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Section 1
Introduction to SystemVerilog

This document specifies the Accellera extensions for a higher level of abstraction for modeling and verifica-
tion with the Verilog Hardware Description Language. These additions extend Verilog into the systems space
and the verification space and was built on top of the work of the IEEE Verilog 2001 committee.

Throughout this document:

— “Verilog” or “Verilog-2001" refers to the IEEE Std. 1364-2001 standard for the Verilog Hardware Descrip-
tion Language

— “SystemVerilog” refersto the Accellera extensions to the Verilog-2001 standard.

This document numbers the generations of Verilog as follows:
— “Verilog 1.0" isthe IEEE Std. 1364-1995 Verilog standard, which is also called Verilog-1995

— “Verilog 2.0" is the IEEE Std. 1364-2001 Verilog standard, commonly called Verilog-2001; this genera-
tion of Verilog contains the first significant enhancements to Verilog since its release to the public in 1990

— “SystemVerilog 3.X” is Verilog-2001 plus an extensive set of high-level abstraction extensions, as defined
in this document

— SystemVerilog 3.0, approved as an Accellera standard in June 2002, includes enhancements primarily
directed at high-level architectural modeling

— SystemVerilog 3.1, approved as an Accellera standard in add final date , includes enhancements pri-
marily directed at advanced verification and C language integration

The Accellerainitiative to extend Verilog is an ongoing effort under the direction of the AccelleraHDL + Tech-
nical Subcommittee. This committee will continue to define additional enhancements to Verilog beyond Sys-
temVerilog 3.1.

SystemVerilog is built on top of Verilog 2001. SystemVerilog improves the productivity, readability, and reus-
ability of Verilog based code. The language enhancements in SystemVerilog provide more concise hardware
descriptions, while still providing an easy route with existing tools into current hardware implementation
flows.

SystemVerilog 3.0 adds several new constructs to Verilog-2001, including:
— C datatypesto provide better encapsulation and compactness of code
— int, typedef, struct, union, enum
— Enhancements to existing Verilog constructs, to provide tighter specifications
— Extensions to aways blocks to include linting type features
— Logic (0, 1, X, Z) and hit (0, 1) data types
— Automatic/static specification on a per variable instance basis
— Procedural break, continue, return
— Interfaces to encapsul ate communication and facilitate “ Communication Oriented” design
— Dynamic processes for modeling pipelines

— A $root top level hierarchy which can have global definitions

SystemVerilog 3.1 adds verification enhancementsin the following important areas:
— Verification Functiondity: Reusable, reactive testbench data-types and functions.
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— BuUilt-in types: string, associative array, and dynamic array.
— Pass by reference subroutine arguments.

— Synchronization: Mechanisms for dynamic process creation, process control, and inter-process communi-
cation.

— Enhancements to existing Verilog events.
— BuUilt-in synchronization primitives. Semaphore, Mailbox.
— Classes: Object-Oriented mechanism that provides abstraction, encapsulation, and safe pointer capabilities.

— Dynamic Memory: Automatic memory management in a re-entrant environment that frees users from
explicit de-allocation.

— Cycle-Based Functionality: Clocking domains and cycle-based attributes that help reduce development,
ease maintainability, and promote reusability.

— Cycle-based signal drives and samples
— Synchronous samples

— Race-free program context

Assertion mechanism for verifying design intent and functional coverage intent.
— Property and sequence declarations

— Assertions and Coverage statements with action blocks.
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Section 2
Literal Values

2.1 Introduction (informative)

The lexical conventions for SystemVerilog literal values are extensions of those for Verilog. SystemVerilog
adds literal time values, literal array values, literal structures and enhancementsto literal strings.

2.2 Literal value syntax

time literal” ::= // from Annex A.8.4
unsigned_number time_unit
| fixed_point_number time_unit
time_unit ::=s|ms|us|ns|ps|fs]|step
number ::= // from Annex A.8.7
decimal_number
| octal_number
| binary_number
| hex_number
| real_number

decimal_number ::=
unsigned_number
| [ size] decima_base unsigned_number
| [ size] decima_base x_digit{ }
| [ size] decima_base z digit{ }
binary_number ::=[ size] binary_base binary_vaue
octal_number ::=[ size] octal_base octal_vaue
hex_number ::=[ size] hex_base hex_vaue
sign:=+]-
size ::= non_zero_unsigned_number
non_zero_unsi gned_numberl = non_zero_decimal_digit{ _ | decimal_digit}
real_number? ::=
fixed_point_number
| unsigned_number [ . unsigned_number ] exp [ sign] unsigned_number
fixed_poi nt_number1 ;= unsigned_number . unsigned_number
exp:=el|E
unsigned_numberl i:=decimal_digit { _ | decimal_digit }
string_literal ::=" { Any_ASCIl_Characters} " // from Annex A.8.8

Syntax 2-1—Literal values (excerpt from Annex A)

2.3 Integer and logic literals

Literal integer and logic values can be sized or unsized, and follow the same rules for signedness, truncation
and left-extending as Verilog-2001.
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SystemVerilog adds the ability to specify unsized literal single bit values with a preceding apostrophe ( * ), but
without the base specifier. All bits of the unsized value are set to the value of the specified bit. In a self-deter-
mined context these literals have awidth of 1 bit, and the value is treated as unsigned.

‘o, "1, 'X, 'x, 'Z, 'z // sets all bits to this wvalue

2.4 Real literals

The default type is real for fixed point format (e.g. 1. 2), and exponent format (e.g. 2. 0e10).

A cast can be used to convert literal real valuesto the shortreal type (e.g., shortreal’ (1.2) ). Casting
is described in Section 3.14.

2.5 Time literals

Time is written in integer or fixed point format, followed without a space by a time unit (fs ps ns us ms s
step). For example:

0.1lns
40ps

Thetime literal is interpreted as a realtime value scaled to the current time unit and rounded to the current
time precision. Note that if atime literal is used as an actual parameter to a module or interface instance, the
current time unit and precision are those of the module or interface instance.

2.6 String literals

A string literal is enclosed in quotes and has its own data type. Non-printing and other special characters are
preceded with a backslash. SystemVerilog adds the following special string characters:

\v vertical tab

\f form feed
\abell

\x02 hex number

A string literal must be contained in a single line unless the new line is immediately preceded by a \ (back
slash). In this case, the back slash and the new line are ignored. There is no predefined limit to the length of a
string literal.

A string literal can be assigned to a character, or apacked array, asin Verilog-2001. If the size differs, itisright
justified.

byte c1 = "A" ; bit [7:0] d = "\n" ;
bit [0:11] [7:0] c2 = "hello world\n" ;

A string literal can be assigned to an unpacked array of characters, and azero termination is added likein C. If
the size differs, it isleft justified.

byte ¢3 [0:12] = "hello world\n" ;

Packed and unpacked arrays are discussed in Section 4. The difference between string literals and array literals
is discussed in Section 2.7, which follows.

String literals can also be cast to a packed or unpacked array, which shall follow the same rules as assigning a
literal string to a packed or unpacked array. Casting is discussed in Section 3.14.

SystemVerilog 3.1 also includes a string datatype to which a string literal can be assigned. Variables of type
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string have arbitrary length; they are dynamically resized to hold any string. String literals are packed arrays
(of awidth that is amultiple of 8 hits), and they are implicitly converted to the string type when assigned to a
string type or used in an expression involving string type operands (see Section 3.7).

2.7 Array literals

Array literals are syntactically similar to C initializers, but with the replicate operator ( {{}} ) alowed.
int nl1:21[1:3] = {{o0,1,2},{3{4}}};

The nesting of braces must follow the number of dimensions, unlikein C. However, replicate operators can be
nested.

int n(1:2]1(1:3]1 = {2{{3{4}}}};:
If the typeis not given by the context, it must be specified with a cast.
typedef int [1:3] triple; // 3 integers packed together

b = triple’{0,1,2};

2.8 Structure literals

Structure literals are syntactically similar to C initializers. Structure literals must have a type, either from con-
text or a cast.

typedef struct {int a; shortreal b;} ab;
ab c¢;
c = {O, 0.0}; // structure literal type determined from the left hand context
(c)
Nested braces should reflect the structure. For example:
ab abarr(1:0] = {{1, 1.0}, {2, 2.0}};

Note that the C alternative {1, 1.0, 2, 2.0} isnot allowed.

Structure literals can al'so use member name and value, or data type and default value (see Section 7.13):

¢ = {a:0, b:0.0}; // member name and value for that member
¢ = {default:0}; // all elements of structure ¢ are set to 0
d = ab'{int:1, shortreal:1.0}; // data type and default value for all members

// of that type

When an array of structures is initialized, the nested braces should reflect the array and the structure. For
example:

ab abarr(1:0] = {{1, 1.0}, {2, 2.0}};
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Section 3
Data Types

3.1 Introduction (informative)

To provide for clear tranglation to and from C, SystemVerilog supports the C built-in types, with the meaning
given by the implementation C compiler. However, to avoid the duplication of int and 1ong without causing
confusion, in SystemVerilog, int is32 bitsand Longint iS64 bits. The C £1oat typeiscaled shortreal in
SystemVerilog, so that it is not be confused with the Verilog-2001 real type.

Verilog-2001 has net data types, which can have 0, 1, X or Z, plus 7 strengths, giving 120 values. It also has
variable data types such as reg, which have 4 values 0, 1, X, Z. These are not just different data types, they are
used differently. SystemVerilog adds another 4-value data type, caled logic (see Sections 3.3.2 and 5.6).

SystemVerilog 3.1 adds string, chandle and class datatypes, and enhances the Verilog event and System-
Verilog 3.0 enum data types. SystemVerilog 3.1 also extends the user defined types by providing support for
object-oriented class.

Verilog-2001 provides arbitrary fixed length arithmetic using reg datatypes. The reg type can have bits at X
or Z, however, and so are less efficient than an array of bits, because the operator evaluation must check for X
and Z, and twice as much data must be stored. SystemVerilog adds abit type which can only have bits with O
or 1 values. See Section 3.3.2 on 2-state data types.

Automatic type conversions from a smaller number of bitsto alarger number of bits involve zero extensions if
unsigned or sign extensions if signed, and do not cause warning messages. Automatic truncation from a larger
number of bitsto asmaller number does cause awarning message. Automatic conversions between 1ogic and
bit do not cause warning messages. To convert alogic value to a bit, 1 convertsto 1, anything elseto 0.

User defined types are introduced by typedef and must be defined before they are used. Data types can aso
be parameters to modules or interfaces, making them like class templatesin object-oriented programming. One
routine can be written to reverse the order of elementsin any array, which isimpossiblein C and in Verilog.

Structures and unions are complicated in C, because the tags have a separate name space. SystemVerilog fol-
lows the C syntax, but without the optional structure tags.

See also Section 4 on arrays.
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3.2 Data type syntax

data_type::= /l from Annex A.2.2.1
integer_vector_type[ signing] { packed dimension} [ range]
| integer_atom type|[ signing ]
| type_declaration_identifier { packed dimension }
| non_integer_type
| struct packed [ signing] { { struct_union_member } } { packed_dimension }
| union packed [ signing] { { struct_union_member } } { packed_dimension }
| struct [ signing] { { struct_union_member } }
| union [ signing] { { struct_union_member } }
| enum [ integer_type[ signing ] { packed_dimension} ]
{ enum_identifier [ = constant_expression] { , enum_identifier [ = constant_expression] } }
| string
| event
| chandle
| class_scope type identifier
class_scope_type identifier::=
class identifier :: { class identifier :: } type declaration_identifier
| class identifier :: { class identifier :: } class identifier
integer_type ::=integer_vector_type | integer_atom_type
integer_atom_type ::= byte | shortint | int | longint | integer
integer_vector_type ::= bit | logic | reg
non_integer_type ::=time|shortreal |real | realtime
net_type ::= supplyO | supplyl | tri|triand | trior |triO|tril]|wire|wand | wor
signing ::= signed | unsigned
simple_type ::= integer_type | non_integer_type | type_identifier
struct_union_member ::= { attribute instance} data type list_of variable identifiers or_assignments;

variable_decl_assignment ::= [/l from Annex A.2.4
variable_identifier [ variable_dimension ] [ = constant_expression |
| variable_identifier [ ] = new [ constant_expression | [ ( variable_identifier ) ]
| class identifier [ parameter_value _assignment ] = new [ ( list_of_arguments) ]

Syntax 3-1—data types (excerpt from Annex A)

3.3 Integer data types

SystemVerilog offers several integer data types, representing a hybrid of both Verilog and C data types:

Table 3-1: Integer data types

shortint 2-state SystemVerilog data type, 16 bit signed integer

int 2-state SystemVerilog data type, 32 bit signed integer

longint 2-state SystemVerilog data type, 64 bit signed integer

byte 2-state SystemVerilog data type, 8 bit signed integer or ASCII character

bit 2-state SystemVerilog data type, user-defined vector size
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Table 3-1: Integer data types

logic 4-state SystemVerilog data type, user-defined vector size with different use rules from reg

reg 4-state Verilog-2001 data type, user-defined vector size

integer 4-state Verilog-2001 data type, at least 32 bit signed integer

time 4-state Verilog-2001 data type, 64-bit integer

3.3.1 Integral types

The term integral is used throughout this document to refer to the data types that can represent a single basic
integer datatype, packed array, packed struct, packed union, enum, Of time.

3.3.2 2-state (two-value) and 4-state (four-value) data types

Types that can have unknown and high-impedance values are called 4-state types. These are logic, reg,
integer and time. The other types do not have unknown values and are called 2-state types, for examplebit
and int.

The difference between int and integer iSthat int is2-statelogic and integer is4-statelogic. 4-state val-
ues have additional bits that encode the X and Z states. 2-state data types can simulate faster, take less memory,
and are preferred in some design styles.

3.3.3 Signed and unsigned data types

Integer types use integer arithmetic and can be signed or unsigned. This affects the meaning of certain opera-
torssuch as‘<’, etc.

int unsigned ui;
int signed si;

The data types byte, shortint, int, integer and longint default to signed. The datatypesbit, reg
and logic default to unsigned, asdo arrays of these types.

Note that the signed keyword is part of Verilog-2001. The unsigned keyword is areserved keyword in Ver-
ilog-2001, but is not utilized.

See also Section 7, on operators and expressions.

3.4 Real and shortreal data types

The rea1’ datatype isfrom Verilog-2001, and isthe same asaC double. The shortreal datatypeisaSys-
temVerilog datatype, andisthesameasaC float.

3.5 Void data type

The void data type represents non-existent data. This type can be specified as the return type of functions,
indicating no return value.

3.6 chandle data type

The chandle data type represents storage for pointers passed using the DPI Direct Programming Interface

1 The real and shortreal types are represented as described by | EEE 734-1985, an | EEE standard for floating point numbers.
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(see Section 26). The size of thistype is platform dependent, but shall be at least large enough to hold a pointer
on the machine in which the tool is running.

The syntax to declare a handle is as follows:
chandle variable name ;

where variable_name isavalid identifier. Chandles shall always be initialized to the value nul1, which has a
value of 0 on the C side. Chandles are very restricted in their usage, with the only legal uses being as follows:

— Only the following operators are valid on chandle variables:
— Equality (==), inequality (=) with another chandle or with null

— Caseequality (===), case inequality (!==) with another chand1le or withnull (same semantics as ==
and 1=)

— Can be tested for aboolean value that shall be O if the chandle iSnull and 1 otherwise
— Only the following assignments can be made to a chandle

— Assignment from another chandle

— Assignment to null

— Chandles can be inserted into associative arrays (refer to Section 4.9), but the relative ordering of any two
entries in such an associative array can vary, even between successive runs of the sametool.

— Chandles can be used within a class
— Chandles can be passed as arguments to functions or tasks

— Chandles can be returned from functions

The use of chandlesisrestricted as follows:
— Ports shall not have the chand1e datatype
— Chandles shall not be assigned to variables of any other type
— Chandles shall not be used:
— Inany expression other than as permitted above
— Asports
— Insensitivity lists or event expressions
— In continuous assignments
— Inunions

— In packed types

3.7 String data type

SystemVerilog includes a string data type, which is a variable size, dynamically allocated array of charac-
ters. SystemVerilog also includes a number of special methods to work with strings.

Verilog supports string literals, but only at the lexical level. In Verilog, string literals behave like packed arrays
of awidth that is a multiple of 8 bits. A string literal assigned to a packed array is truncated to the size of the

array

In SystemVerilog string literals behave exactly the same as in Verilog However, SystemVerilog also supports
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the string data type to which astring literal can be assigned. When using the string datatype instead of a
packed array, strings can be of arbitrary length and no truncation occurs. Literal strings are implicitly con-
verted to the string type when assigned to a string type or used in an expression involving string type
operands.

Variables of type string can beindexed from 0 to N-1 (the last element of the array), and they can take on the
specia value“”, which is the empty string.

The syntax to declare astring is:
string variable name [= initial value];

where variable nameis avalid identifier and the optional initial_value can be a string literal or the value “”
for an empty string. For example:

string myName = "John Smith";
If aninitial valueisnot specified in the declaration, the variableisinitialized to “”, the empty string.

SystemVerilog provides a set of operators that can be used to manipulate combinations of string variables and
string literals. The basic operators defined on the string data type are listed in Table 3-2, which follows.

A string literal can be assigned to a string, a character, or a packed array. If their size differs the literal is
right justified and zero filled on the | eft. For example:

byte ¢ = "A"; // assign to c "A"
bit [10:0] a = "\x41"; // assigns to a ‘b000_0100_ 0001
bit [1:4][7:0] h = "hello" ; // assigns to h "ello"

A string, string literal, or packed array can be assigned to a string variable. The string variable shall
grow to accommodate the packed array. If the size (in bits) of the packed array is not a multiple of 8, then the
packed array is zero filled on the | eft.

For example:
string sl = "hello"; // sets sl to "hello"
bit [11:0] b = 12'ha41l;
string s2 = b; // sets s2 to 'h0a4l

Asasecond example:

reg [15:0] r;
integer i = 1;
string b = "";
string a = {"Hi", b};

r = aj; // OK

b = r; // OK (implicit cast, implementations can issue a warning)
b = "Hi"; // OK

b = {5{"Hi"}}; // OK

a = {i{"i"}}; // OK (non constant replication)

r = {i{"Hi"}}; // invalid (non constant replication)

a = {i{b}}; // OK

a = {a,b}; // OK

a = {"Hl", }i // OK

alo] = "h"; // OK same as al[0] = "hi" )
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Table 3-2: String operators

Operator Semantics

Strl == Str2 Equality. Checksif the two strings are equal. Result is 1 if they are equal and O if
they are not. Both strings can be of type string. Or one of them can be astring lit-
eral. If both operands are string literals, the expression is the same Verilog equality
operator for integer types. The special value " " is alowed.

Strl != Str2 Inequality. Logical Negation of ==

Strl < Str2 Comparison. Relational operators return 1 if the corresponding condition is true
Strl <= Str2 using thelexicographical ordering of the two strings Str1 and Str2. The compari-
Strl > Str2 son behaves like the ANSI C st remp function (or the compare string method).
Strl >= Str2 Both operands can be of type string, or one of them can be astring literal.
{stri,str2,...,Strn} Concatenation. Each operand can be of type string or astring literal (it shall be

implicitly converted to type string). If at least one operand is of type string,
then the expression evaluates to the concatenated string and is of type string. If
all the operands are string literals, then the expression behaves like a Verilog concat-
enation of integral types; if the result is then used in an expression involving
string types, itisimplicitly converted to the string type.

{multiplier{Str}} Replication. Str can be of type string or astring literal. Multiplier must be of
integral type and can be non-constant. If multiplier is non-constant or Str isof type
string, theresult isastring containing N concatenated copies of Str, whereN is
specified by the multiplier. If Str isaliteral and the multiplier is constant, the
expression behaves like numeric replication in Verilog (if the result isused in
another expression involving string types, it isimplicitly converted to the string
type).

Str.method (...) Thedot (.) operator is used to invoke a specified method on strings.

SystemVerilog also includes a number of special methods to work with strings. These methods use the built-in
method notation. These methods are described in the following subsections.

3.7.11en()

function int len()

— str.len() returnsthelength of the string, i.e., the number of characters in the string (excluding any ter-
minating character).

— If stris™, thenstr.len () returnsO.

3.7.2 putc()

task putc(int i, string s)
task putc(int i, byte c)

— str.putc(i, c) replacestheith character in str with the given integral value.
— str.putc(i, s) replacestheith character in str with the first character in s.
— s can be any expression that can be assighed to a string.

— putc doesnot changethesize of str: If i <Oor i >=str.len(), then str is unchanged.

Note: str.putc(j, x) isidentica tostr[j] = x.
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3.7.3 getc()
function int getc(int i)
— str.getc (i) returnsthe ASCII code of the ith character in str.

— Ifi<Qori>=str.len(),thenstr.getc (i) returnsO.
Note x = str.getc(j) isidenticAtox = str([j].

3.7.4 toupper()
function string toupper ()
— str.toupper () returnsastring with charactersin str converted to uppercase.

— str isunchanged.

3.7.5 tolower()
function string tolower ()
— str.tolower () returnsastring with charactersin str converted to lowercase.

— str isunchanged.

3.7.6 compare()

function int compare (string s)
— str.compare (s) compares str and s, as in the ANSlI C strcmp function, with a compatible return
value.
See therelationa string operatorsin Section 3.7, Table 3-2.

3.7.7 icompare()

function int icompare(string s)

— str.icompare (s) compares str and s, like the ANSI C strcmp function, with a compatible return
value, but the comparison is case insensitive.

3.7.8 substr()
function string substr(int i, int j)

— str.substr(i, j) returnsanew string that is a sub-string formed by charactersin position i through 5
of str.

— Ifi<0,j<i,orj>=str.len(), substr() returns" " (the empty string).

3.7.9 atoi(), atohex(), atooct(), atobin()

function integer atoi ()

function integer atohex()
function integer atooct ()
function integer atobin ()

— str.atoi () returnstheinteger corresponding to the ASCII decimal representation in str. For example:

str = "123";
int i = str.atoi(); // assigns 123 to 1.

The string is converted until the first non-digit is encountered.
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— atohex interprets the string as hexadecimal.
— atooct interprets the string as octal.

— atobin interprets the string as binary.
3.7.10 atoreal()
function real atoreal ()
— str.atoreal () returnsthe real number corresponding to the ASCII decimal representation in str.
3.7.11 itoa()
task itoa(integer i)
— str.itoa (i) storesthe ASCII decimal representation of i into str (inverse of atoi).
3.7.12 hextoa()
task hextoa(integer i)

— str.hextoa (i) storesthe ASCII hexadecimal representation of i into str (inverse of atohex).

3.7.13 octtoa()

task octtoa(integer i)

— str.octtoa (i) storesthe ASCII octal representation of i into str (inverse of atooct).

3.7.14 bintoa()
task bintoa(integer i)

— str.bintoa (i) storesthe ASCII binary representation of i into str (inverse of atobin).

3.7.15 realtoa()

task realtoa(real r)

— str.realtoa (r) storesthe ASCII rea representation of i into str (inverse of atoreal).

3.8 Event data type

The event datatypeis an enhancement over Verilog named events. SystemVerilog events provide a handle to
asynchronization object. Like Verilog, event variables can be explicitly triggered and waited for. Furthermore,
SystemVerilog events have a persistent triggered state that lasts for the duration of the entire time step. In addi-
tion, an event variable can be assigned another event variable or the special vaue null. When assigned
another event variable, both event variables refer to the same synchronization object. When assigned nu11, the
association between the synchronization object and the event variable is broken. Events can be passed as argu-
ments to tasks.

The syntax to declare an event is:
event variable name [= initial valuel];

Where variable_name is a valid identifier and the optional initial_value can be another event variable or the
specia valuenull.

If aninitial valueis not specified then the variable isinitialized to a new synchronization object.
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If the event is assigned nul1, the event becomes nonblocking, asif it were permanently triggered.

Examples:
event done; // declare a new event called done
event done_too = done; // declare done_too as alias to done
event empty = null; // event variable with no synchronization object

Event operations and semantics are discussed in detail in Section 13.5.

3.9 User-defined types

type _declaration ::= /l from Annex A.2.1.3
typedef [ data_type] type_declaration_identifier ;
| typedef hierarchical_identifier . type_identifier type declaration_identifier ;
| typedef [ class] class identifier ;
| typedef class identifier [ parameter_value _assignment | type_declaration_identifier ;

Syntax 3-2—user-defined types (excerpt from Annex A)

The user can define anew type using typedef, asin C.
typedef int intPp;
This can then be instantiated as:
intP a, b;
A type can be used beforeit is defined, provided it isfirst identified as atype by an empty typedef:
typedef foo;
foo £ = 1;
typedef int foo;
Note that this does not apply to enumeration values, which must be defined before they are used.
If the type is defined within an interface, it must be re-defined locally before being used.
interface it;
typedef int intP;

endinterface

it itl ();
typedef itl.intP intP;

User-defined type names must be used for complex data types in casting (see Section 3.14, below), and as
parameters.

Sometimes a user defined type needs to be declared before the contents of the type has been defined. Thisis of
use with user defined types derived from enum, struct, union, and class. For an example, see
Section 11.24. Support for thisis provided by the following forms for typedef:

typedef enum type declaration identifier;
typedef struct type declaration identifier;
typedef union type declaration identifier;
typedef class type declaration identifier;
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typedef type declaration identifier;

Note that, while thisis useful for coupled definitions of classes as shown in Section 11.24, it cannot be used for
coupled definitions of structures, since structures are statically declared and there is no support for pointers to
structures.

The last form shows that the type of the user defined type does not have to be defined in the forward declara-
tion.

A typedef inside agenerate shall not define the actual type of aforward definition that exists outside the
scope of the forward definition.

3.10 Enumerations

data_type::= /[ from Annex A.2.2.1

| enum [ integer_type[ signing] { packed_dimension} ]
{ enum_identifier [ = constant_expression ] { , enum_identifier [ = constant_expression] } }

Syntax 3-3—enumerated types (excerpt from Annex A)

An enumerated type declares a set of integral named constants. Enumerated data types provide the capability
to abstractly declare strongly typed variables without either a data type or data value(s) and later add the
required datatype and value(s) for designs that require more definition. Enumerated data types also can be eas-
ily referenced or displayed using the enumerated names as opposed to the enumerated values.

In the absence of a datatype declaration, the default datatype shall be int. Any other data type used with enu-
merated types shall require an explicit data type declaration.

An enumerated type defines a set of named values. In the following example, 1ight1 and 1ight2 are defined
to be variables of the anonymous (unnamed) enumerated int type that includes the three members: red, yel-
low and green.

enum {red, yellow, green} lightl, light2; // anonymous int type

An enumerated name with x or z assignments assigned to an enum with no explicit data type or an explicit 2-
state declaration shall be a syntax error.

// Syntax error: IDLE=2'b00, XX=2'bx <ERROR>, S1=2'b01??, S2=2'b10??
enum {IDLE, XX='x, S1=2'b01, S2=2'bl0} state, next;

An enum declaration of a4-state type, such as integer, that includes one or more nameswith x or z assignments
shall be permitted.

// Correct: IDLE=2'b00, XX=2'bx, S1=2'b01, S2=2'bl0
enum integer {IDLE, XX='x, S1=2'b01, S2=2'bl0} state, next;

An unassigned enumerated name that follows an enum name with x or z assignments shall be a syntax error.

// Syntax error: IDLE=2'b00, XX=2'bx, S1=??, S2=??
enum integer {IDLE, XX='x, S1, S2} state, next;

The values can be cast to integer types, and increment from an initial value of 0. This can be overridden.

enum {bronze=3, silver, gold} medal; // silver=4, gold=5
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The values can be set for some of the names and not set for other names. A name without a value is automati-
cally assigned an increment of the value of the previous name.

// ¢ 1s automatically assigned the increment-value of 8
enum {a=3, b=7, c} alphabet;

If an automatically incremented value is assigned elsewhere in the same enumeration, this shall be a syntax
error.

// Syntax error: c¢ and d are both assigned 8
enum {a=0, b=7, c, d=8} alphabet;

If the first nameis not assigned avalue, it is given the initial value of 0.

// a=0, b=7, c=8
enum {a, b=7, c} alphabet;

A sized constant can be used to set the size of the type. All sizes must be the same.

// silver=4'h4, gold=4'h5 (all are 4 bits wide)
enum {bronze=4'h3, silver, gold} medal4;

// Syntax error: the width of the enum has been exceeded
// in both of these examples
enum {a=1'b0, b, c} alphabet;
enum [0:0] {a,b,c} alphabet;
Any enumeration encoding value that is outside the representable range of the enum shall be an error.

Adding a constant range to the enum declaration can be used to set the size of the type. If any of the enum
members are defined with a different sized constant, this shall be a syntax error.

// Error in the bronze and gold member declarations
enum bit [3:0] {bronze=5'h13, silver, gold=3'h5} medal4;

// Correct declaration - bronze and gold sizes are redundant
enum bit [3:0] {bronze=4'h13, silver, gold=4'h5} medal4;

Type checking of enumerated types used in assignments, as arguments and with operators is covered in
Section 3.10.3. Like C, there is no overloading of literals, so medal and medal4 cannot be defined in the same
scope, since they contain the same names.

3.10.1 Defining new data types as enumerated types

A type name can be given so that the same type can be used in many places.

typedef enum {NO, YES} boolean;
boolean myvar; // named type

3.10.2 Enumerated type ranges
A range of enumeration elements can be specified automatically, via the following syntax:

Table 3-3: Enumeration element ranges

name Associates the next consecutive number with name.

name = N Assignsthe constant N to name
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Table 3-3: Enumeration element ranges

name [N] Generates N names in the sequence: name0, namel, ..., nameN-1N must be a constant expres-
sion

name [N:M] Creates a sequence of names starting with nameN and incrementing or decrementing until
reaching name nameM.

For example:
enum { add=10, sub([5], jmpl[6:8] } ;

This example assigns the number 10 to the enumerated type add. It aso creates the enumerated types
sub0,subl,sub2,sub3,and sub4, and assigns them the values 11..15, respectively. Finaly, the example cre-
ates the enumerated types jmp6,jmp7, and jmps, and assigns them the values 16-18, respectively.

3.10.3 Type checking

SystemVerilog enumerated types are strongly typed, thus, a variable of type enum cannot be directly assigned
a vaue that lies outside the enumeration set. This is a powerful type-checking aid that prevents users from
accidentally assigning nonexistent valuesto variables of an enumerate type. This restriction only appliesto an
enumeration that is explicitly declared as a type. The enumeration values can still be used as constants in
expressions, and the results can be assigned to any variable of a compatible integral type.

Both the enumeration names and their integer values must be unique. The values can be set to any integral con-
stant value, or auto-incremented from an initial value of 0. It is an error to set two values to the same name, or
to set a value to the same auto-incremented value.

Enumerated variables are type-checked in assignments, arguments, and relational operators. Enumerated vari-
ables are auto-cast into integral values, but, assignment of arbitrary expressions to an enumerated variable
requires an explicit cast.

For example:
typedef enum { red, green, blue, yellow, white, black } Colors;

This operation assigns a unique number to each of the color identifiers, and creates the new data type Colors.
This type can then be used to create variables of that type.

Colors c;

¢ = green;

c = 1; // Invalid assignment

if (1 == ¢ ) // OK. ¢ is auto-cast to integer

In the example above, the value green isassigned to the variable ¢ of type colors. The second assignment is
invalid because of the strict typing rules enforced by enumerated types.

Casting can be used to perform an assignment of a different data type, or an out of range value, to an enumer-
ated type. Casting is discussed in Sections 3.10.4, 3.14 and 3.15.

3.10.4 Enumerated types in numerical expressions

Elements of enumerated type variables can be used in numerical expressions. The value used in the expression
is the numerical value associated with the enumerated value. For example:

typedef enum { red, green, blue, yellow, white, black } Colors;

Colors col;
integer a, b;
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a = blue * 3;
col = yellow;
b = col + green;

From the previous declaration, blue has the numerical value 2. This example assigns a the value of 6 (2*3).
Next, it assignsb avaue of 4 (3+1).

An enum variable or identifier used as part of an expression is automatically cast to the base type of the enum
declaration (either explicitly or using int as the default). An assignment to an enum variable from an expres-
sion other than an enum variable or identifier of the same type shall require a cast. Casting to an enum type
shall cause a conversion of the expression to its base type without checking the validity of the value (unless a
dynamic cast is used as described in Section 3.15).

typedef enum {Red, Green, Blue} Colors;
typedef enum {Mo,Tu,We,Th,Fr,Sa,Su} Week;
Colors C;

Week W;

int I;

c

Colors’ (C+1) ; // C is converted to an integer, then added to
// one, then converted back to a Colors type

C=C+ 1; C++; C+=2; C = I; // Illegal because they would all be
// assignments of expressions without a cast

c

Colors’ (Su) ; // Legal; puts an out of range value into C
I =2C+ W; // Legal; C and W are automatically cast to int

SystemVerilog includes a set of specialized methods to enable iterating over the values of enumerated types.
3.10.4.1 first()

The prototype for the first () method is:
function enum first();

The first () method returns the value of the first member of the enumeration enum.

3.10.4.2 last()
The prototype for the 1ast () methodis:
function enum last () ;

The 1ast () method returns the value of the last member of the enumeration enum.
3.10.4.3 next()
The prototype for the next () method is:
function enum next ( int unsigned N = 1 );
Thenext () method returns the Nth next enumeration value (default is the next one) starting from the current

value of the given variable. A wrap to the start of the enumeration occurs when the end of the enumeration is
reached. If the given value is not amember of the enumeration, the next () method returns the first member.
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3.10.4.4 prev()
The prototype for the prev () method is:
function enum prev( int unsigned N = 1 );
Theprev () method returns the Nth previous enumeration value (default is the previous one) starting from the
current value of the given variable. A wrap to the end of the enumeration occurs when the start of the enumer-

ation is reached. If the given value is not a member of the enumeration, the prev () method returns the last
member.

3.10.4.5 num()
The prototype for the num () methodis:
function int num() ;
The num () method returns the number of elementsin the given enumeration.
3.10.4.6 name()
The prototype for the name() method is:
function string name () ;

The name () method returns the string representation of the given enumeration value. If the given valueis not
amember of the enumeration, the name () method returns the empty string.

3.10.4.7 Using enumerated type methods
The following code fragment shows how to display the name and value of all the members of an enumeration.

typedef enum { red, green, blue, yellow } Colors;
Colors c = c.first;
forever begin
$display( "%s : %d\n", c.name, c );
if( ¢ == c.last ) break;
c = c.next;
end

3.11 Structures and unions

data type::= /l from Annex A.2.2.1

| struct packed [ signing] { { struct_union_member } } { packed dimension}
| union packed [ signing] { { struct_union_member } } { packed dimension}
| struct [ signing] { { struct_union_member } }
| union [ signing] { { struct_union_member } }

struct_union_member ::= { attribute instance} data_type list_of variable identifiers or_assignments;

Syntax 3-4—Structures and unions (excerpt from Annex A)

Structure and union declarations follow the C syntax, but without the optional structure tags beforethe* {*.

struct { bit [7:0] opcode; bit [23:0] addr; }IR;// anonymous structure
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// defines variable IR
IR.opcode = 1; // set field in IR.

Some additional examples of declaring structure and unions are:

typedef struct ({

bit [7:0] opcode;

bit [23:0] addr;
} instruction; // named structure type
instruction IR; // define variable

typedef union { int i; shortreal f; } num; // named union type
num n;
n.f = 0.0; // set n in floating point format

typedef struct {

bit isfloat;

union { int i; shortreal f; } n; // anonymous type
} tagged; // named structure

tagged al9:0]; // array of structures
A structure can be assigned as awhole, and passed to or from a function or task as awhole.
Section 2.8 discusses assigning initia values to a structure.

A packed structure consists of bit fields, which are packed together in memory without gaps. This means that
they are easily converted to and from bit vectors. An unpacked structure has an implementation-dependent
packing, normally matching the C compiler.

Like a packed array, a packed structure can be used as a whole with arithmetic and logical operators. The first
member specified is the most significant and subsequent members follow in decreasing significance. The
structures are declared using the packed keyword, which can be followed by the signed or unsigned key-
words, according to the desired arithmetic behavior. The default is unsigned:

struct packed signed ({
int a;
shortint b;
byte c;
bit [7:0] d;
} packl; // signed, 2-state

struct packed unsigned ({
time a;
integer b;
logic [31:0] c;
} pack2; // unsigned, 4-state

If any data type within a packed structure is 4-state, the whole structure is treated as 4-state. Any 2-state mem-
bers are converted asiif cast. One or more elements of the packed array can be selected, assuming an [n-1:0]
numbering:

packl [15:8] // ¢

Non-integer datatypes, such asreal and shortreal, are not alowed in packed structures or unions. Nor are
unpacked arrays.

A packed structure can be used with a typedef£.
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typedef struct packed { // default unsigned
bit [3:0] GFC;
bit [7:0] VPI;
bit [11:0] VCI;
bit CLP;
bit [3:0] PT ;
bit [7:0] HEC;
bit [47:0] [7:0] Payload;
bit [2:0] filler;
} s _atmcell;

A packed union shall contain members that must be packed structures, or packed arrays or integer data types
al of the same size (in contrast to an unpacked union, where the members can be different sizes). This ensures
that you can read back a union member that was written as another member. A packed union can also be used
as awhole with arithmetic and logical operators, and its behavior is determined by the signed or unsigned key-
word, the latter being the default. If apacked union contains a 2-state member and a 4-state member, the entire
union is4 state. Thereis animplicit conversion from 4-state to 2-state when reading and from 2-state to 4-state
when writing the 2-state bit member.

For example, aunion can be accessible with different access widths:

typedef union packed { // default unsigned
s_atmcell acell;
bit [423:0] bit_slice;
bit [52:0] [7:0] byte slice;

} u_atmcell;

u_atmcell ul;

byte b; bit [3:0] nib;

b = ul.bit_slice[415:408]; // same as b = ul.byte slicel[51];
nib = ul.bit_slice [423:420]; // same as nib = ul.acell.GFC;

Note that writing one member and reading another isindependent of the byte ordering of the machine, unlikea
normal union of normal structures, which are C-compatible and have members in ascending address order.

3.12 Class

A classisacollection of dataand a set of subroutines that operate on that data. The datain aclassisreferred to
as properties, and its subroutines are called methods. The properties and methods, taken together, define the
contents and capabilities of a class instance or object.

class declaration ::= /I from Annex A.1.3
{ attribute_instance } [ virtual ] class| lifetime] class_identifier [ parameter_port_list ]
[ extendsclass identifier ] ; [ timeunits_declaration] { class item}
endclass| : class _identifier]

Syntax 3-5—Classes (excerpt from Annex A)

The object-oriented class extension allows objects to be created and destroyed dynamically. Class instances, or
objects, can be passed around via object handles, which add a safe-pointer capability to the language. An
object can be declared as an argument of type input, output, inout, Or, ref. In each case, the argument
copied is the object handle, not the contents of the object.

A Classisdeclared using the class...endclass keywords. For example:

class Packet

Copyright 2003 Accellera. All rights reserved. 21



SystemVerilog 3.1/draft 6

int address; // Properties are address, data,

bit [63:0] data;
shortint crc;
Packet next; // Handle to another Packet

function new() ; // Methods are send and new
function bit send() ;
endclass : Packet

Accellera
Extensions to Verilog-2001

and crc

Any data type can be declared as a class member. Classes are discussed in more detail in Section 11.

3.13 Singular type

A singular type includes packed arrays (and structures) and all other data types except unpacked structures,

unpacked arrays, and chandles.

3.14 Casting

constant_primary ::=

| casting_type’ ( constant_expression )
| casting_type’ constant_concatenation
| casting_type’ constant_multiple_concatenation

primary ::=

| casting_type’ ( expression)
| void * (function_call )
| casting_type’ concatenation
| casting_type’ multiple_concatenation
casting_type ::= simple_type | number | signing
simple_type ::= integer_type | non_integer_type | type_identifier

/I from Annex A.8.4

/I from Annex A.2.2.1

Syntax 3-6—casting (excerpt from Annex A)

A data type can be changed by using a cast ( * ) operation. The expression to be cast must be enclosed in

parenthesis or within concatenation or replication braces.

int’ (2.0 * 3.0)
shortint’ {8'hFA, 8’ hCE}

A decimal number as a data type means a number of bits.
17 (x - 2)

The signedness can a so be changed.
signed’ (x)

A user-defined type can be used.

mytype’ (foo)

When casting to a predefined type, the prefix of the cast must be the predefined type keyword. When casting to
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a user-defined type, the prefix of the cast must be the user-defined type identifier.
When ashortreal isconverted to an int or to 32 bits, its value isrounded, asin Verilog. Therefore, the con-
version can lose information. To convert a shortreal to its underlying bit representation without a loss of
information, use $shortrealtobits asdefined in Section 22.3. To convert from the bit representation of a
shortreal value into ashortreal, U $bitstoshortreal asdefined in Section 22.3.
Structures can be converted to bits preserving the bit pattern, which means they can be converted back to the
same value without any loss of information. The following example demonstrates this conversion. In the
example, the sbits attribute gives the size of a structure in bits (the $bits system function is discussed in
Section 22.2:
typedef struct {
bit isfloat;
union { int i; shortreal f; } n; // anonymous type
} tagged; // named structure
typedef bit [$bits(tagged) - 1 : 0] tagbits; // tagged defined above
tagged a [7:0]; // unpacked array of structures

tagbits t = tagbits’ (al3]); // convert structure to array of bits
al[4] = tagged’ (t); // convert array of bits back to structure

Notethat thebit datatypeloses X values. If these are to be preserved, the 1o0gic type should be used instead.
The size of aunion in bitsis the size of itslargest member. The size of alogic in bitsis 1.

For compatibility, the Verilog functions s$itor, $rtoi, $bitstoreal, $realtobits, S$signed,
$unsigned can also be used.

3.15 $cast dynamic casting

SystemVerilog provides the $cast system task to assign values to variables that might not ordinarily be valid
because of differing datatype. scast can be called as either atask or afunction.

The syntax for $cast is.
function int S$Scast( singular dest var, singular source exp );
or
task S$cast( singular dest var, singular source exp );
The dest_var is the variable to which the assignment is made.
The source_exp isthe expression that is to be assigned to the destination variable.
Useof scast aseither atask or afunction determines how invalid assignments are handled.

When called asatask, $cast attempts to assign the source expression to the destination variable. If the assign-
ment isinvalid, aruntime error occurs and the destination variable is |eft unchanged.

When called as a function, $cast attempts to assign the source expression to the destination variable, and
returns 1 if the cast is legal. If the cast fails, the function does not make the assignment and returns 0. When
called as afunction, no runtime error occurs, and the destination variable is left unchanged.

It'simportant to note that scast performs arun-time check. No type checking is done by the compiler, except
to check that the destination variable and source expression are singulars.
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For example:

typedef enum { red, green, blue, yellow, white, black } Colors;
Colors col;
Scast( col, 2 + 3 );

This example assigns the expression (5 => black) to the enumerated type. Without $cast, this type of
assignment isillegal.

The following example shows how to use the $cast to check if an assignment will succeed:

if (! $cast( col, 2 + 8 ) ) // 10: invalid cast
$display( "Error in cast" );

Alternatively, the preceding examples can be cast using a static SystemVerilog cast operation: For example:
col = Colors’ (2 + 3);

However, thisis a compile-time cast, i.e, a coercion that always succeeds at run-time, and does not provide for
error checking or warn if the expression lies outside the enumeration values.

Allowing both types of casts gives full control to the user. If users know that it is safe to assign certain expres-
sions to an enumerated variable, the faster static compile-time cast can be used. If users need to check if the
expression lies within the enumeration values, it is not necessary to write alengthy switch statement manually,
the compiler automatically provides that functionality viathe scast function. By alowing both types of casts,
users can control the time/safety trade-offs.

Note: scast iSsSimilar to the dynamic_cast function available in C++, but, $cast alows usersto check if
the operation will succeed, whereas dynamic_cast aways raises a C++ exception.
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Section 4
Arrays

4.1 Introduction (informative)

An array isacollection of variables, al of the same type, and accessed using the same name plus one or more
indices.

In C, arrays are indexed from O by integers, or converted to pointers. Although the whole array can be initial-
ized, each element must be read or written separately in procedural statements.

In Verilog-2001, arrays are indexed from left-bound to right-bound. If they are vectors, they can be assigned as
asingle unit, but not if they are arrays. Verilog-2001 allows multiple dimensions.

In Verilog-2001, all datatypes can be declared as arrays. The reg, wire and all other net types can also have a
vector width declared. A dimension declared before the object name is referred to as the “ vector width” dimen-
sion. The dimensions declared after the object name are referred to as the “array” dimensions.

reg [7:0] rl [1:256]; // [7:0] is the vector width, [1:256] is the array size

SystemVerilog enhances array declarations in several ways. SystemVerilog supports fixed-size arrays,
dynamic arrays, and associative arrays. Fixed-size arrays can be multi-dimensional and have fixed storage
allocated for all the elements of the array. Dynamic arrays also alocate storage for al the elements of the array,
but the array size can be changed dynamically. Dynamic and associative arrays are one-dimensional. Fixed-
size and dynamic arrays are indexed using integer expressions, while associative arrays can be indexed using
arbitrary datatypes. Associative arrays do not have any storage allocated until it is needed, which makes them
ideal for dealing with sparse data.

4.2 Packed and unpacked arrays

SystemVerilog uses the term “packed array” to refer to the dimensions declared before the object name (what
Verilog-2001 refers to as the vector width). The term “unpacked array” is used to refer to the dimensions
declared after the object name.

bit [7:0] c1; // packed array
real u [7:0]; // unpacked array

A packed array is a mechanism for subdividing a vector into subfields which can be conveniently accessed as
array elements. Consequently, a packed array is guaranteed to be represented as a contiguous set of bits. An
unpacked array may or may not be so represented. A packed array differsfrom an unpacked array in that, when
apacked array appears asaprimary, it istreated as a single vector.

If apacked array is declared as signed, then the array viewed as asingle vector shall be signed. A part-select of
a packed array shall be unsigned.

Packed arrays allow arbitrary length integer types, so a 48 bit integer can be made up of 48 bits. These integers
can then be used for 48 bit arithmetic. The maximum size of a packed array can be limited, but shall be at least
65536 (216) bits.

Packed arrays can only be made of the single bit types (bit, 1ogic, reg, wire, and the other net types) and
recursively other packed arrays and packed structures.

Integer types with predefined widths cannot have packed array dimensions declared. These types are: byte,
shortint, int, longint, and integer. An integer type with a predefined width can be treated as a single
dimension packed array. The packed dimensions of these integer types shall be numbered down to 0, such that
the right-most index is 0.
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byte c2; // same as bit [7:0] c2;
integer il; // same as logic signed [31:0] i1;

Unpacked arrays can be made of any type. SystemVerilog enhances fixed-size unpacked arraysin that in addi-
tion to all other variable types, unpacked arrays can also be made of object handles (see Section 11.4) and
events (see Section 13.5).

SystemVerilog accepts a single number, as an aternative to a range, to specify the size of an unpacked array,
likeC. Thatis, [size] becomesthesameas [size-1:0]. For example:

int Array([8] [32]; isthesameas. int Array[7:0] [31:0];

The following operations can be performed on all arrays, packed or unpacked. The examples provided with
these rules assume that A and B are arrays of the same shape and type.

— Reading and writing the array, e.g., 2 = B

— Reading and writing adlice of thearray, eg., A[i:3] = B[i:3]

— Reading and writing avariable slice of the array, €9., A[x+:c] = Bly+:c]
— Reading and writing an element of the array, e9.,A[i] = B[i]

— Equality operations on the array or dlice of the array, e.g. A==B, A[i:j] != B[i:]]

The following operations can be performed on packed arrays, but not on unpacked arrays. The examples pro-
vided with these rules assume that A is an array.
— Assignment from an integer, e.g.,A = 8'11111111;

— Treatment as an integer in an expression, e.g., (A + 3)

When assigning to an unpacked array, the source and target must be arrays with the same number of unpacked
dimensions, and the length of each dimension must be the same. Assignment to an unpacked array is done by
assigning each element of the source unpacked array to the corresponding element of the target unpacked
array. Note that an element of an unpacked array can be a packed array.

For the purposes of assignment, a packed array is treated as a vector. Any vector expression can be assigned to

any packed array. The packed array bounds of the target packed array do not affect the assignment. A packed
array cannot be assigned to an unpacked array.

4.3 Multiple dimensions

Like Verilog memories, the dimensions following the type set the packed size. The dimensions following the
instance set the unpacked size.

bit [3:0] [7:0] joe [1:10]; // 10 entries of 4 bytes (packed into 32 bits)
can be used asfollows:

joe[9] = joel8] + 1; // 4 byte add
joe[7]1 [3:2] = joel6][1:0]; // 2 byte copy

Note that the dimensions declared following the type and before the name ([3:0] [7: 0] inthe preceding dec-
laration) vary more rapidly than the dimensions following the name ([1:10] in the preceding declaration).
When used, thefirst dimensions ([3:01) follow the second dimensions ([1:101).

In alist of dimensions, the right-most one varies most rapidly, as in C. However a packed dimension varies
more rapidly than an unpacked one.

bit [1:10] fool [1:5]; // 1 to 10 varies most rapidly; compatible with
Verilog-2001 arrays
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bit foo2 [1:5] [1:10]; // 1 to 10 varies most rapidly, compatible with C
bit [1:5] [1:10] foo3; // 1 to 10 varies most rapidly

bit [1:5] [1:6] foo4 [1:7] [1:8]; // 1 to 6 varies most rapidly, followed by
1 to 5, then 1 to 8 and then 1 to 7

Multiple packed dimensions can aso be defined in stages with typedef.

typedef bit [1:5] bsix;
bsix [1:10] foo5; // 1 to 5 varies most rapidly

Multiple unpacked dimensions can a so be defined in stages with typedef.

typedef bsix mem type [0:3]; // array of four ’'bsix’ elements
mem_type bar [0:7]; // array of eight ’'mem_type’ elements

When the array is used with a smaller number of dimensions, these have to be the slowest varying ones.

bit [9:0] foo6;
foo5 = fooll[2]; // a 10 bit quantity.

Asin Verilog-2001, a comma-separated list of array declarations can be made. All arraysin the list shall have
the same data type and the same packed array dimensions.

bit [7:0] [31:0] foo7 [1:5] [1:10], foo8 [0:255]; // two arrays declared

If an index expression is of a 4-state type, and the array is of a 4-state type, an x or Z in the index expression
shall cause a read to return x, and a write to issue a run-time warning. If an index expression is of a 4-state
type, but the array is of a 2-state type, an x or Z in the index expression shall generate a run-time warning and
be treated as o. If an index expression is out of bounds, a run-time warning can be generated.

Out of range index values shal be illega for both reading from and writing to an array of 2-state variables,

such as int. Theresult of an out of range index value is indeterminate. Implementations shall generate awarn-
ing if an out of range index occurs for aread or write operation.

4.4 Indexing and slicing of arrays

An expression can select part of apacked array, or any integer type, which is assumed to be numbered down to
0.

SystemVerilog uses the term “part select” to refer to a selection of one or more contiguous bits of a single
dimension packed array. Thisis consistent with the usage of the term “part select” in Verilog.

reg [63:0] data;
reg [7:0] byte2;
byte2 = data([23:16]; // an 8-bit part select from data

SystemVerilog uses the term “dlice” to refer to a selection of one or more contiguous el ements of an array. Ver-
ilog only permits a single element of an array to be selected, and does not have aterm for this selection.

An single element of a packed or unpacked array can be selected using an indexed name.
bit [3:0] [7:0] 3; // j is a packed array
byte k;

k = jl2]; // select a single 8-bit element from j

One or more contiguous elements can be selected using a slice name. A slice name of a packed array is a
packed array. A slice name of an unpacked array is an unpacked array.
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bit busA [7:0] [31:0] ; // unpacked array of 8 32-bit vectors
int busB [1:0]; // unpacked array of 2 integers
busB = busA[7:6]; // select a slice from busA

The size of the part select or slice must be constant, but the position can be variable. The syntax of Verilog-
2001 is used.

int i = bitvec[j +: kI]; // k must be constant.
int alx:y], bly:zl], e;
a = {blc -: dl, e}; // d must be constant

Slices of an array can only apply to one dimension, but other dimensions can have single index valuesin an
expression.

4.5 Array querying functions

SystemVerilog provides new system functions to return information about an array. These are: $left,
$right, $low, $high, $increment, $length, and $dimensions. These functions are described in
Section 22.4.

4.6 Dynamic arrays

Dynamic arrays are one-dimensional arrays whose size can be set or changed at runtime. The space for a
dynamic array doesn’t exist until the array is explicitly created at runtime.

The syntax to declare adynamic array is:
data_type array name [];

where data_type isthe datatype of the array elements. Dynamic arrays support the same types as fixed-size
arrays.

For example:
bit [3:0] nibblel]; // Dynamic array of 4-bit vectors
integer mem|[] ; // Dynamic array of integers

Thenew [] operator isused to set or change the size of the array.

The size () built-in method returns the current size of the array.

The delete () built-in method clears al the elementsyielding an empty array (zero size).
4.6.1 new[]

The built-in function new allocates the storage and initializes the newly allocated array elements either to their
default initial value or to the values provided by the optional argument.

The prototype of the new functionis:
array_identifier = newl[size] [(src_array)l;

size!

The number of elementsin the array. Must be a non-negative integral expression.

src_array.
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Optional. The name of an array with which to initialize the new array. If src_array isnot specified, the
elements of array name are initialized to their default value. src_array must be a dynamic array of
the same data type as array name, but it need not have the same size. If the size of src_array isless
than size, the extra elements of array name shal be initialized to their default value. If the size of
src_array iSgreater than size, the additional elements of src_array shall be ignored.

This argument is useful when growing or shrinking an existing array. In this situation, src_array is

array name, SO the previous values of the array elements are preserved. For example:

integer addrl(]; // Declare the dynamic array.
addr = new[100]; // Create a 100-element array.

// Double the array size, preserving previous values.
addr = new([200] (addr) ;

The new operator follows the SystemVerilog precedence rules. Since both the sguare brackets [1 and the
parenthesis () have the same precedence, the arguments to this operator are evaluated left to right: size first,

and src_array second.
4.6.2 size()
The prototype for the size () methodis:
function int size();
The size () method returns the current size of adynamic array, or zero if the array has not been created.

int j = addr.size;
addr = new[ addr.size() * 4 ] (addr); // quadruple addr array

Note: The size method isequivalent to $1length ( addr, 1 ).
4.6.3 delete()
The prototype for the delete () methodis:

function void delete() ;

Thedelete () method empties the array, resulting in azero-sized array.

int ab [] = new[ N ]; // create a temporary array of size N
// use ab

ab.delete; // delete the array contents
Sdisplay( "%d", ab.size ); // prints 0

4.7 Array assignment

Assigning to a fixed-size unpacked array requires that the source and the target both be arrays with the same
number of unpacked dimensions, and the length of each dimension be the same. Assignment is done by assign-
ing each element of the source array to the corresponding element of the target array, which requires that the
source and target arrays be of compatible types. Compatible types are types that are assignment compati-

ble.Assigning fixed-size unpacked arrays of unequal size to one another shall result in atype check error.

int A[10:1]; // fixed-size array of 10 elements
int B[0:9]; // fixed-size array of 10 elements
int C[24:1]; // fixed-size array of 24 elements
A = B; // ok. Compatible type and same size
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A = C; // type check error: different sizes

An array of wires can be assigned to an array of variables having the same number of unpacked dimensions
and the same length for each of those dimensions, and vice-versa.

wire [31:0] W [9:0];
assign W = A;
initial #10 B = W;

A dynamic array can be assigned to a one-dimensional fixed-size array of a compatible type, if the size of the
dynamic array is the same as the length of the fixed-size array dimension. Unlike assigning with a fixed-size
array, this operation requires a run-time check that can result in an error.

int A[100:1]; // fixed-size array of 100 elements

int B[] = new[100]; // dynamic array of 100 elements

int C[] = new[8]; // dynamic array of 8 elements

A = B; // OK. Compatible type and same size
A = C; // type check error: different sizes

A dynamic array or a one-dimensional fixed-size array can be assigned to a dynamic array of a compatible
type. In this case, the assignment creates a new dynamic array with a size equal to the length of the fixed-size
array. For example:

int A[100:17; // fixed-size array of 100 elements
int B[] ; // empty dynamic array

int C[] = new[8]; // dynamic array of size 8

B = A; // ok. B has 100 elements

B = C; // ok. B has 8 elements

The last statement above is equivalent to:
B = new[ C.size ] (C);

Similarly, the source of an assignment can be a complex expression involving array slices or concatenations.
For example:

String d[l5] = { nan’ llbll, llcll’ ndn’ ngn },.

string pl];
p = { d[1:3], "hello", d[4:5] };

The preceding exampl e creates the dynamic array p with contents: “a”, “b”, “c”, “hello”, “d", “e

4.8 Arrays as arguments

Arrays can be passed as arguments to tasks or functions. The rulesthat govern array argument passing by value
are the same as for array assignment (see Section 10.5) are the same as for array assignment. When an array
argument is passed by value, a copy of the array is passed to the called task or function. This is true for al
array types:. fixed-size, dynamic, or associative.

Passing fixed-size arrays as arguments to subroutines requires that the actual argument and the formal argu-
ment in the function declaration be of the compatible type and that all dimensions be of the same size.

For example, the declaration:

task fun(int a[3:1][3:1]);
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declarestask fun that takes one argument, atwo dimensional array with each dimension of sizethree. A call to
fun must pass atwo dimensional array and with the same dimension size 3 for al the dimensions. For exam-
ple, given the above description for fun, consider the following actuals:

int b[3:1][3:1]; //OK: same type, dimension, and size

int b[1:3][0:2]; //OK: same type, dimension, & size (different ranges)
reg b[3:1][3:1]; //error: incompatible type

int b[3:1]; //error: incompatible number of dimensions

int b[3:1]1[4:1]1; //error: incompatible size (3 vs. 4)

A subroutine that accepts a one-dimensional fixed-size array can also be passed a dynamic array of a compati-
ble type of the same size.

For example, the declaration:
task bar( string arr[4:1] );

declares atask that accepts one argument, an array of 4 strings. This task can accept the following actual argu-
ments:

string b[4:1]; //OK: same type and size
string b[5:2]; //OK: same type and size (different range)
string b[] = new[4]; //OK: same type and size, requires run-time check

A subroutine that accepts a dynamic array can be passed a dynamic array of a compatible type or a one-dimen-
sional fixed-size array of a compatible type

For example, the declaration:
task foo( string arr([] );
declares a task that accepts one argument, a dynamic array of 4 strings. This task can accept any one-dimen-

sional array of strings or any dynamic array of strings.

4.9 Associative arrays

Dynamic arrays are useful for dealing with contiguous collections of variables whose number changes dynam-
ically. When the size of the collection is unknown or the data space is sparse, an associative array is a better
option. Associative arrays do not have any storage alocated until it is used, and the index expression is not
restricted to integral expressions, but can be of any type.

An associative array implements alookup table of the elements of its declared type. The datatype to be used as
an index serves as the lookup key, and imposes an ordering.

The syntax to declare an associative array is:
data_type array id [ index type ];

where:
— data_type isthe data type of the array elements. Can be any type allowed for fixed-size arrays.
— array_id isthe name of the array being declared.

— index_type is the data-type to be used as an index, or *. If * is specified, then the array is indexed by any
integral expression of arbitrary size. An index type restricts the indexing expressions to a particular type.
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Examples of associative array declarations are:

integer i _arrayl[*]; // associative array of integer (unspecified
// index)
bit [20:0] array blstring]; // associative array of 21-bit vector, indexed

// by string

event ev_array[myClass]; // associative array of event indexed by class
// wmyClass

Array elements in associative arrays are alocated dynamically; an entry is created the first time it is written.
The associative array maintains the entries that have been assigned values and their relative order according to
theindex datatype.

4.9.1 Wildcard index type

Example: int array name [*];

Associative arrays that specify awildcard index type have the following properties:

— The array can be indexed by any integral data type. Since the indices can be of different sizes, the same
numerical value can have multiple representations, each of a different size. SystemVerilog resolves this
ambiguity by detecting the number of leading zeros and computing a unique length and representation for
every value.

— Non-integral index types areillegal and result in a type check error.

— A 4-state Index containing X or Z isinvalid.

— Indices are unsigned.

— Indexing expressions are self-determined; signed indices are not sign extended.
— A string literal index is auto-cast to a bit-vector of equivalent size.

— Theordering is numerical (smallest to largest).

4.9.2 String index

Example: int array name [ string ];

Associative arrays that specify a string index have the following properties:

— Indices can be strings or string literals of any length. Other types areillegal and shall result in atype check
error.

— Anempty string “” index isvalid.

— Theordering is lexicographical (lesser to greater).
4.9.3 Class index
Example: int array name [ some Class ];

Associative arrays that specify a class index have the following properties:

— Indices can be objects of that particular type or derived from that type. Any other typeisillegal and shall
result in atype check error.

— A null index isinvalid.

— The ordering is deterministic but arbitrary.
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4.9.4 Integer (or int) index

Example: int array name [ integer ];

Associative arrays that specify an integer index have the following properties:
— Indices can be any integral expression.

— Indices are signed.

— A 4-gtate index containing X or Z isinvalid.

— Indices smaller than integer are sign extended to 32 bits.

— Indices larger than integer are truncated to 32 hits.

— The ordering is signed numerical.

4.9.5 Signed packed array

Example: typedef bit signed [4:1] Nibble;
int array name [ Nibble ];

Associative arrays that specify a signed packed array index have the following properties:
— Indices can be any integral expression.

— Indices are signed.

— Indices smaller than the size of the index type are sign extended.

— Indices larger than the size of the index type are truncated to the size of the index type.

— The ordering is signed numerical.

4.9.6 Unsigned packed array or packed struct

Example: typedef bit [4:1] Nibble;
int array name [ Nibble ];

Associative arrays that specify an unsigned packed array index have the following properties:
— Indices can be any integral expression.

— Indices are unsigned.

— A 4-gtate Index containing X or Z isinvalid.

— Indices smaller than the size of the index type are zero filled.

— Indices larger than the size of the index type are truncated to the size of the index type.

— The ordering is numerical.
If aninvalid index (i.e., 4-state expression has X's) is used during a read operation or an attempt is made to

read a non-existent entry then awarning isissued and the default initial value for the array type is returned, as
shown in the table below:

Table 4-1: Value read from a nonexistent associative array entry

Typeof Array Value Read

4-state integral type 'X
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Table 4-1: Value read from a nonexistent associative array entry

2-state integral type 0

enumeration first element in the enumeration
string “r

class null

event null

If aninvalid index is used during awrite operation, the write isignored and awarning is issued.

4.10 Associative array methods

In addition to the indexing operators, several built-in methods are provided that allow users to analyze and
manipulate associative arrays, as well asiterate over itsindices or keys.

4.10.1 num()
The syntax for the num () method is:
function int num() ;
Thenum () method returns the number of entriesin the associative array. If the array is empty, it returns O.

int imem[*];

imem[ 2'b3 ] = 1;

imem[ 16'hffff ] = 2;

imem[ 4b’1000 ] = 3;

$display( "%0d entries\n", imem.num ); // prints "3 entries"

4.10.2 delete()
The syntax for the delete () methodis:
function void delete( [input index] );
Where index is an optional index of the appropriate type for the array in question.

If the index is specified, then the delete () method removes the entry at the specified index. If the entry to be
deleted does not exist, the method issues no warning.

If theindex is not specified, then the delete () method removesall the elementsin the array.

int map[ string ];

map[ "hello" ] = 1;

map[ "sad" ] = 2;

map[ "world" ] = 3;

map.delete( "sad" ); // remove entry whose index is "sad" from "map"
map.delete; // remove all entries from the associative array "map"

4.10.3 exists()
The syntax for the exists () methodis:

function int exists( input index );
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Where index is an index of the appropriate type for the array in question.

Theexists () function checksif an element exists at the specified index within the given array. It returns 1 if
the element exists, otherwise it returns 0.

if ( map.exists( "hello" ))

map[ "hello" ] += 1;
else
map[ "hello" ] = 0;

4.10.4 first()
The syntax for the first () methodis:
function int first( ref index );
Where index is an index of the appropriate type for the array in question.

The £irst () method assigns to the given index variable the value of the first (smallest) index in the associa-
tive array. It returns O if the array is empty, and 1 otherwise.

string s;
if ( map.first( s ) )
$display( "First entry is : map[ %$s ] = %0d\n", s, mapl[s] );
4.10.5 last()

The syntax for the 1ast () method is:
function int last( ref index );
Where index is an index of the appropriate type for the array in question.

The 1ast () method assigns to the given index variable the value of the last (largest) index in the associative
array. It returns O if the array is empty, and 1 otherwise.

string s;
if ( map.last( s ) )
$display( "Last entry is : map[ %s ] = %0d\n", s, mapls] );

4.10.6 next()
The syntax for the next () method is:

function int next ( ref index ) ;
Where index is an index of the appropriate type for the array in question.
The next () method finds the entry whose index is greater than the given index. If there is a next entry, the
index variable is assigned the index of the next entry, and the function returns 1. Otherwise, index is
unchanged, and the function returns 0.

string s;

if ( map.first( s ) )

do

$display( "%s : %d\n", s, map[ s ] );
while ( map.next( s ) );
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4.10.7 prev()
The syntax for the prev () method is:
function int prev( ref index );
Where index is an index of the appropriate type for the array in question.

The prev () function finds the entry whose index is smaller than the given index. If thereis a previous entry,
the index variable is assigned the index of the previous entry, and the function returns 1. Otherwise, the index
is unchanged, and the function returns 0.

string s;
if ( map.last( s ) )
do
$display( "%s : %d\n", s, mapl[ s 1 );
while ( map.prev( s ) );

If the argument passed to any of the four associative array traversal methods first, last, next, and prev is
smaller than the size of the corresponding index, then the function returns—1 and shall copy only as much data
as can fit into the argument. For example:

string aal*];

byte ix;
int status;
aal 1000 ] = "a";

status = aa.first( ix );
// status is -1
// ix is 232 (least significant 8 bits of 1000)

4.11 Associative array assignment

Associative arrays can be assigned only to another associative array of a compatible type and with the same
index type. Other types of arrays cannot be assigned to an associative array, nor can associative arrays be
assigned to other types of arrays, whether fixed-size or dynamic.

Assigning an associative array to another associative array causes the target array to be cleared of any existing
entries, and then each entry in the source array is copied into the target array.

4.12 Associative array arguments

Associative arrays can be passed as arguments only to associative arrays of a compatible type and with the
same index type. Other types of arrays, whether fixed-size or dynamic, cannot be passed to subroutines that
accept an associative array as an argument. Likewise, associative arrays cannot be passed to subroutines that
accept other types of arrays.

Passing an associative array by value causes alocal copy of the associative array to be created.
4.13 Associative array literals

Associative array literals use the {index:value} Syntax with an optional default index. Like all other arrays,
an associative array can be written one entry at atime, or the whole array contents can be replaced using an
array literal.
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constant_primary ::= [/ from Annex A.8.1
concatenation ::=

| { array_member_label : expression { , array_member_label : expression} }
array_member_label ::=
default
| type_identifier
| constant_expression

Syntax 4-7—Associative array literal syntax (excerpt from Annex A)

For example:

// an associative array of strings indexed by 2-state integers,
// default is "foo".
string words [int] = {default: "foo"};

// an associative array of 4-state integers indexed by strings, default is -1.
integer table [string] = {"Peter":20, "Paul":22, "Mary":23, default:-1 };

If adefault value is specified, then reading a non-existent element shall yield the specified default value. Oth-
erwise, the default initial valueis as described in Table 4-1 shall be returned.
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Section 5
Data Declarations

5.1 Introduction (informative)

There are several forms of data in SystemVerilog: literals (see Section 2), parameters (see Section 20), con-
stants, variables, nets, and attributes (see Section 6)

C constants are either literals, macros or enumerations. Thereisaso aconst, keyword but it is not enforced in
C.

Verilog 2001 constants are literals, parameters, local params and specparams. Verilog 2001 also has variables
and nets. Variables must be written by procedura statements, and nets must be written by continuous assign-
ments or ports.

SystemVerilog extends the functionality of variables by allowing them to either be written by procedural state-
ments or driven by a single continuous assignment, similar to a wire. Since the keyword reg no longer
describes the users intent in many cases, the keyword 1ogic is added as a more accurate description that is
equivalent to reg. Verilog-2001 has already deprecated the use of the term register in favor of variable.

SystemVerilog follows Verilog by requiring data to be declared before it is used, apart from implicit nets. The
rules for implicit nets are the same as in Verilog-2001.

A variable can be static (storage allocated on instantiation and never de-allocated) or automatic (stack storage
alocated on entry to atask, function or named block and de-allocated on exit). C has the keywords static
and auto. SystemVerilog follows Verilog in respect of the static default storage class, with automatic tasks and
functions, but allows static to override a default of automatic for a particular variable in such tasks and
functions.

5.2 Data declaration syntax

data_declaration ::= /I from Annex A.2.1.3
variable declaration
| constant_declaration
| type_declaration
block variable declaration ::=
[ lifetime] data_type list_of variable identifiers;
| lifetime data_type list_of variable decl_assignments ;
variable_declaration ::=
[ lifetime] data_type list_of_variable identifiers_or_assignments;
lifetime ::= static | automatic

Syntax 5-1—Data declaration syntax (excerpt from Annex A)

5.3 Constants

Constants are named data items which never change. There are three kinds of constants, declared with the key-
Words localparam, specparam and const, respectively. All three can beinitialized with aliteral.

localparam byte colonl = ":" ;

specparam int delay = 10 ; // specparams are used for specify blocks
const logic flag = 1 ;
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A parameter or local parameter can only be set to an expression of literals, parameters or local parameters,
genvars, or a constant function of these. Hierarchical names are not allowed.

A specparam can also be set to an expression containing one or more specparams.
A constant declared with the const keyword, can only be set to an expression of literals, parameters, local
parameters, genvars, a constant function of these, or other constants. The parameters, local parameters or con-
stant functions can have hierarchical names. This is because the static constants are calculated after elabora-
tion.

const logic option = a.b.c ;
A constant expression contains literals and other named constants.
An instance of aclass (an object handle) can also be declared with the const keyword.

const class name object = new(5,3);

This means that the object acts like a variable that cannot be written. The arguments to the new method must
be constant expressions.

SystemVerilog enhancements to parameter constant declarations are presented in Section 20. SystemVerilog
does not change 1ocalparam and specparam constants declarations. A const form of constant differs from
a localparam constant in that the localparam must be set during elaboration, whereas a const can be set
during simulation, such as in an automatic task.

5.4 Variables

A variable declaration consists of a datatype followed by one or more instances.

shortint s1, s2[0:9];
A variable can be declared with an initializer, which must be a constant expression.

int i = 0;
In Verilog-2001, an initialization value specified as part of the declaration is executed as if the assignment
were made from aninitial block, after simulation has started. Therefore, theinitialization can cause an event on
that variable at simulation time zero.
In SystemVerilog, setting theinitial value of astatic variable as part of the variable declaration (including static
class members) shall occur before any initial or always blocks are started, and so does not generate an
event. If an event is needed, an initial block should be used to assign theinitial values.
Initial valuesin SystemVerilog are not constrained to simple constants; they can include run-time expressions,
including dynamic memory allocation. For example, a static class handle or a mailbox can be created and ini-
tialized by calling its new method (see Annex 11.4), or static variables can be initialized to random values by
calling the surandom System task. This requires a special pre-initial pass at run-time.

The following table contains the default values for SystemVerilog variables.

Table 5-1: Default values

Type Default Initial value

4 state integral ‘X

2 state integral ‘0
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Table 5-1: Default values

Type Default Initial value
real, shortreal 0.0
Enumeration First value in the enumeration
string "1 (empty string)
event New event
class null
chandle (Opaque handle) null

5.5 Scope and lifetime

Any data declared outside a module, interface, task, or function, is global in scope (can be used anywhere after
its declaration) and has a static lifetime (exists for the whole elaboration and simulation time).

SystemVerilog data declared inside a module or interface but outside a task, process or function islocal in
scope and static in lifetime (exists for the lifetime of the module or interface). Thisis roughly equivalent to C
static data declared outside afunction, which islocal to afile.

Data declared in an automatic task, function or block hasthe lifetime of the call or activation and alocal scope.
Thisis roughly equivalent to a C automatic variable.

Data declared in a static task, function or block defaults to a static lifetime and alocal scope. If aninitializer is
used, the keyword static must be specified to make the code clearer.

Note that in SystemVerilog, data can be declared in unnamed blocks as well as in named blocks. This datais
visible to the unnamed block and any nested blocks below it. Hierarchical references cannot be used to access
this data by name.

Verilog-2001 alows tasks and functions to be declared as automatic, making al storage within the task or
function automatic. SystemVerilog allows specific data within a static task or function to be explicitly declared
asautomatic. Datadeclared as automatic has the lifetime of the call or block, and isinitialized on each entry
to the call or block.

SystemVerilog also allows data to be explicitly declared as static. Data declared to be static in an auto-
matic task, function or in a process has a static lifetime and a scope local to the block. Thisislike C static data
declared within afunction.

module msl;
int sto0; // static
initial begin
int stl; //static
static int st2; //static
automatic int autol; //automatic
end
task automatic tl1();
int auto2; //automatic
static int st3; //static
automatic int auto3; //automatic
endtask
endmodule

Note that automatic or dynamic variables cannot be used to trigger an event expression or be written with a
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nonblocking assignment. Automatic variables and dynamic constructs—aobjects handles, dynamic arrays, asso-
ciative arrays, strings, and event variables—are limited to the procedural context.

See also Section 10 on tasks and functions.

5.6 Nets, regs, and logic

Verilog-2001 states that a net can be written by one or more continuous assignments, primitive outputs or
through module ports. The resultant value of multiple drivers is determined by the resolution function of the
net type. A net cannot be procedurally assigned. If a net on one side of a port is driven by a variable on the
other side, a continuous assignment is implied. A force statement can override the value of a net. When
released, it returnsto resolved value.

Verilog-2001 also states that one or more procedural statements can write to variables, including procedural
continuous assignments. The last write determines the value. A variable cannot be continuously assigned. The
force statement overrides the procedural assign statement, which in turn overrides the normal assignments. A
variable cannot be written through a port; it must go through an implicit continuous assignment to a net.

In SystemVerilog, all variables can now be written either by one continuous assignment, or by one or more
procedura statements, including procedural continuous assignments. It shall be an error to have multiple con-
tinuous assignments or a mixture of procedural and continuous assignments writing to the same variable. All
data types can write through a port.

SystemVerilog variables can be packed or unpacked aggregates of other types. Multiple assignments made to
independent elements of a variable are examined individually. An assignment where the left-hand-side con-
tainsadliceistreated as asingle assignment to the entire slice. It shall be an error to have a packed structure or
array type written with a mixture of procedural and continuous assignments. Thus, an unpacked structure or
array can have one element assigned procedurally, and another element assigned continuously. And, each ele-
ment of a packed structure or array can each have a single continuous assignment. For example, assume the
following structure declaration:

struct {
bit [7:0] A;
bit [7:0] B;
byte C;

} abe;

The following statements are legal assignments to struct abc:
assign abc.C = sel ? 8'hBE : 8’'hEF;

not abc.A[0],abc.B[0]),

abc.A[1l],abc.B[1]),
abc.A[2],abc.B[2]),
abc.A[3],abc.B[3]);
always @(posedge clk) abc.B <= abc.B + 1;

The following additional statements areillegal assignments to struct abc:

// Multiple continuous assignments to abc.C
assign abc.C = sel ? 8'hDE : 8'hED;

// Mixing continuous and procedural assignments to abc.A
always @ (posedge clk) abc.A[7:4] <= l!abc.B[7:4];

For the purposes of the preceding rule, a declared variable initialization or aprocedural continuous assignment
is considered aprocedural assignment. A force Statement is neither a continuous or procedural assignment. A

Copyright 2003 Accellera. All rights reserved. 41



Accellera
SystemVerilog 3.1/draft 6 Extensions to Verilog-2001

release Statement shall not change the variable until there is another procedural assignment, or shall sched-
ule are-evaluation of the continuous assignment driving it. A single force Or release Statement shall not be
applied to a whole or part of a variable that is being assigned by a mixture of continuous and procedural
assignments.

A continuous assignment is implied when a variable is connected to an input port declaration. This makes
assignmentsto avariable declared as an input port illegal. A continuous assignment isimplied when avariable
is connected to the output port of an instance. This makes procedural or continuous assignments to a variable
connected to the output port of an instanceillegal.

SystemVerilog variables cannot be connected to either side of an inout port. SystemVerilog introduces the con-
cept of shared variables across ports with the ref port type. See Section 18.8 (port connections) for more infor-
mation about ports and port connection rules.

The compiler can issue awarning if a continuous assignment could drive strengths other then sto, st1, stX,
or Hiz to avariable. In any case, SystemVerilog applies automatic type conversion to the assignment, and the
strength islost.
Note that a SystemVerilog variable cannot have an implicit continuous assignment as part of its declaration,
the way a net can. An assignment as part of the logic declaration is a variable initialization, not a continuous
assignment. For example:

wire w = vara & varb; // continuous assignment

logic v = consta & constb; // initial procedural assignment

logic vw; // no initial assignment
assign vw = vara & varb; // continuous assignment to a logic

real circ;
assign circ = 2.0 * PI * R; // continuous assignment to a real

5.7 Signal aliasing

The Verilog assign statement is aunidirectional assignment and can incorporate a delay and strength change.
To model a bidirectional short-circuit connection it is necessary to use the alias statement. The members of
an dias list are signal's whose bits share the same physical nets. The example below implements a byte order
swapping between bus A and bus B.

module byte swap (inout wire [31:0] A, inout wire [31:0] B);
alias {A[7:0],A[15:8],A[23:16],A[31:24]} = B;
endmodule
This example strips out the least and most significant bytes from afour byte bus:

module byte rip (inout wire [31:0] W, inout wire [7:0] LSB, MSB) ;

alias W([7:0] = LSB;
alias W[31:24] = MSB;
endmodule

The bit overlay rules are the same as those for a packed union with the same member types. each member shall
be the same size, and connectivity is independent of the simulation host. The nets connected with an aias
statement must be type compatible, that is, they have to be of the same net type. For example, it isillegal to
connect awand net to awor net with an alias statement. Thisis a stricter rule than applied to netsjoining at
ports because the scope of an aliasis limited and such connections are more likely to be a design error. Vari-
ables and hierarchical references cannot be used in alias statements. Any violation of these rules shall be
considered afatal error.
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The same nets can appear in multiple aias statements. The effects are cumulative. The following two exam-
ples are equivalent. In either case, 1low12[11:4] and high12[7:0] sharethe same wires.

module overlap (inout wire [15:0] buslé, inout wire [11:0] lowl2, highl2);
alias busl6[11:0] lowl2;
alias busl6[15:4] = highl2;

endmodule

module overlap (inout wire [15:0] buslé, inout wire [11:0] lowl2, highl2);
alias buslé = {highl2, lowl2[3:0]};
alias highl2[7:0] = lowl2[11:4];

endmodule

To avoid errors in specification, it is not allowed to specify an aias from an individual signd to itself, or to
specify a given alias more than once. The following version of the code above would beillegal since the top
four and bottom four bits are the same in both statements:

alias buslé
alias buslé

{highl2[11:8], lowl2};
{high12, lowil2[3:0]};

This alternativeis aso illegal because the bits of bus16 are being aliased to itself:
alias buslé = {(highl2, busl6[3:0]} = {busl6[15:12], lowl2};
Alias statements can appear anywhere modul e instance statements can appear. If an identifier that has not been
declared as a data type appearsin an alias statement, then an implicit net is assumed, following the same rules
as implicit nets for a module instance. The following example uses alias along with the automatic name
binding to connect pins on cells from different libraries to create a standard macro:
module 1libl dff (Reset, Clk, Data, Q, Q Bar);
endmodule
module 1lib2 dff (reset, clock, data, a, gbar);
endmodule
module 1lib3 dff (RST, CLK, D, Q, Q );
endmodule
macromodule my dff (rst, clk, d, g, g bar); // wrapper cell
input rst, clk, d;
output g, g bar;
alias rst = Reset = reset = RST;
alias clk = Clk = clock = CLK;

alias d = data = D;
alias g = Q;

alias Q = g bar = Q Bar = gbar;
‘LIB_DFF my dff (.*); // LIB_DFF is any of 1libl dff, 1lib2 dff or 1lib3_dff
endmodule

Using a net in an alias statement does not modify its syntactic behavior in other statements. Aliasing is per-
formed at elaboration time and cannot be undone.

Copyright 2003 Accellera. All rights reserved. 43



Accellera
SystemVerilog 3.1/draft 6 Extensions to Verilog-2001

Section 6
Attributes
6.1 Introduction (informative)

With Verilog-2001, users can add named attributes (properties) to Verilog objects, such as modules, instances,
wires, etc. Attributes can aso be specified on the extended SystemVerilog constructs and are included as part
of the BNF (see Annex A). SystemVerilog a so defines a default data type for attributes.

6.2 Default attribute type

The default type of an attribute with no value isbit, with avalue of 1. Otherwise, the attribute takes the type
of the expression.
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Section 7
Operators and Expressions

7.1 Introduction (informative)

The SystemVerilog operators are a combination of Verilog and C operators. In both languages, the type and
size of the operandsis fixed, and hence the operator is of afixed type and size. The fixed type and size of oper-
atorsis preserved in SystemVerilog. This alows efficient code generation.

Verilog does not have assignment operators or increment and decrement operators. SystemVerilog includes the
C assignment operators, such as +=, and the C increment and decrement operators, ++ and - -.

Verilog-2001 added signed nets and reg variables, and signed based literals. There is a difference in the rules

for combining signed and unsigned integers between Verilog and C. SystemVerilog uses the Verilog-2001
rules.

7.2 Operator syntax

assignment_operator ::= [l from Annex A.6.2
=|4=]-=*=] 2| %=] &= [ | A= | <<= | >>= | <<<= | >>>=
conditional_expression ::= [/l from Annex A.8.3
expressionl ? { attribute_instance } expression2 : expression3
unary_operator ::= [/l from Annex A.8.6
- & & A 1~
binary_operator ::=
-1 1% | == 1= | === | 1= | =2=]17= | && ||| | **
| <I<=|>|>=|& ||| |~ ]| >> << |>>> ] <<<
inc_or_dec_operator ::= ++ | --
unary_module path_operator ::=
P~ & =& [T~ 1 7
binary_module_path_operator ::=
==& & [ T& [N A~

Syntax 7-1—Operator syntax (excerpt from Annex A)

7.3 Assignment operators

In addition to the simple assignment operator, =, SystemVerilog includes the C assignment operators and spe-
cial bitwise assignment operators: +=, -=, *=, /=, %=, &=, |=, "=, <<=, >>=, <<<=, and >>>=. An assignment
operator is semantically equivalent to a blocking assignment, with the exception that any left hand side index
expression is only evaluated once. For example:

alil+=2; // same as al[i] = ali] +2;
In SystemVerilog, an expression can include a blocking assignment, provided it does not have atiming control.
Note that such an assignment must be enclosed in parentheses to avoid common mistakes such as using a=b
for a==b, or a|=b for a! =b.

if ((a=b)) b = (a+=1);
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a= (b= (c=25));

The semantics of such an assignment expression are those of a function which evaluates the right hand side,
casts the right hand side to the left hand data type, stacks it, updates the left hand side and returns the stacked
value. The type returned is the type of the left hand side data type. If the left hand side is a concatenation, the
type returned shall be an unsigned integral value whose bit length is the sum of the length of its operands.

It shall beillegal to include an assignment operator in an event expression, in an expression within a proce-
dural continuous assignment, or in an expression that is not within a procedural statement.

SystemVerilog includes the C increment and decrement assignment operators ++1, --i, i++ and i--. These
do not need parentheses when used in expressions. These increment and decrement assignment operators
behave as blocking assignments.

The ordering of assignment operations relative to any other operation within an expression is undefined. An
implementation can warn whenever avariable is both written and read-or-written within an integral expression
or in other contexts where an implementation cannot guarantee order of evaluation. In the following example:

i = 10;
o= i++ + (1 =1 - 1);

After execution, the value of § can be 18, 19, or 20 depending upon the relative ordering of the increment and
the assignment statements.

7.4 Operations on logic and bit types

When a binary operator has one operand of type bit and another of type 1ogic, theresult is of type logic. If
one operand is of type int and the other of type integer, theresult is of type integer.

The operators '= and == return an X if either operand contains an x or a z, as in Verilog-2001. This is con-
verted to a0 if theresult is converted to typebit, e.g. inan i£ statement.

The unary reduction operators (s ~& | ~| ~ ~*) can beapplied to any integer expression (including packed
arrays). The operators shal return a single value of type 1ogic if the packed typeis four valued, and of type
bit if the packed typeistwo valued.

int i;

bit b = &i;

integer j;

logic ¢ = &j;

7.5 Wild equality and wild inequality

SystemVerilog 3.1 introduces the wild-card comparison operators, as described below.

Table 7-1: Wild equality and wild inequality operators

Operator Usage Description
=7= a=?=b aequasbh, X and Z values act aswild cards
12= al?>=b anot equal b, X and Z values act aswild cards

The wild equality operator (=2=) and inequality operator (:2=) treat X and Z valuesin agiven bit position asa
wildcard. A wildcard bit matches any bit value (0, 1,Z, or X) in the value of the expression being compared
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against it.

These operators compare operands bit for bit, and return a 1-bit self-determined result. If the operands to the
wild-card equality/inequality are of unequal bit length, the operands are extended in the same manner asfor the
case equality/inequality operators. If therelation istrue, the operator yieldsa 1. If therelation isfalse, it yields
ao.

The three types of equality (and inequality) operatorsin SystemVerilog behave differently when their operands
contain unknown values (X or Z). The == and ! = operatorsresult in X if any of their operands containsan X or
Z. The === and ! == check the 4-state explicitly, therefore, X and Z values shall either match or mismatch,

never resulting in X. The =2= and ! = operatorstreat X or Z aswild cards that match any value, thus, they too
never result in X.

7.6 Real operators

Operands of type shortreal have the same operation restrictions as Verilog real operands. The unary oper-
ators ++ and -- can have operands of type real and shortreal (the increment or decrement is by 1.0). The
assignment operators +=, -=, *=, /= can aso have operands of type real and shortreal.

If any operand is real, the result is real, except before the ? in the ternary operator. If no operand is real
and any operand is shortreal, theresult iSshortreal.

Real operands can also be used in the following expressions:

str.realval // structure or union member
realarrayl[intvall] // array element

7.7 Size

The number of bits of an expression is determined by the operands and the context, following the same rules as
Verilog. In SystemVerilog, casting can be used to set the size context of an intermediate value.

With Verilog, tools can issue awarning when the left and right hand sides of an assignment are different sizes.
Using the SystemVerilog size casting, these warnings can be prevented.

7.8 Sign

Thefollowing unary operators give the signedness of the operand: ~ ++ -- + -. All other operators shall fol-
low the same rules as Verilog for performing signed and unsigned operations.

7.9 Operator precedence and associativity

Operator precedence and associativity islisted in Table 7-2, below. The highest precedence islisted first.

Table 7-2: Operator precedence and associativity

O oo left
+ - 1~ & ~& | ~| ++ -- (unary) right
>k left
* /% left
+ - (binary) | eft
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Table 7-2: Operator precedence and associativity (continued)

<< >> <<< >>> left
< <= > >= 1inside dist |eft
== l= === l== =?= 2= | eft
& (binary) |eft
* <% 7~ (binary) left

| (binary) left
&& left
| left
?: (conditional operator) right
=> right
= 4= -= *= [= %= &= "= = <<= >>= <<<= >>»>= := :/ <= | none
{} {{}} concatenation

7.10 Built-in methods

SystemVerilog introduces classes and the method calling syntax, in which atask or function is called using the
dot notation (.):

object.task or function()

The object uniquely identifies the data on which the task or function operates. Hence, the method concept is
naturally extended to built-in typesin order to add functionality that traditionally was done via system tasks or
functions. Unlike system tasks, built-in methods are not prefixed with a ¢ since they require no special prefix
to avoid collisions with user-defined identifiers. Thus, the method syntax allows extending the language with-
out the addition of new keywords or cluttering the global name space with system tasks.

Built-in methods, unlike system tasks, can not be redefined by users via PLI tasks. Thus, only functions that
users should not be allowed to redefine are good candidates for built-in method calls.

In general, a built-in method is preferred over a system task when a particular functionality applies to al data
types, or it appliesto a specific data type. For example:

dynamic_array.size, associative array.num, and string.len

These are all similar concepts, but they represent different things. A dynamic array has a size, an associétive
array contains a given number of items, and a string has a given length. Using the same system task, such as
$length, for al of them would be less clear and intuitive.

A built-in method can only be associated with a particular data type. Therefore, if some functionality isasim-
ple side effect (i.e., $stop Of $reset) or it operates on no specific data (i.e.,, $random) then a system task
must be used.

When afunction or task built-in method call specifies no arguments, the empty parenthesis, (), following the
task/function name is optional. This is also true for tasks or functions that require arguments, when all argu-
ments have defaults specified. For a method, this rule allows simple calls to appear as properties of the object
or built-in type. Similar rules are defined for functions and tasks in Section 10.5.5.
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7.11 Concatenation

Braces ( { } ) are used to show concatenation, asin Verilog. The concatenation istreated as a packed vector of
bits. It can be used on the left hand side of an assignment or in an expression.

logic logl, log2, log3;
{logl, log2, log3} = 3'blll;
{logl, log2, log3} = {1'bl, 1'bl, 1'bl}; // same effect as 3'blll

Software tools can generate awarning if the concatenation width on one side of an assignment is different than
the expression on the other side. The following examples can give warning of size mismatch:

bit [1:0] packedbits = {32’bl,32’bl}; // right hand side is 64 bits
int i = {1'bl, 1'bl}; //right hand side is 2 bits

Note that braces are also used for initializers of structures or unpacked arrays. Unlike in C, the expressions
must match element for element and the braces must match the structures and array dimensions. Each element
must match the type being initialized, so the following do not give size warnings:

bit unpackedbits [1:0] = {1,1}; // no size warning, bit can be set to 1
int unpackedints [1:0] = {1’bl,1’bl}; //no size warning, int can be set to 1’bl

A concatenation of unsized values shall beillegal, asin Verilog. However, an array initializer can use unsized
values within the braces, such as{1,1} .

The replication operator (also called amultiple concatenation) form of braces can also be used for initializers .
For example, {3{1}} representstheinitializer {1, 1, 1}.

Refer to Sections 2.7 and 2.8 for more information on initializing arrays and structures .

SystemVerilog enhances the concatenation operation to allow concatenation of variables of type string. In gen-
eral, if any of the operandsis of type string, the concatenation is treated as a string, and all other arguments
are implicitly converted to the string type (as described in Section 3.7). String concatenation is not allowed
on the left hand side of an assignment, only as an expression.

string hello = "hello";

string s;

s = { hello, " ", "world" };

$display( "%s\n", s ); // displays 'hello world'

s = { s, " and goodbye" };

$display( "%$s\n", s ); // displays 'hello world and goodbye'

The replication operator (also called a multiple concatenation) form of braces can also be used with variables
of type string. In the case of string replication, a non-constant multiplier is allowed.

int n = 3;
string s = {n { "boo " }};
$display( "%s\n", s ); // displays 'boo boo boo '

Note that unlike bit concatenation, the result of a string concatenation or replication is not truncated. Instead,
the destination variable (of type string) isresized to accommodate the resulting string.

7.12 Unpacked array expressions

Braces are also used for expressions to assign to unpacked arrays. Unlike in C, the expressions must match ele-
ment for element, and the braces must match the array dimensions. The type of each element is matched
against the type of the expression according to the same rules as for a scalar. This means that the following
examples do not give size warnings, unlike the similar assignments above:
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bit unpackedbits [1:0] {1,1}; // no size warning as bit can be set to 1
int unpackedints [1:0] = {1’bl, 1’bl}; // no size warning as int can be
// set to 1’bl

The syntax of multiple concatenations can be used for unpacked array expressions as well.
unpackedbits = {2 {y}} ; // same as {y, v}

SystemVerilog determines the context of the braces by looking at the left hand side of an assignment. If the | eft
hand side is an unpacked array, the braces represent an unpacked array literal or expression. Outside the con-
text of an assignment on the right hand side, an explicit cast must be used with the bracesto distinguish it from
a concatenation.

It can sometimes be useful to set array elementsto avalue without having to keep track of how many members
there are. This can be done with the default keyword:

initial unpackedints = {default:2}; // sets elements to 2

For more arrays of structures, it is useful to specify one or more matching types, asillustrated under structure
expressions, below.

struct {int a; time b;} abkey[1:0];
abkey = {{a:1, b:2ns}, {int:5, time:S$time}};

The rules for unpacked array matching are as follows:

— For type:value, if the element or sub array type of the unpacked array exactly matches this type, then
each element or sub array shall be set to the value. The value must be castable to the array element or sub
array type. Otherwise, if the unpacked array is multidimensional, then thereis arecursive descent into each
sub array of the array using the rules in this section and the type and default specifiers. Otherwise, if the
unpacked array isan array of structures, there is arecursive descent into each element of the array using the
rules for structure expressions and the type and default specifiers.

— For default:value, this specifies the default value to use for each element of an unpacked array that has
not been covered by the earlier rulesin this section. The value must be castable to the array element type.

7.13 Structure expressions

A structure expression (packed or unpacked) can be built from member expressions using braces and commas,
with the members in declaration order. It can also be built with the names of the members

module modl;
typedef struct ({
int x;
int y;
} st;

st s1;
int k = 1;

initial begin

#1 s1 = {1, 2+k}; // by position
#1 sdisplay( sl.x, sl.y);

#1 sl = {x:2, y:3+k); // by name

#1 S$display( sl);

#1 S$finish;
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end
endmodule

It can sometimes be useful to set structure members to a value without having to keep track of how many
members there are, or what the names are. This can be done with the default keyword:

initial sl = {default:2}; // sets x and y to 2
The {member:value} Of {data type: default value} Syntax can aso be used:
ab abkey[1:0] = {{a:1, b:1.0}, {int:2, shortreal:2.0}};

Note that the default keyword applies to members in nested structures or elements in unpacked arrays in
structures. In fact, it descends the nesting to a built-in type or a packed array of them.

struct {
int A;
struct {
int B, C;
} BC1, BC2;

}

ABC = {A:1, BC1:{B:2, C:3}, BC2:{B:4,C:5}};
DEF {default:10};

To deal with the problem of members of different types, a type can be used as the key. This overrides the
default for members of that type:

typedef struct {
logic [7:0] a;

bit b;
bit [31:0] c;
string s;

} sa;

sa s2;

initial s2 = {bit[31:0]:1, default:0, string:""}; // set all to 0 except the
// array of bits to 1 and
// string to ""

Similarly, an individual member can be set to override the general default and the type default:
initial #10 s1 = {default:’1, s = ""}; // set all to 1 except s to ""

SystemVerilog determines the context of the braces by looking at the left hand side of an assignment. If the left
hand side is an unpacked structure, the braces represent an unpacked structure literal or expression. Outside the
context of an assignment on the right hand side, an explicit cast must be used with the braces to distinguish it
from a concatenation.

The matching rules are as follows:

— A member:value: Specifies an explicit value for a named member of the structure. The named member
must be at the top level of the structure—a member with the same name in some level of substructure shall
not be set. The value must be castable to the member type, otherwise an error is generated.

— Thetype:value specifiesan explicit value for afield in the structure which exactly matches the type and
has not been set by afield name specifier above. If the same key type is mentioned more than once, the last
valueis used.
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— Thedefault:value appliesto membersthat are not matched by either member name or type and are not
either structures or unpacked arrays. The value must be castable to the member type, otherwise an error is
generated. For unmatched structure members, the type and default specifiers are applied recursively
according to the rules in this section to each member of the substructure. For unmatched unpacked array
members, the type and default specifiers are applied to the array according to the rules for unpacked arrays.

Every member must be covered by one of these rules.

7.14 Aggregate expressions

Unpacked structure and array variables, literals, and expressions can all be used as aggregate expressions. A
multi-element slice of an unpacked array can also be used as an aggregate expression.

Aggregate expressions can be copied in an assignment, through a port, or as an argument to atask or function.
Aggregate expressions can also be compared with equality or inequality operators. To be copied or compared,
the type of an aggregate expression must be equivalent.

Unpacked structures types are equivalent by the hierarchical name of its type alone. This means in order to
have two equivalent unpacked structuresin two different scopes, the type must be defined in one of the follow-

ing ways:

— Defined in a higher-level scope common to both expressions.

— Passed through type parameter.

— Imported by hierarchical reference.

Unpacked arrays types are equivalent by having equivalent element types and identical shape. Shapeis defined

as the number of dimensions and the number of elementsin each dimension, not the actual range of the dimen-
sion.

7.15 Conditional operator

conditional_ expression ::= (From Annex A.8.3)
expressionl ? { attribute instance } expression2 : expression3

Asdefined in Verilog, if expressionl istrue, the operator returns expression2, if false, it returns expression3. If
expressionl eval uates to an ambiguous val ue (x or z), then both expression2 and expression3 shall be evaluated
and their results shall be combined, bit by bit.

SystemVerilog extends the conditional operator to non bit-level types and aggregate expressions using the fol-
lowing rules:

— If both expression2 and expression3 are bit-level types, or a packed aggregate of bit type, the operation
proceeds as defined.

— If expression2 or expression3 is a bit-level type and the opposing expression can be implicitly cast to a bit-
level type, the cast is made and proceeds as defined.

— For all other cases, the type of expression2 and expression3 must be equivalent.
If expressionl evaluates to an ambiguous value, then both expression2 and expression3 shall be evaluated and

their results shall be combined, element-by-element. If the elements match, the element is returned. If they do
not match, then the default-uninitialized value for that element’s type shall be returned.
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Section 8
Procedural Statements and Control Flow

8.1 Introduction (informative)

Procedural statements are introduced by the following:
initial // enablethis statement at the beginning of simulation and execute it only once
final // do this statement once at the end of simulation
always, always comb, always latch, always f££ //loop forever (see Section 9 on processes)
task // do these statements whenever the task is called
function // do these statements whenever the function is called and return avalue

SystemVerilog has the following types of control flow within a process
— Selection, loops and jumps

— Task and function calls

— Sequential and paralléel blocks

— Timing control

Verilog procedural statements are in initial Or always blocks, tasks or functions. SystemVerilog adds a
final block that executes at the end of simulation.

Verilog includes most of the statement types of C, except for do...while, break, continue and goto. Ver-
ilog has the repeat statement which C does not, and the disable. The use of the Verilog disable to carry
out the functionality of break and continue requires the user to invent block names, and introduces the opportu-
nity for error.

SystemVerilog adds C-like break, continue and return functionality, which do not require the use of block
names.

Loops with a test at the end are sometimes useful to save duplication of the loop body. SystemVerilog adds a
C-like do...while loop for this capability.

Verilog provides two overlapping methods for procedurally adding and removing drivers for variables: the
forcelrelease Statements and the assign/deassign statements. The force/release Statements can also
be used to add or remove drivers for netsin addition to variables. A force statement targeting a variable that is
currently the target of an assign shall override that assign; however, once the force is released, the assign’s
effect again shall be visible.

The keyword assign is much more commonly used for the somewhat similar, yet quite different purpose of
defining permanent drivers of valuesto nets.

SystemVerilog £inal blocks execute in an arbitrary but deterministic sequential order. This is possible
because £inal blocks are limited to the legal set of statements allowed for functions. SystemVerilog does not
specify the ordering, but implementations should define rules that preserve the ordering between runs. This
helps keep the output log file stable since £inal blocks are mainly used for displaying statistics.

8.2 Statements

The syntax for procedural statementsis:
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statement_or_null ::= [/l from Annex A.6.4
statement

| { attribute_instance} ;
statement ::= [ block_identifier : ] statement_item
statement_item ::=

{ attribute_instance } blocking_assignment ;

| { attribute_instance } nonblocking_assignment ;

| { attribute_instance } procedural_continuous_assignments ;

| { attribute_instance} case_statement

| { attribute_instance} conditional _statement

| { attribute_instance} inc_or_dec_expression;

| { attribute_instance} function_call ;

| { attribute_instance} disable_statement

| { attribute_instance} event_trigger

| { attribute_instance } loop_statement

| { attribute_instance} jump_statement

| { attribute_instance } par_block

| { attribute_instance } procedural_timing_control _statement

| { attribute instance} seq block

| { attribute_instance} system task_enable

| { attribute instance} task_enable

| { attribute_instance} wait_statement

| { attribute_instance} procedural_assertion_item
function_statement ::= [ block_identifier : ] function_statement_item
function_statement_item ::=

{ attribute_instance } function_blocking_assignment ;

| { attribute_instance} function_case statement

| { attribute_instance} function_conditional_statement

| { attribute instance} inc_or_dec_expression ;

| { attribute instance} function call ;

| { attribute_instance} function loop_statement

| { attribute_instance} jump_statement

| { attribute_instance } function_seq block

| { attribute instance} disable statement

| { attribute_instance} system task_enable

Syntax 8-1—Procedural statement syntax (excerpt from Annex A)
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8.3 Blocking and nonblocking assignments

blocking_assignment ::= // from Annex A.6.4
variable Ivalue = delay_or_event_control expression
| hierarchical_variable_identifier = new [ constant_expression | [ ( variable_identifier ) ]
| class_identifier [ parameter_value assignment ] = new [ ( list_of_arguments) ]
| class_identifier . randomize[ () ] with constraint_block ;
| operator_assignment
operator_assignment ::= variable lvalue assignment_operator expression
assignment_operator ::=
:|+:|_:|*:|/:|0/0:|&:||:|’\:|<<:|>>:|<<<:|>>>:

nonblocking_assignment ::= variable Ivalue <=[ delay_or_event_control ] expression

Syntax 8-2—blocking and nonblocking assignment syntax (excerpt from Annex A)

The following assignments are allowed in both Verilog-2001 and SystemVerilog:

#1 r = a;
r = #1 a;
r <= #1 a;
r <= a;

@c r = a;
r = @C aj;

r <= @C a;
SystemVerilog also allows a time unit to specified in the assignment statement, as follows:
#lns r = a;
r = #1lns a;
r <= #1lns a;

It shall beillegal to make nonblocking assignments to automatic variables.

The size of the left-hand side of an assignment forms the context for the right hand side expression. If the | eft-
hand side is smaller than the right hand side, information can be lost, and a warning can be given.
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8.4 Selection statements

conditional_statement ::= /I from Annex A.6.6
[ unique_priority ] if ( expression) statement_or_null [ else statement_or_null ]
| if_else if_statement
if else if statement ::=
[ unique_priority ] if ( expression) statement_or_null
{ else[ unique priority ] if (expression) statement_or_null }
[ else statement_or_null ]
unique_priority ::= unique | priority

case _statement ::= /I from Annex A.6.7
[ unique_priority ] case (expression ) case_item { case_item} endcase
| [ unique_priority ] casez (expression ) case_item { case_item} endcase
| [ unique_priority ] casex ( expression ) case _item { case item} endcase
case item::=
expression{ , expression} : statement_or_null
| default [ : ] statement_or_null

Syntax 8-3—Selection statement syntax (excerpt from Annex A)

In Verilog, an 1£ (expression) is evaluated as a boolean, so that if the result of the expression is O or X, the
test is considered false.

SystemVerilog adds the keywords unique and priority, which can be used before an i £. If either keyword
is used, it shall be arun-time error for no condition to match unlessthereis an explicit else. For example:

unique if ((a==0) || (a==1)) $display("0 or 1");

else if (a == 2) sdisplay("2");

else if (a == 4) sdisplay("4"); // values 3,5,6,7 cause an error
priority if (a[2:1]1==0) $display ("0 or 1");

else if (a[2] == 0) S$display ("2 or 3");

else $display ("4 to 7"); //covers all other possible values, so no error

A unique if indicates that there should not be any overlap in aseriesof if...else...if conditions, allowing
the expressions to be evaluated in parallel. A software tool shall issue an error if it determines that there is a
potential overlap in the conditions.

A priority if indicatesthat aseriesof if...else...if conditions shall be evaluated in the order listed. In
the preceding example, if the variable a had a value of 0, it would satisfy both the first and second conditions,
requiring priority logic.

Theunique and priority keywords apply to the entire series of if...else...if conditions. In the preceding
examplesit would have been illegal to insert either keyword after any of the occurrences of else.

In Verilog, there are three types of case statements, introduced by case, casez and casex. With SystemVer-
ilog, each of these can be qualified by priority Or unique. A priority case shal act on the first match
only. A unique case shall guarantee no overlapping case values, allowing the case items to be evaluated in
parallel. If the case is qualified as priority Or unique, the simulator shall issue an error message if an
unexpected case value is found.

Note: by specifying unique Of priority, it iSnot necessary to code adefault case to trap unexpected case
values. For example:
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bit [2:0] a;

unique case(a) // values 3,5,6,7 cause a run-time error
0,1: $display ("0 or 1");
2: Sdisplay("2");
4: S$display("4");

endcase

priority casez(a)
2'b00?: Sdisplay ("0 or 1");
2'b0??: Sdisplay ("2 or 3");
default: $display ("4 to 7");
endcase

Theunique and priority keywords shall determine the simulation behavior. It is recommended that synthe-
sisfollow simulation behavior where possible. Attributes can also be used to determine synthesis behavior.

8.5 Loop statements

loop_statement ::= [/ from Annex A.6.8
forever statement_or_null
| repeat ( expression) statement_or_null
| while (‘expression ) statement_or_null
| for (variable_decl_or_assignment ; expression ; variable assignment ) statement_or_null
| for (variable_decl_or_assignment { , variable _decl_or_assignment } ; expression ;
variable_assignment { , variable_assignment } ) statement_or_null
| do statement_or_null while ( expression) ;
variable decl_or_assignment ::=
data typelist_of variable identifiers_or_assignments
| variable_assignment

Syntax 8-4—Loop statement syntax (excerpt from Annex A)

Verilog provides for, while, repeat and forever |00Ops. SystemVerilog enhances the Verilog for loop, and
addsado...while loOp.

8.5.1 The do...while loop

do statement while(condition) // as C

The condition can be any expression which can be treated as aboolean. It is evaluated after the statement.

8.5.2 Enhanced for loop

In Verilog, the variable used to control a for loop must be declared prior to the loop. If loops in two or more
parallel procedures use the same loop control variable, there is a potential of one loop modifying the variable
while other loops are still using it.

SystemVerilog adds the ability to declare the for loop control variable within the for loop. This creates a
local variable within the loop. Other parallel loops cannot inadvertently affect the loop control variable. For
example:

module foo;

initial begin
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for (int i = 0; 1 <= 255; i++)
end

initial begin
loop2: for (int i = 15; i >= 0; 1i--)

end
endmodule

The local variable declared within a for loop is equivalent to declaring an automatic variable in an unnamed
block.

Verilog only permits asingleinitial statement and a single step assignment within a for loop. SystemVerilog
allowsthe initial declaration or assignment statement to be one or more comma-separated statements. The step
assignment can also be one or more comma-separated assignment statements.

for ( int count = 0; count < 3; count++ )
value = value +((al[count]) * (count+1));
for ( int count = 0, done = 0, int j = 0; j * count < 125; Jj++ )

$display("value j = %d\n", j );

8.6 Jump statements

jump_statement ::= [l from Annex A.6.5
return [ expression] ;
| break ;
| continue;

Syntax 8-5—Jump statement syntax (excerpt from Annex A)

SystemVerilog adds the C jump statementsbreak, continue and return.

break // out of loop as C
continue // skip to end of loop as C
return expression // exit from a function

return // exit from a task or void function

The continue and break statements can only be used in aloop. The continue Statement jumps to the end
of the loop and executes the loop control if present. The break statement jumps out of the loop. The con-
tinue and break Statements cannot be used inside a fork...join block to control a loop outside the
fork...join block.

The return statement can only be used in atask or function. In a function returning a value, the return must
have an expression of the correct type.

Note that SystemVerilog does not include the C goto statement.

8.7 Final blocks

The £inal block islike an initial block, defining a procedural block of statements, except that it occurs at
the end of simulation time and executes without delays. A £inal block istypically used to display statistical
information about the simulation.
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final_construct ::= final function_statement [ from Annex A.6.2

Syntax 8-6—Final block syntax (excerpt from Annex A)

The only statements allowed inside a £inal block are those permitted inside a function declaration. This guar-
antees that they execute within asingle simulation cycle. Unlikean initial block, the £inal block does not
execute as a separate process; instead, it executesin zero time, the same as afunction call.

After one of the following conditions occur, all spawned processes are terminated, all pending PLI callbacks
are canceled, and then the final block executes.

— The event queue is empty
— Execution of $finish
— Termination of al program blocks, which executes an implicit $finish

— PLI execution of t£ dofinish() Of vpi_ control (vpiFinish, ...)

final
begin
$display ("Number of cycles executed %d", $time/period) ;
$display ("Final PC = $h",PC);
end
Execution of $finish, tf dofinish(), Of vpi_control (vpiFinish, ...) from within a final block

shall cause the simulation to end immediately. Final blocks can only trigger oncein asimulation.

Final blocks shall execute before any PLI callbacks that indicate the end of simulation.

8.8 Named blocks and statement labels

seq _block ::= /I from Annex A.6.3
begin [ : block_identifier ] { block_item_declaration } { statement_or_null }
end [ : block_identifier ]
par_block ::=
fork [ : block_identifier ] { block_item_declaration } { statement_or_null }
join_keyword [ : block_identifier ]
join_keyword ::=join [join_any |join_none

Syntax 8-7—Blocks and labels syntax (excerpt from Annex A)

Verilog alows a begin...end, fork...join, fork...join_any Or fork..join none Statement block to be
named. A named block is used to identify the entire statement block. A named block creates a new hierarchy
scope. The block name is specified after the begin or fork keyword, preceded by a colon. For example:

begin : blockaA // Verilog-2001 named block

end
SystemVerilog alows a matching block name to be specified after the block end, join, join any or
join none keyword, preceded by a colon. This can help document which end Or join, join_any oOr

join none is associated with which begin or fork when there are nested blocks. A name at the end of the
block is not required. It shall be an error if the name at the end is different than the block name at the begin-
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ning.
begin: blockB // block name after the begin or fork
end: blockB

SystemVerilog alows alabel to be specified before any statement, asin C. A statement label is used to identify
asingle statement. The label name is specified before the statement, followed by a colon.

labelA: statement

A begin...end, fork...join, fork...join any Of fork...join none block is considered a statement, and
can have a statement label before the block.

labelB: fork // label before the begin or fork
join : labelB

It shall beillegal to have both alabel before abegin or fork and a block name after the begin or fork. A
label cannot appear before the end, join, join any OF join none, asthese keywords do not form a state-
ment.

A statement with a label can be disabled using a disable statement. Disabling a statement shall have the
same behavior as disabling a named block.

See Section 9.6 for additional discussion on fork...join, fork...join any Of fork...join none.

8.9 Disable

SystemVerilog hasbreak and continue to break out of or continue the execution of loops. The Verilog-2001
disable can aso be used to break out of or continue a loop, but is more awkward than using break Or con-
tinue. The disable is also allowed to disable a named block, which does not contain the disable state-
ment. If the block is currently executing, this causes control to jump to the statement immediately after the
block. If the block isaloop body, it actslike a continue. If the block is not currently executing, thedisable
has no effect.

SystemVerilog has return from atask, but disable isalso supported. If disable isapplied to anamed task,
all current executions of the task are disabled.

module ...
always alwaysl: begin ... tl: taskl( ); ... end

endmodule
always begin

disable ul.alwaysl.tl; // exit taskl, which was called from alwaysl (static)
end
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8.10 Event control

delay_or_event_control ::= // from Annex A.6.5
delay_control
| event_control
| repeat ( expression) event_control
delay_control ::=
# delay_value
| # ( mintypmax_expression )
event_control ::=
@ event_identifier
| @ (‘event_expression )
| @
| @ (*)
event_expression ;=
[ edge identifier ] expression [ iff expression ]
| event_expression or event_expression
| event_expression , event_expression

edge identifier ::= posedge | negedge [/ from Annex A.7.4

Syntax 8-8—Delay and event control syntax (excerpt from Annex A)

Any changein avariable or net can be detected using the @ event control, asin Verilog. If the expression eval-
uatesto aresult of more than one bit, a change on any of the bits of the result (including an x to z change) shall
trigger the event control.

SystemVerilog adds an i ££ qualifier to the @ event control.

module latch (output logic [31:0] vy, input [31:0] a, input enable);

always @(a iff enable == 1)
y <= a; //latch is in transparent mode
endmodule

The event expression only triggers if the expression after the 1 ££ istrue, in this case when enable isegual to
1. Note that such an expression is evaluated when a changes, and not when enable changes. Also note that
iff has precedence over or. This can be made clearer by the use of parentheses.

If avariable is not of a4-state type, then posedge and negedge refer to transitions from 0 and to 0, respec-
tively.

If the expression denotes a clocking-domain input Or inout (See Section 15), the event control operator uses
the synchronous values, that is, the values sampled by the clocking event. The expression can also denote a
clocking-domain name (with no edge qualifier) to be triggered by the clocking event.

A variable used with the event control can be any one of the integral data types (see Section 3.3.1) or string.
The variable can be either asimple variable or aref argument (variable passed by reference); it can be amem-
ber of an array, associative-array, or object (classinstance) of the aforementioned types. Objects (handles) and
aggregate types are not allowed.

Event control variables can include array subscript expressions, in which case the index expression is evalu-
ated only once when the event control statement is executed. Likewise, an object data member in an event con-
trol shall block until that particular data member changes value, not when the handle to the object is modified.
For example:
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Packer p = new; // Packet 1
Packet g new; // Packet 2
fork
@(p.status); // Wait for status in Packet 1 to change
p = q; // Has no effect on the wait in Process 1
join none
// @(p.status) continues to wait for status of Packet 1 to change

8.11 Procedural assign and deassign removal

SystemVerilog currently supports the procedural assign and deassign statements. However, these state-
ments may be removed from future versions of the language. See Section 25.3.

62
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Section 9
Processes

9.1 Introduction (informative)

Verilog-2001 has always and initial blocks which define static processes.

In an always block which is used to model combinational logic, forgetting an else leads to an unintended
latch. To avoid this mistake, SystemVerilog adds specialized always comb and always latch blocks,
which indicate design intent to simulation, synthesis and formal verification tools. SystemVerilog also adds an
always_f££ block to indicate sequential logic.

In systems modeling, one of the key limitations of Verilog is the inability to create processes dynamicaly, as
happens in an operating system. Verilog has the fork...join construct, but this still imposes a static limit.

SystemVerilog has both static processes, introduced by always, initial or fork, and dynamic processes,
introduced by built-in fork...join any and fork...join_none.

SystemVerilog creates athread of execution for each initial or always block, for each paralel statement in
a fork...join block and for each dynamic process. Each continuous assignment can also be considered its
own thread.

SystemVerilog 3.1 adds dynamic processes by enhancing the fork...join construct in away that is more nat-
ural to Verilog users. SystemVerilog 3.1 aso introduces dynamic process control constructs that can terminate
or wait for processes using their dynamic, parent-child relationship. These arewait fork and disable fork.

9.2 Combinational logic

SystemVerilog provides a special always comb procedure for modeling combinational logic behavior. For
example:

always comb
a=>b & c;

always comb
d <= #lns b & c;

The always comb procedure provides functionality that is different than a normal aways procedure:
— Thereisan inferred sensitivity list that includes every variable read by the procedure.
— The variables written on the left-hand side of assignments shall not be written to by any other process.

— The procedure is automatically triggered once at time zero, after all initial and always blocks have
been started, so that the outputs of the procedure are consistent with the inputs.

The SystemVerilog always_comb procedure differs from the Verilog-2001 always @* in the following ways:

— always_comb automatically executes once at time zero, whereas always @* waits until a change occurs
on asignal intheinferred sensitivity list.

— always_comb iS sensitive to changes within the contents of a function, whereas always @* isonly sensi-
tive to changes to the arguments of afunction.

— Variables on the left-hand side of assignments within an always comb procedure shall not be written to
by any other processes, whereas always @* permits multiple processesto write to the same variable.

Software tools can perform additional checksto warn if the behavior within an always comb procedure does
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not represent combinational logic, such asif latched behavior can be inferred.

9.3 Latched logic

SystemVerilog also provides a special always latch procedure for modeling latched logic behavior. For
example:

always latch
if(ck) gq <= d;

The always latch procedure determines its sensitivity and executes identically to the always comb proce-

dure. Software tools can perform additional checks to warn if the behavior within an always latch proce-
dure does not represent latched logic.

9.4 Sequential logic

The SystemVerilog always ££ procedure can be used to model synthesizable sequential logic behavior. For
example:

always ff @(posedge clock iff reset == 0 or posedge reset) begin
rl <= reset 2 0 : r2 + 1;

end
The always ££ block imposes the restriction that only one event control is allowed. Software tools can per-

form additional checksto warn if the behavior within an always ££ procedure does not represent sequential
logic.

9.5 Continuous assignments

In Verilog, continuous assignments can only drive nets, and not variables.

SystemVerilog removes this restriction, and permits continuous assignments to drive nets any type of variable.
Nets can be driven by multiple continuous assignments, or a mixture of primitives and continuous assign-
ments. Variables can only be driven by one continuous assignment or one primitive output. It shall be an error

for avariable driven by a continuous assignment or primitive output to have an initializer in the declaration or
any procedural assignment. See also Section 5.6.

9.6 fork...join

The fork...join construct enables the creation of concurrent processes from each of its parallel statements.

The syntax to declare a fork...join block is:

par_block ::= // from Annex A.6.3
fork [ : block_identifier ] { block_item_declaration } { statement_or_null }
join_keyword [ : block_identifier ]

join_keyword ::=join [join_any |join_none

Syntax 9-1—Fork...join block syntax (excerpt from Annex A)

One or more statements can be specified, each statement shall execute as a concurrent process.
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A Verilog fork...join block always causes the process executing the fork statement to block until the termi-
nation of all forked processes. With the addition of the join_any and join none keywords, SystemVerilog
provides three choices for specifying when the parent (forking) process resumes execution.

Table 9-1: fork...join control options

Option Description

join The parent process blocks until all the processes spawned by this fork complete. .

join_any The parent process blocks until any one of the processes spawned by this fork complete.

join none | The parent process continuesto execute concurrently with all the processes spawned by the
fork. The spawned processes do not start executing until the parent thread executes a blocking
statement.

When defining a fork...join block, encapsulating the entire fork within a begin...end block causes the
entire block to execute as a single process, with each statement executing sequentially.

fork
begin
statementl; // one process with 2 statements
statement2;
end
join

In the following example, two processes are forked, the first one waits for 20ns and the second waits for the
named event eventa to be triggered. Because the join keyword is specified, the parent process shall block
until the two processes complete; That is, until 20ns have elapsed and eventa has been triggered.

fork
begin
$display( "First Block\n" );
# 20ns;
end
begin
$display( "Second Block\n" );
@eventA;
end
join

A return statement within the context of a fork...join statement isillegal and shall result in a compilation
error. For example:

task wait_ 20;
fork
# 20;
return ; // Illegal: cannot return; task lives in another process
join_none
endtask

Note: SystemVerilog 3.0 provided a process statement, which gave the same functiondlity as the fork...join none
construct. SystemVerilog 3.1 deprecates the process statement, in favor of fork...join none.

9.7 Process execution threads

SystemVerilog creates athread of execution for:
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— Each initial block
— Each always block
— Each parallel statement in a fork...join (Or join_any Of join_none) Statement group

— Each dynamic process

Each continuous assignment can also be considered its own thread.

9.8 Process control

SystemVerilog provides constructs that allow one process to terminate or wait for the completion of other pro-
cesses. Thewait fork construct waits for the completion of processes. The disable fork construct stops
the execution of processes.

9.8.1 Wait fork

Thewait fork statement is used to ensure that all child processes (processes created by the calling process)
have completed their execution.

The syntax for wait forkis:
wait fork ; // from Annex A.6.5
Specifying wait fork causesthe calling processto block until all its sub-processes have completed.

Verilog terminates a simulation run when there is no further activity of any kind. SystemVerilog adds the abil-
ity to automatically terminate the ssmulation when al its program blocks finish executing (i.e, they reach the
end of their execute block), regardless of the status of any child processes (see Section 16.6). Thewait fork
statement allows a program block to wait for the completion of all its concurrent threads before exiting.

In the following example, in the task do_test, the first two processes are spawned and the task blocks until one
of the two processes completes (either exec1, or exec2). Next, two more processes are spawned in the back-
ground. Thewait fork Statement shall ensure that the task do_test waits for all four spawned processes to
complete before returning to its caller.

task do_test;
fork
execl () ;
exec2 () ;
join any
fork
exec3 () ;
exec4d () ;
join none
wait fork; // block until execl ... execd4 complete
endtask

9.8.2 Disable fork
The disable fork Statement terminates all active descendants (sub-processes) of the calling process.
The syntax for disable fork iS

disable fork ; // from Annex A.6.5

The disable fork Statement terminates all descendants of the calling process, as well as the descendants of
the process' descendants, that is, if any of the child processes have descendants of their own, the disable
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fork statement shall terminate them as well.

In the example below, the function get first spawns three versions of afunction that wait for a particular
device (1, 7, or 13). Thefunction wait device waitsfor aparticular device to become ready and then returns
the device's address. When the first device becomes available, theget first function shall resume execution
and proceed to kill the outstanding wait device processes.

function integer get first();
fork
get first wait device( 1 );
get first wait device( 7 );
get_first = wait_device( 13 );
join any
disable fork;
endfunction

Verilog supports the disable construct, which terminate a process when applied to the named block being
executed by the process. Thedisable fork statement differsfrom disable inthat disable fork considers
the dynamic parent-child relationship of the processes, whereas disable uses the static, syntactical informa-
tion of the disabled block. Thus, disable shall end all processes executing a particular block, whether the
processes were forked by the calling thread or not, while disable fork shall end only those processes that
were spawned by the calling thread.
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Section 10
Tasks and Functions

10.1 Introduction (informative)

Verilog-2001 has static and automatic tasks and functions. Static tasks and functions share the same storage
space for all cals to the tasks or function within a module instance. Automatic tasks and function allocate
unique, stacked storage for each instance.

SystemVerilog adds the ability to declare automatic variables within static tasks and functions, and static vari-
ables within automatic tasks and functions.

SystemVerilog also adds:

— More capabilities for declaring task and function ports

— Function output and inout ports

— Void functions

— Multiple statements in atask or function without requiring abegin...end Or fork...join block
— Returning from atask or function before reaching the end of the task or function

— Passing arguments by reference instead of by value

— Passing argument values by name instead of by position

— Default argument values

— Importing and exporting functions through the Direct Programming Interface (DPI)
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10.2 Tasks
task_body declaration ::= /l from Annex A.2.7

[ interface identifier . ] task_identifier ;
{ task_item_declaration }
{ statement_or_null }
endtask [ : task_identifier ]
| [ interface identifier . ] task_identifier ( task_port_list) ;
{ block_item_declaration }
{ statement_or_null }
endtask [ : task_identifier ]
task_declaration ::=task [ lifetime] task_body_declaration
task_item_declaration ::=
block_item_declaration
| { attribute_instance} tf_input_declaration ;
| { attribute_instance} tf_output_declaration ;
| { attribute_instance} tf_inout_declaration ;
| { attribute_instance} tf_ref declaration ;
task_port_list ::=task_port_item { , task_port_item }
| list_of_port_identifiers{ , task_port_item }
task_port_item ::=
{ attribute_instance} tf_input_declaration
| { attribute instance} tf_output_declaration
| { attribute_instance} tf_inout_declaration
| { attribute instance} tf_ref declaration ;
| { attribute_instance} port_typelist_of tf port_identifiers
| { attribute_instance} tf_data typelist_of tf variable identifiers
tf_input_declaration ::=
input [ signing ] { packed_dimension} list_of_tf_port_identifiers
| input tf_data typelist_of tf variable identifiers
tf_output_declaration ::=
output [ signing ] { packed dimension} list_of tf port identifiers
| output tf_data typelist_of tf variable identifiers
tf_inout_declaration ::=
inout [ signing ] { packed_dimension} list_of tf_port_identifiers
| inout tf_data typelist_of tf variable identifiers
tf_ref declaration ::=
[ const ] ref tf_data typelist_of tf variable identifiers

tf_data_type ::=
data type
| chandle
lifetime ::= static | automatic /l from Annex A.2.1
signing ::=signed | unsigned [/l from Annex A.2.2.1

Syntax 10-1—Task syntax (excerpt from Annex A)

A Verilog task declaration either has the forma arguments in parentheses (like ANSI C) or in declarations and
directions.

task mytaskl (output int x, input logic y);
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endtask
task mytask2;
output x;
input vy;
int x;
logic vy;
endééék
Each forma argument has one of the following directions:
input // copy valuein at beginning
output // copy value out at end
inout // copy in at beginning and out at end
ref /I pass reference (see Section 10.5.2)
With SystemVerilog, there is a default direction of input if no direction has been specified. Once a direction

is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs.

task mytask3(a, b, output logic [15:0] u, v);

endtask
Each formal argument also has a data type which can be explicitly declared or can inherit a default type. The
task argument default type in SystemVerilog is logic.

SystemVerilog allows an array to be specified asaformal argument to atask. For example:

// the resultant declaration of b is input [3:0] [7:0] b[3:0]
task mytask4 (input [3:0] [7:0] a, b[3:0], output [3:0][7:0] y[1:0]);

endé%ék
Verilog-2001 allows tasks to be declared as automatic, so that all formal arguments and local variables are
stored on the stack. SystemVerilog extends this capability by allowing specific formal arguments and local

variablesto be declared as automatic within astatic task, or by declaring specific formal arguments and local
variables as static within an automatic task.

With SystemVerilog, multiple statements can be written between the task declaration and endtask, which
means that the begin .... end can be omitted. If begin .... end is omitted, statements are executed sequen-
tialy, the same asif they were enclosed in abegin .... end group. It shall also be legal to have no statements at
all.

In Verilog, atask exits when the endtask is reached. With SystemVerilog, the return statement can be used to
exit the task before the endtask keyword.
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10.3 Functions

function_data type®::= [/ from Annex A.2.6
integer_vector_type { packed_dimension} [ range]
| integer_atom_type
| type_declaration_identifier { packed dimension }
| non_integer_type
| struct [packed ] {{ struct_union_member } } { packed_dimension }
| union [ packed ] { { struct_union_member } } { packed_dimension}
| enum [ integer_type { packed dimension} ]
{ enum_identifier [ = constant_expression] { , enum_identifier [ = constant_expression] } }
| string
| chandle
| void
function_body_declaration ::=
[ signing] [ range_or_type]
[ interface identifier . ] function_identifier ;
{ function_item_declaration }
{ function_statement_or_null }
endfunction [ : function_identifier ]
| [ signing] [ range_or_type]
[ interface identifier . ] function_identifier (function_port_list) ;
{ block_item declaration }
{ function_statement_or_null }
endfunction [ : function_identifier ]

function_declaration ::=
function [ lifetime] function_body_declaration
function_item_declaration ::=
block_item_declaration
| { attribute_instance} tf_input_declaration ;
| { attribute instance} tf_output_declaration ;
| { attribute_instance} tf_inout_declaration ;
| { attribute instance} tf_ref declaration ;
function_port_item ::=
{ attribute_instance} tf_input_declaration
| { attribute_instance} tf_output_declaration
| { attribute_instance} tf_inout_declaration
| { attribute_instance} tf_ref declaration
| { attribute_instance} port_typelist_of_tf_port_identifiers
| { attribute_instance} tf_data typelist_of _tf variable identifiers
function_port_list ::= function_port_item{ , function_port_item}
range_or_type::=
{ packed_dimension } range
| function_data type

lifetime ::= static | automatic [/l from Annex A.2.1
signing ::=signed | unsigned I/l from Annex A.2.2.1

Syntax 10-2—Function syntax (excerpt from Annex A)
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A Verilog function declaration either has the formal argumentsin parentheses (like ANSI C) or in declarations
and directions:

function logic [15:0] myfuncl (int x, int y);
endfunction

function logic [15:0] myfunc2;
input int x;
input int y;
endfunction
SystemVerilog extends Verilog functions to allow the same formal arguments as tasks. Function argument
directions are:
input // copy valuein at beginning
output // copy value out at end
inout // copy in at beginning and out at end
ref /I pass reference (see Section 10.5.2)
Function declarations default to the formal direction input if no direction has been specified. Once adirection

is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs:

function logic [15:0] myfunc3 (int a, int b, output logic [15:0] u, Vv);
endfunction

Each forma argument has a data type which can be explicitly declared or can inherit a default type. The
default type in SystemVerilog is Logic, which is compatible with Verilog. SystemVerilog allows an array to
be specified as aformal argument to afunction, for example:

function [3:0] [7:0] myfunc4 (input [3:0] [7:0] a, b[3:0]);
endfunction

SystemVerilog allows multiple statements to be written between the function header and endfunction,
which means that the begin...end can be omitted. If the begin...end is omitted, statements are executed
sequentially, as if they were enclosed in abegin...end group. It is also legal to have no statements at al, in
which case the function returns the current value of the implicit variable that has the same name as the func-
tion.

10.3.1 Void functions

In Verilog, functions must return values. The return value is specified by assigning a value to the name of the
function.

function [15:0] myfuncl (input foo) ;
myfuncl = 16'hbeef; //return value is assigned to function name
endfunction

SystemVerilog allows functions to be declared as type void, which do not have a return value. For non-void
functions, avalue can be returned by assigning the function nameto avalue, asin Verilog, or by using return
with avalue. The return statement shall override any value assigned to the function name. When the return
statement is used, non-void functions must specify an expression with the return.

function [15:0] myfunc2 (input foo) ;
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return 16’hbeef; //return value is specified using return statement
endfunction

In SystemVerilog, afunction return can be a structure or union. In this case, a hierarchical name used inside the
function and beginning with the function name is interpreted as a member of the return value. If the function
name is used outside the function, the name indicates the scope of the whole function. If the function nameis
used within a hierarchical name, it a so indicates the scope of the whole function.
Function calls are expressions unless of type void, which are statements:

a = b + myfuncl(c, d); //call myfuncl (defined above) as an expression

myprint (a); //call myprint (defined below) as a statement

function void myprint (int a);

endfunction
10.3.2 Discarding function return values
In Verilog-2001, values returned by functions must be assigned or used in an expression. Calling afunction as
if it has no return value can result in awarning message. SystemVerilog allows using the void datatypeto dis-

card afunction’s return value, which is done by casting the function to the void type:

void’ (some_function()) ;

10.4 Task and function scope and lifetime

In Verilog-2001, the default lifetime for tasks and functions is static. Automatic tasks and functions must be
explicitly declared, using the automatic keyword.

SystemVerilog adds an optional qualifier to specify the default lifetime of al tasks and functions declared
within a module, interface or program (see Section 16). The lifetime qualifier isautomatic or static. The
default lifetimeis static.

program automatic test ;
task foo( int a ); // arguments and variables in foo are automatic
endtask

endmodule

Class methods are by default automatic, regardiess of the lifetime attribute of the scope in which they are
declared. Classes are discussed in Section 11.

10.5 Task and function argument passing

SystemVerilog provides two means for passing arguments to functions and tasks: by value and by reference.
Arguments can also be passed by name as well as by position. Task and function arguments can also be given
default values, allowing the call to the task or function to not pass arguments.

10.5.1 Pass by value

Pass by value is the default mechanism for passing arguments to subroutines, it is also the only one provided
by Verilog-2001. This argument passing mechanism works by copying each argument into the subroutine area.
If the subroutine is automatic, then the subroutine retains alocal copy of the argumentsin its stack. If the argu-
ments are changed within the subroutine, the changes are not visible outside the subroutine. When the argu-
ments are large, it can be undesirable to copy the arguments. Also, programs sometimes need to share a
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common piece of datathat is not declared global.
For example, calling the function bellow copies 1000 bytes each time the call is made.

function int crc( byte packet [1000:1] );
for( int j= 0 1; j <= 1000; j++ ) begin
crc “= packet[jl;
end
endfunction

10.5.2 Pass by reference

Arguments passed by reference are not copied into the subroutine area, rather, areference to the original argu-
ment is passed to the subroutine. The subroutine can then access the argument data via the reference. To indi-
cate argument passing by reference, the argument declaration is preceded by the ref keyword. The genera
syntax is.

subroutine ( ref type argument ) ;
For example, the example above can be written as:

function int crc( ref byte packet [1000:1] );
for( int j= 1; j <= 1000; j++ ) begin
crc “= packet[jl;
end
endfunction

Note that in the example, no change other than addition of the ref keyword is needed. The compiler knows
that packet isnow addressed via areference, but users do not need to make these references explicit either in
the callee or at the point of the call. That is, the call to either version of the crc function remains the same:

byte packet1[1000:1];
int k = crc( packetl ); // pass by value or by reference: call is the same

When the argument is passed by reference, both the caller and the subroutine share the same representation of
the argument, so any changes made to the argument either within the caller or the subroutine shall be visible to
each other. The semantics of assignments to variables passed by reference is that changes are seen outside the
subroutine immediately (before the subroutine returns). Only variables, not nets, can be passed by reference.

Arguments passed by reference must match exactly, no promotion, conversion, or auto-casting is possible
when passing arguments by reference. In particular, array arguments must match their type and all dimensions
exactly. Fixed-size arrays cannot be mixed with dynamic arrays and vice-versa.

Passing an argument by reference is a unique argument passing qualifier, different from input, output, or
inout. Combining ref with any other qualifier isillegal. For example, the following declaration resultsin a
compiler error:

task incr( ref input int a ); // incorrect: ref cannot be qualified

A ref argument is similar to an inout argument except that an inout argument is copied twice: once from
the actual into the argument when the subroutine is called and once from the argument into the actual when the
subroutine returns. Passing object handles are no exception and have similar semantics when passed asre£ or
inout arguments, thus, aref of an object handle allows changes to the object handle (for example assigning
anew object) in addition to modification of the contents of the object.

To protect arguments passed by reference from being modified by a subroutine, the const qualifier can be used
together with ref to indicate that the argument, although passed by reference, is aread-only variable.

task show ( const ref byte [] data );
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for ( int j = 0; j < data.size ; j++ )
$display( datalj]l ); // data can be read but not written
endtask

When the formal argument is declared asa const ref, the subroutine cannot alter the variable, and an attempt
to do so shall generate compiler error.

10.5.3 Default argument values

To handle common cases or allow for unused arguments, SystemVerilog alows a subroutine declaration to
specify adefault value for each singular argument.

The syntax to declare a default argument in a subroutineis:
subroutine( type argument = default value );

The default value isany expression that isvisible at the current scope. It can include any combination of
constants or variables visible at the scope of both the caller and the subroutine.

When the subroutine is called, arguments with default values can be omitted from the call and the compiler
shall insert their corresponding values. Unspecified (or empty) arguments can be used as placeholders for
default arguments, allowing the use of non-consecutive default arguments. If an unspecified argument is used
for an argument that does not have a default value, a compiler error shall be issued.

task read(int j = 0, int k, int data = 1 );

endtask;
This example declares atask read () with two default arguments, § and data. The task can then be called
using various default arguments:

read( , 5 ); // is equivalent to read(
read( 2, 5 ); // is equivalent to read(
read( , 5, ); // is equivalent to read(
read( , 5, 7 ); // is equivalent to read(
read( 1, 5, 2 ); // is equivalent to read( 1, 5,
read( ) ; // error; k has no default value

’

’

’

o o N o

’

NG RR R
- — — — —

10.5.4 Argument passing by name
SystemVerilog alows arguments to tasks and functions to be passed by name as well as by position. This
alows specifying non-consecutive default arguments and easily specifying the argument to be passed at the
call. For example:

function int fun( int j = 1, string s = "no" );

endfunction

The fun function can be called as follows:

fun( .j(2), .s("yes") ); // fun( 2, "yes" );
fun( .s("yes") ); // fun( 1, "yes" );
fun( , "yes" ); // fun( 1, "yes" );
fun( .j(2) ); // fun( 2, "no" );
fun( 2 ); // fun( 2, "no" );
fun( ) ; // fun( 1, "no" );

If the arguments have default values, they are treated like parameters to module instances. If the arguments do
not have a default, then they must be given or the compiler shall issue an error.

Copyright 2003 Accellera. All rights reserved. 75



Accellera
SystemVerilog 3.1/draft 6 Extensions to Verilog-2001

If both positional and named arguments are specified in a single subroutine call, then all the positiona argu-
ments must come before the named arguments. Then, using the same example as above:

// illegal

fun( .s("yes"), 2 )
") // OK

fun( 2, .s("yes") );
10.5.5 Optional argument list

When atask or function specifies no arguments, the empty parenthesis, (), following the task/function name
shall be optional. This is aso true for tasks or functions that require arguments, when al arguments have
defaults specified.

10.6 Import and export functions

The syntax for the import and export of functionsis:

dpi_import_export ::= [/l from Annex A.2.6
import " DPI" [ dpi_import_property ] [ c_identifier =] dpi_function_proto
| export " DPI" [ c_identifier =] function function_identifier
dpi_import_property ::= context | pure
dpi_function_proto ::=
named_function_proto
| [ signing ] function_data type function_identifier ( list_of dpi_proto_formals)
list_of dpi_proto formals::=
[ { attribute_instance} dpi_proto_formal { , { attribute instance} dpi_proto_formal } ]
dpi_proto_formal ::=
data type[ port_identifier dpi_dimension{ , port_identifier dpi_dimension} ]

Syntax 10-3—Import and export syntax (excerpt from Annex A)

In both import and export, C identifier is the name of the foreign function (import/export),
function_identifier is the SystemVerilog name for the same function. If c_identifier is not explicitly given, it
shall be the same as the SystemVerilog function function_identifier. An error shall be generated if and only if
the c_identifier has characters that are not valid in a C function identifier.

Several SystemVerilog functions can be mapped to the same foreign function by supplying the same
c_identifier for severa fnames. Note that all these SystemVerilog functions must have identical argument
types, as defined in the next paragraph.

For any given c_identifier, al declarations, regardless of scope, must have exactly the same function signature.
The function signature includes the return type, the number, order, direction and types of each and every argu-
ment. Each type includes dimensions and bounds of any arrays/array dimensions. For import declarations,
arguments can be open arrays. Open arrays are defined in Section 26.4.6.1. The signature aso includes the
pure/context qualifiersthat can be associated with an import definition.

Only one import Or export declaration of a given function_identifier shall be permitted in any given scope.
More specifically, for an import, the import must be the sole declaration of function_identifier in the given
scope. For an export, the function must be declared in the scope where the export occurs and there must be
only one export of that function_identifier in that scope.

For exported functions, the exported function must be declared in the same scope that contains the export

"pp1" declaration. Only SystemVerilog functions can be exported (specifically, this excludes exporting a class
method)
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Note that import "DPI" functions declared thisway can beinvoked by hierarchical reference the same as any
normal SystemVerilog function. Declaring a SystemVerilog function to be exported does not change the
semantics or behavior of this function from the SystemVerilog perspective (i.e. there is no effect in SystemVer-
ilog usage other than making this exported function also accessible to C callers).

Only non-void functions with no output or inout arguments can be specified as pure. Functions specified
aspureintheir corresponding SystemVerilog external declarations shall have no side effects; their results need
to depend solely on the values of their input arguments. Calls to such functions can be removed by SystemVer-
ilog compiler optimizations or replaced with the values previously computed for the same values of the input
arguments.

Specifically, a pure function is assumed to not directly or indirectly (i.e., by caling other functions):
— Perform any file operations

— Read or write anything in the broadest possible meaning, including I/O, environment variables, objects
from the operating system, or from the program or other processes, shared memory, sockets, etc.

— Access any persistent data, like global or static variables.

If a pure function does not obey the above restrictions, SystemVerilog compiler optimizations can lead to
unexpected behavior, due to eliminated calls or incorrect results being used.

An unqualified imported function can have side effects but cannot read or modify any SystemVerilog signals
other than those provided through its arguments. Unqualified imports shall not be permitted to invoke exported
SystemVerilog functions.

Imported functions with the context qualifier can invoke exported SystemVerilog functions, can read or
write to SystemVerilog signals other than those passed through their arguments, either through the use of other
interfaces or as a side effect of invoking exported SystemVerilog functions. Context functions shall aways
implicitly be supplied a scope representing the fully qualified instance name within which the import declara-
tion was present (i.e. an import function always runsin the instance in which the import declaration occurred).
This is the same semantics as SystemVerilog functions, which also run in the scope they are defined, rather
than in the scope of the caller.

Import context functions can have side effects and can use other SystemVerilog interfaces (including but not
limited to VPI). However, note that declaring an import context function does not automatically make any
other simulator interface available. For VPl access (or any other interface access) to be possible, the appropri-
ate implementation-defined mechanism must still be used to enable these interface(s). Note also that DPI calls
do not automatically create or provide any handles or any special environment that might be needed by those
other interfaces. It shall be the user’s responsibility to create, manage or otherwise manipulate the required
handles/environment(s) needed by the other interfaces. The svGetScopeName () and related functions exist
to provide a name based linkage from DPI to other interfaces. Exported functions can only be invoked if the
current DPI context refers to an instance in which the named function is defined.

To access functions defined in any other scope, including $root, the foreign code shall have to change DPI
context appropriately. Attempting to invoke an exported SystemVerilog function from a scope in which it is
not directly visible shall result in aruntime error. How such errors are handled shall be implementation depen-
dent. If an imported function needs to invoke an exported function that is not visible from the current scope, it
needs to change, via svSetScope, the current scope to a scope that does have visibility to the exported function.
This is conceptually equivalent to making a hierarchically qualified function call in SystemVerilog. The cur-
rent SystemVerilog context shall be preserved across a call to an exported function, even if current context has
been modified by an application. Note that context is not defined for non-context imports and attempting to
use any functionality depending on context from non-context imports can lead to unpredictable behavior.
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Section 11
Classes

11.1 Introduction (informative)

SystemVerilog introduces an object-oriented class data abstraction. Classes allow objects to be dynamically
created, deleted, assigned, and accessed via object handles. Object handles provide a safe pointer-like mecha-
nism to the language. Classes offer inheritance and abstract type modeling, which brings the advantages of C
function pointers with none of the type-safety problems, thus, bringing true polymorphism into Verilog.

11.2 Syntax

class declaration ::= [/ from Annex A.1.3
{ attribute_instance} [ virtual ] class|[ lifetime] class identifier [ parameter_port_list ]
[ extendsclass identifier ] ; [ timeunits_declaration] { class item}
endclass| : class _identifier]
class item::= [/ from Annex A.1.8
{ attribute_instance} class property
| { attribute_instance} class_ method
| { attribute_instance} class _constraint
class_property ::=
{ property_qualifier } data_declaration
| const { class item_qualifier } data type const_identifier [ = constant_expression ] ;
class method ::=
{ method_qualifier } task_declaration
| { method_qualifier } function_declaration
| extern { method_qualifier } method_prototype

class_congtraint ::=
constraint_prototype
| constraint_declaration

class item_quaifier'! ::=
static
| protected
| local

property_qualifiert ::=
rand
| randc
| class_item_qualifier

method_qualifier ::=
virtual
| class_item_qualifier
method_prototype ::=
task named _task_proto ;
| function named_function_proto ;

extern_method_declaration ::=
function [ lifetime] class_identifier :: function_body_declaration
| task [ lifetime] class_identifier :: task_body_declaration
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Syntax 11-1—Class syntax (excerpt from Annex A)

11.3 Overview

A classis atype that includes data and subroutines (functions and tasks) that operate on that data. A class's
data is referred to as properties, and its subroutines are called methods, both are members of the class. The
properties and methods, taken together, define the contents and capabilities of some kind of object.

For example, a packet might be an object. It might have a command field, an address, a sequence number, a
time stamp, and a packet payload. In addition, there are various things than can be done with a packet: initial-
ize the packet, set the command, read the packet’s status, or check the sequence number. Each Packet is differ-
ent, but as a class, packets have certain intrinsic properties that can be captured in a definition.

class Packet ;
//data or class properties
bit [3:0] command;
bit [40:0] address;
bit [4:0] master_ id;
integer time requested;
integer time issued;
integer status;

// initialization

function new() ;
command = IDLE;
address = 41'Db0;
master id = 5’bx;

endfunction

// methods
// public access entry points
task clean() ;
command = 0; address = 0; master id = 5’bx;
endtask

task issue request( int delay );
// send request to bus
endtask

function integer current status();
current status = status;
endfunction
endclass

A common convention isto capitalize the first letter of the class name, so that it is easy to recognize class dec-
larations.

11.4 Objects (class instance)

A class defines adatatype. An object is an instance of that class. An object isused by first declaring avariable
of that class type (that holds an object handle) and then creating an object of that class (using the new function)
and assigning it to the variable.

Packet p; // declare a variable of class Packet
p = new; // initialize variable to a new allocated object of the class Packet

The variable p is said to hold an object handle to an object of class packet.
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Uninitialized object handles are set by default to the special value null. An uninitialized object can be
detected by comparing its handle with nul1l.

For example: Thetask task1 below checksif the object isinitialized. If itisnot, it creates a new object viathe
new command.

class obj example;
endclass

task taskl(integer a, obj example myexample) ;
if (myexample == null) myexample = new;
endtask

Accessing non-static members (Section 11.8) or virtual methods (Section 11.19) via a null object handle is
illegal. Theresult of anillegal accessviaanull object isindeterminate, and implementations can issue an error.

SystemVerilog objects are referenced using an object handle. There are some differences between a C pointer
and a SystemVerilog object handle. C pointers give programmers alot of latitude in how a pointer can be used.
The rules governing the usage of SystemVerilog object handles are much more restrictive. A C pointer can be
incremented for example, but a SystemVerilog object handle cannot. In addition to object handles, Section 3.6
introduces the chandle datatype for use with the DPI Direct Programming Interface (see Section 26).

Table 11-1: Comparison of pointer and handle types

Operation C pointer S\rfa?%jl%ct SV chandle
Arithmetic operations (such as incrementing) Allowed Not allowed | Not allowed
For arbitrary data types Allowed Not allowed | Not allowed
Dereference when null Error Not allowed | Not alowed
Casting Allowed Limited Not allowed
Assignment to an address of adata type Allowed Not allowed | Not alowed
Unreferenced objects are garbage collected No Yes Yes
Default value Undefined null null
For classes (C++) Allowed Not allowed

11.5 Object properties

The data fields of an object can be used by qualifying property names with an instance name. Using the earlier

example, the commands for the packet object p can be used as follows:

Packet p = new;

p.command = INIT;

p.address = $random;

packet time = p.time requested;

Any data-type can be declared as a class property, except for net types since they are incompatible with

dynamically alocated data.
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11.6 Object methods

An object’s methods can be accessed using the same syntax used to access properties:

new;

Packet p =
= p.current_status();

status
Note that the assignment to status ishot:
status = current_ status(p);

The focus in object-oriented programming is the object, in this case the packet, not the function call. Also,
objects are self-contained, with their own methods for manipulating their own properties. So the object doesn’t
have to be passed as an argument to current status (). A class properties are freely and broadly available
to the methods of the class, but each method only accesses the properties associated with its object, i.e., its
instance.

11.7 Constructors

SystemVerilog does not require the complex memory allocation and deallocation of C++. Construction of an
object is straightforward and garbage collection, asin Java, isimplicit and automatic. There can be no memory
leaks or other subtle behavior that is so often the bane of C++ programmers.

SystemVerilog provides a mechanism for initializing an instance at the time the object is created. When an
object is created, for example

Packet p = new;
The system executes the new function associated with the class:

class Packet;
integer command;

function new() ;
command = IDLE;
endfunction
endclass

Note that new is now being used in two very different contexts with very different semantics. The variable dec-

laration creates an object of class packet. In the course of creating this instance, the new function isinvoked,

in which any specialized initialization required can be done. The new function is also called the class construc-

tor.

The new operation is defined as a function with no return type, and like any other function, it must be non-

blocking. Even though new does not specify areturn type, the left-hand side of the assignment determines the

return type.

Every class has a default (built-in) new method. The default constructor first calls its parent class constructor

(super.new() as described in Section 11.14) and then proceeds to initialize each member of the current object

to its default (or uninitialized value).

It isalso possible to pass arguments to the constructor, which allows run-time customization of an object:
Packet p = new(STARTUP, S$random, S$time) ;

where the new initiaization task in packet might now look like:

function new(int cmd = IDLE, bit[12:0] adrs = 0, int cmd time );
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command = cmd;

address = adrs;

time requested = cmd time;
endfunction

The conventions for arguments are the same as for any other procedural subroutine calls, such as the use of
default arguments.

11.8 Static properties

The previous examples have only declared instance properties. Each instance of the class (i.e., each object of
type packet), has its own copy of each of its six variables. Sometimes only one version of a variable is
required to be shared by all instances. These class properties are created using the keyword static. Thus, for
example, in a case where all instances of a class need access to a common file descriptor:

class Packet ;
static integer filelId = S$fopen( "data", "r" );

Now, file1D shall be created and initialized once. Thereafter, every Packet object can access the file descrip-
tor in the usual way:

Packet p;
¢ = $fgetc( p.filelID );

11.9 Static methods

Methods can be declared as static. A static method is subject to all the class scoping and access rules, but
behaves like a regular subroutine that can be called outside the class, even with no class instantiation. A static
method has no access to non-static members (properties or methods), but it can directly access static class
properties or call static methods of the same class. Access to non-static members or to the specia this handle
within the body of a static method isillegal and resultsin a compiler error. Static methods cannot be virtual.

class 1id;
static int current = 0;
static function int next id();
next id = ++current; // OK to access static class property
endfunction
endclass

A static method is different from a method with static lifetime. The former refers to the lifetime of the method
within the class, while the latter refers to the lifetime of the arguments and variables within the task.

class TwoTasks;
static task foo(); ... endtask // static class method with
// automatic variable lifetime
task static bar(); ... endtask // non-static class method with
// static variable lifetime

endclass

By default, class methods have automatic lifetime for their arguments and variables.

11.10 This

The this keyword is used to unambiguously refer to properties or methods of the current instance. The this
keyword denotes a predefined object handle that refers to the object that was used to invoke the subroutine that
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this isused within. The this keyword shall only be used within non-static class methods, otherwise an error
shall be issued. For example, the following declaration is a common way to write an initialization task:

class Demo ;
integer x;

function new (integer x)
this.x = x;
endfunction
endclass

The x isnow both a property of the class and an argument to the function new. In the function new, an unqual-
ified reference to x shall be resolved by looking at the innermost scope, in this case the subroutine argument
declaration. To access the instance property, it is qualified with the this keyword, to refer to the current
instance.

Note that in writing methods, members can be qualified with this to refer to the current instance, but it is usu-
aly unnecessary.

11.11 Assignment, re-naming and copying

Declaring aclass variable only creates the name by which the object is known. Thus:
Packet pl;

creates avariable, p1, that can hold the handle of an object of class packet, but theinitial value of p1 iSnull.
The object does not exist, and p1 does not contain an actual handle, until an instance of type Packet is cre-
ated:

pl = new;
Thus, if another variable is declared and assigned the old handle, p1, to thenew one, asin:

Packet p2;
p2 = pl;

then thereis still only one object, which can be referred to with either the name p1 or p2. Note, new was exe-
cuted only once, so only one object has been created.

If, however, the example above is re-written as shown below, a copy of p1 shall be made:

Packet pl;
Packet p2;
pl = new;
p2 = new pl;

Thelast statement has new executing a second time, thus creating a new object p2, whose properties are copied
from pl. Thisisknown as a shallow copy. All of the variables are copied across: integers, strings, instance han-
dles, etc. Objects, however, are not copied, only their handles; as before, two names for the same object have
been created. Thisistrue even if the class declaration includes the instantiation operator new:

class A ;
integer j
endclass

1]
ul

class B ;
integer i
A a = new;

1]
[y
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endclass

function integer test;

B bl = new; // Create an object of class B

B b2 = new bl; // Create an object that is a copy of bl

b2.1 = 10; // 1 is changed in b2, but not in bl

b2.a.j = 50; // change a.j, shared by both bl and b2

test = bl.i; // test is set to 1 (bl.i has not changed)

test = bl.a.j; // test is set to 50 (a.j has changed)
endfunction

Several things are noteworthy. First, properties and instantiated objects can be initialized directly in a class
declaration. Second, the shallow copy does not copy objects. Third, instance qualifications can be chained as
needed to reach into objects or to reach through objects:

bl.a.j // reaches into a, which is a property of bl
p.next.next.next.val // chain through a sequence of handles to get to val

To do a full (deep) copy, where everything (including nested objects) are copied, custom code is typically
needed. For example:

Packet pl = new;
Packet p2 = new;
p2.copy(pl) ;

where copy (Packet p) is a custom method written to copy the object specified as its argument into its
instance.

11.12 Inheritance and subclasses

The previous sections defined a class called packet. This class can be extended so that the packets can be
chained together into alist. One solution would be to create a new class called LinkedPacket that containsa
variable of type Packet called packet c.

To refer to aproperty of packet, the variable packet_c needs to be referenced.

class LinkedPacket;
Packet packet c;
LinkedPacket next;

function LinkedPacket get next();
get next = next;
endfunction
endclass

Since LinkedPacket is a speciaization of packet, a more elegant solution is to extend the class creating a
new subclass that inherits the members of the parent class. Thus, for example:

class LinkedPacket extends Packet;
LinkedPacket next;

function LinkedPacket get next();
get next = next;
endfunction
endclass

Now, all of the methods and properties of Packet are part of LinkedpPacket—as if they were defined in
LinkedPacket—and LinkedPacket has additional properties and methods.
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The parent’s methods can also be overridden, changing their definitions.

The mechanism provided by SystemVerilog is called Single-Inheritance, that is, each class is derived from a
single parent class.

11.13 Overridden members

Subclass objects are also legal representative objects of their parent classes. For example, every Linked-
Packet object isaperfectly legal packet object.

The handle of aLinkedPacket Object can be assigned to a Packet variable:

LinkedPacket 1lp = new;
Packet p = 1lp;

In this case, references to p access the methods and properties of the packet class. So, for example, if proper-
ties and methods in LinkedPacket are overridden, these overridden members referred to through p get the
original members in the packet class. From p, new and all overridden members in LinkedPacket are now
hidden.

class Packet;
integer i = 1;
function integer get () ;
get = 1i;
endfunction
endclass

class LinkedPacket extends Packet;
integer i = 2;
function integer get () ;
get = -i;
endfunction
endclass

LinkedPacket 1lp = new;

Packet p = 1p;

j=p.1i; // 3 1, not 2

j =p.get(); // 3 =1, not -1 or -2

To call the overridden method via a parent class object (p in the example), the method needs to be declared
virtual (see Section 11.19).

11.14 Super

The super keyword is used from within aderived classto refer to members of the parent class. It is necessary
to use super t0 access members of a parent class when those members are overridden by the derived class.

class Packet; //parent class
integer value;
function integer delay() ;
delay = value * value;
endfunction
endclass

class LinkedPacket extends Packet; //derived class
integer value;
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function integer delay () ;
delay = super.delay()+ value * super.value;
endfunction
endclass

The member can be a member declared alevel up or be inherited by the class one level up. Thereis no way to
reach higher (for example, super. super. count isnot allowed).

Subclasses (or derived classes) are classes that are extensions of the current class. Whereas superclasses (par-

ent classes or base classes) are classes that the current class is extended from, beginning with the original base
class.

Note: When using the super within new, super .new must be the first executable statement in the constructor. Thisis

because the superclass must be initialized before the current class and if the user code doesn't provide an initialization, the
compiler shall insert acall to super . new automatically.

11.15 Casting

It is always legal to assign a subclass variable to a variable of a class higher in the inheritance tree. It is never
legal to directly assign a superclass variable to avariable of one of its subclasses. However, it islegal to assign
a superclass handle to a subclass variable if the superclass handle refers to an object of the given subclass.
To check if the assignment is legal, the dynamic cast function $cast () isused (see Section 3.15).
The syntax for $cast () is:
task S$cast( singular dest handle, singular source handle );
or
function int S$Scast( singular dest handle, singular source handle );
When used with object handles, $cast () checks the hierarchy tree (super and subclasses) of the

source_expr to seeif it contains the class of dest_handle. If it does, scast () does the assignment. Other-
wise the error handling is as described in Section 3.15.

11.16 Chaining constructors

When a subclass is instantiated, the class method new () isinvoked. The first action new () takes, before any
code defined in the function is evaluated, is to invoke the new () method of its superclass, and so on up the
inheritance hierarchy. Thus, all the constructors are caled, in the proper order, beginning with the root base
class and ending with the current class.

If the initialization method of the superclass requires arguments, there are two choices. To always supply the
same arguments, or to use the super keyword. If the arguments are always the same, then they can be speci-
fied at the time the class is extended:

class EtherPacket extends Packet (5) ;
This passes 5 to the new routine associated with packet.
A more general approach isto use the super keyword, to call the superclass constructor:

function new() ;

super.new (5) ;

endfunction

To use this approach, super .new (...) must be the first executable statement in the function new.
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11.17 Data hiding and encapsulation

So far, all class properties and methods have been made available to the outside world without restriction.
Often, it is desirable to restrict access to properties and methods from outside the class by hiding their names.
This keeps other programmers from relying on a specific implementation, and it also protects against acciden-
tal modifications to properties that are internal to the class. When all data becomes hidden—being accessed
only by public methods—testing and maintenance of the code becomes much easier.

In SystemVerilog, unqualified properties and methods are public, available to anyone who has access to the
object’s name.

A member identified as 1ocal is available only to methods inside the class. Further, these local members are
not visible within subclasses. Of course, non-local methods that access local properties or methods can be
inherited, and work properly as methods of the subclass.

A protected property or method has all of the characteristics of a 1local member, except that it can be inher-
ited; it isvisible to subclasses.

Note that within the class, alocal method or property of the class can be referenced, even if it isin a different
instance. For example:

class Packet;
local integer i;
function integer compare (Packet other);
compare = (this.i == other.i);
endfunction
endclass

A dirict interpretation of encapsulation might say that other.i should not be visible inside of this packet,
since it is alocal property being referenced from outside its instance. Within the same class, however, these
references are alowed. In thiscase, this. i shall be compared to other. i and the result of the logical com-
parison returned.

Class members can be identified as either 1ocal or protected; properties can be further defined as const,
and methods can be defined as virtual. Thereisno predefined ordering for specifying these modifiers; how-
ever, they can only appear once per member. It shall be an error to define members to be both 1ocal and
protected, Or to duplicate any of the other modifiers.

11.18 Constant Properties

Class properties can be made read-only by a const declaration like any other SystemVerilog variable. How-
ever, because class objects are dynamic objects, class properties allow two forms of read-only variables: global
constants and instance constants.

Global constant properties are those that include an initial value as part of their declaration. They are similar to
other const variablesin that they cannot be assigned a val ue anywhere other than in the declaration.

class Jumbo_Packet;
const int max size = 9 * 1024; // global constant
byte payload [];
function new( int size );
payload = new[ size > max size ? max size : size ];
endfunction
endclass

Instance constants do not include an initial value in their declaration, only the const qualifier. Thistype of con-

stant can be assigned a value at run-time, but the assignment can only be done once in the corresponding class
constructor.
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class Big Packet;
const int size; // instance constant
byte payload [];
function new() ;

size = S$random % 4096; //one assignment in new -> ok
payload = new[ size ];
endfunction
endclass

Typically, global constants are also declared static since they are the same for al instances of the class.
However, an instance constant cannot be declared static, since that would disallow al assignments in the
constructor.

11.19 Abstract classes and virtual methods

A set of classes can be created that can be viewed as all being derived from a common base class. For example,
acommon base class of type BasePacket that sets out the structure of packets but isincomplete would never
be instantiated. From this base class, though, a number of useful subclasses could be derived, such as Ethernet
packets, token ring packets, GPSS packets, satellite packets. Each of these packets might look very similar, all
needing the same set of methods, but they could vary significantly in terms of their internal details.

A base class sets out the prototype for the subclasses. Since the base class is not intended to be instantiated, it
can be made abstract by specifying the classto be virtual:

virtual class BasePacket;

Abstract classes can aso have virtual methods. Virtual methods provide prototypes for subroutines, al of the
information generally found on the first line of a method declaration: the encapsulation criteria, the type and
number of arguments, and the return type if it is needed. Later, when subclasses override virtual methods, they
must follow the prototype exactly. Thus, all versions of the virtual method look identical in all subclasses:

virtual class BasePacket;
virtual protected function integer send(bit[31:0] data);
endfunction

endclass

class EtherPacket extends BasePacket;
protected function integer send(bit[31:0] data);
// body of the function

endfunction
endclass

EtherPacket is now a class that can be instantiated. In general, if an abstract class has any virtual methods, all
of the methods must be overridden (and provided with a method body) for the subclass to be instantiated. If
any virtual methods have no implementation, the subclass needs to be abstract.

An abstract class can contain methods for which there is only a prototype and no implementation (i.e., an
incomplete class). An abstract class cannot be instantiated, it can only be derived. Methods of normal classes

can also be declared virtual. In this case, the method must have a body. If the method does have a body, then
the class can be instantiated, as can its subclasses.

11.20 Polymorphism: dynamic method lookup

Polymorphism allows the use of a variable in the superclass to hold subclass objects, and to reference the
methods of those subclasses directly from the superclass variable. As an example, assume the base class for the
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Packet Objects, BasePacket defines, as virtual functions, al of the public methods that are to be generally
used by its subclasses, methods such as send, receive, print, etc. Even though Basepracket is abstract, it can
still be used to declare avariable:

BasePacket packets[100];

Now, instances of various packet objects can be created, and put into the array:

EtherPacket ep = new; // extends BasePacket
TokenPacket tp = new; // extends BasePacket

GPSSPacket gp = new; // extends EtherPacket
packets[0] = ep;
packets[1] = tp;

packets[2] = gp;

If the datatypes were, for example, integers, bits and strings, all of these types could not be stored into asingle
array, but with polymorphism, it can be done. In this example, since the methods were declared as virtual,
the appropriate subclass methods can be accessed from the superclass variable, even though the compiler
didn’t know—at compile time—what was going to be loaded into it.

For example, packets [1]:
packets[1] .send () ;

shall invoke the send method associated with the TokenPacket class. At run-time, the system correctly binds
the method from the appropriate class.

Thisisatypical example of polymorphism at work, providing capabilitiesthat are far more powerful than what
is found in a non-object-oriented framework.

11.21 Class scope resolution operator ::

The class scope operator : : is used to specify an identifier defined within the scope of a class. It has the fol-
lowing form:

class identifier :: { class identifier :: } identifier
Identifiers on the left side of the scope-resolution operator (: :) can be only class names.

Because classes and other scopes can have the same identifiers, the scope resolution operator uniquely identi-
fies amember of a particular class. In addition, to disambiguating class scope identifiers, the : : operator also
alows access to static members (properties and methods) from outside the class, as well as access to public or
protected elements of a super-classes from within the derived classes.

class Base;

typedef enum {bin,oct,dec,hex} radix;

static task print( radix r, integer n ); ... endtask
endclass

Base b = new;

int bin = 123;

b.print ( Base::bin, bin ); // Base::bin and bin are different
Base: :print ( Base::hex, 66 );

In SystemVerilog, the class scope operator appliesto al static elements of a class: static class properties, static
methods, typedefs, enumerations, structures, unions, and nested class declarations. Class-scope resolved
expressions can beread (in expressions), written (in assignments or subroutines calls) or triggered off (in event
expressions). They can aso be used as the name of atype or amethod call.
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Like modules, classes are scopes and can nest. Nesting allows hiding of local names and local alocation of
resources. Thisis often desirable when anew typeis needed as part of the implementation of aclass. Declaring
types within a class helps prevent name collisions, and cluttering the outer scope with symbols that are used
only by that class. Type declarations nested inside a class scope are public and can be accessed outside the
class.

class StringlList;
class Node; // Nested class for a node in a linked list.
string name;
Node 1link;
endclass
endclass

class StringTree;
class Node; // Nested class for a node in a binary tree.
string name;
Node left, right;
endclass
endclass
// StringList::Node is different from StringTree: :Node

The scope resol ution operator enables:
— Access to static public members (methods and properties) from outside the class hierarchy.
— Accessto public or protected class members of a super-class from within the derived classes.

— Acecess to type declarations and enumeration |abels declared inside the class from outside the class hierar-
chy or from within derived classes.

11.22 Out of block declarations

It is convenient to be able to move method definitions out of the body of the class declaration. Thisisdonein
two steps. Declare, within the class body, the method prototypes—whether it is afunction or task, any qualifi-
ers (local, protected Or virtual), and the full argument specification plus the extern qualifier. The
extern qualifier indicates that the body of the method (its implementation) is to be found outside the declara-
tion. Then, outside the class declaration, declare the full method—Ilike the prototype but without the qualifi-
ers—and, to tie the method back to its class, qualify the method name with the class name and a pair of colons:

class Packet;
Packet next;
function Packet get_next();// single line
get next = next;
endfunction

// out-of-body (extern) declaration
extern protected virtual function int send(int value) ;
endclass

function int Packet::send(int value) ;
// dropped protected virtual, added Packet::
// body of method

endfunction

The out of block method declaration must match the prototype declaration exactly; the only syntactical differ-
ence is that the method name is preceded by the class name and scope operator (: :).
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11.23 Parameterized classes

It is often useful to define a generic class whose objects can be instantiated to have different array sizes or data
types. This avoids writing similar code for each size or type, and alows a single specification to be used for
objects that are fundamentally different, and (like atemplated class in C++) not interchangeable.

The normal Verilog parameter mechanism is used to parameterize a class:

class vector #(parameter int size = 1;);
bit [size-1:0] a;
endclass

Instances of this class can then be instantiated like modules or interfaces:
vector #(10) vten; // object with vector of size 10
vector #(.size(2)) vtwo; // object with vector of size 2

typedef vector#(4) Vfour; // Class with vector of size 4

Thisfeature is particularly useful when using types as parameters:

class stack #(parameter type T = int;);
local T items]|[];
task push( T a ); ... endtask
task pop( ref T a ); ... endtask
endclass

The above class defines a generic stack class that can be instantiated with any arbitrary type:

stack is; // default: a stack of int’s
stack#(bit[1:10]) bs; // a stack of 10-bit vector
stack# (real) rs; // a stack of real numbers

Any type can be supplied as a parameter, including a user-defined type such asaclass Or struct.

The combination of a generic class and the actual parameter valuesis called a speciaization (or variant). Each
specialization of a class has a separate set of static member variables (thisis consistent with C++ templated
classes). To share static member variables among severa class specializations, they must be placed in a non-
parameterized base class.

class vector #(parameter int size = 1;);
bit [size-1:0] a;
static int count = 0;

function void disp count () ;
Sdisplay( "count: %d of size %d", count, size );
endfunction
endclass

The variable count in the example above can only be accessed by the corresponding disp_count method.
Each specialization of the class vector hasits own unique copy of count.

To avoid having to repeat the specialization either in the declaration or to create parameters of that type, a
typedef should be used:

typedef vector#(4) Vfour;

typedef stack# (Vfour) Stack4;
Stack4 sl1, s2; // declare objects of type Stack4
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11.24 Typedef class

Sometimes a class variable needs to be declared before the class itself has been declared. For example, if two
classes each need a handle to the other. When, in the course of processing the declaration for the first class, the
compiler encounters the reference to the second class, that reference is undefined and the compiler flags it as
an error.

Thisisresolved using typedef to provide aforward declaration for the second class:

typedef class C2; // C2 is declared to be of type class
class C1
C2 c;
endclass
class C2
Cl c;
endclass

In thisexample, c2 isdeclared to be of type c1lass, afact that is re-enforced later in the source code. Note that
the class construct always creates a type, and does not require a typede£ declaration for that purpose (asin
typedef class ...). Thisisconsistent with common C++ use.

Note that the class keyword in the statement typedef class C2; ishot necessary, and is used only for
documentation purposes. The statement typedef c2; isequivalent and shall work the same way.

11.25 Classes, structures, and unions

SystemVerilog adds the object-oriented class construct. On the surface, it might appear that class and
struct provide equivalent functionality, and only one of them is needed. However, that isnot true; c1ass dif-
fersfrom struct in four fundamenta ways:

1) SystemVerilog struct are strictly static objects; they are created either in a static memory location
(global or module scope) or on the stack of an automatic task. Conversely, SystemVerilog objects (i.e.,
classinstances) are exclusively dynamic, their declaration doesn't create the object; that is done by calling
new.

2) SystemVerilog structs are type compatible so long as their bit sizes are the same, thus copying structs of
different composition but equal sizes is allowed. In contrast, SystemVerilog objects are strictly strongly-
typed. Copying an object of one type onto an object of another is not allowed.

3) SystemVerilog objects are implemented using handles, thereby providing C-like pointer functionality. But,
SystemVerilog disallows casting handles onto other data types, thus, unlike C, SystemVerilog handles are
guaranteed to be safe.

4) SystemVerilog objects form the basis of an Object-Oriented data abstraction that provides true
polymorphism. Class inheritance, abstract classes, and dynamic casting are powerful mechanisms that go
way beyond the mere encapsulation mechanism provided by structs.

11.26 Memory management

Memory for objects, strings, and dynamic and associative arrays is alocated dynamically. When objects are
created, SystemVerilog allocates more memory. When an object is no longer needed, SystemVerilog automati-
cally reclaims the memory, making it available for re-use. The automatic memory management system is an
integral part of SystemVerilog. Without automatic memory management, SystemVerilog's multi-threaded, re-
entrant environment creates many opportunities for users to run into problems. A manual memory manage-
ment system, such as the one provided by C'smalloc and free, would not be sufficient.

For example, consider the following example:
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myClass obj = new;

fork
taskl( obj );
task2( obj );

join_ none

In this example, the main process (the one that forks off the two tasks) does not know when the two processes
might be done using the object obj. Similarly, neither task1 nor task2 knowswhen any of the other two pro-
cesses will no longer be using the object ob7. It is evident from this simple example that no single process has
enough information to determine when it is safe to free the object. The only two options available to the user
are (1) play it safe and never reclaim the object, or (2) add some form of reference count that can be used to
determine when it might be safe to reclaim the object. Adopting the first option can cause the system to
quickly run out of memory. The second option places a large burden on users, who, in addition to managing
their testbench, must also manage the memory using less than idea schemes. To avoid these shortcomings,
SystemVerilog manages al dynamic memory automatically. Users do not need to worry about dangling refer-
ences, premature deallocation, or memory leaks. The system shall automatically reclaim any object that is no
longer being used. In the example above, al that users do is assign null to the handle obj when they no
longer need it. Similarly, when an object goes out of scope the system implicitly assignsnull to the object.
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Section 12
Random Constraints

12.1 Introduction (informative)

Constraint-driven test generation allows users to automatically generate tests for functional verification. Ran-
dom testing can be more effective than atraditional, directed testing approach. By specifying constraints, one
can easily create tests that can find hard-to-reach corner cases. SystemVerilog allows users to specify con-
straints in a compact, declarative way. The constraints are then processed by a solver that generates random
values that meet the constraints.

The random constraints are built on top of an object oriented data abstraction.that models the data to be ran-
domized as objects that contain random variables and user-defined constraints. The constraints determine the
legal values that can be assigned to the random variables. Objects are ideal for representing complex aggregate
data types and protocols such as Ethernet packets.

Section 12.2 provides an overview of object-based randomization and constraint programming. Therest of this
section provides detailed information on random variables, constraint blocks, and the mechanisms used to
manipulate them.

12.2 Overview

This section introduces the basic concepts and uses for generating random stimulus within objects. SystemVer-
ilog uses an object-oriented method for assigning random values to the member variables of an object, subject
to user-defined constraints. For example:

class Bus;
rand bit[15:0] addr;
rand bit[31:0] data;

constraint word align {addr[1:0] == 2'Db0;}
endclass

The Bus class models a simplified bus with two random variables: addr and data, representing the address
and data values on abus. The word align constraint declares that the random values for addr must be such
that addr isword-aigned (the low-order 2 bits are 0).

The randomize () method iscalled to generate new random values for a bus object:
Bus bus = new;

repeat (50) begin
if ( bus.randomize() == 1
Sdisplay ("addr = %16h
else
$display ("Randomization failed.\n");

Q —

ata = %h\n", bus.addr, bus.data);

end

Calling randomize () causes new values to be selected for al of the random variables in an object such that
all of the constraints are true (satisfied). In the program test above, abus object is created and then randomized
50 times. The result of each randomization is checked for success. If the randomization succeeds, the new ran-
dom values for addr and data are printed; if the randomization fails, an error message is printed. In this
example, only the addr value is constrained, while the data value is unconstrained. Unconstrained variables
are assigned any value in their declared range.

Constraint programming is a powerful method that lets users build generic, reusable objects that can later be
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extended or constrained to perform specific functions. The approach differs from both traditional procedural
and object-oriented programming, asillustrated in this example that extends the Bus class:

typedef enum {low, mid, high} AddrType;

class MyBus extends Bus;
rand AddrType atype;
constraint addr_range

{

(atype == low ) => addr inside { [0 : 15] };
(atype == mid ) => addr inside { [16 : 127]};
(atype == high) => addr inside {[128 : 255]};
}
endclass

ThemyBus class inherits al of the random variables and constraints of the Bus class, and adds a random vari-
able called atype that is used to control the address range using another constraint. The addr range con-
straint uses implication to select one of three range constraints depending on the random value of atype.
When amMyBus object israndomized, valuesfor addr, data, and atype are computed such that all of the con-
straints are satisfied. Using inheritance to build layered constraint systems enables the devel opment of general-
purpose models that can be constrained to perform application-specific functions.

Objects can be further constrained using the randomize () with construct, which declares additional con-
straintsin-line with the call t0 randomize ():

task exercise bus (MyBus bus) ;
int res;

// EXAMPLE 1: restrict to small addresses
res = bus.randomize() with {atype == small;};

// EXAMPLE 2: restrict to address between 10 and 20
res = bus.randomize () with {10 <= addr && addr <= 20;};

// EXAMPLE 3: restrict data values to powers-of-two
res = bus.randomize() with {data & (data - 1) == 0;};
endtask

This exampleillustrates several important properties of constraints:

— Constraints can be any SystemVerilog expression with variables and constants of integral type (bit, reg,
logic, integer, enum, packed struct,ﬁC)

— The constraint solver must be able to handle a wide spectrum of equations, such as algebraic factoring,
complex boolean expressions, and mixed integer and bit expressions. In the example above, the power-of-
two constraint was expressed arithmetically. It could have also been defined with expressions using a shift
operator. For example, 1 << n, wheren isa5-bit random variable.

— If asolution exists, the constraint solver must find it. The solver can fail only when the problem is over-
constrained and there is no combination of random values that satisfy the constraints.

— Constraintsinteract bidirectionally. In this example, the value chosen for addr depends on atype and how
it is constrained, and the value chosen for atype depends on addr and how it is constrained. All expres-
sion operators are treated bidirectionally, including the implication operator (=>).

Sometimes it is desirable to disable constraints on random variables. For example, to deliberately generate an
illegal address (non-word aligned):

task exercise illegal (MyBus bus, int cycles);
int res;
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// Disable word alignment constraint.
bus.word align.constraint mode (0) ;

repeat (cycles) begin

// CASE 1: restrict to small addresses.
res = bus.randomize() with {addr[0] || addr([1];};

end

// Re-enable word alignment constraint
bus.word_align.constraint_mode (1) ;
endtask

The constraint mode () method can be used to enable or disable any named constraint block in an object.
In this example, the word-alignment constraint is disabled, and the object is then randomized with additional
constraints forcing the low-order address bits to be non-zero (and thus unaligned).

The ahility to enable or disable constraints allows users to design constraint hierarchies. In these hierarchies,
the lowest level constraints can represent physical limits grouped by common properties into named constraint
blocks, which can be independently enabled or disabled.

Similarly, the rand_mode () method can be used to enable or disable any random variable. When a random
variable is disabled, it behaves in exactly the same way as other nonrandom variables.

Occasiondly, it is desirable to perform operations immediately before or after randomization. That is accom-
plished via two built-in methods, pre randomize () and post randomize (), wWhich are automatically
called before and after randomization. These methods can be overloaded with the desired functionality:

class XYPair;
rand integer x, y;
endclass

class MyYXPair extends XYPair
function void pre randomize() ;
super.pre randomize() ;
Sdisplay ("Before randomize x=%0d, y=%04", x, vy);
endfunction

function void post randomize() ;
super.post randomize () ;
Sdisplay ("After randomize x=%0d, y=%04", x, V);
endfunction
endclass

By default, pre randomize () and post_randomize () call their overloaded parent class methods. When
pre_randomize() OF post_ randomize () are overloaded, care must be taken to invoke the parent class
methods, unless the class is a base class (has no parent class), otherwise the base class methods shall not be
called.

The random stimulus generation capabilities and the object-oriented constraint-based verification methodol-
ogy enable usersto quickly develop teststhat cover complex functionality and better assure design correctness.

12.3 Random variables

Class variables can be declared random using the rand and randc type-modifier keywords.
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The syntax to declare arandom variablein aclassis:

class property ::= /[ from Annex A.1.8
{ property_qualifier } data declaration
property_qualifier® ::=
rand
| randc

Syntax 12-1—Random variable declaration syntax (excerpt from Annex A)

— The solver can randomize singular variables of any integral type.

— Arrays can be declared rand or rande, in which case all of their member elements are treated as rand or
randc.

— Dynamic and associative arrays can be declared rand or randc. All of the elements in the array are ran-
domized, overwriting any previous data. If the array elements are object handles, all of the array elements
must be non-null. Individual array elements can be constrained, in which case the index expression must be
aliteral constant.

— Thesize of adynamic array declared as rand or rande can aso be constrained. In that case, the array shall
be resized according to the size constraint, and then al the array elements shall be randomized. The array
size constraint is declared using the size method. For example,

rand bit [7:0] len;
rand integer datall];
constraint db { data.size == len; }

Thevariable 1en is declared to be 8 bits wide. The randomizer computes arandom value for the 1en vari-
able in the 8-bit range of 0 to 255, and then randomizes the first 1en elements of the data array.

If adynamic array’s size is not constrained then randomize () randomizesall the elementsin the array.

— An object handle can be declared rand in which case all of that object’s variables and constraints are
solved concurrently with the variables and constraints of the object that contains the handle. Objects cannot
be declared randec.

12.3.1 rand modifier

Variables declared with the rand keyword are standard random variables. Their values are uniformly distrib-
uted over their range. For example:

rand bit [7:0] vy;
Thisis an 8-bit unsigned integer with arange of 0 to 255. If unconstrained, this variable shall be assigned any

value in the range 0 to 255 with equal probability. In this example, the probability of the same value repeating
on successive calls to randomizeis 1/256.

12.3.2 randc modifier

Variables declared with the rande keyword are random-cyclic variables that cycle through all the valuesin a
random permutation of their declared range. Random-cyclic variables can only be of type bit or enumerated
types, and can be limited to a maximum size.

To understand rande, consider a 2-bit random variable y:

randc bit [1:0] vy;
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The variable y can take on the values 0, 1, 2, and 3 (range 0 to 3). Randomize computes an initial random per-
mutation of the range values of y, and then returns those valuesin order on successive calls. After it returns the
last element of a permutation, it repeats the process by computing a new random permutation.

The basic idea is that rande randomly iterates over al the values in the range and that no value is repeated
within an iteration. When the iteration finishes, a new iteration automatically starts.

initial permutation: 0 53 =52 =1 —]
next permutation: = 2 > 1 = 3 = 0
next permutation: > 2 > 0 -1 —> 3

The permutation sequence for any given randc variable is recomputed whenever the constraints change on
that variable, or when none of the remaining values in the permutation can satisfy the constraints.

To reduce memory requirements, implementations can impose a limit on the maximum size of a randc vari-
able, but it should be no less than 8 bits.

The semantics of random-cyclical variables require that they be solved before other random variables. A set of

constraints that includes both rand and randec variables shall be solved such that the randec variables are
solved first, and this can sometimes cause randomize () to fail.

12.4 Constraint blocks

The values of random variables are determined using constraint expressions that are declared using constraint
blocks. Constraint blocks are class members, like tasks, functions, and variables. Constraint block names must
be unique within aclass.

The syntax to declare a constraint block is:
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constraint_declaration ::= [/ from Annex A.1.9
[ static] constraint constraint_identifier { { constraint_block } }

constraint_block ::=
solve identifier_list beforeidentifier_list ;
| expression dist { dist_list} ;
| constraint_expression
constraint_expression ::=
expression ;
| expression => constraint_set
| if (expression) constraint_set [ else constraint_set |
constraint_set ::=
constraint_expression
| {{ constraint_expression} }
dist_list ::=dist_item{ , dist_item}
dist_item ::=
value_range := expression
| value range :/ expression
constraint_prototype ::=[ static] constraint constraint_identifier

extern_constraint_declaration ::=
[ static] constraint class identifier :: constraint_identifier { { constraint_block } }

identifier_list ::= identifier { , identifier }

Syntax 12-2—Constraint syntax (excerpt from Annex A)

constraint_identifier is the name of the constraint block. This name can be used to enable or disable a con-
straint using the constraint mode () method (see Section 12.8).

constraint_block is a list of expression statements that restrict the range of a variable or define relations
between variables. A constraint_expression is any SystemVerilog expression, or one of the constraint-specific
operators. =>, inside and dist (See Sections 12.4.3 and 12.4.4).

The declarative nature of constraints imposes the following restrictions on constraint expressions:

— Cadlling tasks or functionsis not allowed.

— Operators with side effects, such as ++ and - - are not allowed.

— randc variables cannot be specified in ordering constraints (see solve...before in Section 12.4.8).

— dist expressions cannot appear in other expressions (unlike inside); they can only be top-level expres-
sions.

12.4.1 External constraint blocks
Constraint block bodies can be declared outside a class declaration, just like external task and function bodies:

// class declaration
class XYPair;
rand integer x, y;
constraint c;
endclass

// external constraint body declaration
constraint XYPair::c { x < y; }
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12.4.2 Inheritance

Constraints follow the same general rules for inheritance as class variables, tasks, and functions:

— A constraint in a derived class that uses the same name as a constraint in its parent classes overrides the
base class constraints. For example:

class A;
rand integer Xx;
constraint ¢ { x < 0; }
endclass

class B extends A;
constraint ¢ { x > 0; }
endclass

An instance of class A constrains x to be less than zero whereas an instance of class B constrains x to be
greater than zero. The extended class B overrides the definition of constraint c. In this sense, constraints
are treated the same as virtual functions, so casting an instance of B to an A does not change the constraint
Set.

— The randomize () task isvirtual. Accordingly, it treats the class constraints in a virtual manner. When a
named constraint is overloaded, the previous definition is overridden.

12.4.3 Set membership
Constraints support integer value sets and set membership operators.

The syntax to define a set expressionis:

inside_expression ::= expression inside range_list_or_array // from Annex A.8.3
range list_or_array ::=
variable_identifier
| { value range{ , value range} }
value range ::=
expression
| [ expression : expression |

Syntax 12-3—inside expression syntax (excerpt from Annex A)
expression is any integral SystemVerilog expression.
range list_or_array isacomma-separated list of integral expressions and ranges. Value ranges are specified in
ascending order with alow and high bound, enclosed by square braces [ 1, and separated by acolon ( : ), as
in [low_bound:high bound]. Rangesinclude al of the integer elements between the bounds. If the bound
to the | eft of the colon is greater than the bound to the right the range is empty and contains no values.
The inside operator evaluatesto true if the expression is contained in the set; otherwise it evaluates to false.

Absent any other constraints, all values (either single values or value ranges), have an equa probability of
being chosen by the inside operator.

The negated form denotes that expression liesoutsidethe set: | (expression inside { set }).

For example:
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rand integer x, y, z;
constraint cl {x inside {3, 5, [9:15], [24:32], [y:2*yl, z};}

rand integer a, b, c;
constraint c2 {a inside {b, c};}

integer fives[0:3] = { 5, 10, 15, 20 };
rand integer v;
constraint c3 { v inside fives; }

Set values and ranges can be any integral expression. Values can be repeated, so values and value ranges can
overlap. It is important to note that the inside operator is bidirectional, thus, the second example above is
equivdenttoa == b || a == c.

12.4.4 Distribution

In addition to set membership, constraints support sets of weighted values called distributions. Distributions
have two properties. they are a relational test for set membership, and they specify a statistical distribution
function for the results.

The syntax to define a distribution expressioniis:

constraint_block ::= // from Annex A.1.9

| expression dist { dist_list} ;
dist_list ::=dist_item{ , dist_item}
dist_item ::=
value_range := expression
| value_range :/ expression

Syntax 12-4—Constraint distribution syntax (excerpt from Annex A)
expression can be any integral SystemVerilog expression.

The distribution operator dist evauatesto trueif the value of the expression is contained in the set; otherwise
it evaluatesto false.

Absent any other constraints, the probability that the expression matches any valuein the list is proportional to
its specified weight.

The distribution set is a comma-separated list of integral expressions and ranges. Optionally, each term in the
list can have a weight, which is specified using the : = or :/ operators. If no weight is specified, the default
weight is 1. The weight can be any integral SystemVerilog expression.

The : = operator assigns the specified weight to the item, or if the item is arange, to every value in the range.

The : / operator assigns the specified weight to the item, or if the item is a range, to the range as a whole. If
there are n valuesin the range, the weight of each valueis range _weight / n.

For example:
x dist {100 := 1, 200 := 2, 300 := 5}

means x is equal to 100, 200, or 300 with weighted ratio of 1-2-5. If an additional constraint is added that spec-
ifies that x cannot be 200:

x != 200;
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x dist {100 := 1, 200 := 2, 300 := 5}
then x isequal to 100 or 300 with weighted ratio of 1-5.

It is easier to think about mixing ratios, such as 1-2-5, than the actual probabilities because mixing ratios do
not have to be normalized to 100%. Converting probabilities to mixing ratiosis straightforward.

When weights are applied to ranges, they can be applied to each value in the range, or they can be applied to
the range as awhole. For example,

x dist { [100:102] := 1, 200 := 2, 300 := 5}
means x isequal to 100, 101, 102, 200, or 300 with a weighted ratio of 1-1-1-2-5.
x dist { [100:102] :/ 1, 200 := 2, 300 := 5}
means x is equal to one of 100, 101, 102, 200, or 300 with a weighted ratio of 1/3-1/3-1/3-2-5.

In general, distributions guarantee two properties: set membership and monotonic weighting, which means
that increasing aweight shall increase the likelihood of choosing those values.

Limitations:

— A dist operation shall not be applied to randc variables.

— A dist expression requires that expression contain at |east one rand variable.

— A dist expression can only be atop-level constraint (not a predicated constraint).

12.4.5 Implication

Constraints provide two constructs for declaring conditional (predicated) relations. implication and i £..else.
The implication operator ( => ) can be used to declare an expression that implies a constraint.

The syntax to define an implication constraint is:

constraint_expression ::= // from Annex A.1.9

| expression => constraint_set

Syntax 12-5—Constraint implication syntax (excerpt from Annex A)

The expression can be any integral SystemVerilog expression.

The boolean equivaent of the implication operator a => bis (1a || b). Thisstatesthat if the expression is
true, then random numbers generated are constrained by the constraint (or constraint block). Otherwise the
random numbers generated are unconstrained.

The constraint_set represents any valid constraint or an unnamed constraint block. If the expression istrue, all
of the constraints in the constraint block must aso be satisfied.

For example:
mode == small => len < 10;
mode == large => len > 100;

In this example, the value of mode impliesthat the value of 1en shall be constrained to less than 10 (mode ==
small), greater than 100 (mode == large), Or unconstrained (mode != small andmode != large).
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In the following example:

bit [3:0] a, Db;

constraint ¢ { (a == 0) => (b == 1); }
Both a and b are 4 bits, so there are 256 combinations of a and b. Constraint ¢ saysthat a == o impliesthat b
== 1, thereby eliminating 15 combinations: { 0,0}, {0,2}, ... {0,15}. Therefore, the probability that a == 0 is

thus 1/(256-15) or 1/241.
12.4.6 if..else constraints

if...else Styleconstraints are also supported.

The syntax to definean if...else constraint is:

constraint_expression ::= // from Annex A.1.9

| if ( expression) constraint_set [ else constraint_set |

Syntax 12-6—If...else constraint syntax (excerpt from Annex A)

expression can be any integral SystemVerilog expression.

constraint_set represents any valid constraint or an unnamed constraint block. If the expression is true, all of
the constraintsin the first constraint or constraint block must be satisfied, otherwise all of the constraintsin the
optiona else constraint or constraint-block must be satisfied. Constraint blocks can be used to group multiple
constraints.

If..else style constraint declarations are equivalent to implications:

if (mode == small)
len < 10;

else if (mode == large)
len > 100;

is equivalent to

mode == small => len < 10 ;
mode == large => len > 100 ;

In this example, the value of mode implies that the value of len is less than 10, greater than 100, or uncon-
strained.

Just like implication, if...else style constraints are bidirectional. In the declaration above, the value of mode
congtraints the value of 1en, and the value of 1en constrains the value of mode.

Because the else part of an i£...else style constraint declaration is optional, there can be confusion when an
else isomitted from a nested i £ sequence. Thisis resolved by always associating the else with the closest
previous if that lacks an else. In the example below, the else goes with the inner i £, as shown by indenta-
tion:

if (mode != large)
if (mode == small)
len < 10;
else // the else applies to preceding if
len > 100;
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12.4.7 Global constraints

When an object member of aclassisdeclared rand, al of its constraints and random variables are randomized
simultaneously along with the other class variables and constraints. Constraint expressions involving random
variables from other objects are called global constraints.

class A; // leaf node
rand bit [7:0] v; e
endclass
class B extends A; // heap node .|€ft/ \.I‘ICIht
rand A left;
rand A right; <:::> <:::>

constraint heapcond {left.v <= v; right.v <= v;}
endclass

This example uses global constraints to define the legal values of an ordered binary tree. Class A represents a
leaf node with an 8-bit value x. Class B extends class a and represents a heap-node with value v, aleft subtree,
and aright subtree. Both subtrees are declared as rand in order to randomize them at the same time as other
class variables. The constraint block named heapcond has two global constraints relating the left and right
subtree values to the heap-node value. When an instance of class B is randomized, the solver simultaneously
solvesfor B and its left and right children, which in turn can be leaf nodes or more heap-nodes.

The following rules determine which objects, variables, and constraints are to be randomized:

1) First, determine the set of objects that are to be randomized as a whole. Starting with the object that
invoked the randomize () method, add all objects that are contained within it, are declared rand, and are
active (see rand_mode in Section 12.7). The definition is recursive and includes al of the active random
objects that can be reached from the starting object. The objects selected in this step are referred to as the
active random objects.

2) Next, select al of the active constraints from the set of active random objects. These are the constraints
that are applied to the problem.

3) Finadly, select all of the active random variables from the set of active random objects. These are the
variables that are to be randomized. All other variable references are treated as state variables, whose
current value is used as a constant.

12.4.8 Variable ordering

The solver must assure that the random values are selected to give auniform value distribution over legal value
combinations (that is, all combinations of legal values have the same probability of being the solution). This
important property guarantees that all legal value combinations are equally probable, which allows randomiza-
tion to better explore the whole design space.

Sometimes, however, it is desirable to force certain combinations to occur more frequently. Consider the case
where a 1-bit control variable s constrains a 32-bit data value a:

class B;
rand bit s;

rand bit [31:0] d;

constraint ¢ { s => d == 0; }
endclass

The constraint ¢ says “s implies d equals zero”. Although this reads asif s determines 4, in fact s and d are
determined together. There are 232 valid combinations of {s,d}, but sisonly truefor {1, 0}. Thus, the prob-
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ability that s istrueis 1/2%2, which is practically zero.

The constraints provide a mechanism for ordering variables so that s can be chosen independently of 4. This
mechanism defines a partial ordering on the evaluation of variables, and is specified using the solve keyword.

class B;
rand bit s;
rand bit [31:0] 4d;

constraint ¢ { s => d == 0; }
constraint order { solve s before d; }
endclass

In this case, the order constraint instructs the solver to solve for s before solving for d. The effect isthat s is
now chosen true with 50% probability, and then d is chosen subject to the value of s. Accordingly, d ==
shall occur 50% of thetime, and d '= o shall occur for the other 50%.

Variable ordering can be used to force selected corner cases to occur more frequently than they would other-
wise.

The syntax to define variable order in a constraint block is:

constraint_block ::= {/ from Annex A.1.9
solve identifier_list beforeidentifier_list ;

Syntax 12-7—Solve...before constraint ordering syntax (excerpt from Annex A)

solve and before each take acomma-separated list of integral variables or array elements.

The following restrictions apply to variable ordering:

— Only random variables are allowed, that is, they must be rand.

— randc variables are not alowed. randc variables are always solved before any other.
— The variables must be integral values.

— A constraint block can contain both regular value constraints and ordering constraints.

— There must be no circular dependenciesin the ordering, such as “ solve a before b” combined with “solve b
beforea’.

— Variables that are not explicitly ordered shall be solved with the last set of ordered variables. These values
are deferred until as late as possible to assure a good distribution of values.

— Variables can be solved in an order that is not consistent with the ordering constraints, provided that the
outcome is the same. An exampl e situation where this might occur is:

X == ;

X < VY
solve y before x;

In this case, since x has only one possible assignment (0), x can be solved for before y. The constraint
solver can use thisflexibility to speed up the solving process.

12.4.9 Static constraint blocks
A constraint block can be defined as static by including the static keyword inits definition.

The syntax to declare a static constraint block is:
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static constraint constraint identifier { contraint expressions }

If aconstraint block isdeclared as static, then callsto constraint mode () shall affect all instances of the
specified constraint in all objects. Thus, if a static constraint is set to OFF, it is off for all instances of that par-
ticular class.

12.5 Randomization methods

12.5.1 randomize()

Variables in an object are randomized using the randomize () class method. Every class has a built-in ran-
domize () virtual method, declared as:

virtual function int randomize () ;

The randomize () method is a virtual function that generates random values for all the active random vari-
ables in the object, subject to the active constraints.

The randomize () method returns 1 if it successfully setsall the random variables and objects to valid values,
otherwise it returns 0.

Example:

class SimpleSum;
rand bit [7:0] x, v, z;
constraint c {z == x + vy;}
endclass

This class definition declares three random variables, x, v, and z. Calling the randomi ze () method shall ran-
domize an instance of class SimpleSum:

SimpleSum p = new;
int success = p.randomize() ;
if (success == 1 )

Checking the return status can be necessary because the actual value of state variables or addition of con-
straints in derived classes can render seemingly simple constraints unsatisfiable.

12.5.2 pre_randomize() and post_randomize()

Every class contains built-in pre_randomize () and post_randomize () functions, that are automatically
called by randomize () before and after computing new random values.

The built-in definition for pre_randomize () is:

function void pre randomize;
if (super) super.pre randomize() ; // test super to see if the
// object handle exists
// Optional programming before randomization goes here
endfunction

The built-in definition for post _randomize () is:

function void post randomize;
if (super) super.post randomize(); // test super to see if the
// object handle exists
// Optional programming after randomization goes here
endfunction
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When obj . randomize () isinvoked, it first invokes pre randomize () 0N obj and aso al of its random
object members that are enabled. pre_randomize () then calls super.pre randomize (). After the new
random values are computed and assigned, randomize () invokeSpost randomize () ON obj and also all
of its random object members that are enabled. post randomize () then cals super.post randomize ().

Users can overload the pre _randomize () in any classto perform initialization and set pre-conditions before
the object is randomized.

Users can overload the post _randomize () in any class to perform cleanup, print diagnostics, and check
post-conditions after the object is randomized.

If these methods are overloaded, they must call their associated parent class methods, otherwise their pre- and
post-randomization processing steps shall be skipped.

The pre _randomize () and post randomize () methods are not virtual. However, because they are auto-
matically called by the randomize () method, which is virtual, they appear to behave as virtual methods.

12.5.3 Randomization methods notes

— Random variables declared as static are shared by al instances of the class in which they are declared.
Each time the randomize () method is called, the variable is changed in every class instance.

— If randomize () fails, the constraints are infeasible and the random variables retain their previous values.
— If randomize () fails, post_randomize () isnhot called.
— The randomize () method shall not be overloaded.

— The randomize () method implements object random stability. An object can be seeded by the
$srandom () System call (see Section 12.10.3), specifying the object in the second argument.

— Thebuilt-in methodspre_randomize () and post_randomize () arefunctions and cannot block.

12.6 In-line constraints — randomize() with

By using the randomize () ...with construct, users can declare in-line constraints at the point where the ran-
domize () method is called. These additional constraints are applied along with the object constraints.

The syntax for randomize () ...withiS:

blocking_assignment ::= [/l from Annex A.6.2

| class_identifier . randomize[ () ] with constraint_block ;

Syntax 12-8—In-line constraint syntax (excerpt from Annex A)

class identifier isthe name of an instantiated object.

The unnamed constraint_block contains additional in-line constraints to be applied along with the object con-
straints declared in the class.

For example:
class SimpleSum
rand bit [7:0] x, vy, z;

constraint ¢ {z == x + y;}
endclass
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task InlineConstraintDemo (SimpleSum p) ;
int success;
success = p.randomize() with {x < vy;};
endtask

This is the same example used before, however, randomize () ..with is used to introduce an additional con-
straint that x < .

The randomize () ..with construct can be used anywhere an expression can appear. The constraint block fol-
lowing with can define al of the same constraint types and forms as would otherwise be declared in a class.

The randomize () ..with constraint block can also reference local variables and task and function arguments,
eliminating the need for mirroring alocal state as member variables in the object class. The scope for variable
names in a congtraint block, from inner to outer, is: randomize () ..with object class, automatic and local
variables, task and function arguments, class variables, variables in the enclosing scope. The random-
ize ()..with classisbrought into scope at the innermost nesting level.

In the example below, the randomize () ..with classis Foo.
class Foo;
rand integer Xx;
endclass
class Bar;
integer x;
integer y;
task doit (Foo f, integer x, integer z);
int result;
result = f.randomize() with {x <y + z;};
endtask
endclass
Inthe £ . randomize () with constraint block, x isamember of class Foo, and hidesthex in classBar. It dso
hides the x argument inthe doit () task. y isamember of Bar. z isalocal argument.

12.7 Disabling random variables with rand_mode()

The rand mode () method can be used to control whether arandom variable is active or inactive. When aran-
dom variableisinactive, it is treated the same asiif it had not been declared rand or randec. Inactive variables
are not randomized by the randomize () method, and their values are treated as state variables by the solver.
All random variables areinitialy active.
The syntax for the rand_mode () method is:

task object[.random variable]::rand mode( bit on_off );
or

function int object.random variable::rand mode () ;

object is any expression that yields the object handle in which the random variable is defined.

random variable is the name of the random variable to which the operation is applied. If it is not specified
(only allowed when called as atask), the action is applied to al random variables within the specified object.

When called as atask, the argument to the rand_mode method determines the operation to be performed:
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Table 12-1: rand_mode argument

Value Meaning Description

0 OFF Sets the specified variables to inactive so that they are not ran-
domized on subsequent callsto the randomize () method.

1 ON Setsthe specified variables to active so that they are randomized
on subsequent calls to the randomize () method.

For array variables, random variable can specify individual elements using the corresponding index. Omit-
ting theindex resultsin al the elements of the array being affected by the call.

If the random variable is an object handle, only the mode of the variable is changed, not the mode of random
variables within that object (see global constraintsin Section 12.4.7).

A compiler error shall be issued if the specified variable does not exist within the class hierarchy or it exists
but is not declared as rand or rande.

When called as a function, rand_mode () returns the current active state of the specified random variable. It
returns 1 if the variable is active (oN), and O if the variableisinactive (OFF).

The function form of rand mode () only accepts singular variables, thus, if the specified variable is an
unpacked array, asingle element must be selected viaits index.

Example:

class Packet;

rand integer source value, dest value;
. other declarations

endclass

int ret;

Packet packet a = new;

// Turn off all variables in object

packet_a.rand mode (0) ;

// ... other code

// Enable source value

packet a.source value.rand mode (1) ;

ret = packet a.dest value.rand mode () ;
This example first disables al random variables in the object packet a, and then enables only the
source_value vVariable. Finally, it setsthe ret variable to the active status of variable dest_value.

The rand_mode () method is built-in and cannot be overridden.

12.8 Controlling constraints with constraint_mode()

The constraint mode () method can be used to control whether a constraint is active or inactive. When a
constraint isinactive, it is not considered by the randomize () method. All constraints areinitialy active.

The syntax for the constraint_mode () method is:
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task object[.constraint_identifier]::constraint_mode( bit on_ off );
or

function int object.constraint identifier::constraint mode () ;
object is any expression that yields the object handle in which the constraint is defined.
congtraint_identifier isthe name of the constraint block to which the operation is applied. The constraint name
can be the name of any constraint block in the class hierarchy. If no constraint name is specified (only allowed
when called as atask), the operation is applied to all constraints within the specified object.
When called as a task, the argument to the constraint mode task method determines the operation to be

performed:

Table 12-2: constraint_mode argument

Value Meaning Description

0 OFF Setsthe specified constraint block to active so that it is considered
by subsequent callsto the randomize () method.

1 ON Sets the specified constraint block to inactive so that it is not
enforced on subsequent callsto the randomi ze () method.

A compiler error shall beissued if the specified constraint block does not exist within the class hierarchy.

When called as a function, constraint_mode () returns the current active state of the specified constraint
block. It returns 1 if the constraint is active (ON), and O if the constraint isinactive (OFF).

Example:

class Packet;

rand integer source value;

constraint filterl { source value > 2 * m; }
endclass

function integer toggle rand( Packet p );
if ( p.filterl.constraint mode() )
p.filterl.constraint mode (0) ;
else
p.filterl.constraint mode (1) ;

toggle rand = p.randomize() ;
endfunction

In this example, the toggle rand function first checks the current active state of the constraint filterl in the
specified packet object p. If the constraint is active, then the function shall deactivate it; if it isinactive, the
function shall activate it. Finaly, the function calls the randomize method to generate a new random value for

variable source value.

The constraint mode () method is built-in and cannot be overridden.

12.9 Dynamic constraint modification

There are several ways to dynamically modify randomization constraints:
— Implication and i£...else style constraints allow declaration of predicated constraints.
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— Constraint blocks can be made active or inactive using the constraint_mode () built-in method. Ini-
tidly, al constraint blocks are active. Inactive constraints are ignored by the randomize () function.

— Random variables can be made active or inactive using the rand mode () built-in method. Initialy, all
rand and randc variables are active. Inactive variables are ignored by the randomize () function.

— Theweightsin adist constraint can be changed, affecting the probability that particular valuesin the set
are chosen.

12.10 Random number system functions

12.10.1 $urandom

The system function surandom provides a mechanism for generating pseudorandom numbers. The function
returns a new 32-bit random number each timeit is called. The number shall be unsigned.

The syntax for $urandom is:

function int unsigned S$urandom [ (int seed ) 1 ;
The seed isan optional argument that determines the sequence of random numbers generated. The seed can be
any integral expression. The random number generator shall generate the same sequence of random numbers
every time the same seed is used.
The random number generator is deterministic. Each time the program executes, it cycles through the same
random sequence. This sequence can be made nondeterministic by seeding the surandom function with an
extrinsic random variable, such asthe time of day.
For example:

bit [64:1] addr;

Surandom( 254 ); // Initialize the generator
addr = {$urandom, $urandom }; // 64-bit random number
number = Surandom & 15; // 4-bit random number

The $urandom function is similar to the $random system function, with two exceptions. $urandom returns
unsigned numbers and is automatically thread stable (see Section 12.11.2).

12.10.2 $urandom_range()
The $urandom_range () function returns an unsigned integer within a specified range.
The syntax for $urandom range () is:

function int unsigned $urandom range( int unsigned maxval,
int unsigned minval = 0 );

The function shall return an unsigned integer in the range maxval .. minval.
Exampl € val = $urandom_range(7,0) ;

If minval isomitted, the function shall return avalue in the range maxval .. 0.
Example: val = $urandom range (7) ;

If maxval islessthan minval, the arguments are automatically reversed so that the first argument is larger
than the second argument.

Example: val = $urandom range(0,7) ;

Copyright 2003 Accellera. All rights reserved. 111



Accellera
SystemVerilog 3.1/draft 6 Extensions to Verilog-2001

All of the three previous examples produce avaue in the range of 0 to 7, inclusive.

$urandom_range () iSautomatically thread stable (see Section 12.11.2).
12.10.3 $srandom()

The system function $srandom () alows manually seeding the Random Number Generator (RNG) of objects
or threads.

The syntax for the $srandom () system task is:
task $srandom( int seed, [class_identifier obj] );

The $srandom () System task initializes the local random number generator using the value of the given seed.
The optional object argument is used to seed an object instead of the current process (thread). The top level
randomizer of each program isinitialized with $srandom (1) prior to any randomization calls.

12.11 Random stability

The Random Number Generator (RNG) is localized to threads and objects. Because the sequence of random
values returned by a thread or object is independent of the RNG in other threads or objects, this property is
called random stability. Random stability appliesto:

— The system randomization calls, $urandom, $urandom_range (), and $srandom ().
— The object randomization method, randomize ().
Testbenches with this feature exhibit more stable RNG behavior in the face of small changes to the user code.

Additionally, it enables more precise control over the generation of random values by manually seeding
threads and objects.

12.11.1 Random stability properties

Random stability encompasses the following properties:
— Thread stability

Each thread has an independent RNG for all randomization system calls invoked from that thread. When
anew thread is created, its RNG is seeded with the next random value from its parent thread. This prop-
erty is called hierarchical seeding.

Program and thread stability is guaranteed as long as thread creation and random number generation is
done in the same order as before. When adding new threads to an existing test, they can be added at the
end of a code block in order to maintain random number stability of previously created work.

— Object stability

Each classinstance (object) has an independent RNG for al randomization methodsin the class. When an
object is created using new, its RNG is seeded with the next random value from the thread that creates the
object.

Object stability is guaranteed as long as object and thread creation, as well as random number generation,
are done in the same order as before. In order to maintain random number stability, new objects, threads
and random numbers can be created after existing objects are created.

— Manual seeding

All RNG’s can be manually seeded. Combined with hierarchical seeding, this facility allows users to
define the operation of a subsystem (hierarchy subtree) completely with asingle seed at the root thread of
the system.
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12.11.2 Thread stability

Random values returned from the $urandom system call are independent of thread execution order. For exam-
ple:

integer x, vy, z;
fork //set a seed at the start of a thread
begin $srandom(100); x = Surandom; end
//set a seed during a thread

begin y = $urandom; S$srandom(200); end
// draw 2 values from the thread RNG
begin z = Surandom + Surandom ; end
join

The above program fragment illustrates several properties:

— Thread locality. The values returned for x, y and z are independent of the order of thread execution. Thisis
an important property because it allows development of subsystems that are independent, controllable, and
predictable.

— Hierarchical seeding. When athread is created, its random state isinitialized using the next random value
from the parent thread as a seed. The three forked threads are all seeded from the parent thread.

Each thread is seeded with a unique value, determined solely by its parent. The root of athread execution sub-
tree determines the random seeding of its children. This alows entire subtreesto be moved, and preserves their
behavior by manually seeding their root thread.

12.11.3 Object stability

The randomize () method built into every class exhibits object stability. This is the property that cals to
randomize () in one instance are independent of callsto randomize () in other instances, and independent
of callsto other randomize functions.

For example:

class Foo;
rand integer Xx;
endclass

class Bar;
rand integer y;
endclass

initial begin
Foo foo = new() ;
Bar bar = new() ;
integer z;
void’' foo.randomize () ;
// z = S$random;
void’bar.randomize () ;
end

— Thevaluesreturned for foo.x and bar .y are independent of each other.

— Thecalsto randomize () are independent of the $random system call. If one uncommentsthelinez -
$random above, there is no change in the values assigned to foo . x and bar . y.

— Each instance has a unique source of random values that can be seeded independently. That random seed is
taken from the parent thread when the instance is created.
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— Objects can be seeded at any time using the $srandom () System task with an optional object argument.

class Foo;
function new (integer seed);
//set a new seed for this instance
$srandom (seed, this) ;
endfunction
endclass

Once an object is created there is no guarantee that the creating thread can change the object’s random state
before another thread accesses the object. Therefore, it is best that objects self-seed within their new method
rather than externally.

An object’s seed can be set from any thread. However, a thread's seed can only be set from within the thread
itself.

12.12 Manually seeding randomize

Each object maintains its own internal random number generator, which is used exclusively by its random-
ize () method. This allows objects to be randomized independent of each other and of calls to other system
randomization functions. When an object is created, its random number generator (RNG) is seeded using the
next value from the RNG of the thread that creates the object. This processis called hierarchical object seed-

ing.

Sometimes it is desirable to manually seed an object’s RNG using the $srandom () system call. This can be
done either in a class method, or externa to the class definition:

An example of seeding the RNG internally, as a class method is:

class Packet;
rand bit[15:0] header;

function new (int seed) ;
Ssrandom (seed, this);

endfunction
endclass

An example of seeding the RNG externaly is:

Packet p = new(200); // Create p with seed 200.
$srandom (300, p); // Re-seed p with seed 300.

Calling ssrandom () in an object’'snew () function, assures the object’'s RNG is set with the new seed before
any class member values are randomi zed.
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Section 13
Inter-Process Synchronization and Communication

13.1 Introduction (informative)

High-level and easy-to-use synchronization and communication mechanism are essential to control the kinds
of interactions that occur between dynamic processes used to model a complex system or a highly reactive
testbench. Verilog provides basic synchronization mechanisms (i.e., -> and @), but they are all limited to
static objects and are adequate for synchronization at the hardware level, but fall short of the needs of a highly
dynamic, reactive testbench. At the system level, an essentia limitation of Verilog is its inability to create
dynamic events and communication channels, which match the capability to create dynamic processes.

SystemVerilog adds a powerful and easy-to-use set of synchronization and communication mechanisms, all of
which can be created and reclaimed dynamically. SystemVerilog adds a semaphore built-in class, which can
be used for synchronization and mutual exclusion to shared resources, and a mailbox built-in class that can be
used as a communication channel between processes. SystemVerilog also enhances Verilog's named event
data type to satisfy many of the system-level synchronization requirements.

Semaphores and mailboxes are built-in types, nonetheless, they are classes, and can be used as base classes for
deriving additional higher level classes.

13.2 Semaphores

Conceptually, a semaphore is a bucket. When a semaphore is allocated, a bucket that contains a fixed number
of keysis created. Processes using semaphores must first procure a key from the bucket before they can con-
tinue to execute. If a specific process requires akey, only afixed number of occurrences of that process can be
in progress simultaneously. All others must wait until a sufficient number of keys is returned to the bucket.
Semaphores are typically used for mutual exclusion, access control to shared resources, and for basic synchro-
nization.

An example of creating a semaphoreis.
semaphore smTx;

Semaphore is abuilt-in class that provides the following methods:
— Create a semaphore with a specified number of keys: new ()
— Obtain one or more keys from the bucket: get ()
— Return one or more keys into the bucket: put ()
— Try to obtain one or more keys without blocking: try get ()
13.2.1 new()
Semaphores are created with the new () method.
The prototype for semaphore new () is.
function new (int keyCount = 0 );
The KeyCount specifies the number of keysinitially allocated to the semaphore bucket. The number of keysin
the bucket can increase beyond KeyCount when more keys are put into the semaphore than are removed. The

default value for KeyCount is 0.

The new () function returns the semaphore handle, or nul1 if the semaphore cannot be created.
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13.2.2 put()
The semaphore put () method is used to return keys to a semaphore.
The prototype for put () is:
task put (int keyCount = 1);
keyCount specifies the number of keys being returned to the semaphore. The default is 1.

When the semaphore .put () task is called, the specified number of keys are returned to the semaphore. If a
process has been suspended waiting for a key, that process shall execute if enough keys have been returned.

13.2.3 get()
The semaphore get () method is used to procure a specified number of keys from a semaphore.
The prototype for get () is:
task get (int keyCount = 1);
keyCount specifies the required number of keysto obtain from the semaphore. The default is 1.

If the specified number of keys are available, the method returns and execution continues. If the specified
number of key are not available, the process blocks until the keys become available.

The semaphore waiting queue is First-In First-Out (FIFO). This does not guarantee the order in which pro-
cesses arrive at the queue, only that their arrival order shall be preserved by the semaphore.

13.2.4 try_get()

The semaphore try get () method isused to procure a specified number of keys from a semaphore, but with-
out blocking.

The prototypefor try get () is
function int try get (int keyCount = 1);
keyCount specifies the required number of keysto obtain from the semaphore. The default is 1.
If the specified number of keys are available, the method returns 1 and execution continues. If the specified

number of key are not available, the method returns 0.

13.3 Mailboxes

A mailbox is a communication mechanism that allows messages to be exchanged between processes. Data can
be sent to a mailbox by one process and retrieved by another.

Conceptually, mailboxes behave like real mailboxes. When a letter is delivered and put into the mailbox, one
can retrieve the letter (and any data stored within). However, if the letter has not been delivered when one
checks the mailbox, one must choose whether to wait for the letter or retrieve the letter on subsequent trips to
the mailbox. Similarly, SystemVerilog's mailboxes provide processes to transfer and retrieve data in a con-
trolled manner. Mailboxes are created as having either a bounded or unbounded queue size. A bounded mail-
box becomes full when it contains the bounded number of messages. A process that attempts to place a
message into a full mailbox shall be suspended until enough room becomes available in the mailbox queue.
Unbounded mailboxes never suspend athread in a send operation.

An example of creating amailbox is:
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mailbox mbxRcv;

Mailbox is a built-in class that provides the following methods:
— Create amailbox: new ()
— Place amessage in amailbox: put ()
— Try to place amessage in amailbox without blocking: try put ()
— Retrieve amessage from amailbox: get () or peek ()
— Try to retrieve amessage from a mailbox without blocking: try get () or try peek ()
— Retrieve the number of messages in the mailbox: num ()
13.3.1 new()
Mailboxes are created with the new () method.
The prototype for mailbox new () is:
function new (int bound = 0);
The new () function returns the mailbox handle, or null if the mailboxes cannot be created. If the bound
argument is zero then the mailbox is unbounded (the default) and a put () operation shall never block. If

bound iShon-zero, it represents the size of the mailbox queue.

The bound must be positive. Negative bounds are illegal and can result in indeterminate behavior, but imple-
mentations can issue awarning.

13.3.2 num()
The number of messages in a mailbox can be obtained viathe num () method.
The prototype for num () is:
function int num();
Thenum () method returns the number of messages currently in the mailbox.
The returned value should be used with care, since it is valid only until the next get () or put () is executed
on the mailbox. These mailbox operations can be from different processes than the one executing the num ()
][?rﬁtggd. Therefore, the validity of the returned value shall depend on the time that the other methods start and
13.3.3 put()
The put () method places a message in a mailbox.
The prototype for put () is:
task put( singular message) ;
Themessage isany singular expression, including object handles.

The put () method stores a message in the mailbox in strict FIFO order. If the mailbox was created with a
bounded queue the process shall be suspended until there is enough room in the queue.
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13.3.4 try_put()
Thetry put () method attempts to place a message in a mailbox.
The prototype for try put () is:
function int try put( singular message) ;
Themessage isany singular expression, including object handles.
The try put () method stores a message in the mailbox in strict FIFO order. This method is meaningful only

for bounded mailboxes. If the mailbox is not full then the specified message is placed in the mailbox and the
function returns 1. If the mailbox is full, the method returns O.

13.3.5 get()
The get () method retrieves a message from a mailbox.
The prototype for get () is:

task get( ref singular message ) ;
Themessage can be any singular expression, and it must be avalid left-hand side expression.
The get () method retrieves one message from the mailbox, that is, removes one message from the mailbox
gueue. If the mailbox is empty then the current process blocks until amessageis placed in the mailbox. If there
is atype mismatch between the message variable and the message in the mailbox, aruntime error is generated.
Non-parameterized mailboxes are type-less, that is, a single mailbox can send and receive different types of
data. Thus, in addition to the data being sent (i.e., the message queue), a mailbox implementation must main-

tain the message data type placed by put (). Thisisrequired in order to enable the runtime type checking.

The mailbox waiting queue is FIFO. This does not guarantee the order in which processes arrive at the queue,
only that their arrival order shall be preserved by the mailbox.

13.3.6 try_get()
Thetry get () method attempts to retrieves a message from a mailbox without blocking.
The prototypefor try get () is:
function int try get( ref singular message ) ;
The message can be any singular expression, and it must be a valid left-hand side expression.
The try get () method tries to retrieve one message from the mailbox. If the mailbox is empty, then the
method returns 0. If there is a type mismatch between the message variable and the message in the mailbox,

the method returns —1. If a message is available and the message type matches the type of the message vari-
able, the message is retrieved and the method returns 1.

13.3.7 peek()
The peek () method copies a message from a mailbox without removing the message from the queue.
The prototype for peek () is:

task peek( ref singular message ) ;

The message can be any singular expression, and it must be a valid left-hand side expression.

118 Copyright 2003 Accellera. All rights reserved.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 6

The peek () method copies one message from the mailbox without removing the message from the mailbox
queue. If the mailbox isempty then the current process blocks until a message is placed in the mailbox. If there
is atype mismatch between the message variable and the message in the mailbox, aruntime error is generated.
Note that calling peek () can cause one message to unblock more than one process. As long as a message

remains in the mailbox queue, any process blocked in either a peek () or get () operation shall become
unblocked.

13.3.8 try_peek()
The try peek () method attempts to copy a message from amailbox without blocking.
The prototype for try peek () is:
function int try peek( ref singular message ) ;
Themessage can be any singular expression, and it must be avalid left-hand side expression.
Thetry peek () method triesto copy one message from the mailbox without removing the message from the
mailbox queue. If the mailbox is empty, then the method returns 0. If there is a type mismatch between the

message variable and the message in the mailbox, the method returns—1. If amessage is available and the mes-
sage type matches, the type of the message variable, the message is copied and the method returns 1.

13.4 Parameterized mailboxes

The default mailbox is type-less, that is, a single mailbox can send and receive any type of data. Thisisavery
powerful mechanism that, unfortunately, can also result in run-time errors due to type mismatches between a
message and the type of the variable used to retrieve the message. Frequently, a mailbox is used to transfer a
particular message type, and, in that case, it is useful to detect type mismatches at compile time.

Parameterized mailboxes use the same parameter mechanism as parameterized classes (see Section 11.23),
modules, and interfaces:

mailbox #(type = dynamic_type)
Where dynamic_type represents a special type that enables run-time type-checking (the default).
A parameterized mailbox of a specific type is declared by specifying the type:

typedef mailbox #(string) s_mbox;

s_mbox sm = new;
string s;

sm.put ( "hello" );
sm.get( s ); // s <- "hello"

Parameterized mailboxes provide all the same standard methods as dynamic mailboxes. num (), new (),
get (), peek (), put (), try get (), try peek(), try put ().

The only difference between a generic (dynamic) mailbox and a parameterized mailbox is that for a parameter-
ized mailbox, the compiler ensures that all put, peek, try peek and get methods are compatible with the
mailbox type, so that all type mismatches are caught by the compiler and not at run-time.
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13.5 Event

In Verilog, named events are static objects that can be triggered viathe -> operator, and processes can wait for
an event to be triggered via the @ operator. SystemVerilog events support the same basic operations, but
enhance Verilog events in several ways. The most salient enhancement is that the triggered state of Verilog
named events has no duration, whereas in SystemVerilog this state persists throughout the time-step in which
the event triggered. Also, SystemVerilog events act as handles to synchronization queues, thus, they can be
passed as arguments to tasks, and they can be assigned to one another or compared.

Existing Verilog event operations (e and ->) are backward compatible and continue to work the same way
when used in the static Verilog context. The additional functionality described below works with al eventsin
either the static or dynamic context.

A SystemVerilog event provides a handle to an underlying synchronization object. When a process waitsfor an
event to be triggered, the process is put on a queue maintained within the synchronization object. Processes
can wait for a SystemVerilog event to be triggered either via the @ operator, or by using the wait () construct
to examine their triggered state. Events are triggered using the - > or the - >> operator.

event_trigger ::= // from Annex A.6.5
-> hierarchical_event_identifier ;
[->>[ delay_or_event_control ] hierarchical_event_identifier ;

Syntax 13-1—Event trigger syntax (excerpt from Annex A)

The syntax to declare named events is discussed in Section 3.8.
13.5.1 Triggering an event
Named events are triggered via the - > operator.
Triggering an event unblocks all processes currently waiting on that event. When triggered, named events
behave like aone-shot, that is, the trigger stateitself is not observable, only its effect. Thisis similar to the way
in which an edge can trigger a flip-flop but the state of the edge can not be ascertained, i.e.,, if (posedge
clock) isillegal.
13.5.2 Nonblocking event trigger
Nonblocking events are triggered using the - >~ operator.
The effect of the ->> operator is that the statement executes without blocking and it creates a nonblocking
assign update event in the time in which the delay control expires, or the event-control occurs. The effect of
this update event shall be to trigger the referenced event in the nonblocking assignment region of the simula-
tion cycle.
13.5.3 Waiting for an event
The basic mechanism to wait for an event to be triggered is via the event control operator, e.

@ event identifier;
The @ operator blocks the calling process until the given event is triggered.
For atrigger to unblock a process waiting on an event, the waiting process must execute the @ statement before

the triggering process executes the trigger operator, ->. If the trigger executes first, then the waiting process
remains blocked.
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13.5.4 Persistent trigger: triggered property

SystemVerilog can distinguish the event trigger itself, which is instantaneous, from the event’s triggered state,
which persists throughout the time-step (i.e., until simulation time advances). The triggered event property
allows users to examine this state.

The triggered property isinvoked using a method-like syntax:
event_identifier.triggered

The triggered event property evaluates to true if the given event has been triggered in the current time-step
and false otherwise. If event _identifier iSnull, then the triggered event property evaluates to false.

The triggered event property is most useful when used in the context of await construct:
wait ( event identifier.triggered )

Using this mechanism, an event trigger shall unblock the waiting process whether the wait executes before or
at the same simulation time as the trigger operation. The triggered event property, thus, helps eliminate a
common race condition that occurs when both the trigger and thewait happen at the sametime. A process that
blocks waiting for an event might or might not unblock, depending on the execution order of the waiting and
triggering processes. However, a process that waits on the triggered state always unblocks, regardless of the
order of execution of the wait and trigger operations.

Example:
event done, blast; // declare two new events
event done_too = done; // declare done_too as alias to done

task trigger( event ev );

-> ev;
endtask
fork
@ done_too; // wait for done through done_ too
#1 trigger( done ) ; // trigger done through task trigger
join
fork
-> blast;
wait ( blast.triggered );
join

Thefirst fork in the example shows how two event identifiers, done and done_too, refer to the same synchro-
nization object, and also how an event can be passed to a generic task that triggers the event. In the example,
one process waits for the event viadone_too, while the actual triggering is done viathe trigger task that is
passed done as an argument.

In the second fork, one process can trigger the event blast before the other process (if the processes in the
fork...join executein source order) has a chance to execute, and wait for the event. Nonethel ess, the second
process unblocks and the fork terminates. This is because the process waits for the event’s triggered state,
which remainsin itstriggered state for the duration of the time-step.

13.6 Event sequencing: wait_order()

The wait_order construct suspends the calling process until all of the specified events are triggered in the
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given order (left to right) or any of the un-triggered events are triggered out of order and thus causes the oper-
ation to fail.

The syntax for thewait order constructis:

wait_statement ::= // from Annex A.6.5

| wait_order ( hierarchical_identifier [ , hierarchical_identifier ] ) action_block

action_block ::=
statement _or_null
| [ statement ] else statement

Syntax 13-2—uwait_order event sequencing syntax (excerpt from Annex A)

For wait order to succeed, at any point in the sequence, the subsequent events—which must al be un-trig-
gered at this point, or the sequence would have already failed—must be triggered in the prescribed order. Pre-
ceding events are not limited to occur only once. That is, once an event occurs in the prescribed order, it can be
triggered again without causing the construct to fail.

Only thefirst event in the list can wait for the persistent triggered property.

The action taken when the construct fails depends on whether or not the optional phrase else statement (the
fail statement) is specified. If it is specified, then the given statement is executed upon failure of the construct.
If the fail statement is not specified, afailure generates a run-time error.

For example:

wait _order( a, b, c¢);

suspends the current process until events a, b, and c trigger intheorder a -> b -> c. If the eventstrigger out
of order, arun-time error is generated.

Example:
wait order( a, b, c ) else $display( "Error: events out of order" );

In this example, the fail statement specifies that upon failure of the construct, a user message be displayed, but
without an error being generated.

Example:

bit success;
wait order( a, b, ¢ ) success = 1; else success = 0;

In this example, the completion status is stored in the variable success, without an error being generated.

13.7 Event variables

An event is a unique data type with several important properties. Unlike Verilog, SystemVerilog events can be
assigned to one another. When one event is assigned to another the synchronization queue of the source event
is shared by both the source and the destination event. In this sense, events act as full fledged variables and not
merely aslabels.

13.7.1 Merging events

When one event variable is assigned to another, the two become merged. Thus, executing -> on either event
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variable affects processes waiting on either event variable.
For example:

event a, b, c;

a = b;

-> C;

-> a; // also triggers b

-> b; // also triggers a

a = c;

b = a;

-> a; // also triggers b and c
-> b; // also triggers a and c
-> C; // also triggers a and b

When events are merged, the assignment only affects the execution of subsequent event control or wait opera-
tions. If a process is blocked waiting for event1 when another event is assigned to event1, the currently
waiting process shall never unblock. For example:

fork
Tl: while(l) @ E2;
T2: while(l) @ E1;

T3: begin
E2 = E1;
while (1) -> E2;
end
join

This example forks off three concurrent processes. Each process starts at the same time. Thus, at the same time
that process T1 and T2 are blocked, process T3 assigns event E1 to E2. This means that process T1 shall never
unblock, because the event g2 is now 1. To unblock both threads T1 and T2, the merger of 2 and E1 must
take place before the fork.

13.7.2 Reclaiming events

When an event variable is assigned the special nul1 value, the association between the event variable and the
underlying synchronization queue is broken. When no event variable is associated with an underlying synchro-
nization queue, the resources of the queue itself become available for re-use.

Triggering a null event shall have no effect. The outcome of waiting on a null event is undefined, and
implementations can issue a run-time warning.

For example:

event E1 = null;

@ E1; // undefined: might block forever or not at all
wait( El.triggered ); // undefined
-> E1; // no effect

13.7.3 Events comparison

Event variables can be compared against other event variables or the special value null. Only the following
operators are allowed for comparing event variables:

— Equality (==) with another event or with nu11.
— Inequality (! =) with another event or with nu11.

— Case equality (===) with another event or withnull (same semantics as ==).
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— Caseinequality (!==) with another event or with nul1l (same semanticsas ! =).

— Test for aboolean value that shall be 0 if the event isnul1 and 1 otherwise.

Example:
event E1, E2;
if ( E1 ) // same as if ( E1 != null )
El = E2;
if ( E1 == E2 )

Sdisplay( "E1l and E2 are the same event" );
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Section 14
Scheduling Semantics

14.1 Execution of a hardware model and its verification environment

The balance of the sections of this standard describes the behavior of each of the elements of the language.
This section gives an overview of the interactions between these elements, especially with respect to the sched-
uling and execution of events. Although SystemVerilog is not limited to simulation, the semantics of the lan-
guage are defined for event directed simulation, and other uses of the hardware description language are
abstracted from this base definition.

14.2 Event simulation

The SystemVerilog language is defined in terms of a discrete event execution model. The discrete event simu-
lation is described in more detail in this section to provide a context to describe the meaning and valid interpre-
tation of SystemVerilog constructs. These resulting definitions provide the standard SystemVerilog reference
algorithm for simulation, which all compliant simulators shall implement. Note that there is a great deal of
choice in the definitions that follow, and differences in some details of execution are to be expected between
different simulators. In addition, SystemVerilog simulators are free to use different algorithms than those
described in this section, provided the user-visible effect is consistent with the reference algorithm.

A SystemVerilog description consists of connected threads of execution or processes. Processes are objects
that can be evaluated, that can have state, and that can respond to changes on their inputs to produce outputs.
Processes are concurrently scheduled elements, such as initial blocks. Example of processes include, but
are not limited to, primitives, initial and always procedural blocks, continuous assignments, asynchronous
tasks, and procedural assignment statements.

Every change in state of a net or variable in the system description being simulated is considered an update
event.

Processes are sensitive to update events. When an update event is executed, all the processes that are sensitive
to that event are considered for evaluation in an arbitrary order. The evaluation of a process is also an event,
known as an evaluation event.

Evaluation events aso include PLI callbacks, which are points in the execution model where user-defined
external routines can be called from the simulation kernel.

In addition to events, another key aspect of a simulator istime. The term simulation timeis used to refer to the
time value maintained by the simulator to model the actual time it would take for the system description being
simulated. The term time is used interchangeably with simulation timein this section.

To fully support clear and predictable interactions, a single time slot is divided into multiple regions where
events can be scheduled that provide for an ordering of particular types of execution. This allows properties
and checkers to sample data when the design under test isin a stable state. Property expressions can be safely
evaluated, and testbenches can react to both properties and checkers with zero delay, all in a predictable man-
ner. This same mechanism also allows for non-zero delays in the design, clock propagation, and/or stimulus
and response code to be mixed freely and consistently with cycle accurate descriptions.

14.3 The stratified event scheduler

A compliant SystemVerilog simulator must maintain some form of data structure that allows events to be
dynamically scheduled, executed and removed as the simulator advances through time. The data structure is
normally implemented as atime ordered set of linked lists, which are divided and sub-divided in awell defined
manner.

Thefirst division is by time. Every event has one and only one simulation execution time, which at any given
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point during simulation can be the current time or some future time. All scheduled events at a specific time
define a time dlot. Simulation proceeds by executing and removing all events in the current simulation time
slot before moving on to the next non-empty time slot, in time order. This procedure guarantees that the simu-
lator never goes backwardsin time.

A time slot is divided into a set of ordered regions:
1) Preponed

2) Pre-active
3) Active

4) Inactive

5) PreNBA

6) NBA

7) Post-NBA
8) Observed

9) Post-observed
10) Reactive

11) Postponed

The purpose of dividing atime slot into these ordered regions is to provide predictable interactions between
the design and testbench code.

Except for the Observed and Reactive regions and the Post-observed PLI region, these regions essentially
encompass the Verilog 1364-2001 standard reference model for simulation, with exactly the same level of
determinism. This means that legacy Verilog code shall continue to run correctly without modification within
the new mechanism. The Postponed region is where the monitoring of signals, and other similar events, takes
place. No new value changes are allowed to happen in the time slot once the Postponed region is reached.

The Observed and Reactive regions are new in the SystemVerilog 3.1 standard, and events are only scheduled
into these new regions from new language constructs.

The Observed region is for the evaluation of the property expressions when they are triggered. It is essential
that the signals feeding and producing al the clocks to the property expressions have stabilized, so that the
next state of the property expressions can be calculated deterministically. A criterion for this determinism is
that the property evaluations must only occur once in any clock triggering time slot. During the property eval-
uation, pass/fail code shall be scheduled to be executed in the Reactive region of the current time slot.

The sampling time of sampled data for property expressions is controlled in the clock domain block. The new
#1step sampling delay provides the ability to sample data immediately before entering the current time slot,
and is a preferred construct over other equivalent constructs because it allows the 1step time delay to be
parameterized. This #1step construct is a conceptual mechanism that provides a method for defining when
sampling takes place, and does not require that an event be created in this previous time slot. Conceptually this
#1step Sampling isidentical to taking the data samples in the Preponed region of the current time slot.

Code specified in the program block, and pass/fail code from property expressions, are scheduled to occur in
the Reactive region.

The Pre-active, Pre-NBA, and Post-NBA are new in the SystemVerilog 3.1 standard but support existing PLI
callbacks. The Post-observed region is new in the SystemVerilog 3.1 standard and has been added for PLI sup-
port.
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The Pre-active region is specifically for aPLI callback control point that allows for user code to read and write
values and create events before events in the Active region are evaluated (see Section 14.4).

The Pre-NBA region is specifically for aPLI callback control point that allows for user code to read and write
values and create events before the eventsin the NBA region are evaluated (see Section 14.4).

The Post-NBA region is specifically for aPLI callback control point that allows for user code to read and write
values and create events after the events in the NBA region are evaluated (see Section 14.4).

The Post-observed region is specifically for a PLI callback control point that allows for user code to read val-
ues after properties are evaluated (in Observed or earlier region).

The flow of execution of the event regions is specified in Figure 14-1.
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Figure 14-1 — The SystemVerilog flow of time slots and event regions

The Active, Inactive, Pre-NBA, NBA, Post-NBA, Observed, Post-observed and Reactive regions are known as
the iterative regions.
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The Preponed region is specifically for a PLI callback control point that allows for user code to access data at
the current time slot before any net or variable has changed state.

The Active region holds current events being evaluated and can be processed in any order.
The Inactive region holds the events to be evaluated after all the active events are processed.

An explicit zero delay (#0) requires that the process be suspended and an event scheduled into the Inactive
region of the current time slot so that the process can be resumed in the next inactive to active iteration.

A nonblocking assignment creates an event in the NBA region, scheduled for current or a later ssmulation
time.

The Postponed region is specifically for aPLI callback control point that allows for user code to be suspended
until after all the Active, Inactive and NBA regions have completed. Within this region, it isillegal to write
values to any net or variable, or to schedule an event in any previous region within the current time slot.

14.3.1 The SystemVerilog simulation reference algorithm

execute simulation {
T = 0;
initialize the values of all nets and variables;
schedule all initialization events into time 0 slot;
while (some time slot is non-empty) {
move to the next future non-empty time slot and set T;
execute_time slot (T);

}

execute time slot
execute_region (preponed) ;
while (some iterative region is non-empty) {
execute region (active);
scan iterative regions in order {
if (region is non-empty) {
move events in region to the active region;
break from scan loop;

}
}

execute region (postponed) ;

}

execute region {
while (region is non-empty) {
E = any event from region;
remove E from the region;
if (E is an update event) {
update the modified object;
evaluate processes sensitive to the object and possibly schedule
further events for execution;
} else { /* E is an evaluation event */
evaluate the process associated with the event and possibly
schedule further events for execution;

}

The Iterative regions and their order are: Active, Inactive, Pre-NBA, NBA, Post-NBA, Observed, Post-
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observed and Reactive.

14.4 The PLI callback control points

There are two kinds of PLI callbacks, those that are executed immediately when some specific activity occurs,
and those that are explicitly registered as a one-shot eval uation event.

It is possible to explicitly schedule a PLI callback event in any region. Thus, an explicit PLI callback registra-
tion isidentified by atuple: (time, region).

The following list provides the mapping from the various current PLI callbacks

Table 14-3: PLI Callbacks

Callback | dentification
tf synchronize (time, Pre-NBA)
tf isynchronize (time, Pre-NBA)
tf rosynchronize (time, Postponed)
tf irosynchronize (time, Postponed)
cbReadWriteSynch (time, Post-NBA)
cbAtStartOfSimTime (time, Pre-active)
cbReadOnlySynch (time, Postponed)
cbNBASynch (time, Pre-NBA)
cbAtEndOfSimTime (time, Postponed)
cbNextSimTime (time, Pre-active)
cbAfterDelay (time, Pre-active)

Copyright 2003 Accellera. All rights reserved. 129



Accellera
SystemVerilog 3.1/draft 6 Extensions to Verilog-2001

Section 15
Clocking Domains

15.1 Introduction (informative)

In Verilog, the communication between blocks is specified using module ports. SystemVerilog adds the inter-
face, a key construct that encapsulates the communication between blocks, thereby enabling users to easily
change the level of abstraction at which the inter-module communication is to be model ed.

An interface can specify the signals or nets through which atestbench communicates with a device under test.
However, an interface does not explicitly specify any timing disciplines, synchronization requirements, or
clocking paradigms.

SystemVerilog adds the c1ocking construct that identifies clock signals, and captures the timing and synchro-
nization requirements of the blocks being modeled. A clocking domain assembles signals that are synchronous
to a particular clock, and makes their timing explicit. The clocking domain is a key element in a cycle-based
methodol ogy, which enables usersto write testbenches at a higher level of abstraction. Rather than focusing on
signals and transitions in time, the test can be defined in terms of cycles and transactions. Depending on the
environment, a testbench can contain one or more clocking domains, each containing its own clock plus an
arbitrary number of signals.

The clocking domain separates the timing and synchronization details from the structural, functional, and pro-
cedural elements of atestbench. Thus, the timing for sampling and driving clocking domain signalsisimplicit
and relative to the clocking-domain’s clock. This enables a set of key operations to be written very succinctly,
without explicitly using clocks or specifying timing. These operations are:

— Synchronous events
— Input sampling
— Synchronous drives

15.2 Clocking domain declaration

The syntax for the clocking construct is:
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clocking_decl ::=[ default ] clocking [ clocking_identifier ] clocking_event ; [l from Annex A.6.11
{ clocking_item}
endclocking
clocking_event ::=
@ identifier
| @ (event_expression )
clocking_item :=
default default_skew ;
| clocking_direction list_of clocking_decl_assign ;
| { attribute_instance} concurrent_assertion_item_declaration
default_skew ::=
input clocking_skew
| output clocking_skew
| input clocking_skew output clocking_skew
clocking_direction ::=
input [ clocking_skew ]
| output [ clocking_skew ]
| input [ clocking_skew ] output [ clocking_skew ]
| inout
list_of clocking decl_assign ::= clocking_decl_assign{ , clocking_decl_assign}
clocking_decl_assign ::= signal_identifier [ = hierarchical_identifier ]
clocking_skew ::=
edge identifier [ delay_control ]

| delay_control
edge_identifier ::= posedge | negedge /l from Annex A.7.4
delay control ::= [ from Annex A.6.5
# delay_value

| # ( mintypmax_expression )

Syntax 15-1—Class syntax (excerpt from Annex A)

The delay_control must be either a time literal or a constant expression that evaluates to a positive integer
value.

The clocking_identifier specifies the name of the clocking domain being declared.

The signal_identfier identifies a signal in the scope enclosing the clocking domain declaration, and declares
the name of asignal in the clocking domain. Unless ahierarchical expression isused, both the signa
and the clocking item names shall be the same.

The clocking_event designates a particular event to act as the clock for the clocking domain. Typically, this
expression is either the posedge Or negedge of aclocking signal. The timing of al the other signals specified
in agiven clocking domain are governed by the clocking event. All input or inout signals specified in the
clocking domain are sampled when the corresponding clock event occurs. Likewise, al output Or inout Sig-
nals in the clocking domain are driven when the corresponding clock event occurs. Bidirectional signals
(inout) are sampled as well as driven.

The clocking_skew determines how many time units away from the clock event a signa is to be sampled or
driven. Input skews are implicitly negative, that is, they always refer to atime before the clock, whereas output
skews always refer to a time after the clock (see Section 15.3). When the clocking event specifies a simple
edge, instead of a number, the skew can be specified as the opposite edge of the signal. A single skew can be
specified for the entire domain by using adefault clocking item.
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The hierarchical _identifier specifies that, instead of alocal port, the signal to be associated with the clocking
domain is specified by its hierarchical name (cross-module reference).

Example:

clocking bus @ (posedge clockl) ;
default input #10ns output #2ns;
input data, ready, enable = top.meml.enable;
output negedge ack;
input #lstep addr;
endclocking

In the above example, the first line declares a clocking domain called bus that isto be clocked on the positive
edge of the signal clock1. The second line specifies that by default all signalsin the domain shall usea1ons
input skew and a 2ns output skew. The next line adds three input signals to the domain: data, ready, and
enable; the last signa refers to the hierarchical signa top.memi.enable. The fourth line adds the signal
ack to the domain, and overrides the default output skew so that ack is driven on the negative edge of the
clock. Thelast line adds the signa addr and overrides the default input skew so that addr is sampled one step
before the positive edge of the clock.

Unless otherwise specified, the default input skew is 1step and the default output skew is0. A step isa
specia time unit whose value is defined in Section 18.6. A 1step input skew allows input signals to sample
their steady-state values in the time step immediately before the clock event (i.e., in the preceding Postponed
region). Unlike other time units, which represent physical units, a step cannot be used to set or modify either
the precision or the timeunit.

15.3 Input and output skews

Input (or inout) signals are sampled at the designated clock event. If an input skew is specified then the signal
issampled at skew time units before the clock event. Similarly, output (or inout) signals are driven skew simu-
lation time units after the corresponding clock event. Figure 15-1 shows the basic sample/drive timing for a
positive edge clock.

signal sampled here signal driven here
ZN . 4
| | |
| | |
| T
| |
clock | :
-
J
input skew \b output skew

Figure 15-1 — Sample and drive times including skew
with respect to the positive edge of the clock.

A skew must be a constant expression, and can be specified as a parameter. If the skew does not specify atime
unit, the current time unit isused. If anumber is used, the skew isinterpreted using the timescale of the current
scope.

clocking dram @ (clk) ;

input #1lps address;
input #5 output #6 data;
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endclocking

Aninput skew of 1step indicatesthat the signal isto be sampled at the end of the previoustime step. That is,
the value sampled is aways the signal’s last value immediately before the corresponding clock edge.

An input skew of #0 forces a skew of zero. Inputs with zero skew are sampled at the same time as their corre-
sponding clocking event, but to avoid races, they are sampled in the Observed region. Likewise, outputs with
zero skew are driven at the same time as their specified clocking event, as nonblocking assignments (in the
NBA region).

Skews are declarative constructs, thus, they are semantically very different from the syntactically similar pro-

cedural delay statement. In particular, a #0 skew, does not suspend any process nor does it execute or sample
valuesin the Inactive region.

15.4 Hierarchical expressions

Any signal in a clocking domain can be associated with an arbitrary hierarchical expression. As described in
Section 15.2, ahierarchical expression isintroduced by appending an equal sign (=) followed by the hierarchi-
cal expression:

clocking cdl @(posedge phil) ;
input #lstep state = top.cpu.state;

endclocking

However, hierarchical expressions are not limited to simple names or signalsin other scopes. They can be used
to declare dlices and concatenations (or combinations thereof) of signalsin other scopes or in the current scope.

clocking mem @ (clock) ;

input instruction = { opcode, regA, regB[3:1] };
endclocking

15.5 Signals in multiple clocking domains

The same signals—clock, inputs, inouts, or outputs—can appear in more than one clocking domain. Clocking
domains that use the same clock (or clocking expression) shall share the same synchronization event, in the
same manner as severa latches can be controlled by the same clock. Input semantics are described in
Section 15.12, and output semantics are described in Section 15.14.

15.6 Clocking domain scope and lifetime

A clocking construct is both a declaration and an instance of that declaration. A separate instantiation step is
not necessary. Instead, one copy is created for each instance of the block containing the declaration (like an
always block). Once declared, the clocking signals are available via the clock-domain name and the dot (.)
operator:

dom.sig // signal sig in clocking dom

Clocking domains cannot be nested. They cannot be declared inside functions or tasks, or at the global
(sroot) level. Clocking domains can only be declared inside a module, interface or program (see Section 16).

Clocking domains have static lifetime and scope local to their enclosing module, interface or program.

15.7 Multiple clocking domains example

In this example, a simple test program includes two clocking domains. The program construct used in this
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exampleis discussed in Section 16.

program test( input phil, input [15:0] data, output logic write,
input phi2, inout [8:1] cmd, input enable
) ;
reg [8:1] cmd reg;

clocking cdl @(posedge phil) ;
input data;
output write;
input state = top.cpu.state;
endclocking

clocking cd2 @(posedge phi2) ;
input #2 output #4ps cmd;
input enable;

endclocking

initial begin
// program begins here

// user can access cdl.data , cd2.cmd , etc..

end
assign cmd = enable ? cmd reg: 'x;
endprogram

The test program can be instantiated and connected to a device under test (cpu and mem).

module top;
logic phil, phi2;
wire [8:1] cmd; // cannot be logic (two bidirectional drivers)
logic [15:0] data;

test main( phil, data, write, phi2, cmd, enable );
cpu cpul( phil, data, write );
mem meml ( phi2, cmd, enable );

endmodule

15.8 Interfaces and clocking domains

A clocking encapsulates a set of signals that share a common clock, therefore, specifying a clocking domain
using a SystemVerilog interface can significantly reduce the amount of code needed to connect the test-
bench. Furthermore, since the signal directions in the clocking domain within the testbench are with respect to
the testbench, and not the design under test, amodport declaration can appropriately describe either direction.
A testbench program can be contained within a program and its ports can be interfaces that correspond to the
signals declared in each clocking domain. The interface’s wires shall have the same direction as specified in
the clocking domain when viewed from the testbench side (i.e., modport test), and reversed when viewed

from the device under test (i.e., modport dut).
For example, the previous example could be re-written using interfaces as follows:

interface bus A (input clk);
logic [15:0] data;
logic write;
modport test (input data, output write);
modport dut (output data, input write);
endinterface
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interface bus B (input clk);
logic [8:1] cmd;
logic enable;
modport test (input enable) ;
modport dut (output enable) ;
endinterface

program test( bus A.test a, bus B.test b );

clocking cdl @(posedge a.clk);
input a.data;
output a.write;
inout state = top.cpu.state;
endclocking

clocking cd2 @(posedge b.clk) ;
input #2 output #4ps b.cmd;
input b.enable;

endclocking

initial begin
// program begins here

// user can access cdl.a.data , cd2.b.cmd
end
endprogram

, etc..

The test module can be instantiated and connected as before:

module top;
logic phil, phi2;

bus_A a(phil);
bus B b(phi2) ;

test main( a, b );

cpu cpul( a );

mem meml( b );
endmodule

Alternatively, in the program test above, the clocking domain can be written using both interfaces and hierar-
chical expressions as:

clocking cdl @ (posedge a.clk);
input data = a.data;
output write = a.write;
inout state = top.cpu.state;
endclocking

clocking cd2 @ (posedge b.clk) ;
input #2 output #4ps cmd = b.cmd;
input enable = b.enable;
endclocking

This would allow using the shorter names (cd1.data, cd2.cmd, ...) instead of the longer interface syntax
(cdi.a.data, cd2.b.cmd,...).

Copyright 2003 Accellera. All rights reserved. 135



Accellera
SystemVerilog 3.1/draft 6 Extensions to Verilog-2001

15.9 Clocking domain events

The clocking event of a clocking domain is available directly by using the clocking domain name, regardiess
of the actual clocking event used to declare the clocking domain.

For example.
clocking dram @ (posedge phil) ;
inout data;
output negedge #1 address;
endclocking
The clocking event of the dram domain can be used to wait for that particular event:

@( dram ) ;

The above statement is equivalent to @ (posedge phil).

15.10 Cycle delay: ##

The ## operator can be used to delay execution by a specified number of clocking events, or clock cycles.

The syntax for the cycle delay statement is:

cycle delay range::= /[ from Annex A.2.10
## constant_expression
| ##[ cycle _delay const_range expression |
cycle delay _const_range expression ::=
constant_expression : constant_expression
| constant_expression : $

Syntax 15-2—Cycle delay syntax (excerpt from Annex A)

The constant_expression can be any SystemVerilog expression that eval uates to a positive integer value.

What constitutes a cycle is determined by the default clocking in effect (see Section 15.11). If no default clock-
ing has been specified for the current module, interface, or program then the compiler shall issue an error.

Example:
## 5; // wait 5 cycles (clocking events) using the default clocking
## J + 1; // wait j+1 cycles (clocking events) using the default clocking

15.11 Default clocking

One clocking can be specified as the default for all cycle delay operations within a given module, inter-
face, Of program.

The syntax for the default cycle specification statement is:
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module_or_generate item_declaration ::= [/ from Annex A.1.5

| default clocking clocking_identifier ;
clocking_decl ::=[ default ] clocking [ clocking_identifier ] clocking_event ; [/ from Annex A.6.11
{ clocking_item }
endclocking

Syntax 15-3—Default clocking syntax (excerpt from Annex A)

The clocking_identifier must be the name of a clocking domain.

Only one default clocking can be specified in a program, module, or interface. Specifying a default clocking
more than once in the same program or module shall result in a compiler error.

A default clocking is valid only within the scope containing the default clocking specification. This scope
includes the module, interface, or program that contains the declaration as well as any nested modules or inter-
faces. It does not include instantiated modules or interfaces.

Example 1. Declaring a clocking as the default:
program test( input bit clk, input reg [15:0] data )
default clocking bus @ (posedge clk) ;
inout data;

endclocking

initial begin

## 5;
if ( bus.data == 10 )
## 1;
else
end
endprogram

Example 2. Assigning an existing clocking to be the default:

module processor ...

clocking busA @(posedge clkl); ... endclocking
clocking busB @(negedge clk2); ... endclocking
module cpu( interface y )

default clocking busA ;

initial begin

## 5; // use busA => (posedge clkl)
end

endmodule
endmodule

15.12 Input sampling

All clocking domain inputs (input or inout) are sampled at the corresponding clocking event. If the input skew
is non-zero, then the value sampled corresponds to the signal value at the Postponed region of the time step
skew time-units prior to the clocking event (see Figure 15-1 in Section 15.3). If the input skew is zero, then the
value sampled corresponds to the signal valuein the Observed region.
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Samples happen immediately (the calling process does not block). When a signal appearsin an expression, it is
replaced by the signal’s sampled value, that is, the value that was sampled at the last sampling point.

When the same signal is an input to multiple clocking domains, the semantics are straightforward; each clock-
ing domain samples the corresponding signal with its own clocking event.

15.13 Synchronous events

Explicit synchronization is done viathe event control operator, @, which allows a process to wait for a particu-
lar signal value change, or a clocking event (see Section 15.9).

The syntax for the synchronization operator is given in Section 8.10.

The expression used with the event control can denote clocking-domain input (input Or inout), or a slice
thereof. Slices can include dynamic indices, which are evaluated once, when the @ expression executes.

These are some example synchronization statements:
— Wait for the next change of signal ack_1 of clock-domain ram bus

@(ram_bus.ack 1) ;

— Wait for the next clocking event in clock-domain ram_bus

@(ram_bus) ;

— Wait for the positive edge of thesignal ram_bus.enable

@ (posedge ram bus.enable) ;

— Wait for the falling edge of the specified 1-hit slice dom.sign[a]. Note that the index a is evaluated at
runtime.

@ (negedge dom.signl(al) ;

— Wait for either the next positive edge of dom.sig1 or the next change of dom. sig2, whichever happens
first.

@ (posedge dom.sigl or dom.sig2) ;

— Wait for the either the negative edge of dom. sig1 or the positive edge of dom.sig2, whichever happens
first.

@ (negedge dom.sigl or posedge dom.sig2) ;

The values used by the synchronization event control are the synchronous values, that is, the values sampled at
the corresponding clocking event.

15.14 Synchronous drives

Clocking domain outputs (output Or inout) are used to drive values onto their corresponding signals, but at
aspecified time. That is, the corresponding signal changes value at the indicated clocking event as modified by
the output skew.
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The syntax to specify a synchronous drive is similar to an assignment:

statement ::= [ block_identifier : ] statement_item [/ from Annex A.6.4
statement_item ::=

| { attribute_instance} clocking_drive
clocking_drive ::= [l from Annex A.6.11
clockvar_expression <=[ cycle_delay ] expression
| cycle_delay clockvar_expression <= expression
cycle delay ::= ## expression
clockvar ::= clocking_identifier . identifier
clockvar_expression ::=
clockvar range
| clockvar [ range_expression |

Syntax 15-4—Default clocking syntax (excerpt from Annex A)

The clockvar_expression is either a bit-select, dlice, or the entire clocking domain output whose corresponding
signal isto be driven (concatenation is not allowed):

dom.sig // entire clockvar
dom.sig[2] // bit-select
dom.sig[8:2] // slice

The expression can be any valid expression that is assignment compatible with the type of the corresponding
signal.

The event_count is an integral expression that optionally specifies the number of clocking events (i.e. cycles)
that must pass before the statement executes. Specifying a non-zero event count blocks the current process
until the specified number of clocking events have elapsed, otherwise the statement executes at the current
time. Theevent count uses syntax similar to the cycle-delay operator (see Section 15.10), however, the syn-
chronous drive uses the clocking domain of the signal being driven and not the default clocking.

The second form of the synchronous drive uses the intra-assignment syntax. An intra-assignment
event count Specification also delays execution of the assignment. In this case the process does not block
and the right-hand side expression is evaluated when the statement executes.

Examples:

bus.data[3:0] <= 4'h5; // drive data in current cycle

##1 bus.data <= 8'hz; // wait 1 (bus) cycle and then drive data
##2; bus.data <= 2; // wait 2 default clocking cycles, then drive data
bus.data <= ##2 r; // remember the value of r and then drive

// data 2 (bus) cycles later

Regardless of when the drive statement executes (due to event_count delays), the driven value is assigned to
the corresponding signal only at the time specified by the output skew.
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15.14.1 Drives and nonblocking assignments
Synchronous signal drives are processed as nonblocking assignments.

A key feature of inout clocking domain variables and synchronous drives is that a drive does not change the
clock domain input. Thisis because reading the input always yields the last sampled value, and not the driven
value.

15.14.2 Drive value resolution

When more than one synchronous drive is applied to the same clocking domain output (or inout) at the same
simulation time, the driven values are checked for conflicts. When conflicting drives are detected a runtime
error isissued, and each conflicting bit is driven to X (or O for a 2-state port).

For example:

clocking pe @ (posedge clk) ;
output nibble; // four bit output
endclocking

pe.nibble <= 4'b0101;
pe.nibble <= 4'b0011;

Thedrivenvalue of nibble is4’b0xx1, regardless of whether nibble iSareg Or awire.

When the same variableis an output from multiple clocking domains, the last drive determines the value of the
variable. This alows a single module to model multi-rate devices, such as a DDR memory, using a different
clocking domain to model each active edge. For example:

reg j;

clocking pe @ (posedge clk) ;
output j;
endclocking

clocking ne @ (negedge clk) ;
output j;
endclocking

The variable j is an output to two clocking domains using different clocking events (posedge VS. negedge).
When driven, the variable j shall take on the value most recently assigned by either clocking domain.

Clock-domain outputs driving a net (i.e. through different ports) cause the net to be driven to its resolved sig-
nal value. When a clock-domain output correspondsto awire, adriver for that wireis created that is updated as
if by a continuous assignment from aregister inside the clock-domain that is updated as a nonblocking assign-
ment.
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Section 16
Program Block

16.1 Introduction (informative)

The module is the basic building block in Verilog. Modules can contain hierarchies of other modules, wires,
task and function declarations, and procedural statements within always and initial blocks. This construct
works extremely well for the description of hardware. However, for the testbench, the emphasisis not in the
hardware-level details such as wires, structura hierarchy, and interconnects, but in modeling the complete
environment in which adesign is verified. A lot of effort is spent getting the environment properly initialized
and synchronized, avoiding races between the design and the testbench, automating the generation of input
stimuli, and reusing existing models and other infrastructure.

The program block serves three basic purposes:
1) It providesan entry point to the execution of testbenches.
2) It creates a scope that encapsul ates program-wide data.

3) It provides a syntactic context that specifies execution in the Reactive region.

The program construct serves as a clear separator between design and testbench, and, more importantly, it
specifies specialized execution semantics in the Reactive region for all elements declared within the program.
Together with clocking domains, the program construct provides for race-free interaction between the design
and the testbench, and enables cycle and transaction level abstractions.

The abstraction and modeling constructs of SystemVerilog simplify the creation and maintenance of test-
benches. The ability to instantiate and individually connect each program instance enables their use as general -
ized models.

16.2 The program construct

A typical program contains type and data declarations, subroutines, connections to the design, and one or more
procedural code streams. The connection between design and testbench uses the same interconnect mechanism
as used by SystemVerilog to specify port connections, including interfaces. The syntax for the program block
is:
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program_nonansi_header ::= [/ from Annex A.1.3
{ attribute_instance } program [ lifetime] program_identifier
[ parameter_port_list] list_of _ports;
program_ansi_header ::=
{attribute_instance} program [ lifetime] program_identifier
[ parameter_port_list] [ list_of_port_declarations] ;
program_declaration ::=
program_nonansi_header [ timeunits_declaration] { program_item }
endprogram [ : program_identifier ]
| program_ansi_header [ timeunits_declaration ] { non_port_program_item }
endprogram [ : program_identifier ]
| { attribute_instance} program program_identifier (.* ) ;
[ timeunits_declaration ] { program_item }
endprogram [ : program_identifier ]
| extern program_nonansi_header
| extern program_ansi_header

program_item ::= [/ from Annex A.1.7
port_declaration ;
| non_port_program_item
non_port_program_item ::=
{ attribute_instance } continuous_assign
| { attribute_instance} module_or_generate item_declaration
| { attribute_instance } specparam_declaration
| { attribute_instance } local_parameter declaration
| { attribute_instance} parameter_declaration ;
| { attribute_instance} initial_construct
| { attribute_instance} concurrent_assertion_item
| class_declaration

lifetime ::= static | automatic // from Annex A.2.1.3

Syntax 16-1—Program declaration syntax (excerpt from Annex A)
For example:
program test (input clk, input [16:1] addr, inout [7:0] data);
initial ...
endprogram
or
program test ( interface device ifc );

initial ...
endprogram

A more complete exampleisincluded in Sections 15.7 and 15.8.

Although the program construct is new to SystemVerilog, its inclusion is a natural extension. The program
construct can be considered a leaf module with special execution semantics. Once declared, a program block
can be instantiated in the required hierarchical location (typicaly at the top level) and its ports can be con-
nected in the same manner as any other module.

Program blocks can be nested within modules or interfaces. This allows multiple cooperating programs to
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share variables local to the scope. Nested programs with no ports or top-level programs that are not explicitly
instantiated are implicitly instantiated once. Implicitly instantiated programs have the same instance and decla-
ration name. For example:

module test(...)
int shared; // variable shared by programs pl and pl

program pl;

endééégram

program p2;

endﬁéégram // pl and p2 are implicitly instantiated once in module test
endmodule

A program block can contain one or more initial blocks. It can not contain always blocks, UDPs, modules,
interfaces, or other programs.

Type and data declarations within the program are local to the program scope and have static lifetime. Program
variables can only be assigned using blocking assignments. Non-program variables can only be assigned using
nonblocking assignments. Using nonblocking assignments with program variables or blocking assignments
with design (non-program) variables shall be an error.

16.3 Multiple programs

It isallowed to have any arbitrary number of program definitions or instances. The programs can be fully inde-
pendent (without inter-program communication), or cooperative. The degree of communication can be con-
trolled by choosing to share data using nested blocks or hierarchical references (including $root), or making
the data private by declaring it inside the corresponding program block.

16.4 Eliminating testbench races

There are two major sources of non-determinism in Verilog. The first oneisthat active events are processed in
an arbitrary order. The second one is that statements without time-control constructs in behavioral blocks do
not execute as one event. However, from the testbench perspective, these effects are all unimportant details.
The primary task of atestbench isto generate valid input stimulus for the design under test, and to verify that
the device operates correctly. Furthermore, testbenches that use cycle abstractions are only concerned with the
stable or steady state of the system for both checking the current outputs and for computing stimuli for the next
cycle. Formal tools also work in this fashion.

To avoid the races inherent in the Verilog event scheduler, program statements are scheduled to execute in the
Reactive region, after al clocks in the design have triggered and the design has settled to its steady state. In
addition, design signals driven from within the program must be assigned using nonblocking assignments.
Thus, even signal s driven with no delay are propagated into the design as one event. With this behavior, correct
cycle semantics can be modeled without races; thereby making program-based testbenches compatible with
clocked assertions and formal tools.

Since the program executes in the Reactive region, the clocking domain construct is very useful to automati-
cally sample the steady-state values of previous time steps or clock cycles. Programs that read design values
exclusively through clocking domains with non-zero input skews are insensitive to read-write races. It is
important to note that simply sampling input signals (or setting non-zero skews on clock domain inputs) does
not eliminate the potential for races. Proper input sampling only addresses a single clocking domain. With
multiple clocks, the arbitrary order in which overlapping or simultaneous clocks are processed is still a poten-
tial source for races. The program construct addresses this issue by scheduling its execution in the Reactive
region, after all design events have been processed, including clocks driven by nonblocking assignments.
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16.4.1 Zero-skew clocking domain races

When a clocking domain sets both input and output skewsto #0 (see Section 15.3) then itsinputs are sampled
at the same time as its outputs are driven. This type of zero-delay processing is acommon source of non-deter-
minism that can result in races. Nonetheless, even in this case, the program minimizes races by means of two
mechanisms. First, by constraining program statements to execute in the Reactive region, after al zero-delay
transitions have propagated through the design and the system has reached a quasi steady state. Second, by
requiring design variables or nets to be modified only via nonblocking assignments. These two mechanisms
reduce the likelihood of arace; nonetheless, araceis still possible when skews are set to zero.

16.5 Blocking tasks in cycle/event mode

Calling program tasks or functions from within design modules isillegal and shall result in an error. Thisis
because the design must not be aware of the testbench. Programs are allowed to call tasks or functionsin other
programs or within design modules. Functions within design modules can be called from a program, and
require no special handling. However, blocking tasks within design modules that are called from a program do
require explicit synchronization upon return from the task. That is, when blocking tasks return to the program
code, the program block execution is automatically postponed until the Reactive region. The copy out of the
parameters happens when the task returns.

Calling blocking tasks in design modules from within programs requires careful consideration. Expressions
evaluated by the task before blocking on the first timing control shall use the values after they have been
updated by nonblocking assignments. In contrast, if the task is called from amodule at the start of the time step
(before nonblocking assignments are processed) then those same expressions shall use the values before they
have been updated by nonblocking assignments.

module ...
task T;
Sl: a = b; // might execute before or after the Observe region
#5;
S2: b <= 1'bl; // always executes before the Observe region
endtask
endmodule

If task T, above, is called from within a module, then the statement s1 can execute immediately when the
Activeregion is processed, before variable b is updated by a nonblocking assignment. If the same task is called
from within a program, then the statement s1 shall execute when the Reactive region is processed, after vari-
able b might have been updated by nonblocking assignments. Statement s2 always executes immediately after

the delay expires; it does not wait for the Reactive region even though it was originally called from the pro-
gram block.

16.6 Program control tasks

In addition to the normal simulation control tasks ($stop and $finish), aprogram can usethe sexit control
task.

16.6.1 $exit()

Each program can be finished by calling the $sexit system task. When all programs exit, the simulation fin-
ishes.

The syntax for the sexit systemtaskis:
task Sexit();

When al initial blocksin aprogram finish (i.e., they execute their last statement), the program implicitly
cals sexit. Calling sexit causesall processes spawned by the current program to be terminated.
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Section 17
Assertions

17.1 Introduction (informative)

SystemVerilog adds features to specify assertions of a system. An assertion specifies a behavior of the system.
Assertions are primarily used to validate the behavior of a design. In addition, assertions can be used to pro-
vide functional coverage and generate input stimulus for validation.

There are two kinds of assertions: concurrent and immediate.

— Immediate assertions follow simulation event semantics for their execution and are executed like a state-
ment in a procedural block. Immediate assertions are primarily intended to be used with simulation.

— Concurrent assertions are based on clock semantics and use sampled values of variables. One of the goals
of SystemVerilog assertions is to provide a common semantic meaning for assertions so that they can be
used to drive various design and verification tools. Many tools, such as formal verification tools, evaluate
circuit descriptions using a cycle-based semantic, which typically relies on a clock signal or signas to
drive the evaluation of the circuit. Any timing or event behavior between clock edges is abstracted away.
Concurrent assertions incorporate this clock semantic. While this approach generally simplifies the evalua-
tion of acircuit description, there are a number of scenarios under which this cycle-based evaluation pro-
vides different behavior from the standard event-based evaluation of SystemVerilog.

This section describes both types of assertions.

17.2 Immediate assertions

The immediate assertion statement is a test of an expression performed when the statement is executed in the
procedural code. The expression is non-temporal and treated as acondition asin an i £ statement. The immedi-
ate assert Statement is a statement_item and can be specified anywhere a procedural statement is specified.

procedural_assertion_item ::= /l from Annex A.6.10

| immediate_assert_statement
immediate assert statement ::=
assert ( expression ) action_block
action_block ::= /I from Annex A.6.3

statement _or_null
| [ statement ] el se statement

Syntax 17-1—Immediate assertion syntax (excerpt from Annex A)

The action_block specifies what actions are taken upon success or failure of the assertion. The statement asso-
ciated with the success of the assert statement is the first statement. It is called the pass statement and is exe-
cuted if the expression evaluates to true. The evaluation of the expression follows the same semantic as that of
the conditional context of the i £ statement. Aswith the i £ statement, if the conditional expression evaluatesto
X, z or 0, then the assertion fails. The pass statement can, for example, record the number of successes for a
coverage log, but can be omitted atogether. If the pass statement is omitted, then no user-specified action is
taken when the assert expression is true. The statement associated with else is caled afail statement and is
executed if the assertion fails. That is, the expression does not evaluate to a known, non-zero value. The else
statement can also be omitted. The action block is executed immediately after the evaluation of the assert
expression.
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The optional statement label (identifier and colon) creates a named block around the assertion statement (or
any other SystemVerilog statement) and can be displayed using the $m format specification.

assert foo : assert(foo) $display("%m passed"); else $display("%m failed");
Note: The assertion control system tasks are described in Section 22.6.

Since the assertion is a statement that something must be true, the failure of an assertion shall have a severity
associated with it. By default, the severity of an assertion failureis error. Other severity levels can be specified
by including one of the following severity system tasks in the fail statement:

— $fatal is arun-time fatal, which shall terminate the simulation with an error code. The first argument
passed to $fatal shall be consistent with the argument to s£inish.

— $error isarun-time error.
— $warning isarun-time warning, which can be suppressed in a tool-specific manner.

— $info indicates that the assertion failure carries no specific severity.
The syntax for these system tasks is shown in Section 22.5.

If an assertion fails and no else clause is specified, the tool shall, by default, call $error, unless atool-spe-
cific option, such as a command-line option, is enabled to suppress the failure.

All of these severity system tasks shall print a tool-specific message indicating the severity of the failure, and
specific information about the specific failure, which shall include the following information:

— Thefile name and line number of the assertion statement.

— The hierarchical name of the assertion, if it islabeled, or the scope of the assertion if it is not label ed.

For simulation tools, these tasks shall also include the simulation run-time at which the severity system task is
called.

Each system task can also include additional user-specified information using the same format as the Verilog
Sdisplay.

If more than one of these system tasks isincluded in the else clause, then each shall be executed as specified.

If the severity system task is executed at atime other than when the assertion fails, the actual failure time of the
assertion can be recorded and displayed programmatically. For example:

time t;

always @ (posedge clk)

if (state == REQ)
assert (reql || reg2)
else begin
t = Stime;
#5 Serror ("assert failed at time %0t",t);
end

If the assertion fails at time 10, the error message shall be printed at time 15, but the user-defined string printed
shall be “assert failed at time 10”.

The display of messages of warning and info types can be controlled by a tool-specific option, such as a com-
mand-line option.

Since the fail statement, like the pass statement, is any legal SystemVerilog procedural statement, it can aso be
used to signal afailure to another part of the testbench.
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assert (myfunc(a,b)) countl count + 1; else ->eventl;

assert (y == 0) else flag = 1;

17.3 Concurrent assertions overview

Concurrent assertions describe behavior that spans over time. Unlike immediate assertions, the evaluation
model is based on a clock such that a concurrent assertion is evaluated only at the occurrence of a clock tick.
The values of variables used in the evaluation are the sampled values. This way, a predictable result can be
obtained from the evaluation, regardless of the simulator’s internal mechanism of ordering events and evaluat-
ing events. Thismodel of execution a so corresponds to the synthesis model of hardware interpretation from an
RTL description.

The values of variables used in assertions are sampled in the Preponed region of atime slot and the assertions
are evaluated during the Observe region. Thisisexplained in Section 14, Scheduling Semantics.

The timing model employed in a concurrent assertion specification is based on clock ticks and uses a general-
ized notion of clock cycles. The definition of aclock is explicitly specified by the user and can vary from one
expression to ancther.

A clock tick is an atomic moment in time and implies that there is no duration of timein aclock tick. It isalso
given that aclock shall tick only once at any simulation time, and the sampled values for that simulation time
are used for evaluation. In an assertion, the sampled value is the only valid value of avariable at a clock tick.
Figure 17-1 shows the values of a variable as the clock progresses. The value of signal req islow at clock
ticks 1 and 2. At clock tick 3, the value is sampled as high and remains high until clock tick 6. The sampled
value of variable req at clock tick 6 islow and remains low until clock tick 10. Notice that, at clock tick 9, the
simulation value transitions to high. However, the sampled valueislow.

simulation
ticks

clocktcks 1 2 '3 4 5 6 7 8 19 10 11 12 13 14
1
1 |

|
' [
req | I il

Figure 17-1 — Sampling a variable on simulation ticks

An expression used in an assertion is always tied to aclock definition. The sampled values are used to evaluate
value change expressions or boolean sub-expressions that are required to determine a match with respect to a
seguence expression.

Note:

— Itisimportant to ensure that the defined clock behavior is glitch free. Otherwise, wrong values can be sam-
pled.

— If avariable that appearsin the expression for clock also appearsin an expression for the assertion, the val-
ues of the two usages of the variable can be different. The value of the variable used in the clock expression
is the current value, while for the assertion the sampled value of the variable is used.

The clock expression that controls evaluation of a sequence can be more complex than just a single signa
name. Anexpressionsuch as (clk && gating signal) and (clk iff gating signal) could beused
to represent gated clocks. Other more complex expressions are possible. In order to ensure proper behavior of
the system and conform as closely as possible to truly cycle-based semantics, the signalsin a clock expression
must be glitch-free and should only transition once at any simulation time.

An example of a concurrent assertion is:
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base rulel: assert property (cont prop(rst,inl,in2)) pass stat else fail stat;
The keyword property distinguishes a concurrent assertion from an immediate assertion. The syntax of con-
current assertionsis discussed in 17.12.

17.4 Boolean expressions

The expressions used in sequences are evaluated over sampled values of the variables that appear in the
expression. The outcome of the evaluation of an expressions is boolean and is interpreted the same way as an
expression isinterpreted in the condition of aprocedura if statement. That is, if the expression evaluatesto x,
Z, or o, thenitisinterpreted as being false. Otherwise, it istrue.

There are certain restrictions on the expressions that can appear in concurrent assertions. The restrictions on
operand types, variables, and operators are specified in the following sections.

17.4.1 Operand types

The following types are not allowed:

— non-integer types (time, shortreal, real and realtime)
— string

— event

— chandle

— class

— associative arrays

— dynamic arrays

Fixed size arrays, packed or unpacked, can be used as a whole or as part selects or as indexed bit or part
selects. The indices can be constants, parameters, or variables.

The following exampl e shows some possible forms of comparison of over members of structures and unions:
typedef int [4] array;
typedef struct { int a, b, c¢,d } record;
union { record r; array a; } p, 4
The following comparisons are legal in expressions:
p.a == g.a
and
p.r == g.r
The following example provides further illustration of the use of arraysin expressions.

logic [7:0] arrayA [0:15], arrayB[0:15];

The following comparisons are legal:

arrayA == arrayB;

arrayA != arrayB;

arrayA[i] >= arrayBI[j];

arrayB[i] [j+:2] == arrayAl[k] [m-:2];
(arrayA[i]l & (~arrayB[j]l)) == 0;
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17.4.2 Variables

The variables that can appear in expressions must be static design variables or function calls returning values
of types described in Section 17.4.1. The functions should be automatic (or preserve no state information) and
pure (no output arguments, no side effects). Static variables declared in programs, interfaces or clocking
domains can also be accessed. If areferenceisto a static variable declared in atask, that variableis sampled as
any other variable, independent of calls to the task.

17.4.3 Operators
All operators that are valid for the types described in Section 17.4.1 are allowed with the exception of assign-
ment operators or increment and decrement operators. SystemVerilog includes the C assignment operators,

such as +=, and the C increment and decrement operators, ++ and --. These operators cannot be used in expres-
sions that appear in assertions. This restriction prevents side effects.
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17.5 Sequences

sequence_expr ;= // from Annex A.2.10
cycle_delay_range sequence_expr { cycle delay range sequence_expr }
| sequence_expr cycle delay _range sequence_expr { cycle delay range sequence_expr }
| expression { , function_blocking_assignment } [ boolean_abbrev ]
| (expression {, function_blocking_assignment } ) [ boolean abbrev ]
| sequence_instance [ sequence_abbrev |
| ('sequence_expr) [ sequence abbrev |
| sequence_expr and sequence_expr
| sequence_expr inter sect sequence_expr
| sequence_expr or sequence_expr
| first_match ( sequence_expr)
| expression throughout sequence_expr
| sequence_expr within sequence_expr
cycle delay _range::=
## constant_expression
| ## [ cycle _delay _const_range expression |
sequence_instance ::=
sequence_identifier [ (actual_arg_list) ]
formal_list_item ::=
formal_identifier [ = actual_arg_expr ]
actual_arg list ::=
(actual_arg_expr { , actual_arg expr} )
| (.formal_identifier (actual_arg_expr){ , . formal_identifier ( actual_arg expr)})
actual_arg_expr ::=
event_expression
boolean abbrev ::=
consecutive _repetition
| non_consecutive repetition
| goto_repetition
sequence_abbrev ::= consecutive_repetition
consecutive _repetition ;= [* const_or_range expression |
non_consecutive_repetition ::= [*= const_or_range_expression ]
goto_repetition :;= [*> const_or_range_expression |
const_or_range_expression ::=
constant_expression
| cycle delay const_range expression
cycle delay const_range expression ::=
constant_expression : constant_expression
| constant_expression : $

Syntax 17-2—Sequence syntax (excerpt from Annex A)

Properties are often constructed out of sequential behavior. The sequence feature provides the capability to
build and manipulate sequential behavior. A sequenceisalist of SystemVerilog boolean expressionsin alinear
order of increasing time. The boolean expressions must be true at those specific clock ticks for the sequence to
be true over time. A boolean expression at a point in time is a simple case of a sequence with time length of
one clock cycle. To determine a match of a sequence, the boolean expressions are eval uated at each successive
clock tick in an attempt to satisfy the sequence. If all expressions are true, then a match of the sequence occurs.
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A sequence expression describes one or more sequences by using regular expressions. Such aregular expres-
sion can concisely specify a set of zero, finitely many, or infinitely many sequences that satisfy the sequence
expression.

Sequences and sequence expressions can be composed by concatenation, anal ogous to a concatenation of lists.
The concatenation specifies a delay, using ##, from the end of the first sequence until the beginning of the sec-
ond sequence.

The following is the syntax for sequence concatenation.

sequence_expr ;.= [/ from Annex A.2.10
cycle_delay_range sequence_expr { cycle_delay_range sequence_expr }
| sequence_expr cycle delay_range sequence_expr { cycle delay range sequence_expr }

cycle delay range::=
## constant_expression
| ##[ cycle delay const_range expression |
cycle delay const_range expression ::=
constant_expression : constant_expression
| constant_expression : $

Syntax 17-3—Sequence concatenation syntax (excerpt from Annex A)

In this syntax:
— constant_expression is computed at compile time and must result in an integer value.
— constant_expression can only be 0 or greater.

— The ¢ token is used to indicate the end of simulation. For formal verification tools, $ is used to indicate a
finite, unbounded, range.

— When arange is specified with two expressions, the second expression must be greater or equal to the first
expression.

The context in which a sequence occurs determines when the sequence is evaluated. The first expression in a
sequence is checked at the first occurrence of the clock tick at or after the expression that triggered evaluation
of the sequence. Each successive element (if any) in the sequenceis checked at the next subsegquent occurrence
of the clock.

A ## followed by an optional number or range specifies that the sequence_expr should occur later than the cur-
rent cycle. A number of 1 indicates that the next element should occur a single cycle later than the current
cycle. The number O specifies that the next expression should occur in parallel with the current clock tick.

The following are examples of delay expressions. * true isaboolean expression that always evaluates to true,
and isused for visua clarity. It can be defined as:

‘define true 1

##0 a // means a

##1 a // means ‘true ##1 a

##2 a // means ‘true ##1 ‘true ##1 a

##[0:3]a // means (a) or (‘true ##1 a) or (‘true ##1 ‘true ##1 a) or

(‘true ##1 ‘true ##1 ‘true ##1 a)
a ##2 b // meansa ##1 ‘true ##1 b

The sequence:
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req ##1 gnt ##1 !reqg

specifiesthat req be true on the current clock tick, gnt shall be true on the first subsequent tick, and req shall
be false on the next clock tick after that. The ##1 operator specifies one clock tick separation. A delay of more
than one clock tick can be specified, asin:

req ##2 gnt

This specifies that req shall be true on the current clock tick, and gnt shall be true on the second subsequent
clock tick, as shown in Figure 17-2.

0 sl s2
clk 1 I I LI
req [ |1
gnt [

Figure 17-2 — Concatenation of sequences

The following specifies that signal b shall be true on the Nth clock tick after signal a:
a ##N b // check b on the Nth sample

To specify a concatenation of overlapped sequences, where the end point of one sequence coincides with the
start of the next sequence, avalue of 0 is used, as shown below.

a ##1 b ##1 ¢ // first sequence seql

d ##1 e ##1 £ // second sequence seq2

seql ##0 seqg2 // overlapped concatenation
In the above example, ¢ isthe endpoint of sequence seq1, and d isthe start of sequence seq2. When concate-
nated with O clock tick delay, ¢ and d must occur at the same time, resulting in a concatenated sequence equiv-
alent to:

a ##1 b ##1 c&&d ##1 e ##1 £

It should be noted that no other form of overlapping between the sequences can be expressed using the concat-
enation operation.

In cases where the delay can be any value in arange, atime window can be specified as follows:
req ##[4:32] gnt

In the above case, signa req must be true at the current clock tick, and signal gnt must be true at some clock
tick between 4 and 32 after the current clock tick

The time window can extend to afinite, but unbounded, range by using $ asin the example bel ow.
req ##[4:$] gnt

A sequence can be unconditionally extended by concatenation with *true.
a ##1 b ##1 c ##3 ‘true

After satisfying signal ¢, the sequence length is extended by 3 clock ticks. Such adjustments in the length of
sequences can be required when complex sequences are constructed by combining simpler sequences.
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17.6 Declaring sequences

A sequence can bedeclared in
— amodule asamodule_or_generate_item
— aninterface as an interface_or_generate_item
— aprogram asanon_port_program_item
— aclocking domain as aclocking_item

— S$root

Sequences are declared using the following syntax.:

| sequence_declaration
sequence_declaration ::=
sequence sequence_identifier [ sequence formal_list] ;
{ assertion_variable_declaration }
sequence_spec ;
endsequence[ : sequence_identifier ]
sequence formal_list ::=
(formal_list_item{ , formal _list item} )
sequence_spec ::=
multi_clock_sequence
| sequence_expr
multi_clock_sequence::=
clocked sequence { ## clocked sequence}
clocked_sequence ::=
clocking_event sequence_expr
sequence_instance ::=
sequence _identifier [ (actual_arg list) ]
actual_arg list ::=
(actual_arg_expr { , actual_arg expr} )
| (.formal_identifier (actual_arg expr) { , . formal_identifier (actual_arg expr)})
actual_arg_expr ::=
event_expression
assertion_variable declaration ::=
data typelist_of variable identifiers;

concurrent_assertion_item_declaration ::= [/ from Annex A.2.10

Syntax 17-4—Declaring sequence syntax (excerpt from Annex A)

The clocking_event specifies the clock for the sequence.

Formal arguments can be optionally specified. A formal argument is untyped, and is used for syntactic replace-

ment of a name or an expression in the sequence.

An actual argument can replace an:
— identifier

— expression

Copyright 2003 Accellera. All rights reserved.



Accellera
SystemVerilog 3.1/draft 6 Extensions to Verilog-2001

— event control expression

Note that variables used in a sequence that are not formal arguments to the sequence are resolved according to
the scoping rules from the scope in which the sequence is declared.

sequence sl;

@ (posedge clk) a ##1 b ##1 c;
endsequence
sequence sS2;

@ (posedge clk) d ##1 e ##1 f;
endsequence
sequence s3;

@ (negedge clk) g ##1 h ##1 i;
endsequence

In this example, sequences s1 and s2 are evaluated on each successive posedge of c1k. The sequence s3 is
evaluated on the negedge of c1k.

Another example of sequence declaration with argumentsis shown below:

sequence s20_ 1 (data,en);
(Iframe && (data==data_bus)) ##1 (c_be[0:3] == en);
endsequence

Sequence s20_1 does not specify aclock. In this case, a clock would be inherited from some external source,
such as aproperty OF an assert Statement. A sequence can be referred to by its name. A hierarchical name
can be used, consistent with the SystemVerilog naming conventions. A sequence can be referenced in aprop-
erty, an assert Statement, or a cover Statement.

To use sequence as a sub-expression or a part of the expression, simply reference its name. The evaluation of
a segquence expression that references a sequence is performed the same way asif the sequence expression con-
tained in the sequence was a lexical part of the expression, with the formal arguments substituted by the
actual ones and the remaining variables that were not arguments substituted from the scope of declaration. An
exampleis shown below:

sequence s;
a ##1 b ##1 c;
endsequence
sequence rule;
@ (posedge sysclk)
trans ##1 start trans ##1 s ##1 end trans;
endsequence

Sequence rule in the preceding exampleis equivalent to:

sequence rule;

@ (posedge sysclk)

trans ##1 start trans ##1 a ##1 b ##1 c ##1 end trans ;
endsequence

Any form of syntactic cyclic dependency of the sequence names is disallowed. The example below illustrates
an illegal dependency of s1 on s2 and s2 on s1, because it creates a cyclic dependency.

sequence sl;

@ (posedge sysclk) (x ##1 s2);
endsequence
sequence S2;

@ (posedge sysclk) (y ##1 sl1);
endsequence
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17.7 Sequence operations

17.7.1 Operator precedence

Operator precedence and associativity islisted in Table 17-1, below. The highest precedence is listed first.

Table 17-1: Operator precedence and associativity

SystemVerilog expression operators Associativity
, (for assignment) left
* [*= [*-> left
and intersect left
or left
throughout left
within left
it left

17.7.2 Repetition in sequences

Following is the syntax for sequence repetition.

sequence_expr ::= [/ from Annex A.2.10

| expression { , function_blocking_assignment } [ boolean_abbrev ]

| (expression {, function_blocking_assignment } ) [ boolean abbrev ]
| sequence_instance [ sequence_abbrev |

| ('sequence_expr) [ sequence abbrev |

boolean_abbrev ::=
consecutive_repetition
| non_consecutive repetition
| goto_repetition
sequence_abbrev ::= consecutive_repetition
consecutive_repetition ::=[* const_or_range _expression |
non_consecutive_repetition ::= [*= const_or_range_expression |
goto_repetition ::=[*-> const_or_range _expression |
const_or_range_expression ::=
constant_expression
| cycle delay const_range _expression
cycle delay const_range expression ::=
constant_expression : constant_expression
| constant_expression : $

Syntax 17-5—Sequence repetition syntax (excerpt from Annex A)
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The repetition counts are specified as a range and the minimum and maximum range expressions must be liter-
as or constant expressions.

Three kinds of repetition are provided:

— consecutive repetition ( [* ), where a sequence is consecutively repeated with one cycle delay between the
repetitions

— goto repetition ( [*->) , where a boolean expression is repeated with one or more cycle delays between
the repetitions and the resulting sequence terminates at the last boolean expression

— hon-consecutive repetition ( [*= ), where a boolean expression is repeated with one or more cycle delays
between the repetitions and the resulting sequence can proceed beyond the last boolean expression, but
before the occurrence of the boolean expression

To specify the consecutive repetition of an expression within a sequence, the expression can simply be
repeated, as:

a ##1 b ##1 b ##1 b ##1 c
Or the number of repetitions can be specified with [*N1, as:

a ##1 b [*3] ##1 c
A consecutive repetition specifies that the item or expression must occur a specified number of times. Each
repeated item is concatenated (with a delay of 1 clock tick) to the next repeated item. A repeat of N specifies
that the sequence must occur N times in succession. For example:

a [*3] means a ##1 a ##1 a
Using 0 as the repetition number, an empty sequence results, as:

a [*0]
An empty sequence shall beillegal.

The syntax allows combination of a delay and repetition in the same sequence. The following are both
allowed:

‘true ##3 (a [*3]) // means ‘true ##1 ‘true ##1 ‘true ##1 a ##1 a ##1 a
(‘true ##2 a) [*3] // means (‘true ##2 a) ##1 (‘true ##2 a) ##1
// (‘true ##2 a), which in turn means ‘true ##1 ‘true ##1

// a ##1 ‘true ##1 ‘true ##1 a ##1 ‘true ##1 ‘true ##1 a
A sequence can be repeated as follows:
(a ##2 b) [*5]
Which is the same as:
(a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b)

A repetition with a range of maximum and minimum number of times can be expressed with [* min:max].
As an example, the following two expressions are equival ent.

(a ##2 b) [*1:5]
(a ##2 b)

or (a ##2 b ##1 a ##2 Db)
or (a ##2 b ##1 a ##2 b ##1 a ##2 b)
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or (a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b)
or (a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b)

The following two expressions are also equivalent.
(a[*0:3] ##1 b ##1 c)
(b ##1 <)
or (a ##1 b ##1 c)
or (a ##1 a ##1 b ##1 c)
or (a ##1 a ##1 a ##1 b ##1lc)
To specify a potentialy infinite number of repetitions, the dollar sign ( $ ) is used. The repetition:
a ##1 b [*1:3] ##1 c

means a is true on the current sample, then b shall be true on every subsequent sample until c is true. On the
samplein which c istrue, b does not have to be true.

The rules for specifying repeat counts are summarized as:

— Each form of repeat count specifies a minimum and maximum number of occurrences
— expression [*n:m], wheren isthe minimum, m is the maximum

— expression [*n] isthe same as expression [*n:n]

— The sequence as awhole cannot be empty

— If n is 0, then there must be either a prefix, or a suffix concatenation term (i.e., not the only term in the
expression) to the repeated sequence

— Thematch shall not be empty

The [*N] notation indicates consecutive repetition of an expression.

The goto repetition (non-consecutive exact repetition) specifies the repetition of aboolean expression, such as:
a ##1 b [*->min:max] ##1 c

Thisis equivaent to:
a ##1 ((!b [*¥0:5] ##1 b)) [*min:max]) ##1 c

Adding the range specification to this allows the construction of useful sequences containing aboolean expres-
sion that istrue for at most N occurrences:

a ##1 b[*->1:N] ##1 ¢ //a followed by at most N occurrences of b, followed by c

The non-consecutive repetition extends the goto repetition by extra clock ticks where the boolean expressionis
not true.

a ##1 b [*=min:max] ##1 c
Thisis equivaent to:
a ##1 ((!b [*¥0:3] ##1 b)) [*min:max]) ##1 !b[*0:3] ##1 c
The above expression would pass the following sequence, assuming that 3 is within the min:max range.

accccbccbcecbdddc
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17.7.3 Value change functions
Three functions are provided to detect changes in values between two adjacent clock ticks: $rose, $fell and
Sstable.

Srose ( expression )

Sfell ( expression )

Sstable ( expression )
A value change expression at a clock tick detects the change in value of an expression from the value of that
expression at the previous clock tick. The result of avalue change expression istrue or false and can be used as
a boolean expression. At the first clock tick after the assertion is started, the result of these functions are com-
puted by comparing the current valueto ‘x’.
Srose returnstrueif the least significant bit of the expression changed to 1. Otherwise, it returns fal se.
$fell returnstrueif the least significant bit of the expression changed to 0. Otherwise, it returns fal se.
$stable returnstrueif the value of the expression did not change. Otherwise, it returns false.

Figure 17-3 illustrates two examples of value changes:
— Value change expression e1 isdefined as $rose (req)

— Value change expression e2 isdefined as $fell (ack)

i

clock ticks 9 10 11 12 13 14

req

ack

el

e2

Figure 17-3 — Value change expressions

The clock ticks used for sampling the variables are derived from the clock for the property, which is different
from the simulation ticks. Assume, for now, that this clock is defined elsewhere. At clock tick 3, e1 occurs
because the value of req at clock tick 2 was low and at clock tick 3, the value is high. Similarly, e2 occurs at
clock tick 6 because the value of ack was sampled as high at clock tick 5 and sampled as low at clock tick 6.

17.7.4 AND operation

The binary operator and is used when both operand expressions are expected to succeed, but the end times of
the operand expressions can be different.
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sequence_expr ;= [/ from Annex A.2.10

| sequence_expr and sequence_expr

Syntax 17-6—and operator syntax (excerpt from Annex A)

The two operands of and are sequence expressions. The requirement for the success of the and operation is
that both the operand expressions must succeed. The operand expressions start at the same time. When one of
the operand expressions succeeds, it waits for the other to succeed. The end time of the composite expression
is the end time of the operand expression that completes |ast.

When te1 and te2 are sequences, then the expression:

tel and te2
— Succeedsif te1 and te2 succeed.

— The end timeisthe end time of either te1 or te2, whichever terminates | ast.

The following example is an expression with the and operator, where the two operands are single sequence
evaluations. The operation isillustrated in Figure 17-4.

(tel ##2 te2) and (te3 ##2 ted ##2 teb)
clk 1 2 3 4 5 6 7 8 9 10 1 12 13 14

e ||

te2

te3 |

ted

te5

tel ##2 te2

(tel ##2 te2) and |
(te3 ##2 ted ##2 teb) - — - — - —— - —

1
1
i I
te3 #42 ted ##2 te5 le — - —- - - ,A

Figure 17-4 — ANDing (and) two sequences

Here, The two operand sequences are (tel ##2 te2) and (te3 ##2 te4 ##2 te5). Thefirst operand
sequence requires that first te1 evaluates to true followed by te2 two clock ticks later. The second sequence
reguiresthat first te3 evaluates to true followed by tea two clock ticks later, followed by tes two clock ticks
later. Figure 17-4 shows the eval uation attempt at clock tick 8.

This attempt results in a match since both operand sequences match. The end times of matches for the individ-
ual sequences are clock ticks 10 and 12. The end time for the entire expression is the last of the two end times,

Copyright 2003 Accellera. All rights reserved. 159



Accellera
SystemVerilog 3.1/draft 6 Extensions to Verilog-2001

so amatch is recognized for the expression at clock tick 12.
In the following example, an operand sequence is associated with arange of time specification, such as:
(tel ##[1:5] te2) and (te3 ##2 ted4 ##2 teb5)

The first operand sequence consists of an expression with atime range from 1 to 5 and implies that when te1
evaluatesto true, te2 must follow 1, 2, 3, 4, or 5 clock ticks later. The second operand segquence is the same as
in the previous example. To consider all possibilities of a match, the following steps are taken:

1) Thefirst operand sequence starts five sequences of evaluation.
2) The second operand sequence has only one possibility for amatch, so only one sequence is started.

3) Figure 17-5 shows the attempt to examine at clock tick 8 when both operand sequences start and succeed.
All five sequences for the first operand sequence match, as shown in atime window, at clock ticks 9, 10,
11, 12 and 13 respectively. The second operand sequence matches at clock tick 12.

4) To compute the result for the composite expression, each successful sequence from the first operand
sequence is matched against the second operand sequence according to the rules of the and operation to
determine the end time for each match.

The result of this computation is five successes, four of them ending at clock tick 12, and thefifth ends at clock
tick 13. Figure 17-5 shows the two unique successes at clock ticks 12 and 13.

clk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

tel | |

te2

ted

te5

]
]
1
]
te3 | |
]
]
]
]
]
]
I
]

tel ##[1:5] te2 "’er A A A A:

te3 ##2 ted ##2 teb e - ,A

(tel ##[1:5] te2) and | | | *A A
(te3 ##2 ted ##2 teb) '* “““

Figure 17-5 — ANDing (and) two sequences, including a time range

If tel and te2 are sampled booleans (not sequences), the expression (tel and te2) succeeds if tel and
te2 are both evaluated to be true.

An example is illustrated in Figure 17-6, which shows the results for an attempt at every clock tick. The

expression matches at clock tick 1, 3, 8, and 14 because both tel and te2 are simultaneoudly true. At all
other clock ticks, the and operation fails because either tel or te2 isfalse.
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clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14

|

te2

I . L]
et A Y AY VYV AVYVYVYA

Figure 17-6 — ANDing (and) two boolean expressions

17.7.5 Intersection (AND with length restriction)

The binary operator intersect is used when both operand expressions are expected to succeed, and the end
times of the operand expressions must be the same.

sequence_expr = [/ from Annex A.2.10

| sequence_expr inter sect sequence_expr

Syntax 17-7—intersect operator syntax (excerpt from Annex A)
The two operands of intersect are sequence expressions. The requirements for the success of the
intersect operation are:
— Both the operand expressions must succeed.

— Thelength of the two operand sequences must be the same.

The additional requirement on the length of the sequencesis the basic difference between and and
intersect.

For each attempted evaluation of sequence_expr, there could be multiple matches. When there are multiple
matches for each operand segquence expression, the results are computed as follows.

— A match from the first operand is paired with a match from the second operand with the same length.
— If no such pair isfound, theresult of intersect iSno match.

— If such pairs are found, then the result consists of matched sequences, one for each pair. The end time of
each match is determined by the length of the pair.

Figure 17-7 issimilar to Figure 17-5, except that and is replaced by intersect. Compared with Figure 17-5,
thereisonly asingle match in this case.

Copyright 2003 Accellera. All rights reserved. 161



Accellera
SystemVerilog 3.1/draft 6 Extensions to Verilog-2001

clk 1 2 3 4 5 6 7 8 9 10 1 12 13 14

e ||

te2

ted

te5

]
]
1
]
te3 | |
]
]
1
]
]
]
I
]

tel ##[1:5] te2 '<+A A A A A:

te3 ##2 ted ##2 teb S R A ,A

]

]

(tel ##[1:5] te2) intersect | R e ’A
(te3 #2 ted ##2 te5) ~

Figure 17-7 — Intersecting two sequences

17.7.6 OR operation

The operator or is used when at least one of the two operand sequences is expected to match.

sequence_expr ;.= [/ from Annex A.2.10

| sequence _expr or sequence_expr

Syntax 17-8—or operator syntax (excerpt from Annex A)

The two operands of or are sequence expressions.
For the expression:
tel or te2

when operands tel and te2 are expressions, the sequence matches whenever at least one of two operands
tel and te2 isevaluated to true.

Figure 17-8 illustrates an or operation using te1 and te2 as simple values. The expression does not match at

clock ticks 7 and 13 because te1 and te2 are both false at those times. At al other times, the expression
matches, as at |east one of the two operandsistrue.
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clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14

tel | |

e | | ] ] ||
etoce A A A AAAY AAAAAYD

Figure 17-8 — ORing (or) Two Sequences

When te1 and te2 are sequences, then the expression

tel or te2
matches if at least one of the two operand sequences te1 and te2 match. To evaluate this expression, first, the
successfully matched sequences of each operand are cal culated and assigned to a group. Then, the union of the
two groupsis computed. The result of the union provides the result of the expression. The end time of a match
is the end time of any sequence that matched.

The following example shows an expression with or operator, where the two operands are sequences.
Figure 17-9 illustrates this example.

(tel ##2 te2) or (te3 ##2 ted ##2 teb)

clk 1 2 3 4 5 6 7 8 9 10 1 12 13 14

te2

er || |
|
|
1
]

te3

ted

|
|
1
|
|
te5 1
I
| ]
tel ##2 te2 »4———4 :
]

te3 ##2 ted ##2 teb e i *A

|

|
(tel ##2 te2) or |

(te3 ##2 ted ##2 teb) r€ - - - * - ’A

Figure 17-9 — ORing (or) two sequences

Here, the two operand sequences are: (tel ##2 te2) and (te3 ##2 tes ##2 te5). Thefirst sequence
requires that te1 first evaluates to true, followed by te2 two clock ticks later. The second sequence requires
that te3 evaluates to true, followed by te4 two clock ticks later, followed by tes two clock ticks later. In
Figure 17-9, the evaluation attempt for clock tick 8 is shown. The first sequence matches at clock tick 10 and
the second sequence matches at clock tick 12. So, two matches for the expression are recognized.
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In the next example, an operand sequence is associated with a time range specification, such as.
(tel ##[1:5] te2) or (tel3 ##2 te4d ##2 teb)

Thefirst operand sequence consists of an expression with atime range from 1 to 5 and specifiesthat when te1
evaluates to true, te2 must be true 1, 2, 3, 4, or 5 clock ticks later. The sequences from the second operand
require that first te3 must be true followed by te4 being true two clock ticks | ater, followed by tes being true
two clock ticks later. At any clock tick if an operand sequence succeeds, then the composite expressions suc-
ceeds. As shown in Figure 17-10, for the attempt at clock tick 8, the first operand sequence matches at clock
ticks 9, 10, 11, 12, and 13, while the second operand matches at clock tick 12. The match of the composite
expression is computed as a union of the matches of the two operand sequences, which results in matches at
clock ticks 9, 10, 11, 12, and 13.

clk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

tel | |

te2

te3 |

ted

te5

tel ##[1:5] te2

te3 #12 ted #2 te5
(tel ##[1:5] te2) or ! ,A A A A A
(te3 ##2 ted #2 teb) ~ '

Figure 17-10 — ORing (or) two sequences, including atime range

"A"'I""""'_""_
i =
e
>
e
g

17.7.7 first_match operation

The first match operator matches only the first match of possibly multiple matches for an evaluation
attempt of a sequence expression. This allows all subsequent matches to be discarded from consideration. In
particular, when the sequence expression is a sub-expression of a larger expression, then applying the
first_match operator has significant effect on the evaluation of the embedding expression.

sequence_expr ;.= [/ from Annex A.2.10

first_match ( sequence_expr)

Syntax 17-9—first_match operator syntax (excerpt from Annex A)

The operand expression can be a sequence expression. sequence_expr is evaluated to determine the match for
the(first match (sequence expr)) expression. For agiven evaluation attempt, the composite expression
matches if sequence expr results in at least one match of a sequence and fails to match if none of the
sequences from the expression result in a match. Following the first successful match for the attempt, the
first match operator stops matching subsequent sequences for sequence_expr. For an attempt, if there are
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multiple matches with the same end time as the first detected match, then all those matches are considered as
the result of the expression.

The example below shows a variable delay specification.

sequence tl;
tel ##[2:5]te2;
endsequence
sequence tsl;
first match(tel ##[2:5]te2);
endsequence

Each attempt of sequence t1 can result in matches for up to four following sequences:

tel ##2 te2
tel ##3 te2
tel ##4 te2
tel ##5 te2

However, sequence ts1 can result in a match for only one of the above four sequences. Whichever of the
above four sequences matches first becomes the result of sequence ts1.

As another example:

sequence t2;
(a ##[2:3] b) or (c ##[1:2] d);
endsequence
sequence ts2;
first match(t2);
endsequence

Each attempt of sequence t2 can result in matches for up to four following sequences:

##2 b
##3 b
##1 d
##2 d

Q Qo 9

Sequence ts2 resultsin the earliest match. In this case, it is possible to have two matches ending at the same
time.

a ##2 b
c ##2 d

Inthiscase, first match resultsin two sequences.
17.7.8 Conditions over sequences
Sequences often occur under the assumptions of some conditions for correct behavior. A logical condition

must hold true, for instance, while processing a transaction. Also, occurrence of certain values is prohibited
while processing a transaction. Such situations can be expressed directly using the following construct:

sequence_expr ::= [/ from Annex A.2.10

| expression throughout sequence_expr

Syntax 17-10—throughout construct syntax (excerpt from Annex A)
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expression must evaluate true at every clock tick during the evaluation of sequence_expr. If an evaluation of
sequence_expr startsat time t1 and endswith amatch at time t 2, then for sequence_expr to match, expression
must hold truefromtime t1 to t2.

The throughout construct is an abbreviation for writing:
(expression) [*0:$] intersect sequence_ expr

In the following example, illustrated in Figure 17-11, if a constraint were placed on the expression as shown
below, then the checker burst rulel would fail at clock tick 9.

sequence burst_rulel;
@ (posedge mclk)
$fell (burst mode) ##0
(!burst _mode) throughout (##2 ((trdy==0)&&(irdy==0)) [*7]);
endsequence

mclk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

burst_mode

irdy

trdy

(trdy==0) &&
(irdy==0)

burst_rulel it it il it Aty il M **

Figure 17-11 — Match with throughout restriction fails

6 |7

In the above expression, the value of signal burst_mode is required to be low during the sequence (from
clock tick 2 to 10) and is checked at every clock tick during that period. At clock ticks from 2 to 8, signal
burst_mode remains low and matches the expression at those clock ticks. At clock tick 9, signal
burst_mode becomes high, thereby failing to match the expression for burst_ruleil.

If signal burst_mode were to be maintained low until clock tick 10, the expression would result in amatch as
shown in Figure 17-12.

mclk 1 2 3 4 5 6 7 8 9 10 1 12 13 14

burst_mode

irdy

trdy

(trdy==0) &&
(irdy==0)

burst_rulel f*-r--r-"~"|7~7 |~ ~"7-""7" ’A
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Figure 17-12 — Match with throughout restriction succeeds

17.7.9 Sequence occurrence within another sequence

The containment of a sequence expression within another sequence is expressed as follows:

sequence_expr ::= [/ from Annex A.2.10

| sequence_expr within sequence_expr

Syntax 17-11—within construct syntax (excerpt from Annex A)

The within construct:
sequence exprl within sequence expr2
is an abbreviation for writing:
(1[*0:$] ##1 sequence_exprl ##1 1[*0:$]) intersect sequence expr2

The sequence sequence exprl must occur at least once entirely within the sequence sequence expro2.
That is, sequence exprl must satisfy the following:

— The start point of sequence_expr1 must be between the start point and the end point (start and end point
being inclusive) of sequence expr2.

— The end point of sequence expr1 must be between the start point and the end point (start and end point
being inclusive) of sequence expr2.

For example, the sequence expression
trdy[*7] within (($fell irdy) ##1 irdyl[*8])
matches on the trace shown in Figure 17-12.
17.7.10 Detecting and using endpoint of a sequence
There are two ways in which a complex sequence can be decomposed into simpler sub-expressions.

Oneisto reference the name of a sequence, thereby causing it to be started at the point where it is referenced,
as shown below:

sequence s;
a ##1 b ##1 c;
endsequence
sequence rule;
@ (posedge sysclk)
trans ##1 start trans ##1 s ##1 end trans);
endsequence

Sequence s is evaluated one cycle after the occurrence of start trans inthe sequence rule.

Another way to use the sequence expression isto detect its end point in another sequence. The end point of a
sequence is reached whenever there is amatch on its expression. The occurrence of the end point can be tested
in any sequence expression by using the method ended.

The syntax of the ended method is:
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sequence_identifier.ended

ended isamethod on a sequence. The result of its operation istrue or false. When method ended is applied in
an expression, it tests whether sequence seq_name has reached the end point at that particular point in time.
The result of ended does not depend upon the starting point of seq_name. An example is shown below:

sequence el;

@ (posedge sysclk) Srose(ready) ##1 procl ##1 proc2 ;
endsequence
sequence rule;

@ (posedge sysclk) reset ##1 inst ##1 el.ended ##1 branch back;
endsequence

1n this example, sequence expression e1 must end successfully one clock tick after inst. If the method
ended is replaced with sequence €1, e1 must start one clock tick after inst. Notice that method ended only
tests for the end point of e1, and has no bearing on the starting point of e1.

ended can be used directly on sequences that do not have formal arguments. To use ended on a sequence with
arguments, first define a sequence without formal arguments that instantiates the sequence with actua argu-
ments. For example,

sequence e2(a,b,c);
@ (posedge sysclk) Srose(a) ##1 b ##1 c;
endsequence
sequence e2 instantiated;
e2 (ready, procl,proc2) ;
endsequence
sequence rule2;
@ (posedge sysclk) reset ##1 inst ##1 e2 instantiated.ended ##1 branch back;
endsequence

17.7.11 Implication

Theimplication construct allows a user to monitor sequences based on satisfying some criteria. Most common
uses are to attach a precondition to a sequence, where the evaluation of the sequence is based on the success of
acondition.

property_expr ::= [/ from Annex A.2.10

| sequence_expr |-> [ not ] sequence_expr
| sequence_expr [=> [ not ] sequence_expr

multi_clock_property_expr ::=

| multi_clock_sequence |[=> [ not ] multi_clock _sequence

Syntax 17-12—implication syntax (excerpt from Annex A)

This clause is used to precondition monitoring of a sequence expression and is alowed at the property level.
Theresult of theimplication is either true or false. The left-hand side operand sequence_expr is called anteced-
ent, while the right-hand side operand sequence_expr is called consequent.

The following points should be noted for | - > implication:
— antecedent sequence_expr can result in multiple successful sequences.

— If thereis no match of the antecedent sequence_expr, implication succeeds vacuously by returning true.

168 Copyright 2003 Accellera. All rights reserved.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 6

— For each successful match of antecedent sequence_expr, consequent sequence expr is separately evalu-
ated, beginning at the end point of the match. That is, the end point of matching sequence from antecedent
sequence_expr overlaps with start point of the consequent sequence_expr.

— Al matches of antecedent sequence_expr must satisfy consequent sequence_expr. The satisfaction of the
conseguent sequence_expr means that thereis at least one match of the sequence_expr.

— Nesting of implication is not allowed.

Two forms of implication are provided: overlapped using operator | ->, and non-overlapped using operator
| =>. For overlapped implication, if there isamatch for the antecedent sequence_expr, then the first element of
the consequent sequence_expr is evaluated on the same clock tick. For non-overlapped implication, the first
element of the consequent sequence_expr is evaluated on the next clock tick. Therefore:

sequence_expr |=> [not] sequence expr
is equivalent to:
sequence_expr ##1 ‘true |-> [not] sequence expr
If not is used on the consequent, the result of consequent sequence_expr is reversed.
The use of implication when multi-clock sequences are involved is explained in Section 17.11.

The following example illustrates a bus operation for data transfer from a master to a target device. When the
bus enters a data transfer phase, multiple data phases can occur to transfer a block of data. During the data
transfer phase, a data phase completes on any rising clock edge on which irdy is asserted and either trdy or
stop is asserted. Note that an asserted signal here implies a value of low. The end of a data phase can be
expressed as.

property data end;

@ (posedge mclk)

data_phase |-> ((irdy==0) && ($fell(trdy) || $fell(stop))) ;
endproperty

Each time adata phase istrue, amatch for data_phase isrecognized. The attempt at clock tick 6 isillustrated

in Figure 17-13. The values shown for the signals are the sampled values with respect to the clock. At clock
tick 6, data_end istrue because stop gets asserted while irdy is asserted.

mclk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

data_phase

irdy

trdy (high)

stop

data_end A

Figure 17-13 — Conditional sequence matching

In another example, data_end_exp isused to ensure that £rame isde-asserted (value high) within 2 clock
ticksafter data_end exp occurs. Further, it isalso required that 1 rdy is de-asserted (value high) one clock
tick after £rame is de-asserted.
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A property written to express this condition is shown below.

‘define data_end exp (data phase && ((irdy==0)&&($fell (trdy) ||$fell(stop))))
property data end rulel;

@ (posedge mclk)

‘data_end exp |-> ##[1:2] $rose(frame) ##1 Srose(irdy) ;
endproperty

property data_end rulel first evaluatesdata end exp at every clock tick to test if its valueis true. If the
valueisfalse, then that particular attempt to evaluate data_end rulel isconsidered true. Otherwise, the fol-
lowing sequence expression is evaluated. The sequence expression:

##[1:2] Srose(frame) ##1 Srose(irdy)

specifies looking for the rising edge of £frame within two clock ticks in the future. After frame toggles high,
irdy must also toggle high after one clock tick. This is illustrated in Figure 17-14. ‘data_end exp IS
acknowledged at clock tick 6. Next, £rame toggles high at clock tick 7. Since this falls within the timing con-
straint imposed by [1:2], it satisfies the sequence and continues to monitor further. At clock tick 8, irdy is
evaluated. Signa irdy transitionsto high at clock tick 8, satisfying the sequence specification completely for
the attempt that began at clock tick 6.

mclk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

data_phase

[}
|
|
. |
irdy |
1
trdy (high) :

stop

frame

‘data_end_exp

data_end_rulel

.1___>_-__

Figure 17-14 — Conditional sequences

Generally, assertions are associated with preconditions so that the checking is performed only under certain
specified conditions. As seen from the previous example, the | - > operator provides this capability to specify
preconditions with sequences that must be satisfied before continuing to match those sequences. The next
example modifies the preceding example to see the effect on the results of the assertion by removing the pre-
condition for the sequence. Thisis shown below, and illustrated in Figure 17-15.

property data end rule2;

@ (posedge mclk) ##[1:2] Srose(frame) ##1 Srose(irdy) ;
endproperty
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Figure 17-15 — Results without the condition

The property is evaluated at every clock tick. For the evaluation at clock tick 1, therising edge of signal frame
does not occur at clock tick 1 or 2, so the property failsat clock tick 1. Similarly, thereisafailure at clock ticks
2, 3, and 4. For attempts starting at clock ticks 5 and 6, the rising edge of signal frame at clock tick 7 alows
checking further. At clock tick 8, the sequences complete according to the specification, resulting in a match
for attempts starting at 5 and 6. All later attempts to match the sequence fail because $rose (frame) does
not occur again. That also means that there isno match at 5, 6, and 7.

Figure 17-15 shows that removing the precondition of checking ‘data_end exp from the assertion causes
failures that are not relevant to the verification objective. It is important from the validation standpoint to
determine these preconditions and use them to filter out inappropriate or extraneous situations.
An example of implication where the antecedent is a sequence expression follows:

(a ##1 b ##1 c) |-> (4 ##1 e)

If the sequence (a ##1 b ##1 c) matches, then the sequence (d ##1 e) must also match. On the other
hand, if the sequence (a ##1 b ##1 c) doesnot match, then the result istrue.

In the next example, all matchesof (a ##[1:3] b ##1 c) must match (d ##1 e). If thereare no matches
of (a ##[1:3]1 b ##1 c), then thereisavacuous success for the property.

Another example of implicationis:

property plé6;
(write en & data valid) ##0

(write en && (retire address[0:4]==addr)) [*2] |->
##[3:8] write en && !data_valid &&(write_address[0:4]==addr) ;
endproperty

Multi-clock sequence implication is explained in Section 17.11.

17.8 Manipulating data in a sequence

The use of static SystemVerilog variables implies that only one copy exists. Therefore, if data values need to
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be checked in pipelined designs, then for each data entering the pipeline, a separate variable can be used to
store the predicted output of the pipeline for later comparison when the result actually exits the pipe. This stor-
age can be built by using an array of variables arranged in a shift register to mimic the data propagating
through a pipeline. However, in more complex situations where the latency of the pipe is variable and out of
order, this construction could become very complex and error prone. In other words, variables are needed that
arelocal to and are used within a particular transaction check that can span an arbitrary interval of time and can
overlap with other transaction checks. Such a variable must thus be dynamically created when needed within
an instance of a sequence and removed when the end of the sequence is reached.

The dynamic creation of a variable and its assignment is achieved by using the local variable declarationin a
sequence or property definition and making an assignment in the sequence.

seqguence_expr ;= [/ from Annex A.2.10

| (expression {, function_blocking_assignment } ) [ boolean_abbrev ]
| expression { , function_blocking_assignment } [ boolean_abbrev ]

Syntax 17-13—variable assignment syntax (excerpt from Annex A)

The type of variable is explicitly specified. The variable can be assigned anywhere in the sequence and reas-
signed later in the sequence. For every attempt, a new copy of the variable is created for the sequence. The
variable value can be tested like any other SystemVerilog variable.

Hierarchical referencesto alocal variable are not allowed.

As an example the local variable usage, assume a pipeline that has a fixed latency of 5 clock cycles. The data
enters the pipe on pipe _in whenvalid in istrue, and the value computed by the pipeline appears 5 clock
cycleslater onthe signal pipe outl. The dataastransformed by the pipeis predicted by afunction that incre-
ments the data. The following sequence expression verifies this behavior:

property e;

int x;

(valid in, (x = pipe_in)) |—> ##5 (pipe outl == (x+1));
endproperty

Property e isevaluated as :

1) Whenvalid inistrue, x isassignedto pipe_in. Property eistrueif five cycleslater, x isequal to (x+1).
Property eisfalseif pipe out1 isnot equal to (x+1).

2) Whenvalid_inisfalse, property e evaluates to true.
Variables can be used in sequences or properties.

sequence data check;

int x;

a ##1 la, x = data_in ##1 !b*[0:3] ##1 b && (data_out == x);
endsequence
property data check p

int x;

a ##1 l!a, x = data in |=> !b*[0:$] ##1 b && (data out == x);
endproperty

Local variables can be written on repeated sequences and accomplish accumulation of values.

sequence rep V;
int x;
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‘true,x = 0 ##0
(fa [* 0:8] ##1 a, x = x+data) [*4] ##1 b ##1 c && (data_out == x);
endsequence

The local variables declared in one sequence are not visible in the sequence where it gets instantiated. An
example below illustrates an illegal accessto local variable vi1 of sequence sub_seql in sequence seql.

sequence sub seql;

int vl;

a ##1 !a, vl = data_in ##1 !b*[0:$] ##1 b && (data_out == vi1);
endsequence
sequence seql;

c ##1 sub seql ##1 (dol == vl1); // error since vl is not visible
endsequence

To access a local variable of a sub-sequence, alocal variable must be declared and passed to the instantiated
sub-sequence through an argument. An example below illustrates this usage.

sequence sub seqg2(lv) ;

a ##1 l!a, 1lv = data_in ##1 !b*[0:3] ##1 b && (data_out == 1v);
endsequence
sequence seqz2;

int vil;

c ##1 sub seg2(vl) ##1 (dol == v1); // vl is now bound to 1lv
endsequence

Note that when alocal variable is aformal argument of a sequence definition, it isillegal to declare the vari-
able, as shown below.

sequence sub seqg3(lv) ;

int 1lv; // illegal since 1lv is a formal argument

a ##1 l!a, 1lv = data_in ##1 !b*[0:3] ##1 b && (data_out == 1v);
endsequence

There are specia considerations on using local variables in parallel branches using operators or, and, and
intersect.

1) Variablesassigned on parallel threads cannot be accessed in sibling threads. For example:

sequence s4;

int x;

(a ##1 b, (x = data) ##1 c) or (d ##1 (e==x)); // illegal
endsequence

2) In the case of or, it is the intersection of the variables (names) that pass on past or operations. More
precisely, alocal variable passesthe or if, and only if, it passes through both branches of or operations.

3) All succeeding threads out of or branches continue as separate threads, carrying with them their own latest
samplings of the local variables. These threads do not have to have consistent valuations for the local
variables. For example:

sequence s5;

int x,vy;

((a ##1 b, x = data, y = datal ##1 c)

or (d ##1 ‘true, x = data ##0 (e==x))) ##1 (y==data2);

// illegal since y is not in the intersection
endsequence
sequence s6;

int x,vy;
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((a ##1 b, x = data, y = datal ##1 c)
or (d ##1 ‘true, x = data ##0 (e==x))) ##1 (x==data2);
// legal since x is in the intersection
endsequence

4) Inthecaseof and and intersect, the symmetric difference of the local variablesthat are sampled in the
two joining threads passes on past the join. More precisely, alocal variable that passes through at least one
branch of the join shall be passed on past the join unless it is blocked. A local variable is blocked from
passing on past the join if either:

a) Thelocal variable is sampled in and passes through each branch of thejoin. Or,

b) Thelocal variableis blocked from passing through at least one of the branches of the join..

The value passed on is the latest sampled value. The two joining threads are merged into one thread at the
join.

sequence s7;

int x,vy;
((a ##1 b, x = data, y = datal ##1 c)
and (d ##1 ‘true, x = data ##0 (e==x))) ##1 (x==data2);
// illegal since X is common to both threads
endsequence
sequence s8;
int x,vy;
(a ##1 b, x = data, y = datal ##1 c)
and (d ##1 ‘true, x = data ##0 (e==x))) ##1 (y==data2);
// legal since y is in the difference
endsequence

5) Theintersection and difference of the sets of names should be computed statically at compile time.

17.9 System functions

Assertions are commonly used to evaluate certain specific characteristics of a design implementation, such as
whether a particular signal is “one-hot”. The following system functions are included to facilitate such com-
mon assertion functionality:

— S$onehot (<expressions) returnstrueif only one bit of the expression is high.
— $onehot0 (<expressions) returnstrueif at most one bit of the expression is high.

— $inset (<expression>, <expression> {, <expressions> } ) returnstrueif thefirst expression
isequal to at least one of the subsequent expression arguments.

— $insetz (<expressions,<expression> {, <expressions } ) returnstrueif thefirst expression
is equal to at least other expression argument. The comparison is performed using casez semantics, so ‘'z’
or ‘? hitsaretreated as don’t-cares.

— $isunknown (<expressions) returnstrueif any bit of the expressionis‘x’. Thisisequivalent to
“<expression> === ’'bx.

All of the above system functions have areturn type of bit. A return value of 1’ b1 indicatestrue, and a return
value of 1/ bo indicates false.

In addition to accessing values of signals at the time of evaluation of a boolean expression, the past values can
be accessed with the $past function.

S$past ( expression [ , number of ticks] )
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The optional argument number_of_ticks specifies the number of clock ticks in the past. If number_of ticksis
not specified, then it defaults to 1. spast returns the sampled value of the expression that was present
number_of _ticks prior to the time of evaluation of $past.

If the specified clock tick in the past is before the start of simulation, the returned value from the spast func-
tionisavalue of X.

Another useful function provided for the boolean expression is $countones, to count the number of 1sin abit
Vector expression.

Scountones ( expression)

An x and z value of abit is not counted towards the number of ones.

17.10 The property definition

A property defines a behavior of the design. A property can be used for verification as an assumption, a
checker, or a coverage specification. In order to use the behavior for verification, an assert or cover state-
ment must be used. A property declaration by itself does not produce any result.

A property can be declared in
— amodule asamodule_or_generate_item
— aninterface as an interface_or_generate_item
— aprogram asanon_port_program_item
— aclocking domain as aclocking_item

— S$root

To declare a property, the property construct is used as shown bel ow:
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concurrent_assertion_item_declaration ::= /l from Annex A.2.10
property _declaration
property_declaration ::=
property property_identifier [ property_formal_list] ;
{ assertion_variable_declaration }
property_spec ;
endproperty [ : property_identifier ]
property_formal_list ::=
(formal_list_item{ , formal_list_item} )
property_spec ::=
[clocking_event ] [ disableiff ] ( expression) [ not ] property_expr
| [ disableiff (expression) ] not multi_clock_property_expr
property_expr ::=
sequence_expr
| sequence_expr |-> [ not ] sequence_expr
| sequence_expr [=> [ not ] sequence_expr
multi_clock_property_expr ::=
multi_clock_sequence
| multi_clock_sequence |[=> [ not ] multi_clock _sequence
assertion_variable _declaration ::=
data_typelist_of variable identifiers;

property_instance::= [/ from Annex A.6.10
property_identifier [ (actual_arg_list) ]

Syntax 17-14—property construct syntax (excerpt from Annex A)

A property is declared with optional formal arguments, as in a sequence declaration. When a property is
instantiated, actual arguments can be passed to the property. The property gets expanded with the actual argu-
ments by replacing the formal arguments with the actual arguments. The semantic checks are performed to
ensure that the expanded property with the actual argumentsislegal.

The result of property evauation is either true or fase. There are two kinds of property: sequence, and
implication. If the property is just a sequence, the result of a sequence for every evaluation attempt is true or
false. This is accomplished by implicitly transforming sequence_expr t0o first match (sequence expr).
That is, as soon as a match of sequence_expr is determined, the result is considered to be true, and no other
matches are required for that evaluation attempt. However, if the property is an implication, then the semantics
of implication determine whether the property istrue or false.

The disable iff clause alows asynchronous resets to be specified. For a particular attempt, if the expres-
sion of thedisable iff becomes true at any time during the evaluation of the attempt, then the attempt for
the property is considered to be a success. Other attempts are not affected by the evaluation of the expression
for an attempt.

The not clause states that the property_expr associated with the property must never evaluate to true. Effec-
tively, it negates property_expr. For each attempt, property_expr results in either true or false, based on
whether there is a match for the sequence. The not clause reverses the result of property_expr. It should be
noted that there is no complementation or any form of negation for the sequence in property_expr.

This allows for the following examples:
property rulel;

@ (posedge clk) a |-> b ##1 c ##1 d;
endproperty
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property rule2;
@(clkev) disable iff (foo) not a |-> b ##1 c ##1 d;
endproperty

Property rule2 negatestheresult of theimplication (a |-> b ##1 c ##1 d) for every attempt. clkev
specifies the clock for the property .

A property can optionally specify an event control for the clock. The clock derivation and resolution rules are
described in Section 17.13.

A property can be referenced by its name. A hierarchical name can be used, consistent with the SystemVerilog
naming conventions. Like sequence declarations, variables used within a property that are not formal argu-
ments to the property are resolved hierarchically from the scope in which the property is declared.

Properties that use more than one clock are described in Section 17.11

17.11 Multiple clock support

Multiple clock sequences and properties can be specified using the following syntax.

sequence_spec ;= [/ from Annex A.2.10
multi_clock_sequence
| sequence_expr
multi_clock_sequence::=
clocked sequence { ## clocked sequence}
clocked sequence ::=
clocking_event sequence_expr
multi_clock_property_expr ::=
multi_clock_sequence
| multi_clock_sequence |=> [ not ] multi_clock_sequence

Syntax 17-15—Multiple clock syntax (excerpt from Annex A)

Two cases are allowed:
1) Concatenation of two sequences, where each sequence can have a different clock
2) The antecedent of an implication on one clock, while the consequent is on another clock
The multi-clock concatenation operator ## Synchronizes between the two clocks.
@ (posedge clk0) sig0 ## @(posedge clkl) sigl
When signal sigo matches at clock c1k, ## moves the time to the nearest clock tick of c1k1 after the match.
At the first clock tick of c1ki, it matches sigi. If the two clocks, c1ko and c1k1, are identical, then the
above sequence is equivalent to:
@ (posedge clk0) sig0 ##1 sigl
For two sequences, such as

@ (posedge clk0) sO0 ## @(posedge clkl) sl

For every match of so at clock c1ko, ## moves the time to the first clock tick of c1k1. From that first tick of
clk1, s1 ismatched.
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Multi-clock implication is only allowed with the non-overlapping implication. The semantics are similar to
the sequence concatenation with ##. Whenever there is a match of the antecedent sequence, time is advanced
to the nearest clock tick of the clock of the consequent sequence. The consequent is then evaluated for
satisfaction.

The following are examples of multiple-clock specifications:

sequence sl;

@ (posedge clkl) a ##1 b; // single clock sequence
endsequence
sequence s2;

@ (posedge clk2) c ##1 d; // single clock sequence
endsequence

1) multiple-clock sequence

sequence mult s;
@ (posedge clk) a ## @(posedge clkl) sl ## @ (posedge clk2) s2;
endsequence

2) property with amultiple-clock sequence

property mult pl;
@ (posedge clk) a ## @(posedge clkl) sl ## @(posedge clk2) s2;
endproperty

3) property with anamed multiple-clock sequence

property mult p2;
mult s;
endproperty

4) property with multiple-clock implication

property mult p3;
@ (posedge clk) a ## @(posedge clkl) sl |=> @(posedge clk2) s2;
endproperty

5) property with named sequences at different clocks. In this case, if s1 contains a clock, then it must be
identical to (posedge clk1).Similarly, if s2 containsaclock, it must beidentical to (posedge c1k2).

property mult p5
@ (posedge clkl) sl |=> @(posedge clk2) s2;
endproperty

6) property with implication, where antecedent and consequent are named multi-clocked sequences

property mult pé6;
mult_s |=> mult_s;
endproperty

17.11.1 Detecting and using endpoint of a sequence in multi-clock context

To detect the end point of a sequence when the clock of the source sequence is different than the desalination
sequence, method matched on the source sequence is used. The end point of a sequence is reached whenever
thereisamatch on its expression. The occurrence of the end point can be tested in any sequence expression by
using the method ended when the clocks of the source and destination sequences are the same, while method
matched iSused when the clocks are different.

The syntax of the matched method is:
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sequence_ identifier.matched

matched isamethod on a sequence which return true or false. Unlike ended, matched uses synchronization
between the two clocks, by storing the result of the source sequence match until the arrival of the first destina-
tion clock tick after the match. When method matched is applied, it tests whether the source sequence has
reached the end point at that particular point in time. The result of matched does not depend upon the starting
point of the source sequence.

Like ended, matched can be used directly on sequences that do not have formal arguments.
An example is shown below:

sequence el;
@ (posedge clk) S$Srose(ready) ##1 procl ##1 proc2 ;
endsequence
sequence e2;
@ (posedge sysclk) reset ##1 inst ##1 el.matched [*->1] ##1 branch back;
endsequence

In this example, source sequence e1 is evaluated at clock c1k, while the destination sequence e2 is evaluated
at clock sysclk. In e2, the end point of e1 istested to occur sometime after the occurrence of inst. Notice
that method matched only tests for the end point of e1 and has no bearing on the starting point of e1.

17.12 Concurrent assertions

A property on its own is never evaluated for checking an expression. It must be used within a verification
statement for this to occur. A verification statement states the verification function to be performed on the
property. The statement can be one of the following:

— assert to specify the property as a checker to ensure that the property holds for the design

— cover to monitor the property evaluation for coverage

A concurrent assertion statement can be specified in:
— an always block or initial block as a statement, wherever these blocks can appear
— amodule asamodule_or_generate_item
— aninterface as an interface_or_generate_item
— aprogram asanon_port_program_item

— S$root
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procedural_assertion item ::= [/ from Annex A.6.10
assert_property _statement
| cover_property_statement

concurrent_assertion_item ::= /l from Annex A.2.10
concurrent_assert_statement
| concurrent_cover_statement

concurrent_assert_statement ::=
[block _identifier:] assert_property statement
concurrent_cover_statement ::=
[block_identifier:] cover_property _statement
assert_property _statement::=
assert property ( property_spec ) action_block
| assert property ( property_instance ) action_block
cover_property_statement::=
cover property ( property_spec ) statement_or_null
| cover property ( property_instance ) statement_or_null

Syntax 17-16—Concurrent assert construct syntax (excerpt from Annex A)

The assert statement is used to enforce a property as a checker. When the property for the assert State-
ment is evaluated to be true, the pass statements of the action block are executed. Otherwise, the fail state-
ments of the action_block are executed. For example,

property abc(a,b,c);
disable iff (a==2) not @clk (b ##1 c);
endproperty

env_prop: assert property (abc(rst,inl,in2)) pass_stat else fail stat;

When no action is needed, a null statement (i.e.;) is specified. If no statement is specified for the else, then
$error isused as the statement when the assertion fails.

The action_block shall not include any concurrent assert Or cover statement. The action_block, however,
can contain immediate assertion statements.

Note: The pass and fail statements are executed in the Reactive region. The regions of execution are explained
in the scheduling semantics section, Section 14.

To monitor sequences and other behavioral aspects of the design for coverage, the same syntax is used with the
cover statement. The tools can gather information about the evaluation and report the results at the end of
simulation. When the property for the cover statement is successful, the pass statements can specify a cover-
age function, such as monitoring all paths for a sequence.

The assert Or cover Statements can be referenced by their optional name. A hierarchical name can be used
consistent with the SystemVerilog naming conventions. When a name is not provided, a tool shall assign a
name to the statement for the purpose of reporting.

Assertion control tasks are described in Section 22.6.

Coverage results are divided into two: coverage for properties, coverage for sequences.

For sequence coverage, the statement appears as:

cover property ( sequence spec ) statement or null
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The identifier of a particular attempt is called attemptld, and the clock tick of the occurrence of the match is
called clock step.

The results of coverage statement for a property shall contain:
— Number of times attempted

— Number of times succeeded

— Number of times failed

— Number of times succeeded because of vacuity

— Each attempt with an attemptID and time

— Each successd/failure with an attemptI D and time

In addition, statement_or_null is executed every time a property succeeds.

Vacuity rules are applied only when implication operator is used. A property succeeds non-vacuously only if
the consequent of the implication contributes to the success.

Results of coverage for a sequence shall include:

— Number of times attempted

— Number of times matched (each attempt can generate multiple matches)
— Each attempt with attemptld and time

— Each match with clock step, attemptlID, and time

In addition, statement_or_null gets executed for every match. If there are multiple matches at the same time,
the statement gets executed multiple times, one for each match.

17.12.1 Using concurrent assertion statements outside of procedural code
A concurrent assertion statement can be used outside of aprocedural context. It can be used within amodule as
amodule_common_item, an interface as amodule_common_item, or a program as anon_port_item. A concur-
rent assertion statement is either an assert or a cover statement. Such a concurrent assertion statement uses
the always semantics.
The following two forms are equivalent:
assert property ( property spec ) action block
always assert property ( property spec ) action_block ;
Similarly, the following two forms are equival ent:
cover property ( property spec ) statement or null
always cover property ( property spec ) statement or null
For example:
module top (input bit clk);
logic a,b,c;
property rule3;
@ (posedge clk) a |-> b ##1 c;

endproperty
al: assert property (rule3);
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endmodule

rule3 is a property declared in module top. The assert statement a1 starts checking the property from the
beginning to the end of simulation. The property is always checked. Similarly,

module top (input bit clk);
logic a,b,c;
sequence seq3;
@ (posedge clk) b ##1 c;
endsequence
cl: cover property (seq3);

endmodule
The cover statement c1 starts coverage of the sequence seq3 from beginning to the end of simulation. The
sequence is always monitored for coverage.

17.12.2 Embedding concurrent assertions in procedural code

A concurrent assertion statement can also be embedded in a procedural block as a statement_item. For exam-
ple

property rule;
a ##1 b ##1 c;
endproperty

always @ (posedge clk) begin
<statements>;
assert property (rule);
end

If the statement appears in an always block, the property is always monitored. If the statement appearsin an
initial block, then the monitoring is performed only on the first clock tick.

Two inferences are made from the procedural context: clock from the event control of an always block, and
the enabling conditions.

A clock isinferred if the statement is placed in an always or initial block with an event control abiding by
the following rules:

— Theclock to beinferred must be placed as the first term of the event control as an edge specifier (posedge
expression or negedge EXPression).

— Thevariablesin expression must not be used anywherein the always or initial block.

For example:

property ril;

q !=d;
endproperty
always @ (posedge mclk) begin
q <= dil;
rl p: assert property (rl);
end

The above property can be checked by writing statement r1_p outside the always block, and declaring the
property with the clock as:

property ril;
@ (posedge mclk)qg != d;
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endproperty

always @(posedge mclk) begin
q <= dil;

end

rlp: assert property (rl);

If the clock is explicitly specified with a property, then it must be identical to the inferred clock, as shown
below:

property r2;
@ (posedge mclk) (g != 4d);

endproperty
always @(posedge mclk) begin
q <= dil;
r2 p: assert property (r2);
end

In the above example, (posedge mclk) isthe clock for property r2.

Another inference made from the context is the enabling condition for a property. Such derivation takes place
when a property is placed in an if...else block or a case block. The enabling condition assumed from the
context is used as the antecedent of the property.

property r3;
@ (posedge sclk) (g != 4d);
endproperty
always @(posedge mclk) begin
if (a) begin
g <= dl;
r3 _p: assert property (r2);
end
end

The above exampleis equivalent to:

property r3;

@ (posedge sclk)a |-> (g != d);
endproperty
r3_p: assert property (r3);
always @(posedge mclk) begin

if (a) begin

q <= dil;

end

end

Similarly, the enabling condition is also inferred from case statements.

property r4;
@ (posedge sclk) (g != 4d);
endproperty
always @(posedge mclk) begin
case (a)
1: begin g <= dil;
r4p: assert property (r4);
end
default: gl <= di;
endcase
end
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The above exampleis equivalent to:

property r4;
@ (posedge sclk) (a==1) |-> (g != d);
endproperty
r4 p: assert property (r4);
always @(posedge mclk) begin

case (a)
1: begin g <= di;
end
default: gl <= di;
endcase
end

The enabling condition isinferred from procedural code inside an always or initial block, with the follow-
ing restrictions:

1) There must not be a preceding statement with a timing control.
2) A preceding statement shall not invoke atask call which contains atiming control on any statement.

3) The concurrent assertion statement shall not be placed in a looping statement, immediately, or in any
nested scope of the looping statement.

17.13 Clock resolution

There are a number of ways to specify a clock for a property:
— sequence instance with a clock, for example
sequence S2; @(posedge Clk) a##2 b; endsequence

property P2; not S2; endproperty
assert property (p2);

— property, for example:
property p3; @(posedge clk) not (a ##2 b); endproperty
assert property (p3);

— contextually inferred clock from a procedural block, for example:

always @ (posedge clk) assert property (not (a ##2 b)) ;

— clocking domain, for example:

clocking master clk @ (posedge clk);
property p3; not (a ##2 b); endproperty

endclocking

assert property (master clk.p3);

— default clock, for example:
default clocking master clk @(posedge clk) ;

For a multi-clocked assertion, the clocks are explicitly specified. No default clock or inferred clock isused. In
addition, multi-clocked properties are not allowed to be defined within a clocking domain.

A mullti-clocked property assert statement must not be embedded in procedural code where aclock isinferred.
For example, following forms are not allowed.
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always @(clk) assert property (mult clock prop);// illegal
initial @(clk) assert property (mult clock prop);// illegal

The rules for an assertion with one clock are discussed in the following paragraphs.

The clock for an assertion statement is determined in the decreasing order of priority:
1) Explicitly specified clock for the assertion.
2) Inferred clock from the context of the code when embedded.

3) Default clock, if specified.

A concurrent assertion statement must resolve to a clock. Otherwise, the statement is considered illegal.
Sequences and properties specified in clocking domains resolve the clock by the following rules:

1) Event control of the clocking domain specifies the clock.

2) No explicit event control isalowed in any property or sequence declaration.

3) If anamed sequence that is defined outside the clocking domain is used , its clock, if specified, must be
identical to the clocking domain’s clock.

4) Multi-clock properties are not allowed.

Resolution of clock for a sequence definition assumes that only one explicit event control can be specified.
Also, the named sequences used in the sequence definition can, but do not need to, contain event control in
their definitions.

sequence s;
//sequence composed of two named sub-sequences
@(posedge s clk) e ##1 sl ##1 s2 ##1 £;
endsequence
sequence sl;
@ (posedge clkl) a ##1 b; // single clock sequence
endsequence
sequence s2;
@ (posedge clk2) c ##1 d; // single clock sequence
endsequence

These example sequences are used in the following table to explain the rules for a sequence definition. The
clock of any sequence when explicitly specified is indicated by X. The absence of a clock is indicated by a
dash.

Table 17-2: Rules for sequence definition

s clk clkl | clk2 | Resolved clock Semantic restriction
- - - unclocked -
X - - s clk -
X X - s clk s_clk and c1k1 must be identical
X X X s clk s_clk, clk1l and c1k2 must be identical
X - X s clk s_clk and c1k2 must be identical
- X - unclocked -
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Table 17-2: Rules for sequence definition

s clk clkl | clk2 | Resolved clock Semantic restriction

- X X unclocked clkl and c1k2 must be identical

- - X unclocked -

Once the clock for a sequence definition is determined, the clock of a property definition is resolved similar to
the resolution for a sequence definition. A single clocked property assumes that only one explicit event control
can be specified. Also, the named sequences used in the property definition can contain event control in their
definitions. The following table specifies the rules for property definition clock resolution. The property has
the form:

property p;
@ (posedge p_clk) not sl |=> s2;
endproperty

p_clk isthe property for the clock, c1k1 isthe clock for sequence sl and c1k2 isthe clock for sequence s2.
The same rules apply for operator | ->.

Resolution of clock for an assert statement is based on the following assumptions:

Table 17-3: Resolution of clock for an assert statement

p_clk clkl | clk2 | Resolved clock Semantic restriction
- - - unclocked -
X - - p_clk -
X X - p_clk p_clk and clkl must beidentical
X X X p_clk p_clk, clkl and c1k2 must be identical
X - X p_clk p_clk and c1k2 must beidentical
- X - unclocked -

- X X unclocked or clkl and c1k2 must beidentical. If
multi-clock clkl and c1k2 aredifferent for the case
of operator |=>, thenitisconsidered a
multi-clock implication

- - X unclocked -

Resolution of clock for an assert statement is based on the following assumptions:
— assert Can appear in an always block, initial block or outside procedural context
— clock isinferred from an always or initial block
— default clock can be specified using default clocking domain
The following table specifies the rules for clock resolution when assert appearsin an always or initial block,

wherei clkistheinferred clock from an always or initial block, d_c1k isthe default clock, andp clk
is the property clock.
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Table 17-4: Resolution of clock in an always or initial block
i_ck | dck | p_ck | Resolved clock Semantic restriction
- - - unclocked Error. An assertion must have a clock
X - - i_clk -
- X - d_clk
- - X p_clk
X - X i_clk i clkandp_ clk must beidentical
X X - i_clk -
- X X p_clk
- - X p_clk -

When the assert statement is outside any procedural block, thereisno inferred clock. Therulesfor clock res-
olution are specified in the table bel ow.

Table 17-5: Resolution of clock outside a procedural block

d clk | p_ck | Resolved clock Semantic restriction

- - unclocked Error. An assertion must have a clock
X - d_ck

- X p_clk

X X p_clk

17.14 Binding properties to scopes or instances

To facilitate verification separate from the design, it is possible to specify properties and bind them to specific
modules or instances. The following are the goals of providing this feature:

— It alows verification engineers to verify with minimum changes to the design codeffiles.

— It allows a convenient mechanism to attach verification |P to a module or an instance.

— No semantic changes to the assertions are introduced due to this feature. It is equivalent to writing proper-
ties external to amodule, using hierarchical path names.

With this feature, a user can bind a module, interface, or program instance to a module or a module instance.

The syntax of the bind construct is:
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bind directive ::= /I from Annex A.1.5
bind module_identifier bind_instantiation ;
| bind name_of_instance bind_instantiation ;
bind_instantiation ::=
program_instantiation
| module_instantiation
| interface instantiation

Syntax 17-17—bind construct syntax (excerpt from Annex A)

Thebind directive can be specified in
— amodule asamodule_or_generate item

— $root.

A program block contains non-design code (either testbench or properties) and executesin the Reactive region,
asexplained in Section 16.

Example of binding a program instance to a modul e:
bind cpu fpu props fpu rules 1(a,b,c);

Where:

— cpu isthe name of module.

— fpu_ props isthe name of the program containing properties.

— fpu_rules_1 isthe program instance name.

— Ports (a, b,c) getboundtosignals (a,b, c) of module cpu.

— Every instance of cpu gets the properties.

Example of binding a program instance to a specific instance of amodule:
bind cpul fpu props fpu rules 1(a,b,c);

By binding a program to amodule or an instance, the program becomes part of the bound object. The names of
assertion-related declarations can be referenced using the SystemVerilog hierarchical naming conventions.

Binding of amodule instance or an interface instance works the same way as described for programs above.

interface range (input clk,enable, input int minval, expr) ;
property crange en;

@ (posedge clk) enable |-> (minval <= expr);
endproperty
range chk: assert property (crange en);
endinteface

bind cr_unit range rl(c_clk,c_en,v_low, (inl&&in2)) ;

In this example, interface range isinstantiated in the module cr_unit. Effectively, every instance of module
cr_unit shall contain theinterface instance r1.

Where:
— cpul isthe name of module instance (cpu1 isan instance of module of module cpu).
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— fpu_props isthe name of the program containing properties.

— fpu_rules_ 1 isthe program instance name.

— Ports (a, b,c) getboundtosignals (a,b, c) of moduleinstance cpul.

— Only the cpu1 instance of cpu gets the properties.

By binding a program to amodule or an instance, the program becomes part of the bound object. The names of
assertion related declarations can be referenced using the SystemVerilog hierarchical naming conventions.
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Section 18
Hierarchy

18.1 Introduction (informative)

Verilog has a simple organization. All data, functions and tasks are in modules except for system tasks and
functions, which are global, and can be defined in the PLI. A Verilog module can contain instances of other
modules. Any uninstantiated moduleis at the top level. This does not apply to libraries, which therefore have a
different status and a different procedure for analyzing them. A hierarchical name can be used to specify any
named object from anywhere in the instance hierarchy. The module hierarchy is often arbitrary and a lot of
effort is spent in maintaining port lists.

In Verilog, only net, reg, integer and time data types can be passed through module ports.
SystemVerilog adds many enhancements for representing design hierarchy:

— A global declaration space, visibleto all modules at al levels of hierarchy

— Nested module declarations, to aid in representing self-contained models and libraries

— Relaxed rules on port declarations

— Simplified named port connections, using . name

— Implicit port connections, using .*

— Time unit and time precision specifications bound to modules

— A concept of interfaces to bundle connections between modules (presented in Section 19)

An important enhancement in SystemVerilog is the ability to pass any data type through module ports, includ-
ing nets, and all variable typesincluding reals, arrays, and structures.

18.2 The $root top level

In SystemVerilog thereisatop level called $root, which is the whole source text. This allows declarations out-
side any named modules or interfaces, unlike Verilog.

SystemVerilog requires an elaboration phase. All modules and interfaces must be parsed before elaboration.
The order of elaboration shall be: First, look for explicit instantiations in $root. If none, then look for implicit
instantiations (i.e. uninstantiated modules). Next, traverse non-generate instantiations depth-first, in source
order. Finally, execute generate blocks depth-first, in source order.

The source text can include the declaration and use of modules and interfaces. Modules can include the decla-
ration and use of other modules and interfaces. Interfaces can include the declaration and use of other inter-
faces. A module or interface need not be declared beforeit is used in text order.

A module can be explicitly instantiated in the $root top-level. All uninstantiated modules become implicitly
instantiated within the top level, which is compatible with Verilog.

The following paragraphs compare the $root top level and modules.

The $root top level:

— hasasingle occurrence

— can be distributed across any number of files

— variable and net definitions are in a global name space and can be accessed throughout the hierarchy

— task and function definitions are in a global name space and can be accessed throughout the hierarchy
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— shall not contain initial Or always procedures

— can contain procedural statements, which shall be executed onetime, asif inan initial procedure

— can contain assertion declarations, assertion statements and bind directives

Modules:

— can have any number of module definitions

— can have any number of module instances, which create new levels of hierarchy

— can be distributed across any number of files, and can be defined in any order

— variable and net definitions are in the modul e instance name space and are local to that scope
— task and function definitions are in the modul e instance name space and are local to that scope
— can contain any number of initial and always procedures

— shall not contain procedural statements that are not within an initial procedure, always procedure,
task, or function

When an identifier is referenced within a scope, SystemVerilog follows the Verilog name search rules, and
then searches in the $root global name space. An identifier in the global name space can be explicitly selected
by pre-pending $root . to the identifier name. For example, a global variable named system reset can be
explicitly referenced from any level of hierarchy using sroot . system reset.

The $root space can be used to model abstract functionality without modules. The following example illus-
trates using the $root space with just declarations, statements and functions.

typedef int myint;

function void main () ;

myint i,Jj,k;

$display ("entering main...");

left (k) ;

right (i,3,k);

$display ("ending... i=%0d, j=%0d, k=%o0d4d", i, j, k);
endfunction

function void left (output myint k) ;
k = 34;
Sdisplay ("entering left");
endfunction

function void right (output myint i, j, input myint k);
$display ("entering right") ;

i=k/2;

j = k+i;
endfunction
main() ;
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18.3 Module declarations

module_declaration ::= /I from Annex A.1.3
module_nonansi_header [ timeunits_declaration ] { module_item }
endmodule[ : module_identifier ]

| module_ansi_header [ timeunits_declaration ] { non_port_module_item }
endmodule[ : module_identifier ]

| { attribute_instance’} module_keyword [ lifetime] module_identifier (.* ) ;
[ timeunits_declaration ] { module_item } endmodule[ : module_identifier ]

| extern module_nonansi_header

| extern module_ansi_header

module_keyword ::= module | macromodule

timeunits_declaration ::=
timeunit time_literal ;

| timeprecision time_litera ;

| timeunit time_litera ;
timeprecision time_literal ;

| timeprecision time_litera ;
timeunit time_literal ;

Syntax 18-1—Module declaration syntax (excerpt from Annex A)

In Verilog, a module must be declared apart from other modules, and can only be instantiated within another
module. A module declaration can appear after it isinstantiated in the source text.

SystemVerilog adds the capability to nest module declarations, and to instantiate modules in the $root top-
level space, outside of other modules.

module ml(...); ... endmodule
module m2(...); ... endmodule

module m3(...);

ml il1(...); // instantiates the local ml declared below
m2 i4(...); // instantiates m2 - no local declaration
module ml(...); ... endmodule // nested module declaration,
// ml module name is in m3’s name space
endmodule
ml i2(...); // module instance in the S$Sroot space,

// instantiates the module ml that is not nested in another module

18.4 Nested modules

A module can be declared within another module. The outer name space is visible to the inner module, so that
any name declared there can be used, unless hidden by a local name, provided the module is declared and
instantiated in the same scope.

One purpose of nesting modules is to show the logical partitioning of a module without using ports. Names
that are global arein the outermost scope, and names that are only used locally can be limited to local modules.

// This example shows a D-type flip-flop made of NAND gates
module dff flat (input d, ck, pr, clr, output g, ng);
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wire gl, ngl, g2, ng2;

nand glb (ngl, d, clr, ql);
nand gla (gl, ck, ng2, nqgl);

nand g2b (ng2, ck, clr, g2);
nand g2a (g2, ngl, pr, ng2);

nand g3a (q, ng2, clr, ng);
nand g3b (ng, gl, pr, q);
endmodule

// This example shows how the flip-flop can be structured into 3 RS latches.
module dff nested(input d, ck, pr, clr, output g, ng);
wire gl, ngl, ng2;

module ff1;
nand glb (ngl, d, clr, ql);
nand gla (gl, ck, ng2, nqgl);
endmodule
£ff1 i1;

module ff2;
wire g2; // This wire can be encapsulated in ff2
nand g2b (ng2, ck, clr, g2);
nand g2a (g2, ngl, pr, ng2);

endmodule

ff2 i2;

module ff3;
nand g3a (g, ng2, clr, ng);
nand g3b (ng, gl, pr, q9);
endmodule
f£f3 i3;
endmodule

The nested modul e declarations can also be used to create alibrary of modulesthat islocal to part of adesign.

module partl(....);
module and2 (input a; input b; output z);
endmodule
module or2 (input a; input b; output z);
endmodule
and2 ul(....), u2(....), u3d(....);

endmodule

This allows the same module name, e.g. and2, to occur in different parts of the design and represent different
modules. Note that an alternative way of handling this problem is to use configurations.

To support separate compilation, extern declarations of a module can be used to declare the ports on a module
without defining the module itself. An extern module declaration consists of the keyword extern followed by
the module name and the list of ports for the module. Both list of ports syntax (possibly with parameters), and
original Verilog style port declarations can be used. Note that the potential existence of defparams precludes
the checking of the port connection information prior to elaboration time even for list of ports style declara-
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tions.

The following example demonstrates the usage of extern module declarations.

extern module m (a,b,c,d);
extern module a # (parameter size= 8, parameter type TP = logic [7:0])
(input [size:0] a, output TP Db);

module top ();
wire [8:0] a;
logic [7:0] b;

mm (.*%);
aa (.*);
endmodule

Modulesm and a are then assumed to be instantiated as:

module top ();
mm (a,b,c,d);
a a (a,b);

endmodule

If an extern declaration exists for a module, it is possible to use . * as the ports of the module. This usage
shall be equivalent to placing the ports (and possibly parameters) of the extern declaration on the module.

For example,

extern module m (a,b,c,d);
extern module a # (parameter size = 8, parameter type TP = logic [7:0])
(input [size:0] a, output TP b);

module m (.%*);
input a,b,c;
output d;

endmodule

module a (.*);
endmodule
is equivalent to writing:
module m (a,b,c,d);
input a,b,c;
output d;
endmodule
module a # (parameter size = 8, parameter type TP = logic [7:0])
(input [size:0] a, output TP b);

endmodule

Extern module declarations can appear at any level of the instantiation hierarchy, but are visible only within
the level of hierarchy in which they are declared. It shall be an error for the module definition to not exactly
match the extern module declaration.
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18.5 Port declarations

inout_declaration ::= /[ from Annex A.2.1.2
inout [ port_type] list_of_port_identifiers
| inout data typelist_of variable identifiers
input_declaration ::=
input [ port_type] list_of port_identifiers
| input data_typelist_of variable identifiers
output_declaration ::=
output [ port_type] list_of_port_identifiers
| output data type list_of_variable port_identifiers
interface_port_declaration ::=
interface_identifier list_of_interface identifiers
| interface_identifier . modport_identifier list_of_interface identifiers
ref_declaration ::=ref data typelist_of port_identifiers
generic_interface port_declaration ::=
interfacelist_of_interface_identifiers
| interface . modport_identifier list_of_interface identifiers

port_type::= /I from Annex A.2.2.1
data type
| net_type[ signing] { packed_dimension }
| trireg [ signing] { packed dimension}
| [ signing] { packed dimension} range

signing ::= signed | unsigned

Syntax 18-2—Port declaration syntax (excerpt from Annex A)

With SystemVerilog, a port can be a declaration of a net, an interface, an event, or a variable of any type,
including an array, astructure or a union.

typedef struct ({

bit isfloat;

union { int i; shortreal f; } n;
} tagged; // named structure

module mhl (input int inl, input shortreal in2, output tagged out) ;

endmodule
For thefirst port, if neither atype nor adirection is specified, then it shall be assumed to be a member of a port
list, and any port direction or type declarations must be declared after the port list. Thisis compatible with the
Verilog-1995 syntax. If the first port type but no direction is specified, then the port direction shall default to

inout. If thefirst port direction but no type is specified, then the port type shall default to wire. This default
type can be changed using the *default nettype compiler directive, asin Verilog.

// Any declarations must follow the port list, because first port does not
// have either a direction or type specified; Port directions default to inout
module mh4 (x, V) ;

wire x;

trio y;

endmodule
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For subsequent portsin the port list, if the type and direction are omitted, then both are inherited from the pre-
vious port. If only the direction is omitted, then it is inherited from the previous port. If only the type is omit-
ted, it shall default to wire. This default type can be changed using the ‘default nettype compiler
directive, asin Verilog.

// second port inherits its direction and type from previous port
module mh3 (input byte a, Db);

endx;léac‘iule
Generic interface ports cannot be declared using the Verilog-1995 list of ports style. Generic interface ports
can only be declared by using alist of port declaration style.

module cpuMod (interface d, interface j);
endmodule
18.6 Time unit and precision

SystemVerilog has atime unit and precision declaration which has the equivalent functionality of the * t imes-
cale compiler directivesin Verilog-2001. Use of these declarations removes the file order dependencies prob-
lems with compiler directives. The time unit and precision can be declared by the timeunit and
timeprecision keywords, respectively, and set to a time literal which must be a power of 10 units. For
example:

timeunit 100ps;
timeprecision 10fs;

There shall be at most one time unit and one time precision for any module or interface definition, or in $root.
Thisshall define atime scope. If specified, the timeunit and timeprecision declarations shall precede any
other items in the current time scope. The timeunit and timeprecision declarations can be repeated as
later items, but must match the previous declaration within the current time scope.

If atimeunit is not specified in the module or interface definition, then the time unit is shall be determined
using the following rules of precedence:

1) If the module or interface definition is nested, then the time unit is shall be inherited from the enclosing
modul e or interface.

2) Elsg if a timescale directive has been previously specified, then the time unit is shall be set to the units
of thelast ‘timescale directive.

3) Elsg, if the $root top level has atime unit, then the time unit is shall be set to the time units of the root
module.

4) Else, the default time unit is shall be used.
The time unit of sroot shall only be determined by a timeunit declaration, not a * timescale directive.

If atimeprecision is not specified in the current time scope, then the time precision is shall be determined
following the same precedence as with time units.

The global time precision is the minimum of all the timeprecision statements and the smallest time precision
argument of all the ~timescale compiler directives (known as the precision of the time unit of the simulation
in Section 19.8 of the IEEE 1364-2001 standard) in the design. The step time unit is equal to the global time
precision.
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18.7 Module instances

parameter_value _assignment ::=# ( list_of _parameter_assignments)
list_of parameter_assignments::=
ordered_parameter_assignment { , ordered_parameter_assignment }
| named_parameter_assignment { , named_parameter_assignment }
ordered_parameter_assignment ::= expression | data_type
named_parameter_assignment ::=
. parameter_identifier ([ expression])
| . parameter_identifier ( data_type)
module_instance ::= name_of _instance ([ list_of port_connections] )
name_of_instance ::= module_instance_identifier { range}
list_of_port_connections ::=
ordered_port_connection { , ordered_port_connection }

| dot_named port_connection { , dot_named port_connection }
| { named_port_connection, } dot_star_port_connection{ , named_port_connection }

ordered_port_connection ::= { attribute_instance} [ expression ]
named_port_connection ::= { attribute instance} . port_identifier ([ expression] )

dot_named_port_connection ::=
{ attribute_instance } .port_identifier
| named_port_connection
dot_star_port_connection ::= { attribute instance} .*

module_instantiation ::= /l from Annex A.4.1.1
module_identifier [ parameter_value_assignment ] module_instance{ , module _instance} ;

Syntax 18-3—Module instance syntax (excerpt from Annex A)

A module can be used (instantiated) in two ways, hierarchical or top level. Hierarchical instantiation allows
more than one instance of the same type. The module hame can be a module previously declared or one
declared later. Actual parameters can be named or ordered. Port connections can be named, ordered or implic-
itly connected. They can be nets, variables, or other kinds of interfaces, events, or expressions. See below for

the connection rules.

Consider an ALU accumulator (alu_accum) example module that includes instantiations of an ALU module,
an accumulator register (accum) module and a sign-extension (xtend) module. The module headers for the

three instantiated modules are shown in the following example code.

module alu (
output reg [7:0] alu out,
output reg zero,
input [7:0] ain, bin,
input [2:0] opcode) ;
// RTL code for the alu module
endmodule

module accum (

output reg [7:0] dataout,

input [7:0] datain,

input clk, rst n);

// RTL code for the accumulator module
endmodule
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module xtend (

output reg [7:0] dout,

input din,

input clk, rst n);

// RTL code for the sign-extension module
endmodule

18.7.1 Instantiation using positional port connections

Verilog has aways permitted instantiation of modules using positional port connections, as shown in the
alu accuml module example, below.

module alu accuml (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst n);
wire [7:0] alu out;

alu alu (alu out, , ain, bin, opcode) ;

accum accum (dataout([7:0], alu out, clk, rst n);

xtend xtend (dataout[15:8], alu out[7], clk, rst n);
endmodule

As long as the connecting variables are ordered correctly and are the same size as the instance-ports that they
are connected to, there shall be no warnings and the simulation shall work as expected.

18.7.2 Instantiation using named port connections

Verilog has aways permitted instantiation of modules using named port connections as shown in the
alu_ accum2 module example.

module alu accum2 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst n);
wire [7:0] alu out;

alu alu (.alu_out(alu out), .zero(),
.ain(ain), .bin(bin), .opcode (opcode)) ;
accum accum (.dataout (dataout[7:0]), .datain(alu out),
.clk(clk), .rst n(rst_n));
xtend xtend (.dout (dataout[15:8]), .din(alu out([7]),
.clk(clk), .rst n(rst n));
endmodule

Named port connections do not have to be ordered the same as the ports of the instantiated module. The vari-
ables connected to the instance ports must be the same size or a port-size mismatch warning shall be reported.

18.7.3 Instantiation using implicit .name port connections

SystemVerilog adds the capability to implicitly instantiate ports using a .name syntax if the instance-port name
and size match the connecting variable-port name and size. This enhancement eliminates the requirement to
list aport name twice when the port name and signal name are the same, while still listing all of the ports of the
instantiated module for documentation purposes.

In the following alu_accum3 example, al of the ports of the instantiated alu module match the names of the
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variables connected to the ports, except for the unconnected zero port, which is listed using a named port con-
nection, showing that the port is unconnected. Implicit .name port connections are made for all name and size
matching connections on the instantiated module.

Inthe same alu_accum3 example, the accum module has an 8-bit port called dataout that is connected to a
16-bit bus called dataout. Because the internal and external sizes of dataout do not match, the port must be
connected by name, showing which bits of the 16-bit bus are connected to the 8-bit port. The datain port on
the accum is connected to a bus by a different name (alu_out), so this port is also connected by name. The
clk and rst_n ports are connected using implicit .name port connections. Also in the same alu accum3
example, the xtend module has an 8-bit output port called dout and a 1- bit input port called din. Since nei-
ther of these port names match the names (or sizes) of the connecting variables, both are connected by name.
The c1k and rst_n ports are connected using implicit .name port connections.

module alu accum3 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst n);
wire [7:0] alu out;

alu alu (.alu out, .zero(), .ain, .bin, .opcode);

accum accum (.dataout (dataout[7:0]), .datain(alu out), .clk, .rst n);

xtend xtend (.dout (dataout[15:8]), .din(alu out[7]), .clk, .rst n);
endmodule

A .port_identifier port connection is semanticaly equivaent to the named port connection
.Jport_identifier (name) port connection with the following exceptions:

— Theidentifier referenced by .port_identifier shall not create an implicit wire declaration.

— It shall beillegal for a.port_identifier port connection to create an implicit cast. This includes truncation or
padding.

— A conversion between a 2-state and 4-state type of the same bit length is alegitimate cast.
— A port connection between a net type and a variable type of the same bit length is alegitimate cast.

— It shall be an error if a .port_identifier port connection between two dissimilar net types would generate a
warning message as required by the Verilog-2001 standard.

18.7.4 Instantiation using implicit .* port connections

SystemVerilog adds the capability to implicitly instantiate ports using a .* syntax for al ports where the
instance-port name and size match the connecting variable-port name and size. This enhancement eliminates
the requirement to list any port where the name and size of the connecting variable match the name and size of
the instance port. Thisimplicit port connection styleis used to indicate that al port names and sizes match the
connections where emphasisis placed only on the exception ports. The implicit . * port connection syntax can
greatly facilitate rapid block-level testbench generation where al of the testbench variables are chosen to
match the instantiated module port names and sizes.

In the following alu_accum4 example, al of the ports of the instantiated alu module match the names of the
variables connected to the ports, except for the unconnected zero port, which is listed using a named port con-
nection, showing that the port is unconnected. The implicit . * port connection syntax connects all other ports
on the instantiated module.

Inthe same alu_accum4 example, the accum module has an 8-bit port called dataout that is connected to a
16-bit bus called dataout. Because the internal and external sizes of dataout do not match, the port must be
connected by name, showing which bits of the 16-bit bus are connected to the 8-bit port. The datain port on
the accum is connected to a bus by a different name (alu_out), so this port is also connected by name. The
clk and rst_n ports are connected using implicit . * port connections. Also in the same alu_accum4 exam-
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ple, the xtend module has an 8-bit output port called dout and a 1- bit input port caled din. Since neither of
these port names match the names (or sizes) of the connecting variables, both are connected by name. The c1k
and rst_n ports are connected using implicit . * port connections.

module alu accumé4 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst n);
wire [7:0] alu out;

alu alu (.*, .zero());
accum accum (.*, .dataout(dataout[7:0]), .datain(alu_out));
xtend xtend (.*, .dout(dataout[15:8]), .din(alu out[7]));

endmodule

An implicit .= port connection is semantically equivalent to a default .name port connection for every port
declared in the instantiated module. A named port connection can be mixed with a . * connection to override
the port connection to a different expression or to leave the port unconnected.

When the implicit .= port connection is mixed in the same instantiation with named port connections, the
implicit . * port connection token can be placed anywhere in the port list. The . * token can only appear at
most once in the port list.

Modules can be instantiated into the same parent module using any combination of legal positional, named,
implicit .name connected and implicit . * connected instances as shownin alu_accums example.

module alu accum5 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst n);
wire [7:0] alu out;

// mixture of named port connections and
// implicit .name port connections
alu alu (.ain(ain), .bin(bin), .alu out, .zero(), .opcode);

// positional port connections
accum accum (dataout([7:0], alu_out, clk, rst_n);

// mixture of named port connections and implicit .* port connections

xtend xtend (.dout (dataout[15:8]), .*, .din(alu out[7]1));
endmodule

18.8 Port connection rules

SystemVerilog extends Verilog port connections by making all variable data types available to pass through
ports. It does this by allowing both sides of a port connection to have the same compatible data type, and by
allowing continuous assignments to variables. It also creates a new type of port qualifier, re£, to allow shared
variable behavior across a port by passing a hierarchical reference.

18.8.1 Port connection rules for variables

If aport declaration has a variable data type, then its direction controls how it can be connected when instanti-
ated, asfollows:
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— An input port can be connected to any expression of a compatible data type. A continuous assignment
shall be implied when a variable is connected to an input port declaration. Assignments to variables
declared as an input port shall beillegal. If left unconnected, the port shall have the default initial value
corresponding to the datatype.

— An output port can be connected to a variable (or a concatenation) of a compatible data type. A continu-
ous assignment shall be implied when a variable is connected the output port of an instance. Procedural or
continuous assignments to a variable connected to the output port of an instance shall beillegal.

— Anoutput port can be connected to a net (or a concatenation) of a compatible datatype. In this case, mul-
tiple drivers shall be permitted on the net asin Verilog-2001.

— A variable datatypeis not permitted on either side of an inout port.

— A ref port shall be connected to an equivalent variable data type. References to the port variable shall be
treated as hierarchal references to the variable it is connected to in its instantiation. This kind of port can
not be left unconnected

18.8.2 Port connection rules for nets

If a port declaration has awire type (which is the default), or any other net type, then its direction controls
how it can be connected as follows:

— An input can be connected to any expression of a compatible data type. If left unconnected, it shall have
the value 'z.

— An output can be connected to a net type (or a concatenation of net types) or a compatible variable type
(or aconcatenation of variable types).

— An inout can be connected to a net type (or a concatenation of net types) or left unconnected, but not to a
variable type.

Note that where the data types differ between the port declaration and connection, aninitial value change event
can be caused at time zero.

18.8.3 Port connection rules for interfaces

A port declaration can be a generic interface or named interface type. An interface port instance must always
be connected to an interface instance or a higher-level interface port. An interface port cannot be left uncon-
nected.

If aport declaration has a generic interface type, then it can be connected to an interface instance of any type.

If aport declaration has a named interface type, then it must be connected to an interface instance of the iden-
tical type.

18.8.4 Compatible port types

The same rules for assignment compatibility are used for compatible port types for ports declared as an input
or an output variable, or for output ports connected to variables. SystemVerilog does not change any of the
other port connection compatibility rules

18.8.5 Unpacked array ports and arrays of instances

For an unpacked array port, the port and the array connected to the port must have the same number of
unpacked dimensions, and each dimension of the port must have the same size as the corresponding dimension
of the array being connected.

If the size and type of the port connection match the size and type of a single instance port, the connection shall
be made to each instance in an array of instances.
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If the port connection is an unpacked array, the unpacked array dimensions of each port connection shall be
compared with the dimensions of the instance array. If they match exactly in size, each element of the port con-
nection shall be matched to the port left index to left index, right index to right index. If they do not match it
shall be considered an error.

If the port connection is a packed array, each instance shall get a part-select of the port connection, starting
with al right-hand indices to match the right most part-select, and iterating through the right most dimension
first. Too many or too few bits to connect al the instances shall be considered an error.

18.9 Name spaces

SystemVerilog has five name spaces for identifiers. Verilog's global definitions name space collapses onto the
module name space and exists as the top-level scope, $root. Module, primitive, and interface identifiers are
local to the module name space where there are defined. The five name spaces are described as follows:

1) The text macro name space is global. Since text macro names are introduced and used with a leading *
character, they remain unambiguous with any other name space. The text macro names are defined in the
linear order of appearance in the set of input files that make up the description of the design unit.
Subsequent definitions of the same name override the previous definitions for the balance of the input
files.

2) The module name space is introduced by $root and the module, macromodule, interface, and
primitive constructs. It unifies the definition of functions, tasks, named blocks, instance names,
parameters, named events, net type of declaration, variable type of declaration and user defined types.

3) The block name space is introduced by named or unnamed blocks, the specify, function, and task
congtructs. It unifies the definitions of the named blocks, functions, tasks, parameters, named events,
variable type of declaration and user defined types.

4) The port name space is introduced by themodule, macromodule, interface, primitive, function,
and task constructs. It provides ameans of structurally defining connections between two objects that are
in two different name spaces. The connection can be unidirectional (either input Or output) or
bidirectional (inout). The port name space overlaps the module and the block name spaces. Essentially,
the port name space specifies the type of connection between names in different name spaces. The port
type of declarations includes input, output, and inout. A port name introduced in the port name space
can be reintroduced in the module name space by declaring a variable or a net with the same name as the
port name.

5) The attribute name space is enclosed by the (* and *) constructs attached to a language element (see
Section 2.8). An attribute name can be defined and used only in the attribute name space. Any other type
of name cannot be defined in this name space.

18.10 Hierarchical names

Hierarchical names are also called nested identifiers. They consist of instance hames separated by periods,
where an instance name can be an array element.

Sroot.mymodule.ul // absolute name
ul.structl.fieldl // ul must be visible locally or above, including globally
adderl [5] . sum

Nested identifiers can be read (in expressions), written (in assignments or task/function calls) or triggered off
(in event expressions). They can also be used as type, task or function names.
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Section 19
Interfaces

19.1 Introduction (informative)

The communication between blocks of adigital system isacritical areathat can affect everything from ease of
RTL coding, to hardware-software partitioning to performance analysis to bus implementation choices and
protocol checking. The interface construct in SystemVerilog was created specifically to encapsulate the com-
munication between blocks, allowing a smooth migration from abstract system-level design through succes-
sive refinement down to lower-level register-transfer and structural views of the design. By encapsulating the
communication between blocks, the interface construct also facilitates design re-use. Theinclusion of interface
capabilities is one of the major advantages of SystemVerilog.

At itslowest level, an interface is a named bundle of nets or variables. The interface is instantiated in a design
and can be passed through a port as a single item, and the component nets or variables referenced where
needed. A significant proportion of a Verilog design often consists of port lists and port connection lists, which
are just repetitions of names. The ability to replace a group of names by a single name can significantly reduce
the size of a description and improve its maintainability.

Additional power of the interface comes from its ability to encapsulate functionality as well as connectivity,
making an interface, at its highest level, more like a class template. An interface can have parameters, con-
stants, variables, functions and tasks. The types of elementsin an interface can be declared, or the types can be
passed in as parameters. The member variables and functions are referenced relative to the instance name of
the interface as instance.member. Thus, modules that are connected via an interface can simply call the task/
function members of that interface to drive the communication. With the functionality thus encapsulated in the
interface, and isolated from the module, the abstraction level and/or granularity of the communication protocol
can be easily changed by replacing the interface with a different interface containing the same members but
implemented at a different level of abstraction. The modules connected via the interface don’t need to change
at al.

To provide direction information for module ports and to control the use of tasks and functions within particu-
lar modules, themodport construct is provided. Asthe name indicates, the directions are those seen from the
module.

In addition to task/function methods, an interface can also contain processes (i.€. initial Or always blocks)
and continuous assignments, which are useful for system-level modeling and testbench applications. This
alows the interface to include, for example, its own protocol checker that automatically verifies that all mod-
ules connected via the interface conform to the specified protocol. Other applications, such as functional cov-
erage recording and reporting, protocol checking and assertions can aso be built into the interface.

The methods can be abstract, i.e. defined in one module and called in ancther, using the export and import con-
structs. This could be coded using hierarchical path names, but this would impede re-use because the names
would be design-specific. A better way is to declare the task and function names in the interface, and to use
local hierarchical names from the interface instance for both definition and call. Broadcast communication is
modeled by forkjoin tasks, which can be defined in more than one module and executed concurrently.
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19.2 Interface syntax

interface_declaration ::= // from Annex A.1.3
interface_nonansi_header [ timeunits_declaration ] { interface item}
endinterface[ : interface_identifier ]
| interface _ansi_header [ timeunits_declaration ] { non_port_interface item}
endinterface[ : interface_identifier ]
| { attribute_instance} interfaceinterface identifier (.* ) ;
[ timeunits_declaration ] { interface item}
endinterface[ : interface_identifier ]
| extern interface nonansi_header
| extern interface ansi_header
interface_nonansi_header ::=
{ attribute_instance } interface[ lifetime] interface identifier
[ parameter_port_list] list_of_ports;
interface_ansi_header ::=
{attribute_instance} interface[ lifetime] interface_identifier
[ parameter_port_list] [ list_of_port_declarations] ;
modport_declaration ::= modport modport_item { , modport_item} ; /I from Annex A.2.9
modport_item ::= modport_identifier ( modport_ports_declaration { , modport_ports_declaration} )
modport_ports_declaration ::=
modport_simple_ports _declaration
| modport_hierarchical_ports declaration
| modport_tf ports declaration
modport_simple_ports declaration ::=
input list_of_modport_port_identifiers
| output list_of_modport_port_identifiers
| inout list_of_modport_port_identifiers
| ref [ data_type] list_of_modport_port_identifiers
modport_hierarchical_ports declaration ::=
interface instance identifier [ [ constant_expression | ] . modport_identifier
modport_tf_ports_declaration ::=
import_export modport_tf_port
modport_tf port ::=
task named_task_proto { , named_task proto }
| function named_function_proto { , named_function proto }
| task_or_function_identifier { , task_or_function_identifier }
import_export ::= import | export
interface_instantiation ::= /I from Annex A.4.1.2
interface identifier [ parameter_value _assignment ]| module_instance { , module_instance} ;

Syntax 19-1—Interface syntax (excerpt from Annex A)

The interface construct provides a new hierarchical structure. It can contain smaller interfaces and can be
passed through ports.

The aim of interfaces is to encapsulate communication. At the lower level, this means bundling variables and
wires in interfaces, and bundling ports with directions in modports. The modules can be made generic so that
the interfaces can be changed. The following examples show these features. At a higher level of abstraction,
communication can be done by tasks and functions. Interfaces can include task and function definitions, or just
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task and function prototypes with the definition in one module (server/slave) and the call in another (client/
master).

A simple interface declaration is as follows (see Syntax 19-1 for the compl ete syntax):
interface identifier;
iﬁéerface_items
endiﬁéerface [ : identifier ]
An interface can be instantiated hierarchically like a module, with or without ports. For example:
myinterface #(100) scalarl, vector[9:0];

Interfaces can be declared and instantiated in modules (either flat or hierarchical) but modules can neither be
declared nor instantiated in interfaces.

The simplest use of an interface is to bundle wires, asisillustrated in the examples below.
19.2.1 Example without using interfaces

This example shows a simple bus implemented without interfaces. Note that the logic type can replace wire
and reg if no resolution of multiple driversis needed.

module memMod ( input bit req,
bit clk,
bit start,
logic [1:0] mode,
logic [7:0] addr,

inout wire [7:0] data,
output bit gnt,
bit rdy );

logic avail;
endmodule

module cpuMod (
input bit clk,

bit gnt,

bit rdy,
inout wire [7:0] data,
output bit req,

bit start,

logic [7:0] addr,
logic [1:0] mode ) ;

endmodule

module top;
logic req, gnt, start, rdy; // req is logic not bit here
logic clk = 0;
logic [1:0] mode;

logic [7:0] addr;
wire [7:0] data;

memMod mem (req, clk, start, mode, addr, data, gnt, rdy);
cpuMod cpu(clk, gnt, rdy, data, req, start, addr, mode);
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endmodule

19.2.2 Interface example using a named bundle

The simplest form of a SystemVerilog interface is a bundled collection of variables or nets. When an interface
is used as a port, the variables and netsin it are assumed to be ref and inout ports, respectively. The follow-
ing interface example shows the basic syntax for defining, instantiating and connecting an interface. Usage of
the SystemVerilog interface capability can significantly reduce the amount of code required to model port con-

nections.

interface simple bus; // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

endinterface: simple bus

module memMod (simple bus a, // Use the simple bus interface

input bit clk);

logic avail;
// a.req is the req signal in the ’'simple bus’ interface
always @ (posedge clk) a.gnt <= a.req & avail;

endmodule

module cpuMod(simple bus b, input bit clk);
endﬁééule
module top;
logic clk = 0;
simple_bus sb_intf(); // Instantiate the interface

memMod mem (sb_intf, clk); // Connect the interface to the module instance
cpuMod cpu(.b(sb_intf), .clk(clk)); // Either by position or by name

endmodule
In the preceding example, if the same identifier, sb_int £, had been used to name the simple bus interface
in the memMod and cpuMod module headers, then implicit port declarations also could have been used to
instantiate the memMod and cpuMod modules into the top module, as shown bel ow.

module memMod (simple bus sb_intf, input bit clk);

endmodule

module cpuMod (simple bus sb_intf, input bit clk);

endmodule

module top;

logic clk = 0;

simple bus sb _intf();

memMod mem (.*); // implicit port connections
cpuMod cpu (.*); // implicit port connections

206 Copyright 2003 Accellera. All rights reserved.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 6

endmodule

19.2.3 Interface example using a generic bundle

A module header can be created with an unspecified interface instantiation as a place-holder for an interface to
be selected when the module itself is instantiated. The unspecified interface isreferred to as a*“generic” inter-
face port.

This generic interface port can only be declared by using the list of port declaration style port declaration style.
It shall beillegal to declare such a generic interface port using the old Verilog-1995 list of port style.

The following interface example shows how to specify a generic interface port in a module definition.

// memMod and cpuMod can use any interface
module memMod (interface a, input bit clk);

endmodule
module cpuMod (interface b, input bit clk);
endmodule
interface simple _bus; // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

endinterface: simple bus

module top;
logic clk = 0;

simple bus sb_intf(); // Instantiate the interface
// Connect the sb_intf instance of the simple bus
// interface to the generic interfaces of the
// memMod and cpuMod modules
memMod mem (.a(sb_intf), .clk(clk));
cpuMod cpu (.b(sb_intf), .clk(clk));

endmodule

An implicit port cannot be used to connect to a generic interface. A named port must be used to connect to a
generic interface, as shown below.

module memMod (interface a, input bit clk);
endﬁééule
module cpuMod (interface b, input bit clk);
endﬁéaule
module top;

logic clk = 0;

simple bus sb intf();

memMod mem (.*, .a(sb_intf)); // partial implicit port connections
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cpuMod cpu (.*, .b(sb_intf)); // partial implicit port connections
endmodule

19.3 Ports in interfaces

One limitation of simple interfaces is that the nets and variables declared within the interface are only used to
connect to a port with the same nets and variables. To share an external net or variable, one that makes a con-
nection from outside of the interface aswell as forming a common connection to all module ports that instanti-
ate the interface, an interface port declaration is required. The difference between nets or variables in the
interface port list and other nets or variables within the interface is that only those in the port list can be con-
nected externally by name or position when the interface is instantiated.

interface il (input a, output b, inout c);
wire d;
endinterface

Thewires a, b and ¢ can be individually connected to the interface and thus shared with other interfaces.

The following example shows how to specify an interface with inputs, allowing a wire to be shared between
two instances of the interface.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, zrdy;
endinterface: simple bus

module memMod (simple bus a); // Uses just the interface
logic avail;

always @ (posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // a.req is in the ’‘simple bus’ interface
endmodule

module cpuMod (simple bus b) ;
endmodule
module top;

logic clk = 0;

simple_bus sb_intfl(clk); // Instantiate the interface
simple_bus sb_intf2(clk); // Instantiate the interface
memMod meml (.a(sb_intfl)); // Connect bus 1 to memory 1
cpuMod cpul (.b(sb_intfl
memMod mem2 (.a(sb_intf2
cpuMod cpu2 (.b(sb_intf2

7

)
)
); // Connect bus 2 to memory 2
)

1

endmodule

Note: Because the instantiated interface names do not match the interface names used in the memMod and
cpuMod modules, implicit port connections cannot be used for this example.
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19.4 Modports

To bundle module ports, there are modport lists with directions declared within the interface. The keyword
modport indicates that the directions are declared asif inside the module.

interface i2;
wire a, b, ¢, d;
modport master (input a, b, output c, d);
modport slave (output a, b, input c, d);
endinterface

Themodport list name (master or dave) can be specified in the module header, where the modport name acts
as adirection and the interface name as atype.

module m (i2.master 1i);
endmodule
module s (i2.slave 1i);
endmodule
module top;

i2 1();

mul(.i(i));

s u2(.i(1));

endmodule

Themodport list name (master or slave) can also be specified in the port connection with the module instance,
where themodport nameis hierarchical from the interface instance.

module m (i2 i) ;
endﬁééule
module s (i2 1i);
endﬁééule
module top;

i2 i();

m ul(.i(i.master));
s u2(.i(i.slave));
endmodule

The syntax of interface_name.modport_name instance_ name iSrealy ahierarchical type followed by
an instance. Note that this can be generalized to any interface with a given modport name by writing inter-
face.modport_name instance_name.

In ahierarchical interface, the directions in amodport declaration can themselves be modport plus name.

interface il;
interface i3;
wire a, b, c, d;
modport master (input a, b, output c, d);
modport slave (output a, b, input c, d);
endinterface
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i3 chl (), ch2();
modport master2 (chl.master, ch2.master);
endinterface

All of the names used in amodport declaration shall be declared by the sameinterface asis the modport itself.
In particular, the names used shall not be those declared by another enclosing interface, and a modport declara-
tion shall not implicitly declare new ports.

The following interface declarations would be illegal:

interface i;
wire x, vy;

interface illegal i;
wire a, b, c, d;
// x, y not declared by this interface
modport master (input a, b, x, output c, d, v);
modport slave (input a, b, x, output c, d, vy);
endinterface : illegal i

illegal i chl, ch2;
modport master2 (chl.master, ch2.master);
endinterface : 1

interface illegal i;
// a, b, ¢, d not declared by this interface
modport master (input a, b, output c, d);
modport slave (output a, b, output c, d);
endinterface : illegal_ i

Note that if no modport is specified in the module header or in the port connection, then all the nets and vari-
ablesin the interface are accessible with direction inout or ref, asin the examples above.

19.4.1 An example of a named port bundle

This interface example shows how to use modports to control signal directions asin port declarations. It uses
the modport name in the modul e definition.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

modport slave (input req, addr, mode, start, clk,

output gnt, rdy,
ref data);

modport master (input gnt, rdy, clk,
output req, addr, mode, start,
ref data) ;

endinterface: simple bus

module memMod (simple bus.slave a); // interface name and modport name
logic avail;

always @ (posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface
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endmodule
module cpuMod (simple bus.master b);
endﬁééule
module top;
logic clk = 0;

simple bus sb_intf (clk); // Instantiate the interface

initial repeat (10) #10 clk++;

memMod mem(.a(sb_intf)); // Connect the interface to the module instance
cpuMod cpu(.b(sb_intf));
endmodule

19.4.2 An example of connecting a port bundle

This interface example shows how to use modports to control signal directions. It uses the modport name in
the modul e instantiation.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;

logic [1:0] mode;
logic start, rdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
ref data);
modport master (input gnt, rdy, clk,
output req, addr, mode, start,
ref data) ;

endinterface: simple bus

module memMod (simple bus a); // Uses just the interface name
logic avail;

always @ (posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface
endmodule

module cpuMod (simple bus b) ;

endﬁéaule

module top;
logic clk = 0;
simple bus sb_intf (clk); // Instantiate the interface
initial repeat (10) #10 clk++;

memMod mem (sb_intf.slave); // Connect the modport to the module instance
cpuMod cpu(sb_intf.master) ;

Copyright 2003 Accellera. All rights reserved. 211



Accellera
SystemVerilog 3.1/draft 6 Extensions to Verilog-2001

endmodule

19.4.3 An example of connecting a port bundle to a generic interface

This interface example shows how to use modports to control signal directions. It shows the use of the inter-
face keyword in the module definition. The actual interface and modport are specified in the module instantia-
tion.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, zrdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
ref data) ;

modport master (input gnt, rdy, clk,
output req, addr, mode, start,
ref data);

endinterface: simple bus

module memMod (interface a); // Uses just the interface
logic avail;

always @ (posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface
endmodule

module cpuMod (interface D) ;
endﬁééule
module top;
logic clk = 0;
simple_bus sb_intf(clk); // Instantiate the interface

memMod mem (sb_intf.slave); // Connect the modport to the module instance
cpuMod cpu(sb_intf.master) ;
endmodule

19.5 Tasks and functions in interfaces

Tasks and functions can be defined within an interface, or they can be defined within one or more of the mod-
ules connected. This allows a more abstract level of modeling. For example “read” and “write” can be defined
as tasks, without reference to any wires, and the master module can merely call these tasks. In a modport
these tasks are declared as import tasks.

If amodule is connected to amodport containing an exported task or function, and the modul e does not define
that task or function, then an elaboration error shall occur. Similarly if the modport contains an exported task
or function prototype, and the task or function defined in the module does not exactly match that prototype,
then an elaboration error shall occur.

If the tasks or functions are defined in a module, using a hierarchical name, they must also be declared as
extern intheinterface, or as export in amodport.
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Tasks (not functions) can be defined in a module that is instantiated twice, e.g. two memories driven from the
same CPU. Such multiple task definitions are alowed by a forkjoin extern declaration in the interface.

19.5.1 An example of using tasks in an interface

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

task masterRead (input logic [7:0] raddr); // masterRead method

//

endtask: masterRead

task slaveRead; // slaveRead method
//

endtask: slaveRead
endinterface: simple bus

module memMod (interface a); // Uses any interface
logic avail;

always @ (posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail // the gnt and req signals in the interface

always @(a.start)
a.slaveRead;
endmodule

module cpuMod (interface D) ;
enum {read, write} instr;
logic [7:0] raddr;

always @ (posedge b.clk)
if (instr == read)
b.masterRead (raddr); // call the Interface method

endmodule

module top;
logic clk = 0;

simple bus sb_intf (clk); // Instantiate the interface

memMod mem (sb_intf) ;
cpuMod cpu(sb_intf) ;
endmodule

A function prototype specifies the types and directions of the arguments and the return value of a function
which is defined el sewhere. Similarly, atask prototype specifies the types and directions of the arguments of a
task which is defined elsewhere. In a modport, the import and export constructs can either use task or function
prototypes or use just the identifiers. The only exception is when amodport is used to import afunction or task
from another module, in which case afull prototype shall be used.

The argument typesin a prototype must match the argument typesin the function or task declaration. The rules

for matching are like those in C. The types must be exactly the same, or defined as being the same by a type-
def declaration, or aseries of typedef declarations. Two structure declarations containing the same members
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are not considered to be the same type.
19.5.2 An example of using tasks in modports

This interface example shows how to use modports to control signal directions and task access in a full read/
write interface.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
ref data,
import task slaveRead(),
task slaveWrite());
// import into module that uses the modport

modport master (input gnt, rdy, clk,
output req, addr, mode, start,
ref data,
import masterRead,
masterWrite) ;
// import into module that uses the modport

task masterRead (input logic [7:0] raddr); // masterRead method

/..
endtask

task slaveRead; // slaveRead method

/] ..
endtask

task masterWrite (input logic [7:0] waddr) ;

/] ..
endtask

task slaveWrite;

/). ..
endtask

endinterface: simple bus

module memMod (interface a); // Uses just the interface
logic avail;

always @ (posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // the gnt and req signals in the interface

always @(a.start)
if (a.mode[0] == 1'Db0)
a.slaveRead;
else
a.slaveWrite;
endmodule

module cpuMod (interface D) ;
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enum {read, write} instr = $rand();
logic [7:0] raddr = S$rand() ;

always @ (posedge b.clk)
if (instr == read)
b.masterRead (raddr); // call the Interface method
//
else
b.masterWrite (raddr) ;
endmodule

module omniMod ( interface Db) ;
/] ..

endmodule: omniMod

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem (sb_intf.slave); // only has access to the slave tasks

cpuMod cpu(sb_intf.master); // only has access to the master tasks

omniMod omni (sb_intf); // has access to all master and slave tasks
endmodule

19.5.3 An example of exporting tasks and functions

This interface example shows how to define tasks in one module and call them in another, using modports to
control task access.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

modport slave( input req, addr, mode, start, clk,
output gnt, rdy,
ref data,
export task Read(),
task Write());
// export from module that uses the modport

modport master (input gnt, rdy, clk,
output req, addr, mode, start,
ref data,
import task Read (input logic [7:0] raddr),
task Write (input logic [7:0] waddr));
// import requires the full task prototype

endinterface: simple bus

module memMod (interface a); // Uses just the interface keyword
logic avail;

task a.Read; // Read method
avail = 0;

avail = 1;
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endtask

task a.Write;
avail = 0;

avail = 1;
endtask
endmodule

module cpuMod (interface D) ;
enum {read, write} instr;
logic [7:0] raddr;

always @ (posedge b.clk)
if (instr == read)
b.Read(raddr); // call the slave method via the interface

else
b.Write (raddr) ;
endmodule

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem (sb_intf.slave); // exports the Read and Write tasks
cpuMod cpu(sb_intf.master); // imports the Read and Write tasks
endmodule

19.5.4 An example of multiple task exports

It is normally an error for more than one module to export the same task name. However, several instances of
the same modport type can be connected to an interface, such as memory modules in the previous example. So
that these can still export their read and write tasks, the tasks must be declared in the interface using the
extern forkjoin keywords.

Thecall toextern forkjoin task countslaves( );intheexample below behavesas:

fork
top.meml.a.countslaves;
top.mem2.a.countslaves;
join

For aread task, only one module should actively respond to the task call, e.g. the one containing the appropri-
ate address. The tasks in the other modules should return with no effect. Only then should the active task write
to the result variables.

Note multiple export of functionsis not allowed, because they must always write to the result.
The effect of adisable on an extern forkjoin task is as follows:
— If the task is referenced viathe interface instance, al task calls shall be disabled.

— If the task is referenced via the module instance, only the task call to that module instance shall be dis-
abled.

— If an interface contains an extern forkjoin task, and no module connected to that interface defines the task,
then any call to that task shall report a run-time error and return immediately with no effect.
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This interface example shows how to define tasks in more than one module and call them in another using
extern forkjoin. The multiple task export mechanism can also be used to count the instances of a particular
modport that are connected to each interface instance.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;
int slaves = 0;

// tasks executed concurrently as a fork/join block
extern forkjoin task countSlaves() ;

extern forkjoin task Read (input logic [7:0] raddr) ;
extern forkjoin task Write (input logic [7:0] waddr) ;

modport slave (input req,addr, mode, start, clk,
output gnt, rdy,
ref data, slaves,
export Read, Write, countSlaves) ;
// export from module that uses the modport

modport master ( input gnt, rdy, clk,
output req, addr, mode, start,
ref data,

import task Read (input logic [7:0] raddr),
task Write(input logic [7:0] waddr));
// import requires the full task prototype

initial begin

slaves = 0;

countSlaves;

Sdisplay ("number of slaves = %d", slaves);
end

endinterface: simple bus

module memMod # (parameter int minaddr=0, maxaddr=0;) (interface a);
logic avail = 1;
logic [7:0] mem[255:0];

task a.countSlaves() ;
a.slaves++;
endtask

task a.Read(input logic [7:0] raddr); // Read method
if (raddr >= minaddr && raddr <= maxaddr) begin
avail = 0;
#10 a.data = mem[raddr];
avail = 1;
end
endtask

task a.Write (input logic [7:0] waddr); // Write method
if (waddr >= minaddr && waddr <= maxaddr) begin
avail = 0;
#10 mem[waddr] = a.data;
avail = 1;
end
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endtask
endmodule

module cpuMod (interface D) ;
typedef enum {read, write} instr;
instr inst;
logic [7:0] raddr;
integer seed;

always @ (posedge b.clk) begin

inst = instr’ ($dist uniform(seed, 0, 1));
raddr = $dist uniform(seed, 0, 3);
if (inst == read) begin

Sdisplay ("%t begin read %$h @ %$h", S$time, b.data, raddr);
callr:b.Read(raddr) ;
Sdisplay ("%t end read %$h @ $h", $time, b.data, raddr);
end
else begin
Sdisplay ("%t begin write $h @ %h", $time, b.data, raddr);
b.data = raddr;
callw:b.Write (raddr) ;
Sdisplay ("%t end write %h @ %$h", Stime, b.data, raddr);
end
end
endmodule

module top;
logic clk = 0;

function void interrupt () ;
disable meml.a.Read; // task via module instance
disable sb_intf.Write; // task via interface instance

if (meml.avail == 0) S$display ("meml was interrupted") ;
if (mem2.avail == 0) S$display ("mem2 was interrupted") ;
endfunction

always #5 clk++;

initial begin
#28 interrupt () ;
#10 interrupt () ;
#100 S$finish;
end

simple bus sb intf (clk);
memMod # (0, 127) meml(sb_intf.slave) ;
memMod # (128, 255) mem2 (sb_intf.slave) ;

cpuMod cpu(sb_intf .master) ;
endmodule

19.6 Parameterized interfaces

Interface definitions can take advantage of parameters and parameter redefinition, in the same manner as mod-

ule definitions. This example shows how to use parameters in interface definitions.

interface simple bus # (parameter AWIDTH = 8, DWIDTH = 8;)
(input bit clk); // Define the interface
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logic reqg, gnt;

logic [AWIDTH-1:0] addr;
logic [DWIDTH-1:0] data;
logic [1:0] mode;

logic start, rdy;

modport slave( input req, addr, mode, start, clk,
output gnt, rdy,
ref data,
import task slaveRead(),
task slaveWrite());
// import into module that uses the modport

modport master (input gnt, rdy, clk,
output req, addr, mode, start,
ref data,
import task masterRead (input logic [AWIDTH-1:0] raddr),
task masterWrite (input logic [AWIDTH-1:0] waddr)) ;
// import requires the full task prototype

task masterRead (input logic [AWIDTH-1:0] raddr); // masterRead method
endééék
task slaveRead; // slaveRead method
endééék
task masterWrite (input logic [AWIDTH-1:0] waddr) ;
endééék
task slaveWrite;
endééék
endinterface: simple bus

module memMod (interface a); // Uses just the interface keyword
logic avail;

always @ (posedge b.clk) // the clk signal from the interface
a.gnt <= a.req & avail; //the gnt and req signals in the interface

always @(b.start)
if (a.mode[0] == 1'Db0)
a.slaveRead;
else
a.slaveWrite;
endmodule

module cpuMod (interface D) ;
enum {read, write} instr;
logic [7:0] raddr;

always @ (posedge b.clk)
if (instr == read)
b.masterRead (raddr); // call the Interface method
//
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else
b.masterWrite (raddr) ;
endmodule
module top;

logic clk = 0;

simple bus sb_intf (clk); // Instantiate default interface
simple bus #(.DWIDTH(16)) wide intf (clk); // Interface with 16-bit data

initial repeat (10) #10 clk++;

memMod mem(sb_intf.slave); // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the masterRead task

memMod memW (wide intf.slave); // 16-bit wide memory
cpuMod cpuW (wide intf.master); // 16-bit wide cpu
endmodule

19.7 Access without ports

In addition to interfaces being used to connect two or more modules, the interface object/method paradigm
alows for interfaces to be instantiated directly as static data objects within a module. If the methods are used
to accessinternal state information about the interface, then these methods can be called from different points
in the design to share information.

interface intf mutex;
task lock ();
endééék
function unlock() ;

endfunction
endinterface

function int f (input int i) ;
return(i); // just returns arg
endfunction

function int g(input int i);
return(i); // just returns arg
endfunction

module modl (input int in, output int out);
intf mutex mutex();
always begin
#10 mutex.lock() ;
@(in) out = f(in);
mutex.unlock;

end

always begin
#10 mutex.lock() ;
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@(in) out = g(in);
mutex.unlock;
end
endmodule
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Section 20
Parameters

20.1 Introduction (informative)

Verilog-2001 providesthree constructs for defining compile time constants: the parameter, localparam and
specparam Statements.

The language provides four methods for setting the value of parameter constants in a design. Each parameter
must be assigned a default value when declared. The default value of a parameter of an instantiated module can
be overridden in each instance of the module using one of the following:

— Implicit in-line parameter redefinition (e.g. foo # (value, value) ul (...); )
— Explicit in-line parameter redefinition (e.g. foo # (.name (value), .name(value)) ul (...); )

— defparam Statements, using hierarchical path names to redefine each parameter

20.1.1 Defparam removal

The defparam statement might be removed from future versions of the language. See Section 25.2.

20.2 Parameter declaration syntax

local_parameter_declaration ::= /l from Annex A.2.1.1
localparam [ signing ] { packed _dimension} [ range] list_of param_assignments ;
| localparam data type list_of param assignments;

parameter_declaration ::=
parameter [ signing ] { packed_dimension} [ range] list_of param_ assignments
| parameter data type list_of param_assignments
| parameter type list_of_type assignments
specparam_declaration ::=
specparam [ range] list_of specparam_assignments ;
constant_declaration ::= const data type const_assignment ; // from Annex A.2.1.3
list_of param_assignments ::= param_assignment { , param_assignment } /l from Annex A.2.3
list_of specparam_assignments ::= specparam_assignment { , specparam_assignment }
list_of type assignments ::=type assignment { , type assignment }
const_assignment ::= const_identifier = constant_expression /[ from Annex A.2.4
param_assignment ::= parameter_identifier = constant_param_expression
specparam_assignment ::=
specparam_identifier = constant_mintypmax_expression
| pulse_control_specparam
type_assignment ::= type_identifier = data_type

Syntax 20-1—Parameter declaration syntax (excerpt from Annex A)
A module or an interface can have parameters, which are set during elaboration and are constant during simu-

lation. They are defined with data types and default values. With SystemVerilog, if no data type is supplied,
parameters default to type 1ogic of arbitrary size for Verilog-2001 compatibility and interoperability.
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SystemVerilog adds the ability for a parameter to also specify a data type, allowing modules or instances to
have data whose type is set for each instance.

module ma # ( parameter pl = 1; parameter type p2 = shortint; )
(input logic [pl:0] i, output logic [pl:0] o);
p2 j = 0; // type of j is set by a parameter, (shortint unless redefined)
always @(i) begin
o = 1i;
J++;
end
endmodule

module mb;

logic [3:0] 1i,0;

ma #(.pl(3), .p2(int)) ul(i,o); //redefines p2 to a type of int
endmodule
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Section 21
Configuration Libraries

21.1 Introduction (informative)

Verilog-2001 provides the ability to specify design configurations, which specify the binding information of
module instances to specific Verilog HDL source code. Configurations utilize libraries. A library is a collec-
tion of modules, primitives and other configurations. Separate library map files specify the source code loca-
tion for the cells contained within the libraries. The names of the library map files is typicaly specified as
invocation options to simulators or other software tools reading in Verilog source code.

SystemVerilog adds support for interfaces to Verilog configurations. SystemVerilog also provides an aternate
method for specifying the names of library map files.

21.2 Libraries

A library is a named collection of cells. A cell is a module, macromodule, primitive, interface, or configura-
tion. A configuration is a specification of which source files bind to each instance in the design.

21.3 Library map files

Verilog 2001 specifies that library declarations, include statements, and config declarations are normally in a
mapping file that is read first by a simulator or other software tool. SystemVerilog does not require a special
library map file. Instead, the mapping information can be specified in the sroot top level.
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Section 22
System Tasks and System Functions

22.1 Introduction (informative)

SystemVerilog adds several system tasks and system functions as described in the following sections.

In addition, SystemVerilog extends the behavior of the following severa Verilog-2001 system tasks, as
described in Section 22.11.

22.2 Expression size system function

size function ::=// notin Annex A
$bits ( expression )

Syntax 22-1—Size function syntax (not in Annex A)

The sbits system function returns the number of bits required to hold avalue. A 4 state value counts as one
bit. Given the declaration:

logic [31:0] foo;

Then sbits (foo) shall return 32, even if asoftware tool uses more than 32-bits of storage to represent the 4-
state values.

22.3 Shortreal conversions

Verilog 2001 defines a real datatype, and the system functions $realtobits and $bitstoreal to permit
exact bit pattern transfers between areal and a 64 bit vector. SystemVerilog adds the shortreal type, andin
a parallel manner, sshortrealtobits and $bitstoshortreal are defined to permit exact bit transfers
between a shortreal and a 32 bit vector.

[31:0] $shortrealtobits(shortreal_val) ;
shortreal s$bitstoshortreal (bit val) ;

$shortrealtobits converts from a shortreal number to the 32-bit representation (vector) of that short-

real number. sbitstoshortreal iSthereverse of $shortrealtobits; it converts from the bit pattern to a
shortreal number.
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22.4 Array querying system functions

array_query_functions ::=// not in Annex A
array_dimension_function ( array_identifier , dimension_expression )
| $dimensions (array_identifier)
array_dimension_function ::=
Pleft
| $right
| $low
| $high
| $increment
| $length

dimension_expression ::= expression

Syntax 22-2—Array querying function syntax (not in Annex A)

SystemVerilog provides new system functions to return information about an array
— $left shal return the left bound (msb) of the dimension

— s$right shall return the right bound (Isb) of the dimension

— $1ow shal return the minimum of $1eft and sright of the dimension

— $high shall return the maximum of $left and $right of the dimension

— $increment shall return 1 if $1left is greater than or equal to $right, and -1 if $1left is less than
Sright

— $length shall return the number of elementsin the dimension, which isequivalent to $high - $low + 1

— $dimensions shall return the number of dimensionsin the array, or O for asingular object
The dimensions of an array shall be numbered as follows: The slowest varying dimension (packed or
unpacked) is dimension 1. Successively faster varying dimensions have sequentialy higher dimension num-
bers. For instance:

// Dimension numbers

// 3 4 1 2

reg [3:0][2:1] n [1:5]([2:8];

For an integer or bit type, only dimension 1 is defined. For an integer N declared without a range specifier, its
bounds are assumed to be [$bits (N)-1:0].

If an out-of-range dimension is specified, these functions shall return alogic X.
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22.5 Assertion severity system tasks

assert_severity _tasks::=// notin Annex A
fatal_message task
| nonfatal_message task
fatal_message task ::=
$fatal ;
| $fatal (finish_number [, message_argument { , message argument] } ) ;
nonfatal_message task ::=
severity _task ;
| severity task ([ message_argument { , message argument] } ) ;
severity_task ::= $error | $warning | $info
finish_number::=0]1]2
message_argument ::= string | expression

Syntax 22-3—Assertion severity system task syntax (not in Annex A)

SystemVerilog assertions have a severity level associated with any assertion failures detected. By default, the
severity of an assertion failureis“error”. The severity levels can be specified by including one of the following
severity system tasksin the assertion fail statement:

— S$fatal shall generate arun-time fatal assertion error, which terminates the simulation with an error code.
The first argument passed to $fatal shal be consistent with the corresponding argument to the Verilog
$finish system task, which setsthelevel of diagnostic information reported by the tool.

— $error shall bearun-time error.
— $warning shal be arun-time warning, which can be suppressed in a tool-specific manner.

— $info shal indicate that the assertion failure carries no specific severity.

All of these severity system tasks shall print a tool-specific message, indicating the severity of the failure, and
specific information about the failure, which shall include the following information:

— Thefile name and line number of the assertion statement,

— The hierarchical name of the assertion, if it islabeled, or the scope of the assertion if it is not |abel ed.

For simulation tools, these tasks shall also report the simulation run-time at which the severity system task is
called.

Each of the severity tasks can include optional user-defined information to be reported. The user-defined mes-

sage shall use the same syntax as the Verilog $display system task, and can include any number of argu-
ments.
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22.6 Assertion control system tasks

assert_control_tasks::=// not in Annex A
assert_task ;
| assert_task (levels[, list_of_modules or_assertions] ) ;
assert task ;=
$asserton
| $assertoff
| $assertkill
list_of_modules or_assertions::=
module_or_assertion { , module_or_assertion }
module_or_assertion ::=
module_identifier
| assertion_identifier
| hierarchical_identifier

Syntax 22-4—Assertion control syntax (not in Annex A)

SystemVerilog provides three system tasks to control assertions.

— S$assertoff shall stop the checking of all specified assertions until a subsequent $asserton. An asser-
tion that is aready executing, including execution of the pass or fail statement, is not affected

— S$assertkill shall abort execution of any currently executing specified assertions and then stop the
checking of all specified assertions until a subsequent sasserton.

— $asserton shal re-enable the execution of al specified assertions

22.7 Assertion system functions

assert_boolean functions::=// notin Annex A
assert_function ( expression ) ;
| $insetz (expression, expression [ { , expression}]);
assert_function ::=
$onehot
| $onehot0
| $inset
| $isunknown

Syntax 22-5—Assertion system function syntax (not in Annex A)

Assertions are commonly used to evaluate certain specific characteristics of a design implementation, such as
whether a particular signal is “one-hot”. The following system functions are included to facilitate such com-
mon assertion functionality:

— $onehot returnstrue if one and only one bit of expression is high.
— $onehot0 returnstrueif at most one bit of expression is high.
— $inset returnstrueif the first expression is equal to at least one of the subsequent expression arguments.

— $insetz returnstrueif thefirst expression isequal to at least one other expression argument. Comparison
is performed using casez semantics, so z or ? bits are treated as don’t-cares.
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— $isunknown returnstrueif any bit of the expressionisx. Thisis equivaent to
“expression === 'bx.

All of the above system functions shall have areturn type of bit. A return value of 1/ b1 shal indicate true,
and areturn value of 1’ bo shall indicate false.

Three functions are provided for assertions to detect changes in values between two adjacent clock ticks.
Srose ( expression )
$fell ( expression )
Sstable ( expression )

These functions are discussed in Section 17.7.3.

The past values can be accessed with the $past function.
$past ( expression [ , number of ticks] )

The number of 1sin abit vector expression can be determined with the $countones function.
Scountones ( expression)

$past and $scountones are discussed in Section 17.9.

22.8 Random number system functions

To supplement the Verilog srandom system function, SystemVerilog provides three special system functions
for generating pseudorandom numbers, $urandom, surandom range and $srandom. These system func-
tions are presented in Section 12.10.

22.9 Program control

In addition to the normal simulation control tasks ($stop and $finish), aprogram can use the sexit control
task. When all programs exit, the simulation finishes. The usage of $exit ispresented in Section 16.6 on pro-
gram blocks.

22.10 Coverage system functions

SystemVerilog has severa built-in  system functions for obtaining test coverage information:
$coverage control, $coverage get max, $coverage get, Scoverage merge and
$coverage_save. The coverage system functions are described in Section 28.2.

22.11 Enhancements to Verilog-2001 system tasks

SystemVerilog adds system tasks and system functions as described in the following sections. In addition, Sys-
temVerilog extends the behavior of the following:

— %u and %z format specifiers:

— For packed data, su and %z are defined to operate as though the operation were applied to the equiva-
lent vector.

— For unpacked struct data, su and %z are defined to apply as though the operation were performed on
each member in declaration order.
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— For unpacked union data, %u and %z are defined to apply as though the operation were performed on
the first member in declaration order.

— s%u and sz are not defined on unpacked arrays.

— The count of dataitemsread by a%u or %z for an aggregate type is always either 1 or O; the individual
members are not counted separately.

— Sfread
$fread hastwo variants—aregister variant and a set of three memory variants.
The register variant,

Sfread (myreg, £d);
— isdefined to be the one applied for all packed data.

— For unpacked struct data, $fread is defined to apply as though the operation were performed on each
member in declaration order.

— For unpacked union data, sfread is defined to apply as though the operation were performed on the
first member in declaration order.

— For unpacked arrays, the original definition applies except that unpacked struct or union elements are
read as described above.

22.12 $readmemb and $readmemh

$readmemb and sreadmemh are extended to unpacked arrays of packed data. In such cases, they treat each
packed element as the vector equivalent and perform the normal operation. $readmemb and $readmemh are
not defined for packed arrays or unpacked arrays of unpacked data.
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Section 23
VCD Data

SystemVerilog does not extend the VCD format. Some SystemVerilog types can be dumped into a standard
VCD file by masguerading as a Verilog type. The following table lists the basic SystemVerilog types and their
mapping to a Verilog type for VCD dumping.

Table 23-1: VCD type mapping

SystemVerilog Verilog Size

bit reg Size of packed dimension
logic reg Size of packed dimension
int integer 32

shortint integer 16

longint integer 64

shortreal real

byte reg 8

enum integer 32

Packed arrays and structures are dumped as a single vector of reg. Multiple packed array dimensions are col-
lapsed into a single dimension.

If an enum declaration specified atype, it is dumped as that type rather than the default shown above.
Unpacked structures appear as named fork...join blocks, and their member elements of the structure appear
asthe types above. Since named fork...join blockswith variable declarations are seldom used in testbenches
and hardware models, this makes structures easy to distinguish from variables declared in begin...end blocks,
which are more frequently used in testbenches and models.

Asin Verilog 2001, unpacked arrays and automatic variables are not dumped.

Note that the current VCD format does not indicate whether a variable has been declared as signed or
unsigned.
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Section 24
Compiler Directives

24.1 Introduction (informative)

Verilog provides the *define text substitution macro compiler directive. A macro can contain arguments,
whose values can be set for each instance of the macro. For example:

‘define NAND (dval) nand # (dval)

‘NAND (3) il (y, a, b); //'NAND(3) macro substitutes with: nand #(3)
‘NAND (3:4:5) i2 (o, ¢, d); //'NAND(3:4:5) macro substitutes with: nand
#(3:4:5)

SystemVerilog enhances the capabilities of the *define compiler directive to support the construction of
string literals and identifiers.

Verilog provides the ~include file inclusion compiler directive. SystemVerilog enhances the capabilities to

support standard include specification, and enhances the ~include directive to accept afile name constructed
with a macro.

24.2 ‘define macros

In Verilog, the *define macro text can include a backslash (' \ ) at the end of aline to show continuation on
the next line.

In SystemVerilog, the macro text can alsoinclude *», *\*» and **.

An =~ overrides the usual lexical meaning of », and indicates that the expansion should include an actual quo-
tation mark. This allows string literals to be constructed from macro arguments.

A \ " indicates that the expansion should include the escape sequence \ ", e.g.
“define msg(x,y) “"x: T\Tnry \“r°w

This expands:
Sdisplay (" msg(left side,right side)) ;

to:
Sdisplay("left side: \"right side\"");

A  delimitslexical tokens without introducing white space, allowing identifiers to be constructed from argu-
ments, e.g.

“define foo(f) £ _suffix
This expands:

‘foo (bar)
to:

bar suffix
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The include directive can be followed by a macro, instead of aliteral string:

‘define home (filename) ‘"/home/foo/myfile‘"
‘include ‘home (myfile)

24.3 ‘include

The syntax of the * include compiler directiveis:

include_compiler_ directive ::=
‘include "filename"
| ‘include <filenames

SystemVerilog 3.1/draft 6

When the filename is an absolute path, only that £ilename isincluded and only the double quote form of

the * include can be used.

When the double quote ("filename") version is used, the behavior of *include is unchanged from IEEE

Std. 1364-2001.

When the angle bracket (<filename>) notation is used, then only the vendor defined location containing files
defined by the language standard is searched. Relative path names given inside the < > are interpreted relative

to the vendor-defined location in all cases.
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Section 25
Features under consideration for removal from SystemVerilog

25.1 Introduction (informative)

Certain Verilog language features can be simulation inefficient, easily abused, and the source of design prob-
lems. These features are being considered for removal from the SystemVerilog language, if thereis an alternate
method for these features.

The Verilog language features that have been identified in this standard as ones which can be removed from
Verilog are defparam and procedural assign/deassign.

25.2 Defparam statements

The SystemVerilog committee has determined, based on the solicitation of input from tool implementers and
tools users, that the de fparam method of specifying the value of a parameter can be a source of design errors,
and can be an impediment to tool implementation. The defparam statement does not provide a capability that
can not be done by another method, which avoids these problems. Therefore, the committee has placed the
defparam Statement on a deprecation list. This means is that a future revision of the Verilog standard might
not require support for this feature. This current standard still requires tools to support the defparam state-
ment. However, users are strongly encouraged to migrate their code to use one of the alternate methods of
parameter redefinition.

Prior to the acceptance of the Verilog-2001 Standard, it was common practice to change one or more parame-
ters of instantiated modules using a separate defparam statement. Defparam statements can be a source of tool
complexity and design problems.

A defparam Statement can precede the instance to be modified, can follow the instance to be modified, can be
at the end of the file that contains the instance to be modified, can be in a separate file from the instance to be
modified, can modify parameters hierarchically that in turn must again be passed to other defparam State-
ments to modify, and can modify the same parameter from two different defparam statements (with unde-
fined results). Due to the many ways that a defparam can modify parameters, a Verilog compiler cannot
insure the final parameter values for an instance until after all of the design files are compiled.

Prior to Verilog-2001, the only other method available to change the values of parameters on instantiated mod-
uleswasto use implicit in-line parameter redefinition. This method uses # (parameter value) aspart of the
module instantiation. Implicit in-line parameter redefinition syntax requires that all parameters up to and
including the parameter to be changed must be placed in the correct order, and must be assigned values.

Verilog-2001 introduced explicit in-line parameter redefinition, in theform # (.parameter name (value)),
as part of the module instantiation. This method gives the capability to pass parameters by name in the instan-
tiation, which supplies all of the necessary parameter information to the model in the instantiation itself.

The practice of using defparam statementsis highly discouraged. Engineers are encouraged to take advantage
of the Verilog-2001 explicit in-line parameter redefinition capability.

See Section 20 for more details on parameters.

25.3 Procedural assign and deassign statements

The SystemVerilog committee has determined, based on the solicitation of input from tool implementers and
tools users, that the procedural assign and deassign Statements can be a source of design errors, and can be
an impediment to tool implementation. The procedural assign/deassign Statements do not provide a capa-
bility that can not be done by another method, which avoids these problems. Therefore, the committee has
placed the procedural assign/deassign Statements on adeprecation list. This meansthat afuture revision of
the Verilog standard might not require support for theses statements. This current standard still requires toolsto
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support the procedural assign/deassign Statements. However, users are strongly encouraged to migrate
their code to use one of the alternate methods of procedural or continuous assignments.

Verilog has two forms of the assign statement:
— Continuous assignments, placed outside of any procedures

— Procedural continuous assignments, placed within a procedure

Continuous assignment statements are a separate process that are active throughout simulation. The continuous
assignment statement accurately represents combinational logic at an RTL level of modeling, and is frequently
used.

Procedural continuous assignment statements become active when the assign statement is executed in the
procedure. The process can be de-activated using a deassign statement. The procedural assign/deassign
statements are seldom needed to model hardware behavior. In the unusual circumstances where the behavior of
procedural continuous assignments are required, the same behavior can be modeled using the procedural force
and release statements.

The fact that the assign statement to be used both outside and inside a procedure can cause confusion and
errors in Verilog models. The practice of using the assign and deassign statements inside of procedural
blocks is highly discouraged.

See Section 8 for more information on procedural assignments.
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Section 26
Direct Programming Interface (DPI)

This chapter highlights the Direct Programming Interface and provides a detailed description of the System-
Verilog layer of theinterface. The C layer isdefined in Annex D.

26.1 Overview

Direct Programming Interface (DPI) is an interface between SystemVerilog and a foreign programming lan-
guage. It consists of two separate layers: the SystemVerilog layer and a foreign language layer. Both sides of
DPI are fully isolated. Which programming language is actually used as the foreign language is transparent
and irrelevant for the SystemVerilog side of this interface. Neither the SystemVerilog compiler nor the foreign
language compiler is required to analyze the source code in the other’s language. Different programming lan-
guages can be used and supported with the same intact SystemVerilog layer. For now, however, SystemVerilog
3.1 defines aforeign language layer only for the C programming language. See Annex D for more details.

The motivation for thisinterface istwo-fold. The methodological requirement isthat the interface should allow
a heterogeneous system to be built (adesign or atestbench) in which some components can be written in alan-
guage (or more languages) other than SystemVerilog, hereinafter called the foreign language. On the other
hand, there is also a practical need for an easy and efficient way to connect existing code, usually writtenin C
or C++, without the knowledge and the overhead of PLI or VPI.

DPI follows the principle of a black box: the specification and the implementation of a component is clearly
separated and the actual implementation is transparent to the rest of the system. Therefore, the actual program-
ming language of the implementation is also transparent, though this standard defines only C linkage seman-
tics. The separation between SystemVerilog code and the foreign language is based on using functions as the
natural encapsulation unit in SystemVerilog. By and large, any function can be treated as a black box and
implemented either in SystemVerilog or in the foreign language in a transparent way, without changing its
cals.

26.1.1 Functions

DPI alows direct inter-language function calls between the languages on either side of the interface. Specifi-
cally, functions implemented in a foreign language can be caled from SystemVerilog; such functions are
referred to as imported functions. SystemVerilog functions that are to be called from a foreign code shall be
specified in export declarations (see Section 26.6 for more details). DPI allows for passing SystemVerilog data
between the two domains through function arguments and results. There is no intrinsic overhead in this inter-
face.

All functions used in DPI are assumed to complete their execution instantly and consume O (zero) simulation
time, just as normal SystemVerilog functions. DPI provides no means of synchronization other than by data
exchange and explicit transfer of control.

Every imported function needs to be declared. A declaration of an imported function isreferred to as an import
declaration. Import declarations are very similar to SystemVerilog function declarations. Import declarations
can occur anywhere where SystemVerilog function definitions are permitted. An import declaration is consid-
ered to be a definition of a SystemVerilog function with aforeign language implementation. The same foreign
function can be used to implement multiple SystemVerilog functions (this can be a useful way of providing
differing default argument values for the same basic function), but a given SystemVerilog nhame can only be
defined once per scope. Imported functions can have zero or more formal input, output, and inout argu-
ments, and they can return aresult or be defined as void functions.

DPI isbased entirely upon SystemVerilog constructs. The usage of imported functionsisidentical asfor native
SystemVerilog functions. With few exceptions imported functions and native functions are mutually
exchangeable. Calls of imported functions are indistinguishable from calls of SystemVerilog functions. This
facilitates ease-of-use and minimizes the learning curve.
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26.1.2 Data types

SystemVerilog data types are the sole data types that can cross the boundary between SystemVerilog and afor-
eign language in either direction (i.e., when an imported function is called from SystemVerilog code or an
exported SystemVerilog function is called from a foreign code). It is not possible to import the data types or
directly use the type syntax from another language. A rich subset of SystemVerilog data types is allowed for
formal arguments of import and export functions, although with some restrictions and with some notational
extensions. Function result types are restricted to small values, however (see Section 26.4.5).

Formal arguments of an imported function can be specified as open arrays. A formal argument is an open array
when a range of one or more of its dimensions, packed or unpacked, is unspecified. An open array is like a
multi-dimensional dynamic array formal in both packed and unpacked dimensions, and is thus denoted using
the same syntax as dynamic arrays, using [] to denote an open dimension. This is solely a relaxation of the
argument-matching rules. An actual argument shall match the formal one regardless of the range(s) for its cor-
responding dimension(s), which facilitates writing generalized code that can handle SystemVerilog arrays of
different sizes. See Section 26.4.6.1.

26.1.2.1 Data representation

DPI does not add any constraints on how SystemVerilog-specific datatypes are actually implemented. Optimal
representation can be platform dependent. The layout of 2- or 4-state packed structures and arrays is imple-
mentation- and platform-dependent.

The implementation (representation and layout) of 4-state values, structures, and arrays is irrelevant for Sys-
temVerilog semantics, and can only impact the foreign side of the interface.

26.2 Two layers of the DPI

DPI consists of two separate layers: the SystemVerilog layer and aforeign language layer. The SystemVerilog
layer does not depend on which programming language is actually used as the foreign language. Although dif-
ferent programming languages can be supported and used with the intact SystemVerilog layer, SystemVerilog
3.1 defines a foreign language layer only for the C programming language. Nevertheless, SystemVerilog code
shall look identical and its semantics shall be unchanged for any foreign language layer. Different foreign lan-
guages can require that the SystemVerilog implementation shall use the appropriate function call protocol,
argument passing and linking mechanisms. This shall be, however, transparent to SystemVerilog users. Sys-
temVerilog 3.1 requires only that its implementation shall support C protocols and linkage.

26.2.1 DPI SystemVerilog layer

The SystemVerilog side of DPI does not depend on the foreign programming language. In particular, the actual
function call protocol and argument passing mechanisms used in the foreign language are transparent and irrel-
evant to SystemVerilog. SystemVerilog code shall 1ook identical regardless of what code the foreign side of the
interface is using. The semantics of the SystemVerilog side of the interface is independent from the foreign
side of the interface.

This chapter does not constitute a compl ete interface specification. It only describes the functionality, seman-
tics and syntax of the SystemVerilog layer of the interface. The other half of the interface, the foreign language
layer, defines the actual argument passing mechanism and the methods to access (read/write) formal arguments
from the foreign code. See Annex D for more details.

26.2.2 DPI foreign language layer
The foreign language layer of the interface (which is transparent to SystemVerilog) shall specify how actua
arguments are passed, how they can be accessed from the foreign code, how SystemVerilog-specific data types

(such as logic and packed) are represented, and how to translate them to and from some predefined C-like
types.

The data types allowed for formal arguments and results of imported functions or exported functions are gen-
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eraly SystemVerilog types (with some restrictions and with notational extensions for open arrays). The user is
responsible for specifying in their foreign code the native types equivalent to the SystemVerilog types used in
imported declarations or export declarations. Software tools, like a SystemVerilog compiler, can facilitate the
mapping of SystemVerilog types onto foreign native types by generating the appropriate function headers.

The SystemVerilog compiler or simulator shall generate and/or use the function call protocol and argument
passing mechanisms required for the intended foreign language layer. The same SystemVerilog code (com-
piled accordingly) shall be usable with different foreign language layers, regardless of the data access method
assumed in a specific layer. Annex A defines DPI foreign language layer for the C programming language.

26.3 Global name space of imported and exported functions

Every function imported to SystemVerilog must eventually resolve to a global symbol. Similarly, every func-
tion exported from SystemVerilog defines a global symbol. Thus the functions imported to and exported from
SystemVerilog have their own global name space of linkage names, different from $root name space. Global
names of imported and exported functions must be unique (no overloading is allowed ) and shall follow C con-
ventions for naming; specifically, such names must start with a letter or underscore, and can be followed by
a phanumeric characters or underscores. Exported and imported functions, however, can be declared with local
SystemVerilog names. Import and export declarations allow users to specify a global name for a function in
addition to its declared name. Should a global name clash with a SystemVerilog keyword or a reserved name,
it shall take the form of an escaped identifier. The leading backdlash ( \ ) character and the trailing white space
shall be stripped off by the SystemVerilog tool to create the linkage identifier. Note that after this stripping, the
linkage identifier so formed must comply with the normal rules for C identifier construction. If a global name
isnot explicitly given, it shall be the same as the SystemVerilog function name. For example:

export "DPI" foo plus = function \foo+ ; // "foo+" exported as "foo plus"
export "DPI" function foo; // "foo" exported under its own name

import "DPI" init 1 = function void \init[1] (); // "init 1" is a linkage name
import "DPI" \begin = function void \init[2] (); // "begin" is a linkage name

The same global function can be referred to in multiple import declarations in different scopes or/and with dif-
ferent SystemVerilog names, see Section 26.4.4.

Multiple export declarations are alowed with the same c_identifier, explicit or implicit, as long as they arein
different scopes and have the same type signature (as defined in Section 26.4.4 for imported functions). Multi-
ple export declarations with the same c_identifier in the same scope are forbidden.

26.4 Imported functions
The usage of imported functions is similar as for native SystemVerilog functions.

26.4.1 Required properties of imported functions - semantic constraints

This section defines the semantic constraints imposed on imported functions. Some semantic restrictions are
shared by al imported functions. Other restrictions depend on whether the special properties pure (see
Section 26.4.2) or context (See Section 26.4.3) are specified for animported function. A SystemVerilog com-
piler is not able to verify that those restrictions are observed and if those restrictions are not satisfied, the
effects of such imported function calls can be unpredictable.

26.4.1.1 Instant completion

Imported functions shall complete their execution instantly and consume zero-simulation time, similarly to
native functions.

26.4.1.2 input and output arguments

Imported functions can have input and output arguments. The formal input arguments shall not be modi-
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fied. If such arguments are changed within afunction, the changes shall not be visible outside the function; the
actual arguments shall not be changed.

Theimported function shall not assume anything about the initial values of formal output arguments. Theini-
tial values of output arguments are undetermined and implementation-dependent.

26.4.1.3 Special properties pure and context

Special properties can be specified for an imported function: as pure or as context (See also Section 26.4.2
or 26.4.3).

A function whose result depends solely on the values of its input arguments and with no side effects can be
specified as pure. This can usually allow for more optimizations and thus can result in improved simulation
performance. Section 26.4.2 details the rules that must be obeyed by pure functions.

An imported function that is intended to call exported functions or to access SystemVerilog data objects other
then its actual arguments (e.g. viaVPI or PLI calls) must be specified as context. Calls of context functions
are specially instrumented and can impair SystemVerilog compiler optimizations; therefore simulation perfor-
mance can decrease if the context property is specified when not necessary. A function not specified as con-
text shall not read or write any data objects from SystemVerilog other then its actual arguments. For
functions not specified as context, the effects of calling PLI, VPI, or exported SystemVerilog functions can
be unpredictable and can lead to unexpected behavior; such calls can even crash. Section 26.4.3 details the
restrictions that must be obeyed by non-context functions.

26.4.1.4 Memory management

The memory spaces owned and allocated by the foreign code and SystemVerilog code are disjoined. Each side
is responsible for its own allocated memory. Specifically, an imported function shall not free the memory allo-
cated by SystemVerilog code (or the SystemVerilog compiler) nor expect SystemVerilog code to free the mem-
ory allocated by the foreign code (or the foreign compiler). This does not exclude scenarios where foreign code
alocates ablock of memory, then passes ahandle (i.e., a pointer) to that block to SystemVerilog code, which in
turn calls an imported function (e.g. C standard function £ree) which directly or indirectly frees that block.

NOTE—In this last scenario, a block of memory is allocated and freed in the foreign code, even when the standard func-
tionsmalloc and free are called directly from SystemVerilog code.

26.4.2 Pure functions

A pure function call can be safely eliminated if its result is not needed or if the previous result for the same
values of input arguments is available somehow and can be reused without needing to recalculate. Only non-
void functions with no output Or inout arguments can be specified as pure. Functions specified as pure
shall have no side effects whatsoever; their results need to depend solely on the values of their input argu-
ments. Calls to such functions can be removed by SystemVerilog compiler optimizations or replaced with the
values previously computed for the same values of the input arguments.

Specifically, a pure function is assumed not to directly or indirectly (i.e., by calling other functions):
— perform any file operations

— read or write anything in the broadest possible meaning, includesi/o, environment variables, objects from
the operating system or from the program or other processes, shared memory, sockets, etc.

— access any persistent data, like global or static variables.

If a pure function does not obey the above restrictions, SystemVerilog compiler optimizations can lead to
unexpected behavior, due to eliminated calls or incorrect results being used.

26.4.3 Context functions

Some DPI imported functions require that the context of their call is known. It takes special instrumentation of
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their call instances to provide such context; for example, an internal variable referring to the “ current instance”
might need to be set. To avoid any unnecessary overhead, imported function calls in SystemVerilog code are
not instrumented unless the imported function is specified as context.

All DPI exported functions require that the context of their call is known. This occurs since SystemVerilog
function declarations always occur in instantiable scopes, hence alowing a multiplicity of unique function
instances.

For the sake of simulation performance, an imported function call shall not block SystemVerilog compiler
optimizations. An imported function not specified as context shall not access any data objects from System-
Verilog other than its actual arguments. Only the actual arguments can be affected (read or written) by its call.
Therefore, acall of anon-context function is not abarrier for optimizations. A context imported function, how-
ever, can access (read or write) any SystemVerilog data objects by calling PLI/VPI, or by calling an export
function. Therefore, acall to a context function is abarrier for SystemVerilog compiler optimizations.

Only calls of context imported functions are properly instrumented and cause conservative optimizations;
therefore, only those functions can safely call al functions from other APIs, including PLI and VPI functions
or exported SystemVerilog functions. For imported functions not specified as context, the effects of calling
PLI, VPI, or SystemVerilog functions can be unpredictable and such calls can crash if the callee requires acon-
text that has not been properly set. However note that declaring an import context function does not automati-
caly make any other simulator interface automatically available. For VPl access (or any other interface
access) to be possible, the appropriate implementation defined mechanism must still be used to enable these
interface(s). Note also that DPI calls do not automatically create or provide any handles or any special environ-
ment that can be needed by those other interfaces. It is the user’s responsibility to create, manage or otherwise
manipul ate the required handles/environment(s) needed by the other interfaces.

Context imported functions are always implicitly supplied a scope representing the fully qualified instance
name within which the import declaration was present. This scope defines which exported SystemVerilog
functions can be called directly from the imported function; only functions defined and exported from the
same scope as the import can be called directly. To cal any other exported SystemVerilog functions, the
imported function shall first have to modify its current scope, in essence performing the foreign language
equivalent of a SystemVerilog hierarchical function call.

Specia DPI utility functions exist that allow imported functions to retrieve and operate on their scope. See Annex D for
more details.

26.4.4 Import declarations

Each imported function shall be declared. Such declaration are referred to as import declarations. The syntax
of an import declaration is similar to the syntax of SystemVerilog function prototypes (see Section 10.6).

Imported functions are similar to SystemVerilog functions. Imported functions can have zero or more formal
input, output, and inout arguments. Imported functions can return aresult or be defined as void functions.

dpi_import_export ::= /l from Annex A.2.6

import " DPI" [ dpi_import_property ] [ c_identifier =] dpi_function_proto
dpi_import_property ::= context | pure
dpi_function_proto ::=

named_function_proto

| [ signing ] function_data_type function_identifier ( list_of dpi_proto_formals)

list_of dpi_proto_formals::=

[ { attribute_instance} dpi_proto_formal { , { attribute instance} dpi_proto_formal } ]
dpi_proto_formal ::=

data_type[ port_identifier dpi_dimension { , port_identifier dpi_dimension} ]
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Syntax 26-1—DPI import declaration syntax (excerpt from Annex A)

An import declaration specifies the function name, function result type, and types and directions of formal
arguments. It can also provide optional default values for formal arguments. Formal argument names are
optiona unless argument passing by name is needed. An import declaration can also specify an optional func-
tion property: context Of pure.

Note that an import declaration is equival ent to defining afunction of that namein the SystemVerilog scopein
which the import declaration occurs, and thus multiple imports of the same function name into the same scope
are forbidden. Note that this declaration scope is particularly important in the case of imported context func-
tions, see Section 26.4.3; for non-context imported functions the declaration scope has no other implications
other than defining the visibility of the function.

c_identifier providesthe linkage name for this function in the foreign language. If not provided, this defaults to
the same identifier as the SystemVerilog function name. In either case, this linkage name must conform to C
identifier syntax. An error shall occur if the c_identifier, either directly or indirectly, does not conform to these
rules.

For any given c_identifier (whether explicitly defined with c_identifier=, or automatically determined from the
function name), al declarations, regardless of scope, must have exactly the same type signature. The signature
includes the return type and the number, order, direction and types of each and every argument. Type includes
dimensions and bounds of any arrays or array dimensions. Signature also includes the pure/context qualifi-
ersthat can be associated with an extern definition.

Note that multiple declarations of the same imported or exported function in different scopes can vary argu-
ment names and default values, provided the type compatibility constraints are met.

A formal argument name is required to separate the packed and the unpacked dimensions of an array.

The qualifier ref cannot be used in import declarations. The actua implementation of argument passing
depends solely on the foreign language layer and its implementation and shall be transparent to the SystemVer-
ilog side of the interface.

The following are examples of external declarations.
import "DPI" function void myInit () ;

// from standard math library
import "DPI" pure function real sin(real);

// from standard C library: memory management
import "DPI" function handle malloc (int size); // standard C function
import "DPI" function void free (handle ptr); // standard C function

// abstract data structure: queue
import "DPI" function handle newQueue (input string name of queue);

// Note the following import uses the same foreign function for

// implementation as the prior import, but has different SystemVerilog name
// and provides a default value for the argument.

import "DPI" newQueue=function handle newAnonQueue (input string s=null) ;
import "DPI" function handle newElem(bit [15:0]);

import "DPI" function void enqueue (handle gqueue, handle elem) ;

import "DPI" function handle dequeue (handle queue) ;

// miscellanea

import "DPI" function bit [15:0] getStimulus() ;

import "DPI” context function void processTransaction (handle elem,
output logic [64:1] arr [0:63]);
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26.4.5 Function result

Function result types are restricted to small values. The following SystemVerilog data types are alowed for
imported function results:

— void, byte, shortint, int, longint, real, shortreal, handle, and string.

— packed bit arrays up to 32 bits and all types that are eventually equivalent to packed bit arrays up to 32 bits.
The same restrictions apply for the result types of exported functions.

26.4.6 Types of formal arguments

A rich subset of SystemVerilog data types is alowed for formal arguments of import and export functions.
Generally, C compatible types, packed types and user defined types built of types from these two categories
can be used for formal arguments of DPI functions. The set of permitted types is defined inductively.

The following SystemVerilog types are the only permitted types for forma arguments of import and export
functions:

— void, byte, shortint, int, longint, real, shortreal, handle, and string
— scalar values of typebit and 1ogic
— packed one dimensional arrays of type bit and logic

Note however, that every packed type, whatever is its structure, is eventually equivalent to a packed one
dimensional array. Therefore practically all packed types are supported, although their internal structure
(individual fields of structs, multiple dimensions of arrays) shall be transparent and irrel evant.

— enumeration types interpreted as the type associated with that enumeration
— types constructed from the supported types with the help of the constructs:
— struct
— unpacked array

— typedef

The following caveats apply for the types permitted in DPI;

— Enumerated data types are not supported directly. Instead, an enumerated data type is interpreted as the
type associated with that enumerated type.

— SystemVerilog does not specify the actual memory representation of packed structures or any arrays,
packed or unpacked. Unpacked structures have an implementation-dependent packing, normally matching
the C compiler.

— The actual memory representation of SystemVerilog data typesis transparent for SystemVerilog semantics
and irrelevant for SystemVerilog code. It can be relevant for the foreign language code on the other side of
the interface, however; a particular representation of the SystemVerilog data types can be assumed. This
shall not restrict the types of forma arguments of imported functions, with the exception of unpacked
arrays. SystemVerilog implementation can restrict which SystemVerilog unpacked arrays are passed as
actual arguments for aformal argument which is a sized array, although they can be always passed for an
unsized (i.e., open) array. Therefore, the correctness of an actual argument might be implementation-
dependent. Nevertheless, an open array provides an implementation-independent solution.

26.4.6.1 Open arrays
The size of the packed dimension, the unpacked dimension, or both dimensions can remain unspecified; such

cases are referred to as open arrays (or unsized arrays). Open arrays allow the use of generic code to handle
different sizes.
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Formal arguments of imported functions can be specified as open arrays. (Exported SystemVerilog functions
cannot have formal arguments specified as open arrays.) A formal argument is an open array when arange of
one or more of its dimensions is unspecified (denoted by using square brackets ([1)). Thisis solely a relax-
ation of the argument-matching rules. An actual argument shall match the formal one regardless of the range(s)
for its corresponding dimension(s), which facilitates writing generalized code that can handle SystemVerilog
arrays of different sizes.

Although the packed part of an array can have an arbitrary number of dimensions, in the case of open arrays
only asingle dimension is allowed for the packed part. Thisis not very restrictive, however, since any packed
type is eventually equivalent to one-dimensional packed array. The number of unpacked dimensions is not
restricted.

If aformal argument is specified as an open array with arange of its packed or one or more of its unpacked
dimensions unspecified, then the actual argument shall match the formal one—regardiess of its dimensions
and sizes of its linearized packed or unpacked dimensions corresponding to an unspecified range of the formal
argument, respectively.

Here are examples of types of formal arguments (empty square brackets [] denote open array):

logic

bit [8:1]

bit[]

bit [7:0] array8x10 [1:10] // array8x10 is a formal arg name
logic [31:0] array32xN [] // array32xN is a formal arg name
logic [] arrayNx3 [3:1] // arrayNx3 is a formal arg name
bit [] arrayNxN [] // arrayNxN is a formal arg name

Example of complete import declarations:

import "DPI" function void foo(input logic [127:0]);
import "DPI" function void boo(logic [127:0] i [1); // open array of 128-bit

The following exampl e shows the use of open arrays for different sizes of actual arguments:
typedef struct {int i; ... } MyType;

import "DPI" function void foo(input MyType i [][]);
/* 2-dimensional unsized unpacked array of MyType */

MyType a_10x5 [11:20] [6:2];
MyType a 64x8 [64:1][-1:-8];

foo(a_10x5) ;
foo(a_64x8);

26.5 Calling imported functions

The usage of imported functions is identical as for native SystemVerilog functions., hence the usage and syn-
tax for calling imported functions is identical as for native SystemVerilog functions. Specifically, arguments
with default values can be omitted from the call; arguments can be passed by name, if al formal arguments are
named.

26.5.1 Argument passing

Argument passing for imported functions is ruled by the WYSWYG principle: What You Specify |s What You
Get, see Section 26.5.1.1. The evaluation order of formal arguments follows general SystemVerilog rules.

Argument compatibility and coercion rules are the same as for native SystemVerilog functions. If acoercionis
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needed, atemporary variable is created and passed as the actual argument. For input and inout arguments,
the temporary variable is initialized with the value of actual argument with the appropriate coercion; for out-
put Or inout arguments, the value of the temporary variable is assigned to the actual argument with the
appropriate conversion. The assignments between atemporary and the actual argument follow general System-
Verilog rules for assignments and automatic coercion.

On the SystemVerilog side of the interface, the values of actual arguments for formal input arguments of
imported functions shall not be affected by the callee; theinitial values of formal output arguments of imported
functions are unspecified (and can be implementation-dependent), and the necessary coercions, if any, are
applied as for assignments. imported functions shall not modify the values of their input arguments.

For the SystemVerilog side of the interface, the semantics of arguments passing is as if input arguments are
passed by copy-in, output arguments are passed by copy-out, and inout arguments were passed by copy-in,
copy-out. The terms copy-in and copy-out do not impose the actual implementation; they refer only to “hypo-
thetical assignment”.

The actual implementation of argument passing is transparent to the SystemVerilog side of the interface. In
particular, it is transparent to SystemVerilog whether an argument is actually passed by value or by reference.
The actual argument passing mechanism is defined in the foreign language layer. See Annex D for more
details.

26.5.1.1 “What You Specify Is What You Get” principle

The principle “What You Specify Is What You Get” guarantees the types of formal arguments of imported
functions — an actual argument is guaranteed to be of the type specified for the formal argument, with the
exception of open arrays (for which unspecified ranges are statically unknown). Formal arguments, other than
open arrays, are fully defined by import declaration; they shall have ranges of packed or unpacked arrays
exactly as specified in the import declaration. Only the declaration site of the imported function is relevant for
such formal arguments.

Another way to state this is that no compiler (either C or SystemVerilog) can make argument coercions
between a caller’s declared formal and the callee’s declared formals. this is because the callee's formal argu-
ments are declared in a different language than the caller’s formal arguments; hence hereis no visible relation-
ship between the two sets of formals. Users are expected to understand all argument rel ationships and provide
properly matched types on both sides of the interface.

Formal arguments defined as open arrays have the size and ranges of the corresponding actual arguments, i.e.,
have the ranges of packed or unpacked arrays exactly as that of the actual argument. The unsized ranges of
open arrays are determined at a call site; the rest of type information is specified at the import declaration.

So, if aformal argument isdeclaredasbit [15:8] b [1,thenitistheimport declaration which specifiesthe

formal argument is an unpacked array of packed bit array with bounds 15 to 8, while the actual argument used
at aparticular call site defines the bounds for the unpacked part for that call.

26.5.2 Value changes for output and inout arguments

The SystemVerilog simulator is responsible for handling value changes for output and inout arguments.
Such changes shall be detected and handled after control returns from imported functions to SystemVerilog
code.

For output and inout arguments, the value propagation (i.e., value change events) happens as if an actual
argument was assigned a formal argument immediately after control returns from imported functions. If there

is more than one argument, the order of such assignments and the related value change propagation follows
general SystemVerilog rules.

26.6 Exported functions

DPI alows calling SystemVerilog functions from another language. However, such functions must adhere to
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the same restrictions on argument types and results as are imposed on imported functions. It is an error to
export afunction that does not satisfy such constraints.

SystemVerilog functions that can be called from foreign code need to be specified in export declarations.
Export declarations are alowed to occur only in the scope in which the function being exported is defined.
Only one export declaration per function is allowed in a given scope.

Note that class member functions can not be exported, but all other SystemVerilog functions can be exported.

Similar to import declarations, export declarations can define an optiona ¢ _identifier to be used in the for-
eign language when calling an exported function.

dpi_import_export ::= [/l from Annex A.2.6
| export " DPI" [ c_identifier =] function function_identifier

Syntax 26-2—DPI export declaration syntax (excerpt from Annex A)

c_identifier is optional here. It defaults to function_identifier. For rules describing c identifier, see
Section 26.3. Note that all export functions are always context functions. No two functions in the same Sys-
temVerilog scope can be exported with the same explicit or implicit c_identifier. The export declaration and
the definition of the corresponding SystemVerilog function can occur in any order. Only one export declaration
is permitted per SystemVerilog function.
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Section 27
SystemVerilog Assertion API

This chapter defines the Assertion Application Programming Interface (API) in SystemVerilog.

27.1 Requirements

SystemVerilog provides assertion capabilities to enable:
— auser’'s C code to react to assertion events.
— third-party assertion “waveform” dumping tools to be written.
— third-party assertion coverage tools to be written.

— third-party assertion debug toolsto be written.

27.1.1 Naming conventions

All elements added by this interface shall conform to the Verilog Procedura Interface (VPI) interface naming
conventions.

— All names are prefixed by vpi.

— All type names shall start with vpi, followed by initially capitalized words with no separators, e.g.,
vpiAssertCheck.

— AlI callback names shall start with cb, followed by initially capitalized words with no separators, e.g.,

cbAssertionStart.

— All function names shall start with vpi_, followed by all lowercase words separated by underscores
(),e0., vpi get assert infol().

27.2 Extensions to VPl enumerations

These extensions shall be appended to the contents of the vpi user.h file, described in IEEE Std. 1364-
2001, Annex G. The numbersin the range 700 - 799 are reserved for the assertion portion of the VPI.

27.2.1 Object types

This section lists the object type VPI calls. The VPI reserved range for these callsis 700 - 729.
#define vpiAssertion 700 /* assertion */

27.2.2 Object properties
This section lists the object property VPI calls. The VPI reserved range for these callsis 700 - 729.

/* Assertion types */

#define vpiSequenceType 701
#define vpiAssertType 702
#define vpiCoverType 703
#define vpiPropertyType 704

#define vpiImmediateAssertType705

27.2.3 Callbacks

This section lists the system callbacks. The VPI reserved range for these callsis 700 - 719.
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1) Assertion

#define
#define
#define
#define
#define
#define
#define
#define
#define

cbAssertionStart 700
cbAssertionSuccess 701
cbAssertionFailure 702

cbAssertionStepSuccess 703
cbAssertionStepFailure 704

cbAssertionDisable 705
cbAssertionEnable 706
cbAssertionReset 707
cbAssertionKill 708

2) “Assertion system”

#define
#define
#define
#define
#define

cbAssertionSysInitialized709

cbAssertionSysStart 710
cbAssertionSysStop 711
cbAssertionSysEnd 712
cbAssertionSysReset 713

27.2.4 Control constants

SystemVerilog 3.1/draft 6

This section lists the system control constant callbacks. The VPI reserved range for these callsis 730 - 759.

1) Assertion

#define
#define
#define
#define
#define
#define

vpiAssertionDisable 730
vpiAssertionEnable 731
vpiAssertionReset 732
vpiAssertionKill 733
vpiAssertionEnableStep 734

vpiAssertionDisableStep 735

2) Assertion stepping

#define

vpiAssertionClockSteps 736

3) “Assertion system”

#define
#define
#define
#define

vpiAssertionSysStart 737
vpiAssertionSysStop 738
vpiAssertionSysEnd 739
vpiAssertionSysReset 740

27.3 Static information

This section defines how to obtain assertion handles and other static assertion information.

27.3.1 Obtaining assertion handles

SystemVerilog extends the VPI module iterator model (i.e., the instance) to encompass assertions, as shown in

Figure 27-1.

The following steps highlight how to obtain the assertion handles for named assertions.
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module assertion

all other module ->> object iterators
from IEEE 1364-2001, section 26.6.1 page 634

Figure 27-1 — Encompassing assertions

Note: Iteration on assertions from interfaces is not shown in Figure 27-1 since the interface object type is not
currently defined in VPI. However the assertion APl permits iteration on assertions from interface instance
handles and obtaining static information on assertions used in interfaces (see Section 27.3.2.1).

1) Iterateal assertionsin the design: use aNULL reference handle (ref) tovpi_iterate (), €0,

itr = vpi_ iterate(vpiAssertion, NULL) ;
while (assertion = vpi_scan(itr))
/* process assertion */

2) lterate all assertions in an instance: pass the appropriate instance handle as a reference handle to
vpi_iterate(), €0,

itr = vpi iterate(vpiAssertion, instanceHandle);
while (assertion = vpi_scan(itr))
/* process assertion */

3) Obtain the assertion by name: extend vpi handle by name to also search for assertion names in the
appropriate scope(s), e.g.,
vpiHandle = vpi handle by name (assertName, scope)
4) To obtain an assertion of a specific type, e.g. cover assertions, the following approach should be used:
vpiHandle assertion;
itr = vpi_iterate(vpiAssertionType, NULL) ;
while (assertion = vpi_scan(itr))

if (vpi_get (vpiAssertionType, assertion) == vpiCoverType) ({
/* process cover type assertion */
}

}
NOTES
1—Aswith all VPI handles, assertion handles are handles to a specific instance of a specific assertion.

2—Unnamed assertions cannot be found by name.
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27.3.2 Obtaining static assertion information

The following information about an assertion is considered to be static.
— Assertion name

— Instance in which the assertion occurs

— Module definition containing the assertion

— Assertion type

1) Sequence
2) Assert

3) Cover

4)  Property

5) ImmediateAssert
— Assertion source information: the file, line, and column where the assertion is defined.

— Assertion clocking domain/expression

27.3.2.1 Using vpi_get assertion info

Static information can be obtained directly from an assertion handle by using vpi_get assertion_info, as
shown below.

typedef struct t vpi source info {
PLI_ BYTE* *fileName;
PLI_INT32 startLine;
PLI INT32 startColumn;
PLI INT32 endLine;
PLI INT32 endColumn;
} s_vpi source info, *p vpi source info;
typedef struct t vpi assertion info {
PLI_BYTE8 *name; /* name of assertion */
vpiHandle instance; /* instance containing assertion */
PLI BYTE8 defname; /* name of module/interface containing assertion
*/
vpiHandle clock; /* clocking expression */
PLI_INT32 assertionType; /* vpiSequenceType, ... */
s_vpi_source_info sourcelInfo;
} s vpi assertion info, *p vpi assertion_info;
int vpi get assertion info (assert handle, p vpi assertion info) ;

This call obtains al the static information associated with an assertion.

Theinputs are avalid handle to an assertion and a pointer to an existing s_vpi_assertion_info datastruc-
ture. On success, the function returns TRUE and the s_vpi assertion info data structure is filled in as
appropriate. On failure, the function returns FALSE and the contents of the assertion data structure are unpre-
dictable.

Assertions can occur in modules and interfaces: for assertions defined in modules, the instance field in the
s _vpi assertion info structure shall contain the handle to the appropriate module or interface instance.
Note that VPI does not currently define the information model for interfaces and therefore the interface
instance handle shall be implementation dependent. The clock field of that structure contains a handle to the
event expression representing the clock for the assertion, as determined by Section 17.13.

NOTE: asingle call returns al the information for efficiency reasons.
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27.3.2.2 Extending vpi_get () and vpi_get str()
Inadditionto vpi_get assertion_info, thefollowing existing VPI functions are also extended:
vpi _get (), vpi_get str()

vpi_get () canbeused to query the following VPl property from a handle to an assertion:

vpiAssertionDirective
returns one of vpiSequenceType, vpiAssertType, vpiCoverType, vpiPropertyType, vpiImme-
diateAssertType

vpiLineNo
returns the line number where the assertion is declared.

vpi_get str() can beused to obtain the following VP properties from an assertion handle:

vpiFileName
returns the filename of the source file where the assertion was declared.

vpiName
returns the name of the assertion.

vpiFullName
returns the fully qualified name of the assertion.

27.4 Dynamic information
This section defines how to place assertion system and assertion callbacks.

27.4.1 Placing assertion system callbacks

Usevpi_register_ cb(), setting the cb_rtn element to the function to be invoked and the reason element
of thes_cb_data structure to one of the following values, to place an assertion system callback.

cbAssertionSysInitialized
occurs after the system has initiaized. No assertion-specific actions can be performed until this callback
completes. The assertion system can initialize before cbstartofsimulation does or afterwards.

cbAssertionSysStart

the assertion system has become active and starts processing assertion attempts. This always occur after
cbAssertionSysInitialized. By default, the assertion system is “started” on simulation startup, but
the user can delay this by using assertion system control actions.

cbAssertionSysStop

the assertion system has been temporarily suspended. While stopped no assertion attempts are processed
and no assertion-related callbacks occur. The assertion system can be stopped and resumed an arbitrary
number of times during a single simulation run.

cbAssertionSysEnd

occurs when all assertions have completed and no new attempts shall start. Once this callback occurs no
more assertion-related callbacks shall occur and assertion-related actions shall have no further effect. This
typically occurs after the end of simulation.

cbAssertionSysReset
occurs when the assertion system is reset, e.g., due to a system control action.

The callback routine invoked follows the normal VPI callback prototype and ispassed an s _cb_data contain-
ing the callback reason and any user data provided to the vpi register cb() cal.
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27.4.2 Placing assertions callbacks
Usevpi_register assertion cb() to place an assertion callback; the prototypeis:

vpiHandle vpi register assertion cb(
vpiHandle, /* handle to assertion */
PLI_INT32 reason, /* reason for which callbacks needed */
PLI_INT32 (*cb_rtn) ( /* callback function */
PLI_INT32 reason,
vpiHandle assertion,
p_vpi attempt info info,
PLI_BYTE8 *userData ),
PLI_BYTE8 *user data /* user data to be supplied to cb */
)i
typedef struct t vpi assertion step info {
PLI INT32 matched expression count;
vpiHandle *matched exprs; /* array of expressions */
p_vpi source info *exprs source_ info; /* array of source info */
PLI_ INT32 stateFrom, stateTo;/* identify transition */
} s _vpi assertion step info, *p vpi assertion step info;
typedef struct t vpi attempt info {
union {
vpiHandle failExpr;
p_vpi_assertion step_ info step;
} detail;
s_vpi time attemptTime,
} s vpi attempt info, *p vpi attempt info;

where reason isany of the following.

cbAssertionStart
an assertion attempt has started. For most assertions one attempt starts each and every clock tick.

cbAssertionSuccess
when an assertion attempt reaches a success state.

cbAssertionFailure
when an assertion attempt fails to reach a success state.

cbAssertionStepSucCess
progress one step an attempt. By default, step callbacks are not enabled on any assertions; they are
enabled on a per-assertion/per-attempt basis (see Section 27.5.2), rather than on a per-assertion basis.

cbAssertionStepFailure

failure to progress by one step along an attempt. By default, step callbacks are not enabled on any asser-
tions; they are enabled on a per-assertion/per-attempt basis (see Section 27.5.2), rather than on a per-
assertion basis.

cbAssertionDisable
whenever the assertion is disabled (e.g., as aresult of acontrol action).

cbAssertionEnable
whenever the assertion is enabled.

cbAssertionReset
whenever the assertion is reset.

cbAssertionKill
when an attempt iskilled (e.g., as aresult of acontrol action).

These callbacks are specific to a given assertion; placing such a callback on one assertion does not cause the
callback to trigger on an event occurring on a different assertion. If the callback is successfully placed, a han-
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dleto the callback is returned. This handle can be used to remove the callback viavpi_remove cb (). If there
were errors on placing the callback, a NuLL handle is returned. As with all other calls, invoking this function
with invalid arguments has unpredictable effects.

Once the callback is placed, the user-supplied function shall be called each time the specified event occurs on
the given assertion. The callback shall continue to be called whenever the event occurs until the callback is
removed.

The callback function shall be supplied the following arguments:
1) thereason for the callback

2) thehandlefor the assertion

3) apointer to an attempt information structure

4) areference to the user data supplied when the callback was placed.

Theattempt information structure containsdetails relevant to the specific event that occurred.

— On disable, enable, reset and kill events, the info field is absent (aNULL pointer is given asthe value
of info).

— On start and success events, only the at tempt time field isvalid.
— On afailureevent, the attempt time and detail.failExpr arevalid.

— On astep callback, the attempt time and detail.step elementsarevalid.
On a step callback, the detail describes the set of expressions matched in satisfying a step along the asser-
tion, along with the corresponding source references. In addition, the step also identifies the source and desti-
nation “states’ needed to uniquely identify the path being taken through the assertion. Sate ids are just
integers, with o identifying the origin state, 1 identifying an accepting state, and any other number represent-
ing some intermediate point in the assertion. It is possible for the number of expressions in a step to be o
(zero), which represents an unconditional transition. In the case of a failing transition, the information pro-

vided isjust asthat for a successful one, but the last expression in the array represents the expression where the
transition failed.

NOTES
1—In afailing transition, there shall always be at least one element in the expression array.

2—Placing a step callback results in the same callback function being invoked for both success and failure steps.

27.5 Control functions

This section defines how to obtain assertion system control and assertion control information.
27.5.1 Assertion system control

Usevpi control (), with one of the following operators and no other arguments, to obtain assertion system
control information.

Usage example: vpi_control (vpiAssertionSysReset)

vpiAssertionSysReset

discards all attemptsin progress for all assertions and restore the entire assertion system to itsinitia state.
Any pre-existing vpiAssertionStepSuccess and vpiAssertionStepFailure callbacks shall be
removed; al other assertion callbacks shall remain.
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Usage example: vpi_control (vpiAssertionSysStop)

vpiAssertionSysStop
considers al attempts in progress as unterminated and disable any further assertions from being started.
This control has no effect on pre-existing assertion callbacks.

Usage example: vpi_control (vpiAssertionSysStart)

vpiAssertionSysStart
restarts the assertion system after it was stopped (e.g., due to vpiAssertionSysStop). Once started,
attempts shall resume on all assertions. This control has no effect on prior assertion callbacks.

Usage example: vpi_control (vpiAssertionSysEnd)

vpiAssertionSysEnd

discard all attempts in progress and disables any further assertions from starting. All assertion callbacks
currently installed shall be removed. Note that once this control is issued, no further assertion related
actions shall be permitted.

27.5.2 Assertion control

Usevpi_ control (), with one of the following operators, to obtain assertion control information.
— For the following operators, the second argument shall be a valid assertion handle.

Usage example: vpi_control (vpiAssertionReset, assertionHandle)

vpiAssertionReset
discards al current attemptsin progress for this assertion and resets this assertion to itsinitial state.

Usage example: vpi_control (vpiAssertionDisable, assertionHandle)

vpiAssertionDisable
disables the starting of any new attempts for this assertion. This has no effect on any existing attempts. or
if the assertion already disabled. By default, all assertions are enabled.

Usage example: vpi_control (vpiAssertionEnable, assertionHandle)

vpiAssertionEnable
enables starting new attempts for this assertion. This has no effect if assertion already enabled or on any
existing attempts.

— For the following operators, the second argument shall be a valid assertion handle and the third argument
shall be an attempt start-time (as a pointer to acorrectly initialized s_vpi_time structure).

Usage example: vpi_control (vpiAssertionKill, assertionHandle, attempt)

vpiAssertionKill
discards the given attempts, but leaves the assertion enabled and does not reset any state used by this
assertion (e.g., past () sampling).

Usage example: vpi_control (vpiAssertionDisableStep, assertionHandle, attempt)

vpiAssertionDisableStep
disables step callbacks for this assertion. This has no effect if stepping not enabled or it is aready dis-
abled.

— For the following operator, the second argument shall be avalid assertion handle, the third argument shall
be an attempt start-time (as a pointer to a correctly initialized s_vpi_time structure) and the fourth argu-
ment shall be a step control constant.

Usageexample: vpi_control (vpiAssertionEnableStep, assertionHandle, attempt,
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vpiAssertionClockSteps)

vpiAssertionEnableStep

enables step callbacks to occur for this assertion attempt. By default, stepping is disabled for all asser-
tions. Thiscall has no effect if stepping is aready enabled for this assertion and attempt, other than possi-
bly changing the stepping mode for the attempt if the attempt has not occurred yet. The stepping mode of
any particular attempt cannot be modified after the assertion attempt in question has started.

NOTE—In this release, the only step control constant available is vpiAssertionClockSteps, indicating callbacks
on a per assertion/clock-tick basis. The assertion clock is the event expression supplied as the clocking expression to the
assertion declaration. The assertion shall “advance” whenever this event occurs and, when stepping is enabled, such events
shall also cause step callbacks to occur.
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Section 28
SystemVerilog Coverage API

28.1 Requirements
This chapter defines the Coverage Application Programming Interface (API) in SystemVerilog.

28.1.1 SystemVerilog API

The following criteria are used within this API.

1) ThisAPI shall be similar for all coverages
There are a wide number of coverage types available, with possibly different sets offered by different
vendors. Maintaining a common interface across al the different types enhances portability and ease of
use.

2) Ataminimum, the following types of coverage shall be supported:
a) statement coverage
b) toggle coverage
c¢) fsmcoverage
i) fsmstates
ii) fsm transitions
C) assertion coverage

3) Coverage APIs shall be extensible in atransparent manner, i.e., adding a new coverage type shall not break
any existing coverage usage.

4) This API shall provide means to obtain coverage information from specific sub-hierarchies of the design
without requiring the user to enumerate all instances in those hierarchies.

28.1.2 Naming conventions

All elements added by this interface shall conform to the Verilog Procedura Interface (VPI) interface naming
conventions.

— All names are prefixed by vpi.

— All type names shall start with vpi, followed by initially capitalized words with no separators, e.g.,

vpiCoverageStmt.

— All calback names shall start with cb, followed by initialy capitalized words with no separators, e.g.,

cbAssertionStart.

— AIll function names shall start with vpi_, followed by all lowercase words separated by underscores (),
€.0., vpi_ control ().

28.1.3 Nomenclature

The following terms are used in this standard.

Satement coverage — whether a statement has been executed or not, where statement is anything defined
as a statement in the LRM. Covered means it executed at |east once. Some implementations also permit
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querying the execution count. The granularity of statement coverage can be per-statement or per-state-
ment block (however defined).

FSM coverage — the number of states in afinite state machine (FSM) that this simulation reached. This
standard does not require FSM automatic extraction, but a standard mechanism to force specific extrac-
tion isavailable via pragmas.

Toggle coverage — for each bit of every signal (wire and register), whether that bit has both a 0 value and
a 1 vadue. Full coverage means both are seen; otherwise, some implementations can query for partial
coverage. Some implementations also permit querying the toggle count of each bit.

Assertion coverage — for each assertion, whether it has had at |east one success. |mplementations permit
querying for further details, such as attempt counts, success counts, failure counts and failure coverage.

These terms define the “ primitives’ for each coverage type. Over instances or blocks, the coverage number is
merely the sum of all contained primitivesin that instance or block.

28.2 SystemVerilog real-time coverage access

This section describes the mechanisms in SystemVerilog through which SystemVerilog code can query and
control coverage information. Coverage information is provided to SystemVerilog by means of a number of
built-in system functions (described in Section 28.2.2) using a number of predefined constants (described in
Section 28.2.1) to describe the types of coverage and the control actions to be performed.

28.2.1 Predefined coverage constants in SystemVerilog

The following predefined *defines represent basic real-time coverage capabilities accessible directly from
SystemVerilog.

— Coverage control

‘define SV_COV_START
‘define SV_COV_STOP

‘define SV_COV_RESET
‘define SV_COV_QUERY

w N - o

— Scope definition (hierarchy traversal/accumulation type)

‘define SV_COV_MODULE 10
‘define SV_COV_HIER 11

— Coverage type identification

‘define SV_COV_ASSERTION 20
‘define SV_COV_FSM STATE 21
‘define SV_COV_STATEMENT 22

‘define SV_COV_TOGGLE 23
— Statusresults

‘define SV_COV_OVERFLOW -2

‘define SV_COV_ERROR -1

‘define SV_COV_NOCOV 0

‘define SV_COV_OK 1

‘define SV_COV_PARTIAL 2
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28.2.2 Built-in coverage access system functions
28.2.2.1 $coverage_control

$coverage control (control constant,
coverage type,
scope_def,
modules or instance)

This function enables, disables, resets or queries the availability of coverage information for the specified por-
tion of the hierarchy. Thereturn valueisa *defined name, with the value indicating the success of the action.

*SV_COV_OK
the request is successful. When querying, if starting, stopping, or resetting this means the desired effect
occurred, coverageis available. A successful reset clears all coverage (i.e., usinga...get () == 0 aftera

successful ...reset ()).

'SV_COV_ERROR

the call failed with no action, typically due to errors in the arguments, such as a hon-existing module or
instance specifications.

*SV_COV_NOCOV
coverage is not available for the requested portion of the hierarchy.

'SV _COV_PARTIAL
coverageisonly partially available in the requested portion of the hierarchy (i.e., some instances have the
requested coverage information, some don't).

Starting, stopping, or resetting coverage multiple times in succession for the same instance(s) has no further
effect if coverage has already been started, stopped, or reset for that/those instance(s).

The hierarchy(ies) being controlled or queried are specified as follows.

‘SV_MODULE_COV, "unique module def name"

provides coverage of all instances of the given module (the unique module name is a string), excluding
any child instances in the instances of the given module. The module definition name can use specia
notation to describe nested module definitions.

‘SV_COV_HIER, "module name"
provides coverage of al instances of the given module, including all the hierarchy below.

‘SV_MODULE_COV, instance name
provides coverage of the one named instance. The instance is specified as a normal Verilog hierarchical
path.

‘SV_COV_HIER, instance name
provides coverage of the named instance, plus all the hierarchy below it.

All the permutations are summarized in Table 28-1.

Table 28-1: Instance coverage permutations

Control/query “ Definition name” instance.name
‘SV_COV_MODULE The sum of coverage for al Coverage for just the named
instances of the named module, instance, excluding any hierar-
excluding any hierarchy below chy in instances bel ow that
those instances. instance.
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Table 28-1: Instance coverage permutations (continued)

Control/query “ Definition name” instance.name

'SV_COV_HIER The sum of coverage for all Coverage for the named instance
instances of the named module, and any hierarchy below it.
including all coverage for all
hierarchy below those instances.

NOTE—Definition names are represented as strings, whereas instance names are referenced by hierarchical paths. A hier-

archical path need not include any . if the path refers to an instance in the current context (i.e., normal Verilog hierarchical
path rules apply).

$root

module TestBench
instance tb

module DUT
instance unitl

module component
instance comp

module control
instance ctrl

module DUT
instance unit2

module component
instance comp

module control
instance ctrl

module BusWatcher
instance watch

Example 28-1 — Hierarchical instance example

If coverageisenabled on all instances shown in Example 28-1 —, then:

Scoverage control ('SV_COV_CHECK, ‘'SV_COV_TOGGLE, ‘SV_COV_HIER, S$root)
checks all instances to verify they have coverage and, in this case, returns *sv_cov_Oox.
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$coverage control (*SV_COV_RESET, ‘'SV_COV_TOGGLE, ‘'SV_COV_MODULE, "DUT")
resets coverage collection on both instances of the DUT, specifically, $root.tb.unitl and
$root.tb.unit2, but leaves coverage unaffected in all other instances.

$coverage control (*SV_COV_RESET, ‘SV_COV_TOGGLE, ‘SV_COV_MODULE,
Sroot.tb.unitl)
resets coverage of only the instance $root . tb.unit1, leaving al other instances unaffected.

$coverage control (*SV_COV_STOP, ‘'SV_COV_TOGGLE, ‘'SV_COV_HIER,
Sroot.tb.unitl)

resets coverage of the instance $root.tb.unit1 and also reset coverage for al instances below it, spe-

cificaly $root.tb.unitl.comp and $root.tb.unitl.ctrl

S$coverage control ('SV_COV_START, ‘SV_COV_TOGGLE, ‘SV_COV_HIER, "DUT")

starts coverage on all instances of the module DUT and of all hierarchy(ies) below those instances. In this
design, coverage is darted for the instances $root.tb.unitl, $root.tb.unitl.comp,
$root.tb.unitl.ctrl, $root.tb.unit2, $root.tb.unit2.comp, and $root.tb.unit2.ctrl.

28.2.2.2 $coverage_get_max

Scoverage get max(coverage type, scope_def, modules or instance)

This function obtains the value representing 100% coverage for the specified coverage type over the specified
portion of the hierarchy. This value shall remain constant across the duration of the simulation.

NOTE—This value is proportional to the design size and structure, so it also needs to be constant through multiple inde-
pendent simulations and compilations of the same design, assuming any compilation options do not modify the coverage
support or design structure.

The return value is an integer, with the following meanings.

-2 ('SV_COV_OVERFLOW)
the value exceeds a number that can be represented as an integer.

-1 ('SV_COV_ERROR)
an error occurred (typically due to using incorrect arguments).

0 ('SV_COV_NOCOV)
no coverageis available for that coverage type on that/those hierarchy(ies).

+pOs_num
the maximum coverage number (where pos _num > 0), which is the sum of all coverable items of that
type over the given hierarchy(ies).

The scope of thisfunction is specified as per $coverage control (See Section 28.2.2.1).
28.2.2.3 $coverage_get
Scoverage get (coverage type, scope def, modules or instance)
This function obtains the current coverage value for the given coverage type over the given portion of the hier-

archy. This number can be converted to a coverage percentage by use of the equation:

coverage_ get()
coverage_get _max()

*100

cov erage% =

Thereturn value follows the same pattern as scoverage get max (See Section 28.2.2.2), but with pos _num
representing the current coverage level, i.e., the number of the coverable items that have been covered in this/
these hierarchy(ies).

Copyright 2003 Accellera. All rights reserved. 259



Accellera
SystemVerilog 3.1/draft 6 Extensions to Verilog-2001

The scope of this function is specified as per $coverage control (see Section 28.2.2.1).

The return value is an integer, with the following meanings.

-2 ('SV_COV_OVERFLOW)
the value exceeds a number that can be represented as an integer.

-1 ('SV_COV_ERROR)
an error occurred (typically due to using incorrect arguments).

0 ('SV_COV_NOCOV)
no coverageis available for that coverage type on that/those hierarchy(ies).

+pOs_num
the maximum coverage number (where pos num > 0), which is the sum of all coverable items of that
type over the given hierarchy(ies).

28.2.2.4 $coverage_merge

$coverage merge (coverage type, "name")

This function loads and merges coverage data for the specified coverage into the simulator. name is an arbi-
trary string used by the tool, in an implementation-specific way, to locate the appropriate coverage database,
i.e., tools are alowed to store coverage files any place they want with any extension they want as long as the
user can retrieve the information by asking for a specific saved name from that coverage database. If name
does not exist or does not correspond to a coverage database from the same design, an error shall occur. If an
error occurs during loading, the coverage numbers generated by this simulation might not be meaningful.

The return values from this function are:

'SV_COV_OK
the coverage data has been found and merged.

*SV_COV_NOCOV
the coverage data has been found, but did not contain the coverage type requested.

‘SV_COV_ERROR
the coverage data was not found or it did not correspond to this design, or another error.
28.2.2.5 $coverage_save

$coverage save (coverage type, "name")

This function saves the current state of coverage to the tool’s coverage database and associates it with the file
named name. This file name shall not contain any directory specification or extensions. Data saved to the
database shall beretrieved later by using $coverage merge and supplying the same name. Saving coverage
shall not have any effect on the state of coverage in this simulation.

The return values from this function are:
‘SV_COV_OK
the coverage data was successfully saved.

*SV_COV_NOCOV
no such coverage is available in this design (nothing was saved).

‘SV_COV_ERROR

some error occurred during the save. If an error occurs, the tool shall automatically remove the coverage
database entry for name to preserve the coverage database integrity. It is not an error to overwrite a previ-
ously existing name.

NOTES
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1—The coverage database format is implementation-dependent.

2—Mapping of names to actual directories/files is implementation-dependent. There is no requirement that a coverage
name map to any specific set of files or directories.

28.3 FSM recognition

Coverage tools need to have automatic recognition of many of the common FSM coding idioms in Verilog/
SystemVerilog. This standard does not attempt to describe or require any specific automatic FSM recognition
mechanisms. However, the standard does prescribe a means by which non-automatic FSM extraction occurs.
The presence of any of these standard FSM description additions shall override the tool’s default extraction
mechanism.

Identification of an FSM consists of identifying the following items:
1) the stateregister (or expression)

2) thenext state register (thisis optional)

3) thelega states.

28.3.1 Specifying the signal that holds the current state
Use the following pragmato identify the vector signal that holds the current state of the FSM:
/* tool state vector signal name */

where tool and state vector arerequired keywords. Thispragma needs to be specified inside the module
definition where the signal is declared.

Another pragma is also required, to specify an enumeration name for the FSM. This enumeration nameis also

specified for the next state and any possible states, associating them with each other as part of the same FSM.
There are two ways to do this:

— Use the same pragma:

/* tool state vector signal name enum enumeration name */

— Use aseparate pragmain the signal’s declaration:

/* tool state_vector signal name */
reg [7:0] /* tool enum enumeration name */ signal name;

In either case, enum isarequired keyword; if using a separate pragma, too1l isalso arequired keyword and the
pragma needs to be specified immediately after the bit-range of the signal.

28.3.2 Specifying the part-select that holds the current state

A part-select of a vector signal can be used to hold the current state of the FSM. When cmview displays or
reports FSM coverage data, it names the FSM after the signal that holds the current state. If a part-select holds
the current state in the user’'s FSM, the user needs to also specify a name for the FSM that cmview can use.
The FSM name is not the same as the enumeration name.

Specify the part-select by using the following pragma:

/* tool state vector signal name[n:n] FSM name enum enumeration name */
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28.3.3 Specifying the concatenation that holds the current state

Like specifying a part-select, a concatenation of signals can be specified to hold the current state (when includ-
ing an FSM name and an enumeration name):

/* tool state vector {signal name , signal name, ...} FSM name enum
enumeration name */

The concatenation is composed of all the signals specified. Bit-selects or part-selects of signals cannot be used
in the concatenation.

28.3.4 Specifying the signal that holds the next state

The signal that holds the next state of the FSM can also be specified with the pragmathat specifies the enumer-
ation name:

reg [7:0] /* tool enum enumeration name */
signal_ name

This pragma can be omitted if, and only if, the FSM does not have a signal for the next state.
28.3.5 Specifying the current and next state signhals in the same declaration

Thetool assumesthe first signal following the pragma holds the current state and the next signal holds the next
state when a pragmais used for specifying the enumeration name in a declaration of multiple signals, e.g.,

/* tool state vector cs */
reg [1:0] /* tool enum myFSM */ cs, ns, nonstate;

In this example, the tool assumes signal ¢s holds the current state and signal ns holds the next state. It assumes
nothing about signal nonstate.

28.3.6 Specifying the possible states of the FSM
The possible states of the FSM can also be specified with a pragma that includes the enumeration name:

parameter /* tool enum enumeration name */

S0 = 0,
sl =1,
s2 = 2,
s3 = 3;

Put this pragma immediately after the keyword parameter, unless a bit-width for the parameters is used, in
which case, specify the pragmaimmediately after the bit-width:

parameter [1:0] /* tool enum enumeration name */

S0 = 0,
sl =1,
s2 = 2,
s3 = 3;

28.3.7 Pragmas in one-line comments

These pragmas work in both block comments, between the /+ and */ character strings, and one-line com-
ments, following the // character string, e.g.,

parameter [1:0] // tool enum enumeration name

S0 = 0,
sl =1,
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s2 = 2,
s3 = 3;

28.3.8 Example

module m3;
Signal ns holdsthe next state
reg[31:0] cs;
reg[31:0] /* tool enum MY FSM */ ns;
reg[31:0] clk;
reg[31:0] rst; Signa cs holds the current state

// tool state vector cs enum MY FSM

parameter // tool enum MY FSM
pl=10,

p2=11, .
p3=12; p1, p2, and p3 are possible states of

the FSM
endmodule // m3

Example 28-2 — FSM specified with pragmas

28.4 VPI coverage extensions
28.4.1 VPI entity/relation diagrams related to coverage

28.4.2 Extensions to VPl enumerations

— Coverage control

#define vpiCoverageStart
#define vpiCoverageStop
#define vpiCoverageReset
#define vpiCoverageCheck
#define vpiCoverageMerge
#define vpiCoverageSave

— VPI properties
1) Coveragetype properties

#define vpiAssertCoverage
#define vpiFsmStateCoverage
#define vpiStatementCoverage
#idefine vpiToggleCoverage

2) Coverage status properties

#define vpiCovered
#define vpiCoverMax
#define vpiCoveredCount

3) Assertion-specific coverage status properties

#define vpiAssertAttemptCovered
#define vpiAssertSuccessCovered
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#define vpiAssertFailureCovered
4) FSM-specific methods

#define vpiFsmStates
#define vpiFsmStateExpression

— FSM handle types (vpi types)

#define vpiFsm
#define vpiFsmHandle

28.4.3 Obtaining coverage information

To obtain coverage information, the vpi_get () function is extended with additional VPI properties that can
be obtained from existing handles:

vpi_get (<coverageType>, instance handle)

Returns the number of covered items of the given coverage type in the given instance. Coverage type is one of
the coverage type properties described in Section 28.4.2. For example, given coverage type vpiStatement-
Coverage, this cal would return the number of covered statements in the instance pointed by
instance_handle.

vpi get (vpiCovered, assertion handle)
vpi get (vpiCovered, statement handle)
vpi_get (vpiCovered, signal_ handle)
vpi_get (vpiCovered, fsm handle)
vpi_get (vpiCovered, fsm state_ handle)

Returns whether the item referenced by the handle has been covered. For handles that can contain multiple
coverable entities, such as statement, fsm and signal handles, the return value indicates how many of the enti-
ties have been covered.

— For assertion handle, the coverable entities are assertions
— For statement handle, the entities are statements
— For signal handle, the entities are individual signal bits

— For fsm handle, the entities are fsm states

vpi get (vpiCoveredCount, assertion handle)
vpi get (vpiCoveredCount, statement handle)
vpi get (vpiCoveredCount, signal handle)
vpi_get (vpiCoveredCount, fsm handle)
vpi_get (vpiCoveredCount, fsm state handle)

Returns the number of times each coverable entity referred by the handle has been covered. Note that thisis
only easily interpretable when the handle points to a unique coverable item (such as an individual statement);
when handle points to an item containing multiple coverable entities (such as a handle to a block statement
containing a number of statements), the result is the sum of coverage counts for each of the constituent entities.

vpi get (vpiCoveredMax, assertion handle)
vpi get (vpiCoveredMax, statement handle)
vpi get (vpiCoveredMax, signal handle)
vpi_get (vpiCoveredMax, fsm handle)
vpi_get (vpiCoveredMax, fsm state handle)

Returns the number of coverable entities pointed by the handle. Note that this shall alwaysreturn 1 (one) when
applied to an assertion or FSM state handle.
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vpi_iterate(vpiFsm, instance-handle)
Returns an iterator to all FSMsin an instance.
vpi_handle (vpiFsmStateExpression, fsm-handle)
Returns the handle to the signal or expression encoding the FSM state.
vpi_iterate(vpiFsmStates, fsm-handle)
Returns an iterator to all states of an FSM.
vpi get value(fsm state handle, state-handle)

Returns the value of an FSM state.

28.4.4 Controlling coverage

vpi_control (<coverageControl>, <coverageType>, instance handle)
vpi_control (<coverageControl>, <coverageType>, assertion handle)

Controls the collection of coverage on the given instance or assertion. Note that statement, toggle and FSM
coverage are not individually controllable (i.e., they are controllable only at the instance level and not on a per
statement/signal/FSM basis). The semantics and behavior are as per the $coverage control system func-
tion (see Section 28.2.2.1). coverageControl is one vpiCoverageStart, vpiCoverageStop, vpiCover-
ageReset OF vpiCoverageCheck, as defined in Section 28.4.2. coverageType is any one of the VPI
coverage type properties (Section 28.4.2)

vpi_control (<coverageControl>, <coverageType>, name)
This saves or merges coverage into the current simulation. The semantics and behavior are specified as per the
equivalent system functions $coverage merge (see Section 28.2.24) and $coverage save (see

Section 28.2.2.5). coverageControl is one of vpiCoverageMerge OF vpiCoverageSave, defined in
Section 28.4.2.
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Annex A
Formal Syntax

(Normative)

The formal syntax of SystemVerilog is described using Backus-Naur Form (BNF). The conventions used are:
— Keywords and punctuation arein bold text.

— Syntactic categories are named in non-bold text.

— Avertical bar ( | ) separates alternatives.

— Square brackets( [ 1 ) enclose optional items.

— Braces( { } ) encloseitemswhich can be repeated zero or more times.

The full syntax and semantics of Verilog and SystemVerilog are not described solely using BNF. The norma-
tive text description contained within the chapters of the IEEE 1364-2001 Verilog standard and this System-
Verilog document provide additional details on the syntax and semantics described in this BNF.

A.l Source text

A.1.1 Library source text
library_text ::={ library_descriptions}
library_descriptions ::=
library_declaration
| include_statement
| config_declaration

library_declaration ::=
library library_identifier file_path_spec{ , file_path_spec}
[ -incdir file_path_spec{ , file path spec} ];
file_path_spec ::=file_path
include_statement ::=include <file_path_spec> ;

A.1.2 Configuration source text

config_declaration ::=
config config_identifier ;
design_statement
{ config_rule_statement }
endconfig
design_statement ::= design { [ library_identifier . ] cell_identifier } ;
config_rule_statement ::=
default_clause liblist_clause
| inst_clause liblist_clause
| inst_clause use_clause
| cell_clause liblist_clause
| cell_clause use clause

default_clause ::= default

inst_clause ::= instance inst_name

inst_name ::= topmodule_identifier { . instance_identifier }
cell_clause ::=cell [ library_identifier . ] cell_identifier
liblist_clause ::=liblist {library_identifier}

use_clause::=use[ library_identifier . ] cell_identifier [ : config]
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A.1.3 Module and primitive source text
source_text ::= [ timeunits_declaration ] { description }
description ::=
module_declaration
| udp_declaration
| module_root_item
| statement_or_null

module_nonansi_header ::=
{ attribute_instance} module_keyword [ lifetime] module_identifier [ parameter_port_list ]
list_of ports;
module_ansi_header ::=
{ attribute_instance} module_keyword [ lifetime] module_identifier [ parameter_port_list ]
[ list_of _port_declarations] ;
module_declaration ::=
module_nonansi_header [ timeunits_declaration ] { module_item }
endmodule[ : module_identifier ]
| module_ansi_header [ timeunits_declaration] { non_port_module item }
endmodule[ : module_identifier ]
| { attribute_instance} module_keyword [ lifetime] module_identifier (.* ) ;
[ timeunits_declaration ] { module_item } endmodule[ : module_identifier ]
| extern module_nonansi_header
| extern module_ansi_header

module_keyword ::= module | macromodule

interface_nonansi_header ::=
{ attribute_instance} interface[ lifetime] interface identifier
[ parameter_port_list] list_of ports;
interface_ansi_header ::=
{attribute_instance} interface[ lifetime] interface identifier
[ parameter_port_list] [ list_of_port_declarations] ;
interface_declaration ::=
interface_nonansi_header [ timeunits_declaration ] { interface item}
endinterface| : interface identifier |
| interface_ansi_header [ timeunits_declaration] { non_port_interface item}
endinterface| : interface identifier ]
| { attribute _instance} interfaceinterface identifier (.* ) ;
[ timeunits declaration ] { interface item}
endinterface[ : interface identifier ]
| extern interface_nonansi_header
| extern interface ansi_header
program_nonansi_header ::=
{ attribute_instance} program [ lifetime] program_identifier
[ parameter_port_list] list_of ports;
program_ansi_header ::=
{attribute _instance} program [ lifetime] program_identifier
[ parameter_port_list] [ list_of port_declarations] ;
program_declaration ::=
program_nonansi_header [ timeunits declaration ] { program_item }
endprogram [ : program_identifier ]
| program_ansi_header [ timeunits_declaration ] { non_port_program_item }
endprogram [ : program_identifier ]
| { attribute_instance} program program_identifier (.* ) ;
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[ timeunits_declaration ] { program_item }
endprogram [ : program_identifier |
| extern program_nonansi_header
| extern program_ansi_header
class declaration ::=
{ attribute_instance} [ virtual ] class| lifetime] class_identifier [ parameter_port_list ]
[ extendsclass identifier ] ; [ timeunits_declaration] { class_item}
endclass| : class_identifier]
timeunits_declaration ::=
timeunit time_litera ;
| timeprecision time_literal ;
| timeunit time_literal ;
timeprecision time _literal ;
| timeprecision time_literal ;
timeunit time_literal ;

A.1.4 Module parameters and ports
parameter_port_list ::= # ( parameter_declaration { , parameter_declaration } )
list_of ports::=(port{, port})
list_of _port_declarations ::=
( port_declaration { , port_declaration } )
| ()
non_generic_port_declaration ::=
{ attribute_instance } inout_declaration
| { attribute_instance} input_declaration
| { attribute_instance} output_declaration
| { attribute instance} ref_declaration
| { attribute_instance} interface port_declaration
port ::=
[ port_expression ]
| . port_identifier ([ port_expression] )
port_expression ::=
port_reference
| { port_reference{ , port_reference} }
port_reference ::=
port_identifier [ [ constant_range_expression | ]
port_declaration ::=
non_generic_port_declaration
| { attribute_instance} generic_interface port_declaration

A.1.5 Module items

module_common_item ::=
{ attribute_instance} module_or_generate_item_declaration
| { attribute_instance} interface instantiation
| { attribute_instance} program_instantiation
| { attribute_instance} concurrent_assertion_item
| { attribute_instance} bind_directive
module_item ::=
non_generic_port_declaration ;
| non_port_module_item

module_or_generate item ::=
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{ attribute_instance} parameter_override
| { attribute_instance} continuous_assign
| { attribute_instance} gate instantiation
| { attribute_instance} udp_instantiation
| { attribute_instance} module_instantiation
| { attribute_instance} initial_construct
| { attribute_instance} always construct
| { attribute_instance} combinational _construct
| { attribute_instance} latch_construct
| { attribute_instance} ff_construct
| { attribute_instance} net_alias
| { attribute_instance} final_construct
| module_common_item
| { attribute instance} ;
module_root_item ::=
{ attribute_instance} module_instantiation
| { attribute instance} local _parameter declaration
| interface declaration
| program_declaration
| class declaration
| module_common_item

module_or_generate item_declaration ::=
net_declaration
| data_declaration
| genvar_declaration
| task_declaration
| function_declaration
| dpi_import_export
| extern_constraint_declaration
| extern_method_declaration
| clocking_decl
| default clocking clocking_identifier ;
non_port_module_item ::=
{ attribute_instance} generated module_instantiation
| { attribute instance} local_parameter_declaration
| module or_generate item
| { attribute _instance} parameter_declaration ;
| { attribute _instance} specify_block
| { attribute instance} specparam_declaration
| program_declaration
| class declaration
| module_declaration
parameter_override ::= defparam list_of_defparam_assignments;;
bind_directive ::=
bind module_identifier bind_instantiation ;
| bind name_of _instance bind_instantiation ;
bind instantiation ::=
program_instantiation
| module_instantiation
| interface _instantiation

A.1.6 Interface items
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interface_or_generate_item ::=
{ attribute_instance } continuous_assign
| { attribute_instance} initial_construct
| { attribute_instance} always construct
| { attribute_instance} combinational_construct
| { attribute_instance} latch_construct
| { attribute_instance} ff_construct
| { attribute_instance} local_parameter_declaration
| { attribute_instance} parameter_declaration ;
| module_common_item
| { attribute_instance’} modport_declaration
| { attribute_instance} extern_tf declaration
| { attribute_instance} final_construct
| { attribute _instance} ;

extern_tf_declaration ::=
extern method_prototype
| extern forkjoin task named_task_proto ;
interface item ::=
non_generic_port_declaration ;
| non_port_interface item
non_port_interface item :;=
{ attribute_instance} generated interface instantiation
| { attribute instance} specparam_declaration
| interface_or_generate item
| program_declaration
| class declaration
| interface_declaration

A.1.7 Program items
program_item ::=
port_declaration ;
| non_port_program_item
non_port_program_item ::=
{ attribute_instance } continuous_assign
| { attribute_instance} module_or_generate item_declaration
| { attribute_instance} specparam_declaration
| { attribute_instance} local_parameter_declaration
| { attribute_instance} parameter_declaration ;
| { attribute_instance} initial_construct
| { attribute_instance} concurrent_assertion_item
| class_declaration

A.1.8 Class items

class item::=
{ attribute_instance} class _property
| { attribute_instance} class method
| { attribute_instance} class _constraint
class property ::=
{ property_qualifier } data declaration
| const { class_item_qualifier } data type const_identifier [ = constant_expression] ;
class_ method ::=
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{ method_qualifier } task_declaration
| { method_qualifier } function_declaration
| extern { method_qualifier } method_prototype

class constraint ::=
congtraint_prototype
| constraint_declaration

class item_qualifier' ::=
static
| protected
| local

property_qualifier? ::=
rand
| randc
| class_item_qualifier
method_qualifier'! ::=
virtual
| class_item_qualifier
method_prototype ::=

task named_task_proto ;
| function named_function_proto ;

extern_method declaration ::=

function [ lifetime] class_identifier :: function_body_declaration
| task [ lifetime] class _identifier :: task_body_declaration

A.1.9 Constraints

Accellera
Extensions to Verilog-2001

constraint_declaration ::=[ static] constraint constraint_identifier { { constraint_block } }

constraint_block ::=
solve identifier_list beforeidentifier_list ;
| expression dist { dist_list} ;
| constraint_expression
constraint_expression ::=
expression ;
| expression => constraint_set

| if (expression) constraint_set [ else constraint_set ]

constraint_set ::=
constraint_expression
| { { constraint_expression} }
dist_list ::=dist_item { , dist_item}
dist_item::=
value range := expression
| value range :/ expression

constraint_prototype ::=[ static ] constraint constraint_identifier

extern_constraint_declaration ::=

[ static] constraint class identifier :: constraint_identifier { { constraint_block } }

identifier_list ::= identifier { , identifier }
A.2 Declarations

A.2.1 Declaration types

A.2.1.1 Module parameter declarations

272 Copyright 2003 Accellera. All rights reserved.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 6

local_parameter_declaration ::=
localparam [ signing ] { packed dimension} [ range] list_of _param_assignments ;
| localparam data type list_of param_assignments;
parameter_declaration ::=
parameter [ signing ] { packed_dimension} [ range] list_of param_assignments
| parameter data type list_of param_assignments
| parameter type list_of_type assignments
specparam_declaration ::=
specparam [ range] list_of _specparam_assignments ;

A.2.1.2 Port declarations
inout_declaration ::=
inout [ port_type] list_of port_identifiers
| inout data typelist_of variable identifiers
input_declaration ::=
input [ port_type] list_of_port_identifiers
| input data typelist_of variable identifiers
output_declaration ::=
output [ port_type] list_of port_identifiers
| output data type list_of variable port_identifiers
interface _port_declaration ::=
interface identifier list_of _interface identifiers
| interface _identifier . modport_identifier list_of_interface identifiers
ref_declaration ::=ref data_typelist_of _port_identifiers
generic_interface port_declaration ::=
interfacelist_of_interface identifiers
| interface . modport_identifier list_of interface _identifiers

A.2.1.3 Type declarations

block data declaration ::=
block variable declaration
| constant_declaration
| type_declaration

constant_declaration ::= const data_type const_assignment ;

data_declaration ::=
variable_declaration
| constant_declaration
| type_declaration
genvar_declaration ::= genvar list_of _genvar_identifiers;
net_declaration ::=
net_type[ signing ]
[ delay3] list_of net_identifiers;
| net_type[ drive_strength] [ signing ]
[ delay3] list_of net_decl_assignments;
| net_type[ vectored | scalared ] [ signing ]
{ packed_dimension } range[ delay3] list_of_net_identifiers;
| net_type[ drive_strength] [ vectored | scalared ] [ signing ]
{ packed_dimension } range[ delay3] list_of net decl assignments;
| trireg [ charge_strength] [ signing ]
[ delay3] list_of net_identifiers;
| trireg [ drive_strength] [ signing]
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[ delay3] list_of _net decl_assignments;
| trireg [ charge strength] [ vectored | scalared ] [ signing |
{ packed _dimension } range[ delay3] list_of net_identifiers;
| trireg [ drive_strength] [ vectored | scalared ] [ signing ]
{ packed_dimension } range[ delay3] list_of net _decl_assignments;
type_declaration ::=
typedef [ data_type] type declaration_identifier ;
| typedef hierarchical_identifier . type identifier type declaration_identifier ;
| typedef [ class] class identifier ;
| typedef class identifier [ parameter_value assignment | type _declaration_identifier ;
block variable declaration ::=
[ lifetime] data_type list_of variable identifiers;
| lifetime data._type list_of variable decl_assignments;
variable _declaration ::=
[ lifetime] data_type list_of variable identifiers_or_assignments;
lifetime ::= static | automatic

A.2.2 Declaration data types

A.2.2.1 Net and variable types
casting_type ::= simple_type | number | signing
data type::=
integer_vector_type[ signing ] { packed_dimension} [ range]
| integer_atom_type[ signing ]
| type declaration_identifier { packed_dimension }
| non_integer_type
| struct packed [ signing] { { struct_union_member } } { packed_dimension }
| union packed [ signing] { { struct_union_member } } { packed dimension }
| struct [ signing] { { struct_union_member } }
| union [ signing] { { struct_union_member } }
| enum [ integer_type[ signing] { packed dimension} ]
{ enum_identifier [ = constant_expression] { , enum_identifier [ = constant_expression] } }
| string
| event
| chandle
| class_scope type identifier
class scope type identifier::=
class identifier :: { class identifier :: } type declaration identifier
| class identifier :: { class identifier :: } class identifier
integer_type ::= integer_vector_type | integer_atom_type
integer_atom_type ::= byte | shortint | int | longint | integer
integer_vector_type ::= bit | logic | reg
non_integer_type ::=time|shortreal | real | realtime
net_type ::= supplyO | supplyl | tri | triand | trior | triO|tril|wire|wand | wor
port_type::=
data type
| net_type|[ signing] { packed dimension}
| trireg[ signing ] { packed_dimension }
| [ signing] { packed dimension} range
signing ::= signed | unsigned
simple_type::=integer_type | non_integer_type | type identifier
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struct_union_member ::={ attribute_instance} data type list_of variable identifiers_or_assignments;

A.2.2.2 Strengths
drive_strength ::=
(strengthO, strengthl)
| (strengthl, strengthO)
| (strengthO, highz1)
| (strengthl, highzO)
| (highz0, strengthl)
| (highzl, strengthO)

strengthO ::= supplyO | strongO | pullO | weak0
strengthl ::= supplyl | strongl | pulll | weak 1
charge_strength ::= (small ) | (medium) | (large)

A.2.2.3 Delays
delay3::=#delay_value|# ( mintypmax_expression [ , mintypmax_expression [ , mintypmax_expression]])
delay2 ;.= # delay_vaue | # ( mintypmax_expression [ , mintypmax_expression | )
delay value::=
unsigned_number
| rea_number
| identifier
A.2.3 Declaration lists
list_of defparam_assignments ::= defparam_assignment { , defparam_assignment }
list_ of genvar_ identifiers::= genvar_identifier { , genvar_identifier }
list_of_interface identifiers::= interface identifier { unpacked_dimension }
{ , interface_identifier { unpacked dimension} }
list_of modport_port_identifiers ::= port_identifier { , port_identifier }
list_of_net decl_assignments::= net_decl_assignment { , net_decl_assignment }
list_of net identifiers::=net_identifier { unpacked dimension}
{ , net_identifier { unpacked dimension} }
list_of param_assignments ::= param_assignment { , param_assignment }
list_of port_identifiers::= port_identifier { unpacked dimension }
{ , port_identifier { unpacked dimension} }
list_of _udp_port_identifiers::= port_identifier { , port_identifier }
list_of specparam_assignments ::= specparam_assignment { , specparam_assignment }
list_of tf port identifiers::= port_identifier { unpacked_dimension} [ = expression ]
{ , port_identifier { unpacked dimension} [ = expression] }
list_of tf variable identifiers::= port_identifier variable_dimension [ = expression ]
{ , port_identifier variable_dimension [ = expression] }
list_of_type_assignments ::= type_assignment { , type_assignment }
list_of variable decl_assignments::= variable decl_assignment { , variable_decl_assignment }
list_of variable identifiers::=variable_identifier variable dimension
{ , variable_identifier variable_dimension }
list_of variable identifiers or_assignments::=
list_of variable decl_assignments
| list_of variable identifiers
list_ of variable port_identifiers::= port_identifier variable dimension [ = constant_expression ]
{ , port_identifier variable_dimension [ = constant_expression ] }
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A.2.4 Declaration assignments
const_assignment ::= const_identifier = constant_expression
defparam_assignment ::= hierarchical_parameter_identifier = constant_expression
net_decl_assignment ::= net_identifier = expression
param_assignment ::= parameter_identifier = constant_param_expression
specparam_assignment ::=
specparam_identifier = constant_mintypmax_expression
| pulse_control_specparam
type_assignment ::= type_identifier = data_type
pulse_control_specparam ::=
PATHPUL SE$ = (reject_limit_vaue[ , error_limit_value] ) ;
| PATHPUL SE$specify_input_terminal _descriptor$specify_output_terminal _descriptor
= (rgject_limit_vaue[ , error_limit_vaue] ) ;
error_limit_value ::= limit_value
regject_limit_value ::=limit_value
limit_value ::= constant_mintypmax_expression
variable decl_assignment ::=
variable_identifier [ variable dimension] [ = constant_expression ]
| variable identifier [ ] = new [ constant_expression] [ ( variable identifier ) ]
| class identifier [ parameter_value assignment ] = new [ (list_of arguments) ]

A.2.5 Declaration ranges
unpacked_dimension ::= [ dimension_constant_expression : dimension_constant_expression |
| [ dimension_constant_expression ]

packed _dimension® ::=

[ dimension_constant_expression : dimension_constant_expression |
I []
range ::= [ msb_constant_expression : Isb_constant_expression |
associative_dimension ::=
[ data_type]
I[*]
variable _dimension ::=
{ unpacked_dimension }
| []
| associative_dimension
dpi_dimension ::=
variable_dimension

[{[]}
A.2.6 Function declarations

function_data _type® ::=
integer_vector_type{ packed dimension} [ range]
| integer_atom_type
| type_declaration_identifier { packed_dimension }
| non_integer_type
| struct [packed ] {{ struct_union_member } } { packed _dimension}
| union [ packed ] { { struct_union_member } } { packed dimension}
| enum [ integer_type { packed _dimension} ]
{ enum_identifier [ = constant_expression ] { , enum_identifier [ = constant_expression] } }
| string
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| chandle
| void
function_body_declaration ::=
[ signing] [ range _or_type]
[ interface identifier . ] function_identifier ;
{ function_item_declaration }
{ function_statement_or_null }
endfunction [ : function_identifier ]
| [ signing] [ range_or_type]
[ interface identifier . ] function_identifier ( function_port_list) ;
{ block_item_declaration }
{ function_statement_or_null }
endfunction [ : function_identifier ]

function_declaration ::=
function [ lifetime] function_body_declaration
function_item_declaration ::=
block_item_declaration
| { attribute _instance} tf_input_declaration ;
| { attribute _instance} tf_output_declaration ;
| { attribute _instance} tf_inout_declaration ;
| { attribute instance} tf_ref declaration ;
function_port_item ::=
{ attribute_instance} tf_input_declaration
| { attribute_instance} tf_output_declaration
| { attribute_instance} tf_inout_declaration
| { attribute_instance} tf_ref declaration
| { attribute_instance} port_typelist_of_tf port_identifiers
| { attribute_instance} tf_data typelist_of _tf variable identifiers
function_port_list ::= function_port_item{ , function_port_item }
named_function_proto::=[ signing] function_data_type function_identifier (list_of_function_proto_formals)
list_of function proto formals::=
[ { attribute instance} function proto formal { , { attribute_instance} function_proto formal } ]

function_proto_formal ::=
tf_input_declaration
| tf_output_declaration
| tf_inout_declaration
| tf_ref_declaration
range_or_type::=
{ packed dimension} range
| function_data type
dpi_import_export ::=
import " DPI" [ dpi_import_property ] [ c_identifier =] dpi_function_proto
| export " DPI" [ c_identifier =] function function_identifier
dpi_import_property ::= context | pure
dpi_function_proto ::=
named_function_proto
| [ signing] function_data type function_identifier ( list_of_dpi_proto_formals)
list_ of dpi_proto formals::=
[ { attribute_instance} dpi_proto formal { , { attribute instance} dpi_proto formal } ]
dpi_proto_formal ::=

Copyright 2003 Accellera. All rights reserved. 277



Accellera
SystemVerilog 3.1/draft 6 Extensions to Verilog-2001

data_type [ port_identifier dpi_dimension{ , port_identifier dpi_dimension} ]

A.2.7 Task declarations
task_body_declaration ::=
[ interface identifier . ] task_identifier ;
{ task_item_declaration }
{ statement_or_null }
endtask [ : task_identifier ]
| [ interface identifier . ] task_identifier (task_port_list) ;
{ block_item_declaration }
{ statement_or_null }
endtask [ : task_identifier ]
task_declaration ::=task [ lifetime] task_body_declaration
task_item_declaration ::=
block_item_declaration
| { attribute_instance} tf_input_declaration ;
| { attribute_instance} tf_output_declaration ;
| { attribute_instance} tf_inout_declaration ;
| { attribute_instance} tf_ref declaration ;
task_port_list ::=task_port_item { , task_port_item }
| list_of port_identifiers{ , task_port_item }
task_port_item ::=
{ attribute_instance} tf_input_declaration
| { attribute _instance} tf_output_declaration
| { attribute _instance} tf_inout_declaration
| { attribute _instance} tf_ref declaration ;
| { attribute instance} port_typelist_of tf port_identifiers
| { attribute_instance} tf_data typelist_of tf variable identifiers
tf_input_declaration ::=
input [ signing ] { packed_dimension} list_of tf_port_identifiers
| input tf_data typelist_of tf variable identifiers
tf_output_declaration ::=
output [ signing ] { packed dimension} list_of tf port_identifiers
| output tf_data typelist_of tf variable identifiers
tf_inout_declaration ::=
inout [ signing ] { packed dimension} list_of tf port_identifiers
| inout tf_data typelist_of tf variable identifiers
tf_ref declaration ::=
[ const ] ref tf_data typelist_of tf variable identifiers
tf_data type ::=
data type
| chandle
named_task_proto ::= task_identifier ( task_proto_formal { , task_proto_formal } )
task_proto_formal ::=
tf_input_declaration
| tf_output_declaration
| tf_inout_declaration
| tf_ref_declaration

A.2.8 Block item declarations
block_item_declaration ::=
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{ attribute_instance} block _data declaration
| { attribute_instance} local_parameter_declaration
| { attribute_instance} parameter_declaration ;

A.2.9 Interface declarations
modport_declaration ::= modport modport_item { , modport_item} ;
modport_item ::= modport_identifier ( modport_ports _declaration { , modport_ports declaration } )

modport_ports_declaration ::=
modport_simple_ports_declaration
| modport_hierarchical_ports declaration
| modport_tf_ports declaration
modport_simple_ports declaration ::=
input list_of _modport_port_identifiers
| output list_of _modport_port_identifiers
| inout list_of _modport_port_identifiers
| ref [ data_type] list_of_modport_port_identifiers
modport_hierarchical_ports declaration ::=
interface_instance_identifier [ [ constant_expression | ] . modport_identifier
modport_tf_ports declaration ::=
import_export modport_tf_port
modport_tf_port ::=
task named_task_proto { , named_task proto}
| function named_function_proto { , named_function_proto }
| task_or function_identifier { , task_or_function_identifier }
import_export ::= import | export

A.2.10 Assertion declarations
concurrent_assertion_item ::=
concurrent_assert_statement
| concurrent_cover_statement
| concurrent_assertion_item_declaration

concurrent_assert_statement ::=
[block_identifier:] assert_property statement
concurrent_cover_statement ::=
[block_identifier:] cover_property_statement
assert_property_statement::=
assert property ( property_spec ) action_block
| assert property ( property_instance ) action_block

cover_property_statement::=
cover property ( property_spec) statement_or_null
| cover property ( property_instance ) statement_or_null
property_instance ::=
property _identifier [ (actua_arg_list) ]
concurrent_assertion_item_declaration ::=
property declaration
| sequence _declaration
property_declaration ::=
property property_identifier [ property formal_list] ;
{ assertion_variable_declaration }
property_spec ;
endproperty [ : property_identifier ]
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property_formal_list ::=
(formal_list_item{ , formal_list_item} )
property_spec ::=
[clocking_event ] [ disableiff ] ( expression) [ not ] property_expr
| [ disableiff ( expression) ] not multi_clock_property_expr
property_expr ::=
sequence_expr
| sequence_expr |-> [ not ] sequence_expr
| sequence_expr |=>[ not ] sequence_expr
multi_clock_property expr ::=
multi_clock_sequence
| multi_clock_sequence |[=> [ not ] multi_clock _sequence

sequence_declaration ::=
sequence sequence_identifier [ sequence_formal_list] ;
{ assertion_variable_declaration }
sequence_spec ;
endsequence [ : sequence_identifier ]
sequence formal_list ::=
(formal_list_item{ , formal_list item} )
sequence_spec ::=
multi_clock_sequence
| sequence_expr
multi_clock_sequence::=
clocked sequence { ## clocked sequence}

clocked sequence ::=
clocking_event sequence_expr
sequence_expr ::=
cycle delay_range sequence_expr { cycle delay range sequence_expr }
| sequence_expr cycle delay range sequence_expr { cycle delay range sequence expr }
| expression { , function_blocking_assignment } [ boolean_abbrev ]
| (expression{, function_blocking_assignment } ) [ boolean_abbrev ]
| sequence _instance [ sequence_abbrev |
| ('sequence expr) [ sequence abbrev |
| sequence_expr and sequence_expr
| sequence_expr inter sect sequence_expr
| sequence_expr or sequence_expr
| first_match ( sequence_expr )
| expression throughout sequence_expr
| sequence_expr within sequence_expr
cycle delay range::=
## constant_expression
| ##[ cycle _delay const_range expression |
sequence instance ::=
sequence _identifier [ (actual_arg list) ]
formal_list_item ::=
formal_identifier [ = actual_arg_expr ]
actua_arg list::=
(actual_arg expr{ , actua_arg expr} )
| (.formal_identifier (actual_arg expr){ ,.formal_identifier (actual_arg expr)})
actual_arg_expr ::=
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event_expression
boolean_abbrev ::=
consecutive_repetition
| non_consecutive repetition
| goto_repetition
sequence_abbrev ::= consecutive_repetition
consecutive _repetition ::= [* const_or_range_expression |
non_consecutive_repetition ::= [*= const_or_range_expression |
goto_repetition ::= [* -> const_or_range_expression |
const_or_range_expression ::=
constant_expression
| cycle delay const_range expression
cycle _delay _const_range expression ::=
constant_expression : constant_expression
| constant_expression : $
assertion_variable declaration ::=
data typelist_of variable identifiers;

A.3 Primitive instances

A.3.1 Primitive instantiation and instances
gate instantiation ::=
cmos_switchtype [delay3] cmos_switch_instance { , cmos_switch_instance} ;
| enable_gatetype [drive_strength] [delay3] enable gate instance{ , enable gate instance} ;
| mos_switchtype [delay3] mos_switch_instance{ , mos_switch_instance} ;
| n_input_gatetype [drive_strength] [delay2] n_input_gate instance{ , n_input_gate instance} ;
| n_output_gatetype [drive_strength] [delay2] n_output_gate instance
{, n_output_gate instance} ;
| pass_en_switchtype [delay2] pass_enable switch instance{ , pass_enable switch_instance} ;
| pass_switchtype pass_switch_instance{ , pass_switch_instance} ;
| pulldown [pulldown_strength] pull_gate instance{ , pull_gate instance} ;
| pullup [pullup_strength] pull_gate instance{ , pull_gate instance} ;
cmos_switch_instance ::= [ name_of _gate instance] ( output_terminal , input_terminal ,
ncontrol_terminal , pcontrol_terminal )
enable gate instance::=[ name_of_gate instance] (output_termina , input_termina , enable terminal )
mos_switch_instance ::= [ name_of_gate instance] ( output_terminal , input_terminal , enable_terminal )
n_input_gate instance ::= [ name_of gate instance] ( output_terminal , input_terminal { , input_termina } )
n_output_gate instance ::=[ name_of gate instance] (output_terminal { , output_terminal } ,
input_terminal )
pass_switch_instance ::= [ name_of gate instance] (inout_termina , inout_terminal )
pass_enable switch instance ::= [ name_of gate instance] (inout_terminal , inout_terminal ,
enable terminal )
pull_gate instance ::= [ name_of gate instance] ( output_terminal )
name _of gate instance ::= gate instance _identifier { range}

A.3.2 Primitive strengths
pulldown_strength ::=
(‘strengthO, strengthl)
| (strengthl, strengthO)
| (strengthO)
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pullup_strength ::=
( strengthO, strengthl )

| (strengthl, strengthO)

| (strengthl)
A.3.3 Primitive terminals
enable_terminal ::= expression
inout_terminal ::= net_lvalue
input_terminal ::= expression
ncontrol_terminal ::= expression
output_termina ::=net_lvalue
pcontrol_terminal ::= expression
A.3.4 Primitive gate and switch types
cmos_switchtype ::= cmos | rcmos
enable_gatetype ::= bufifO | bufif1 | notifO | notifl
mos_switchtype ::= nmos | pmos | rnmos | rpmos
n_input_gatetype::= and | nand | or | nor | xor | xnor
n_output_gatetype ::= buf | not
pass_en_switchtype::=tranifO | tranifl | rtranifl|rtranifO
pass_switchtype ::=tran |rtran

A.4 Module, interface and generated instantiation

A.4.1 Instantiation

A.4.1.1 Module instantiation
module_instantiation ::=

module_identifier [ parameter_value_assignment ] module_instance{ , module instance} ;

parameter_value assignment ::=# ( list_of parameter_assignments)

list_of parameter_assignments::=
ordered_parameter_assignment { , ordered_parameter_assignment }
| named_parameter_assignment { , named_parameter_assignment }
ordered_parameter_assignment ::= expression | data_type
named_parameter_assignment ::=
. parameter_identifier ([ expression])
| . parameter_identifier ( data_type)
module_instance ::= name_of instance ([ list_of port_connections] )
name_of instance ::= module_instance_identifier { range }
list_of port_connections::=
ordered_port_connection { , ordered_port_connection }

| dot_named port_connection { , dot_named_port_connection }
| { named_port_connection, } dot_star_port_connection { , named_port_connection }

ordered_port_connection ::= { attribute_instance} [ expression ]
named_port_connection ::={ attribute instance} . port_identifier ([ expression])
dot_named port_connection ::=
{ attribute_instance} .port_identifier
| named_port_connection

dot_star_port_connection ::= { attribute instance} .*
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A.4.1.2 Interface instantiation
interface instantiation ::=
interface identifier [ parameter_value_assignment | module_instance { , module_instance} ;

A.4.4.1 Program instantiation

program_instantiation ::=
program_identifier [ parameter_value assignment ] program_instance { , program_instance} ;
program_instance ::= program_instance_identifier { range} ([ list_of port_connections] )

A.4.2 Generated instantiation

A.4.2.1 Generated module instantiation
generated_module_instantiation ::= generate{ generate_module_item} endgenerate
generate_module_item ::=
generate_module_conditional_statement

| generate_module _case_statement

| generate_module _loop_statement

| [ generate_block_identifier : ] generate_module block

| module_or_generate item

generate_module_conditional_statement ::=
if ( constant_expression ) generate_module_item [ else generate_module_item ]
generate_module case statement ::=
case ( constant_expression ) genvar_module _case_item { genvar_module_case item }endcase
genvar_module_case item ::=
constant_expression { , constant_expression } : generate_module_item
| default [ : ] generate_module_item
generate_module _loop_statement ::=
for (genvar_decl_assignment ; constant_expression ; genvar_assignment )
generate_ module_named_block
genvar_assignment ::=
genvar_identifier assignment_operator constant_expression
| inc_or_dec operator genvar_identifier
| genvar_identifier inc_or_dec_operator
genvar_decl_assignment ::=
[ genvar ] genvar_identifier = constant_expression
generate_module_named block ::=
begin : generate_block_identifier { generate_ module item} end [ : generate block identifier ]
| generate block_identifier : generate_module_block
generate_module_block ::=
begin [ : generate_block_identifier ] { generate_module_item } end [ : generate block_identifier ]

A.4.2.2 Generated interface instantiation
generated_interface instantiation ::= generate { generate interface item} endgenerate
generate interface item ::=
generate interface _conditional _statement

| generate interface case statement

| generate interface loop_statement

| [ generate_block_identifier : ] generate interface block

| interface_or_generate item

generate _interface_conditional_statement ::=
if (cconstant_expression ) generate interface item [ else generate interface item ]
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generate interface case statement ::=
case ( constant_expression ) genvar_interface case_item { genvar_interface _case item} endcase
genvar_interface case item ::=
constant_expression { , constant_expression } : generate_interface item
| default [ : ] generate interface_item
generate_interface loop_statement ::=
for ( genvar_decl_assignment ; constant_expression ; genvar_assignment )
generate interface_named_block
generate interface_named_block ::=
begin : generate block identifier { generate interface item} end [ : generate_block identifier ]
| generate block_identifier : generate interface block
generate _interface block ::=
begin [ : generate block_identifier ]
{ generate interface item}
end [ : generate block_identifier ]

A.5 UDP declaration and instantiation

A.5.1 UDP declaration
udp_nonansi_declaration ::=

{ attribute_instance} primitive udp_identifier ( udp_port_list) ;
udp_ansi_declaration ::=

{ attribute_instance} primitive udp_identifier ( udp_declaration_port_list) ;

udp_declaration ::=
udp_nonansi_declaration udp_port_declaration { udp_port_declaration }
udp_body
endprimitive[ : udp_identifier ]
udp_ansi_declaration udp_body endprimitive[ : udp_identifier ]
extern udp_nonansi_declaration
extern udp_ansi_declaration
{ attribute_instance} primitive udp_identifier (.* ) ;
{ udp_port_declaration } udp_body endprimitive[ : udp_identifier ]
udp_declaration ::=
{ attribute_instance} primitive udp_identifier ( udp_port_list) ;
udp_port_declaration { udp_port_declaration }
udp_body
endprimitive
| { attribute_instance} primitive udp_identifier ( udp_declaration_port_list) ;
udp_body
endprimitive
A.5.2 UDP ports
udp_port_list ::= output_port_identifier , input_port_identifier { , input_port_identifier }
udp_declaration_port_list ::= udp_output_declaration , udp_input_declaration { , udp_input_declaration }
udp_port_declaration ::=
udp_output_declaration ;
| udp_input_declaration ;
| udp_reg_declaration;
udp_output_declaration ::=
{ attribute_instance} output port_identifier
| { attribute_instance} output reg port_identifier [ = constant_expression |
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udp_input_declaration ::={ attribute_instance } input list_of udp_port_identifiers
udp_reg_declaration ::={ attribute _instance} reg variable identifier

A.5.3 UDP body

udp_body ::= combinational _body | sequential_body

combinational_body ::= table combinational _entry { combinational_entry } endtable
combinational_entry ::=level_input_list : output_symbol ;

sequential_body ::=[ udp_initial_statement ] table sequential_entry { sequential_entry } endtable
udp_initial_statement ::=initial output_port_identifier = init_val ;

init_val ::=1'b0|1'b1l|Tbx |1bX |T'BO|1TB1|1'Bx|1I'BX|1]0

sequential_entry ::=seq_input_list : current_state : next_state ;

seq_input_list ::=level_input_list | edge_input_list

level input_list ::=level_symbol { level_symbol }

edge_input_list ::={ level_symbol } edge indicator { level_symbol }

edge _indicator ::= (level_symbol level_symbol ) | edge _symbol

current_state ::=level_symbol

next_state ::= output_symbol | -

output_symbol ::=0|1|x|X

level_symbol ::=0|1|x|X|?|b]|B

edge symbol ::=r |[R[f|F|p|P|n|N|*

A.5.4 UDP instantiation

udp_instantiation ::= udp_identifier [ drive_strength ] [ delay2 ] udp_instance{ , udp_instance } ;
udp_instance ::=[ name_of _udp_instance] { range} (output_terminal , input_terminal { , input_terminal } )
name_of udp_instance ::= udp_instance_identifier { range }

A.6 Behavioral statements

A.6.1 Continuous assignment and net alias statements
continuous_assign ::=
assign [ drive_strength ] [ delay3] list_of_net_assignments;
| assign [ delay_control ] list_of_variable_assignments ;

list_of net_assignments::= net_assignment { , net_assignment }
list_of variable assignments::= variable assignment { , variable_assignment }
net_alias::=aliasnet_Ivalue = net_Ivalue;

net_assignment ::= net_|value = expression

A.6.2 Procedural blocks and assignments
initial_construct ::= initial statement_or_null

always_construct ::= always statement

combinational_construct ::= always comb statement
latch_construct ::= always latch statement

ff_construct ::= always ff statement

final_construct ::= final function_statement

blocking_assignment ::=
variable Ivalue = delay_or_event_control expression
| hierarchical_variable_identifier = new [ constant_expression | [ ( variable_identifier ) ]
| class_identifier [ parameter_value assignment ] = new [ ( list_of_arguments) ]
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| class_identifier . randomize[ () ] with constraint_block ;
| operator_assignment
operator_assignment ::= variable lvalue assignment_operator expression

assignment_operator ::=
:|+:|_:|*:|/:|%:|&:||:|’\:|<<:|>>:|<<<:|>>>:

nonblocking_assignment ::= variable Ivalue <=[ delay_or_event_control ] expression

procedural_continuous_assignments ::=
assign variable_assignment
| deassign variable |value
| force variable _assignment
| force net_assignment
| release variable Ivalue
| release net_lvalue

function_blocking_assignment ::= variable |value = expression
function_statement_or_null ::=
function_statement
| { attribute _instance} ;
variable_assignment ::=
operator_assignment
| inc_or_dec expression

A.6.3 Parallel and sequential blocks
action_block ::=
statement_or_null
| [ statement ] else statement_or_null

function_seq block ::=
begin [ : block_identifier { block_item_declaration} ] { function_statement_or_null }
end [ : block_identifier ]

seq block ::=
begin [ : block_identifier ] { block_item_declaration } { statement_or_null }
end [ : block_identifier ]

par_block ::=
fork [ : block_identifier ] { block _item_declaration } { statement_or_null }
join_keyword [ : block_identifier ]

join_keyword ::=join |join_any |join_none

A.6.4 Statements
statement_or_null ::=
statement
| { attribute_instance} ;
statement ::=[ block_identifier : ] statement_item
statement_item ::=
{ attribute_instance } blocking_assignment ;
| { attribute_instance} nonblocking_assignment ;
| { attribute_instance} procedural_continuous_assignments ;
| { attribute_instance} case_statement
| { attribute_instance} conditional _statement
| { attribute_instance} inc_or_dec_expression;
| { attribute _instance} function_call ;
| { attribute _instance} disable_statement
| { attribute_instance} event_trigger
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| { attribute_instance} loop_statement

| { attribute_instance} jump_statement

| { attribute_instance} par_block

| { attribute_instance} procedural_timing_control_statement

| { attribute_instance} seq_block

| { attribute_instance} system task enable

| { attribute_instance} task_enable

| { attribute_instance} wait_statement

| { attribute_instance} procedural_assertion _item

| { attribute_instance} clocking_drive
function_statement ::= [ block_identifier : ] function_statement_item
function_statement_item ::=

{ attribute_instance } function_blocking_assignment ;

| { attribute _instance} function case statement

| { attribute_instance} function_conditional _statement

| { attribute_instance} inc_or_dec_expression ;

| { attribute_instance} function_call ;

| { attribute_instance} function_loop_statement

| { attribute_instance} jump_statement

| { attribute_instance} function_seq block

| { attribute_instance} disable statement

| { attribute_instance} system task_enable

A.6.5 Timing control statements

procedural_timing_control_statement ::=
procedural_timing_control statement_or_null

delay_or_event_control ::=
delay_control
| event_control
| repeat ( expression) event_control
delay_control ::=
# delay_value
| # ( mintypmax_expression )
event_control ::=
@ event_identifier
| @ (event_expression)
| @
| @ (*)
event_expression ::=
[ edge identifier ] expression [ iff expression ]
| event_expression or event_expression
| event_expression , event_expression
procedura_timing_control ::=
delay_control
| event_control
jump_statement ::=
return [ expression] ;
| break ;
| continue;
wait_statement ::=
wait ( expression ) statement_or_null
| wait fork ;
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| wait_order (hierarchical_identifier [ , hierarchical_identifier ] ) action_block
event_trigger ::=
-> hierarchical_event_identifier ;
[->>[ delay_or_event_control | hierarchical_event_identifier ;
disable statement ::=
disable hierarchical _task_identifier ;
| disable hierarchical_block _identifier ;
| disablefork ;

A.6.6 Conditional statements

conditional_statement ::=
[ unique_priority ] if ( expression) statement_or_null [ else statement_or_null ]
| if_else if statement
if else if_statement ::=
[ unique_priority ] if ( expression) statement_or_null
{ else[ unique priority ] if ( expression) statement_or_null }
[ else statement_or_null ]
function_conditiona_statement ::=
[ unique_priority ] if ( expression) function_statement_or_null
[ else function_statement_or_null ]
| function_if_else if statement
function_if else if statement ::=
[ unique_priority ] if ( expression) function_statement_or_null
{ else[ unique_priority ] if ( expression) function_statement_or_null }
[ else function_statement_or_null ]
unique_priority ::= unique| priority

A.6.7 Case statements
case_statement ::=
[ unique_priority ] case ( expression ) case_item { case_item} endcase
| [ unique_priority ] casez ( expression ) case item { case item} endcase
| [ unique_priority ] casex ( expression ) case_item { case_item} endcase
case item::=
expression{ , expression} : statement_or_null
| default [ : ] statement_or_null
function_case statement ::=
[ unique_priority ] case ( expression ) function_case_item { function_case item} endcase
| [ unique_priority ] casez ( expression ) function_case item { function_case item} endcase
| [ unique_priority ] casex ( expression ) function_case_item { function_case_item} endcase
function_case_item ::=
expression{ , expression} : function_statement_or_null
| default [ : ] function_statement_or_null

A.6.8 Looping statements

function_loop_statement ::=
forever function_statement_or_null
| repeat ( expression ) function_statement_or_null
| while (‘expression ) function_statement_or_null
| for (variable decl_or_assignment { , variable _decl_or_assignment } ; expression ;
variable_assignment { , variable_assignment } ) function_statement_or_null
| do function_statement_or_null while ( expression) ;

loop_statement ::=
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forever statement_or_null
| repeat ( expression ) statement_or_null
| while ( expression ) statement_or_null
| for (variable _decl_or_assignment ; expression ; variable_assignment ) statement_or_null
| for (variable _decl_or_assignment { , variable decl_or_assignment } ; expression ;
variable_assignment { , variable_assignment } ) statement_or_null
| do statement_or_null while ( expression ) ;
variable_decl_or_assignment ::=
data typelist_of variable identifiers or_assignments
| variable assignment

A.6.9 Task enable statements
system task _enable ::= system_task_identifier [ ([ expression] { , [ expression]})];
task_enable ::= hierarchical_task identifier [ (list_of arguments)];

A.6.10 Assertion statements
procedural_assertion item ::=
assert_property_statement
| cover_property statement
| immediate_assert_statement
immediate_assert_statement ::=
assert (expression) action_block

A.6.11 Clocking domain

clocking_decl ::=[ default ] clocking [ clocking_identifier ] clocking_event ;
{ clocking_item}

endclocking
clocking_event ::=
@ identifier
| @ (‘event_expression )
clocking_item :=

default default_skew ;
| clocking_direction list_of_clocking_decl_assign ;
| { attribute_instance} concurrent_assertion item_declaration
default_skew ::=
input clocking_skew
| output clocking_skew
| input clocking_skew output clocking_skew
clocking_direction ::=
input [ clocking_skew ]
| output [ clocking_skew ]
| input [ clocking_skew ] output [ clocking_skew ]
| inout
list_of clocking decl assign ::= clocking_decl_assign{ , clocking_decl assign}
clocking_decl_assign ::= signal_identifier [ = hierarchical_identifier ]
clocking_skew ::=
edge identifier [ delay_control ]
| delay_control
clocking_drive ::=
clockvar_expression <=[ cycle_delay ] expression
| cycle delay clockvar_expression <= expression
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cycle _delay ::= ## expression
clockvar ::= clocking_identifier . identifier
clockvar_expression ::=
clockvar range
| clockvar [ range_expression |

A.7 Specify section

A.7.1 Specify block declaration
specify_block ::= specify { specify_item} endspecify
specify_item ::=
specparam_declaration
| pulsestyle declaration
| showcancelled_declaration
| path_declaration
| system_timing_check
pulsestyle declaration ::=
pulsestyle onevent list_of_path outputs ;
| pulsestyle ondetect list_of_path_outputs ;
showcancelled declaration ::=
showcancelled list_of path_outputs;
| noshowcancelled list_of path _outputs ;

A.7.2 Specify path declarations
path_declaration ::=
simple_path declaration ;
| edge sensitive path declaration ;
| state_dependent_path declaration ;
simple_path_declaration ::=
parallel_path_description = path_delay_value
| full_path_description = path_delay_value
parallel_path description ::=
('specify_input_terminal_descriptor [ polarity_operator | => specify_output_terminal_descriptor )
full_path_description ::=
(list_of path_inputs[ polarity_operator ] *> list_of _path_outputs)
list_of path_inputs::=
specify_input_terminal_descriptor { , specify_input_terminal_descriptor }
list_of path_outputs::=
specify_output_terminal_descriptor { , specify_output_terminal_descriptor }
A.7.3 Specify block terminals
specify_input_terminal_descriptor ::=
input_identifier [ [ constant_range_expression | |
specify_output_terminal_descriptor ::=
output_identifier [ [ constant_range_expression | |
input_identifier ::= input_port_identifier | inout_port_identifier
output_identifier ::= output_port_identifier | inout_port_identifier
A.7.4 Specify path delays
path_delay value::=

list_of_path_delay expressions
| (list_of path delay expressions)
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list_of path delay expressions::=
t_path_delay_expression
| trise_path_delay_expression, tfall_path_delay_expression
| trise_path_delay_expression, tfall_path_delay expression, tz_path delay expression
| t01_path_delay_expression, t10_path_delay_expression , t0z_path_delay_expression,
tz1 path_delay _expression, tlz _path delay expression, tzO_path_delay_expression
| t01_path_delay_expression, t10_path_delay_expression , t0z_path_delay_expression,
tz1 path_delay _expression, tlz _path delay expression, tzO_path_delay_expression,
tOx_path_delay_expression , tx1 _path _delay_expression , t1x_path_delay_expression,
tx0_path_delay_expression , txz_path_delay_expression, tzx_path _delay_expression
t path _delay expression ::= path_delay expression
trise_path _delay expression ::= path_delay_expression
tfall_path _delay expression ::= path_delay_expression
tz_path_delay expression ::= path_delay _expression
t01 path_delay expression ::= path_delay expression
t10_path_delay_expression ::= path_delay_expression
t0z_path delay expression ::= path_delay expression
tz1 path delay expression ::= path_delay expression
tlz path delay expression ::= path_delay expression
tz0_path delay expression ::= path_delay_expression
tOx_path_delay expression ::= path_delay expression
tx1_path_delay_expression ::= path_delay_expression
tlx_path_delay expression ::= path_delay expression
tx0_path_delay_expression ::= path_delay_expression
txz_path delay expression ::= path_delay_expression
tzx_path_delay expression ::= path_delay_expression
path_delay _expression ::= constant_mintypmax_expression
edge sensitive_path_declaration ::=
parallel_edge sensitive path description = path_delay value
| full_edge sensitive _path description = path_delay value
paralel_edge sensitive path description ;:=
([ edge_identifier ] specify_input_terminal_descriptor =>
specify_output_terminal_descriptor [ polarity_operator ] : data _source expression )
full_edge sensitive_path_description ::=
([ edge_identifier ] list_of_path_inputs *>
list_of path_outputs[ polarity operator ] : data source expression)
data_source expression ::= expression
edge _identifier ::= posedge | negedge
state_dependent_path _declaration ::=
if (module_path_expression ) simple_path_declaration
| if (module path_expression ) edge sensitive path_declaration
| ifnone simple_path_declaration
polarity_operator ::=+ | -

A.7.5 System timing checks

A.7.5.1 System timing check commands
system_timing_check ::=
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$setup_timing_check
| $hold_timing_check
| $setuphold_timing_check
| $recovery_timing_check
| $removal_timing_check
| $recrem_timing_check
| $skew_timing_check
| $timeskew_timing_check
| $fullskew_timing_check
| $period_timing_check
| $width_timing_check
| $nochange_timing_check
$setup_timing_check ::=
$setup ( data_event , reference_event , timing_check_limit [, [ notify_reg]]) ;
$hold_timing_check ::=
$hold ( reference_event , data_event , timing_check_limit [, [ notify_reg]]);
$setuphold_timing_check ::=
$setuphold ( reference_event , data_event , timing_check_limit , timing_check_limit
[, [ notify reg] [, [ stamptime_condition] [, [ checktime_condition ]
[, [ delayed reference] [, [ delayed data]]]1]]]);
$recovery timing_check ::=
$recovery ( reference_event , data_event , timing_check_limit [ , [ notify_reg]]);
$removal_timing_check ::=
$removal ( reference_event , data_event , timing_check_limit [, [ notify reg]]) ;
$recrem_timing_check ::=
$recrem ( reference_event , data_event , timing_check_limit , timing_check_limit
[, [ notify_reg] [, [ stamptime_condition] [ , [ checktime_condition ]
[, [ delayed reference] [, [ delayed_datal]1111);
$skew_timing_check ::=
$skew ( reference_event , data_event , timing_check_limit [, [ notify_reg]]);
$timeskew_timing_check ::=
$timeskew ( reference_event , data_event , timing_check _limit
[, [ notify_reg] [, [ event_based flag] [, [ remain_active flag]]]1]);
$fullskew_timing_check ::=
$fullskew ( reference_event , data_event , timing_check limit , timing_check limit
[, [ notify_reg] [, [ event_based flag] [, [ remain_active flag]]11]1);
$period_timing_check ::=
$period ( controlled_reference_event , timing_check_limit [, [ notify_reg]]);
$width_timing_check ::=
$width ( controlled_reference_event , timing_check_limit , threshold [ , [ notify reg]]) ;
$nochange _timing_check ::=
$nochange ( reference_event , data_event , start_edge offset ,
end_edge offset [, [ notify_reg]]) ;

A.7.5.2 System timing check command arguments
checktime_condition ::= mintypmax_expression
controlled_reference_event ::= controlled_timing_check event
data_event ::=timing_check event

delayed data::=
terminal_identifier
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| terminal_identifier [ constant_mintypmax_expression |

delayed reference ::=
terminal_identifier
| terminal_identifier [ constant_mintypmax_expression ]

end_edge offset ::= mintypmax_expression
event_based_flag ::= constant_expression

notify _reg ::= variable_identifier

reference_event ::=timing_check event

remain_active flag ::= constant_mintypmax_expression
stamptime_condition ::= mintypmax_expression
start_edge offset ::= mintypmax_expression

threshold ::=constant_expression

timing_check_limit ::= expression

A.7.5.3 System timing check event definitions
timing_check event ::=

SystemVerilog 3.1/draft 6

[timing_check event_control] specify_terminal_descriptor [ & & & timing_check condition ]

controlled_timing_check_event ::=

timing_check _event_control specify terminal_descriptor [ & & & timing_check condition ]

timing_check _event_control ::=
posedge
| negedge
| edge control_specifier
specify_terminal_descriptor ::=
specify_input_terminal_descriptor
| specify_output_terminal _descriptor
edge control_specifier ::= edge [ edge _descriptor { , edge descriptor } ]
edge descri ptorl :=01|10|z or_x zero_or_one|zero_or_one z_or_x
zero_or_one::=0|1
zorx:=x|X|z|Z
timing_check_condition ::=
scalar_timing_check_condition
| ('scalar_timing_check _condition)
scalar_timing_check_condition ::=
expression
| ~ expression
| expression == scalar_constant
| expression === scalar_constant
| expression != scalar_constant
| expression !== scalar_constant
scalar_constant ::=1'b0|1'b1|[1'BO|1'B1|'b0|'b1|'BO|'B1]|1]|0

A.8 Expressions

A.8.1 Concatenations

concatenation ::=
{ expression{ , expression} }

| { struct_member_label : expression { , struct_ member_label : expression} }
| { array_member_label : expression { , array_member_label : expression} }
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constant_concatenation ::=
{ constant_expression { , constant_expression } }
| { struct_member_label : constant_expression { , struct_member_label : constant_expression} }
| { array_member_label : constant_expression { , array_member_label : constant_expression } }
struct_member_label ::=
default
| type_identifier
| variable identifier
array_member_label ::=
default
| type_identifier
| constant_expression
constant_multiple_concatenation ::= { constant_expression constant_concatenation }
module_path _concatenation ::= { module_path_expression { , module_path_expression } }
module_path multiple_concatenation ::= { constant_expression module_path _concatenation }
multiple_concatenation ::= { constant_expression concatenation }

A.8.2 Function calls

constant_function_call ::= function_identifier { attribute_instance }
[ (list_of constant_arguments) ]
function_call ::= hierarchica_function_identifier { attribute instance} [ (list_of arguments) ]
list_of _arguments::=
[ expression] { , [ expression] }
| . identifier ([ expression] ) { , . identifier ([ expression]) }
list_of constant_arguments ::=
[ constant_expression] { , [ constant_expression] }
| . identifier ([ constant_expression] ) { , . identifier ([ constant_expression] ) }
system_function_call ::= system_function_identifier [ ( expression{ , expression} )]

A.8.3 Expressions
base expression ::= expression
inc_or_dec_expression ::=
inc_or_dec_operator { attribute_instance} variable lvalue
| variable_lvalue{ attribute instance } inc_or_dec_operator
conditional_expression ::= expressionl ? { attribute_instance} expression2 : expression3
constant_base _expression ::= constant_expression
constant_expression ::=
constant_primary
| unary_operator { attribute instance} constant_primary
| constant_expression binary_operator { attribute_instance} constant_expression
| constant_expression ? { attribute instance} constant_expression : constant_expression
| string_literal
constant_mintypmax_expression ::=
constant_expression
| constant_expression : constant_expression : constant_expression
constant_param_expression ::=
constant_expression
constant_range_expression ::=
constant_expression
| msb_constant_expression : Isb_constant_expression
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| constant_base_expression +: width_constant_expression
| constant_base expression -: width_constant_expression
dimension_constant_expression ::= constant_expression
expressionl ::= expression
eXpression2 ::= expression
expression3 ;= expression
expression ::=
primary
| unary_operator { attribute instance} primary
| inc_or_dec_expression
| (operator_assignment )
| expression binary_operator { attribute instance} expression
| conditional_expression
| string_literal
| inside_expression
inside_expression ::= expression inside range_list_or_array
range list_or_array ::=
variable_identifier
| { value range{ , value range} }
value range ::=
expression
| [ expression : expression |
Isb_constant_expression ::= constant_expression
mintypmax_expression ::=
expression
| expression : expression : expression
module_path conditional_expression ::= module_path _expression ? { attribute instance }
module_path_expression : module_path_expression
module_path_expression ::=
module_path_primary
| unary_module_path_operator { attribute_instance } module_path_primary
| module_path_expression binary_module_path operator { attribute_instance }
module_path_expression
| module_path_conditional_expression
module_path_mintypmax_expression ::=
module_path_expression
| module_path_expression : module_path_expression : module_path_expression
msb_constant_expression ::= constant_expression
range_expression ::=
expression
| msb_constant_expression : Isb_constant_expression
| base_expression +: width_constant_expression
| base_expression -: width_constant_expression
width_constant_expression ::= constant_expression

A.8.4 Primaries
constant_primary ::=
constant_concatenation
| constant_function_call
| ( constant_mintypmax_expression )
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| constant_multiple_concatenation
| genvar_identifier
| number
| parameter_identifier
| specparam_identifier
| casting_type’ ( constant_expression )
| casting_type’ constant_concatenation
| casting_type’ constant_multiple_concatenation
| time_literal
"o 1" z|"Z|'x]"X
module_path_primary ::=
number
| identifier
| module_path_concatenation
| module_path_multiple_concatenation
| function call
| system function_call
| constant_function_call
| ( module_path_mintypmax_expression )
primary ::=
number
| implicit_class handle hierarchical_identifier { [ expression] } [ [ range_expression] ]
[ . method_identifier { attribute instance} [ (expression{ , expression} )]]
| concatenation
| multiple_concatenation
| function_call
| system_function_call
| constant_function_call
| class identifier :: { class identifier :: } identifier
| ( mintypmax_expression )
| casting_type’ ( expression)
| void * ( function_call )
| casting_type’ concatenation
| casting_type’ multiple_concatenation
| time literal
['o]'1]'z]'Z|'x|'X
| null
time literal” ::=
unsigned_number time_unit
| fixed_point_number time_unit
time_unit ::=s|ms|us|ns|ps|fs|step
implicit_class_handle'® ::=[ this.] |[ super. ]

A.8.5 Expression left-side values
net_lvalue::=
hierarchical_net_identifier { [ constant_expression] } [ [ constant_range expression] ]
| { net_lvalue{ , net_lvalue} }
variable Ivalue ::=
hierarchical_variable_identifier { [ expression] } [ [ range_expression] ]
| { variable Ivalue{ , variable |value} }

A.8.6 Operators
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unary_operator ::=
P& & AN [~
binary_operator ::=
-1 11% |== 1= | === |1== | =2= | 12= | && | ||| **
| <I<=[|>|>=|& ||| |~ ]| |>> << |>>>]<<<
inc_or_dec_operator ::= ++ | --
unary_module path_operator ::=
=& [ ~& [T~ T 17~
binary_module_path_operator ::=
= [1=&& & [[[™ [~
A.8.7 Numbers
number ::=
decimal_number
| octal_number
| binary_number

| hex_number
| real_number

decimal_number ::=
unsigned_number

| [ size] decimal_base unsigned_number

| [ size] decimal_base x_digit{ _}

| [ size] decimal_base z_digit{ _}
binary_number ::=[ size] binary_base binary_vaue
octal_number ::=[ size] octal_base octal_vaue
hex_number ::=[ size] hex_base hex_vaue
sign =+ -
size ::= non_zero_unsigned_number
non_zero_unsi gned_numberl ::=non_zero_decimal_digit{ _|decimal_digit}
real_numberl ::=

fixed_point_number

| unsigned_number [ . unsigned_number ] exp [ sign] unsigned_number
fixed_point_number’ ::= unsigned_number . unsigned_number
exp:=e|E
unsigned_number? ::= decimal_digit{ | decimal_digit }
binary_value® ::= binary digit{ _|binary digit}
octal_value™ ::=octal_digit { _ | octal_digit }
hex_value® ::= hex_digit{ | hex_digit}
decimal_base ::="[s|S]d | '[s|S]D
binary_base! ::="[gS]b | '[sS]B
octal_base! ::="[gS]o | '[|S]O
hex_base! ::="[5|S]h | '[sIS]H
non_zero_decimal_digit::=1[2|3]4|5|6]7|8]9
decimal_digit::=0|1|2]3]4|5|6]7]8]9
binary digit ::=x_digit|z digit|0|1
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octal_digit ::=x_digit|z_digit|0]|1]2]|3|4|5|6]|7

hex_digit ::=x_digit | z_digit|0]1]|2|3]4]|5]|6|7|8]|9]a|b]|c|d]|e|f|A|B|C|D|E|F
x_digit :=x | X

z digit::=z|Z|?

A.8.8 Strings

string_literal ::=" { Any_ASCIl_Characters} "

A.9 General

A.9.1 Attributes
attribute_instance ::= (* attr_spec{ , attr_spec} *)
attr_spec ::=
attr_name = constant_expression
| attr_name
attr_name ::= identifier
A.9.2 Comments

comment ::=
one_line_comment
| block_comment

one_line_comment ::=// comment_text \n
block_comment ::= /* comment_text */
comment_text ::={ Any_ASCII_character }

A.9.3 Identifiers

block _identifier ::= identifier

c_identifier” :=[ a-zA-Z_]{ [azA-Z0-9 ]}

cell_identifier ::= identifier

class identifier ::= identifier

clocking_identifier ::= identifier

config_identifier ::= identifier

constraint_identifier ::= identifier

const_identifier ::= identifier

enum_identifier ::= identifier

escaped_hierarchical_identifier® ::=
escaped_hierarchical_branch { .simple_hierarchical_branch | .escaped_hierarchical_branch }

escaped_identifier ::=\ {any_ASCII_character_except_white_space} white _space

event_identifier ::= identifier

formal_identifier ::= identifier

function_identifier ::= identifier

gate instance identifier ::= identifier

generate_block_identifier ::= identifier

genvar_identifier ::= identifier

hierarchical_block_identifier ::= hierarchica_identifier

hierarchical_event_identifier ::= hierarchical_identifier

hierarchical_function_identifier ::= hierarchical_identifier
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hierarchical_identifier ::=
simple_hierarchical_identifier

| escaped _hierarchical_identifier
hierarchical_parameter_identifier ::= hierarchical_identifier
hierarchical_net_identifier ::= hierarchical_identifier
hierarchical_variable_identifier ::= hierarchical_identifier
hierarchical_task _identifier ::= hierarchical_identifier
identifier ::=

simple_identifier

| escaped_identifier
interface_identifier ::= identifier
interface_instance identifier ::= identifier
inout_port_identifier ::= identifier
input_port_identifier ::= identifier
instance_identifier ::= identifier
library identifier ::= identifier
method _identifier ::= identifier
modport_identifier ;:= identifier
module_identifier ::= identifier
module_instance identifier ::= identifier
net_identifier ::= identifier
output_port_identifier ::= identifier
parameter_identifier ::= identifier
port_identifier ::= identifier
program_identifier ::= identifier
program_instance identifier ::= identifier
property_identifier ::= identifier
sequence _identifier ::= identifier
signal_identifier ::= identifier

simple_hierarchical_identifier® ::= simple_hierarchical_branch [ . escaped_identifier ]

simple_identifier? ::=[ a-zA-Z_]{ [ a-zA-Z0-9 $]}
specparam_identifier ::= identifier

system_function_identifier® ::= $[ a-zA-20-9 $1{ [ a-zA-Z0-9 $]}
system_task_identifier® ::= §[ a-zA-Z0-9 $]{ [ a-zA-Z0-9 $]1}
task_or_function_identifier ::= task_identifier | function_identifier
task_identifier ::= identifier

terminal_identifier ::= identifier

text_macro_identifier ::= simple_identifier

topmodule_identifier ::= identifier

type_declaration identifier ::=type identifier { unpacked_dimension }
type_identifier ::= identifier

udp_identifier ::= identifier

udp_instance_identifier ::= identifier

Copyright 2003 Accellera. All rights reserved.

SystemVerilog 3.1/draft 6

299



Accellera
SystemVerilog 3.1/draft 6 Extensions to Verilog-2001

variable identifier ::= identifier
A.9.4 Identifier branches

simple_hierarchical_branch® ::=
simple_identifier { [ unsigned_number | } [ { . simple_identifier { [ unsigned_number ]} } ]

escaped_hierarchical_branch® ::=
escaped_identifier { [ unsigned number ] } [ { . escaped_identifier { [ unsigned_number]} } ]

A.9.5 White space
white_space ::= space | tab | newline | eof®
NOTES

1) Embedded spaces areillegal.

2) A simple_ identifier, c_identifier, and arrayed_reference shall start with an apha or underscore ()
character, shall have at |east one character, and shall not have any spaces.

3) The period (.) in simple_hierarchical_identifier and simple_hierarchical_branch shall not be preceded or
followed by white_space.

4) The period in escaped hierarchical_identifier and escaped hierarchical_branch shall be preceded by
white_space, but shall not be followed by white _space.

5) The $ character in a system function_identifier or system_task_identifier shall not be followed by
white_space. A system_function_identifier or system_task_identifier shall not be escaped.

6) End of file.
7) The unsigned number or fixed point number in time_literal shall not be followed by awhite_space.

8) void functions, non integer type functions, and functions with a typedef type cannot have a signing
declaration.

9) Open-array ([ ]) form shall only be used with dpi_proto_formal

10) implicit_class_handle shall only appear within the scope of a class_declaration or
extern_method_declaration.

11) In any one declaration, only one of protected or local is allowed, only one of rand or randc is allowed,
and static and/or virtual can appear only once.
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Annex B
Keywords

SystemVerilog reserves the following keywords:
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alias?® endprimitive modport’ small
always endprogram* module solve?
always_combT endproperty* nand specify
always_ffT endspecify negedge specparam
always_latchT endsequence* new’ static’
and endtable nmos string*
assert’ endtask nor strong0
assert_strobeT enum'’ noshowcancelled strongl
assign event not struct’
automatic export’ notifo super?
before® extends® notifl supply0
begin extern' null? supplyl
bind* final® or table
bit' first match® output task
break! for packedT this?
buf force parameter throughout*
bufifo forever pmos time
bufifl fork posedge timeprecisionT
byteT fcrkjoinT primitive timeunit'
case function priority' tran
casex generate program* tranifo
casez genvar property* tranifl
cell highzo protectedf tri
chandle? highzl pullo trio
class? if pulll tril
clccking* iff! pulldown triand
cmos ifnone pullup trior
config import! pulsestyle onevent trireg
const' incdir pulsestyle ondetect type'
constraint® include pure* typedefT
context? initial rand® union'
continue’ inout randc? uniqueT
cover? input rcmos unsigned
deassign inside? ref? use
default instance real var?
defparam int! realtime vectored
design integer reg virtual?
disable interface' release void!
dist? intersect? repeat wait

do’ join return wait order?
edge join_any* rnmos wand
else join_none* rpmos weak0
end large rtran weakl
endcase liblist rtranifo while
endclass? library rtranifl wire
endclocking* local? scalared with?*
endconfig localparam sequence* within®
endfunction logicT shortint’ wor
endgenerate longintT shortreal' Xnor
endinterface’ macromodule showcancelled xor
endmodule medium signed
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T keywords added to the | EEE 1364 Verilog-2001 standard as part of SystemVerilog 3.0
* keywords added to the IEEE 1364 Verilog-2001 standard as part of SystemVerilog 3.1

Note: The keyword var is reserved for future extensions.
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Annex C

Linked Lists

(Informative)

The List package implements a classic list data-structure, and is analogous to the STL (Standard Template
Library) List container that is popular with C++ programmers. The container is defined as a parameterized
class, meaning that it can be customized to hold data of any type.

C.1 List definitions

list—A list is a doubly linked list, where every element has a predecessor and successor. A list is a sequence
that supports both forward and backward traversal, as well as amortized constant time insertion and removal of
elements at the beginning, end, or middle.

container—A container isacollection of data of the same type. Containers are objects that contain and manage
other data. Containers provide an associated iterator that allows access to the contained data.

iterator—Iterators are objects that represent positions of elements in a container. They play arole similar to
that of an array subscript, and allow users to access a particular element, and to traverse through the container.

C.2 List declaration
The List package supports lists of any arbitrary predefined type, such as integer, string, Or class object.

Any iterator that refers to the position of an element that is removed from alist becomes invalid, thus, unable
to iterate over the list.

To declare a specific list, users must first include the generic List class declaration from the standard include
area and then declare the specialized list type:

‘include <List.vh>

List# (type) dl; // dl is a List of 'type' elements

C.2.1 Declaring list variables
List variables are declared by providing a specialization of the generic list class:

List# (integer) 1il; // Object il is a list of integer
typedef List# (Packet) PList; // Class Plist is a list of Packet objects

The List specialization declares alist of the indicated type. The type used in the list declaration determines the
type of the data stored in the list elements.

C.2.2 Declaring list iterators
List iterators are declared by providing a specialization of the generic List_Iterator class:

List_Iterator#(string) s; // Object s is a list-of-string iterator
List Iterator# (Packet) p, q; // p and g are iterators to a list-of-Packet

C.3 Linked list class prototypes

The following class prototypes describe the generic List and List_lterator classes. Only the public interface is
included here.

C.3.1 List_lterator class prototype
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class List Iterator# (parameter type T);

extern
extern
extern
extern
extern
endclass

function
function
function
function
function

void next () ;

void prev () ;

int neqg( List Iterator#(T) iter );
int eqg( List Iterator#(T) iter );
T data();

C.3.2 List class prototype

class List# (parameter type T);

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

extern
extern
extern
extern
extern
extern
endclass

function
function
function
function
function
function
function
function
function
function
function
function
function

function
function
function
function
function
function

new () ;

int size();

int empty () ;

void push front( T value );
void push back( T value );

T front () ;

T back() ;

void pop front () ;

void pop back() ;

List Iterator#(T) start();

List Iterator#(T) finish();

void insert( List Iterator#(T) position, T value );

void insert range( List Iterator#(T) position,

first, last );
void erase( List Iterator#(T) position );
void erase range( List Iterator#(T) first,
void set( List Iterator#(T) first, last );
void swap( List#(T) 1lst );
void clear () ;
void purge() ;

C.4 List_lterator methods

last

)i

The List_lterator class provides methods to iterate over the elements of lists. These methods are described
below.

C.4.1 next()

function void next () ;

next changestheiterator so that it refers to the next element in thelist.
C.4.2 prev()

function void prev () ;

prev changes the iterator so that it refers to the previous element in the list.
C.4.3 eq()

function int eqg( List Iterator#(T) iter );

eq compares two iterators, and returns 1 if both iterators refer to the same list element. Otherwise, it returns 0.

304

if( il.eqg(i2) ) $display("both iterators refer to the same element");
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C.4.4 neq()

function int neq( List Iterator#(T) iter );

neq isthe negation of eq () ; it compares two iterators, and returns O if both iterators refer to the same list ele-
ment. Otherwise, it returns 1.

C.4.5 data()

function T data();
data returns the data stored in the element at the given iterator location.
C.5 List methods

The List class provides methods to query the size of the list, obtain iterators to the head or tail of the list,
retrieve the data stored in the list, and methods to add, remove, and reorder the el ements of the list.

C.5.1size()
function int size();
size returns the number of elements stored in thelist.
while ( listl.size > 0 ) begin // loop while still elements in the list

end

C.5.2 empty()
function int empty () ;
empty returns 1 if the number elements stored in the list is zero, 0 otherwise.

if ( listl.empty )
Sdisplay( "list is empty" );

C.5.3 push_front()
function void push front( T value );
push_front insertsthe specified value at the front of the list.
List# (int) numbers;

numbers.push front (10) ;
numbers.push front (5) ; // numbers contains { 5 , 10 }

C.5.4 push_back()
function void push back( T value );
push_back inserts the specified value at the end of the list.
List# (string) names;

names.push back ("Donald") ;
names.push _back ("Mickey") ; // names contains { "Donald", "Mickey" }
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C.5.5front()

function T front () ;

front returns the data stored in the first element of thelist (valid only if thelist is not empty).
C.5.6 back()

function T back() ;
back returns the data stored in the last element of the list (valid only if thelist is not empty).

List# (int) numbers;

numbers.push front (3) ;

numbers.push front (2) ;

numbers.push front (1) ;

Sdisplay( numbers.front, numbers.back ); // displays 1 3

C.5.7 pop_front()

function void pop_ front() ;

pop_front removes the first element of thelist. If the list is empty, this method isillegal and can generate an
error.

C.5.8 pop_back()

function void pop back() ;

pop_back removes the last element of the list. If the list is empty, this method isillegal and can generate an
error.

while ( lp.size > 1 ) begin // remove all but the center element from
// an odd-sized list lp
lp.pop front () ;

lp.pop back() ;
end

C.5.9 start()

function List Iterator#(T) start();

start returns an iterator to the position of the first element in the list.
C.5.10 finish()

function List Iterator#(T) finish();

finish returns an iterator to a position just past the last element in the list. The last element in the last can be
accessed using finish.prev.

List# (int) 1lst; // display contents of list 1lst in position order
for ( List Iterator#(int) p = lst.start; p.neqg(lst.finish); p.next )
$display( p.data );

C.5.11 insert()

function void insert( List Iterator#(T) position, T value );
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insert insertsthe given data (value) into thelist at the position specified by the iterator (before the ele-
ment, if any, that was previously at the iterator’s position). If the iterator is not a valid position within the list,
then this operation isillegal and can generate an error.

function void add sort( List# (byte) L, byte value );

for ( List_ Iterator#(byte) p = L.start; p.neqg(L.finish) ; p.next )
if ( p.data > value ) begin
lst.insert( p, value ); // Add to sorted list (ascending order)
return;
end
endfunction

C.5.12 insert_range()
function void insert range( List Iterator#(T) position, first, last );

insert_range inserts the elements contained in the list range specified by the iterators first and last at the
specified list position (before the element, if any, that was previoudly at the position iterator). All the elements
from first up to, but not including, last are inserted into the list. If the last iterator refers to an element before
the first iterator, the range wraps around the end of the list. The range iterators can specify arange either in
another list or in the same list as being inserted.

If the position iterator is not avalid position within the list, or if the range iterators are invalid (i.e., they refer
to different lists or to invalid positions), then this operation isillegal and can generate an error.

C.5.13 erase()

function void erase( List Iterator#(T) position );

erase removes form the list the element at the specified position. After erase () returns, the position iterator
becomesinvalid.

listl.erase( listl.start ); // same as pop_ front

If the position iterator is not avalid position within the list, this operation isillegal and can generate an error.
C.5.14 erase_range()

function void erase range( List Iterator#(T) first, last );
erase_range removesfrom alist the range of elements specified by thefirst and last iterators. This operation
removes elements from the first iterator’s position up to, but not including, the last iterator’s position. If the
last iterator refers to an element before the first iterator, the range wraps around the end of the list.

listl.erase_range( listl.start, listl.finish ); // Remove all elements from
// listl

If the range iterators are invalid (i.e., they refer to different lists or to invalid positions), then this operation is
illegal and can generate an error.

C.5.15 set()

function void set( List Iterator#(T) first, last );
set assignsto thelist object the elementsthat lie in the range specified by the first and last iterators. After this
method returns, the modified list shall have a size equal to the range specified by first and last. This method
copies the data from the first iterator’s position up to, but not including, the last iterator’s position. If the last
iterator refersto an element before the first iterator, the range wraps around the end of the list.

list2.set( listl.start, list2.finish ); // list2 is a copy of listl
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If the range iterators are invalid (i.e., they refer to different lists or to invalid positions), then this operation is
illegal and can generate an error.

C.5.16 swap()
function void swap( List#(T) 1lst );
swap exchanges the contents of two equal-size lists.
listl.swap( list2 ); // swap the contents of listl to list2 and vice-versa

Swapping alist with itself has no effect. If the lists are of different sizes, this method can issue awarning.
C.5.17 clear()

function void clear () ;
clear removes al the elements from alist, but not the list itself (i.e., the list header itself).

listl.clear(); // listl becomes empty
C.5.18 purge()

function void purge() ;

purge removesall thelist elements (asin clear) and the list itself. This accomplishesthe same effect as assign-
ing null to thelist. A purged list must be re-created using new before it can be used again.

listl.purge () ; // same as listl = null
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Annex D
DPI C-layer

D.1 Overview

The SystemVerilog Direct Programming Interface (DPI) allows direct inter-language function calls between
SystemVerilog and any foreign programming language with a C function call protocol and linking model:

— Functions implemented in C and given import declarations in SystemVerilog can be caled from System-
Verilog; such functions are referred to as imported functions.

— Functions implemented in SystemVerilog and specified in export declarations can be called from C; such
functions are referred to as exported functions.

The SystemVerilog DPI supports only SystemVerilog data types, which are the sole data types that can cross
the boundary between SystemVerilog and a foreign language in either direction. On the other hand, the data
types used in C code shall be C types; hence, the duality of types.

A value that is passed through the Direct Programming Interface is specified in SystemVerilog code as avaue
of SystemVerilog type, while the same value shall be specified in C code as avaue of C type. Therefore, apair
of matching type definitions is required to pass a value through DPI: the SystemVerilog definition and the C
definition.

It isthe user’s responsibility to provide these matching definitions. A tool (such as a SystemVerilog compiler)
can facilitate this by generating C type definitions for the SystemVerilog definitions used in DPI for imported
and exported functions.

Some SystemVerilog types are directly compatible with C types; defining a matching C type for them is
straightforward. There are, however, SystemVerilog-specific types, namely packed types (arrays, structures,
and unions), 2-state or 4-state, which have no natural correspondencein C. DPI does not require any particular
representation of such types and does not impose any restrictions on SystemVerilog implementations. This
allows implementors to choose the layout and representation of packed types that best suits their simulation
performance.

While not specifying the actual representation of packed types, this C-layer interface defines a canonical repre-
sentation of packed 2-state and 4-state arrays. This canonical representation is actually based on legacy Verilog
Programming Language Interface’s (PLI's) avalue/bvalue representation of 4-state vectors. Library functions
provide the translation between the representation used in a simulator and the canonical representation of
packed arrays. There are also functions for bit selects and limited part selects for packed arrays, which do not
require the use of the canonical representation.

Formal arguments in SystemVerilog can be specified as open arrays solely in import declarations; exported
SystemVerilog functions can not have formal arguments specified as open arrays. A formal argument is an
open array when a range of one or more of its dimensions is unspecified (denoted in SystemVerilog by using
empty square brackets ([1)). This corresponds to a relaxation of the DPI argument-matching rules
(Section 26.5.1). An actual argument shall match the corresponding formal argument regardless of the range(s)
for its corresponding dimension(s), which facilitates writing generalized C code that can handle SystemVerilog
arrays of different sizes.

The C-layer of DPI basically uses normalized ranges. Normalized ranges mean [n-1:0] indexing for the
packed part (packed arrays are restricted to one dimension) and [0:n-1] indexing for a dimension in the
unpacked part of an array. Normalized ranges are used for the canonical representation of packed arraysin C
and for System Verilog arrays passed as actual arguments to C, with the exception of actual arguments for open
arrays. The elements of an open array can be accessed in C by using the same range of indices as defined in
System Verilog for the actual argument for that open array and the same indexing as in SystemVerilog.

Function arguments are generally passed by some form of reference or by value. All formal arguments, except

open arrays, are passed by direct reference or value, and, therefore, are directly accessible in C code. Only
small values of SystemVerilog input arguments (see Annex D.7.7) are passed by value. Formal arguments
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declared in SystemVerilog as open arrays are passed by a handle (type svopenaArrayHandle) and are accessi-
ble vialibrary functions. Array-querying functions are provided for open arrays.

Depending on the data types used for imported or exported functions, either binary level or C-source level
compatibility is granted. Binary level is granted for all data types that do not mix SystemVerilog packed and
unpacked types and for open arrays which can have both packed and unpacked parts. If a data type that mixes
SystemVerilog packed and unpacked types is used, then the C code needs to be re-compiled using the imple-
mentation-dependent definitions provided by the vendor.

The C-layer of the Direct Programming Interface provides two include files. The main include file, svdpi . h,
is implementation-independent and defines the canonical representation, all basic types, and al interface func-
tions. The second include file, svdpi_src.h, defines only the actua representation of packed arrays and,
hence, its contents are implementation-dependent. Applications that do not need to include thisfile are binary-
level compatible.

D.2 Naming conventions
All namesintroduced by this interface shall conform to the following conventions.

— All names defined in this interface are prefixed with sv or sv_.

— Function and type names start with sv, followed by initially capitalized words with no separators, e.g.,
svBitPackedArrRef.

— Names of symbolic constants start with sv_, e.g., sv_x.

— Names of macro definitions start with sv_, followed by all upper-case words separated by a underscore
(), eg., SV_CANONICAL SIZE.

D.3 Portability

Depending on the data types used for imported or exported functions, the C code can be binary-level or source-
level compatible. Applications that do not use SystemVerilog packed types are always binary compatible.
Applications that don’t mix SystemVerilog packed and unpacked types in the same data type can be written to
guarantee binary compatibility. Open arrays with both packed and unpacked parts are also binary compatible.

The values of SystemVerilog packed types can be accessed via interface functions using the canonical repre-
sentation of 2-state and 4-state packed arrays, or directly through pointers using the implementation represen-
tation. The former mode assures binary level compatibility; the latter one alows for tool-specific,
performance-oriented tuning of an application, though it also requires recompiling with the implementation-
dependent definitions provided by the vendor and shipped with the simulator.

D.3.1 Binary compatibility

Binary compatibility means an application compiled for a given platform shall work with every SystemVerilog
simulator on that platform.

D.3.2 Source-level compatibility

Source-level compatibility means an application needs to be re-compiled for each SystemVerilog simulator and
implementati on-specific definitions shall be required for the compilation.

D.4 Include files

The C-layer of the Direct Programming I nterface defines two include files corresponding to these two levels of
compatibility: svdpi.h and svdpi_src.h.

Binary compatibility of an application depends on the data types of the values passed through the interface. If
all corresponding type definitions can be written in C without the need to include the svdpi_src.h file, then
an application is binary compatible. If the svdpi src.h file is required, then the application is not binary
compatible and needs to be recompiled for each simulator of choice.
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Applications that pass solely C-compatible data types or standalone packed arrays (both 2-state and 4-state)
require only the svdpi.h file and, therefore, are binary compatible with all simulators. Applications that use
complex data types which are constructed of both SystemVerilog packed arrays and C-compatible types also
require the svdpi_src.h file and, therefore, are not binary compatible with all simulators. They are source-
level compatible, however. If an application is tuned for a particular vendor-specific representation of packed
arrays and therefore needs vendor specific include files, then such an application is not source-level compati-
ble.

D.4.1 svdpi.h include file

Applications which use the Direct Programming I nterface with C code usually need this main include file. The
include file svdpi . h defines the types for canonical representation of 2-state (bit) and 4-state (1ogic) val-
ues and passing references to SystemVerilog data objects. Thefile a so provides function headers and definesa
number of helper macros and constants.

This document fully defines the svdpi.h file. The content of svdpi.h does not depend on any particular
implementation or platform; al simulators shall use the same file. For more details on svdpi.h, see
Annex D.9.1.

Applications which only use svdpi . h shall be binary-compatible with al SystemVerilog simulators.
D.4.2 svdpi_src.hinclude file

Thisisan auxiliary includefile. svdpi_src.h defines data structures for implementation-specific representa-
tion of 2-state and 4-state SystemVerilog packed arrays. The interface specifies the contents of this file, i.e.,
what symbols are defined. The actual definitions of those symbols, however, are implementation-specific and
shall be provided by vendors.

Applications that require the svdpi_src.h file are only source-level compatible, i.e., they need to be com-
piled with the version of svdpi_src.h provided for a particular implementation of SystemVerilog. If, how-
ever, an application makes use of the details of the implementation-specific representation of packed arrays
and thus it requires vendor specific include files, then such an application is not source-level compatible.

D.5 Semantic constraints

Note that the constraints expressed here merely restate those expressed in Section 26.4.1.

Formal and actual arguments of both imported functions and exported functions are bound by the principle
“What You Specify Is What You Get.” This principleis binding both for the caller and for the callee, in C code
and in SystemVerilog code. For the calleg, it guarantees the actual arguments are as specified for the formal
ones. For the caller, it means the function call arguments shall conform with the types of the formal arguments,
which might require type-coercion on the caller side.

Another way to state this is that no compiler (either C or SystemVerilog) can make argument coercions
between a caller’s declared formals and the callee’s declared the formals. This is because the callee’s formal
arguments are declared in a different language than the caller’s formal arguments; hence there is no visible
relationship between the two sets of formals. Users are expected to understand all argument relationships and
provide properly matched types on both sides of the interface (see Annex D.6.2).

In SystemVerilog code, the compiler can change the formal arguments of a native SystemVerilog function and
modify its code accordingly, because of optimizations, compiler pragmas, or command line switches. The situ-
ation is different for imported functions. A SystemVerilog compiler can not modify the C code, perform any
coercions, or make any changes whatsoever to the formal arguments of an imported function.

A SystemVerilog compiler shall provide any necessary coercions for the actual arguments of every imported
function call. For example, a SystemVerilog compiler might truncate or extend bits of a packed array if the
widths of the actual and formal arguments are different. Similarly, a C compiler can provide coercion for C
types based on the relationship of the arguments in the exported function's C prototype (formals) and the
exported function’s C call site (actuals). However, a C compiler can not provide such coercion for SystemVer-

ilog types.
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Thus, in each case of an inter-language function call, either C to SystemVerilog or SystemVerilog to C, the
compilers expect but cannot enforce that the types on either side are compatible. It is therefore the user’s
responsibility to ensure that the imported/exported function types exactly match the types of the corresponding
functionsin the foreign language.

D.5.1 Types of formal arguments

The principle “What You Specify Is What You Get” guarantees the types of formal arguments of imported
functions — an actual argument is guaranteed to be of the type specified for the formal argument, with the
exception of open arrays (for which unspecified ranges are statically unknown). Formal arguments, other than
open arrays, are fully defined by imported declaration; they shall have ranges of packed or unpacked arrays
exactly as specified in the imported declaration. Only the SystemVerilog declaration site of the imported func-
tion isrelevant for such formal arguments.

Formal arguments defined as open arrays have the size and ranges of the actual argument, i.e., have the ranges
of packed or unpacked arrays exactly as that of the actual argument. The unsized ranges of open arrays are
determined at a call site; the rest of the type information is specified at the import declaration. See also
Annex D.6.1.

So, if aformal argument isdeclaredasbit [15:8] b [],thenitistheimport declaration which specifiesthe
formal argument is an unpacked array of packed bit array with bounds 15 to 8, while the actual argument used
at aparticular call site defines the bounds for the unpacked part for that call.

D.5.2 input arguments

Formal arguments specified in SystemVerilog as input must not be modified by the foreign language code.
See also Section 26.4.1.2.

D.5.3 output arguments

Theinitial values of formal arguments specified in SystemVerilog as output are undetermined and implemen-
tation-dependent. See also Section 26.4.1.2.

D.5.4 Value changes for output and inout arguments

The SystemVerilog simulator is responsible for handling value changes for output and inout arguments.
Such changes shall be detected and handled after the control returns from C code to SystemVerilog code.

D.5.5 context and non-context functions
Also refer to Section 26.4.3.

Some DPI imported functions or other interface functions called from them require that the context of their call
be known. It takes special instrumentation of their call instances to provide such context; for example, a vari-
able referring to the “current instance” might need to be set. To avoid any unnecessary overhead, imported
function callsin SystemVerilog code are not instrumented unless the imported function is specified as context
in its SystemVerilog import declaration.

All DPI export functions require that the context of their call is known. This occurs since SystemVerilog func-
tion declarations always occur in instantiable scopes, hence alowing a multiplicity of unique function
instances in the simulator’s elaborated database. Thus, there is no such thing as a non-context export function.

For the sake of simulation performance, a non-context imported function call shall not block SystemVerilog
compiler optimizations. An imported function not specified as context shall not access any data objects from
SystemVerilog other then its actual arguments. Only the actual arguments can be affected (read or written) by
its call. Therefore, a call of non-context imported function is not a barrier for optimizations. A context
imported function, however, can access (read or write) any SystemVerilog data objects by calling PLI/VPI, nor
by calling an embedded export function. Therefore, a call to a context function is a barrier for SystemVerilog
compiler optimizations.

Only the calls of context imported functions are properly instrumented and cause conservative optimizations;
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therefore, only those functions can safely call al functions from other APIs, including PLI and VPI functions
or exported SystemVerilog functions. For imported functions not specified as context, the effects of calling
PLI, VPI, or SystemVerilog functions can be unpredictable and such calls can crash if the call ee requires acon-
text that has not been properly set.

Specia DPI utility functions exist that allow imported functions to retrieve and operate on their context. For
example, the C implementation of an imported function can use svGetScope () tO retrieve an svScope corre-
sponding to the instance scope of its corresponding SystemVerilog import declaration. See Annex D.8 for
more details.

D.5.6 pure functions
See also Section 26.4.2.

Only non-void functions with no output or inout arguments can be specified as pure. Functions specified
aspure in their corresponding SystemVerilog import declarations shall have no side effects; their results need
to depend solely on the values of their input arguments. Calls to such functions can be removed by SystemVer-
ilog compiler optimizations or replaced with the values previously computed for the same values of the input
arguments.

Specifically, apure function is assumed not to directly or indirectly (i.e., by calling other functions):
— perform any file operations

— read or write anything in the broadest possible meaning, includes i/o, environment variables, objects from
the operating system or from the program or other processes, shared memory, sockets, etc.

— access any persistent data, like global or static variables.

If a pure function does not obey the above restrictions, SystemVerilog compiler optimizations can lead to
unexpected behavior, due to eliminated calls or incorrect results being used.

D.5.7 Memory management
See also Section 26.4.1.4.

The memory spaces owned and allocated by C code and SystemVerilog code are digoined. Each side is
responsible for its own allocated memory. Specifically, C code shall not free the memory allocated by System-
Verilog code (or the SystemVerilog compiler) nor expect SystemVerilog code to free the memory allocated by
C code (or the C compiler). This does not exclude scenarios in which C code allocates a block of memory, then
passes a handle (i.e., a pointer) to that block to SystemVerilog code, which in turn calls a C function that
directly (if it is the standard function £ree) or indirectly frees that block.

NOTE—In thislast scenario, a block of memory is alocated and freed in C code, even when the standard functions
malloc and free are called directly from SystemVerilog code.

D.6 Data types

This section defines the data types of the C-layer of the Direct Programming Interface.

D.6.1 Limitations

Packed arrays can have an arbitrary number of dimensions; though they are eventually always equivalent to a
one-dimensional packed array and treated as such. If the packed part of an array in the type of a formal argu-
ment in SystemVerilog is specified as multi-dimensional, the SystemVerilog compiler linearizes it. Although
the original ranges are generally preserved for open arrays, if the actual argument has a multidimensional
packed part of the array, it shall be normalized into an equiva ent one-dimensional packed array.

NOTE—The actual argument can have both packed and unpacked parts of an array; either can be multidimensional.

D.6.2 Duality of types: SystemVerilog types vs. C types
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A value that crosses the Direct Programming Interface is specified in SystemVerilog code as a value of Sys-
temVerilog type, while the same value shall be specified in C code as avalue of C type. Therefore, each data
type that is passed through the Direct Programming Interface requires two matching type definitions: the Sys-
temVerilog definition and C definition.

The user needs to provide such matching definitions. Specificaly, for each SystemVerilog type used in the
import declarations or export declarations in SystemVerilog code, the user shall provide the equivalent type
definition in C reflecting the argument passing mode for the particular type of SystemVerilog value and the
direction (input, output, Or inout) of the formal SystemVerilog argument. For values passed by reference,
a generic pointer void * can be used (conveniently typedefed in svdpi.h Or svdpi_src.h) without
knowing the actual representation of the value.

D.6.3 Data representation

DPI imposes the following additional restrictions on the representation of SystemVerilog data types.

— SystemVerilog types that are not packed and that do not contained packed elements have C compatible rep-
resentation.

— Basic integer and real datatypes are represented as defined in Annex D.6.4.

— Enumeration types are represented as the types associated with them. Enumerated names are not available
on C side of interface.

— Representation of packed types is implementation-dependent.

— Unpacked arrays embedded in a structure have C compatible layout regardless of the type of elements.
Similarly, standalone arrays passed as actuals to a sized formal argument have C compatible representa-
tion.

— Standalone array passed as an actual to an open array formal
— if the element typeis scalar or packed then the representation is implementation dependent

— otherwise the representation is C compatible. Therefore an element of an array shall have the same rep-
resentation as an individual value of the same type. Hence, an array’s elements can be accessed from C
code vianormal C array indexing similarly to doing so for individual values.

— Thenatural order of elements for each dimension in the layout of an unpacked array shall be used, i.e., ele-
ments with lower indices go first. For SystemVerilog range [L:R], the element with SystemVerilog index
min (L,R) has the C index 0 and the element with SystemVerilog index max (L., R) has the C index
abs (L-R).

NOTE—This does not actually impose any restrictions on how unpacked arrays are implemented; it only says an array that

does not satisfy this condition shall not be passed as an actual argument for aformal argument which isasized array; it can

be passed, however, for a formal argument which is an unsized (i.e., open) array. Therefore, the correctness of an actual

argument might be implementation-dependent. Nevertheless, an open array provides an implementati on-independent solu-
tion; this seems to be a reasonabl e trade-off.

D.6.4 Basic types

Table D-1 defines the mapping between the basic SystemVerilog data types and the corresponding C types.

Table D-1: Mapping data types

SystemVerilog type C type
byte char
shortint short int
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Table D-1: Mapping data types (continued)

SystemVerilog type C type
int int
longint long long
real double
shortreal float
handle void*
string char*

The representation of SystemVerilog-specific datatypes like packed bit and logic arraysisimplementation-
dependent and generally transparent to the user. Nevertheless, for the sake of performance, applications can be
tuned for a specific implementation and make use of the actua representation used by that implementation;
such applications shall not be binary compatible, however.

D.6.5 Normalized ranges

Packed arrays are treated as one-dimensional; the unpacked part of an array can have an arbitrary number of
dimensions. Normalized ranges mean [n-1:0] indexing for the packed part and [0:n-1] indexing for a
dimension of the unpacked part of an array. Normalized ranges are used for accessing all arguments but open
arrays. The canonical representation of packed arrays also uses normalized ranges.

D.6.6 Mapping between SystemVerilog ranges and normalized ranges

The SystemVerilog ranges for a formal argument specified as an open array are those of the actual argument
for aparticular call. Open arrays are accessible, however, by using their original ranges and the same indexing
asin the SystemVerilog code.

For all other types of arguments, i.e., al arguments but open arrays, the SystemVerilog ranges are defined in
the corresponding SystemVerilog import or export declaration. Normalized ranges are used for accessing such
arguments in C code. The mapping between SystemVerilog ranges and normalized ranges is defined as fol-
lows.

1) If apacked part of an array has more than one dimension, it islinearized as specified by the equivalence of
packed types (see Section 4.2).

2) A packed array of range [L:R] isnormalized as [abs (L-R) : 0] ; itsmost significant bit has a normalized
index abs (L-R) and itsleast significant bit has a normalized index O.

3) The natura order of elements for each dimension in the layout of an unpacked array shall be used, i.e,
elements with lower indices go first. For SystemVerilog range [L:R], the element with SystemVerilog
index min (L, R) hasthe C index 0 and the element with SystemVerilog index max (1., R) hasthe C index
abs (L-R).

NOTE—The above range mapping from SystemVerilog to C appliesto calls made in both directions, i.e., SystemVerilog-
calsto C and C-calls to SystemVerilog.

For example, if logic [2:3]1([1:3]1[2:0] b [1:10] [31:0] isusedin SystemVerilog, it needs to be
defined in C as if it were declared in SystemVerilog in the following normalized form: logic [17:0] b
[0:9] [0:31].

D.6.7 Canonical representation of packed arrays

The Direct Programming Interface defines the canonical representation of packed 2-state (type svBitvec32)
and 4-state arrays (type svLogicvec32). This canonical representation is derived from on the Verilog legacy
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PLI's avalue/bvalue representation of 4-state vectors. Library functions provide the trandation between the
representation used in a simulator and the canonical representation of packed arrays.

A packed array is represented as an array of one or more elements (of type svBitvec32 for 2-state values and
svLogicvec32 for 4-state values), each element representing a group of 32 bits.The first element of an array
contains the 32 least-significant bits, next element contains the 32 more-significant bits, and so on. The last
element can contain a number of unused bits. The contents of these unused bits is undetermined and the user is
responsible for the masking or the sign extension (depending on the sign) for the unused hits.

Table D-2 defines the encoding used for a packed 1ogic array represented as svLogicVec32.

Table D-2: Encoding of bits in svLogicvec32

c d Value
0 0 0
0 1 1
1 0 z
1 1 X

D.7 Argument passing modes

This section defines the ways to pass argumentsin the C-layer of the Direct Programming Interface.
D.7.1 Overview

Imported and exported function arguments are generally passed by some form of a reference, with the excep-
tion of small values of SystemVerilog input arguments (see Annex D.11.7), which are passed by value. Simi-
larly, the function result, which is restricted to small values, is passed by value, i.e., directly returned.

Actual arguments passed by reference typically are passed without changing their representation from the one
used by a simulator. There is no inherent copying of arguments (other than any copying resulting from coerc-

ing).

Access to packed arrays via canonical representation involves copying arguments and does incur some over-
head, however. Alternatively, for the sake of performance the application can be tuned for a particular tool and
access the packed arrays directly through pointers using implementation representation, which could compro-
mise binary and/or source compatibility. Data can be, however, moved around (copied, stored, retrieved) with-
out using canonical representation while preserving binary or source level compatibility at the sametime. This
is possible by using pointers and size of data and when the detailed knowledge of the data representation is not
required.

NOTE—This provides some degree of flexibility and allows the user to control the trade-off of performance vs. portability.

Formal arguments, except open arrays, are passed by direct reference or value, and, therefore, are directly
accessiblein C code. Formal arguments declared in SystemVerilog as open arrays are passed by a handle (type
svOpenArrayHandle) and are accessible vialibrary functions.

D.7.2 Calling SystemVerilog functions from C

Thereis no difference in argument passing between calls from SystemVerilog to C and callsfrom C to System-
Verilog. Functions exported from SystemVerilog can not have open arrays as arguments. Apart from this
restriction, the same types of formal arguments can be declared in SystemVerilog for exported functions and
imported functions. A function exported from SystemVerilog shall have the same function header in C as
would an imported function with the same function result type and same formal argument list. In the case of
arguments passed by reference, an actual argument to SystemVerilog function called from C shall be allocated
using the same layout of data as SystemVerilog uses for that type of argument; the caller is responsible for the
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alocation. It can be done while preserving the binary compatibility, see Annex D.11.5 and Annex D.11.11.
D.7.3 Argument passing by value

Only small values of formal input arguments (see Annex D.11.7) are passed by value. Function results are also
directly passed by value. The user needs to provide the C-type equivalent to the SystemVerilog type of afor-
mal argument if an argument is passed by value.

D.7.4 Argument passing by reference

For arguments passed by reference, their original simulator-defined representation shall be used and a refer-
ence (a pointer) to the actual data object is passed. The actual argument is usualy allocated by a caller. The
caller can also pass a reference to an object aready allocated somewhere else, for example, its own formal
argument passed by reference.

If an argument of type T is passed by reference, the forma argument shall be of type T*. However, packed
arrays can aso be passed using generic pointers void* (typedefed accordingly t0o svBitPackedArrRef Of
svLogicPackedArrRef).

D.7.5 Allocating actual arguments for SystemVerilog-specific types

Thisis relevant only for calling exported SystemVerilog functions from C code. The caller is responsible for
alocating any actual arguments that are passed by reference.

Static allocation requires knowledge of the relevant data type. If such a type involves SystemVerilog packed
arrays, their actual representation needs to be known to C code; thus, the file svdpi src.h needs to be
included, which makes the C code implementation-dependent and not binary compatible.

Sometimes binary compatibility can be achieved by using dynamic allocation functions. The functions
svSizeOfLogicPackedArr () and svSizeOfBitPackedArr () provide the size of the actual representa-
tion of a packed array, which can be used for the dynamic allocation of an actual argument without compro-
mising the portability (see Annex D.11.11). Such a technique does not work if a packed array is a part of
another type.

D.7.6 Argument passing by handle—open arrays

Arguments specified as open (unsized) arrays are always passed by a handle, regardless of direction of the Sys-
temVerilog formal argument, and are accessible vialibrary functions. The actual implementation of ahandleis
simulator-specific and transparent to the user. A handle is represented by the generic pointer void * (type-
defed to svOpenArrayHandle). Arguments passed by handle shall always have a const qudlifier, because
the user shall not modify the contents of a handle.

D.7.7 input arguments
input arguments of imported functionsimplemented in C shall always have a const qualifier.

input arguments, with the exception of open arrays, are passed by value or by reference, depending on the
size. ‘Small’ values of formal input arguments are passed by value. The following data types are considered
small:

— byte, shortint, int, longint, real, shortreal
— handle, string

— bit (i.e, 2-state) packed arrays up to 32 bits (canonical representation shall be used, like for a function
result; thus a small packed bit array shall be represented as const svBitvec32)

input arguments of other types are passed by reference.
If an input argument isapacked bit array passed by value, its value shall be represented using the canonical

representation svBitvec3z2. If the size is smaller than 32 bits, the most significant bits are unused and their
contents are undetermined. The user is responsible for the masking or the sign extension, depending on the
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sign, for the unused bits.
D.7.8 inout and output arguments

inout and output arguments, with the exception of open arrays, are aways passed by reference. Specificaly,
packed arrays are passed, accordingly, as svBitPackedArrRef Of svLogicPackedArrRef. The same rules
about unused bits apply asin Annex D.11.7.

D.7.9 Function result

Types of afunction result are restricted to the following SystemVerilog data types (see Table D-1 for the corre-
sponding C type):

— byte, shortint, int, longint, real, shortreal, handle, string

— packed bit arrays up to 32 hits.

If the function result type is a packed bit array, the returned value shall be represented using the canonical
representation svBitvec32. If apacked bit array issmaller than 32 bits, the most significant bits are unused
and their contents are undetermined.

D.8 Context functions

Some DPI imported functions require that the context of their call is known. For example, those calls can be
associated with instances of C models that have a one-to-one correspondence with instances of SystemVerilog
modules that are making the calls. Alternatively, a DPI imported function might need to access or modify sim-
ulator data structures using PLI or VPI calls, or by making a call back into SystemVerilog via an export func-
tion. Context knowledge is required for such calls to function properly. It can take special instrumentation of
their call to provide such context.

To avoid any unnecessary overhead, imported function calls in SystemVerilog code are not instrumented
unless theimported function is specified as context in its SystemVerilog import declaration. A small set of DPI
utility functions are available to assist programmers when working with context functions (see Annex D.8.3).
If those utility functions are used with any non-context function, a system error shall result.

D.8.1 Overview of DPI and VPI context

Both DPI functions and VPI/PLI functions might need to understand their context. However, the meaning of
the term is different for the two categories of functions.

DPI imported functions are essentially proxies for native SystemVerilog functions. Native SystemVerilog
functions always operate in the scope of their declaration site. For example, a native SystemVerilog function
£ () canbedeclaredinamodulem whichisinstantiated astop.il m.Thetop.il minstanceof £ () can
be called via hierarchical reference from code in a distant design region. Function £ () issaid to executein the
context (aka. instantiated scope) of top.1i1 m, since it has unqualified visibility only for variables local to
that specific instance of m. Function £ () does not have unqualified visibility for any variables in the calling
code's scope.

DPI imported functions follow the same model as native SystemVerilog functions. They execute in the context
of their surrounding declarative scope, rather than the context of their call sites. This type of context is termed
DPI context.

Thisisin contrast to VPl and PLI functions. Such functions execute in a context associated with their call sites.
The VPI/PLI programming model relies on C code's ahility to retrieve a context handle associated with the
associated system task’s call site, and then work with the context handle to glean information about arguments,
itemsin the call site's surrounding declarative scope, etc. Thistype of context istermed VPI context.

Note that all DPI export functions require that the context of their call is known. This occurs since SystemVer-
ilog function declarations always occur in instantiable scopes, hence giving rise to a multiplicity of associated
function instances in the ssimulator’s database. Thus, there is no such thing as a non-context export function.
All export function calls must have their execution scope specified in advance by use of a context-setting AP
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function.
D.8.2 Context of imported and export functions

DPI imported and export functions can be declared anywhere a norma SystemVerilog function can be
declared. Specificaly, this means that they can be declared in module, program, interface, Of generate
declarative scope.

A context imported function executes in the context of the instantiated scope surrounding its declaration. This
means that such functions can see other variables in that scope without qualification. As explained in
Annex D.8.1, this should not be confused with the context of the function’s call site, which can actually be
anywhere in the SystemVerilog design hierarchy. The context of an imported or exported function corresponds
to the fully qualified name of the function, minus the function name itself.

Note that context is transitive through imported and export context functions declared in the same scope. That
is, if an imported function is running in a certain context, and if it in turn calls an exported function that is
available in the same context, the exported function can be called without any use of svSetScope(). For exam-
ple, consider a SystemVerilog call to a native function £ (), which in turn calls a native function g(). Now
replace the native function £ () with an equivalent imported context C function, £’ (). The system shall
behave identically regardlessif £ () or £/ () isinthecall chainaboveg(). g () hasthe proper execution con-
text in both cases.

D.8.3 Working with DPI context functions in C code

DPI defines asmall set of functions to help programmers work with DPI context functions. The term scope is
used in the function names for consistency with other SystemVerilog terminology. The terms scope and context
are equivalent for DPI functions.

There are functions that allow the user to retrieve and manipulate the current operational scope. Itisan error to
use these functions with any C code that is not executing under a call to a DPI context imported function.

There are aso functions that provide users with the power to set data specific to C modelsinto the SystemVer-
ilog simulator for later retrieval. These are the “put” and “get” user data functions, which are similar to facili-
ties provided in VPl and PLI.

The put and get user data functions are flexible and alow for a number of use models. Users might wish to
share user data across multiple context imported functions defined in the same SV scope. Users might wish to
have unique data storage on a per function basis. Shared or unique data storage is controllable by a user-
defined key.

To achieve shared data storage, arelated set of context imported functions should al use the same userKey. To
achieve unique data storage, a context import function should use a unique key. Note that it is arequirement on
the user that such a key be truly unique from all other keys that could possibly be used by C code. This
includes completely unknown C code that could be running in the same simulation. It is suggested that taking
addresses of static C symbols (such as a function pointer, or address of some static C data) always be done for
user key generation. Generating keys based on arbitrary integers is not a safe practice.

Note that it is never possible to share user data storage across different contexts. For example, if a Verilog
module m declares a context imported function £, and m is instantiated more than once in the SystemVerilog
design, then £ shall execute under different values of svscope. No such executing instances of £ can share
user data with each other, at least not using the system-provided user data storage area accessible via svpu-
tUserData ().

A user wanting to share a data area across multiple contexts must do so by allocating the common data area,
then storing the pointer to it individually for each of the contextsin question viamultiple callsto svPutUser-
Data (). Thisis because, although a common user key can be used, the data must be associated with the indi-
vidual scopes (denoted by svscope) of those contexts.

/* Functions for working with DPI context functions */
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Retrieve the active instance scope currently associated with the executing
imported function.

Unless a prior call to svSetScope has occurred, this is the scope of the
function’s declaration site, not call site.

The return value is undefined if this function is invoked from a non-context
imported function.

/

svScope svGetScope () ;

* % ok %k X F

/* Set context for subsequent export function execution.
* This function must be called before calling an export function, unless
* the export function is called while executing an extern function. In that
* case the export function shall inherit the scope of the surrounding extern
* function. This is known as the “default scope”.
* The return is the previous active scope (as per svGetScope)
*

/

svScope svSetScope (const svScope scope) ;

/* Gets the fully qualified name of a scope handle */
const char* svGetNameFromScope (const svScope) ;

/* Retrieve svScope to instance scope of an arbitrary function declaration.
* (can be either module, program, interface, or generate scope)

* The return value shall be NULL for unrecognized scope names.
*/

svScope svGetScopeFromName (const char* scopeName) ;

/* Store an arbitrary user data pointer for later retrieval by svGetUserData ()
The userKey is generated by the user. It must be guaranteed by the user to
be unique from all other userKey’s for all unique data storage requirements
It is recommended that the address of static functions or variables in the
user’s C code be used as the userKey.

It is illegal to pass in NULL values for either the scope or userData
arguments. It is also an error to call svPutUserData() with an invalid
svScope. This function returns -1 for all error cases, 0 upon success. It is
suggested that userData values of 0 (NULL) not be used as otherwise it can
be impossible to discern error status returns when calling svGetUserData ()

/

int svPutUserData (const svScope scope, void *userKey, void* userData) ;

* % ok X X X X X F X F

/* Retrieve an arbitrary user data pointer that was previously
stored by a call to svPutUserData(). See the comment above
svPutUserData () for an explanation of userKey, as well as
restrictions on NULL and illegal svScope and userKey values.
This function returns NULL for all error cases, and a non-Null
user data pointer upon success.

This function also returns NULL in the event that a prior call
to svPutUserData () was never made.

/

void* svGetUserData (const svScope scope, void* userKey) ;

L T A S R

Returns the file and line number in the SV code from which the extern call
was made. If this information available, returns TRUE and updates fileName
and lineNumber to the appropriate values. Behavior is unpredictable if
fileName or lineNumber are not appropriate pointers. If this information is
not available return FALSE and contents of fileName and lineNumber not
modified. Whether this information is available or not is implementation
specific. Note that the string provided (if any) is owned by the SV
implementation and is valid only until the next call to any SV function.

/

L T B A
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* Applications must not modify this string or free it
*/

int svGetCallerInfo(char **fileName, int *lineNumber) ;

D.8.4 Example 1 — Using DPI context functions

SV Side:
// Declare an imported context sensitive C function with cname “MyCFunc”
import “DPI” context MyCFunc = function integer MapID (int portID) ;

C Side:

// Define the function and model class on the C++ side:
class MyCModel ({
private:

int locallyMapped (int portID); // Does something interesting...
public:

// Constructor

MyCModel (const char* instancePath) {

svScope svScope = svGetScopeByName (instancePath) ;

// Associate “this” with the corresponding SystemVerilog scope
// for fast retrieval during runtime.
svPutUserData (svScope, (void*) MyCFunc, this);

}

friend int MyCFunc (int portID) ;

i

// Implementation of imported context function callable in SV
int MyCFunc (int portID) {
// Retrieve SV instance scope (i.e. this function’s context) .
svScope = svGetScope() ;

// Retrieve and make use of user data stored in SV scope
MyCModel* me = (MyCModel*)svGetUserData (svScope, (void*) MyCFunc) ;
return me->locallyMapped (portID) ;

D.8.5 Relationship between DPIl and VPI/PLI interfaces

DPI alows C code to run in the context of a SystemVerilog simulation, thusiit is natural for users to consider
using VPI/PLI C code from within imported functions.

There is no specific relationship defined between DPI and the existing Verilog programming interfaces (VPI
and PL1). Programmers must make no assumptions about how DPI and the other interfaces interact. In particu-
lar, note that a vpiHandle is not equivalent to an svopenArrayHandle, and the two must not be inter-
changed and passed between functions defined in two different interface standards.

If auser wantsto call VPI or PLI functions from within an imported function, the imported function must be
flagged with the context qualifier.

Not al VPI or PLI functionality is available from within DPI context imported functions. For example, a Sys-
temVerilog imported function is not a system task, and thus making the following call from within an imported
function would result in an error:

/* Get handle to system task call site in preparation for argument scan */
vpiHandle myHandle = vpi handle(vpiSysTfCall, NULL) ;

Copyright 2003 Accellera. All rights reserved. 321



Accellera
SystemVerilog 3.1/draft 6 Extensions to Verilog-2001

Similarly, receiving misctf callbacks and other activities associated with system tasks are not supported
inside DPI imported functions. Users should use VPI or PLI if they wish to accomplish such actions.

However, the following kind of code is guaranteed to work from within DPI context imported functions:

/* Prepare to scan all top level modules */
vpiHandle myHandle = vpi_iterate(vpiModule, NULL) ;

D.9 Include files

The C-layer of the Direct Programming Interface defines two include files. The main includefile, svdpi . h, is
implementation-independent and defines the canonical representation, all basic types, and al interface func-
tions. The second include file, svdpi_src.h, defines only the actual representation of packed arrays and,
hence, is implementation-dependent. Both files are shown in Annex B.

Applications which do not need to include svdpi_src.h are binary-level compatible.
D.9.1 Binary compatibility include file svdpi.h

Applications which use the Direct Programming Interface with C code usually need this main includefile. The
include file svdpi . h defines the types for canonical representation of 2-state (bit) and 4-state (1ogic) val-
ues and passing references to SystemVerilog data objects, provides function headers, and defines a number of
helper macros and constants.

This document fully defines the svdpi.h file. The content of svdpi.h does not depend on any particular
implementation or platform; al simulators shall use the same file. The following subsections (and
Annex D.10.3.1) detail the contents of the svdpi . h file.

D.9.1.1 Scalars of type bit and logic
/* canonical representation */

#define sv.0 0
#define sv_.1 1
#define sv_z 2
#define sv.x 3

/* representation of 4-st scalar z */
/* representation of 4-st scalar x */

/* common type for ’‘bit’ and ’‘logic’ scalars. */
typedef unsigned char svScalar;

typedef svScalar svBit; /* scalar */
typedef svScalar svLogic; /* scalar */

D.9.1.2 Canonical representation of packed arrays

/* 2-state and 4-state vectors, modelled upon PLI’s avalue/bvalue */
#define SV_CANONICAL_SIZE(WIDTH) (((WIDTH)+31)>>5)

typedef unsigned int
svBitVec32;/* (a chunk of) packed bit array */

typedef struct { unsigned int c; unsigned int d;}
svLogicVec32; /* (a chunk of) packed logic array */

/* Since the contents of the unused bits is undetermined, the following macros
can be handy */
#define SV _MASK(N) (~(-1<<(N)))

#define SV_GET UNSIGNED BITS (VALUE,N)\
((N)==32? (VALUE) : ( (VALUE) &SV_MASK(N) ) )
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#define SV_GET SIGNED BITS (VALUE,N)\
((N)==32? (VALUE) :\
(((VALUE) & (1<< ((N)1))) ? ( (VALUE) | ~SV_MASK(N) ) : ( (VALUE) &SV_MASK (N) ) ))

D.9.1.3 Implementation-dependent representation

/* a handle to a scope (an instance of a module or an interface) */
typedef void *svScope;

/* a handle to a generic object (actually, unsized array) */
typedef void* svOpenArrayHandle;

/* reference to a standalone packed array */
typedef void* svBitPackedArrRef;
typedef void* svLogicPackedArrRef;

/* total size in bytes of the simulator’s representation of a packed array */
/* width in bits */

int svSizeOfBitPackedArr (int width) ;

int svSizeOfLogicPackedArr (int width) ;

D.9.1.4 Translation between the actual representation and the canonical representation

/* functions for translation between the representation actually used by
simulator and the canonical representation */

/* s=source, d=destination, w=width */
/* actual <-- canonical */

void svPutBitVec32 (svBitPackedArrRef d, const svBitVec32* s, int w);
void svPutLogicVec32 (svLogicPackedArrRef d, const svLogicVec32* int w);

0

/* canonical <-- actual */
void svGetBitVec32 (svBitVec32* d, const svBitPackedArrRef s, int w);
void svGetLogicVec32 (svLogicVec32* d, const svLogicPackedArrRef s, int w);

The above functions copy the whole array in either direction. The user is responsible for providing the correct
width and for allocating an array in the canonical representation. The contents of the unused bits is undeter-
mined.

Although the put/get functionality provided for bit and logic packed arrays is sufficient, yet basic, it
requires unnecessary copying of the whole packed array when perhaps only some bits are needed. For the sake
of convenience and improved performance, bit selects and limited (up to 32 bits) part selects are al'so sup-
ported, see Annex D.10.3.1 and Annex D.10.3.2.

D.9.2 Source-level compatibility include file svdpi_src.h

Only two symbols are defined: the macros that allow declaring variables to represent the SystemVerilog
packed arrays of typebit or logic.

#define SV _BIT PACKED ARRAY (WIDTH, NAME)
#define SV _LOGIC_ PACKED ARRAY (WIDTH, NAME)

The actual definitions are implementation-specific. For example, a SystemVerilog simulator might define the
later macro as follows.

#define SV_LOGIC PACKED ARRAY (WIDTH,NAME) \
svLogicVec32 NAME [ SV _CANONICAL SIZE (WIDTH) ]
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D.9.3 Example 2 — binary compatible application
SystemVerilog:

typedef struct {int a; int b;} pair;
import "DPI" function void foo(input int il, pair i2, output logic [63:0] 03);

export "DPI" function exported sv_func;

function void exported sv func(input int i, output int o [0:7]);
begin ... end
endfunction

#include "svdpi.h"
typedef struct {int a; int b;} pair;
extern void exported sv_func(int, int *); /* imported from SystemVerilog */

void foo(const int i1, const pair *i2, svLogicPackedArrRef o3)

{

svLogicVec32 arr[SV_CANONICAL SIZE(64)]; /* 2 chunks needed */
int tab([8];

printf ("$d\n", i1);

arr[l] .c = i2->a;

arr[1l].d = 0;

arr[2] .c = 12->b;

arr([2].d = 0;

svPutLogicVec32 (o3, arr, 64);

/* call SystemVerilog */
exported sv_func(il, tab); /* tab passed by reference */

}
D.9.4 Example 3— source-level compatible application
SystemVerilog:
typedef struct {int a; bit [6:1][1:8] b [65:2]; int c;} triple;
// troublesome mix of C types and packed arrays
import "DPI" function void foo(input triple i) ;
export "DPI" function exported sv func;
function void exported sv_ func(input int i, output logic [63:0] o) ;

begin ... end
endfunction

#include "svdpi.h"
#include "svdpi src.h"

typedef struct ({
int a;
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sv_BIT PACKED ARRAY (6*8, b) [64]; /* implementation specific
representation */

int c;

} triple;

/* Note that ’'b’ is defined as for ’'bit [6*8-1:0] b [63:0]’ */

extern void exported sv func(int, svLogicPackedArrRef); /* imported from
SystemVerilog */

void foo(const triple *i)

{
int j;
/* canonical representation */
svBitVec32 arr[SV_CANONICAL SIZE(6*8)]; /* 6*8 packed bits */
svLogicVec32 aL[SV_CANONICAL SIZE(64)];

/* implementation specific representation */
SV_LOGIC_ PACKED ARRAY (64, my_ tab);

printf ("$d %d\n", i->a, i->c);
for (§=0; j<64; j++) {
svGetBitVec32 (arr, (svBitPackedArrRef)&(i->b[j]), 6*8);

}

/* call SystemVerilog */
exported sv_func(2, (svLogicPackedArrRef)&my tab); /* by reference */
svGetLogicVec32 (al, (svLogicPackedArrRef)&my tab, 64); ... }

NOTE—a, b, and ¢ are directly accessed as fields in a structure. In the case of b, which represents unpacked array of
packed arrays, the individual element is accessed viathe library function svGetBitVvec32 (), by passing its address to
the function.

D.10 Arrays

Normalized ranges are used for accessing SystemVerilog arrays, with the exception of formal arguments spec-
ified as open arrays.

D.10.1 Multidimensional arrays

Packed arrays shall be one-dimensional. Unpacked arrays can have an arbitrary number of dimensions.

D.10.2 Direct access to unpacked arrays

Unpacked arrays, with the exception of formal arguments specified as open arrays, shall have the same layout
as used by a C compiler; they are accessed using C indexing (see Annex D.6.6).

D.10.3 Access to packed arrays via canonical representation
Packed arrays are accessible via canonical representation; this C-layer interface provides functions for moving
data between implementation representation and canonical representation (any necessary conversion is per-

formed on-the-fly (see Annex D.9.1.3)), and for bit selects and limited (up to 32-bit) part selects. (Bit selects
do not involve any canonical representation.)

D.10.3.1 Bit selects
This subsection defines the bit selects portion of the svdpi . h file (see Annex D.9.1 for more details).

/* Packed arrays are assumed to be indexed n-1:0,
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where 0 is the index of least significant bit */
/* functions for bit select */

/* s=source, i=bit-index */
svBit svGetSelectBit (const svBitPackedArrRef s, int i);
svLogic svGetSelectLogic (const svLogicPackedArrRef s, int 1);

/* d=destination, i=bit-index, s=scalar */
void svPutSelectBit (svBitPackedArrRef d, int i, svBit s);
void svPutSelectLogic (svLogicPackedArrRef d, int i, svLogic s);

D.10.3.2 Part selects

Limited (up to 32-bit) part selects are supported. A part select is a slice of a packed array of types bit or
logic. Array slices are not supported for unpacked arrays. Additionally, 64-bit wide part select can beread as
asingle value of type unsigned 1ong long.

Functions for part selects only allow access (read/write) to a narrow subrange of up to 32 bits. A canonical rep-
resentation shall be used for such narrow vectors. If the specified range of part select is not fully contained
within the normalized range of an array, the behavior is undetermined.

For the convenience, bit type part selects are returned as a function result. In addition to a general function for
narrow part selects (<= 32-bits), there are two specialized functions for 32 and 64 hits.

/

functions for part select

a narrow (<=32 bits) part select is copied between

the implementation representation and a single chunk of

canonical representation

Normalized ranges and indexing [n-1:0] are used for both arrays:

the array in the implementation representation and the canonical array.

s=source, d=destination, i=starting bit index, w=width
like for variable part selects; limitations: w <= 32

L I S

~

NOTE—TFor the sake of symmetry, a canonical representation (i.e., an array) is used both for bit and logic, athough a
simpler int can be used for bi t-part selects (<= 32-hits):

/* canonical <-- actual */
void svGetPartSelectBit (svBitVec32* d, const svBitPackedArrRef s, int 1,

int w);
svBitVec32 svGetBits (const svBitPackedArrRef s, int i, int w);
svBitVec32 svGet32Bits (const svBitPackedArrRef s, int i); // 32-bits
unsigned long long svGet64Bits (const svBitPackedArrRef s, int 1i); // 64-bits
void svGetPartSelectLogic (svLogicVec32* d, const svLogicPackedArrRef s, int i,

int w) ;

/* actual <-- canonical */

void svPutPartSelectBit (svBitPackedArrRef d, const svBitVec32 s, int i,
int w);

void svPutPartSelectlLogic (svLogicPackedArrRef d, const svLogicVec32 s, int i,
int w) ;
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D.11 Open arrays

Formal arguments specified as open arrays allows passing actual arguments of different sizes (i.e., different
range and/or different number of elements), which facilitates writing more general C code that can handle Sys-
temVerilog arrays of different sizes. The elements of an open array can be accessed in C by using the same
range of indices and the same indexing as in SystemVerilog. Plus, inquiries about the dimensions and the orig-
inal boundaries of SystemVerilog actual arguments are supported for open arrays.

NOTE—Both packed and unpacked array dimensions can be unsized.

All formal arguments declared in SystemVerilog as open arrays are passed by handle (type svopenaArray-
Handle), regardless of the direction of a SystemVerilog formal argument. Such arguments are accessible via
interface functions.

D.11.1 Actual ranges
The formal arguments defined as open arrays have the size and ranges of the actual argument, as determined

on a per-cal basis. The programmer shall aways have a choice whether to specify a forma argument as a
sized array or as an open (unsized) array.

In the former case, all indices are normalized on the C side (i.e., 0 and up) and the programmer needs to know
the size of an array and be capable of determining how the ranges of the actual argument map onto C-style
ranges (see Annex D.6.6).

Tip: programmers can decideto use [n: 0]lname [0:k] Stylerangesin SystemVerilog.

In the later case, i.e., an open array, individual elements of a packed array are accessible via interface func-
tions, which facilitate the SystemVerilog-styl e of indexing with the original boundaries of the actual argument.

If aformal argument is specified as a sized array, then it shall be passed by reference, with no overhead, and is
directly accessible as a normalized array. If aformal argument is specified as an open (unsized) array, then it
shall be passed by handle, with some overhead, and is mostly indirectly accessible, again with some overhead,
athough it retains the original argument boundaries.

NOTE—This provides some degree of flexibility and allows the programmer to control the trade-off of performance vs.
convenience.

The following example shows the use of sized vs. unsized arraysin SystemVerilog code.
// both unpacked arrays are 64 by 8 elements, packed 16-bit each
logic [15: 0] a 64x8 [63:0][7:0];
logic [31:16] b_64x8 [64:1][-1:-8];

import "DPI" function void foo(input logic [] i [][]);
// 2-dimensional unsized unpacked array of unsized packed logic

import "DPI" function void boo (input logic [31:16] i [64:1] [-1:-8]);
// 2-dimensional sized unpacked array of sized packed logic

foo(a_64x8);
foo(b_64x8); // C code can use original ranges [31:16] [64:1] [-1:-8]

boo(b_64x8); // C code must use normalized ranges [15:0] [0:63] [0:7]

D.11.2 Array querying functions

These functions are modelled upon the SystemVerilog array querying functions and use the same semantics
(see Section 22.4).
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If the dimension is O, then the query refers to the packed part (which is one-dimensional) of an array, and
dimensions > o refer to the unpacked part of an array.

/* h= handle to open array, d=dimension */

int svLeft (const svOpenArrayHandle h, int 4d);

int svRight (const svOpenArrayHandle h, int d);

int svLow (const svOpenArrayHandle h, int d);

int svHigh (const svOpenArrayHandle h, int d);

int svIncrement (const svOpenArrayHandle h, int d);
int svLength (const svOpenArrayHandle h, int d);
int svDimensions (const svOpenArrayHandle h) ;

D.11.3 Access functions

Similarly to sized arrays, there are functions for copying data between the simulator representation and the
canonical representation and to obtain the actual address of SystemVerilog data object or of an individual ele-
ment of an unpacked array. This information might be useful for simulator-specific tuning of the application.

Depending on the type of an element of an unpacked array, different access methods shall be used when work-
ing with elements.

— Packed arrays (bit Or 1ogic) are accessed via copying to or from the canonical representation.
— Scalars (1-bit value of typebit or 1ogic) are accessed (read or written) directly.

— Other types of values (e.g., structures) are accessed via generic pointers; a library function calculates an
address and the user needs to provide the appropriate casting.

— Scalars and packed arrays are accessible via pointers only if the implementation supports this functionality
(per array), e.g., one array can be represented in aform that alows such access, while another array might
use a compacted representation which renders this functionality unfeasible (both occurring within the same
simulator).

SystemVerilog alows arbitrary dimensions and, hence, an arbitrary number of indices. To facilitate this, vari-
able argument list functions shall be used. For the sake of performance, specialized versions of all indexing
functions are provided for 1, 2, or 3 indices.

D.11.4 Access to the actual representation

The following functions provide an actual address of the whole array or of itsindividual elements. These func-
tions shall be used for accessing elements of arrays of types compatible with C. These functions are also useful
for vendors, because they provide access to the actual representation for al types of arrays.

If the actual layout of the SystemVerilog array passed as an argument for an open unpacked array is different
than the C layout, then it is not possible to access such an array as a whole; therefore, the address and size of
such an array shall be undefined (zero (o), to be exact). Nonethel ess, the addresses of individual elements of an
array shall be always supported.

NOTE—No specific representation of an array is assumed here; hence, al functions use a generic pointer void *.
/* a pointer to the actual representation of the whole array of any type */
/* NULL if not in C layout */

void *svGetArrayPtr (const svOpenArrayHandle) ;

int svSizeOfArray (const svOpenArrayHandle); /* total size in bytes or 0 if not
in C layout */

/* Return a pointer to an element of the array
or NULL if index outside the range or null pointer */
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void *svGetArrElemPtr (const svOpenArrayHandle, int indxl, ...);

/* specialized versions for 1-, 2- and 3-dimensional arrays: */
void *svGetArrElemPtrl (const svOpenArrayHandle, int indxl);

void *svGetArrElemPtr2 (const svOpenArrayHandle, int indxl, int indx2);
void *svGetArrElemPtr3 (const svOpenArrayHandle, int indxl, int indx2,

int indx3) ;

SystemVerilog 3.1/draft 6

Accessto an individual array element via pointer makes sense only if the representation of such an element is
the same as it would be for an individual value of the same type. Representation of array elements of type
scalar or packed value isimplementation-dependent; the above functions shall return NULL if the representa-
tion of the array elements differs from the representation of individual values of the same type.

D.11.5 Access to elements via canonical representation

This group of functionsis meant for accessing elements which are packed arrays (bit or 1ogic).

The following functions copy a single vector from a canonical representation to an element of an open array or
other way round. The element of an array is identified by indices, bound by the ranges of the actual argument,
i.e., theoriginal SystemVerilog ranges are used for indexing.

/* functions for translation between simulator and canonical representations*/

/* s=

source, d=destination */

/* actual <-- canonical */
svPutBitArrElemVec32 (const svOpenArrayHandle d, const svBitVec32* g,

void

void

void

void

void

void

void

void

int indx1l, ...);

svPutBitArrElemlVec32 (const svOpenArrayHandle d, const svBitVec32* s,

int indxl) ;

svPutBitArrElem2Vec32 (const svOpenArrayHandle d, const svBitVec32* g,

int indx1l, int indx2);

svPutBitArrElem3Vec32 (const svOpenArrayHandle d, const svBitVec32* g,

int indx1l, int indx2, int

svPutLogicArrElemVec32 (const svOpenArrayHandle d,
int indxl, ...);
svPutLogicArrElemlVec32 (const svOpenArrayHandle d,
int indx1);
svPutLogicArrElem2Vec32 (const svOpenArrayHandle d,
int indxl, int indx2);
svPutLogicArrElem3Vec32 (const svOpenArrayHandle d,
int indxl, int indx2, int

/* canonical <-- actual */
svGetBitArrElemVec32 (svBitVec32* d, const svOpenArrayHandle s,

void

void

void

void

void

void

void

int indx1l, ...);

indx3) ;

const svLogicVec32*
const svLogicVec32*
const svLogicVec32*

const svLogicVec32*
indx3) ;

svGetBitArrElemlVec32 (svBitVec32* d, const svOpenArrayHandle g,

int indxl) ;

svGetBitArrElem2Vec32 (svBitVec32* d, const svOpenArrayHandle g,

int indx1l, int indx2);

svGetBitArrElem3Vec32 (svBitVec32* d, const svOpenArrayHandle s,

int indx1l, int indx2, int

indx3) ;

svGetLogicArrElemVec32 (svLogicVec32* d, const svOpenArrayHandle s,

int indxl, ...);

svGetLogicArrElemlVec32 (svLogicVec32* d, const svOpenArrayHandle s,

int indx1) ;

svGetLogicArrElem2Vec32 (svLogicVec32* d, const svOpenArrayHandle s,

int indx1l, int indx2);
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void svGetLogicArrElem3Vec32 (svLogicVec32* d, const svOpenArrayHandle s,
int indx1l, int indx2, int indx3);

The above functions copy the whole packed array in either direction. The user is responsible for allocating an
array in the canonical representation.

D.11.6 Access to scalar elements (bit and logic)

Another group of functions is needed for scalars (i.e., when an element of an array isasimple scalar, bit, or
logic):

svBit svGetBitArrElem (const svOpenArrayHandle s, int indxl, ...);

svBit svGetBitArrEleml (const svOpenArrayHandle s, int indx1l);

svBit svGetBitArrElem2 (const svOpenArrayHandle s, int indxl, int indx2);

svBit svGetBitArrElem3 (const svOpenArrayHandle s, int indxl, int indx2,
int indx3);

svLogic svGetLogicArrElem (const svOpenArrayHandle s, int indxl, ...);

svLogic svGetLogicArrEleml (const svOpenArrayHandle s, int indxl);

svLogic svGetLogicArrElem2 (const svOpenArrayHandle s, int indxl, int indx2);

svLogic svGetLogicArrElem3 (const svOpenArrayHandle s, int indxl, int indx2,
int indx3);

void svPutLogicArrElem (const svOpenArrayHandle d, svLogic value, int indx1l,
2
void svPutLogicArrEleml (const svOpenArrayHandle d, svLogic value, int indx1l) ;
void svPutLogicArrElem2 (const svOpenArrayHandle d, svLogic value, int indx1,
int indx2) ;
void svPutLogicArrElem3 (const svOpenArrayHandle d, svLogic value, int indx1,
int indx2, int indx3);

void svPutBitArrElem (const svOpenArrayHandle d, svBit value, int indxl, ...);
void svPutBitArrEleml (const svOpenArrayHandle d, svBit value, int indxl) ;
void svPutBitArrElem2 (const svOpenArrayHandle d, svBit value, int indx1,

int indx2) ;
void svPutBitArrElem3 (const svOpenArrayHandle d, svBit wvalue, int indxl1,

int indx2, int indx3);

D.11.7 Access to array elements of other types

If an array’s elements are of atype compatible with C, there is no need to use canonical representation. In such
situations, the elements are accessed via pointers, i.e., the actual address of an element shall be computed first
and then used to access the desired element.

D.11.8 Example 4— two-dimensional open array

SystemVerilog:
typedef struct {int i; ... } MyType;
import "DPI" function void foo (input MyType i []1I[]); /* 2-dimensional unsized

unpacked array of MyType */

MyType a_10x5 [11:20] [6:2];
MyType a 64x8 [64:1][-1:-8];

foo(a_10x5) ;
foo(a_64x8);
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#include "svdpi.h"
typedef struct {int i; ... } MyType;

void foo(const svOpenArrayHandle h)
{

MyType my value;

int i, j;

int lol = svLow(h, 1);

int hil = svHigh(h, 1);

int lo2 = svLow(h, 2);

int hi2 = svHigh(h, 2);

for (i = lol; i <= hil; i++) {
for (j = lo2; j <= hi2; J++) {

my value = * (MyType *)svGetArrElemPtr2(h, i, Jj);

* (MyType *)svGetArrElemPtr2(h, i, j) = my value;

D.11.9 Example 5 — open array

SystemVerilog:
typedef struct { ... } MyType;
import "DPI" function void foo (input MyType i [], output MyType o [1);

MyType source [11:20];
MyType target [11:20];

foo (source, target) ;

#include "svdpi.h"
typedef struct ... } MyType;

void foo(const svOpenArrayHandle hin, const svOpenArrayHandle hout)
{

int count = svLength(hin, 1);

MyType *s (MyType *)svGetArrayPtr (hin) ;

MyType *d (MyType *)svGetArrayPtr (hout) ;

if (s & d) { /* both arrays have C layout */
/* an efficient solution using pointer arithmetic */
while (count--)

*d++ = *s++;

/* even more efficient:
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memcpy (d, s, svSizeOfArray(hin));

*/
} else { /* less efficient yet implementation independent */

int i = svLow (hin, 1);

int j = svLow (hout, 1);

while (i <= svHigh(hin, 1)) {
* (MyType *)svGetArrElemPtrl (hout, j++) =
* (MyType *)svGetArrElemPtrl (hin, i++);

}
D.11.10 Example 6 — access to packed arrays

SystemVerilog:
import "DPI" function void foo(input logic [127:0]) ;
import "DPI" function void boo (input logic [127:0] i []1); // open array of
// 128-bit

#include "svdpi.h"

/* one 128-bit packed vector */
void foo(const svLogicPackedArrRef packed vec 128 bit)

{

svLogicVec32 arr [SV_CANONICAL SIZE(128)]; /* canonical representation */

svGetLogicVec32 (arr, packed vec 128 bit, 128);

}

/* open array of 128-bit packed vectors */
void boo (const svOpenArrayHandle h)

{
int i;
svLogicVec32 arr [SV_CANONICAL SIZE(128)]; /* canonical representation */

for (i = svlow(h, 1); i <= svHigh(h, 1); i++) {

svLogicPackedArrRef ptr = (svLogicPackedArrRef)svGetArrElemPtrl (h, 1i);
/* user need not know the vendor representation! */

svGetLogicVec32 (arr, ptr, 128);

D.11.11 Example 7 — binary compatible calls of exported functions
This example demonstrates the source compatibility include file svdpi src.h isnot needed if a C function

dynamically alocates the data structure for simulator representation of a packed array to be passed to an
exported SystemVerilog function.
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SystemVerilog:
export "DPI" function myfunc;

function void myfunc (output logic [31:0] r);

#include "svdpi.h"
extern void myfunc (svLogicPackedArrRef r); /* exported from SV */

/* output logic packed 32-bits */

svLogicVec32 my r[SV_CANONICAL_ SIZE(32)];
/* my array, canonical representation */

/* allocate memory for logic packed 32-bits in simulator’s representation */
svLogicPackedArrRef r =
(svLogicPackedArrRef)malloc (svSizeOfLogicPackedArr (32)) ;
myfunc (r) ;
/* canonical <-- actual */
svGetLogicVec32 (my r, r, 32);
/* shall use only the canonical representation from now on */
free(r); /* don’'t need any more */
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Annex E
Include files

This annex shows the contents of the svdpi .h and svdpi_src.hincludefiles.

E.1 Binary-level compatibility include file svdpi.h
/* canonical representation */

#define sv_0 0
#define sv 1 1
#define sv_z 2 /* representation of 4-st scalar z */
#define sv_x 3 /* representation of 4-st scalar x */

/* common type for ’‘bit’ and ’'logic’ scalars. */
typedef unsigned char svScalar;

typedef svScalar svBit; /* scalar */
typedef svScalar svLogic; /* scalar */

/* Canonical representation of packed arrays */
/* 2-state and 4-state vectors, modelled upon PLI’'s avalue/bvalue */
#define SV_CANONICAL_SIZE (WIDTH) (((WIDTH)+31)>>5)

typedef unsigned int
svBitVec32;/* (a chunk of) packed bit array */

typedef struct { unsigned int c; unsigned int d;}
svLogicVec32; /* (a chunk of) packed logic array */

/* Since the contents of the unused bits is undetermined, the following macros can
be handy */
#define SV _MASK(N) (~(-1l<<(N)))

#define SV_GET UNSIGNED BITS (VALUE,N)\
((N) ==327 (VALUE) : ( (VALUE) &SV_MASK (N) ) )

#define SV_GET SIGNED BITS (VALUE,N)\
((N)==327? (VALUE) :\
(((VALUE) & (1<< ((N)1)))? ( (VALUE) | ~SV_MASK(N)) : ( (VALUE) &SV_MASK (N))))

/* implementation-dependent representation */

/* a handle to a scope (an instance of a module or interface) */
typedef void* svScope;

/* a handle to a generic object (actually, unsized array) */
typedef void* svOpenArrayHandle;

/* reference to a standalone packed array */
typedef void* svBitPackedArrRef;
typedef void* svLogicPackedArrRef;

/* total size in bytes of the simulator’s representation of a packed array */
/* width in bits */

int svSizeOfBitPackedArr (int width) ;

int svSizeOfLogicPackedArr (int width) ;

334 Copyright 2003 Accellera. All rights reserved.



Accellera

Extensions to Verilog-2001 SystemVerilog 3.1/draft 6
/* Translation between the actual representation and the canonical representation
*/
/* functions for translation between the representation actually used by
simulator and the canonical representation */
/* s=source, d=destination, w=width */
/* actual <-- canonical */
void svPutBitVec32 (svBitPackedArrRef d, const svBitVec32* s, int w);

void svPutLogicVec32 (svLogicPackedArrRef d, const svLogicVec32* s, int w);

/*

canonical <-- actual */

void svGetBitVec32 (svBitVec32+* d, const svBitPackedArrRef s, int w);
void svGetLogicVec32 (svLogicVec32* d, const svLogicPackedArrRef s, int w);

/*
/*

/*
/*

Bit selects */

Packed arrays are assumed to be indexed n-1:0,
where 0 is the index of least significant bit */

functions for bit select */

s=source, i=bit-index */

svBit svGetSelectBit (const svBitPackedArrRef s, int 1i);
svLogic svGetSelectLogic (const svLogicPackedArrRef s, int 1);

/*

d=destination, i=bit-index, s=scalar */

void svPutSelectBit (svBitPackedArrRef d, int i, svBit s);
void svPutSelectLogic (svLogicPackedArrRef d, int i, svLogic s);

L T R

*

*/

/*

functions for part select

a narrow (<=32 bits) part select is copied between

the implementation representation and a single chunk of

canonical representation

Normalized ranges and indexing [n-1:0] are used for both arrays:

the array in the implementation representation and the canonical array.

s=source, d=destination, i=starting bit index, w=width
like for variable part selects; limitations: w <= 32

canonical <-- actual */

void svGetPartSelectBit (svBitVec32* d, const svBitPackedArrRef s, int i,

int w);

svBitVec32 svGetBits (const svBitPackedArrRef s, int 1, int w);

svBitVec32 svGet32Bits (const svBitPackedArrRef s, int i); // 32-bits

unsigned long long svGet64Bits (const svBitPackedArrRef s, int i); // 64-bits
void svGetPartSelectLogic (svLogicVec32* d, const svLogicPackedArrRef s, int i,

/*

int w);

actual <-- canonical */

void svPutPartSelectBit (svBitPackedArrRef d, const svBitVec32 s, int i, int w);
void svPutPartSelectLogic (svLogicPackedArrRef d, const svLogicVec32 s, int i,

/*

int w);

Array querying functions */
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/* These functions are modelled upon the SystemVerilog array querying functions
and use the same semantics*/

/* If the dimension is 0, then the query refers to the packed part (which is one-
dimensional) of an array, and dimensions > 0 refer to the unpacked part of an
array.*/

/* h= handle to open array, d=dimension */

int svLeft (const svOpenArrayHandle h, int d);

int svRight (const svOpenArrayHandle h, int d);

int svLow (const svOpenArrayHandle h, int d);

int svHigh(const svOpenArrayHandle h, int 4d);

int svIncrement (const svOpenArrayHandle h, int d);
int svLength (const svOpenArrayHandle h, int d);
int svDimensions (const svOpenArrayHandle h);

/* a pointer to the actual representation of the whole array of any type */
/* NULL if not in C layout */
void *svGetArrayPtr (const svOpenArrayHandle) ;

int svSizeOfArray (const svOpenArrayHandle); /* total size in bytes or 0 if not in C
layout */

/* Return a pointer to an element of the array
or NULL if index outside the range or null pointer */

void *svGetArrElemPtr (const svOpenArrayHandle, int indxl, ...);

/* specialized versions for 1-, 2- and 3-dimensional arrays: */
void *svGetArrElemPtrl (const svOpenArrayHandle, int indx1l) ;
void *svGetArrElemPtr2 (const svOpenArrayHandle, int indxl, int indx2);
void *svGetArrElemPtr3 (const svOpenArrayHandle, int indxl, int indx2, int indx3);

/* Functions for translation between simulator and canonical representations*/
/* These functions copy the whole packed array in either direction. The user is
responsible for allocating an array in the canonical representation. */
/* s=source, d=destination */
/* actual <-- canonical */
void svPutBitArrElemVec32 (const svOpenArrayHandle d, const svBitVec32* g,

int indx1l, ...);
void svPutBitArrElemlVec32 (const svOpenArrayHandle d, const svBitVec32* s, int
indx1) ;
void svPutBitArrElem2Vec32 (const svOpenArrayHandle d, const svBitVec32* g, int
indx1,

int indx2) ;
void svPutBitArrElem3Vec32 (const svOpenArrayHandled, const svBitVec32* g,

int indx1l, int indx2, int indx3);

void svPutLogicArrElemVec32 (const svOpenArrayHandle d, const svLogicVec32* g,
int indx1, ...);

void svPutLogicArrElemlVec32( const svOpenArrayHandle d, const svLogicVec32* g,
int indx1) ;

void svPutLogicArrElem2Vec32 (const svOpenArrayHandle d, const svLogicVec32* s,
int indxl, int indx2) ;

void svPutLogicArrElem3Vec32 (const svOpenArrayHandle d, const svLogicVec32* g,
int indx1l, int indx2, int indx3);

/* canonical <-- actual */

void svGetBitArrElemVec32 (svBitVec32* d, const svOpenArrayHandle s, int indx1,
L)
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void svGetBitArrElemlVec32 (svBitVec32* d,

void svGetBitArrElem2Vec32 (svBitVec32* d,
int indx2) ;

void svGetBitArrElem3Vec32 (svBitVec32* d,

const svOpenArrayHandle s,
const svOpenArrayHandle s,

SystemVerilog 3.1/draft 6

int
int

indx1) ;
indx1,

const svOpenArrayHandle s,

int indxl, int indx2, int indx3);

void svGetLogicArrElemVec32 (svLogicVec32* d, const svOpenArrayHandle s, int
indx1,

o)
void svGetLogicArrElemlVec32 (svLogicVec32* d, const svOpenArrayHandle s, int
indx1) ;
void svGetLogicArrElem2Vec32 (svLogicVec32* d, const svOpenArrayHandle s, int
indx1,

int indx2) ;
void svGetLogicArrElem3Vec32 (svLogicVec32* d, const svOpenArrayHandle s,

int indxl, int indx2, int indx3);
svBit svGetBitArrElem (const svOpenArrayHandle s, int indx1, L)
svBit svGetBitArrEleml (const svOpenArrayHandle s, int indxl);
sVvBit svGetBitArrElem2 (const svOpenArrayHandle s, int indxl, int indx2);
svBit svGetBitArrElem3 (const svOpenArrayHandle s, int indxl, int indx2, int
indx3) ;
svLogic svGetLogicArrElem (const svOpenArrayHandle s, int indxl, )
svLogic svGetLogicArrEleml (const svOpenArrayHandle s, int indxl);
svLogic svGetLogicArrElem2 (const svOpenArrayHandle s, int indxl, int indx2);
svLogic svGetLogicArrElem3 (const svOpenArrayHandle s, int indxl, int indx2, int
indx3) ;
void svPutLogicArrElem (const svOpenArrayHandle d, svLogic value, int indx1, L)
void svPutLogicArrEleml (const svOpenArrayHandle d, svLogic value, int indx1l) ;
void svPutLogicArrElem2 (const svOpenArrayHandle d, svLogic value, int indx1l,

int indx2) ;
void svPutLogicArrElem3 (const svOpenArrayHandle d, svLogic value, int indxl, int
indx2,
int indx3) ;

void svPutBitArrElem (const svOpenArrayHandle d, svBit value, int indx1, L)
void svPutBitArrEleml (const svOpenArrayHandle d, svBit value, int indx1l) ;
void svPutBitArrElem2 (const svOpenArrayHandle d, svBit value, int indx1l, int
indx2) ;
void svPutBitArrElem3 (const svOpenArrayHandle d, svBit value, int indx1l, int
indx2,

int indx3) ;

/* Functions for working with DPI context functions */

/* Retrieve the active instance scope currently associated with the executing

imported function.

Unless a prior call to svSetScope has occurred, this is the scope of the

function’s declaration site, not call site.

Returns NULL if called from C code that is *not* an imported function.

svScope svGetScope () ;

/* Set context for subsequent export function execution.

This function must be called before calling an export function,
the export function is called while executing an extern function.

*/

unless
In that

case the export function shall inherit the scope of the surrounding extern

function. This is known as the “default scope”.
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The return is the previous active scope (as per svGetScope) */
svScope svSetScope (const svScope scope) ;

/* Gets the fully qualified name of a scope handle */
const char* svGetNameFromScope (const svScope) ;

/* Retrieve svScope to instance scope of an arbitrary function declaration.
* (can be either module, program, interface, or generate scope)

* The return value shall be NULL for unrecognized scope names.
*/

svScope svGetScopeFromName (const char* scopeName) ;

/* Store an arbitrary user data pointer for later retrieval by svGetUserData ()
The userKey is generated by the user. It must be guaranteed by the user to
be unique from all other userKey’s for all unique data storage requirements
It is recommended that the address of static functions or variables in the
user’s C code be used as the userKey.

It is illegal to pass in NULL values for either the scope or userData
arguments. It is also an error to call svPutUserData () with an invalid
svScope. This function returns -1 for all error cases, 0 upon success. It is
suggested that userData values of 0 (NULL) not be used as otherwise it can
be impossible to discern error status returns when calling svGetUserData ()

/

int svPutUserData (const svScope scope, void *userKey, void* userData) ;

L T R R TR R N I

/* Retrieve an arbitrary user data pointer that was previously

* stored by a call to svPutUserData(). See the comment above

* gvPutUserData () for an explanation of userKey, as well as

* restrictions on NULL and illegal svScope and userKey values.

* This function returns NULL for all error cases, 0 upon success.
* This function also returns NULL in the event that a prior call
* to svPutUserData () was never made.

*

/

void* svGetUserData (const svScope scope, void* userKey) ;

/* Returns the file and line number in the SV code from which the extern call

* was made. If this information available, returns TRUE and updates fileName *
and lineNumber to the appropriate values. Behavior is unpredictable if

* fileName or lineNumber are not appropriate pointers. If this information is *
not available return FALSE and contents of fileName and lineNumber not

* modified. Whether this information is available or not is implementation

* gpecific. Note that the string provided (if any) is owned by the SV

* implementation and is valid only until the next call to any SV function.

* Applications must not modify this string or free it

*/

int svGetCallerInfo(char **fileName, int *1lineNumber) ;
Source-level compatibility include file svdpi src.h

/* macros for declaring variables to represent the SystemVerilog */

/* packed arrays of type bit or logic */

/* WIDTH= number of bits,NAME = name of a declared field/variable */
#define SV_BIT PACKED ARRAY (WIDTH,NAME)/* actual definition goes here */
#define SV_LOGIC_PACKED_ ARRAY (WIDTH,NAME)/* actual definition goes here */
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Annex F
Inclusion of Foreign Language Code

This annex describes common guidelines for the inclusion of Foreign Language Code into a SystemVerilog
application. This intention of these guidelines is to enable the redistribution of C binaries in shared object
form.

Foreign Language Code is functionality that is included into SystemVerilog using the DPI Interface. As a
result, all statements of this annex apply only to code included using this interface; code included by using
other interfaces (e.g., PLI or VPI) is outside the scope of this document. Due to the nature of the DPI Interface,
most Foreign Language Code is usually be created from C or C++ source code, although nothing precludes the
creation of appropriate object code from other languages. This annex adheres to this rule, it's content is inde-
pendent from the actual language used.

In general, Foreign Language Code is provided in the form of object code compiled for the actual platform.
The capability to include Foreign Language Code in object-code form shall be supported by all simulators as
specified here. Overview

This annex defines how to:
— specify the location of the corresponding files within the file system
— specify the files to be loaded (in case of object code) or

— provide the object code (as a shared library or archive)

Although this annex defines guidelines for a common inclusion methodology, it requires multiple implementa-
tions (usually two) of the corresponding facilities. This takes into account that multiple users can have differ-
ent viewpoints and different requirements on the inclusion of Foreign Language Code.

— A vendor that wants to provide his IP in form of Foreign Language Code often requires a self-contained
method for the integration, which still permits an integration by a third party. This use-case is often cov-
ered by abootstrap file approach.

— A project team that specifies a common, standard set of Foreign Language code, might change the code
depending on technology, selected cells, back-annotation data, and other items. This-use case is often cov-
ered by a set of tool switches, although it might also use the bootstrap file approach.

— An user might want to switch between selections or provide additional code. This-use case is covered by
providing a set of tool switches to define the corresponding information, although it might also use the
bootstrap file approach.

NOTE—This annex defines a set of switch names to be used for a particular functionality. Thisis of informative nature;
the actual naming of switchesisnot part of this standard. It might further not be possible to use certain character configura-
tionsin all operating systems or shells. Therefore any switch name defined within this document is a recommendation how
to name a switch, but not a requirement of the language.

F.1 Location independence

All pathnames specified within this annex are intended to be |ocation-independent, which is accomplished by
using the switch -sv_root. It can receive asingle directory pathname as the value, which is then prepended to
any relative pathname that has been specified. In absence of this switch, or when processing relative filenames
before any -sv_root specification, the current working directory of the user shall be used as the default
value.

F.2 Object code inclusion
Compiled object code is required for cases where the compilation and linking of source code is fully handled

by the user; thus, the created object code only need be loaded to integrate the Foreign Language Code into a
SystemVerilog application. All SystemVerilog applications shall support the integration of Foreign Language
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Code in object code form. Figure F-1depicts the inclusion of object code and its relations to the various steps
involved in this integration process.

Performed by the user Object code
inclusion
Source |||—m Object System
code ||[—® —F > Verilog
’ code application
Compile Link

Figure F-1 — Inclusion of object code into a SystemVerilog application

Compiled object code can be specified by one of the following two methods:

1) by an entry in a bootstrap file; see Annex F.2.1 for more details on this file and its content. Its location
shall be specified with one instance of the switch -sv_1iblist pathname. This switch can be used
multiple times to define the usage of multiple bootstrap files.

2) by specifying the file with one instance of the switch -sv_1ib pathname without extension
(i.e., the filename shall be specified without the platform specific extension). The SystemVerilog
application is responsible for appending the appropriate extension for the actual platform. This switch can
be used multiple times to define multiple libraries holding object code.

Both methods shall be provided and made available concurrently, to permit any mixture of their usage. Every
location can be an absolute pathname or arelative pathname, where the value of the switch -sv_root is used
to identify an appropriate prefix for relative pathnames (see Annex F.1 for more details on forming path-
names).

The following conditions also apply.

— The compiled object code itself shall be provided in form of a shared library having the appropriate exten-
sion for the actual platform.

NOTE—Shared libraries use, for example, . so for Solarisand . s1 for HP-UX; other operating systems might use differ-
ent extensions. In any case, the SystemVerilog application needs to identify the appropriate extension.

— The provider of the compiled code is responsible for any external references specified within these objects.
Appropriate data needs to be provided to resolve all open dependencies with the correct information.

— The provider of the compiled code shall avoid interferences with other software and ensure the appropriate
software version is taken (e.g., in cases where two versions of the same library are referenced). Similar
problems can arise when there are dependencies on the expected runtime environment in the compiled
object code (e.g., in cases where C++ global objects or static initializers are used).

— The SystemVerilog application need only load object code within a shared library that is referenced by the
SystemVerilog code or by registration functions; loading of additional functions included within a shared
library can interfere with other parts.

In case of multiple occurrences of the same file (files having the same pathname or which can easily be identi-
fied as being identical; e.g., by comparing the inodes of the files to detect cases where links are used to refer
the samefile), the above order al so identifies the precedence of loading; afilelocated by method 1) shall over-
ride files specified by method 2).
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All compiled object code need to be loaded in the specification order similarly to the above scheme; first the
content of the bootstrap file is processed starting with the first line, then the set of -sv_1ib switchesis pro-
cessed in order of their occurrence. Any library shal only be loaded once.

F.2.1 Bootstrap file

The object code bootstrap file has the following syntax.

1)
2)

3)

Thefirst line contains the string # ! SV_LIBRARIES.

An arbitrary amount of entries follow, one entry per line, where every entry holds exactly one library
location. Each entry consists only of the pathname without extension of the object code file to
be loaded and can be surrounded by an arbitrary number of blanks; at least one blank shall precede the
entry in theline. The value pathname without extension isequivalent to the value of the switch
-sv_1ib.

Any amount of comment lines can be interspersed between the entry lines, a comment line starts with the
character # after an arbitrary (including zero) amount of blanks and is terminated with anewline.

F.2.2 Examples

1) If the pathname root has been set by the switch -sv_root to /home/user and the following object files
need to be included:
/home/user/myclibs/1libl.so
/home/user/myclibs/1ib3.so0
/home/user/projl/clibs/1ib4.so
/home/user/proj3/clibs/1ib2.so
then use either of the methods in Example F-1. Both methods are equivalent.
#!SV_LIBRARIES -sv_1ib myclibs/1ibl
myclibs/libl -sv_1ib myclibs/1ib3
myclibs/1ib3 -sv_1ib projl/clibs/lib4
proql/cl}bs/l}b4 -sv_1lib proj3/clibs/lib2
proj3/clibs/1ib2 T
Bootstrap file method Switch list method
Example F-1 — Using a simple bootstrap file or a switch list
2) If the current working directory is /home /user, using the series of switches shown in Example F-2 (left
column) result in loading the following files (right column).
-sv_1lib svLibraryl /home/user/svLibraryl.so
-sv_1ib svLibrary2 /home /user/svLibrary2.s0
-sv_root /home/project2/shared code
-sv_1lib svLibrary3 /home/project2/shared code/svLibrary3.so
-sv_root /home/project3/code ) ]
-sv_1ib svLibrary4 /home/project3/code/svLibrary4.so
Switches Files

Example F-2 — Using a combination of -sv_1ib and -sv_root switches
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3) Further, using the set of switches and contents of bootstrap files shown in Example F-3:

-sv_root /home/usrl |_p bootstrapl.: #! SV _LIBRARIES

-sv_liblist bootstrapl ] 1libl
lib2

-sv_root /home/usr2

-sv_1liblist /home/mine/bootstrap2 —1 bootstrapZ: #! SV_LIBRARIES
1ib3
/common/1libx
1ib5

Example F-3 — Mixing -sv_root and bootstrap files

results in loading the following files:

/home/usrl/1libl.ext
/home/usrl/1ib2.ext
/home/usr2/1ib3.ext
/common/libx.ext

/home/usr2/1ib5.ext

where ext stands for the actual extension of the corresponding file.
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Annex G
Glossary

(Informative)

Assertion — An assertion is a statement that a certain property must be true. For example, that aread request
must always be followed by aread grant within 2 clock cycles. Assertions allow for automated checking that
the specified property istrue, and can generate automatic error messages if the property is not true. SystemVer-
ilog provides special assertion constructs, which are discussed in Section 17.

DPI — Direct Programming Interface. Thisis an interface between SystemVerilog and foreign programming
languages permitting direct function calls from SystemVerilog to foreign code and from foreign code to Sys-
temVerilog. It has been designed to have low inherent overhead and permit direct exchange of data between
SystemVerilog and foreign code.

Elaboration — Elaboration is the process of binding together the components that make up a design. These
components can include module instances, primitive instances, interfaces, and the top-level of the design hier-
archy. SystemVerilog requires a specific order of elaboration, which is presented in Section 18.2.

Enumerated type — Enumerated data types provide the capability to declare a variable which can have one
of aset of named values. The numerical equivalents of these values can be specified. Enumerated types can be
easily referenced or displayed using the enumerated names, as opposed to the enumerated values. Section 3.10
discusses enumerated types.

Interface — An interface encapsulates the communication between blocks of a design, allowing a smooth
migration from abstract system-level design through successive refinement down to lower-level register-trans-
fer and structural views of the design. By encapsulating the communication between blocks, the interface con-
struct aso facilitates design re-use. The inclusion of interface capabilities is one of the major advantages of
SystemVerilog. Interfaces are covered in Section 19.

LRM — LRM isan abbreviation for Language Reference Manual. “ SystemVerilog LRM” refers to this docu-
ment. “Verilog LRM” refersto the |IEEE manual “1364-2001 | EEE Standard for Verilog Hardware Description
Language 2001". See Annex H for information about this manual.

Packed array — Packed array refers to an array where the dimensions are declared before an object name.
Packed arrays can have any number of dimensions. A one-dimensional packed array is the same as a vector
width declaration in Verilog. Packed arrays provide a mechanism for subdividing a vector into subfields,
which can be conveniently accessed as array elements. A packed array differs from an unpacked array, in that
the whole array is treated as a single vector for arithmetic operations. Packed arrays are discussed in detail in
Section 4.

Process — A process is a thread of one or more programming statements which can be executed indepen-
dently of other programming statements. Each initial procedure, always procedure and continuous assignment
statement in Verilog is a separate process. These are static processes. That is, each time the process starts run-
ning, there is an end to the process. SystemVerilog adds specialized always procedures, which are also static
processes, and dynamic processes. When dynamic processes are started, they can run without ending. Pro-
cesses are presented in Section 9.

SystemVerilog — SystemVerilog refers to the Accellera standard for a set of abstract modeling and verifica
tion extensions to the |EEE 1364-2001 Verilog standard. The many features of the SystemVerilog standard are
presented in this document.

Unpacked array — Unpacked array refers to an array where the dimensions are declared after an object
name. Unpacked arrays are the same as arrays in Verilog, and can have any number of dimensions. An
unpacked array differs from a packed array, in that the whole array cannot be used for arithmetic operations.
Each element must be treated separately. Unpacked arrays are discussed in Section 4.

Verilog — Verilog refers to the |EEE 1364-2001 Verilog Hardware Description Language (HDL), commonly
called Verilog-2001. Thislanguage is documented in the |EEE manual “1364-2001 | EEE Standard for Verilog
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Hardware Description Language 2001”. See Annex H for information about this manual.

VPI — Verilog Procedural Interface. The 3rd generation Verilog Programming Language Interface (PLI), pro-
viding object-oriented access to Verilog behavioral, structural, assertion and coverage objects.
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Index

Symbols

1?7=wild inequality 46
# 177

## clocked sequence 177
#1step 126

$assertkill 228
$assertoff 228
$asserton 228

$hits 23, 225
$bitstoshortreal 23
$cast 23

$cast() 86
$countones 175
$dimensions 28, 226
$error 146, 227

$exit 144

$fatal 146, 227

$fell 158

$high 28, 226
$increment 28, 226
$info 146, 227

$inset 174, 228
$insetz 174, 228
$isunknown 174, 229
$left 28, 226

$length 28, 226

$low 28, 226
$onehot 174, 228
$onehot0 174, 228
$past 174

$right 28, 226

$root 190—191

$rose 158
$shortrealtobits 23
$srandom() 112
$stable 158
$urandom 111
$urandom_range() 111
$warning 146, 227

' cast operator 22

*= operator 47

+= operator 47

.* port connections 199
.name port connections 198
/= operator 47

-= operator 47

=> implication 102
=?=wild equality 46
\ line continuation 232
\abell 4

\f form feed 4
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\v vertical tab 4

\x02 hex number 4

‘* double back tick 232
‘define 232

[=> multi-clock sequence 177

Numerics
2-state types 8
4-state types 8

A
Active region 126
aggregate expressions 52
alias 42
aways @* 63
aways comb 63
aways ff 63—64
aways latch 63—64
and 158—159
anding sequences 158
array literas 5
array part selects 27
array querying functions 28, 226
array dlices 27
arrays 25
assert 145
assertion APl 246—254
assertion system functions 228
assertion system tasks 227—228
assertions 145—189, 343
assign 53, 62, 234
assignment operators 45
associative array methods
delete() 34
exists() 34
first() 35
last() 35
next() 35
num() 34
prev() 36
associative arrays 31—37
atobin() 12—13
atohex() 12—13
atoi() 12
atooct() 12—13
atoreal () 13
attributes 44
automatic 38, 40, 68
automatic tasks 70

B

back() 306
before 99
bell 4
bind 187
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bintoa() 13

bit 6-8

block name 59—60
blocking assignments 55
boolean expression 150
break 53, 58, 60
built-in methods 48

byte 78

C

casting 22—23

chandle 6, 8, 80

check 146

class 21, 7893

clear() 308

clock tick 147
combinational logic 63
compare() 12
concatenation 49
concurrent assertions 147
conditional operator 52
configurations 224

const 38, 87

constants 38

constraint blocks 98
constraint_mode() method 96, 109
context 77, 238—240
continue 53, 58, 60
continuous assignment 64
cover 180—181

coverage APl 255—265

D
data declarations 38
datatypes 6
data() 305
deassign 53, 62, 234
decrementor operator 45
defparam 222, 234
delete() 29, 34
Direct Programming Interface (DPI) 236—245
disable 60
disablefork 63, 66
dist 99, 101
distribution 101
do...whileloop 53, 57
double 8
dynamic array methods
delete() 29
size() 29
dynamic arrays 28
dynamic processes 63

E
edge event 158
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elaboration 190, 343
empty() 305
encapsulation 87
enum 15-16
enumerated type methods
first() 18
last() 18
name() 19
next() 18
num() 19
prev() 19
enumerated types 1516, 343
eq() 304
erase() 307
erase_range() 307
exists() 34
export 76, 212, 244—245
extends 86
extern 90, 212, 216

F

final 53, 58

finish() 306

first() 18, 35

first_match 164

float 8

for loops 57

force 53

fork...join 64

forkjoin 203, 213, 216

form feed 4

front() 306

functions 72

functionsin interfaces 212
functions, arg passing by name 75
functions, default args 75
functions, exporting 76, 212, 244—245
functions, importing 76, 212, 240

G

garbage collection 81
getc() 12

goto 58

H

handle 80

hextoa() 13
hierarchical names 202

|

icompare() 12

if...else 103

if..else 102

iff 61, 147

immediate assertions 145
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implication 102

import 76, 212, 240
Inactive region 126
incrementor operator 45
inheritance 84, 100
insert() 306
insert_range() 307
inside 99—-100

int 6—8

integer 8

integer literals 3

integral 8

interface 203—220, 343
intersect 161
introduction to SystemVerilog 1
itoa() 13

J
join_any 63, 65
join_none 63, 65

L

labels 60

last() 18, 35

latched logic 64

len() 11

libraries 224

library map files 224

linked ists 303—308

list methods
back() 306
clear() 308
data() 305
empty() 305
eq() 304

erase() 307
erase_range() 307

finish() 306
front() 306
insert() 306
insert_range() 307
neq() 305
next() 304
pop_back() 306
pop_front() 306
prev() 304
purge() 308
push_front() 305
set() 307
size() 305
start() 306
swap() 308
literal values 3
local 87
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localparam 222
logic 6, 8
longint 6—8
LRM 343

M

matched 178

memory management 92
methods 81

methods, built-in 48

modport 203, 209

module instantiation 198—199
multiple dimension arrays 26

N

name() 19

named blocks 59

named port connections 198
NBA region 126

neq() 305

nested identifiers 202
nested modules 192

new 81

next() 18, 35, 304

nonbl ocking assignments 55
null 9, 13, 93

num() 19, 34

@]

object handle 7980
object-oriented 78

Observed region 126
octtoa() 13

operator associativity 47
operator precedence 47, 155
or 162

oring sequences 162
overview of SystemVerilog 1

=]

packed arrays 25—26, 46, 343
parameter 91, 222

parameter type 223

part selects 27

PLI callbacks 129

pointer 80

polymorphism 88

pop_back() 306

pop_front() 306

port connections, .* 199

port connections, .name 198
port declarations 195
post_randomize() method 96, 106
Post-NBA region 126
Post-observed region 126
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Postponed region 126
pre_randomize() method 96, 106
Pre-active region 126
precedence 47

Pre-NBA region 126
Preponed region 126

prev() 19, 36, 304

priority 5657

process 343

process execution threads 65
program block 141—144
property 148, 175

protected 87

pure 77, 238—239

purge() 308

push_back() 305
push_front() 305

putc() 11

R
rand 96
rand_mode() method 96, 108
randc 96
random constraints 94—114
random distribution 101
random implication 102
Random Number Generator (RNG) 112
randomization methods
constraint_mode() 96, 109
post_randomize() 96, 106
pre_randomize() 96, 106
rand_mode() 96, 108
randomize() 94, 106
randomize() method 94, 106
randomize()...with 107
Reactive region 126
rea 4, 6, 8, 47
real literals 4
realtoa() 13
ref 74
reg 6, 8
regions
Active 126
Inactive 126
NBA 126
Observed 126
Post-NBA 126
Post-observed 126
Postponed 126
Pre-active 126
Pre-NBA 126
Preponed 126
Reactive 126
release 53
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repetition 155
return 53, 58, 60, 70, 72
RNG (Random Number Generator) 112

S

scheduling semantics 125—129

sequence 150, 153

seguence expression 151

sequential logic 64

set() 307

shortint 7—8

shortreal 4, 6, 8, 47

signed types 8

singular 22

size() 29, 305

dices 27

solve...before 99, 105

Sparse arrays, see associative arrays

specparam 222

start() 306

statement labels 59

static 38—40, 68, 82

static processes 63

static tasks 70

step 4, 126

stratified event scheduler 125

string 9-13

string literals 4

string methods
atobin() 12—13
atohex() 12—13
atoi() 12
atooct() 12—13
atoreal() 13
bintoa() 13
compare() 12
getc() 12
hextoa() 13
icompare() 12
itoa() 13
len() 11
octtoa() 13
putc() 11
realtoa() 13
substr() 12
tolower() 12
toupper() 12

struct 19

structure literals 5

structures 19

subclasses 84

substr() 12

super 85

swap() 308
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SystemVerilog, overview 1

SystemV erilog,version numbers 1

T
tasks 69

tasksin interfaces 212
tasks, arg pass by hame 75
tasks, default args 75

this 82

threads 65

time 8

timeliterals 4

time unit 4

tolower() 12

top level 190

toupper() 12

type 223

typedef 6, 14, 92

U

union 20

unions 19

unique 5657

unpacked arrays 25—26, 343
unsigned types 8

unsized literals 4
user-defined types 14

\

variable initialization 39
VCD 231

vertical tab 4

virtual 87—88

void 8

void functions 68, 72

w

wait fork 63, 66
while 53, 57
wild-card operators 46
with 107
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