SystemVerilog 3.1
Testbench Donation

Review and Clarification

Presentation to
SystemVerilog EC

September 4, 2002 A

[} Your Design Partner] SYNOPSYS

Testbench Overview

Agenda

* Testbench and the Verification Challenges

* Walk-through Clarification Document
= Clarifications on Donation Document

= Resolution for Compatibility with SystemVerilog
= Address SV-EC Questions

* Follow on Discussion

© 2002 Synopsys, Inc. (2) SystemVerilog EC: September 4, 2002 SYNOPSYS

Testbench Overview

Testbench and
Verification Challenges

Designs have become more complex

Shortened time to market

Testbench and verification infrastructure: Major challenge

Testbench donation addressing user needs

© 2002 Synopsys, Inc. (3) SystemVerilog EC: September 4, 2002 SYNOPSYS

Testbench Overview

Sample SOC and Testbench

Interface boundaries

© 2002 Synopsys, Inc. (4) SystemVerilog EC: September 4, 2002 Synnpsysm

Sample SyStem Testbench Overview
with Multiple SOC’s

< Packet Switched Bus >

* At System Level Problem is Exacerbated

* Abstractions are Necessary!

© 2002 Synopsys, Inc. (5) SystemVerilog EC: September 4, 2002 SYNOPSYS

Testbench Overview

Simulation-based Verification Needs

* Stimulus Generation
= Directed, Random, ATPG, ...

* Checkers
= Data
= Protocols

* Structured Connection to Multiple Independent Interfaces
= |Interconnect
= Clocking Domain
= Protocol

° Abstract Modeling
= High-level data structures
= Dynamic Memory
 Memory Management
= Re-entrant Processes
 Inter-process Synchronization, Control, and Communication
= Re-usability

— Testbench

© 2002 Synopsys, Inc. (6) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Document Walk Through

Basic Data Types

Sequential Control

Classes, Objects and Methods
= Memory Management
= Linked Lists

Process Control and Synchronization

Program Block

Clocking Domains
= Connecting the DUT
= Declaration and Semantics
= Cycle Abstraction

Signal Operations

© 2002 Synopsys, Inc. (7) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Basic Data Types

Testbench donation

* Lexical Conventions
= Same as SystemVerilog (SV from here on)

* Statement Blocks (1-3; 3.3)
. { and } for execute blocks conflicts with SV3.0
. Adopt SV conventions:

* Use begin and end for execute blocks
- SV syntax for task and functions

- SV-like syntax for new constructs:
" class name . . . endclass
" program name . . . endprogram

© 2002 Synopsys, Inc. (8) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Basic Data Types

Testbench donation

* Strings (1-4; 3.4)
= Clarification: String literals same as SV.

Implicit conversion to string type.

i Donation will accepts both C notation for ASCII
character, as well as SV character notation.

° Numbers (1-5; 3.5)
= Clarification : Un-sized literals not extended to LHS like SV:

bit [2:0]=1 => 3'b111.
. Donation will be same as SV.

° Virtual Port: (1-6; 3.6)
= Clarification: Virtual port is not supported by donation. Disregard.

© 2002 Synopsys, Inc. (9) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Basic Data Types

Testbench donation

* Integer (1-7; 3.7.1)
= Clarification: Integer is a 32-bit sighed data-type on all implementations.

o Integer default value is ‘X.
- Donation integer will behave exactly as SV integer.
° Bit (1-7; 3.7.2)
- In donation bit is 4-state (like SV reg), in SV bit is 2-state.
i Donation will support both bit and reg as in SV.
plus all SV types: char, shortint, int, byte, longint, logic.
I Donation will support multi-dimensional packed arrays.

= Clarification: Declaration is limited to [MSB:0]
- Donation will be same as SV, allow arbitrary indices.

* String (1-8; 3.7.3)
= Clarification: String default value is special constant null.

© 2002 Synopsys, Inc. (10) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

User-Defined Data Types

Testbench donation

* Enum (1-10; 3.8.1)

: Syntax for declaration is different than SV.
Enums represent 2-state integer values only.
I Donation will support SV syntax and semantics.
: Allow declaration as a shorthand for SV typedef (C++).
enum name {..}; - creates enum type called name.

same as typedef enum {..} name;
= Clarification: Enum default value is first element in enumeration.

° Increment/Decrement Operation (1-21;3.8.1)

- SV adopt donation’s operators semantics for enums.
Alternative is to disallow ++ and -- on enums (C++).

© 2002 Synopsys, Inc. (11) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

User-Defined Data Types

Testbench donation

°* Enum in Numerical expressions (1-20; 3.11)
= Clarification: Enums can be assigned numerical values (arbitrary
expressions) using the run-time scast assign() system task.

function integer Scast assign(scalar dest var,
scalar source exp [, CHECK]) ;

Example: Scast assign(enum var, 12 * 7);

- : Include scast _assign () in the donation.

© 2002 Synopsys, Inc. (12) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

User-Defined Data Types

Testbench donation

° Arrays (1-11; 3.8.2):
: No slicing of array element [per Verilog 95 rules].

- SV allows slicing of unpacked arrays by any arbitrary
number of dimensions:
integer a array[10:0], b array[1:0];
b array = a arrayl[3:2];
I Donation will support slicing of packed and unpacked
arrays, and left-hand-side assignment, same as SV.

° Array Initialization (1-12; 3.8.3):
= Clarification: No concatenation or replication in array initialization.
I Donation will adopt SV syntax and semantics.

© 2002 Synopsys, Inc. (13) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

User-Defined Data Types

Testbench donation

° Multi-dimensional Arrays (1-13; 3.8.4):

- Single number denotes the number of elements per
dimension (like in C).
: Donation will accept SV notation for both packed and

unpacked arrays.

- Accept donation’s syntax as a shorthand notation.
int Arrayl[8][32]; > 4 int Array[7:0][31:0];

© 2002 Synopsys, Inc. (14) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

User-Defined Data Types

Testbench donation

* Associative Arrays (1-16; 3.9):
= Clarification: This section was omitted from donation.

= Associative arrays can be declared with a specific index type or with no
index type.

= No index in declaration: reg reg arrayl];
The array can be indexed by any integral data type of any size.

= Index type in declaration: restricts index expression to that type:

+ string: reg string arrayl[string];
- object: reg object array[myClass] ;
* integer: reg integer arrayl[integer];

= Clarification : Not for arbitrary user-defined types, such as reg[21:2] .

. Donation will support any user-defined type that was
defined via typedef.

© 2002 Synopsys, Inc. (15) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

User-Defined Data Types

Testbench donation

° Dynamic Arrays (; 3.10):
= Clarification: This is missing in the donation.
* Declaration Syntax:
bit [3:0] nibblel[*];

integer mem|[*];
* Functions used with dynamic arrays:
new [] // allocates storage
mem = newl[20] ;

int S$get array size(); // gets size of array

- Include dynamic arrays in the donation.

© 2002 Synopsys, Inc. (16) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Operators
Testbench donation

° Operators (1-22; 3.12)

= Clarification: Operators in donation are same as SV, with few exceptions.

Operator Description Semantics

{} LHS numeric concatenation Same as LHS {} in SV
{3 String concatenation Not in SV

{3} String replication Not in SV

=?= Wild equality Not in SV

1?= Wild inequality Not in SV

&~ Bit-wise NAND Not in SV

|~ Bit-wise NOR Not in SV

?: Conditional Unlike SV

. |~ and &~ may change existing verilog code

Remove these operators from the donation.

© 2002 Synopsys, Inc. (17) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Operators
Testbench donation

= Clarification: Following operators are part of SV, not donation.

Operator Description Semantics
<<< >>> arithmetic shift sign preserving shift
<<<= >>>= Compound assignment arithmetic shift assign
* % power exponentiation

" : Donation will support these operators.

* Operator Precedence (1-23; 3.13)
= Clarification: Operator precedence is same as SV.

* Conditional operators (1-27; 3.16)
= Clarification: The document should read as follows:

expressionl ? expression2 : expression3
: The conditional operator does not behave the same as SV
when it evaluates to x or z.
i Donation will support SV semantics.

© 2002 Synopsys, Inc. (18) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Operators
Testbench donation

* Side-effect operators: ++, -- (; 3.17)
= Clarification: Donation defines semantics (example):

function integer pre inc (var integer a); begin // ++a
a += 1;
pre inc = a;

end

endfunction

function integer post inc (var integer a); begin // a++
post inc = a;

a += 1;
end
endfunction
- SV adopt the donation semantics.

© 2002 Synopsys, Inc. (19) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Operators
Testbench donation

* String manipulation: (1-28; 3.18)
= Clarification: A string literal is implicitly converted to string type in
assignment to string type variable.

= Clarification: Basic String Operators:

« Str1 = Str2 equality

« Str1 != Str2 inequality

« {Str1, Str2,...,Strn} concatenation

« {multiplier{Str}} replication

« Str.method(...) invokes built-in method.

© 2002 Synopsys, Inc. (20) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Operators
Testbench donation

* Built-in String Methods: (1-28; 3.18.1)
= Clarification: This was omitted in donation:
 str.len()
 str.putc(integer |, integerc)
» str.getc(integer)
 str. toupper()
 str. tolower()
» str.compare()
» str.icompare()
 str.substr()
« str.atoi()
 str.atohex()
 str. atooct()
« str.atobin()
 str.itoa()

= Clarification : Does not list support of real numbers.
: : atoreal() function is added to the donation.

© 2002 Synopsys, Inc. (21) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Operators and expressions
Testbench donation

* Variable assignment: (1-31; 3.20)

: Donation does not support assignment recursion:
a=b=c;
SV supports a modified form a=(b=c) ;

i Donation Will accept the SV assignment form.

° Expressions and operators: (3:21)
= Clarification: SV provides for fixed-size, variable position slices:

[position +: size] and [position -: size].
i Donation will support the SV slices, as above.
* Signed vs. Unsigned (3:22)
i Donation follows Verilog-1995 rule: zero filled. SV requires
that sign be extended.
: Donation will support the SV sign-extension.

© 2002 Synopsys, Inc. (22) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Operators and expressions
Testbench donation

° Preprocessor directives (2-4; 4.2)

i Donation uses # for preprocessor directives but SV uses ".
i Donation wil use the same as SV.
° Subroutines (2-5; 4.3)
: Donation allows blocking functions, SV does not.
- Will disallow blocking functions, like SV.
. Default subroutine lifetime is automatic, SV is static.
: : Will adopt SV default.
°* Function Return values (2-8; 4.4)
I Donation’s void is a special syntax value, in SV it is a type.
In donation void is used to discard function return values.
i Adopt SV usage of void (a type).

Use a cast operator to discard function return values.

© 2002 Synopsys, Inc. (23) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Operators and expressions
Testbench donation

* Tasks (2-9; 4.5)
= Clarification: Local task is unnecessary, since in SV provides
global or module scope.

° return statement (2-10; 4.6)

= Donation does not allow return statement from a
function, SV does.
= : Donation will allow SV return form.

° External Declarations (2-13; 4.7)

: Donation’s extern keyword conflicts with SV extern
usage (in SV interface construct).
: Donation will deprecate this use of extern.

© 2002 Synopsys, Inc. (24) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Sequential Control
Testbench donation

° case statements (3-3; 5.1)

= Clarification: Donation does not support unique and priority
qualifiers.

: Donation will support unique and priority qualifiers.

* for loops statements (3-6; 5.2)
= Clarification : SV allows variable declaration following for keyword.
: : Donation will support loop variable declaration as in SV.

° break and continue (3-8; 5.3)
= Clarification: Both have the same semantics as SV.

© 2002 Synopsys, Inc. (25) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Class, Objects, and Methods

Testbench donation

* Class and Objects (7-1;)
= Clarification: Collection of data and methods that operate on data.

/*
* (Class contains data and methods
3

class <class name>
<data>
<methods>
endclass

* Constructors (7-5; 9.2)

= Clarification: Every class has a built-in new method, which calls the parent
class constructor and then initializes each member of the current object to its
default value. Users can override the new method.

© 2002 Synopsys, Inc. (26) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Class, Object Methods

Testbench donation

° External Classes (7-11; 9.3)
« Clarification: This use of extern is deprecated (stated previously).

° Typedef (7-11; 9.4)

« Clarification: Donation uses typedef keyword only for forward-
referencing of class declaration. SV uses typedef to define user
defined types.

typedefin SV will allow forward references of classes.

* Classes, Struct and Unions (; 9.5)
= Clarification: Classes are different than SV struct and union.
- Classes are dynamically created, structs are static.
- Classes are hierarchically type-compatible, structs are bit-compatible.
« Classes implement handles, structs do not.
- Classes cannot be arbitrarily cast.

© 2002 Synopsys, Inc. (27) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Class, Object Methods

Testbench donation

° Automatic Memory Management(; 9.6)
 Clarification: Objects are dynamically allocated and reclaimed.

Automatic Memory Management provides:
« Automatically memory reclamation.
« Eliminates dangling references, and premature deallocation.
* Prevents memory leaks and crashes.

° Inheritance (; 9.7)
= Clarification: Class inheritance section is missing in donation.
Adds several keywords:
» extends, virtual, protected, super

= Clarification: The donation supports single inheritance.

© 2002 Synopsys, Inc. (28) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Class, Object Methods

Testbench donation

° super (; 9.7.3)
= Clarification: The super keyword is used from within a derived class
to refer to the parent class.

* Constructor chaining (; 9.7.5)

= Clarification: To call a parent’s class constructor from a derived
class constructor requires that to be the first executable statement.

* Assigning objects to other objects: casting (; 9.7.4)

= Clarification: A derived class can be directly assigned to any of its
super-classes.

= Clarification: A super-class can be assigned to its derived classes
only through the $cast assign() system function:

scast assign(derived class, super class);

This is a run-time cast (like C++ dynamic_cast).

© 2002 Synopsys, Inc. (29) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Class, Object Methods

Testbench donation

° Encapsulation and data hiding (; 9.7.6)

= Clarification: Classes can have members that are:
* public (default)
* local
* protected

Clarification: Class semantics are similar to C++

GPSS F
Ether100 Any number of
. derived objects will

Ethernet /v keep data private

© 2002 Synopsys, Inc. (30) SystemVerilog EC: September 4, 2002 SY"UPSYSQ

- Clarifications and Resolution
Class, Object Methods
Testbench donation

°* Methods can also be:
= public
= |ocal
= protected
= virtual

* Virtual Methods, polymorphism, and abstract classes (; 9.7.7)
= Clarification: Virtual class methods enable polymorphism.

- Abstract class defines the inter-connect or protocol, and the
derived classes provide the various implementations.

°* Dynamic Method Lookup (; 9.7.7)
= Clarification: Virtual methods are resolved at run-time.

© 2002 Synopsys, Inc. (31) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Linked Lists

Testbench donation

° Linked Lists (8-1; 10)
= Clarification: The linked list package is like the C++ STL List
container.

° List macros (8-2; 10.1)
= Clarification : Only one macro is needed:
MakeVeraList(type).

© 2002 Synopsys, Inc. (32) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Concurrency Control
Testbench donation

* fork and join (4-2; 6.1)
= Clarification: “fork ... join none” has the same functionality as
process in SV.

= Proposal: SV should adopt “fork ... join [any | all | none]” construct.
Deprecate process.

fork fork fork

| | T

|

join [all] join any join none

© 2002 Synopsys, Inc. (33) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Concurrency Control
Testbench donation

° wait_var (4-8; 6.2)
= Clarification: The data-type supported by wait_var is:
* integer, reg, regl], enum, or string.

° terminate (4-9; 6.3)
= Clarification: This constructs considers dynamic parent-child

relationship of the processes, unlike SV disable.
for(int j = 1; j < 4; j++) begin
fork
task a();
join none
end

°* Maximum Threads (4-11; 6.5)
= Clarification: This is a deprecated feature. Please disregard.

© 2002 Synopsys, Inc. (34) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Concurrency Control
Testbench donation

° events (1-9; 6.6)
= Clarification : The event definition is omitted.

event variables are unique data type operated by system tasks
= $sync similar to @(event_var)
= $trigger similar to -> event_var

- By default events are OFF.

- Events have persistency

- Tasks sync() and trigger() synchronize statement executions.

: : Donation event data-type is a superset of SV’s named
events.

I : Extend SV event with donation’s event functionality.
- Traditional use (@ and ->) is completely backward compatible.

© 2002 Synopsys, Inc. (35) SystemVerilog EC: September 4, 2002 SYNOPSYS

Concurrency Control
Testbench donation

Clarifications and Resolution

° Event Operations and mechanisms (6.6.1— 6.6.3)

= $sync takes several forms
 ALL
 ANY
- ORDER
- CHECK

= $trigger takes several forms:
« ONE_SHOT (like ->)
 ONE_BLAST
- HAND_SHAKE
 ON
- OFF

© 2002 Synopsys, Inc. (36) SystemVerilog EC: September 4, 2002

SYNoPSys'

Concurrency Control
Testbench donation

Clarifications and Resolution

° Events control parallel thread execution
= Example of ORDER event synchronization.
= Makes it easy to manage ordered execution of statements in

threads.

System reset

,

\ 4
initialization
[[
LookupCheck() QueueArrange(

FabricRun()

s

Interrupt monitorj

© 2002 Synopsys, Inc. (37)

fork
{
LookupCheck();
$trigger(HAND SHAKE,lookupchk evnt);
)
{ FabricRun(); }
{
QueueArrange();
$trigger(HAND SHAKE, queue evnt);
)

{
$sync(ORDER, lookupchk evnt, queue evnt);
interruptMonitor();

b

join none

SystemVerilog EC: September 4, 2002 Synl:lpsysﬂ°

Clarifications and Resolution

Concurrency Control
Testbench donation

* Semaphore construct: (4-12; 6.7.1)
= Synchronization primitive for arbitration of shared resources.

\er/

= Clarification: $alloc() function creates the semaphore.

= Clarification: $alloc() system function in donation is simplified
function integer Salloc (SEMAPHORE, integer key count)

© 2002 Synopsys, Inc. (38) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Concurrency Control
Testbench donation

°* Mailbox construct (4-16; 6.8)
* Provides interprocess communication: fifo message queue.
= Accepts any data-type from concurrent threads.

* Allocation of Mailbox (4-16; 6.8.1)
= Clarification: $alloc function similar to semaphore.
= Clarification: Function is simplified
function integer $alloc (MAILBOX) ;

.

Sub r4, r3

Add r0, r2
Addi r0, 1
Subi r0, 5

© 2002 Synopsys, Inc. (39) SystemVerilog EC: September 4, 2002 SYNOPSYS

Program Block
Testbench donation

°* Program construct (2-3; 4.1)
= Clarification: The program block provides:
* Entry point for test-bench execution.
» Scope for program data.
« Separates DUT and test
* Introduces cycle semantics

Stimulus

Drivers Response check

Assertions/

© 2002 Synopsys, Inc. (40) SystemVerilog EC: September 4, 2002

Clarifications and Resolution

SYNoPSys'

Clarifications and Resolution

Program Block
Testbench donation

°* Program construct (2-3; 4.1)
: : program connects to design through port list.
= Port list is the same as a module port list.
program program name (list of ports);
program declarations
program_ code
endprogram

= Ports can be associated with clocking signals: clocking domains

= cycle-semantics enabled inside the program block.

= Clarification: Data declarations that include initialization need to be
initialized before program execution (same as in SV), but program
needs to be called after all other initial blocks.

© 2002 Synopsys, Inc. (41) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Program Block
Testbench donation

°* Program Scoping Rules (; 4.1.2)
= Clarification: Following constructs have global scope in donation.
« Type declarations: class, enum
« Subroutines
* Program block
* Vera interfaces (clocking domain)

- Data declared outside any block in global scope and program
o] [o]e] &

- Scoping rules above are not consistent with SV.
- Allow declarations in program, consistent with SV.

° Multiple programs (; 4.1.3)

= Clarification: Multiple program instances is compatible with SV.
Very useful for modeling

© 2002 Synopsys, Inc. (42) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Cycle Semantics and Clocking Domain
Testbench donation

* Clock Domain Declaration (; 7.1)
n : Donation’s interface keyword collides with SV interface.

. : Instead of interface, the clocking domain construct will
be used to specify synchronous interfaces.

= Clarification: clocking_domain groups set of signals sharing a
common clock.

= Clarification: Deprecate the hdl_node construct (use = instead).
To specify an XMR, use hierarchical path directly (no quotes).
The example in page section 7.1 of Clarification Donation becomes:
input [2:0] state PSAMPLE #-1 = top.cpu.state;

© 2002 Synopsys, Inc. (43) SystemVerilog EC: September 4, 2002 SYNOPSYS

. . . Clarifications and Resolution
Cycle Semantics and Clocking Domain
Testbench donation

* Clock Domain Declaration (; 7.1)
= An example for clocking_domain construct

program test (input phil, input [15:0] data, output write,

input phi2, inout [8:1] cmd, input enable);
clocking domain cdl

phil CLOCK;
data PSAMPLE #-1;
write PHOLD #1;

input [2:0] state PSAMPLE #-1 = top.cpu.state; //note

}

clocking domain cd2

{

phi2 CLOCK;
cmd NSAMPLE #-2ps NHOLD;
enable PSAMPLE #1;

}

// program begins here
// user can access cdl.data , cd2.cmd , etc..
endprogram

© 2002 Synopsys, Inc. (44)

SystemVerilog EC: September 4, 2002 Synﬂpsyso

Clarifications and Resolution

Cycle Semantics and Clocking Domain
Testbench donation

* Multiple Clocking Domains (; 7.1.1)
= Clarification: Ports can be used in more than one clocking domain.
* Inputs are sampled on the corresponding clock edge.
« Last outputs drive wins (no resolution).

clocking domain dl

{ phi1
phil CLOCK; ﬁ

output outl PHOLD;

)

clocking domain d2

{ phi2 out1
phi2 CLOCK;
output outl PHOLD; \\\1

}

© 2002 Synopsys, Inc. (45) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Cycle Semantics and Clocking Domain
Testbench donation

* Interface signal Declarations (; 7.2)

= Clarification: Donation does not define I/0O skew specification:
* Input
= NSAMPLE
= PSAMPLE
= #-skew_value
* Output
= NHOLD
= PHOLD
= #skew_value

Skews can be specified in ticks and physical time units.

signal sampled hereI signal driven here

clock .1

N

|
. k i &’
|
Input skew ; output skew
|
I

© 2002 Synopsys, Inc. (46) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Cycle Semantics and Clocking Domain
Testbench donation

Cycle Abstraction (; 7.3)

* Clarification: Cycle abstractions are enabled by:
* Clocking domain specification.
= The current or steady state of the system.
* Requires test-bench execution after all signal propagation
— After non-blocking assignments.

Execution at this point has several benefits:

= Avoids non-determinism and race conditions.

= One consistent model for assertions and test-bench.
= One consistent view for simulation and formal tools.
Fewer module evaluations.

i : Add the execution after NBA to the SV simulation queue.

© 2002 Synopsys, Inc. (47) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Cycle Semantics and Clocking Domain
Testbench donation

°* HDL path (; 7.4)

= Clarification: hdl path does not have to start at the root.

Any hierarchical path that is visible from the program instantiation
point will work, as per SV scoping rules.

* CLOCK (6-2;8.1.1)
= Clarification: An alias for the clock signal in a clocking domain.
« There are no implicit clocks (i.e.,SystemClock).

= Clarification: Two or more clocking_domains can share the same
clocking signal.

© 2002 Synopsys, Inc. (48) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Signal Operations
Testbench donation

* Synchronization (6-2; 8.2)
= Clarification: SystemClock is not required, usage is deprecated.
: @(CLOCK) is deprecated
- Explicit interface name and clock @(ram_bus.CLOCK).

* Output Signal Drive (6-5, 6-6; 8.2)
: Non-Blocking Drives are not the same as in SV.
: Eliminate non-blocking synchronous drives.

* Testbench Input Signal Sample (6-6; 8.3)

= Clarification: Synchronous signal always evaluates to the sampled
value.

© 2002 Synopsys, Inc. (49) SystemVerilog EC: September 4, 2002 SYNOPSYS

Clarifications and Resolution

Signal Operations
Testbench donation

* Asynchronous Operations (6-9; 8.5)
= Clarification: async modifier is not supported, please disregard.

* Synchronous and Asynchronous Domains (6-8; 8.3)
= Clarification: Lack of CLOCK signal in a clocking domain creates an
asynchronous domain.
= All signals in this domain are asynchronous: not sampled or driven
at any clock edge.
= Skew specification, PHOLD, PSAMPLE, etc.. are not allowed.

* Sub-Cycle Delay (6-9; 8.6)
= Clarification : Donation does not allow physical time, only tick time.

: Remove this limitation, accept both tick time as well as
physical time unit.

© 2002 Synopsys, Inc. (50) SystemVerilog EC: September 4, 2002 SYNOPSYS

Testbench donation

* Follow on Discussion

© 2002 Synopsys, Inc. (51) SystemVerilog EC: September 4, 2002 SYNOPSYS

