronize time.  Zero-delay signal drives resemble Verilog non-
blocking assignments, thus, reading the value of an inout signal immediately after it has been
driven will yield the previous (sampled) value, not the driven value:

if( bus.data == 31 ) begin
bus.data <= 27;
y = bus.data; // y is 31 (not 27)

end

It is illegal to drive a clocking domain signal with zero delay using = (blocking drive).  If the
drive specifies a delay or an output skew then the blocking drive is allowed.

13.12.2  Drive Value Resolution
When the same output signal in a clocking-domain is driven more than once at the same time, the
drives are checked for conflicts.  When conflicting drives are detected, a runtime error is issued,
and each conflicting bit is driven to X (or 0 for a 2-state port).

13.12.3  Drive / Assignment Ambiguity
The signal drive operator syntax may appear to be ambiguous with certain event control
expressions in SystemVerilog.  For example:

integer  j = 4;
@j a = b;

The last statement above has the same syntactical form as a signal drive.  But, it has two different
meanings: in Verilog the process blocks until j changes value, whereas a signal-drive causes the
process to block for j cycles.
Nevertheless, the compiler can easily resolve the ambiguity by examining the type of operand
involved in the signal drive (a above).  If the operand is defined in a clocking domain, the signal
is synchronous and should be driven using cycle semantics via a signal drive.  Otherwise, the
statement is a regular event control assignment.
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14 Program Block
The module is the basic building block in Verilog.  Modules can contain hierarchies of other
modules, wires, task and function declarations, and procedural statements within always and
initial blocks.  This construct works extremely well for the description of hardware.  However,
for the test-bench, the emphasis is not in the hardware-level details such wires, hierarchy, and
interconnect, but in modeling the large environment in which a device needs to be verified. A lot
of effort is spent in getting the environment properly initialized and synchronized, avoiding races
between the hardware and the test-bench, automating the generation of input stimuli, and in
reusing existing models and other infrastructure.

A typical test-bench contains type definitions, data declarations, subroutines, some form of
structured connections to the design, and a program block.  The program block serves two basic
purposes:

1. It provides an entry point where the test-bench begins execution.
2. It creates a scope that encapsulates program-wide data.

A SystemVerilog module provides both of these functions: it creates a new scope, and can
include an initial block to serve as the test-bench entry point.  Thus, a module is a natural choice
for modeling the program block.  However, such a “test-bench module” differs from a regular
SystemVerilog module in several ways.  First, the communication between the test-bench and
the design takes place via special ports that in addition to type, direction, and size, can also
specify a clocking scheme (see Section 13).  Second, it provides for race-free cycle and
transaction level abstractions as well as event abstractions.  The program construct serves as a
clear separator between the design and the test-bench, and, more importantly, it indicates the
special nature of the test-bench module, thus, enabling specialized execution semantics for all
elements within the program.
 
The connection between design and test-bench uses the same interconnect mechanism as used by
SystemVerilog to specify port connections, including interfaces.  The syntax for the program
block is:

program program_name ( list_of_ports );
program_declarartions
program_code

endprogram

For example:
program test (input clk, input [16:1] addr, inout [7:0] data);

. . .
endprogram

or
program test( interface device_ifc ) ...  endprogram

The list_of_ports allowed by a program is the same as the one allowed for any
SystemVerilog module.  A more complete example is included in Sections 13.6 and 13.7.
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Although the program construct is new to SystemVerilog, its inclusion is a natural extension.
The program construct can be considered the declaration of a special type of module (i.e., a
module with a test-bench attribute).  Once the program block has been declared, it can be
instantiated in the proper hierarchical location (typically at the top level) and its ports can be
connected in the same manner as any other module.

Some of the test-bench constructs and data-types cannot be used in declarative contexts such as
module ports, gates, or continuos assignments. These constructs will be limited to the procedural
context (i.e., the test-bench environment).  This limitation is not new to, it simply extends the
rules set forth by SystemVerilog, which disallows automatic variables from triggering event
expressions or be written using non-blocking assignments.  Likewise, all the dynamic test-bench
constructs – objects handles, dynamic and associative arrays, strings, and events – will be limited
to the procedural context.

14.1  Static Data Initialization
In SystemVerilog, setting the initial value of a static variable as part of the variable declaration
requires that the initialization occurs before any initial or always blocks are started.  Likewise,
VeraLite allows static data (including static class members) to specify an initial value as part of
their declaration, and, like SystemVerilog, VeraLite requires that all such data be initialized
before the program begins execution.  It is important to note that VeraLite initial values are not
constrained to simple constants, but may include run-time expressions, including dynamic
memory allocation.  For example, a static class can be initialized via its new method (see Section
7.4), or a Mailbox may be initialized by calling its new method (see Section 12.2.1).  While this
does not represent a conflict with SystemVerilog, it may require a special pre-initial pass at run-
time, which may need changes to the initial SystemVerilog simulation cycle.  This is one of the
requirements that differentiates a program from a module.

14.2  Scope and Lifetime
The following test-bench constructs all have module or program scope.  They all share the name
space at the hierarchical scope in which they are declared, so no two of them can have the same
name:
� Class Declarations
� Enumerated Types and Enumeration Values
� Clocking Domains (see Section 13)
� Program block

The program block contains a single implicit initial block, and no always blocks or other
programs or modules.   Programs blocks cannot be nested.

All constructs declared within the program are local in scope (local to the program block) and
have static lifetime.

Global declarations (outside the program block or any other module) reside in $root and have
static lifetime.
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Class declarations create a new scope.

Tasks and Functions cannot be nested within themselves, but they can contain block statements
that do create a scope.  Block statements do not have to be named to create a new scope.

The program scope rules are consistent with SystemVerilog.  The declaration in the closest
enclosing scope is matched: A scope nested inside another scope has visibility of (and may
reference) all elements visible or declared in its parent scope.  A name declared inside a scope
hides all elements with the same name that are visible or declared in the parent scope.

14.3  Multiple Programs
It is allowed to have any arbitrary number of program definitions or instances.  The programs
can be fully independent (without inter-program communication), or cooperative.  Users can
control the degree of communication by choosing to share data via $root or making the data
private by declaring it inside the corresponding program block.

The abstraction and modeling constructs simplify the creation and maintenance of test-benches.
Furthermore, since modeling the environment can be a significant part of a test-bench, the same
set of abstract test-bench constructs can be effective in writing models at a higher level of
abstraction than currently provided by SystemVerilog.  The ability to instantiate and individually
connect each instance of a program enables their use as generalized models.

14.4  Eliminating Zero-Skew Races
If both input and output skews are set to #0 then input signals are sampled at the same time as
their corresponding clock edge, and output signals are driven at the same time as their
corresponding clock edge.  That is, both samples and drives happen at the same time.  This type
of zero-delay processing is a typical source of non-determinism that often results in races.
However, races are minimized by means of two mechanisms.  First, by constraining test-bench
processes to execute only after non-blocking assignments, once all zero-delay transitions have
propagated through the design and the system has reached a steady state.  Second, by queuing all
outgoing signal drives until the end of the test-bench execution cycle, and then propagating all
the drives as one event.  This is described in Section 13.12.1.
Supporting signals with zero (input or output) skew without races is an important feature of the
test-bench environment.  This is because test-benches with no timing information are quite
common, particularly during the early phases of a design, when designers are mostly focused on
functionality and not timing. 

14.5  Eliminating Races and SystemVerilog Event Queue 
There are two major sources of nondeterminism in Verilog.  The first one is that active events
can be taken off the queue and processed in an arbitrary order.  The second one is that statements
without time-control constructs in behavioral blocks do not execute as one event.  However,
from the test-bench perspective, these effects are all unimportant details.  The primary task of a
test-bench is to generate valid input stimulus for the design under test, and to verify that the
device operates correctly.  Furthermore, test-benches that use cycle abstractions are only
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concerned with the stable or steady state of the system for both checking the current outputs and
for computing stimuli for the next cycle.  Formal tools also work in this fashion.

To avoid the nondeterminsm and races inherent in the Verilog event queue management, test-
bench processes execute only after the system has settled to its steady state.  This is after non-
blocking assignments have been processed, thus, treating all transitions towards the steady state
in the same consistent manner (from the testbench perspective).  Accordingly, signals driven
from the test bench with no delay are propagated into the design as one event immediately before
read-only synchronize time.  With this behavior, the correct cycle semantics can be modeled
without races, thereby making the test-bench environment compatible with the assertions
mechanisms and formal tools.

It is important to note that simply setting non-zero skews on the signals does not eliminate the
potential for races.  Non-zero skews only address a single clocking domain.  When multiple
clocks are used, the arbitrary order in which overlapping or simultaneous clocks are processed is
still a potential source for races.  The solution requires a special execution time after all events
have been processed, including all clocks driven by non-blocking assignments.

In order to standardize the cycle behavior, the execution after non-blocking assignments
described above must be added to the SystemVerilog event cycle.  This is a requirement from
many other subsystems such as monitors, checkers, waveform tools, and temporal assertions..
However, it is the test-bench that exacerbates this need because in addition to examining the
current state, it must also react and provide new stimuli for the next cycle, which is often driven
with no delay.

14.6  Blocking Tasks in Cycle/Event mode
Calling tasks or functions in the program block from other design modules is not allowed.  The
rationale for this is that the design must not be aware of the test-bench.  However, calling
subroutines in other design modules from within the program is allowed.  Calling a function
presents no problem and can be treated like a regular function call.  However, calling a blocking
task outside the program block from inside the program does require explicit synchronization
upon return from the task, that is, postpone execution until after non-blocking assignments.

14.7  Program Control Tasks
In addition to the normal simulation control tasks ($stop and $finish), a program provides the
$exit control task.

14.7.1 $exit()
Each program can be finished by calling the $exit() system task.  When all programs exit, the
simulation finishes.

The syntax for the $exit() system task is:
task $exit();

When a program executes its last statement, it implicitly calls $exit.  Calling $exit causes all
processes spawned by the current program to be terminated.
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15 Linked Lists (8-1)
The List package is analogous to the C++ STL (Standard Template Library) List container that is
popular with C++ programmers. However, instead of C++ templates, the generic code is done
using macros.  This will be changed to use a parameterized list.

15.1 List Definitions
list - A list is a doubly linked list, where every element has a predecessor and successor. It is a
sequence that supports both forward and backward traversal, as well as amortized constant time
insertion and removal of elements at the beginning, end, or middle.

container - A container is a collection of objects of the same type (for example, a container of
network packets, a container of microprocessor instructions, etc.). Containers are objects that
contain and manage other objects and provide iterators that allow the contained objects to be
addressed. A container has methods for accessing its elements. Every container has an associated
iterator type that can be used to iterate through the container’s elements.

iterator - Iterators provide the interface to containers. They also provide a means to traverse the
container elements. Iterators are pointers to nodes within a list. If an iterator points to an object
in a range of objects and the iterator is incremented, the iterator then points to the next object in
the range.

15.2 List Declaration
The List package supports lists of any arbitrary predefined type, such as integer, string, and class
object.

To use a particular type of linked one must declare the list, thus:
`include <ListMacros.vrh>
...
`MakeVeraList(type)

15.2.1 Declaring Lists Variables
A list variable must be declared before using it.  This is done via the VeraList construct:

VeraList_type list1, list2, ..., listN;

The VeraList construct declares lists of the indicated type. Data stored in the list elements must
be of the same type as the list declaration.

15.2.2 Declaring List Iterators
You must declare all list iterators before using them via the VeraListIterator construct:

VeraListIterator_type iterator1, ..., iteratorN;
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The VeraListIterator construct declares list iterators of the indicated type. An iterator has to be
declared as with any other variable declaration.

15.3  Size Methods
This section describes the list methods that analyze list sizes.

15.3.1 size()
The size() method returns the number of elements in the list container:

list1.size();

15.3.2 empty()
The empty() method returns 1 if the number elements in the list container is 0:

list1.empty();

15.4  Element Access Methods
This section describes the list methods used to access list elements.

15.4.1 front()
The front() method returns the first element in the list:

list1.front();

15.4.2 back()
The back() method returns the last element in the list:

list1.back();

15.5  Iteration Methods
This section describes the list methods used for iteration.

15.5.1 start()
The start() method returns an iterator pointing to the first element in the list:

list1.start();

15.5.2 finish()
The finish() method returns an iterator pointing to the very end of the list, (i.e. past the end
value(last element) of the list. The last element can be accessed  list.finish().prev().

15.6  Modifying Methods
This section describes the list methods used to modify list containers.

15.6.1 assign()
The assign() method assigns elements of one list to another.

list1.assign(start_iterator, finish_iterator);
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The method assigns the elements that lie between the two iterators to list1.

If the finish iterator points to an element before the start iterator, the range wraps around the end
of the list.

The range iterators must be valid list iterators. If either points to a non-existent element or if they
point to different lists, an error is generated.

15.6.2 swap()
The swap() method swaps the contents of two lists.

list1.swap(list2);
The method assigns the elements of list1 to list2, and vice versa.
Swapping a list with itself has no effect. Swapping lists of different sizes generates an error.

15.6.3 clear()
The clear() method removes all the elements of the specified list and releases all the memory
allocated for the list (except for the list header).

list1.clear();

15.6.4 purge()
The purge() method removes all the elements of the specified list, and releases all the memory
allocated for the list (including the list header), therefore avoiding possible memory leaks.

list1.purge();

To use a list that has been purged, the list must be re-created by calling new().

Both the purge() and clear() methods delete all the elements in the list. However, the purge()
method deletes the list header as well.  Since the clear() method does not delete the list header,
subsequent list addition methods such as push_back() will work without having to do a new()
on the list. If you intend to use the same list again, use list1.clear(). If the list is being deleted
forever, never to be used gain, list1.purge() is recommended.

15.6.5 erase()
The erase() method removes the indicated element:

new_iterator = list1.erase(position_iterator);

The element in the indicated position of list1 is removed from the list.

After the element is removed, subsequent elements are moved up (there is no resultant empty
element). Upon calling the erase() method, the position iterator is made invalid and the method
returns a new iterator.

The position iterator must be a valid list iterator. If it points to a non-existent element, or an
element from another list, an error is generated.
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15.6.6 erase_ra0nge()
The erase_range() method removes the elements in the indicated range:

list1.erase_range(start_iterator, finish_iterator);

The erase_range() method removes the elements in the range from list1. Note that the elements
from start up to, but not including, finish are removed. After the elements are removed,
subsequent elements are moved up (there is no resultant empty element). If the finish
iterator points to an element before the start iterator, the range wraps around the end of the list.
Any iterators pointing to elements within the range are made invalid.
The range iterators must be valid list iterators. If either points to a non-existent element or if they
point to different lists, an error is generated.

15.6.7 push_back()
The push_back() method inserts data at the end of the list:

list1.push_back(data);

The data is added as another element at the end of list1. If the list already has the maximum
allowed elements, the element is not added and an overflow error is generated.

The data must be of type a compatible with the list type.

15.6.8 push_front()
The push_front() method inserts data at the front of the list:

list1.push_front(data);
The data is added as another element at the end of list1. If the list already has the maximum
allowed elements, the element is not added and an overflow error is generated.

The data must be of type a compatible with the list type.

15.6.9 pop_front()
The pop_front() method removes the first element of the list:

list1.pop_front();
The first element of list1 is removed. If list1 is empty, an error message is generated.

15.6.10 pop_back()
The pop_back() method removes the last element of the list:

list1.pop_back();

The last element of list1 is removed. If list1 is empty, an error message is generated.

15.6.11 insert()
The insert() method inserts data before the indicated position:

list1.insert(position_iterator, data);
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The method inserts the given data before the indicated position.  Subsequent elements are moved
backward. The position iterator must point to an element in the call list.

The data must be of type a compatible with the list type.

15.6.12 insert_range()
The insert_range() method inserts elements in a given range before the indicated position:

list1.insert_range(position_iterator, start_iterator,
 finish_iterator);

The method inserts the elements in the range between start and finish before the position given
by position. Note that the elements from start up to, but not including, finish are inserted. If the
finish iterator points to an element before the start iterator, the range wraps around the end of the
list. The range iterators can specify a range in another list or a range in list1.

The position iterator must point to an element in the calling list. the range iterators must be valid
list iterators. If either points to a non-existent element or if they point to different lists, an error is
generated.

15.7  Iterator Methods
This section describes the methods used by iterators.

15.7.1 next()
The next() method moves the iterator so that it points to the next item in the list:

I1.next();

15.7.2 prev()
The prev() method moves the iterator so that it points to the previous item in the list:

I1.prev();

15.7.3 eq()
The eq() method compares two iterators:

I1.eq(I2);

The method returns 1 if both iterators point to the same location in the same list. Otherwise, it
returns 0.

15.7.4 neq()
The neq() method compares two iterators:

I1.neq(I2);

The method returns 1 if the iterators point to different locations (either different locations in the
same list or any location in different lists). Otherwise, it returns 0.

15.7.5 data()
The data() method returns the data stored at a particular location:

I1.data();



TestBench Donation SystemVerilog 3.1

November 25, 2002 90

The method returns the data stored at the location pointed to by iterator I1.

The data type is of the same type used in declaring the list via MakeVeraList(type).
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