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Section 1
Introduction to SystemVerilog

This document specifies the Accellera extensions for a higher level of abstraction for modeling and verifica-
tion with the Verilog Hardware Description Language. These additions extend Verilog into the systems space
and the verification space and was built on top of the work of the IEEE Verilog 2001 committee.

Throughout this document:

— “Verilog” or “Verilog-2001" refers to the IEEE Std. 1364-2001 standard for the Verilog Hardware Descrip-
tion Language

— “SystemVerilog” refersto the Accellera extensions to the Verilog-2001 standard.

This document numbers the generations of Verilog as follows:
— “Verilog 1.0" isthe IEEE Std. 1364-1995 Verilog standard, which is also called Verilog-1995

— “Verilog 2.0 isthe IEEE Std. 1364-2001 Verilog standard, commonly called Verilog-2001; this genera-
tion of Verilog contains the first significant enhancements to Verilog since its release to the public in 1990

| — “SystemVerilog 3.6x” is Verilog-2001 plus an extensive set of high-level abstraction extensions, as
defined in this document

— SystemVerilog 3.0, approved as an Accellera standard in June 2002, includes enhancements primarily
directed at high-level architectural modeling

— SystemVerilog 3.1, approved as an Accellera standard in add final date, includes enhancements pri-
marily directed at advanced verification and C language integration

The Accellerainitiative to extend Verilog is an ongoing effort under the direction of the AccelleraHDL + Tech-
nical Subcommittee. This committee will continue to define additional enhancements to Verilog beyond Sys-
| temVerilog 3.01.

SystemVerilog 3.0 is built on top of Verilog 2001. SystemVerilog improves the productivity, readability, and
reusability of Verilog based code. The language enhancements in SystemVerilog provide more concise hard-
ware descriptions, while still providing an easy route with existing tools into current hardware implementation
flows.

| SystemVerilog 3.0 adds several new constructsto Verilog-2001, including:
— C datatypesto provide better encapsulation and compactness of code
— int, char, typedef, struct, union, enum
— Enhancements to existing Verilog constructs, to provide tighter specifications
— Extensions to always blocks to include linting type features
— Logic (0, 1, X, Z) and bit (0, 1) datatypes
— Automatic/static specification on a per variable instance basis
— Procedural break, continue, return
— Interfaces to encapsul ate communication and facilitate “ Communication Oriented” design
— Dynamic processes for modeling pipelines

— A $root top level hierarchy which can have global definitions

SystemVerilog 3.1 adds verification enhancementsin the following important areas:

— Verification Functionality: Reusable, reactive test-bench data-types and functions.
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— BuUilt-in types: string, associative array, and dynamic array.
— Pass by reference subroutine parameters.

— Synchronization: Mechanisms for dynamic process creation, process control, and inter-process communi-
cation.

— Enhancementsto existing Verilog events.
— Built-in synchronization primitives. Semaphore, Mailbox.

— Classes. Object-Oriented mechanism that provides abstraction, encapsulation, and safe pointer capabili-
ties.

— Dynamic Memory: Automatic memory management in a re-entrant environment that frees users from
explicit de-allocation.

— Cycle-Based Functionality: Clocking domains and cycle-based attributes that help reduce devel opment,
ease maintainability, and promote reusability.

— Cycle-based signal drives and samples
— Synchronous samples

— Race-free program context

2 Copyright 2003 Accellera. All rights reserved.
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Section 2
Literal Values

2.1 Introduction (informative)

The lexical conventions for SystemVerilog literal values are extensions of those for Verilog. SystemVerilog
adds literal time values, literal array values, literal structures and enhancements to literal strings.

2.2 Literal value syntax

time_literal ::= /I from Annex A.8.4
unsigned_number time_unit
| fixed_point_number time_unit

time_unit :=s|ms|us|ns|ps|fs

number ::= /[ from Annex A.8.7
decimal_number
| octal_number
| binary_number
| hex_number
| real_number

decimal_number ::=
unsigned_number
| [ size] decima_base unsigned number
| [ size] decima_base x_digit{ _}
| [ size] decima_base z digit{ _}
binary_number ::=[ size] binary_base binary value
octal_number ::=[ size] octal_base octal_value
hex_number ::=[ size] hex_base hex_value
sign:=+]-
size::=non_zero_unsigned number
non_zero_unsigned_number ::= non_zero_decimal_digit{ _| decimal_digit}
real_number ::=
fixed_point_number
| unsigned _number [ . unsigned _number ] exp [ sign] unsigned_number
fixed_point_number ::= unsigned_number . unsigned_number
exp:=e|E

unsigned_number? ::= decimal_digit { _ | decimal_digit }

EC-CH1 string ::=" { Any_ASCIIl_Characters—exeept—rew—tne} " /I from Annex A.8.8

Syntax 2-1—L.iteral values (excerpt from Annex A)
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2.3 Integer and logic literals

Literal integer and logic values can be sized or unsized, and follow the same rules for signedness, truncation
and |eft-extending as Verilog-2001.

SystemVerilog adds the ability to specify unsized literal single bit values with a preceding apostrophe ( ), but
without the base specifier. All bits of the unsized value are set to the value of the specified bit. In a self-deter-
mined context these literals have awidth of 1 bit, and the value is treated as unsigned.

"0, "1, 'X, 'x, 'Z, 'z // sets all bits to this value

2.4 Real literals

The default typeis real for fixed point format (e.g. 1. 2), and exponent format (e.g. 2. 0e10).

A cast can be used to convert literal real valuestothe shortreal type (e.g. shortreal’ (1.2) ). Casting
is described in section 3.14.

2.5 Time literals

Time is written in integer or fixed point format, followed without a space by atime unit (fs ps ns us ms s).
For example:

0.1ns
40ps

2.6 String literals

A string literal is enclosed in quotes and has its own data type. Non-printing and other special characters are
preceded with a backslash. SystemVerilog adds the following special string characters:

\v vertical tab

\f form feed

\a bell

\x02 hex number

A string literal must be contained in a single line unless the new line is immediately preceded by a\ (back
slash). In this case, the back slash and the new line are ignored. There is no predefined limit to the length of a
string literal.

A string literal can be assigned to a character, or apacked array, asin Verilog-2001. If the size differs, itisright
justified.

char cl1 = "A" ; bit [7:0] 4 = "\n" ;
bit [0:11] [7:0] c¢2 = "hello world\n" ;

A string literal can be assigned to an unpacked array of characters, and a zero termination is added like in C. If
the size differs, it isleft justified.

char ¢3 [0:12] = "hello world\n" ;

Packed and unpacked arrays are discussed in section 4. The difference between string literals and array literals
isdiscussed in section 2.7, which follows.

String literals can also be cast to a packed or unpacked array, which shall follow the same rules as assigning a
literal string to a packed or unpacked array. Casting is discussed in section 3.14.

4 Copyright 2003 Accellera. All rights reserved.



Ecl

BC-7c ||

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

SystemVerilog 3.1 also includes a string data-type to which a string literal can be assigned. Variables of type
string have arbitrary length; they are dynamically resized to hold any string. String literals are packed arrays
(of awidth that is a multiple of 8 hits), and they are implicitly converted to the string type when assigned to a
string type or used in an expression involving string type operands (see annex C).

2.7 Array literals

Arrays literals are syntactically similar to C initializers, but with the replicate operator ( {{}} ) allowed.
int n(1:21[1:3] = {{0,1,2},{3{4}}};

The nesting of braces must follow the number of dimensions, unlikein C. However, replicate operators can be
nested.

int nl1:21[1:3] = {2{{3{4}}}};
If the typeis not given by the context, it must be specified with a cast.

typedef int [1:3] triple; // 3 integers packed together
b = triple’{0,1,2};

2.8 Structure literals

Structure literals are syntactically similar to C initializers. Structure literals must have a type, either from con-
text or a cast.

typedef struct {int a; shortreal b;} ab;
ab c;
c = {O, 0.0}; // structure literal type determined from the left hand context
(c)
Nested braces should reflect the structure. For example:
ab abarr[1:0] = {{1, 1.0}, {2, 2.0}};

Note that the C alternative {1, 1.0, 2, 2.0} isnotalowed.
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Section 3
Data Types

3.1 Introduction (informative)

To provide for clear tranglation to and from C, SystemVerilog supports the C built-in types, with the meaning
given by the implementation C compiler. However, to avoid the duplication of int and 1ong without causing
confusion, in SystemVerilog, int is32 bitsand Longint iS64 bits. The C £1oat typeiscaled shortreal in
SystemVerilog, so that it will not be confused with the Verilog-2001 real type.

Verilog-2001 has net data types, which may have 0, 1, X or Z, plus 7 strengths, giving 120 values. It also has
variable data types such as reg, which have 4 values 0, 1, X, Z. These are not just different data types, they are
used differently. SystemVerilog adds another 4-value data type, called 1ogic. See section 3.3.2.

SystemVerilog 3.1 adds string, handle and class data types, and enhances the Verilog event and Sys-
temVerilog 3.0 enum data types. SystemVerilog 3.1 also extends the user defined types by providing support
for object-oriented class.

Verilog-2001 provides arbitrary fixed length arithmetic using reg datatypes. The reg type can have bits at X
or Z, however, and so are less efficient than an array of bits, because the operator evaluation must check for X
and Z, and twice as much data must be stored. SystemVerilog adds abit type which can only have bits with O
or 1 values. See section 3.3.2 on 2-state data types.

Automatic type conversions from a smaller number of bitsto alarger number of bits involve zero extensions if
unsigned or sign extensions if signed, and do not cause warning messages. Automatic truncation from a larger
number of bitsto asmaller number does cause awarning message. Automatic conversions between 1ogic and
bit do not cause warning messages. To convert alogic value to a bit, 1 convertsto 1, anything elseto 0.

User defined types are introduced by typedef and must be defined before they are used. Data types can aso
be parameters to modules or interfaces, making them like class templatesin object-oriented programming. One
routine can be written to reverse the order of elementsin any array, which isimpossiblein C and in Verilog.

Structures and unions are complicated in C, because the tags have a separate name space. SystemVerilog fol-
lows the C syntax, but without the optional structure tags.

See also Section 4 on arrays.

6 Copyright 2003 Accellera. All rights reserved.
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3.2 Data type syntax

data_type ::= /l from Annex A.2.2.1
integer_vector_type|[ signing ] { packed_dimension} [ range]
| integer_atom_type|[ signing ] { packed_dimension }
| type declaration_identifier
| non_integer_type
| struct { { struct_union_member } }
| union {{ struct_union_member} }
| enum { enum_identifier [ = constant_expression |
{ , enum_identifier [ = constant_expression] } }
| void
integer_type ::=integer_vector_type | integer_atom_type
integer_atom_type ::= byte | char | shortint |int | longint | integer
integer_vector_type::= bit | logic | reg
non_integer_type ::=time| shortreal | real | realtime | $built-in
signing ::=[ signed ] | [ unsigned ]
simple_type ::= integer_type | non_integer_type | type identifier
struct_union_member ::= data type list_of variable identifiers or_assignments;;

Syntax 3-1—data types (excerpt from Annex A)

3.3 Integer data types

SystemVerilog offers several integer data types, representing a hybrid of both Verilog and C data types:

Table 3-1: Integer data types

EC-CH6 char 2-state C-compatible data type, tsuathy-an 8 bit signed integer (ASCII) er-a-shertint-(Unicode)
EC-CH31
BC46 shortint 2-state SystemVerilog data type, 16 bit signed integer

int 2-state SystemVerilog data type, 32 bit signed integer

longint 2-state SystemVerilog data type, 64 bit signed integer

byte 2-state SystemVerilog data type, 8 bit signed integer

bit 2-state SystemVerilog data type, user-defined vector size

logic 4-state SystemVerilog data type, user-defined vector size with different use rules from reg
reg 4-state Verilog-2001 data type, user-defined vector size

integer 4-state Verilog-2001 data type, at least 32 bit signed integer
EC-CH2 || sering arbitrary-tength-eharacterstring-
| elass- object-eriented-class-

3.3.1 Integral types

3 Theterm integral is used throughout this document to refer to the datatypes that can represent a single integral
EC-CH3 . X X
— value—Theseare-al-the basic integer datatypes, packed struct, packed union, enum, and Or time.
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3.3.2 2-state (two-value) and 4-state (four-value) data types

Types which can have unknown and high impedance values are called 4-state types. These are 1ogic, reg and
integer. The other types do not have unknown values and are called 2-state types, for examplebit and int.

The difference between int and integer iSthat int is2-statelogic and integer is4-statelogic. 4-state val-
ues have additional bits that encode the X and Z states. 2-state data types should simulate faster, take less
memory, and are preferred in some design styles.

3.3.3 Signed and unsigned data types

Integer types use integer arithmetic and can be signed or unsigned. This affects the meaning of certain opera-
torssuch as‘<’, etc.

int unsigned ui;
int signed si;

The data types char, byte, shortint, int, integer and longint default to signed. The datatypesbit,
reg and logic default to unsigned, as do arrays of these types.

Note that the signed keyword is part of Verilog-2001. The unsigned keyword is areserved keyword in Ver-
ilog-2001, but is not utilized.

See al'so section 7, on operators and expressions.

- erbastedaetaHpes

Editor’s Note: | took the liberty of elevating the three sub-subsections within 3.4 of the SV 3.0 LRM to subsection
level, to be more consistent with the levels describing the new string and event data types. Hence:

- SV 3.0 LRM Section 3.4.1 “Time data types” becomes SV 3.1 LRM Section 3.4

- SV 3.0 LRM Section 3.4.2 “Real and shortreal data types” becomes SV 3.1 LRM Section 3.5

- SV 3.0 LRM Section 3.4.3 “Void data type” becomes SV 3.1 LRM Section 3.6

3.4 Time data types

Time is aspecia datatype. It isa64 bit integer of time steps. The default time step follows the rules of IEEE
Verilog standard. The time step can be changed by the timeprecision declaration. It can aso be changed by
a ‘timescale directive.

The timeprecision declaration affectsthelocal accuracy of delays.
module m;
timeprecision 0.1ns;
initial #10.11lns a = 1; // round to #10.lns according to time precision
endmodule
The timeunit declaration is used to set the current time unit. When aliteral time is expressed in SystemVer-
ilog, it can be given with explicit time units, e.g. 12ns. If no time units are specified, the literal number ismul-
tiplied by the current time unit. Time values are scaled to the time precision of the module, following the rules
of Verilog-2001. Aninteger or real variableis cast to atime value by using the integer or real as adelay.
For example:

#10.11; // multiply by time unit and round according to time precision

See section 17.6 for more information on setting the time units and time precision.

8 Copyright 2003 Accellera. All rights reserved.
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3.5 Real and shortreal data types

Therea1l datatypeisfrom Verilog-2001, and isthe sameasa C double. The shortreal datatypeisaSys
temVerilog datatype, and isthe sameasaC float.

3.6 Void data type

The void data type represents non-existent data. This type can be specified as the return type of functions,
indicating no return value.

3.7 Handle data type

The handle datatype represents storage for pointers passed across the DirectC interface. The size of thistype

is platform dependent and must be at Teast Targe enough to hold a pointer on the machine in which the ssimula-

for isrunning. The syntax to declare ahandleis as follows:

| Editor’s Note: Isthe “DirectC” .name to be used in SystemVerilog?

handle variable name ;

| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

| Editor’s Note: | took the liberty of adding “handle” to the keyword list in Annex B

where variable name is avalid identifier. Handles shall always be initialized to the value nu11, which has a

value of 0 on the C side, which represents a non-existent handle. Handles are very restricted on their usage,

with the only Tegal uses being as follows.

Editor’s Note: Is “null” also a SystemVerilog keyword?.

only the following operators are valid on handle variables:

equality (==), inequality (=) with another handle or with null

case equality (===), case inequality with another handle or with null (same semantics as == and !=)

only the following assigments can be made to ahandle

assignment from another handle

assigment to null

handles can be inserted into associative arrays (refer to section 4.9), but no guarantees will be made on rel-
ative ordering of any two entries in such an associative array, even between successive runs of the same
simulation.

handles can be used within aclass

handles may be passed as arguments to functions or tasks

handles can be returned from functions

The use of handles are restricted as follows:

— ports may not have the handle data type

handles may not be assigned to variables of any other type

1 The real and shortreal types are represented as described by | EEE 734-1985, an | EEE standard for floating point numbers.
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handles cannot be used:

— in any expression other than as permited above

asaports
in sensitivity lists or event expressions

in continuous assigments

in Sstructures or unions

in packed arrays

3.8 String data type

SystemVerilog includes a string data type, which is a variable size, dynamically allocated array of charac-
ters. SystemVerilog also includes a number of special methods to work with strings, which are described in
annex C.

Verilog supports string literals, but only at the lexical level. In Verilog, string literals behave like packed arrays
of awidth that isamultiple of 8 bits. A string literal assigned to a packed array is truncated to the size of the

array

In SystemVerilog string literals behave exactly the same asin Verilog However, SystemVerilog also supports
the string datatype to which a string literal can be assigned. When using the string data type instead of a
packed array, strings can be of arbitrary length and no truncation occurs. Literal strings are implicitly con-
verted to the string type when assigned to a string type or used in an expression involving string type oper-
ands (see annex C).

Variables of type string can be indexed from 0to N-1 (the last element of the array), and they can take on the
specia value“”, which isthe empty string. Uninitiatized-variables ef- type sering are thitiaized to

The syntax to declare astringis.

string variable name [= initial value];

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

wherevariable name isavalid identifier and the optional initial wvalue canbeastring literal or the
value“” for an empty string. For example:

string myName = "John Smith";

If aninitial valueis not specified in the declaration, the variableisinitialized to“ ", the empty string.

SystemVerilog provides a set of operators that can be used to manipulate combinations of string variables and
string literals. The basic operators defined on the string data type are listed in table 3-2, which follows.

A string literal isimplicitly converted to string type when it is assigned to avariable of type string or is used

in an expression mvolvmg strlng type operands Ast%mgmakané&eenea&enaﬂeneemeaﬁm%eﬁsmng%

able of type str:l.ng can be assgned an expressmn of type str:l.ng, strmg I|teral or packed array.

A string literal can be assigned to a string, a character, or a packed array. If their size differs the literal isright
justified and zero filled on the left. For example:

char ¢ = "A"; // assign to c "A"
bit [10:0] a = "\x41"; // assigns to a ‘b000 0100 0001
bit [1:4][7:0] h = "hello" ; // assigns to h "ello"

10 Copyright 2003 Accellera. All rights reserved.
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A string, string literal, or packed array can be assigned to a string variable. The string variable will grow to
accommodate the packed array. If the size (in bits) of the packed array is not a multiple of 8 then the packed
array is zero filled on the left. For example:

string sl = "hello"; // sets sl to "hello"

bit [11:0] b = 12'ha41l;

string s2 = b; // sets s2 to 'h0a4l
For example:

reg [15:0] «r;

integer i = 1;
string b = "";
string a = {"Hi", b};
stri Y =1 7
r = a; // OK
b = r; // Errer OK (implicit cast, some implementations
// may issue a warning)
b = "Hi"; // OK
b = {s{"Hi"}}; // OK
a = {i{"Hi"}}; // OK (non constant replication)
r = {i{"Hi"}}; // invalid (non constant replication)
a = {i{b}}; // OK
a = {a,b}; // OK
a = {"Hl", }i // OK
alo] = "h"; // OK same as al[0] = "hi" )
Table 3-2: String operators
Operator Semantics

Strl == Str2 Equality. Checksif the two strings are equal. Result is 1 if they are equal
and O if they are not. Both strings may be of type string. Or one of
them may be a string literal. If both operands are string literals, the
expression is the same Verilog equality operator for integer types. The
specia value“” is alowed.

Strl != Str2 Inequality. Logical Negation of ==

Strl < Str2 Comparison. Relational operatorsreturn 1 if the corresponding condition

Strl <= Str2 istrue using the lexicographical ordering of the two strings St r1 and

Strl > Str2 Str2. The comparison behaves like the ANSI C st rcmp function (or

Strl >= Str2 the compare string method). Both operands may be of type string, or
one of them may be a string literal.

{str1i,str2,...,Strn} Concatenation. Each string may be of type string or astring literal (it
will beimplicitly converted to string). If at least one string is of type
string, then the expression evaluates to the concatenated string and is
of type string. If al the strings are string literals then the expression
behaveslike aVerilog concatenation of integral types; if the result isthen
used in an expression involving string types, it isimplicitly converted to
the string type.

Copyright 2003 Accellera. All rights reserved. 11
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Table 3-2: String operators

Operator Semantics

{multiplier{str}} Replication. St r may be of type string or astring literal. Multiplier
must be of integral type and can be non-constant. If multiplier is non-
congtant or Str isof type string, theresult isastring containing N
concatenated copies of St r, where N is specified by the multiplier. If
Strisalitera and the multiplier is constant, the expression behaveslike
numeric replication in Verilog (if the result is used in another expression
involving string types, it isimplicitly converted to the string type).

Str.method(...) The dot (.) operator is used to invoke a specified method on strings. See
annex C for detailed descriptions of the various string methods available.

SystemVerilog aso includes a number of special methods to work with strings.

len () — returnsthe length of the string

putc () — replaces acharacter in astring

getc () — returnsthe ASCII code of a character in a string

toupper () — returnsastring with all characters converted to uppercase

tolower () — returnsastring with all characters converted to lowercase

compare () — compares two strings character by character

icompare () — compares two strings character by character in a case insensitive mode
substr () — returns a sub-string from within a string

atoi () — returnsthe integer corresponding to the ASCII decimal representation of a string

atohex () — returns the integer corresponding to the ASCII hexadecimal representation of astring inter-
prets the string as hexadecimal.

atooct () — returnsthe integer corresponding to the ASCII eeatal octal representation of a string inter-
prets the string as octal.

atobin () — returns the integer corresponding to the ASCII binary representation of a string
atoreal () returnsthereal number corresponding to the ASCII decimal representation in str.

itoa (1) storesthe ASCII decimal representation of an integer asastring (inverse of atoi).

hextoa (1) storesthe ASCII hexadecimal representation of an integer asastring (inverse
of atohex).

— octtoa (i) storesthe ASCII octal representation of an integer as a string (inverse of

atooct!.

— bintoa (i) storesthe ASCII binary representation of an integer as a string (inverse of

atobin!.

— realtoa (r) Storesthe ASCII representation of areal asastring (inverse of atoreal).

These built-in string methods are described in annex C.

12
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3.9 Event data type

The event datatype is an enhancement over Verilog named events. SystemV erilog events provide a handle to
a synchronization object. Like Verilog, event variables can be explicitly triggered and waited for, however,
SystemV erilog events can also have a persistent triggered state-that-is-the synchronization-objectcan-be-etther
EC-CH11 || ON-or-OFF that lasts for the duration of the entire time step. Also, event variables can be assigned the special

value null, which breaks the association between the synchronization object and the event variable, or be
assigned another event variable, in which case more than one event variable will refer to the same synchroniza-
tion object. Events can be passed as arguments to tasks.

The syntax to declare an event is.

EC43H11|| event—variable name—[=—initial—~valuels

event [ bit ] ;ariable name [= initial value];

| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

where variable name isavalid identifier and the optional initial_ value can be another event vari-
able or the specia valuenull.

EC-CH11 ||

If aninitial valueis not specified then the variable isinitialized to a new synchronization object.

The declaration event bit creates apersistent event (as described in section 12.6.2).

If the event is assigned nul1, the event becomes nonblocking, asif it were permanently triggered.

Examples:
event done; // declare a new event called done
event done too = done; // declare done too as alias to done
event bit blast; // persistent event
event bit empty = null; // persistent event variable

Event operations and semantics are discussed in detail in section 12.6.

3.10 User-defined types

type_declaration ::= /I from Annex A.2.1.3
typedef data typetype declaration_identifier ;
| typedef interface_identifier { [ constant_expression ] } . type_identifier
type_declaration_identifier ;

Syntax 3-2—user-defined types (excerpt from Annex A)

The user can define anew type using typedef, asin C.
typedef int intPp;

This can then be instantiated as:

Copyright 2003 Accellera. All rights reserved. 13
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intP a, b;
A type can be used beforeit is defined, provided it isfirst identified as a type by an empty typedef:
typedef foo;
foo £ = 1;
typedef int foo;
Note that this does not apply to enumeration values, which must be defined before they are used.
If the type is defined within an interface, it must be re-defined locally before being used.
interface it;
typedef int intPp;

endinterface

it itl;
typedef itl.intP intPp;

User-defined type names must be used for complex data types in casting (see section 3.12, below), and as
parameters.

3.11 Enumerations

data type::= /I from Annex A.2.2.1

| enum [ integer_type[ signing] { packed_dimension} ]
{ enum_identifier [ = constant_expression ] { , enum_identifier [ = constant_expression] } }

Syntax 3-3—enumerated types (excerpt from Annex A)

Editor’s Note: Update preceding BNF excerpt with new BNF, once available.

An enumerated type provides the capability to declare sets of integral named constants. Enumerated data types
provide the capability to abstractly declare strongly typed variables without either a data type or data value(s)
and later add the required data type and value(s) for designs that require more definition. Enumerated data
types also can be easily referenced or displayed using the enumerated names as opposed to the enumerated val-

BC10 ||

BC26-1

L

In the absence of a datatype declaration, the default datatype shall be int. Any other data type used with enu-
merated types shall require an explicit data type declaration.

An enumerated type defines a set of named values. In the following example, “light1” and “light2” are defined
to be variables of the anonymous (unnamed) enumerated int type that includes the three members: “red”, “yel-
low” and “green.”

enum {red, yellow, green} lightl, light2; // anonymous int type

An enumerated name with x or z assignments assigned to an enum with no explicit data type or an explicit 2-
BC17b | )
— state declaration shall be a syntax error.

14 Copyright 2003 Accellera. All rights reserved.
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// Syntax error: IDLE=2’'b00, XX=2'bx <ERROR>, S1=2'b01??, S2=2'b10??
enum {IDLE, XX='x, S1=2'b01, S$S2=2'bl0} state, next;

An enum declaration of a4-state type, such as integer, that includes one or more names with x or z assignments
shall be permitted.

// Correct: IDLE=2'b00, XX=2'bx, S1=2'b01, S$S2=2'bl0
enum integer {IDLE, XX='x, S1=2'b01, S2=2'bl0} state, next;

An unassigned enumerated name that follows and enum name with x or z assignments shall be a syntax error.

// Syntax error: IDLE=2'b00, XX=2'bx, S1=??, S2=??
enum integer {IDLE, XX='x, S1, S2} state, next;

The values can be cast to integer types, and increment from an initial value of 0. This can be overridden.
enum {bronze=3, silver, gold} medal; // silver=4, gold=5

The values can be set for some of the names and not set for other names. A name without a value is automati-
cally assigned an increment of the value of the previous name.

// ¢ 1s automatically assigned the increment-value of 8
enum {a=3, b=7, c} alphabet;

If an automatically incremented value is assigned elsewhere in the same enumeration, this shall be a syntax
error.

// Syntax error: c¢ and d are both assigned 8
enum {a=0, b=7, c, d=8} alphabet;

If the first name is not assigned avalue, it is given the initial value of 0.

// a=0, b=7, c=8
enum {a, b=7, c} alphabet;

A sized constant can be used to set the size of the type. All sizes must be the same.

// silver=4'h4, gold=4'h5 (all are 4 bits wide)
enum {bronze=4'h3, silver, gold} medal4;

// Syntax error: the width of the enum has been exceeded
// in both of these examples

enum {a=1'b0, b, c} alphabet;

enum [0:0] {a,b,c} alphabet;

Any enumeration encoding value that is outside the representable range of the enum shall be an error.

Adding a constant range to the enum declaration can be used to set the size of the type. If any of the enum
members are defined with a different sized constant, this shall be a syntax error.

// Error in the bronze and gold member declarations
enum [3:0] {bronze=5'hl13, silver, gold=3'h5} medal4;

// Correct declaration - bronze and gold sizes are redundant
enum [3:0] {bronze=4'hl13, silver, gold=4'h5} medal4;

. - Type check-
ing of enumerated types used in assgnments as arguments and wrth operators is covered in section 3.11.3.

Like C, there is no overloading of literals, so medal and medal4 cannot be defined in the same scope, since
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they contain the same names.
| 3.11.1 Defining new data types as enumerated types

A type name can be given so that the same type can be used in many places.

typedef enum {NO, YES} boolean;
boolean myvar; // named type

EC-CH12 ||

3.11.2 Enumerated type ranges
A range of enumeration elements can be specified automatically, viathe following syntax:

Table 3-3: Enumeration element ranges

name Associates the next consecutive number with name.

name = N Assignsthe constant N to name

name [N] Generates N names in the sequence: name0, namel, ..., nameN-1N must be a constant expres-
sion

name [N:M] | Createsasequence of hames starting with nameN and incrementing or decrementing until
reaching name nameM.

For example:

EC-CH13|| =67 T Imptes
R enum { add=10, sub[5], jmpl6:81 } ;

This example assigns the number 10 to the enumerated type add. It also creates the enumerated types
sub0,subl,sub2,sub3,and sub4, and assigns them the values 11..15, respectively. Finaly, the example creates
the enumerated types jmp6,jmp7, and jmp8, and assigns them the values 16-18, respectively.

3.11.3 Type checking

SystemVerilog enumerated types are strongly typed, thus, a variable of type enum cannot be assigned a value
that lies outside the enumeration set. Thisisapowerful type-checking aid that prevents users from accidentally

16 Copyright 2003 Accellera. All rights reserved.
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assigning nonexistent values to variables of an enumerate type. This restriction only appliesto an enumeration
that is explicitly declared as a type. The enumeration values can still be used as constants in expressions, and
the results can be assigned to any variable of a compatible integral type.

Both the enumeration names and their integer values must be unique. The values can be set to any integral con-
stant value, or auto-incremented from an initial value of 0. It is an error to set two values to the same name, or
to set avalue to the same auto-incremented value.

Enumerated variables are type-checked in assignments, arguments, and relational operators. Enumerated vari-
ables are auto-cast into integral values, but, assignment of arbitrary expressions to an enumerated variable
requires an explicit cast.

For example:

7 7 7 7 7 7

typedef enum { red, green, blue, vellow, white, black } Colors;

This operation assigns a unique number to each of the color identifiers, and creates the new datatype Colors.
This type can then be used to create variables of that type.

Colors c;

c = green;

c =1; // Invalid assignment

if (1 == ¢ ) // OK. ¢ 1s auto-cast to integer

In the example above, the value green is assigned to the variable ¢ of type Colors. The second assignment is
invalid because of the strict typing rules enforced by enumerated types.

Casting can be used to perform an assignment of a different data type, or an out of range value, to an enumer-
ated type. Casting is discussed in sections 3.14 and 3.15.

3.11.4 Enumerated Types in Numerical Expressions

Elements of enumerated type variables can be used in numerical expressions. The value used in the expression
is the numerical value associated with the enumerated value. For example:

7 7 7 7 7 7

typedef enum { red, green, blue, vellow, white, black } Colors;

Colors col;
integer a, b;

a = blue * 3;
col = yellow;
b = col + green;

From the previous declaration, blue has the numerical value 2. This example assigns a the value of 6 (2*3).
Next, it assignsb avalue of 4 (3+1).

Copyright 2003 Accellera. All rights reserved. 17
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| 3.11.5 Methods for iterating over enumerated types

Veraktte SystemVerilog includes a set of specialized methods to enable iterating over the values of enumer-
ated types.

3.11.5.1 first()

The syntax for the first () methodis.

function enum first () ;

The first () method returns the value of the first member of the enumeration enum.
3.11.5.2 last()

The syntax for the 1ast () method is.

function enum last () ;

The1ast () function return the value of the last member of the enumeration enum.
3.11.5.3 next()

The syntax for the next () method is.

function enum next ( unsigned int N = 1 );

Thenext () function returns the Nth next enumeration value (default is the next one) starting from the current
value of the given variable. A wrap to the start of the enumeration occurs when the end of the enumeration is

18 Copyright 2003 Accellera. All rights reserved.
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reached. If the given value is not a member of the enumeration, the next () function returns the first member.
3.11.5.4 prev()

The syntax for the prev () method is:

function enum prev( unsigned int N = 1 );

The prev () function returns the Nth previous enumeration value (default is the previous one) starting from
the current value of the given variable. A wrap to the end of the enumeration occurs when the start of the enu-
meration is reached. If the given value is not a member of the enumeration, the prev () function returns the
last member.

3.11.5.5 num()

The syntax for the num () method is:

function int num() ;

Thenum () method returns the number of elementsin the given enumeration.
3.11.5.6 name()

The syntax for the name () method is.

function string name() ;

The name () method returns the string representation of the given enumeration value. If the given valueis not
amember of the enumeration, the name () function returns the empty string.

Example: The following code fragment shows how to display the name and value of all the members of an
enumeration.

typedef enum { red, green, blue, yellow } Colors;
Colors ¢ = c.first;
forever begin
Sdisplay( "%s : %d\n", c.name, c );
if( ¢ == c.last ) break;
c = c.next;
end

3.12 Structures and Unions

data_type::= /I from Annex A.2.2.1

| struct { { struct_union_member} }
| union { { struct_union_member } }

struct_union_member ::=data type list_of_variable identifiers or_assignments;;

Syntax 3-4—structures and unions (excerpt from Annex A)
Structure and union declarations follow the C syntax, but without the optional structure tags before the‘ {*.

struct { bit[7:0] opcode; bit [23:0] addr; }IR; // anonymous structure defines
variable IR

Copyright 2003 Accellera. All rights reserved. 19
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IR.opcode = 1; // set field in IR.
Some additional examples of declaring structure and unions are:

typedef struct ({

bit[7:0] opcode;

bit [23:0] addr;
} instruction; // named structure type
instruction IR; // define variable

typedef union { int i; shortreal f; } num; // named union type
num n;
n.f = 0.0; // set n in floating point format

typedef struct {

bit isfloat;

union { int i; shortreal f; } n; // anonymous type
} tagged; // named structure

tagged al9:0]; // array of structures
A structure can be assigned as awhole, and passed to or from a function or task as awhole.

Section 2.8 discusses assigning initia values to a structure.

A packed structure consists of bit fields, which are packed together in memory without gaps. This means that
they are easily converted to and from bit vectors. An unpacked structure has an implementation-dependent
packing, normally matching the C compiler.

Like a packed array, a packed structure can be used as a whole with arithmetic and logical operators. The first
member specified is the most significant and subsequent members follow in decreasing significance. The
structures are declared using the packed keyword, which can be followed by the signed or unsigned keywords,
according to the desired arithmetic behavior, which defaults to unsigned:

struct packed signed ({
int a;
shortint b;
byte c;
bit [7:0] d;
} packl; // signed, 2-state

struct packed unsigned ({
time a;
integer b;
logic [31:0] c;
} pack2; // unsigned, 4-state

If any data type within a packed structure is masked 2-state, the whole structure is treated as masked 2-state.
Any unmasked 4-state members are converted as if cast, i.e. an X will beread as O if it isin a member of type
bit. One or moré elements of the packed array may be selected, assuming an [n-1:0] numbering:

packl [15:8] // ¢

Non-integer datatypes, such asreal and shortreal, are not alowed in packed structures or unions. Nor are
unpacked arrays.

A packed structure can be used with a typedef.

20 Copyright 2003 Accellera. All rights reserved.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

typedef struct packed { // default unsigned
bit [3:0] GFC;
bit [7:0] VPI;
bit [11:0] VCI;
bit CLP;
bit [3:0] PT ;
bit [7:0] HEC;
bit [47:0] [7:0] Payload;
bit [2:0] filler;
} s _atmcell;

ize: A packed union shall

%Zb contam members that are must be packed structures or packed arrays or mteger data types of the same S|ze
BC- 8 8 This ensures that you can read back a union member that was written as another member.

state-the-whele-unton-is4-state-A packed union can aso be used as a whole with arithmetic and logical oper-
ators, and its behavior is determined by the signed or unsigned keyword, the latter being the default- If a
packed union contains a 2-state member and a 4-state member, the entire union is 4 state. Thereis an implicit
conversion from 4-state to 2-state when reading and from 2-state to 4-state when writing the 2-state bit mem-
ber.

Editor’s Note: BC-5 and BC8-8 modified the same sentence. | merged the two changes together.

For example, aunion can be accessible with different access widths:

typedef union packed { // default unsigned
s_atmcell acell;
bit [423:0] bit_slice;
bit [52:0] [7:0] byte slice;

} u_atmcell;

u_atmcell ul;

byte b; bit [3:0] nib;

b = ul.bit_slice[415:408]; // same as b = ul.byte slicel[51];
nib = ul.bit_slice [423:420]; // same as nib = ul.acell.GFC;

Note that writing one member and reading another is independent of the byte ordering of the machine, unlike a
normal union of normal structures, which are C-compatible and have members in ascending address order.

3.13 Class

A class isacollection of dataand a set of subroutines that operate on that data. The datain a classisreferred
to as properties, and its subroutines are called methods. The properties and methods, taken together, define the
contents and capabilities of a class instance or object.

The object-oriented class extension allows objects to be created and destroyed dynamically. Classes can also
be passed around by reference via handles, adding a safe-pointer capability.

A Classisdeclared using the class...endclass keywords. For example:

class Packet
int address; // Properties are address, data, and crc
bit [63:0] data;
shortint crc;
Packet next; // Handle to another Packet

function new() ; // Methods are send and new
function bit send() ;
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endclass : Packet
Any data type can be declared as a class member.

Classes are discussed in more detail in section 11.

3.14 Casting

primary ::= /[ from Annex A.8.4

| simple_type _or_number ’ (. expression )
| simple_type or_number ' { expression { , expression } }
| simple_type _or_number ' { expression { expression } }

simple_type _or_number ::=// from Annex A.2.2.1
simple_type | number

simple_type ::=// from Annex A.2.2.1
integer_type | non_integer_type | type_identifier

Syntax 3-5—casting (excerpt from Annex A)
A data type may be changed by using a cast ( * ) operation. The expression to be cast must be enclosed in
parenthesis or within concatenation or replication braces.

int’ (2.0 * 3.0)
shortint’ {8'hFA, 8’ hCE}

A decimal number as a data type means a number of bits.
17" (x - 2)

The signedness can al so be changed.
signed’ (x)

A user-defined type can be used.
mytype’ (£00)

When casting to a predefined type, the prefix of the cast must be the predefined type keyword. When casting to
a user-defined type, the prefix of the cast must be the user-defined type identifier.

When a shortreal is converted to an int, its value is rounded as in Verilog. So the conversion can lose
information. When a shortreal is converted to 32 hits, its bit pattern is preserved, which means it can be
converted back to the same value without any loss of information. This technique can also be used for struc-
tures, where the $bits attribute gives the size of a structure in bits (the $bits system function is discussed in
section 22.2):

typedef struct ({
bit isfloat;
union { int i; shortreal f; } n; // anonymous type

} tagged; // named structure

typedef bit [Sbits(tagged) - 1 : 0] tagbits; // tagged defined above
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tagged a [7:0]1; // unpacked array of structures

tagbits t = tagbits’ (a[3]); // convert structure to array of bits
al4] = tagged’ (t); // convert array of bits back to structure

Note that the bit datatypeloses X values. If these are to be preserved, the logic type should be used instead.
The size of aunion in bitsisthe size of itslargest member. The size of alogic in bitsis 1.

For compatibility, the Verilog functions $itor, $rtoi, $bitstoreal, $realtobits, $signed,
$unsigned can also be used.

3.15 $cast dynamic casting

SystemVerilog provides the $cast system task to assign values to variables that might not ordinarily be valid
because of differing datatype. $cast can be called as either atask or afunction.

The syntax for $cast is:

function int $cast( secalar singular dest var, sealar singular source exp );
or

task $cast( seatar singular dest var, seatar singular source exp );

A singular type includes packed arrays (and structures) and all other data types except unpacked structures,
unpacked arrays, and handles (used for the C interface).

EC-CH28 |

EC-CH29

EC-CH34

UJ

The dest_var |s the vanable to which the assgnment is made #eaﬂ—beaﬂy—sealaesmg%eeqeﬂ—unpaeked

The source_exp isthe expression that isto be assigned to the destination variable.
Use of $cast aseither atask or afunction determines how invalid assignments are handled.

When called astask, $cast attempts to assign the source expression to the destination variable. If the assign-
ment is invalid, a—fatal+untime—errer—oeedrs a runtime error occurs and the destination variable is left

unchanged.

When called as a function, $cast attempts to assign the source expression to the destination variable, and
returns 1 if the cast is legal. If the cast fails, the function does not make the assignment and returns 0. When
called as a function, no runtime error occurs, and the destination variable is set-te-+Hs-correspending-untattal-

zeehvaluewhich-depends-onthe type-of-the-variable | eft unchanged.

It'simportant to note that $cast performs arun-time check. No type checking is done by the compiler, except
to check that the destination variable and source expression are sealars singulars.

For example:
enum Colors { red, green, blue, yellow, white, black };
Colors col;

$cast( col, 2 + 3 );

This example assigns the expression (5 => black) to the enumerated type. Without $cast, this type of
assignment isillegal.

To check if the assignment will succeed, one can use:
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if (! $cast( col, 2 + 8 ) ) // 10: invalid cast
$display( "Error in cast" );

Alternatively, the preceding examples can be cast using a static SystemVerilog cast operation: For example:
col = Colors’ (2 + 3);

However, thisis acompile-time cast, i.e, a coercion that always succeeds at run-time, and does not provide for
error checking or warn if the expression lies outside the enumeration values.

Allowing both types of casts gives full control to the user. If users know that it is safe to assign certain expres-
sions to an enumerated variable, the faster static compile-time cast can be used. If users need to check if the
expression lies within the enumeration values, it is not necessary to write alengthy switch statement manually,
the compiler automatically provides that functionality viathe $cast function. By alowing both types of casts,
users can control the time/safety trade-offs.

Note: $cast issimilar tothedynamic_cast function availablein C++, but, $cast allows usersto check if the oper-
ation will succeed, whereas dynamic_cast always raises a C++ exception.
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Section 4
Arrays

4.1 Introduction (informative)

An array isacollection of variables, all of the same type, and accessed using the same name plus one or more
indices.

In C, arrays are indexed from O by integers, or converted to pointers. Although the whole array can be initial-
ized, each element must be read or written separately in procedural statements.

In Verilog-2001, arrays are indexed from left-bound to right-bound. If they are vectors, they can be assigned as
asingle unit, but not if they are arrays. Verilog-2001 allows multiple dimensions.

In Verilog-2001, all datatypes can be declared as arrays. The reg, wire and all other net types can also have a
vector width declared. A dimension declared before the object name is referred to as the “ vector width” dimen-
sion. The dimensions declared after the object name are referred to as the “array” dimensions.

reg [7:0] rl [1:256]; // [7:0] is the vector width, [1:256] is the array size

SystemVerilog enhances array declarations in several ways. SystemVerilog supports fixed-size arrays,
dynamic arrays, and associative arrays. Fixed-size arrays can be multi-dimensional and have fixed storage
allocated for al the elements of the array. Dynamic arrays also allocate storage for al the elements of the
array, but the array size can be changed dynamically. Dynamic and associative arrays are one-dimensional.
Fixed-size and dynamic arrays are indexed using integer expressions, while associative arrays can be indexed
using arbitrary datatypes. Associative arrays do not have any storage allocated until it is needed, which makes
them ideal for dealing with sparse data.

4.2 Packed and unpacked arrays

SystemVerilog uses the term “packed array” to refer to the dimensions declared before the object name (what
Verilog-2001 refers to as the vector width). The term “unpacked array” is used to refer to the dimensions
declared after the object name.

bit [7:0] c1; // packed array
real u [7:0]; // unpacked array

A packed array is a mechanism for subdividing a vector into subfields which can be conveniently accessed as
array elements. Consequently, a packed array is guaranteed to be represented as a contiguous set of bits. An
unpacked array may or may not be so represented. A packed array differsfrom an unpacked array in that, when
apacked array appears asaprimary, it istreated as a single vector.

If apacked array is declared as signed, then the array viewed as asingle vector shall be signed. A part-select of
a packed array shall be unsigned.

Packed arrays allow arbitrary length integer types, so a 48 bit integer can be made up of 48 bits. These integers
can then be used for 48 bit arithmetic. The maximum size of a packed array may belimited, but shall be at |east
65536 (216) bits.

Packed arrays can only be made of the single bit types. bit, logic, reg, wire, and the other net types.
Unpacked arrays can be made up of any type.

Integer types with predefined widths cannot have packed array dimensions declared. These types are: char,
byte, shortint, int, longint, and integer. An integer type with a predefined width can be treated as a
single dimension packed array. The packed dimensions of these integer types shall be numbered down to 0,
such that the right-most index is 0.
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byte c2; // same as bit [7:0] c2;
integer il; // same as logic signed [31:0] il;

Unpacked arrays can be made of any scalar (non-unpacked-array) type. V-erakite SystemVerilog enhances
fixed-size unpacked arrays in that in addition to al other SystemVerilog types, unpacked arrays may also be
made of object handles (see section 11.4) and events (see section 12.6).

Note: Verakite SystemVerilog accepts a single number (not a range) to specify the size of an unpacked arrays, like C.
SystemV erilog should accept this type of declaration as a shorthand notation, that is[size] becomes the same as [size-1:0].
For example:

int Array([8] [32]; isthesameas. int Array[7:0] [31:0];

The following operations can be performed on al arrays, packed or unpacked. The examples provided with
these rules assume that A and B are arrays of the same shape and type.

— Reading and writing the array, eg., A = B

— Reading and writing adlice of the array, 9., A[1i:j] = B[i:j]

— Reading and writing avariable slice of the array, eg., A[x+:c] = Bly+:c]
— Reading and writing an element of thearray, eg.,A[i] = B[i]

— Equality operationsonthe array or dlice of thearray, 9. A==B, A[i:j] != B[i:]j]

The following operations can be performed on packed arrays, but not on unpacked arrays. The examples pro-
vided with these rules assume that A is an array.

— Assignment from aninteger, e.g.,A = 8'b11111111;

— Treatment as an integer in an expression, e.g., (A + 3)

When assigning to an unpacked array, the source and target must be arrays with the same number of unpacked
dimensions, and the length of each dimension must be the same. Assignment to an unpacked array is done by
assigning each element of the source unpacked array to the corresponding element of the target unpacked
array. Note that an element of an unpacked array may can be a packed array.

For the purposes of assignment, a packed array is treated as a vector. Any vector expression can be assigned to

any packed array. The packed array bounds of the target packed array do not affect the assignment. A packed
array cannot be assigned to an unpacked array.

4.3 Multiple dimensions

Like Verilog memories, the dimensions following the type set the packed size. The dimensions following the
instance set the unpacked size.

bit [3:0] [7:0] joe [1:10]; // 10 entries of 4 bytes (packed into 32 bit int)
can be used asfollows:

joe[9] = joel8] + 1; // 4 byte add
joe[7] [3:2] = joel[6][1:0]; // 2 byte copy

Note that the dimensions declared following the type and before the name ([3:0] [7:0] in the preceding
declaration) vary more rapidly than the dimensions following the name ([1:10] in the preceding declara-
tion). When used, thefirst dimensions ([3 : 0]) follow the second dimensions ([1:101).

In alist of dimensions, the right-most one varies most rapidly, as in C. However a packed dimension varies
more rapidly than an unpacked one.
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bit [1:10] fool [1:5]; // 1 to 10 varies most rapidly; compatible with
Verilog-2001 arrays
bit foo2 [1:5] [1:10]; // 1 to 10 varies most rapidly, compatible with C

bit [1:5] [1:10] foo3; // 1 to 10 varies most rapidly

bit [1:5] [1:6] foo4 [1:7] [1:8]; // 1 to 6 varies most rapidly, followed by
1 to 5, then 1 to 8 and then 1 to 7

Multiple packed dimensions can also be defined in stages with typedef.

typedef bit [1:5] bsix;
bsix [1:10] foo5; // 1 to 5 varies most rapidly

Multiple unpacked dimensions can also be defined in stages with typedef.

typedef bsix mem type [0:3]; // array of four ’‘bsix’ elements
mem_type bar [0:7]; // array of eight ’'mem_type’ elements

When the array is used with a smaller number of dimensions, these have to be the slowest varying ones.

bit [9:0] foo6;
foo5 = fooll[2]; // a 10 bit quantity.

Asin Verilog-2001, a comma-separated list of array declarations can be made. All arraysin the list will have
the same data type and the same packed array dimensions.

bit [7:0] [31:0] foo7 [1:5] [1:10], foo8 [0:255]; // two arrays declared

If anindex expression is of a 4-state type, and the array is of a 4-state type, an X or Z in the index expression
will cause aread to return X, and awrite to issue arun-time warning. If an index expression is of a4-state type,
but the array is of a 2-state type, an X or Z in the index expression shall generate a run-time warning and be
treated as 0. If an index expression is out of bounds, a run-time warning may be generated.

Out of range index values shall be illegal for both reading from and writing to an array of 2-state variables,

such as int. Theresult of an out of range index value is indeterminate. Implementations shall generate awarn-
ing if an out of range index occurs for aread or write operation.

4.4 Indexing and slicing of arrays

An expression can select part of apacked array, or any integer type, which is assumed to be numbered down to
0.

SystemVerilog uses the term “part select” to refer to a selection of one or more contiguous bits of a single
dimension packed array. This is consistent with the usage of the term “part select” in Verilog.

reg [63:0] data;
reg [7:0] byte2;
byte2 = data([23:16]; // an 8-bit part select from data

SystemVerilog uses the term “dlice” to refer to a selection of one or more contiguous el ements of an array. Ver-
ilog only permits a single element of an array to be selected, and does not have aterm for this selection.

An single element of a packed or unpacked array can be selected using an indexed name.
bit [3:0] [7:0]1 J; // j is a packed array

byte k;
k = jl2]; // select a single 8-bit element from j
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One or more contiguous elements can be selected using a slice name. A slice name of a packed array is a
packed array. A slice name of an unpacked array is an unpacked array.

bit busA [7:0] [31:0] ; // unpacked array of 8 32-bit vectors
int busB [1:0]; // unpacked array of 2 integers
busB = busA[7:6]; // select a slice from busA

The size of the part select or slice must be constant, but the position may be variable. The syntax of Verilog-
2001 is used.

int i = bitvecl[j +: kl; // k must be constant.
a = {(blc -: dl), e}; // d must be constant

Slices of an array can only apply to one dimension, but other dimensions may have single index values in an
expression.

4.5 Array querying functions

SystemVerilog provides new system functions to return information about an array. These arel $left,
$right, $low, $high, $increment, $length, and $dimensions. These functions are described in section
22.3.

4.6 Dynamic arrays

Dynamic arrays are one-dimensional arrays whose size can be set or changed at runtime. The space for a
dynamic array doesn’t exist until the array is explicitly created at runtime.

The syntax to declare adynamic array is:
data type array name [*];

where data_type is the data type of the array elements. Dynamic arrays support the same types as fixed-
size arrays.

For example:
bit [3:0] nibble[*]; // Dynamic array of 4-bit vectors
integer mem[*]; // Dynamic array of integers

Thenew[] operator isused to set or change the size of the array.
The size () built-in method returns the current size of the array.

The delete () built-in method clears al the elements yielding an empty array (zero size).

4.6.1 new[]

The built-in function new allocates the storage and initializes the newly allocated array elements either to their
default initial value or to the values provided by the optional argument.

The syntax of the new functioniis:

array identifier = newlsize] [(srd:array)];

size

The number of elementsin the array. Must be a non-negative integral expression.
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Src_array

Optional. The name of an array with which to initialize the new array. If src_array is not specified, the
elements of array_name are initialized to their default value. src_array must be a dynamic array of the
same datatype asarray_name, but it need not have the same size. If the size of src_array islessthan size,
the extra elements of array_name shall be initialized to their default value. If the size of src_array is
greater than size, the additional elements of src_array shall beignored.

This parameter is useful when growing or shrinking an existing array. In this situation, src_array is
array_name, so the previous values of the array elements are preserved. For example:

integer addr[*]; // Declare the dynamic array.
addr = new[100]; // Create a 100-element array.

// Double the array size, preserving previous values.
addr = new([200] (addr) ;

The new operator follows the SystemVerilog precedence rules. Since both the square brackets []1 and the
parenthesis () have the same precedence, the arguments to this operator are evaluated left to right: sizefirst,
and src_array second.

EC-CH36 |

4.6.2 size()
The syntax for the size () method is:
function int size();
The size () method returnsthe current size of adynamic array, or zero if the array has not been created.

int j = addr.size;
addr = new[ addr.size() * 4 ] (addr); // quadruple addr array

Note: The size method isequivalentto $1length( addr, 1 ).
4.6.3 delete()
The syntax for the delete () methodis:

function void delete();

The delete () method emptiesthe array, resulting in a zero-sized array.

int ab [*] = new[ N ]; // create a temporary array of size N
// use ab

ab.delete; // delete the array contents
Sdisplay( “%d”, ab.size ); // prints 0

4.7 Array assignment

Assigning to afixed-size unpacked array requires that the source and the target both be arrays with the same
number of unpacked dimensions, and the length of each dimension be the same. Assignment is done by assign-
ing each element of the source array to the corresponding element of the target array, which requires that the
source and target arrays be of compatible types. Compatible types are types that are assignment compatible.
Assigning fixed-size unpacked arrays of unequal size to one another shall result in atype check error.

int A[10:1]; // fixed-size array of 10 elements
int B[0:9]; // fixed-size array of 10 elements
int C[24:1]; // fixed-size array of 24 elements
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A = B; // ok. Compatible type and same size
A = C; // eompile—time type check error: different sizes

A dynamic array can be assigned to a one-dimensional fixed-size array of a compatible type, if the size of the
dynamic array is the same as the length of the fixed-size array dimension. Unlike assigning te with afixed-size
array, this operation requires a run-time check that may result in an error.

int A[100:1]; // fixed-size array of 100 elements

int B[*] = new[100]; // dynamic array of 100 elements

int C[*] = new]([8]; // dynamic array of 100 8 elements

A = B; // ok. Compatible type and same size

A = C; // ¥un—time type check error: different sizes

A dynamic array or a one-dimensional fixed-size array can be assigned to a dynamic array of a compatible
type. In this case, the assignment creates a new dynamic array with a size equal to the length of the fixed-size
array. For example:

int A[100:17; // fixed-size array of 100 elements
int B[*]; // empty dynamic array

int C[*] = newl[8]; // dynamic array of size 8

B = A; // ok. B has 100 elements

B = C; // ok. B has 8 elements

The last statement above is equivalent to:
B = new|[ C.size ] (C);

Similarly, the source of an assignment can be a complex expression involving array slices or concatenations.
For example:

String d[5l] — { ngn, llbll, nan, ndn’ nan },.
string pl[*];
p = { d[1:3], "hello", d[4:5] };

The preceding exampl e creates the dynamic array p with contents: “a’, “b”, “c”, “hello”, “d”, “€".

4.8 Arrays as arguments

Arrays can be passed as arguments to tasks or functions. The rulesthat govern array argument passing by value
are the same as for array assignment (see section 10.5) are the same as for array assignment. When an array
argument is passed by value, a copy of the array is passed to the called task or function. Thisis true for all
array types: fixed-size, dynamic, or associative.

Passing fixed-size arrays as parameters to subroutines requires that the actual parameter and the formal argu-
ment in the function declaration be of the compatible type and that all dimensions be of the same size.

For example, the declaration:
task fun(int al3:1][3:1]);
declares task fun that takes one parameter, a two dimensional array with each dimension of size three. A call

to fun must pass a two dimensional array and with the same dimension size 3 for al the dimensions. For
example, given the above description for fun, consider the following actuals:

— int b[3:1][3:1]; //ok: same type, dimension, and size
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— int b[1:3][0:2]; //ok: same type, dimension, & size (different ranges)
— reg b[3:1][3:1]; //error: incompatible type

— int b[3:1]; //error: incompatible number of dimensions

— int b[3:1][4:1]; //error: incompatible size (3 vs. 4)

A subroutine that accepts a one-dimensional fixed-size array can also be passed a dynamic array of a compati-
ble type of the same size.

For example, the declaration:
task bar( string arr[4:1] );

declares a task that accepts one parameter, an array of 4 strings. This task will accept the following actual
parameters:

— string b[4:1]; //ok: same type and size
— string b[5:2]; //ok: same type and size (different range)

— string b[*] = new[4]; //ok: same type and size, requires run-time check

A subroutine that accepts a dynamic array can be passed a dynamic array of a compatible type or a one-dimen-
sional fixed-size array of a compatible type

For example, the declaration:
task foo( string arr([*] );
declares a task that accepts one parameter, a dynamic array of 4 strings. This task will accept any one-dimen-

sional array of strings or any dynamic array of strings.

4.9 Associative arrays

Dynamic arrays are useful for dealing with contiguous collections of variables whose number changes dynam-
ically. When the size of the collection is unknown or the data space is sparse, an associative array is a better
option. Associative arrays do not have any storage allocated until it is used, and the index expressions is not
restricted to integral expressions, but can be of any type.

An associative array implements alookup table of the elements of its declared type. The datatype to be used as
an index serves as the lookup key, and imposes an ordering.

The syntax to declare asseciative an associative array is:
data type array id [ [index type] 1;

where:
— data_type isthe datatype of the array elements. Can be any type allowed for fixed-size arrays.
— array_ idisthe name of the array being declared.

— index_type (optional) isthe data-type to be used as an index. If no index is specified then the array is
indexed by any integral expression of arbitrary size. An index type restricts the indexing expressionsto a
particular type.

Examples of associative array declarations are:

integer i _arrayl]; // associative array of integer (unspecified
// index)
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bit [20:0] array blstring]; // associative array of 21-bit vector, indexed
// by string

event ev_array[myClass]; // associative array of event indexed by class
// wmyClass

Array elements in associative arrays are allocated dynamically: an entry is created the first time it is written.
The associative array maintains the entries that have been assigned values and their relative order according to
theindex datatype.

4.9.1 Unspecified index type

Example: int array name [];

Associative arrays that do not specify an index type have the following properties:

— Thearray can beindexed by any integral data type,-ctudingnategers-packed-arrays-of-arbitrary-tength;-
string-Hteralsand-packed-struetures. Since the indices can be of different sizes, the same numerical value

may have multiple representations, each of a different size. SystemV erilog resolves this ambiguity by
detecting the number of leading zeros and computing a unique length and representation for every value.

— Non-integral index types areillegal and result in a cempiter type check error.
— A 4-state Index containing X or Z isinvalid.

— Indices are unsigned.

— Indexing expressions are self-determined: signed indices are not sign extended.
— A string literal index is auto-cast to a bit-vector of equivalent size.

— Theordering is numerical (smallest to largest).

4.9.2 String index

Example: int array name [ string ];

Associative arrays that specify a string index have the following properties:

— Indices can be strings or string literals of any length. Other types are illegal and shall result in aeempHer
type check error.

— An empty string

index isvalid.
— The ordering islexicographical (lesser to greater).
4.9.3 Class index
Example: int array name [ some Class ];

Associative arrays that specify a class index have the following properties:

— Indices can be objects of that particular type or derived from that type. Any other typeisillegal and shall
result in a eempHer type check error.

— A null index isinvalid.

— The ordering is deterministic but arbitrary.

4.9.4 Integer (or int) index

Example: int array name [ integer 1];
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Associative arrays that specify an integer index have the following properties:

— Indices can be any integral expression.

— Indices are signed.

— A 4-state Index containing X or Z isinvalid.

— Indices smaller than integer are sign extended to 32 bits.

— Indices larger than integer are truncated to 32 hits.

— The ordering is signed numerical.

4.9.5 Signed packed array

Example: typedef bit signed [4:1] Nibble;
int array name [ Nibble ];
Associative arrays that specify a signed packed array index have the following properties:
— Indices can be any integral expression.
— Indices are signed.
— Indices smaller than the size of the index type are sign extended.
— Indiceslarger than the size of the index type are truncated to the size of the index type.

— The ordering is signed numerical.

4.9.6 Unsigned packed array or packed struct

Example: typedef bit [4:1] Nibble;
int array name [ Nibble ];

Associative arrays that specify an unsigned packed array index have the following properties:
— Indices can be any integral expression.
— Indices are unsigned.
— A 4-state Index containing X or Z isinvalid.
— Indices smaller than the size of the index type are zero filled.
— Indices larger than the size of the index type are truncated to the size of the index type.

— The ordering is numerical.

If aninvalid index (i.e., 4-state expression has X’s) is used during a read operation or an attempt is made to
read a non-existent entry then awarning isissued and the default initial value for the array type is returned, as
shown in the table below:

Table 4-1: '
Value read from a nonexistent associative array entry
Typeof Array Value Read
4-state integral type X
2-state integral type '0
enumeration first element in the enumeration
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Table 4-1: yveldaray—trde—detanitntalvalee

Value read from a nonexistent associative array entry

string
class null
event null

If aninvalid index is used during a write operation, the write isignored and awarning is issued.

4.10 Associative array methods

In addition to the indexing operators, several built-in methods are provided that allow users to analyze and
manipul ate associative arrays, as well asiterate over itsindices or keys.

4.10.1 num()
The syntax for the num () method is:
function int num() ;

Thenum () method returns the number of entriesin the associative array. If the array is empty it returns 0.

int imem[] ;

imem[ 2'b3 ] = 1;

imem[ 16'hffff ] = 2;

imem[ 4b’1000 ] = 3;

Sdisplay( "%$0d entries\n", map.num ); // prints "3 entries"

4.10.2 delete()
The syntax for the delete () methodis:

function void delete( [input index] );
Where index is an optional index of the appropriate type for the array in question.

If the index is specified, then the delete delete () method removes the entry at the specified index. If the
entry to be deleted does not exist, the task method issues no warning.

If the index is not specified then the delete delete () method removes all the elementsin the array.

int map[ string ]

map[ "hello" ] 1;

map[ "sad" ] = 2;

map[ "world" ] = 3;

map.delete( "sad" ); // remove entry whose index is "sad" from "map"
map.delete; // remove all entries from the associative array "map"

4.10.3 exists()
The syntax for the exists () method is:
function int exists( input index );

Where index is an index of the appropriate type for the array in question.
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Theexists () function checksif an element exists at the specified index within the given array. It returns 1 if
the element exists, otherwise it returns O.

if ( map.exists( "hello" ))

map[ "hello" ] += 1;
else
map[ "hello" ] = 0;

4.10.4 first()
The syntax for the £irst () method is:
function int first( var index );
Where index is an index of the appropriate type for the array in question.

The first () funetion method assigns to the given index variable the value of the first (smallest) index in the
associative array. It returns O if the array is empty, and 1 otherwise.

string s;

if ( map.first( s ) )

$display( "First entry is : map[ %$s ] = %0d\n", s, mapls] );
4.10.5 last()

The syntax for the 1ast () method is:
function int last( var index );
Where index is an index of the appropriate type for the array in question.

The 1ast () function assigns to the given index variable the value of the last (largest) index in the associative
array. It returns 0 if the array is empty, and 1 otherwise.

string s;
if ( map.last( s ) )
$display( "Last entry is : map[ %s ] = %0d\n", s, mapls] );

4.10.6 next()
The syntax for the next () method is:

function int next( var index );
Where index is an index of the appropriate type for the array in question.
Thenext () function finds the entry whose index is greater than the given index. If there is a next entry, the
index variable is assigned the index of the next entry, and the function returns 1. Otherwise, index is
unchanged, and the function returns 0.

string s;

if ( map.first( s ) )

do

$display( "%s : %d\n", s, map[ s ] );
while ( map.next( s ) );

4.10.7 prev()

The syntax for the prev () method is:
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function int prev( var index );
Where index is an index of the appropriate type for the array in question.

Theprev () function finds the entry whose index is smaller than the given index. If there is a previous entry,
the index variable is assigned the index of the previous entry, and the function returns 1. Otherwise, index is
unchanged, and the function returns O.

string s;
if ( map.last( s ) )
do
$display( "%s : %d\n", s, map[ s ] );
while ( map.prev( s ) );

If the argument passed to any of the four associative array traversal methods first, last, next, and prev iS
smaller than the size of the corresponding index then the function returns —1 and will copy only as much data
aswill fit into the argument. For example:

string aall;

char ix;
int status;
aal 1000 ] = "a";

status = aa.first( ix );
// status is -1
// ix is 232 (least significant 8 bits of 1000)

4.11 Associative array assignment

Associative arrays can be assigned only to another associative array of a compatible type and with the same
index type. Other types of arrays cannot be assigned to an associative array, nor can associative arrays be
assigned to other types of arrays, whether fixed-size or dynamic.

Assigning an associative array to another associative array causes the target array to be cleared of any existing
entries, and then each entry in the source array is copied into the target array.

4.12 Associative array arguments

Associative arrays can be passed as arguments only to associative arrays of a compatible type and with the
same index type. Other types of arrays, whether fixed-size or dynamic, cannot be passed to subroutines that
accept an associative array as an argument. Likewise, associative arrays cannot be passed to subroutines that
accept other types of arrays.

Passing an associative array by value causes alocal copy of the associative array to be created.
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Section 5
Data Declarations

5.1 Introduction (informative)

There are several forms of data in SystemVerilog: literals (see section 2), parameters (see section 19), con-
stants, variables, nets, and attributes (see section 6)

C constants are either literals, macros or enumerations. Thereisaso aconst, keyword but it is not enforced in
C.

Verilog 2001 constants are literals, parameters, local params and specparams. Verilog 2001 also has variables
and nets. Variables must be written by procedura statements, and nets must be written by continuous assign-
ments or ports.

SystemVerilog follows Verilog by requiring data to be declared before it is used, apart from implicit nets. The
rules for implicit nets are the same as in Verilog-2001.

A variable can be static (storage allocated on instantiation and never de-allocated) or automatic (stack storage
alocated on entry to atask, function or named block and de-allocated on exit). C has the keywords static
and auto. SystemVerilog follows Verilog in respect of the static default storage class, with automatic tasks and
functions, but allows static to override a default of automatic for a particular variable in such tasks and
functions.

5.2 Data declaration syntax

data declaration ::= /I from Annex A.2.1.3
variable declaration
| constant_declaration
| type_declaration
block variable declaration ::=
[ lifetime] data_type list_of variable identifiers;
| lifetime data_type list_of variable decl_assignments;
variable_declaration ::=
[ lifetime] data_type list_of variable identifiers or_assignments;;
lifetime ::= static | automatic

Syntax 5-1—Data declaration syntax (excerpt from Annex A)

5.3 Constants

Constants are named data items which never change. There are three kinds of constants, declared with the key-
WOrds localparam, specparam and const, respectively. All three can beinitialized with aliteral.

localparam char colonl = ":" ;
specparam int delay = 10 ; // specparams are used for specify blocks

const logic flag = 1 ;

A local parameter is a constant which is calculated at elaboration time, and can depend upon parameters or
other local parameters at the top level or in the same module or interface.

A specify parameter is also calculated at elaboration time, but it may be modified by the PLI, and so cannot be
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used to set parameters or local parameters.

A constant declared with the const keyword is calculated after elaboration. This means that it can contain an
expression with any hierarchical path name. This constant is like a variable which cannot be written.

const logic option = a.b.c ;
A constant expression contains literals and other named constants.

SystemVerilog enhancements to parameter constant declarations are presented in section 19. SystemVerilog
does not change localparam and specparam constants declarations. A const form of constant differs from
a localparam constant in that the localparam must be set during elaboration, whereas a const can be set
during simulation, such as in an automatic task.

5.4 Variables

A variable declaration consists of a datatype followed by one or more instances.
shortint sl1, s2[0:9];

A variable can be declared with an initializer, which must be a constant expression.
int i = 0;

In Verilog-2001, an initialization value specified as part of the declaration is executed as if the assignment
were made from an initial block, after simulation has started. Therefore, the initialization may cause an event
on that variable at simulation time zero.

In SystemVerilog, setting the initial value of a static variable as part of the variable declaration shall occur
before any initial or always blocks are started, and so does not generate an event. If an event is needed, an
initial block should be used to assign theinitial values.

5.5 Scope and lifetime

Any data declared outside a module, interface, task, or function, is global in scope (can be used anywhere after
its declaration) and has a static lifetime (exists for the whole elaboration and simulation time).

SystemVerilog data declared inside a module or interface but outside a task, process or function islocal in
scope and static in lifetime (exists for the lifetime of the module or interface). Thisis roughly equivalent to C
static data declared outside afunction, which islocal to afile.

Data declared in an automatic task, function or block hasthe lifetime of the call or activation and alocal scope.
Thisis roughly equivalent to a C automatic variable. Data declared in adynamic process is al so automatic.

Data declared in a static task, function or block defaults to a static lifetime and alocal scope. If aninitializer is
used, the keyword static must be specified to make the code clearer.

Note that in SystemVerilog, data can be declared in unnamed blocks as well as in named blocks, but in the
unnamed blocks a hierarchical name cannot be used to accessiit.

Verilog-2001 allows tasks and functions to be declared as automatic, making al storage within the task or
function automatic. SystemVerilog allows specific datawithin a static task or function to be explicitly declared
asautomatic. Datadeclared as automatic has the lifetime of the call or block, and isinitialized on each entry
to the call or block.

SystemVerilog also allows data to be explicitly declared as static. Data declared to be static in an auto-

matic task, function or in aprocess has a static lifetime and a scope local to the block. Thisislike C static data
declared within afunction.
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module msl;
int st0; // static
initial begin
int stl; //static
static int st2; //static
automatic int autol; //automatic
end
task automatic tl1();
int auto2; //automatic
static int st3; //static
automatic int auto3; //automatic
endtask
endmodule

Note that automatic variables cannot be used to trigger an event expression or be written with a nonblocking
assignment.

See also section 10 on tasks and functions.

5.6 Nets, regs, and logic

A net can only be written by one or more continuous assignments, primitive outputs or through module ports.
The resultant value of multiple driversis determined by the resolution function of the net type. The value can
be overridden by a force statement. If a net on one side of a port is driven by a variable on the other side, a
continuous assignment isimplied.

A reg variable can only be written by one or more procedural statements, including procedural (quasi-) contin-
uous assignments. The last write determines the value. The force statement overrides the assign statement
which overrides the normal assignments. A reg variable cannot be written through a port.

A logic variable can be written either by one continuous assignment or primitive output, or by one or more
procedural statements. The last write determines the value. A logic variable can be written through a port. It
shall be an error to have a continuous assignment and a procedural assignment write to the same logic vari-
able, even through ports. The assign statement overrides normal procedural assignmentsto alogic variable,
until deassigned.

Note the difference between a net declaration with assignment and a variable initialization:

wire w = vara & varb; // continuous assignment
reg r = consta & constb; // initial assignment
logic v = consta & constb; // initial assignment

EC-CH24 || 5.7 Signal Aliasing

The SystemVerilog assign Statement isaunidirectional assignment and may incorporate a delay and strength
change. To model a bidirectional short-circuit connection it is necessary to use the alias statement. The
members of an alias list are signals whose hits share the same physical wires. The example below implements
a byte order swapping between bus A and bus B.

Editor’s Note: | took the liberty of adding “alias” to the keyword list in annex B, under this change number.

module byte swap (inout A, inout B);

wire [31:0] A,B;

alias {A[7:0],A[15:8],A[23:16],A[31:24]} = B;
endmodule

Copyright 2003 Accellera. All rights reserved. 39



Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

This example strips out the least and most significant bytes from afour byte bus:

module byte rip (inout W, inout LSB, inout MSB) ;
wire [31:0] W;
wire [7:0] MSB,LSB;

alias W[7:0] = LSB;
alias W[31:24] = MSB;
endmodule

The hit overlay rules are the same as those for a packed union with the same member types. each member
should be the same size and connectivity is independent of the simulation host. The types of nets connected
with an alias statement must be compatible, all the nets have to be of the same type or "wire", i.e. it would be
illegal to connect awand net to awor net with an adias statement, thisis a stricter rule than applied to netsjoin-
ing at ports because the scope of an aliasis limited and such connections are more likely to be adesign error.
Variables and hierarchical references cannot be used in alias statements. Any violation of these rulesis consid-
ered afatal error.

The same nets can appear in multiple alias statements, the effects are cumulative. The following two examples
are equivalent, in either case low12[11:4] andhighi12 [7:0] will share the same wires.

module overlap (inout buslé, inout lowl2, inout highl2);
wire [15:0] buslé6;
wire [11:0] lowl2, highl2;

alias busl6[11:0] = lowl2;
alias busl6[15:4] = highl2;
endmodule

module overlap (inout buslé6, inout lowl2, inout highl2);
wire [15:0] buslé6;
wire [11:0] lowl2,highl2;
alias busl16 = {highl12,lowl2([3:0]};
alias highl2[7:0] = lowl2[11:4];
endmodule

To avoid errors in specification it is not alowed to specify an alias from an individual signal to itself or to
specify agiven alias more than once, so the following version of the code above would beillegal since the top
four and bottom four bits are the same in both statements:

alias buslé
alias buslé

{high12[11:8],lowl2};
{high12,1ow12[3:0]};

This aternative isalso illegal because the bits of busl6 are being aliased to itself:

alias busl6 = {highl12,bus16[3:0]1} = {busl6[15:12],1lowl2};

Alias statements can appear anywhere a module instance would appear, and any undeclared nets in the alias
statement are assumed to be scalar as they would with a module instance. The following example uses alias
along with the automatic name binding to connect pins on cells from different libraries to create a standard
macro:

module 1ibl dff (Reset,Clk,Data,Q,Q Bar);

endmodule

module 1ib2 dff (reset,clock,data,a,gbar) ;

endmodule
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module 1ib3 dff (RST,CLK,D,Q,Q );

endmodule

macromodule my dff (rst,clk,d,q,q bar); // wrapper cell

input rst,clk,d;

output g,q bar;

alias rst = Reset = reset = RST;

alias clk = Clk = clock = CLK;

alias d = data = D;

alias g = Q;

alias Q = g bar = Q Bar = gbar;

‘LIB DFF my dff (.*); // LIB DFF is any of 1libl dff,1ib2 dff or 1ib3 d4dff
endmodule

Using anet in an alias statement does not modify it's syntactic behavior in other statements. Aliasing is per-
formed at elaboration time and cannot be undone.
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Section 6
Attributes
6.1 Introduction (informative)

With Verilog-2001, users can add named attributes (properties) to Verilog objects, such as modules, instances,
wires, etc. Attributes can also be specified on SystemVerilog interfaces. SystemVerilog also defines a default
data type for attributes.

6.2 Attribute syntax for interfaces

interface_declaration ::= /I from Annex A.1.3
{ attribute_instance } interface interface _identifier [ parameter_port_list ]
[ list_of _ports] ; [unit] [precision] { interface item}
endinterface[: interface_identifier]
| { attribute_instance} interfaceinterface identifier [ parameter_port_list |
[ list_of port_declarations] ; [unit] [precision] { non_port_interface item }
endinterface[: interface_identifier]
interface item ::= /l from Annex A.1.6
port_declaration
| non_port_interface item

attribute_instance ::= (* attr_spec{ , attr_spec} *) /l from Annex A.9.1
attr_spec ::=
attr_name = constant_expression
| attr_name

attr_name ::= identifier

Syntax 6-1—Interface attribute syntax (excerpt from Annex A)

An example of defining an attribute for an interface declarationis:
(* interface att = 10 *) interface busl.... endinterface

The default type of an attribute with no value is bit, with avalue of 1. Otherwise, the attribute takes the type of
the expression.

Themodport declaration can be preceded by an attribute instance, like any other interface item.
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Section 7
Operators and Expressions

7.1 Introduction (informative)

The SystemVerilog operators are a combination of Verilog and C operators. In both languages, the type and
size of the operandsis fixed, and hence the operator is of afixed type and size. The fixed type and size of oper-
atorsis preserved in SystemVerilog. This alows efficient code generation.

Verilog does not have assignment operators or incrementor and decrementor operators. SystemVerilog
includes the C assignment operators, such as +=, and the C incrementor and decrementor operators, ++ and - -.

Verilog-2001 added signed nets and reg variables, and signed based literals. There is a difference in the rules

for combining signed and unsigned integers between Verilog and C. SystemVerilog uses the Verilog-2001
rules.

7.2 Operator syntax

unary_operator ::= [/l from Annex A.8.6

-~ & &[T [~
binary_operator ::=

-2 1% | ==]!=]=== == && [|||**

| <l<=>[>= & [||M |2~ 5> | << | >>> | <<<
inc_or_dec_operator ::= ++ | --
unary_module_path_operator ::=

I~ & [ ~& [[ [~ [ 7~
binary_module_path_operator ::=

=[1=]&& [[[T& [[[" "~

assignment_operator ::=
=|+=|-=|*= /= | %= | &= | |5 | M= <<= | >>=| <<= | >>>=

Syntax 7-1—Operator syntax (excerpt from Annex A)

7.3 Assignment, incrementor and decrementor operations

In addition to the simple assignment operator, =, SystemVerilog includes the C assignment operators and spe-
cial bitwise assignment operators. +=, -=, *=, /=, %=, &=, |=, “=, <<=, >>=, <<<=, and >>>=. Assignment
operators may only be used with blocking assignments.

In SystemVerilog, an expression can include a blocking assignment, provided it does not have atiming control.
Note that such an assignment must be enclosed in parentheses to avoid common mistakes such as using a=b
for a==b, or a|=bfora!=b.

if ((a=b)) b = (a+=1);

a= (b= (c=25));
SystemVerilog a so includes the C incrementor and decrementor operators ++i, --i, i++, and i-- (provided

there is no timing control). These can be used in expressions without parentheses. These increment and decre-
ment operations behave as blocking assignments.
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The behavior of the ++ and - - operators (pre/post increment/decrement) is incompletely defined in the ANSI
C standard. This can lead to unexpected behavior when a single statement modifies the same variable more
than once. For example, the following C code fragment may produce different outputs with different C compil-
ers:

int i = 1;
printf( "%d %4 %4 %d %d %d\n", i++, i++, ++i, --i, 1i--, 1i-- );

SystemVerilog defines the semantics for computing all arguments and operands. The size of the ++ and --
operatorsis self-determined. Arguments with the same precedence are evaluated in strict left-to-right order. In
addition, the ++ and - - operators operate on their corresponding variables as they are evaluated. Thus, the
semantics of post and pre increment (++) is roughly equivalent to the code shown below (decrement is analo-
gous).

function integer pre inc (var integer a); // ++a
a += 1;
pre_inc = a;

endfunction

function integer post inc (var integer a); // a++
post_inc = a;
a += 1;

endfunction

The above description states a semantic definition for these operators. SystemV erilog’'s semantics are compati-
ble with Verilog operators, which are also left to right associative, and may have side-effects. For example:

Sdisplay( £( a ) + g( b ) );

EC-CH43 |

Verilog enforces left-to-right evaluation in accordance with the associativity to avoid the ambiguous results;
EC-CH43 | functions £ () and g () may have side effects (globa or hierarchical reference) on variables a or b.

The type returned by an assignment operator shall be the type of the LHS. If the LHS is a concatenation, the
BC44-3 | typereturned shall be an unsigned integral value whose bit Tength is the sum of 1ts operands.

7.4 Operations on logic and bit types

When a binary operator has one operand of type bit and another of type 1ogic, theresult is of type 1logic. If
one operand is of type int and the other of type integer, theresult is of type integer.

The operators = and == return an X if either operand contains an X or a z, as in Verilog-2001. Thisis con-
verted to a0 if theresult is converted to typebit, e.g. in an i £ statement.

The unary reduction operators (& ~& | ~| ~ ~*) can beapplied to any integer expression (including packed
arrays). The operators shal return a single value of type 1ogic if the packed typeis four valued, and of type
bit if the packed typeistwo valued.

int i;

bit b = &i;
integer j;
logic ¢ = &j;
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7.5 Wild equality and wild inequality

SystemVerilog 3.1 introduces the wild-card comparison operators, as described below.

Table 7-1: Wild equality and wild inequality operators

Operator Usage Description
=7= a=?=b aequalsb, X and Z values act as wild cards
17= al?=b anot equal b, X and Z values act as wild cards

The wild equality operator (=2=) and inequality operator (t2=) treat X and Z valuesin agiven bit position asa
wildcard. A wildcard bit matches any bit value (0, 1,Z, or X) in the value of the expression being compared
against it.

These operators compare operands b|t for hit, and return a 1-bit self-determined result. H-the-eperandsarenet

- If the operands to the wild-card equality/inequality are of
unequal hit Iength the operands are extended in the same manner as for the case equality/inequality operators.
[T the relation istrue, the operator yields a 1. Tf the relationisfalse, it yieldsaO.

The three types of equality (and inequality) operators in SystemVerilog behave differently when their oper-
ands contain unknown values (X or Z). The == and ! = operators will result in X if any of their operands con-
tainsan X or Z. The === and 1 === check the 4-state explicitly, therefore, X and Z values will either match or
mismatch, never resulting in X. The =2= and 1 2= operators treat X or Z as wild cards that match any value,
thus, they too never result in X.

7.6 Real operators

Operands of type shortreal have the same operation restrictions as Verilog real operands. The unary oper-
ators ++ and -- can have operands of type real and shortreal (the increment or decrement is by 1.0). The
assignment operators +=, -=, *=, /= can aso have operands of type real and shortreal.

If any operand is real, the result is real, except before the ? in the ternary operator. If no operand is real
and any operand iS shortreal, theresult iS shortreal.

Real operands can also be used in the following expressions:

str.realval // structure or union member
realarrayl[intvall] // array element

7.7 Size

The number of bits of an expression is determined by the operands and the context, following the samerules as
Verilog. In SystemVerilog, casting can be used to set the size context of an intermediate value.

With Verilog, some tools may issue awarning when the |l eft and right hand sides of an assignment are different
sizes. Using the SystemVerilog size casting, these warnings can be prevented.

7.8 Sign

Thefollowing unary operators give the signedness of the operand: ~ ++ -- + -. All other operators shall fol-
low the same rules as Verilog for performing signed and unsigned operations.
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7.9 Operator precedence and associativity

Accellera
Extensions to Verilog-2001

Operator precedence and associativity islisted in table 7-2, below. The highest precedenceis listed first.

Table 7-2: Operator precedence and associativity

left

A A

Unary ! ~ ++ -- + - & ~& && | ~| H * ~ ~

right

left

left

left

<< >> <K<K >>>

left

< <= > >= inside dist

left

left

left

left

left

left

eft

right

right

o\°

= <<= >>= <<K<K= >>>=

none

concatenation

| Editor’s Note: BC19-1 said to add ~ to lines 2 and 11. | made the second change to line 10 was instead of 11.

Note that & is higher precedence than *, following the Verilog standard.

7.10 Built-in methods

: EC-CH33 ||

EC-CH87 ||

SystemV erilog introduces classes and the method calling syntax, in which atask or function is called using the

(.) dot notation:

object.task or function()

The object uniguely identifies the data on which the task or function operates. Hence, the method concept is

naturally extended to built-in typesin order to add functionality that traditionally was done via system tasks or

functions. Unlike system tasks, built-in methods are not prefixed with a $ since they require no special prefix

to avoid collisions with user-defined identifiers. Thus, the method syntax allows extending the language with-

out the addition of new keywords or cluttering the global hame space with system tasks.

Built-in methods, unlike system tasks, can not be redefined by users via PLI tasks. Thus, only functions that

users should not be allowed to redefine are good candidates for built-in method calls.
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In genera, abuilt-in method is preferred over a system task when a particular functionality appliesto all data
types, or it appliesto a specific dataty_pe. For example:

dynamic array.size, associative array.num, and string.len

These are all similar concepts, but they represent different things. A dynamic array has a size, an associative
array contains a given number of items, and a string has a given length. Using the same system task, such as
$length, for all of them would be less clear and intuitive.

A built-in method can only be associated with a particular datatype, therefore, if somefunctionality isasimple
side effect (i.e., $stop or $reset) or it operates on no specific data (i.e., $random) then a system task must be
used.

When afunction or task built-in method call specifies no arguments, the empty parenthesis, (), following the
task/function name is optional. Thisis also true for tasks or functions that require arguments, when all argu-
ments have defaults specified. For a method, this rule allows sSimple calls to appear as properties of the object

or built-in type. Similar rules are defined for functions and tasks in section 10.5.5.

7.11 Concatenation

Braces( { } ) are used to show concatenation, asin Verilog. The concatenation is treated as a packed vector of
bits (Or Logic if any operand is of type 1ogic). It can be used on the left hand side of an assignment or in an
expression.

logic logl, log2, log3;
{logl, log2, log3} = 3'blll;
{logl, log2, log3} = {1'bl, 1'bl, 1'bl}; // same effect as 3'blll

Software tools may generate a warning if the concatenation width on one side of an assignment is different
than the expression on the other side. The following examples can give warning of size mismatch:

bit [1:0] packedbits = {32'b1,32'bl}; // right hand side is 64 bits
int i = {1'b1, 1'bl}; //right hand side is 2 bits

Note that braces are also used for initializers of structures or unpacked arrays. Unlike in C, the expressions
must match element for element and the braces must match the structures and array dimensions. Each element
must match the type being initialized, so the following do not give size warnings.

bit unpackedbits [1:0] = {1,1}; // no size warning, bit can be set to 1
int unpackedints [1:0] = {1'bl,1'bl}; //no size warning, int can be set to 1’bl

A concatenation of unsized values shall beillegal, asin Verilog. However, an array initializer can use unsized
values within the braces, such as{1,1}.

The replication operator (also called a multiple concatenation) form of braces can also be used for initializers .
For example, {3{1}} representstheinitializer {1, 1, 1}.

Refer to sections 2.7 and 2.8 for more information on initializing arrays and structures .

SystemV erilog enhances the concatenation operation to allow concatenation of variables of type string. In gen-
era, if any of the operands is of type string, the concatenation is treated as a string, and al other argu-
ments are implicitly converted to string type (as described in section 3.8). String concatenation is not
alowed on the left hand side of an assignment, only as an expression.

string hello = "hello";

string s;

s = { hello, " ", "world" };

$display( "%s\n", s ); // displays 'hello world'

s = { s, " and goodbye" };
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$display( "%s\n", s ); // displays 'hello world and goodbye’

The replication operator (also called a multiple concatenation) form of braces can also be used with variables
of type string. In the case of string replication, a non-constant multiplier is allowed.

int n = 3;
string s = {n { "boo " }};

$display( "%s\n", s );// displays ’'boo boo boo '

Note that unlike bit concatenation, the result of a string concatenation or replication is not truncated. Instead,
the destination variable (of type string) isresized to accommodate the resulting string.
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Section 8
Procedural Statements and Control Flow

8.1 Introduction (informative)

EC-CH79 || Proecedural-statements-are-introdueced-by-ene-of One introduces procedural statements by the following:

Editor’s Note: The deleted sentence should be kept. The new wording is too informal for atechnical language ref-
erence manual.

initial // do thisstatement once at the beginning of simulation

Editor’s Note: The added comment is not correct. Statements within an initial procedure do not necessarily exe-
cute at the beginning of simulation, as there can be time and/or event controls before the statement

final // do this statement once at the end of simulation

always, always comb, always latch, always £f //loop forever (see section 9 on processes)
task // do these statements whenever the task is called
function // do these statements whenever the function is called and return avalue

SystemVerilog has the following types of control flow within a process
— Selection, loops and jumps

— Task and function calls

— Sequential and parallel blocks

— Timing control

Verilog procedural statements are in initial Or always blocks, tasks or functions. SystemVerilog adds a
EC-CH79 | final block that executes at the end of simulation.

Editor’s Note: | took the liberty of adding “final” to the list of keywords in Annex B.

Verilog includes most of the statement types of C, except for do...while, break, continue and goto.
Verilog has the repeat statement which C does not, and the disable. The use of the Verilog disable to
carry out the functionality of break and continue requires the user to invent block names, and introduces the
opportunity for error.

SystemVerilog adds C-likebreak, continue and return functionality, which do not require the use of block
names.

Loops with atest at the end are sometimes useful to save duplication of the loop body. SystemVerilog adds a
C-like do...while loop for this capability.

Verilog provides two overlapping methods for procedurally adding and removing drivers for variables: the
force/release statements and the assign/deassign statements. The force/release Statements can also be
used to add or remove drivers for nets in addition to variables. A force statement targeting a variable that is
currently the target of an assign will override that assign; however, once the force is released, the assign’s
effect again will be visible.

The keyword assign is much more commonly used for the somewhat similar, yet quite different purpose of
defining permanent drivers of valuesto nets.
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built-in

statement ::= [ block_identifier : ] statement_item /I from Annex A.6.4
statement_item ::=
{ attribute_instance } blocking_assignment ;
| { attribute_instance } nonblocking_assignment ;
| { attribute_instance } procedural_continuous _assignments;;
| { attribute_instance} case statement
| { attribute_instance} conditional_statement
| { attribute_instance} transition_to_state statement_or_null
| { attribute_instance} inc_or_dec_expression
| { attribute_instance} function_call /* must be void function */
| { attribute_instance} disable statement
| { attribute_instance } event_trigger
| { attribute_instance } loop_statement
| { attribute_instance} jump_statement
| { attribute_instance} par_block
| { attribute_instance } procedural_timing_control _statement
| { attribute_instance} seq block
| { attribute_instance} system task_enable
| { attribute_instance} task_enable
| { attribute_instance} wait_statement
| {attrthute-tnstance }-processstatement

| { attribute_instance } proc_assertion

statement_or_null ::=
statement
| { attribute_instance} ;

procedural_timing_control _statement ::=
delay_or_event_control statement_or_null

Syntax 8-1—statement syntax (excerpt from Annex A)

8.2 Blocking and nonblocking assignments

blocking_assignment ::= [/l from Annex A.6.2
variable Ivalue = delay_or_event_control expression
| operator_assignment
operator_assignment ::= variable lvalue assignment_operator expression
assignment_operator ::=
=|+=|-=|*= /= | %= | &= | |F | M= <<= | >>= | <<= | >>>=

nonblocking_assignment ::= variable Ivalue<=[ delay_or_event_control ] expression

Syntax 8-2—blocking and nonblocking assignment syntax (excerpt from Annex A)

The following assignments are allowed in both Verilog-2001 and SystemVerilog:

#1 r = a;
r = #1 a;
r <= #1 a;
r <= a;
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@ r = a;
r = @C aj;
¥ <= @C a;
SystemVerilog also allows a time unit to specified in the assignment statement, as follows:
#lns r = a;
r = #lns a;
r <= #1lns a;
It shall beillegal to make nonblocking assignments to automatic variables.
The size of the |eft-hand side of an assignment forms the context for the right hand side expression. If the left-
hand side is smaller than the right hand side, and information may be lost, a warning can be given.

8.3 Selection statements

conditional_statement ::= /I from Annex A.6.6
[ unique_priority ] if ( expression) statement_or_null [ else statement_or_null ]
| if_else if statement
if else if statement ::=
[ unique_priority ] if ( expression) statement_or_null
{ else[ unique_priority ] if ( expression) statement_or_null }
[ else statement_or_null ]
case_statement ::= [/l from Annex A.6.7
[ unique_priority ] case (expression ) case item { case_item} endcase
| [ unique_priority ] casez ( expression ) case_item { case_item} endcase
| [ unique_priority ] casex ( expression ) case _item { case item} endcase
case item::=
expression{ , expression} : statement_or_null
| default [ : ] statement_or_null
unique_priority ::= unique | priority

Syntax 8-3—Selection statement syntax (excerpt from Annex A)
In Verilog, an i£ (expression) is evaluated as a boolean, so that if the result of the expression is 0 or X, the
test is considered false.

SystemVerilog adds the keywords unique and priority, which can be used before an i £. If either keyword
is used, it shall be arun-time warning for no condition to match unlessthereis an explicit else. For example:

unique if ((a==0) || (a==1)) $display ("0 or 1");
else if (a == 2) S$display("2");
else if (a == 4) sdisplay("4"); // values 3,5,6,7 will cause a warning

priority if(a[2:1]==0) S$display ("0 or 1");
else if (a[2] == 0) $display ("2 or 3");
else $display ("4 to 7"); //covers all other possible values, so no warning

A unique if indicates that there should not be any overlap in aseriesof if...else...if conditions, allowing

the expressions to be evaluated in parallel. A software tool shall issue an error if it determines that there is a
potential overlap in the conditions.
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A priority if indicatesthat aseriesof if...else...if conditions shall be evaluated in the order listed. In
the preceding example, if the variable ‘a’ had a value of 0, it would satisfy both the first and second condi-
tions, requiring priority logic.

In Verilog, there are three types of case statements, introduced by case, casez and casex. With SystemVer-
ilog, each of these can be qualified by priority Or unique. A priority case shall act on the first match
only. A unique case shall guarantee no overlapping case values, allowing the case items to be evaluated in
parallel. If the caseis qualified as priority Or unique, the simulator shall issue a warning message if an
unexpected case value is found. By specifying unique Or priority, it is not necessary to code a default
case to trap unexpected case values. For example:

bit[2:0] a;

unique case(a) // values 3,5,6,7 will cause a run-time warning
0,1: $display ("0 or 1");
2: Sdisplay("2");
4: S$display("4");

endcase

priority casez(a)
2'b00?: Sdisplay ("0 or 1");
2'b0??: Sdisplay ("2 or 3");
default: $display ("4 to 7");
endcase

Theunique and priority keywords shall determine the simulation behavior. It is recommended that synthe-
sisfollow simulation behavior where possible. Attributes may aso be used to determine synthesis behavior.

8.4 Loop statements

loop_statement ::= /l from Annex A.6.8
forever statement
| repeat ( expression) statement_or_null
| while (‘expression) statement_or_null
| for (variable_decl_or_assignment ; expression ; variable assignment ) statement_or_null
| do statement while ( expression )
variable decl_or_assignment ::=
data_type list_of variable identifiers or_assignments;;
| variable_assignment

Syntax 8-4—Loop statement syntax (excerpt from Annex A)

| Editor’s Note: A new BNF for the for loop will be required (see changes described below).

Verilog provides for, while, repeat and forever loops. SystemVerilog enhances the Verilog £or loop, and
addsado...while lOOp.

8.4.1 The do...while loop

Editor’s Note: Subheading titles were added for clarity, due to additional text on for loops..

do statement while(condition) // as C
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The condition can be any expression which can be treated as a boolean. It is evaluated after the statement.
8.4.2 Enhanced for loop

In Verilog, the variable used to control a for loop must be declared prior to the loop. If loops in two or more
parallel procedures use the same loop control variable, there is a potential of one loop modifying the variable
while other loops are still using it.

SystemVerilog adds the ability to declare the for loop control variable within the for loop. This creates a
local variable within the loop. Other parallel loops cannot inadvertently affect the loop control variable. For
example:

module foo;

initial begin
for (int 1 = 0; i <= 255; i++)

end

initial begin
loop2: for (int i = 15; i >= 0; i--)

end
endmodule

The local variable declared within a for loop can be referenced hierarchically by adding a statement |abel
before the £or l0op (see section 8.7).

Verilog only permits asingle initial statement and a single step assignment within a £or loop. SystemVerilog
alowstheinitia declaration or assignment statement to be one or more comma-separated statements. The step
assignment can also be one or more comma-separated assignment statements.

for ( int count = 0; count < 3; count++ )
value = value +((al[count]) * (count+1l));
for ( int count = 0, done = 0, int j = 0; j * count < 125; Jj++ )

$display("value j = %d\n", j );

8.5 Jump statements

jump_statement ::= [/l from Annex A.6.5
return [ expression] ;
| break ;
| continue;

Syntax 8-5—Jump statement syntax (excerpt from Annex A)

SystemVerilog adds the C jump statementSbreak, continue and return.
break // out of loop as C
continue // skip to end of loop as C
return expression // exit from a function

return // exit from a task or void function

The continue and break statements can only be used in aloop. The continue Statement jumps to the end
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of the loop and executes the loop control if present. The break statement jumps out of the loop.

The return statement can only be used in atask or function. In a function returning a value, the return must
have an expression of the correct type.

Note that SystemVerilog does not include the C goto statement.

:IEC_CH79 | 8.6 Final blocks

The £inal block islike an initial block, defining a procedural block of statements, except that it occurs at
the end of simulation time and executes without delays. A £inal block is typicaly used to display statistical
information about the simulation.

final construct ::= final function statement

Editor’s Note: insert final BNF once the BNF is complete.

The only statements allowed inside a £inal block are those permitted inside a function declaration. This guar-
antees that they execute within asingle simulation cycle.

After one of the following conditions occur, all spawned processes are terminated, all pending PLI callbacks
are canceled, and then the final block executes.

The event queue is empty

Execution of $finish

Termination of all program blocks, which executes an implicit $finish

PLI executionof t£ dofinish () or similarredtinesvpi control (vpiFinish, ...)

Editor’s Note: | took the liberty of replacing “similar routines” with the actual PLI routine name.

final
begin
" Sdisplay("Number of cycles executed %d",$time/period);
Sdisplay ("Final PC = %h",PC);
end
Execution of $finish, tf dofinish (), or vpi control (vpiFinish, ...) from within a final

block will cause the simulation to end immediately. Final blocks can only trigger once in a simulation.

Final blocks execute before any PLI callbacks that indicate the end of simulation.
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8.7 Named blocks and statement labels

par_block ::= /I from Annex A.6.3
fork [ : block_identifier ]
{ block_item_declaration }
{ statement }
join [join_any |join_none[ : block _identifier ]
seq block ::=
begin [ : block_identifier ]
{ block_item declaration }
{ statement }
end [ : block_identifier ]
statement ::= [ block_identifier : ] statement_item

Syntax 8-6—Blocks and labels syntax (excerpt from Annex A)

Verilog allows a begin...end, fork...join, fork...join any Or fork...join none Statement block to be
named. A named block is used to identify the entire statement block. A named block creates a new hierarchy
scope. The block name is specified after the begin or fork keyword, preceded by a colon. For example:

begin : blockaA // Verilog-2001 named block
end

SystemVerilog alows a matching block name to be specified after the block end, join, join any or
join none keyword, preceded by a colon. This can help document which end Or join, join any OF

EC-CH89 |

EC-CH89 ||

EC-CH89 ||

join none iSassociated with which begin or fork when there are nested blocks. A name at the end of the
block is not required. It shall be an error if the name at the end is different than the block name at the begin-
ning.

begin: blockB // block name after the begin or fork

end: blockB
SystemVerilog alows alabel to be specified before any statement, asin C. A statement label is used to identify
asingle statement. A statement label does not create a hierarchy scope. The label name is specified before the
statement, followed by a colon.

labelA: statement
A begin...end, fork...join, fork...join any Or fork...join none block is considered a statement, and

can have a statement |abel before the block. Thisis not the same as ablock name, however, because it does not
create a hierarchy scope.

labelB: fork // label before the begin or fork
join : labelB
It shall beillegal to have both alabel before abegin or fork and a block name after the begin or fork. A

label cannot appear before the end, join, join any OF join none, as these keywords do not form a state-
ment.

A statement with a label can be disabled using a disable statement. Disabling a statement shall have the
same behavior as disabling a named block.
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8.8 Disable

SystemVerilog has break and continue for a clean way to break out of or continue the execution of loops.
The Verilog-2001 disable can also be used to break out of or continue aloop, but is more awkward than using
break Of continue. Thedisable isalso allowed to disable a named block, which does not containthe dis-
able statement. If the block is currently executing, this causes control to jump to the statement immediately
after the block. If the block isa Ioop body, it actslikea contmue If the bl ock is not currently executing, the
disable has no effect. ‘ ; ‘ ; A

SystemVerilog has return from atask, but disable isalso supported. If disable isapplied to anamed task,
all current executions of the task are disabled.

module ...
always alwaysl: begin ... tl: taskl( ); ... end

endmodule
always begin

disable ul.alwaysl.tl; // exit taskl, which was called from alwaysl (static)
end
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8.9 Event control

delay_or_event_control ::= /I from Annex A.6.5
delay_control
| event_control
| repeat ( expression) event_control
delay_control ::=
# delay_value
| # ( mintypmax_expression )
event_control ::=
@ event_identifier
| @ (‘event_expression )
| @
| @ (*)
event_expression ::=
expression [ iff expression]
| hierarchical_identifier [ iff expression]
| [ edge] expression [ iff expression ]
| event_expression or event_expression
| event_expression , event_expression

BC44-15 edge ::= posedge | negedge | eharged

Syntax 8-7—Delay and event control syntax (excerpt from Annex A)

Any changein avariable or net can be detected using the @ event control, asin Verilog. If the expression eval-
uates to aresult of more than one bit, a change on any of the bits of the result (including an x to z change) will
trigger the event control.

SystemVerilog adds an i ££ qualifier to the @ event control.

module latch (output logic [31:0] y, input [31:0] a, input enable);
always @(a iff enable == 1)
y <= a; //latch is in transparent mode
endmodule

. The event expression only triggersif the expression after the 1 ££ istrue, in this case when enable isequal to
BC42-12 || 1. Note that such an expression is evaluated when 1k a changes, and not when enable changes. Also note
: that i ££ has precedence over or. This can be made clearer by the use of parentheses.

If avariable or net is not of type logic, then posedge and negedge refer to transitions from 0 and to 0
respectively. If the variable or net is a packed array or structure, it iszero if al elementsare 0.
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event control shall only be sensitive to changes in the result of the expression on the right-hand side of the
assignment. It shall not be sensitive to changes on the left-hand side expression.

8.10 Procedural assign and deassign removal

SystemVerilog currently supports the procedural assign and deassign statements. However, these state-
ments may be removed from future versions of the language. See section 24.3.
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Section 9
Processes

9.1 Introduction (informative)

Verilog-2001 has always and initial blocks which define static processes.

In an always block which is used to model combinational logic, forgetting an else leads to an unintended
latch. To avoid this mistake, SystemVerilog adds specialized always comb and always latch blocks,
which indicate design intent to simulation, synthesis and formal verification tools. SystemVerilog also adds an
always f££ block toindicate sequential logic.

EC-CH89 ||

EC-CH79 |

In systems modeling, one of the key limitations of Verilog is the inability to create processes dynamicaly, as
happens in an operating system. Verilog has the fork...join construct, but this still imposes a static limit.

SystemVerilog has both static processes, introduced by always, initial or fork, and dynamic processes,
introduced by preeess built-in fork...join any and fork...join none.

SystemVerilog creates athread of execution for each initial or always block, for each parallel statement in
a fork...join block and for each dynamic process. Each continuous assignment may aso be considered its
own thread. Execution of each thread may be interrupted between statements at a semicolon, but asingle state-
ment (not a block) containing no user task or function call is uninterrupted. This allows atomic test-and-set
using assignment operatorsin an if statement.

SystemVerilog 3.1 adds dynamic processes by enhancing the fork...join construct, in away that is more nat-
ural to Verilog users. SystemVerilog 3.1 also introduces dynamic process control constructs that can terminate
or wait for processes using their dynamic, parent-child relationship. These are $wait child,
$suspend thread, and $terminate.

SystemVerilog £inal blocks execute in an arbitrary but deterministic sequential order. This is possible
because £inal blocks arelimited to the Tegal set of staiements allowed for functions. SystemV erilog does not
specify the ordering, but implementations should define rules that will preserve the ordering between runs.

This helps keep the output Tog file stable since final blocks are mainly used for displaying StatiStics.

9.2 Level sensitive logic

SystemVerilog provides a special always comb procedure for modeling combinational logic behavior. For
example:

always comb
a=Db & c;

always comb
d <= #1lns b & c;

The always_comb procedure provides functionality that is different than anormal always procedure:
— Thereisaninferred sensitivity list that includes every variable read by the procedure.
— The variables written on the |eft-hand side of assignments may not be written to by any other process.

— The procedure is automatically triggered once at time zero, after all initial and always blocks have
been started, so that the outputs of the procedure are consistent with the inputs.

The SystemVerilog always comb procedure differs from the Verilog-2001 always @* in the following ways:

— always_comb automatically executes once at time zero, whereas always @* waits until a change occurs
onasignal inthe inferred sensitivity list.
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— always_comb iS Sensitive to changes within the contents of a function, whereas always @* isonly sensi-
tive to changes to the arguments of afunction.

— Variables on the | eft-hand side of assignmentswithin an always comb procedure may not be written to by
any other processes, whereas always @* permits multiple processes to write to the same variable.

Software tools can perform additional checksto warn if the behavior within an always comb procedure does
not represent combinational logic, such asif latched behavior may be inferred.

9.3 Latch sensitive logic

SystemVerilog also provides a special always latch procedure for modeling latched logic behavior. For
example:

always_latch
if (ck) g <= d;

The always_1latch procedure differsfrom anormal always procedurein the following ways:
— Thereisaninferred sensitivity list that includes every variable read by the procedure.
— The variables written on the |eft-hand side of assignments may not be written to by any other process.

— The procedure is automatically triggered once at time zero, after all initial and always blocks have
been started, so that the outputs of the procedure are consistent with the inputs.

Software tools may perform additional checks to warn if the behavior within an always latch procedure
does not represent latched logic.

9.4 Edge sensitive logic

The SystemVerilog always ££ procedure can be used to model synthesizable sequential logic behavior. For
example:

always ff @(posedge clock iff reset == 0 or posedge reset) begin
rl <= reset 2 0 : r2 + 1;

end

The always ££ block imposes the restriction that only one event control is allowed. Software tools may per-
form additional checksto warn if the behavior within an always ££ procedure does not represent sequential
logic.

9.5 Continuous assignments

In Verilog, continuous assignments can only drive nets, and not variables.

SystemVerilog removes this restriction, and permits continuous assignments to drive nets, logic variables,
and any other type of variables, except reg variables. Nets can be driven by multiple continuous assignments,
or a mixture of primitives and continuous assignments. logic variables and other data types can only be
driven by one continuous assignment or one primitive output. It shall be an error for avariable driven by a con-
tinuous assignment or primitive output to have an initializer in the declaration or any procedural assignment.
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9.7 fork...join

The fork...join construct provides the primary mechanism for creating concurrent processes.
The syntax to declare a fork...join block is:
fork
statementl;
statement2;

statementn;

join | join any | join none

| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

In Verilog a fork...join block aways causes the process executing the fork statement to block until al the
forked off processesterminate. SystemV erilog adds jeir-eptionsthe join any and join none keywordsthat

s_pecify when the parent (fo_rki ng) process resumes exe_cuti on. H-thejoin

Editor’s Note: | implemented change EC-CH89 for the preceding two paragraphs slightly differently than speci-
fied to make the wording flow better.

Table 9-1: fork...join control options

Option Description

att join The parent process blocks until al the processes spawned by this fork complete. Thisis the
same asaVerilog fork...join .

join any The parent process blocks until any one of the processes spawned by this fork complete.

join none | The parent process continuesto execute concurrently with al the processes spawned by the
fork. The spawned processes do not start executing until the parent thread executes a blocking
Statement.

When defining a fork...join block, encapsulating the entire fork within a begin...end block causes the
entire block to execute as a single process, with each statement executing sequentialy.

fork
begin
statementl; // one process with 2 statements
statement2;
end
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join

In the following example, two processes are forked off, the first one will wait for 20ns and the second will wait
for the named event eventA to be triggered. Because nretoin-option the join keyword is specified-{the-same
aset3), the parent process will block until the two processes complete, that is, 20ns have elapsed and eventa
has been triggered.

fork
begin
Sdisplay( "First Block\n" );
# 20ns;
end
begin
Sdisplay( "Second Block\n" );
@eventA;
end
join

A return statement within the context of a fork...join Statement isillegal and shall result in a compilation
error. For example:

function int wait 20;
fork
# 20;
return 4; // Illegal: cannot return; function lives in another process
join none
endfunction

SystemVerilog 3.0 provided a process statement, which gave the same functionality as the fork...join_none con-
struct. SystemVerilog 3.1 deprecates the process statement, in favor or the mere-natural fork...join none form.

9.8 Process execution threads

SystemVerilog creates a thread of execution for:
— Each initial block
— Each always block

— Each paradlel statement in a fork...join (Of join any Or join none) Statement group

— Each dynamic process
Each continuous assignment may also be considered its own thread.

Execution of each thread can be interrupted between statements at a semicolon, but a single statement (not a
block) containing no user task or function call shall not be interrupted. This alows atomic test-and-set using
assignment operatorsin an i £ statement.

9.9 Process control

SystemVerilog provides several constructs that allow one process to terminate or wait for the completion of
other processes. The $wait child construct waits for the completion of processes. The $terminate con-
struct stops the execution of processes. The $suspend_thread System task temporarily suspends a thread.

9.9.1 $wai—chited wait fork

The $wait—ehitasysiemtask wait fork Statement is used to ensure that all child processes (processes cre-
ated by the calling process) haveé completed their execution.
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The syntax for $wait—ehitd wait fork s

1 . WERVIW

wait fork,

| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

Calling-$wait—ehitd Specifying wait fork causes the calling process to block until all its sub-processes
have completed.

Verilog terminates a simulation run when thereis no further activity of any kind. SystemV erilog adds the abil-

1ty to automatically terminate the ssmulation when all its program blocks finish executing (1., they reach the
end of thelr execute block), regardiess of the status of any child processes (see section 15.9.1). The wait
fork Statement alows a program block to wait for the completion of al its concurrent threads before exiting.

In the following example, inthetask do test, the first two processes are spawned and the task blocks until
one of the two processes completes (either exec1, or exec2). Next, two more processes are spawned in the
background. The eal-te-swait—ehitd wait fork Statement will ensure that the task do test waitsfor all
four spawned processes to complete beforerefurning to its caller.

task do test;
fork
execl();
exec2 () ;
join any
fork
exec3 () ;
exec4d () ;
join_none
Swait—ehild)> wait fork;// block until execl ... exec4d complete
endtask -

9.9.2 $termrate Disable fork

The $tesminate disable fork Statement terminates al active descendants (sub-processes) of the calling
process.

The syntax for ¢tesminate disable forkis

Sterminate disable fork;

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

The $teeminatecommand disable fork Statement terminates all descendants of the calling process, as
well as the descendants of the process” descendants, that is, if any of the child processes have descendants of
their own, the $te=minatecommand disable fork statement will terminate them as well.

In the example below the function get first spawnsthree versions of afunction that will wait for a partic-
ular device (1, 7, or 13). The function wait device function waits for a particular device to become ready
and then returns the device's address. When the first device becomes available, theget first function will
resume execution and proceed to kill the outstanding wait device processes.

function integer get first();
fork

64 Copyright 2003 Accellera. All rights reserved.



EC-CH89 |

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

get first = wait device( 1 );

get first = wait device( 7 );
get first = wait device( 13 );
join any
$texminate disable fork;
endfunction

Verilog supportsthe disable construct, which will end a process when applied to the named block being exe-
cuted by the process. steeminate The disable fork Statement differs from disable in that $tesminate
disable fork considers the dynamic parent-child relationship of the processes, whereas disable uses the
static syntactical information of the disabled block. Thus, disable will end all processes executing a particu-
lar block, whether the processes were forked by the calling thread or not, while $tesminete disable fork
will end only those processes that were spawned by the calling thread. -

Editor’s Note: EC-CH100 did not include the changes to the preceding paragraph. | added those because they
seemed appropriate..

9.9.3 $suspend_thread()

The $suspend thread System task temporarily suspends the current thread.

The syntax for $suspend_thread is:

task $suspend thread() ;

| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

EC-CH100 ||

EC-CH89 |

The $suspend_thread System task temporarily suspends the current process allowing other ready processes
to execute. Calling $suspend thread is conceptually similar to a zero delay statement (#0), however
$suspend_thread conveys the intent more clearly a

{see-seetion-15-A-whereazero-delay-isiH-advised when called dur| ng the ver|f|cat|on phase

The following example forks multiple threads each calling my task () . After each thread is forked, the call-
ing thread is suspended, which allows the newly forked thread to start executing (call my task) before fork-
ing the next thread.

for( int j=0; j<10; j++ )
begin
fork
my task(i);
join_none
$suspend thread() ;
end
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Section 10
Tasks and Functions

10.1 Introduction (informative)

Verilog-2001 has static and automatic tasks and functions. Static tasks and functions share the same storage
space for all cals to the tasks or function within a module instance. Automatic tasks and function allocate
unique, stacked storage for each instance.

SystemVerilog adds the ability to declare automatic variables within static tasks and functions, and static vari-
ables within automatic tasks and functions.

SystemVerilog also adds:

— More capabilities for declaring task and function ports

— Function output and inout ports

— Void functions

— Multiple statements in atask or function without requiring abegin...end Or fork...join block
— Returning from atask or function before reaching the end of the task or function

— Passing arguments by reference instead of b__y value

— Passing argument values by name instead of l_)_y position

— Default argument values
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10.2 Tasks

task_declaration ::= [/l from Annex A.2.7
task [ automatic] [ interface identifier . ] task_identifier ;
{ task_item_declaration }
{ statement }
endtask [ : task_identifier ]
| task [ automatic] [ interface identifier . ] task_identifier (task_port_list) ;
{ block_item_declaration }
{ statement }
endtask [ : task_identifier ]
task_item_declaration ::=
block_item_declaration
| { attribute_instance} input_declaration ;
| { attribute_instance} output_declaration ;
| { attribute_instance} inout_declaration ;

task_port_list ::=task_port_item { , task_port_item }
task_port_item ::=
{ attribute_instance } input_declaration
| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration
task_prototype ::=
task ({ attribute_instance } task proto_formal
{ ,{ attribute_instance } task_proto formal } )
named_task_proto ::= task task_identifier ( task_proto_formal { , task_proto_formal } )
task_proto_formal ::=
input data_type|[ variable declaration_identifier ]
| inout data type|[ variable_declaration identifier ]
| output data type|[ variable declaration_identifier ]

Syntax 10-1—Task syntax (excerpt from Annex A)

A Verilog task declaration either has the formal arguments in parentheses (like ANSI C) or in declarations and
directions.

task mytaskl (output int x, input logic y);
endtask
task mytask2;
output x;
input vy;
int x;
logic vy;
endtask
Each forma argument has one of the following directions:
input // copy valuein at beginning
output // copy valueout at end

inout // copy in at beginning and out at end
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With SystemVerilog, there is a default direction of input if no direction has been specified. Once a direction
is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs.

task mytask3 (a, b, output logic [15:0] u, Vv);

endéaek
Each formal argument also has adata type WhICh can be epr|C|tIy declared or can inherit a default type. Fhe
og- The task argument default typein

SystemVen logisreg.

SystemVerilog allows an array to be specified asaformal argument to atask. For example:

// the resultant declaration of b is input [3:0] [7:0] b[3:0]
task mytask4 (input [3:0] [7:0] a, b[3:0], output ([3:0][7:0] y[1:0]);

endéaek
Verilog-2001 allows tasks to be declared as automatic, so that all formal arguments and local variables are
stored on the stack. SystemVerilog extends this capability by alowing specific formal arguments and local

variablesto be declared as automatic within astatic task, or by declaring specific formal arguments and local
variables as static within an automatic task.

With SystemVerilog, multiple statements can be written between the task declaration and endtask, which
means that the begin .... end can be omitted. If begin .... end iS omitted, statements are executed sequen-
tialy, the same asif they were enclosed in abegin .... end group. It shall also be legal to have no statements at
all.

In Verilog, atask exits when the endtask is reached. With SystemVerilog, the return statement can be used to
exit the task before the endtask keyword.
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10.3 Functions

function_declaration ::= [/l from Annex A.2.6
function [ automatic] [ signing] [ range_or_type]
[ interface identifier . ] function_identifier ;
{ function_item_declaration }
{ function_statement }
endfunction [ : function_identifier ]
| function [ automatic] [ signing] [ range _or_type]
[ interface identifier . ] function_identifier ( function_port_list) ;
{ block_item_declaration }
{ function_statement }
endfunction [ : function_identifier ]
function_item_declaration ::=
block_item_declaration
| { attribute_instance} input_declaration ;
| { attribute_instance} output_declaration ;
| { attribute instance} inout_declaration ;
function_port_item ::=
{ attribute_instance } input_declaration
| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration

function_port_list ::=function_port_item{ , function_port_item}
function_prototype ::= function data_type (list_of_function_proto_formals)
named_function_proto::= function data type function_identifier (list_of function proto formals)

list_of function_proto_formals::=
[ { attribute_instance} function_proto_formal { , { attribute instance }
function_proto_formal } ]

function_proto_formal ::=
input data_type|[ variable declaration_identifier ]
| inout data type|[ variable declaration identifier |
| output data type[ variable declaration_identifier ]
| variable_declaration_identifier
range or_type::=
{ packed dimension} range
| data type

Syntax 10-2—Function syntax (excerpt from Annex A)
A Verilog function declaration either has the formal argumentsin parentheses (like ANSI C) or in declarations
and directions:
function logic [15:0] myfuncl (int x, int y);
endfunction
function logic [15:0] myfunc2;
input int x;

input int y;

endfunction
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SystemVerilog extends Verilog functions to allow the formal arguments to be inputs or outputs. Function argu-
ments are all passed by value, i.e. copied.

input // copy valuein at beginning
output // copy valueout at end
inout // copy in at beginning and out at end
Function declarations default to the formal direction input if no direction has been specified. Once adirection

is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs:

function logic [15:0] myfunc3 (int a, int b, output logic [15:0] u, Vv);

endfunction
Each forma argument has a data type which can be explicitly declared or can inherit a default type. The
default type in SystemVerilog is Logic, which is compatible with Verilog. SystemVerilog alows an array to
be specified as aformal argument to a function, for example:

function [3:0] [7:0] myfunc4 (input [3:0] [7:0] a, b[3:0]);

endfunction
SystemVerilog allows multiple statements to be written between the function header and endfunction,
which means that the begin...end can be omitted. If the begin...end is omitted, statements are executed
sequentially, as if they were enclosed in abegin...end group. It is also legal to have no statements at al, in
which case the function returns the current value of the implicit variable that has the same name as the func-

tion.

10.3.1 Void functions

Editor’s Note: The subsection title was added by the editor, both for clarity and to give balance with the addition
of subsection 10.3.2 that was added.for draft 1.

In Verilog, functions must return values. The return value is specified by assigning a value to the name of the
function.

function [15:0] myfuncl (input foo) ;
myfuncl = 16'hbeef; //return value is assigned to function name
endfunction

SystemVerilog allows functions to be declared as type void, which do not have a return value. For non-void
functions, avalue can be returned by assigning the function nameto avalue, asin Verilog, or by using return
with avalue. The return statement shall override any value assigned to the function name. When the return
statement is used, non-void functions must specify an expression with the return.

function [15:0] myfunc2 (input foo) ;
return 16'hbeef; //return value is specified using return statement
endfunction

In SystemVerilog, afunction return can be astructure or union. In this case, a hierarchical name used inside the
function and beginning with the function name is interpreted as a member of the return value. If the function
name is used outside the function, the name indicates the scope of the whole function. If the function nameis
used within a hierarchical name, it also indicates the scope of the whole function.

Function calls are expressions unless of type void, which are statements:
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a = b + myfuncl(c, d); //call myfuncl (defined above) as an expression
myprint (a); //call myprint (defined below) as a statement
function void myprint (int a);

endfunction

10.3.2 Discarding Function Return Values

In Verilog-2001, values returned by functions must be assigned or used in an expression. Calling a function as
if 1t has no return value can results in a eampitation-errer warning message. SystemVerilog allows using the
void datatype to discard afunction’s return value. This can be done by casting the function to the void type,
or by assigning the function return to the void type:

void’ (some_ function()) ;

10.4 Task and function scope and lifetime

In Verilog-2001, the default lifetime for tasks and functionsis statiec. Automatic tasks and functions must be
explicitly declared, using the automatic keyword.

SystemVerilog adds an optional module attribute to specify the default lifetime of all tasks and functions
declared within the module. The lifetime attribute can be set to automatic or static. Thedefaultisstatic
for modules, and automatic for the program block (see section 15).

Class methods are by default automatic, regardless of the lifetime attribute of the module in which they are
declared. Classes are discussed in section 11.

| Editor’s Note: No syntax or examples of these new attributes was provided by the SV-EC.

10.5 Task and function argument passing

SystemVerilog provides two means for passing arguments to functions and tasks: by value and by reference.
Arguments can also be passed by hame as well as by position. Task and function arguments can also be given
adefault val ues, alowing the call to the task or function to not pass arguments.

10.5.1 Pass by value

Pass by value is the default mechanism for passing arguments to subroutines, it is also the only one provided
by Verilog-2001. Thisargument passing mechanism works by copying each argument into the subroutine area.
If the subroutine is automatic, then the subroutine retains alocal copy of the argumentsin its stack. If the argu-
ments are changed within the subroutine, the changes are not visible outside the subroutine. When the argu-
ments are large, it may be undesirable to copy the arguments. Also, programs sometimes need to share a
common piece of datathat is not declared global.

For example, calling the function bellow will copy 1000 bytes each time the call is made.

function int crc( char [1000:1] packet );
for( int j= 6 1; j < 3694 1000; j++ ) begin
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crc “= packet[j];
end
endfunction

10.5.2 Pass by reference

Arguments passed by reference are not copied into the subroutine area, rather, areference to the original argu-
ment is passed to the subroutine. The subroutine can then access the argument data Hdecthy viathe reference.
To indicate argument passing by reference, the argument declaration is preceded by the var keyword. The
general syntax is:

subroutine( var type argument ) ;
For example, the example above can be written as:

function int crc( var char [1000:1] packet );
for( int j= 6 1; j < 3694 1000; j++ ) begin
crc “= packet[j]; T
end
endfunction

Note that in the example, no change other than addition of the var keyword is needed. The compiler knows
that packet is now addressed indirecthy via a reference, but users do not need to make these references
explicit either in the callee or at the point of the call. That is, the call to either version of the crc function
remains the same:

char packet [1000:1];
int k = crc( packetl ); // pass by value or by reference: call is the same

When the argument is passed by reference, both the caller and the ealtee subroutine share the same representa-
tion of the argument, so any changes made to the argument either within the caller or the eatee subroutine will
be visible to each other.

Arguments passed by reference must match exactly, no promotion, conversion, or auto-casting is possible
when passing arguments by reference. In particular, array arguments must match their type and all dimensions
exactly. Fixed-size arrays cannot be mixed with dynamic arrays and vice-versa.

Passing an argument by reference is a unique parameter passing qualifier, different from input, output, or
inout. Combining var with any other qualifier isillegal. For example, the following declaration resultsin a
compiler error:

task incr( var input int a ); // incorrect: var cannot be qualified

10.5.3 Default argument values

To handle common cases or allow for unused arguments, SystemVerilog allows a subroutine declaration to
specify adefault value for each sealar{ren-packed-array) singular argument.

The syntax to declare a default argument in a subroutine is:
subroutine( type argument = default value ) ;

The default_value isany expression that isvisible at the current scope. It may include any combination of con-
stants or variables visible at the scope of both the caller and the ealtee subroutine.

When the subroutine is called, arguments with default values can be omitted from the call and the compiler

will insert their corresponding values. Unspecified (or empty) arguments can be used as placeholders for
default arguments, allowing the use of non-consecutive default arguments. If an unspecified argument is used
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for an argument that does not have a default value, a compiler error shall be issued.
task read(int j = 0, int k, int data = 1 );
endtask;

This example declares atask read () with two default arguments, § and data. The task can then be called
using various default arguments: B

read( , 5 ); // is equivaentto read( 0, 5, 1 );
read( 2, 5 ); // is equivaentto read( 2, 5, 1 );
read( , 5, ); // is equivadentto read( 0, 5, 1 );
read( , 5, 7 ); // is equivalentto read( 0, 5, 7 );

read( 1, 5, 2 ); // is equivdentto read( 1, 5, 2 );

read( ); // error; k has no default value

10.5.4 Argument passing by name
SystemVerilog allows arguments to tasks and functions to be passed by name as well as by position. This
allows specifying non-consecutive default arguments and easily specifying the parameter to be passed at the
call. For example:

function int fun( int j = 1, string s = "no" );

endfunction

The £un function can be called as follows:

fun( .j(2), .s("yes") ); // fun( 2, “yes” );
fun( .s("yes") ); // fun( 1, “yes” );
fun( , "yes" ); // fun( 1, “yes” );
fun( .j(2) ); // fun( 2, “no” );
fun( 2 ); // fun( 2, “no” );
fun( ) ; // fun( 1, “no” );

If the arguments have default values, they are treated like parameters to module instances. If the arguments do
not have a default, then they must be given or the compiler shall issue an error.

10.5.5 Optional argument list

When a task or function specifies no arguments, the empty parenthesis, (), following the task/function name
shall be optional. This is also true for tasks or functions that require arguments, when all arguments have
defaults specified.
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Section 11
Classes

Editor’s Note: This entire section is new for draft 1. Only the Section titles have been highlighted as new text.

Editor’s Note: The material inserted here is as it was provided by the SV-EC committee. The editor feelsit iswrit-
ten in atutorial style, and needs considerable rewording to be appropriate for the SystemVerilog LRM. See section
11.4 as one example where re-wording may be needed.

EC-CH104 ||

EC-CH104 |

11.1 Introduction (informative)

i i » ton: SystemVerilog 3-1-adds introduces the object-
orrented class framework Clmallow obj ects to be dynamrcally created and deleted, To be assigned, and to
be accessed via handles, which provide a safe pointer-like mechanism to the language. With inheritance and
abstract classes, this framework brings the advantages of C function pointers with none of the type-safety
problems, thus, bringing true polymorphism into Verilog.

11.2 Syntax

Editor’s Note: Add BNF excerpt, when available

11.3 Overview

A class isatypethat includes
data and subroutl nes that operate on that data A clases data is referred to as properties, and its subroutines are
called methods, both are members of the class. The properties and methods, taken together, define the contents
and capabilities of some kind of object.

For example, a packet might be an object. It might have a command field, an address, a sequence number, a
time stamp, and a packet payload. In addition, there are various things one can do with a packet: initialize the
packet, set the command, read the packet’s status, or check the sequence number. Each Packet is different, but
as a class, packets have certain intrinsic properties that one can capture in adefinition.

class Packet ;
bit [3:0] command; // data portion
bit [40:0] address;
bit [4:0] master_ id;
integer time requested;
integer time issued;
integer status;

function new() ; // initialization

command = IDLE;
address = 41'b0;
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master id = 5'bx;
endfunction

task clean() ;
command = 0; address = 0; master id = 5’bx;
endtask
// public access entry points
task issue request( int delay );
// send request to bus
endtask

function integer current status();
current status = status;
endfunction
endclass

A common convention isto capitalize the first letter of the class name, so that it is easy to recognize class dec-
larations.

11.4 Objects (class instance)

The fast previous section only provided the definition of a class Packet. That is a new, complex data type, but
one can't do anything with the class itself. First, one needs to create an instance of the class, asingle Packet
object. The first step isto create a variable that can hold an object handle:

Packet p;

Nothing has been created yet. The declaration of p is simply a variable that can hold a handle of a Packet
object. For p to refer to something, an instance of the class must be created using the new function.

Packet p;
p = new;

Editor’s Note: The Editor vehemently objects to reserving the keywords new, this and super! (see Annex B)

Uninitialized object handles are set by default to the special value nu11. One can detect an uninitialized object
by comparing its handle with nu11.

For example: Thetask taskl below checksif the object isinitialized. If it isnot, it creates a new object via
the new command.

class obj example;

endclass

task taskl(integer a, obj example myexample) ;
if (myexample == null) myexample = new;

endtask

Accessing non-static members or virtual methods via a null object handle is illegal. The result of an illegal
access via a null object is indeterminate, and implementations can ISsUe an error.

System Verilog objects are referenced using an “object handle”. There are some differences between a C
pointer and a System Verilog object handle. C pointers give programmers a lot of Tatitude in how a pointer
may be used. The rules governing the usage of System Verilog object handles are much more restrictive. A C
pointer may be incremented for example, but a System Verilog object handle may not. Tn addition to object
handles, section 3.7 introduces the hand1e datatype for use with the DirectC interface.
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| Editor’s Note: Is the “DirectC” .name to be used in SystemVerilog?

Table 11-2: Comparison of pointer and handle types

C pointer % SV handle Operation
Allowed Not allowed | Notalowed | Arithmetic operations (such asincrementing)
Allowed Not allowed | Notalowed | For arbitrary datatypes
Error Not allowed | Not alowed | Dereference when null
Allowed Limited Not allowed | Casting
Allowed Not allowed | Notalowed | Assignment to an address of a datatype
No Yes Yes Unreferenced objects are garbage collected
Undefined null null Default value
(C+4) Allowed Not allowed | For classes

| 11.5 Object properties

After having created an object in the last section, one can use its data fields by qualifying property names with
an instance name. Looking at the earlier example, the commands for the Packet object p can be used as fol-

lows:
Packet p = new;
p.command = INIT;
p.address = $random;

time

= p.time requested;

| 11.6 Object methods

An object’s methods can be accessed using the same syntax used to access properties:

Packet p
status =

new;

Note that we did not say:

status =

current_status (p) ;

p.current status() ;

The focus in object-oriented programming is the object, in this case the packet, not the function call. Also,
objects are self-contained, with their own methods for manipulating their own properties. So the object doesn’t
have to be passed as an argument to current status (). A class properties are freely and broadly avail-
able to the methods of the class, but each method only accesses the properties associated with itsobject, i.e., its

instance.

| 11.7 Constructors

SystemVerilog does not require the complex memory allocation and deallocation of C++. Construction of an
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object is straightforward and garbage collection, asin Java, isimplicit and automatic. There can be no memory
leaks or other subtle behavior that is so often the bane of C++ programmers.

SystemVerilog provides a mechanism for initializing an instance at the time the object is created. When an
object is created, for example

Packet p = new;
The system executes the new function associated with the class:

class Packet;
integer command;

function new() ;
command = IDLE;
endfunction
endclass

Note that new is now being used in two very different contexts with very different semantics. The variable dec-
laration creates an object of class Packet. Inthe course of creating thisinstance, the new function isinvoked,
in which any specialized initialization required may be done. The new task is also called the class constructor.

The new operation is defined as a function with no return type, thus, it must be nonblocking. Even though
new does not specify areturn type, the left-hand side of the assignment determines the return type.

Every class has a default (built-in) new method. The default constructor first calls its parent class constructor
(super.new() as described in section 11.13) and then proceeds to initialize each member of the current
object to its default (or uninitialized value).

It isalso possible to pass arguments to the constructor, which allows run-time customization of an object:
Packet p = new(STARTUP, $random, $time) ;
where the new initialization task in Packet might now look like:
function new(int cmd = IDLE, bit[12:0] adrs = 0, int cmd time );
command = cmd;
address = adrs;

time requested = cmd time;
endfunction

The conventions for arguments are the same as for procedural subroutine calls, including the use of default
arguments.

11.8 Class properties

So far, we have only declared instance properties. Each instance of the class (i.e., each object of type Packet),
has its own copy of each of its six variables. Sometimes one needs only one version of a variable to be shared
by all instances. These class properties are created using the keyword static. Thus, for example, in a case
where all instances of a class need access to a common file descriptor:

class Packet ;
static integer filelId = Sopen( "data", "r" );

Now, semId will be created and initialized once. Thereafter, every Packet object can access the file descriptor
in the usua way:

Packet p;
c = $fgetc( p-semid p.filelD );
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11.9 This

There are times when one needs to unambiguously refer to properties or methods of the current instance. For
example, the following declaration is a common way to write an initialization task:

class Demo ;
integer x;

function new (integer x)
this.x = x;

endfunction
endclass

The x is now both a property of the class and an argument to the function new. In the function new, an unqual-
ified reference to x will be resolved by looking at the innermost scope, in this case the subroutine argument
declaration. To access the instance property, we qualify it with this to refer to the current instance.

Note that in writing methods, one can always qualify memberswith this to refer to the current instance, but it
is usually unnecessary.

11.10 Assignment, re-naming and copying

Declaring aclass variable only creates the name by which the object is known. Thus:
Packet pl;

creates avariable, p1, that can hold the handle of an object of class Packet, but the initial value of pl isnul1.
The object does not exist, and p1 will not contain an actual handle, until an instance of type Packet is created:

pl = new;
Thus, if one declares another variable and assign the old handle, p1, to the new one:

Packet p2;
p2 = pl;

then there’s till only one object, which can be referred to with either the name p1 or p2. Note, new was exe-
cuted once, so only one object has been created.

If, however, the last-expression example above is re-written shighthy-differently as shown below, it will make a
copy of p1:

Packet pl;
Packet p2;
pl = new;
P2 = new pl;

wil-be-a-copy-of p1-butitwit-be-what-is The last statement has new executing a second time, thus creating a
new object p2 whose properties are copied from pl, known as a shallow copy. All of the variables are copied
across: integers, strings, instance handles, etc. Objects, however, are not copied, only their handles; as before,
two names for the same object have been created. Thisis true even if the class declaration includes the instan-
tiation operator new:

a' < ement-h

a-hadce
CRYA S

class A ;
integer j = 5;
endclass
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class B ;
integer i = 1;
A a = new;
endclass

£aslk integer function test;

B b1l = new; // Create an object of class B

B b2 = new bl; // Create an object that is a copy of bl
b2.i = 10; // i is changed in b2, but not in bl
b2.a.j = 50; // change a, shared by both bl and b2
test = bl.i; // test is set to 1 (bl.i has not changed)
test = bl.a.j; // test is set to 50 (a.j has changed)

eadtask endfunction

Editor’s Note: Verilog syntax is “function integer”. |s the “integer function” above correct?

Several things are noteworthy. First, properties and instantiated objects can be initialized directly in a class
declaration. Second, the shallow copy does not copy objects. Third, instance qualifications can be chained as
needed to reach into objects or to reach through objects:

bl.a.j // reaches into a, which is a property of bl
p.next.next.next.val // chain through a sequence of handles to get to val

To do a full (deep) copy, where everything (including nested objects) are copied, custom code is typically
needed. Thus, we might have

Packet pl = new;
Packet p2 = new;
p2.copy(pl) ;

where copy (Packet p) isacustom method written to copy the object specified as its argument into its
instance.

11.11 Inheritance and subclasses

The previous sections defined a class called Packet . Assume one wanted to extend this class so that the pack-
ets can be chained together into a list. One solution would be to create a new class caled LinkedPacket
that contains a variable of type Packet called packet c.

To refer to a property of Packet, one needs to reference the variable packet_c.

class LinkedPacket;
Packet packet c;
LinkedPacket next;

function LinkedPacket get next();
get next = next;
endfunction
endclass

Since LinkedPacket isaspeciadization of Packet, amore elegant solution is to extend the class creating
anew subclass that inherits the members of the parent class. Thus, for example, we could have:

class LinkedPacket extends Packet;
LinkedPacket next;

function LinkedPacket get next();
get next = next;
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endfunction
endclass

Now, al of the methods and properties of Packet are part of LinkedPacket—asif they were defined in
LinkedPacket —and LinkedPacket has additional properties and methods.

One can aso override the parent’s methods, changing their definitions.

The mechanism provided by SystemVerilog is called Single-Inheritance, that is, each class is derived from a
single parent class.

11.12 Overridden members

Subclass objects are aso legal representative objects of their parent classes. For example, every Linked-
Packet object isaperfectly legal Packet object.

One can assign the handle of aLinkedPacket object to a Packet variable:

LinkedPacket lp = new;
Packet p = 1lp;

In this case, references to p access the methods and properties of the Packet class. So, for example, if prop-
erties and methods in LinkedPacket are overridden, when one references these overridden members
through p one gets the origina members in the Packet class. From p, new and al overridden members in
LinkedPacket are now hidden.

class Packet;
integer i = 1;
function integer get() ;
get = 1i;
endfunction
endclass

class LinkedPacket extends Packet;
integer i = 2;
function integer get () ;

get = -i;
endfunction
endclass

LinkedPacket lp = new;

Packet p = 1lp;

j =p.i; // 3 =1, not 2

j = p.get(); // 3 1, not -1 or -2

Fo-get-the-overridden-methed To call the overridden method via a parent class abject (p in the example), the
parent method needs to be declared virtual (See section 11.18).

11.13 Super

The super keyword is used from within aderlved classto refer to properuec of the parent class. Itis necmry
{0 Use super W y
access properties of a parent cI ass when those propert| €S are ovVerri dden by the derlved class

EC-CH106 ||

class Packet; //parent class
integer value;

Copyright 2003 Accellera. All rights reserved. 8l



EC-CH106 |I
EC-CH106 ||

EC-CH104 |
EC-CH106 |

EC-CH106 ||
EC-CH104 ||

EC-CH106 |
EC-CH104 |

EC-CH104 ||

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

function integer delay () ;
delay = value * value;
endfunction
endclass

class LinkedPacket extends Packet; //derived class
integer value;
function integer delay () ;
delay = super.delay()+ value * super.value;
endfunction
endclass

The property may be amember declared alevel up or amember inherited by the class onelevel up. Thereisno
way to reach higher (for example, super . super. count isnot alowed).

Subclasses are classes that are extensions of the current class. Whereas super-classes superclasses are classes
that the current classis extended from, beginning with the original base class.

Note: When using the super within new, super .new must be the first executable statement in the constructor. Thisis
because the super-etass superclass must be initiaized before the current class and if the user code doesn’t provide anini-
tialization, the compiler wilT insert acall to super . new automatically.

11.14 Casting

It is always legal to assign a subclass variable to a variable of a class higher in the inheritance tree. It is never
legal to directly assign a sdpper-class superclass variable to a variable of one of its subclasses. However, it may
be legal to place the contents of the superclass handle in a subclass variable.
To check if the assignment islegal, the dynamic cast function $cast () isneeded used (see section 3.15).
The syntax for $cast () is:

task $cast( secalar singular dest handle, secalar singular source handle ) ;

or

function int $cast( scalar singular dest handle, sealar singular source handle

When used with object handles, $cast () checksthe hierarchy tree (super and subclasses) of the source expr

to seeif it containsthe classdest_var. IT it does, $cast () doesthe assignment. Otherwise the error handling is

EC-CH106 ||

as described in section 3.14.

11.15 Chaining constructors

When a subclass isinstantiated, one of the system’sfirst actionsisto invoke the class method new () . The first,
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implicit action new () takes is to invoke the new () method of its super-class superclass, and so on up the
inheritance hierarchy. Thus, all the constructors are called, in the proper order, beginning W|th the base class
and ending with the current class.

If the initialization method of the super-elass superclass requires arguments, one has two choices. To always
supply the same arguments or to use the super keywords. If the arguments are always the same then they can
be specified at the time the class is extended:

class EtherPacket extends Packet (5) ;
Thiswill pass 5 to the new routine associated with Packet.
A more general approach is to use the super keyword, to call the super-etass superclass constructor:
function new() ;
super.new (5) ;

endfunction

To use this approach, super.new (...) must be the first executable statement in the function new.

11.16 Data hiding and encapsulation

So far aII class propertle; and methods have been made available to the outs de world without restriction.

ey es tde-wortd Often, it is desirable
to restrlct access to propertle; and methodsfrom OutSI de the class by hiding their names. This keeps other pro-
grammers from relying on a specific implementation, and it also protects against accidental modifications to
properties that are internal to the class. When all data becomes hidden—being accessed only by public meth-
ods —testing and maintenance of the code becomes much easier.

In SystemVerilog, unlabeled properties and methods are public, available to anyone who has access to the
object’s name.

A member identified as 1ocal is available only to methods inside the class. Further, these local members are
not visible even to subclasses and cannot be inherited. Of course, non-local methods that access local proper-
ties or methods can be inherited, and work properly as methods of the subclass.

A protected property or method has all of the characteristics of a local member, except that it can be inher-
ited; it isvisible to subclasses.

Note that within the class, one can reference alocal method or property of the class, eveniif it isin a different
instance. For example

class Packet;
local integer i;
function integer compare (Packet other);
compare = (this.i == other.i);
endfunction
endclass

A strict interpretation of encapsulation might say that other.i should not be visible inside of this packet, since it
isalocal property being referenced from outside its instance. Within the same class, however, these references
are alowed. In this case, this.i will be compared to other.i and the result of the logica comparison will be
returned.
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[EC-CH16 || 11.17 Constant Properties
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Class properties can be made read-only by a const declaration like any other SystemVerilog variable. How-
ever, because class objects are dynamic objects, class properties allow two forms of read-only variables. Glo-
bal constants and Instance constants.

Global constant properties are those that include an initial value as part of their declaration. They are similar to
other const variablesin that they cannot be assigned a val ue anywhere other than in the declaration.

class Jumbo Packet;
const int max size = 9 * 1024; // global constant
byte payload [*];
function new( int size );
pavyload = new[ size > max size ? max size : size ];
endfunction
endclass

I nstance constants do not include an initial valuein their declaration, only the const qualifier. Thistype of con-
stant can be assigned avalue at run-time, but the assignment can only be done once in the corresponding class
constructor.

class Big Packet;
const int size; // instance constant
byte payload [*];
function new() ;

size = Srandom % 4096; //one assignment in new -> ok
payload = new|[ size ];
endfunction
endclass

Typicaly, globa constants are also declared static since they are the same for all instances of the class.
However, an instance constant cannot be declared static, since that would disallow all assignments in the
constructor.

11.18 Abstract classes and virtual methods

Often one creates a set of classesthat can be viewed as all derived from acommon base class. For example, we
might start with acommon base class of type BasePacket that sets out the structure of packets but isincom-
plete; one would never want to instantiate it. From this base class, though, one might derive a number of useful
subclasses: Ethernet packets, token ring packets, GPSS packets, satellite packets. Each of these packets might
look very similar, al needing the same set of methods, but they could vary significantly in terms of their inter-
nal details.

The first step is to create the base class that sets out the prototype for these subclasses. Since the base class
| doesitneed-to-instantiate-the-base-elass is not intended to be instantiated, it can be made abstract by
specifying , it can be declared to be abstract by declaring the class to be virtual:

virtual class BasePacket;
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By themselves, abstract classes are not tremendously interesting, but abstract classes can also have virtual
methods. Virtual methods provide prototypes for subroutines, all of the information generally found on the
first line of a method declaration: the encapsulation criteria, the type and number of arguments, and the return
typeif it is needed. Later, when subclasses override virtual methods, they must follow the prototype exactly.
Thus, al versions of the virtual method will look identical in all subclasses:

virtual class BasePacket;
virtual protected function integer send (bit[31:0]
endfunction

endclass

data) ;

class EtherPacket extends BasePacket;
protected function integer send(bit[31:0]
// body of the function

data) ;

endfunction
endclass

EtherPacket is now aclassthat can be instantiated. In general, if an abstract class has several any virtual meth-
ods, al of the methods must be overridden (and provided with a method body) for the subclassto be instanti-
ated. H-all-ef-the-methods-are-net-overridden; If any virtual methods have no implementation, the subclass
needs to be abstract.

An abstract class may contain methods for which there is only a prototype and no implementation (i.e., an
incomplete class). An abstract class cannot be instantiated, it can only be derived. Methods of normal classes
can also be declared virtud. Tn this case, the method must have a body If the method doec have a body, then
the class can be instantiated, as can its subclasses. Howey y v .

11.19 Polymorphism: dynamic method lookup

Polymorphism allows one to use super-etass superclass to hold subclass objects, and to reference the methods
of those subclasses directly from the super-class superclass variable. As an example, consider the base class
for the Packet objects, BasePacket. Assuming that it defines, as virtual functions, all of the public meth-
ods that are to be generally used by its subclasses, methods such as send, receive, print, etc. Even though
BasePacket isabstract, it can still be used to declare avariable:

BasePacket packets[100];

Now, one can create instances of various packet objects, and put these into the array just created:

EtherPacket ep = new;
TokenPacket tp = new;
GPSSPacket gp = new;
packets[0] = ep;
packets[1] = tp;
packets[2] = gp;

If the data types were, for example, integers, bits and strings, one couldn’t store all of these typesinto asingle
array, but with polymorphism one can do it. In this example, since the methods were declared asvirtual, one
can access the appropriate subclass methods from the superclass variable even though the compiler didn’t
know—at compile time—what was going to be loaded into. For example, packets [1]:
packets[1] .send () ;

will invoke the send method associated with the TokenPacket class. At run-time, the system correctly binds
the method from the appropriate class.
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Thisisatypical example of polymorphism at work, providing capabilitiesthat are far more powerful than what
is found in a non-object-oriented framework.

11.20 Out of block declarations

It is convenient to be able to move method definitions out of the

body of the class declaranon This is done in two steps. Declare, within the class body, the method proto-
types—whether it isafunction or task, any attributes (local, protected, public, Of virtual), and the full
argument specification plus the extern qualifier. The extern qualifier indicates that the body of the method
(it simplementation) is to be found outside the declaration. Then, outside the class declaration, declare the full
method—Ilike the prototype but without the attributes—and, to tie the method back to its class, qualify the
method name with the class name and a pair of colons:

class Packet;
Packet next;

function Packet get next();// single line
get next = next;
endfunction

// out-of-body (extern) declaration
extern protected virtual function int send(int value) ;
endclass

function int Packet::send(int value) ;
// dropped protected virtual, added Packet::
// body of method

endfunction

ereneeﬂetels The out of bIock method declaratlon must match the prototype declaranon exactly, the only syn-

tactical differenceisthat the method name is preceded by the class name and scope operator (: :).

11.21 Parameterized classes

It is often useful to define a generic class whose objects can be instantiated to have different array sizes or data
types. This avoids writing similar code for each size or type, and alows a single specification to be used for
objects that are fundamentally different, and (like atemplated class in C++) not interchangeable.

The normal Verilog parameter mechanism is used to parameterize a class:

class vector #(parameter int size = 1;);
bit [size-1:0] a;
endclass

Instances of this class can then be instantiated like modules or interfaces:
vector #(10) vten; // object with vector of size 10

vector #(.size(2)) vtwo; // object with vector of size 2
typedef vector#(4) Vfour; // Class with vector of size 4
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Thisfeature is particularly useful when using types as parameters:

class stack #(parameter type T = int;);
local T items[*];
task push( T a ); ... endtask
task pop( var T a ); ... endtask
endclass

The above class defines a generic stack class that can be instantiated with any arbitrary type:

stack is; // default: a stack of int’s
stack# (bit[1:10]) bs; // a stack of 10-bit vector
stack# (real) rs; // a stack of real numbers

Any type can be supplied as a parameter, including a user-defined type such asaclass Or struct.

The combination of a generic class and the actual parameter valuesis called a speciaization (or variant). Each
specialization of a class has a separate set of static member variables (thisis consistent with C++ templated
classes). To share static member variables among severa class specializations, they must be placed in a non-
parameterized base class.

class vector #(parameter int size = 1;);
bit [size-1:0] a;
static int count = 0;
function void disp count () ;
Sdisplay( "count: %d of size %d", count, size );
endfunction
endclass

The variable count in the example above can only be accessed by the corresponding disp count method.
Each specialization of the class vector has its own unique copy of count.

To avoid having to repeat the specialization either in the declaration or to create parameters of that type, a
typedef should be used:

typedef vector#(4) Vfour;
typedef stack# (Vfour) Stack4;
Stack4 sl1, s2; // declare objects of type Stack4

11.22 Typedef class

Sometimes a class variable needs to be declared before the class itself has been declared. For example, two
classes may each need a handle to the other. When, in the course of processing the declaration for the first
class, the compiler encounters the reference to the second class, that reference is undefined and the compiler
flagsit asan error.

Thisisresolved using typedef to provide aforward declaration for the second class:

typedef class C2; // C2 is declared to be of type class
class C1
C2 c;
endclass
class C2
Cl c;
endclass

In thisexample, C2 isdeclared to be of type class, afact that isre-enforced later in the source code. Note that
the class construct always creates a type, and does not require a typede£ declaration for that purpose (asin
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typedef class ...). Thisisconsistent with common C++ use.

Note that the c1ass keyword in the statement typedef class C2; isnot necessary, and is used only for
documentation purposes. The statement typedef C2; isequivalent and will work the same way.

11.23 Classes, structures, and unions

- SystemVerilog-3-1 adds the object-oriented c1ass construct.
On the surface, |t might appear that c1ass and struct provide equivalent functionality, and only one of them
is needed. However, that isnot true; class differsfrom struct in four fundamenta ways:

1) SystemVerilog struct are gtrictly static objects; they are created either in a static memory location
(global or module scope) or on the stack of an automatic task. Conversely, SystemVerilog-3- objects
(i.e., class instances) are exclusively dynamic, their declaration doesn't create the object; that is done
by calling new.

2)  SystemVerilog structs are type compatible so long as their bit sizes are the same, thus copying structs
of different composition but equal sizesis allowed. In contrast, SystemVerilog-3-2 objects are strictly
strongly-typed. Copying an object of one type onto an object of another is not allowed.

3) SystemVerilog—3-1 objects are implemented using handles, thereby providing C-like pointer
functionality. But, SystemVerilog-3-2 disallows casting handles onto other data types, thus, unlike C,
SystemVerilog-3-1 handles are guaranteed to be safe.

4) SystemVerilog—3-1 objects form the basis of an Object-Oriented framework that provides true
polymorphism. Class inheritance, abstract classes, and dynamic casting are powerful mechanisms that
go way beyond the mere encapsulation mechanism provided by structs.

11.24 Memory management

Memory for objects, strings, and dynamic and associative arrays is alocated dynamically. When objects are
created, SystemVerilog allocates more memory. When an object isret no longer needed anyinore, SystemVer-
ilog automatically reclaims the memory, making it available for re-use. The automatic memory management
system is an integral part of SystemVerilog. One might be tempted to think that a manual memory manage-
ment system, such as the one provided by C'smalloc and £ree, might be sufficient. However, SystemVer-
ilog’s multi-threaded, re-entrant environment create many opportunities for users to shoot themselves in the
foot. For example, consider the following example:

myClass obj = new;

fork
taskl( obj );
task2( obj );

join none

In this example, the main process (the one that forks off the two tasks) doesn’t know when the two processes
might be done using the object obj. Similarly, neither task1 nor task2 knows when any of the other two
processes will no longer be using the object obj. It isevident from this simple example that no single process
has enough information to determine when it is safe to free the object. The only two options available to the
user are (1) play it safe and never reclaim the object, or (2) add some form of reference count that can be used
to determine when it might be safe to reclaim the object. Adopting the first option will cause the system to
quickly run out of memory. The second option places a large burden on users, who, in addition to managing
their test-bench, must also manage the memory using less than ideal schemes. To avoid these shortcomings,
SystemVerilog manages all dynamic memory automatically. Users no longer need to worry about dangling ref-
erences, premature deallocation, or memory leaks. The system will automatically reclaim any object that is no
longer being used. In the example above, all that users do is assign null to the handle obj when they no
longer need it. Similarly, when an object goes out of scope the system implicitly assignsnu11 to the object.
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Section 12
Inter-Process Synchronization and Communication

Editor’s Note: This entire section is new for draft 1. Only the Section titles have been highlighted as new text.

12.1 Introduction (informative)

High-level and easy-to-use synchronization and communication mechanism are essential to control the kinds
of interactions that occur between dynamic processes used to model a complex system or a highly reactive
test-bench. Verilog provides basic synchronization mechanisms (i.e., -> and @), but they are all limited to
static objects and are adequate for synchronization at the hardware level, but fall short of the needs of a highly
dynamic, reactive test-bench. At the system level, an essential limitation of Verilog is its inability to create
dynamic events and communication channels, which match the capability to create dynamic processes.

SystemVerilog adds a powerful and easy-to-use set of synchronization and communication mechanisms, all of
which can be created and reclaimed dynamically. SystemVerilog adds a semaphore primitive built-in class,
which can be used for synchronization and mutual exclusion to shared resources, and a mailbox praHve
built-in class that can be used as a communication channel between processes. SystemVerilog also enhances
Verilog's named event data type to satisfy many of the system-level synchronization requirements. Lastly,
SystemVerilog adds the wait_var mechanism that can be used to synchronize processes using dynamic data.

Semaphores and mailboxes are built-in types, nonetheless, they are classes, and can be used as base classes for
deriving additional higher level classes.

Editor’s Note: Are semaphore and mailbox really “primitives” in the Verilog HDL and PLI sense of “primitive”?

12.2 Semaphores

Conceptually, a semaphore is a bucket. When a semaphore is allocated, a bucket that contains a fixed number
of keysis created. Processes using semaphores must first procure a key from the bucket before they can con-
tinue to execute. If a specific process requires a key, only afixed number of occurrences of that process can be
in progress simultaneously. All others must wait until a sufficient number of keys is returned to the bucket.
Semaphores are typically used for mutual exclusion, access control to shared resources, and for basic synchro-
nization.

Semaphoreis abuilt-in class that provides the following methods:
— Create a semaphore with a specified number of keys. new ()
— Obtain akey one or more keys from the bucket: get ()

— Return akey one or more keys into the bucket: put ()
— Try to obtain a key without blocking: try get ()

12.2.1 new()
Semaphores are created with the new () method.
The syntax for semaphore new () is:

function new(int key count = 0 );
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| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

The key_count specifies the number of keys initially alocated to the semaphore bucket. The number of keysin
the bucket can increase beyond key count when more keys are put into the semaphore than are removed. The
default value for key_count is 0.

Thenew () function returns the semaphore handle, or nul1 if the semaphore cannot be created.
12.2.2 put()

The semaphore put () method is used to return keys to a semaphore.

The syntax for put() is:

task put(int keyCount = 1);

| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

keyCount specifies the number of keys being returned to the semaphore. The default is 1.

When the semaphore.put () task is called, the specified number of keys are returned to the semaphore. If a
process has been suspended waiting for a key, that process will execute if enough keys have been returned.

12.2.3 get()

The semaphore get () funetion method is used to procure a specified number of keys from a semaphore.

EC-CH107 |

The syntax for get () is:

task get(int keyCount = 1);

| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

keyCount specifies the required number of keysto obtain from the semaphore. The default is 1.

If the specified number of keys are available, the task returns and execution continues. If the specified number
of key are not available, the process blocks until the keys become available.

The semaphore waiting queue is First-In First-Out (FIFO).

| 12.3try_get()

The semaphore try get () method isused to procure a specified number of keys from a semaphore, but with-
out blocking.

The syntax for try_get() is:

function int try get(int keyCount = 1);

| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

keyCount specifies the required number of keysto abtain from the semaphore. The default is 1.

EC-CH107 | If the specified number of keys are available, the task method returns 1 and execution continues. If the speci-
fied number of key are not available, the funetion method returns O.
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12.4 Mailboxes

A mailbox is a communication mechanism that allows messages to be exchanged between processes. Data can
be sent to a mailbox by one process and retrieved by another.

Conceptually, mailboxes behave like real mailboxes. When a letter is delivered and put into the mailbox, one
can retrieve the letter (and any data stored within). However, if the letter has not been delivered when one
checks the mailbox, one must choose whether to wait for the letter or retrieve the letter on subsequent trips to
the mailbox. Similarly, SystemVerilog's mailboxes provide processes to transfer and retrieve data in a con-
trolled manner. Mailboxes are created as having either a bounded or unbounded queue size. A bounded mail-
box becomes full when it contains the bounded number of messages. A process that attempts to place a
message into a full mailbox will be suspended until enough room becomes available in the mailbox queue.
Unbounded mailboxes never suspend athread in a send operation.

Mailbox isa built-in class that provides the following methods:

— Create amailbox: new ()

— Place amessage in amailbox: put ()

— Try to place amessage in a mailbox without blocking: try put ()

— Retrieve a message from amailbox: get () Or peek ()

— Try to retrieve a message from a mailbox without blocking: try get () or try peek()

— Retrieve the number of messages in the mailbox: num ()

12.4.1 new()
Mailboxes are created with the new () method.
The syntax for mailbox new () is:

function new(int bound = 0);

| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

The new () function returns the mailbox identifier handle, or nu11l if the mailboxes cannot be created. If the
bound argument is zero then the mailbox is unbounded (the default) and aput () operation will never block. If
bound is non-zero, it represents the size of the mailbox queue.

The bound must be positive. Negative bounds are illegal and may result in indeterminate behavior, but imple-
mentations can issue awarning.

12.4.2 num()
The number of messages in a mailbox can be obtained viathe num () method.
The syntax for num () is:

function int num() ;

| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

The num () method returns the number of messages currently in the mailbox.

| 12.4.3put()

The put () method places a message in a mailbox.
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The syntax for put () is:

EC-CH107| task put(sealar singular message) ;

| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

EC-CH107 | The message is any sealar singular (non-unpacked array) expression, including object handles.

The put () method stores a message in the mailbox in strict FIFO order. If the mailbox was created with a
bounded gueue the process will be suspended until there is enough room in the queue.

12.4.4 try_put()
The try put () method attempts to place a message in a mailbox.
The syntax for try put () is

EC-CH107| function int try put (sealar singular message) ;

| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

EC-CH107 | The message is any sealar singular (non-unpacked array) expression, including object handles.
The try put () method stores a message in the mailbox in strict FIFO order. This method is meaningful only

for bounded mailboxes. If the mailbox is not full then the specified message is placed in the mailbox and the
function returns 1. If the mailbox is full, the method returns 0.

| 12.4.5get()
The get () method retrieves a message from a mailbox.

The syntax for get () is:

EC-CH107| task get( war—scalar ref singular message ) ;

| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

EC-CH107 | The message can be any sealar singular (non-unpacked array) expression, and it must be avalid I-value.

The get () method retrieves one message from the mailbox, that is, removes one message from the mailbox
queue. If the mailbox isempty then the current process blocks until a message is placed in the mailbox. If there
is atype mismatch between the message variable and the message in the mailbox, aruntime error is generated.

EC-CH107 | Simple Non-parameterized mailboxes are type-less, that is, asingle mailbox can send and receive any-type dif-
—— || ferent typesof data. Thus, in addition to the data being sent (i.e., the message queue), a mailbox implementa-

tion must maintain the message data type placed by put () . Thisisrequired in order to enable the runtime type
checking.

The mailbox waiting queueis FIFO.
| 12.4.6try_get()

The try get () method attempts to retrieves a message from a mailbox without blocking.

The syntax for try get () is:

EC-CH107 || function int try get( wer—scalar ref singular message ) ;
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| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

The message can be any scalar singular (non-unpacked array) expression, and it must be avalid I-value.

The try get () method triesto retrieve one message from the mailbox. If the mailbox is empty, then the fure-
tten method returns O. If there is a type mismatch between the message variable and the message in the mail-
box, the furetien method returns —1. If a message is available and the message type matches the type of the
message variable, the message is retrieved and the funetion method returns 1.

12.4.7 peek()
The peek () method copies a message from a mailbox without removing the message from the queue.
The syntax for peek () is:

task peek( war—secalar ref singular message ) ;

| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

The message can be any sealar singular (non-unpacked array) expression, and it must be avalid I-value.

The peek () method copies one message from the mailbox without removing the message from the mailbox
gueue. If the mailbox is empty then the current process blocks until amessageis placed in the mailbox. If there
is atype mismatch between the message variable and the message in the mailbox, aruntime error is generated.
Note that calling peek () may cause one message to unblock more than one process. As long as a message

remains in the mailbox queue, any process blocked in either a peek () or get () operation will become
unblocked.

12.4.8 try_peek()
The try peek () method attempts to copy a message from a mailbox without blocking.
The syntax for try peek() is:

function int try peek( war—scalar ref singular message ) ;

| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

The message can be any sealar singular (non-unpacked array) expression, and it must be avalid I-value.

The try peek () method triesto copy one message from the mailbox without removing the message from the
mailbox queue. If the mailbox is empty, then the function method returns 0. If there is a type mismatch

between the message variable and the message in the mailbox, the Faretion method returns —1. If amessageis
available and the message type matches, the type of the message variable, the message is copied and the fune-
tteh method returns 1.

Editor's Note: |s the preceding paragraph supposed to be a part of the try_peek() subsection? It seems like it
belongs at the end of 19.4, before any of the subsections.

12.5 Parameterized mailboxes

The default mailbox is type-less, that is, a single mailbox can send and receive any type of data. Thisisavery
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powerful mechanism that, unfortunately, can also result in run-time errors due to type mismatches between a
message and the type of the variable used to retrieve the message. Frequently, a mailbox is used to transfer a
particular message type, and, in that case, it is useful to detect type mismatches at compiletime.

Parameterized mailboxes use the same parameter mechanism as parameterized classes (see section 11.21),
modules, and interfaces:

mailbox# (type = dynamic type)

| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

Where dynamic_type represents a special type that enables run-time type-checking (the default).
A parameterized mailbox of a specific type is declared by specifying the type:
typedef mailbox #(string) s_mbox;

s _mbox Sm = new;
string S;

sm.put ( “*hello” );
sm.get( s ); // s <- “hello”

Parameterized mailboxes provide all the same standard methods as dynamic mailboxes: num (), new(),
get (), peek (), put(), try get(), try peek(), try put().

EC-CH107 The only difference between a generic (dynamic) mailbox and a parameterized mailbox is that for a parameter-
— || ized mailbox the compiler ensures that all put, peek, try get and get calls are compatible with the mailbox
type so that all type mismatches are caught by the compiler and not at run-time.

EC-CH17 |I
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12.6 Event

EC-CH107 |

In Verilog, named events are static objects that can be triggered via the -> operator, and processes can block
until an event is triggered via the @ operator. SystemVerilog events support the same basic operations, but
enhance Verilog eventsin several ways. The most salient semantic difference is that Verilog named events do
not have a value or duration, whereas SystemV erilog events can have a persistency that lasts throughout the
time-step on which they are triggered. Also, SystemVerilog events act as handles to synchronization queues,
thua they can be passed as arguments to tasks and they can be dynammally aIIocated and reclalmed JrnJehrs

Existing Verilog event operations (@ and ->) are backward compatible and continue to work the same way

when used in the static Verilog context. The additional functionality described below works with all eventsin
either the static or dynamic context.

A SystemVerilog event provides a handle to an underlying synchronization object. When a process waits for
an event to betriggered, the processis put on a FIFO gueue maintained within the synchronization object. Pro-
cesses can wait for a SystemVerilog event to be triggered either via the @ operator or the wait() construct.
Events are always triggered using the -> operator.

SystemVerilog provides for two different types of events. persistent events and non-persistent events. These
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two are described below.

12.6.1 Non-Persistent Events

Non-persistent events are the same as named Verilog events. They behave like a one-shot, that is, their trig-

EC-CH107 |

gered state is not observable, only its effect. Thisissimilar to the way in which an edge can trigger atateh flip-
ﬂﬂ but the state of the edge can not be ascertained: if( posedge clock ) isillegal. T

Triggering a non-persistent event causes all processes currently waiting on the event to unblock. For atrigger
to unblock a process that is waiting on non-persistent event, that process must execute the wait (or @) before
the triggering process executes the trigger operator, ->. A process that executes wait() on a non-persistent
event after the event has been triggered will block.

The syntax to declare a non-persistent event is:

event event identifier;

Editor’s Note: Add BNF excerpt, once available.

12.6.2 Persistent Events: event bit

Persistent events are similar to non-persistent events except that once triggered, the triggered state persists
throughout the time-step, that is, until simulation time advances. Thus, a persistent event will unblock all pro-
cesses that execute the wait() construct either before or at the same simulation time as the trigger operation.

The persistent trigger behavior helps eliminate a common race condition that occurs when both the trigger and
the wait operations happen at the same time. A process that blocks on aregular (non-persistent) event may or
may not unblock depending on the execution order of the waiting and triggering processes, while a persistent
event always unblock the waiting process, regardless of the order of execution.

The syntax to declare a persistent event is.

event bit event identifier;

| Editor’s Note: Add BNF excerpt , once available.

Persistent and non-persistent events support the same set of operators, but they are different types. A persistent
event may only be assigned (or passed as an argument) to another persistent event and vice-versa (see Section

11.6.2).

12.6.3 Triggering an Event

All eventsregardless of their type (persistent or non-persistent) are triggered via the -> operator.

The syntax to trigger an event is.

-> event identifier;

Editor’s Note: Add BNF excerpt , once available.

If the event_identifier is a persistent event then the event will remain in the triggered state until the simulation
time advances. Otherwise, the persistent state is unobservable.

Triggering a persistent event more than once at the same simulation time has no effect. However, triggering a

non-persistent event more than once, at the same simulation time, results in multiple triggers.
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12.6.4 Waiting for an Event

There are two mechanisms that can be used to wait for an event. The @ operator and the wait construct.

The syntax for this use of the @ operator is.

@ event identifier;

Editor’'s Note: Add BNF excerpt , once available.

The @ operator always blocks the calling process until an event is triggered.

The syntax for this use of the wait construct is:

wait ( event identifier );

Editor’'s Note: Add BNF excerpt , once available.

The wait construct blocks if the given event is a non-persistent event or the persistent event has not been trig-
gered at the current simulation time.

Both mechanisms can be used to wait for either a persistent or a non-persistent event. The wait construct is
only meaningful when the event is persistent.

Examples:

event done; // declare a new event

event done too = done; // declare done too as alias to done
event bit blast; // persistent event

task trigger( event ev );

-> ev;
endtask
fork
@ done too; // wait for done through done too
trigger( done ); // trigger done through task trigger
join

event bit blast; // persistent event

fork

-> blast; // trigger blast event

wait ( blast ); // wait for blast event
join

Thefirst fork in the examples shows how two event identifiers done and done too refer to the same synchroni-
zation object, and also how an event can be passed to a generic task that will trigger either event. In the exam-
ple, the first process waits for the event via done too, while the actual triggering is done via the trigger task
that is passed done as an argument.

m" When t_he second fork executes, the first process may triggers the event blast before the seconq process
= (assuming the processes in a fork...join execute in source order) has a chance to execute and wait for the
event. Nonetheless the second process unblocks and the fork terminates. This is because blast is a persistent
event so it remains in its triggered state for the duration of the time-step. Note that if blast was declared as a
non-persistent event the second process would never unblock.
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12.7 Event synchronization utilities

12.7.1 $wait_all()

The $wait_all system tasks suspends the calling process until all of the specified events are triggered.

The syntax for the $wait_all task is:

$wait all( event identifier {, event identifier } )

For example:

Swait all( a, b, c);

suspends the current process until the 3 events a, b, and c are triggered.

Any of the specified events may be triggered more than once; the only reguirement to unblock the calling pro-
cessis that each event be triggered at |east once.

12.7.2 $wait_any()

The $wait_any system tasks suspends the calling process until any of the specified events are triggered.

The syntax for the $wait_any task is:

$wait any( event identifier {, event identifier } )

For example:

Swait any( a, b, c);

suspends the current process until either event a, or event b, or event cistriggered.

12.7.3 $wait_order()

The $wait_order system task suspends the calling process until all of the specified events are triggered (similar
to $wait _all), but the events must be triggered in the given order (lft to right). If an event is received out of
order, the process unblocks and generates a run-time error.

The syntax for the $wait_order task is:

$wait order ( event identifier {, event identifier } )

When $wait_order() iscalled, only thefirst event in the list can bein the triggered state. If any other persistent
event isin triggered state, it generates a run-time error.

For example:

Swait order( a, b, c);

suspends the current process until eventstrigger inthe order a—>b—>c.

12.8 Event variables

: EC-CH17 ||

An event is aunique datatype with several important properties. Unlike Verilog, SystemVerilog events can be
assigned to one another. When one event is assigned to another the synchronization gueue of the source event
is shared by both the source and the destination event. In this sense, events act as full fledged variables and not

merely aslabels.
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12.8.1 Disabling Events

If an event variable is assigned the special null value, the event isignored in subsequent calls to wait(). That
is, when the event is set to nul1, no process can wait for the event again.

For example:

event E1 = null;
@ E1;

The statement @ E1 does not block because event E1 is no longer blocking.

12.8.2 Merging Events

When one event variable is assigned to another, the two become merged. Thus, executing -> on either event
variable affects processes waiting on either event variable.

For example:
event a, b, c;
a = b;
-> C;
-> a; // also triggers b
-> b; // also triggers a
a = c;
b = a;
-> aj; // also triggers b and ¢
-> b; // also triggers a and c
-> C; // also triggers a and b

When merging events, the assignment only affects subsequent executions of ->and wait(). If a process is
blocked waiting for eventl when another event is assigned to eventl, the wait() will never unblock. For exam-

ple:

fork
Tl: while(l) @ E2;
T2: while(l) @ E1;

T3: begin
E2 = E1;
while (1) -> E2;
end
join

This example forks off three concurrent processes. Each process starts at the sametime. Thus, at the sametime
that process T1 and T2 are blocked, process T3 assigns event E1 to E2. This means that process T1 will never
unblock, because the event E2 is now E1. To unblock both threads T1 and T2, the merger of E2 and E1 must
take place before the fork.

12.9 $wait_var()

The $wait var () system task is a procedural blocking statement that waits for any of the variables in its
argument list to change (the value of the variables must change, assigning the same value to a variable does not
cause a change).

The syntax for $wait var () is

task $wait var (sealar singular variablel,..., VariableN);
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| Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

The variables variable,..., variableN can be any one of the integral data types (see section 3.3.1) of string.
Each variable may be either asimple variable, or avar parameter (variable passed by reference) or a member
of an array, associative-array, or object (class) of the aforementioned types. Objects (handles) are not allowed.

EC-CH107 || Argumentsto $wait_var () can bean array subscript expressions, in which case the index expression is eval-

—— | uated only once when $wait_var () isexecuted. Likewise, passing an object data member to $wait var ()
will block until that particular data member changes value, not when the handle to the object is modified. For
example:

Packer p = new; // Packet 1
Packet g = new; // Packet 2

fork
$wait var (p.status) ; // Wait for status in Packet 1 to change
p = 4d; // Has no effect on the wait in Process 1

EC-CH89 || join_none

// $wait_var continues to wait for status of Packet 1 to change

The example below forks two concurrent processes. The first process is suspended until the second element of
array data changes. The second process randomly changes the values within array data. When data [2]
changes value, the first process prints its message.

bit [7:0] data [100];

fork
begin
$wait_var(data[2]);
$display( "Data[2] has changed to: %d\n", datal2]);
end
begin
for( int j = 0; j < 100; J++ )
begin
data[i] = $random;
#10;
end
end
join
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Section 13
Clocking Domains

Editor’s Note: This entire section is new for draft 1. Only the Section titles have been highlighted as new text.

13.1 Introduction (informative)

In Verilog, the communication between blocks is specified using module ports. SystemVerilog adds the inter-
face, a key construct that encapsulates the communication between blocks, thereby enabling users to easily
change the level of abstraction at which the inter-module communication is to be model ed.

An interface can specify the signals or nets through which atest-bench communicates with a device under test.
However, an interface does not explicitly specify any timing disciplines, synchronization requirements, or
clocking paradigms.

SystemVerilog adds the clocking construct that identifies clock signals, and captures the timing and synchro-
nization requirements of the blocks being modeled. A clocking domain assembles signals that are synchronous
to a particular clock, and makes their timing explicit. The clocking domain is a key element in a cycle-based
methodology, which enables users to write test-benches at a higher level of abstraction. Rather than focusing
on signals and transitions in time, the test can be defined in terms of cycles and transactions. Depending on the
environment, a test-bench may contain one or more clocking domains, each containing its own clock plus an
arbitrary number signals.

The clocking domain separates the timing and synchronization details from the structural, functional, and pro-
cedural elements of atest-bench. Thus, the timing for sampling and driving clocking domain signalsisimplicit
and relative to the clocking-domain’s clock. This enables a set of key operations to be written very succinctly,
without explicitly using clocks or specifying timing. These operations are:

EC-CH101 ||

EC-CH80 ||

EC-CH80 |
EC-CH46 ||

— Synchronous Events

Input Sampling
— Synchronous Drives

13.2 Clocking domain declaration

The syntax for the clocking construct is:

clocking decl ::= [ default ] clocking [identifier] clocking event ;
{ clocking item |
endclocking
clocking event ::= @ identifier
| @ (_ event expression )
event expression ::= // this item is already defined in the BNF
clocking item := default default_skew;

| clocking direction signal or assign list ;

default skew ::= input skew

| output skew

| input skew output skew
clocking direction ::= input [ skew ]
| output [ skew ]
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| input [ skew ] output [ skew ]

| inout
signal or assign list ::= signal or assign { , signal or assign }
signal_or_assign ::= signal_identifier [ = hierarchical_expression ]

simple—edge
Egéiﬁg | skew ::= edge [ # delay expression ] // edge valid only if
[ # delay expression // clocking event is simple edge
edge ::= posedge | negedge
delay expression ::= unsigned number | time_literal

| Editor’s Note: Update preceding BNF excerpt with new BNF, once available.

The delay expression must be either atime literal or a constant expression that evaluates to a positive integer
EC-CH80 | vaue

Theidentifier specifies the name of the clocking domain being declared.

The signal_identfier identifies a port in the scope enclosing the clocking domain declaration, and declares the
name of asignal in the clocking domain. Unless a hierarchical_expression is used, both the port and the inter-
face signal will share the same name.

The clocking_event designates a particular event to act as the clock for the clocking domain. Typically, this
expression is either the posedge Or negedge of aclocking signal. The timing of al the other signals specified
in agiven clocking domain are governed by the clocking event. All input or inout signals specified in the
clocking domain are sampled when the corresponding clock event occurs. Likewise, al output Or inout Sig-
nals in the clocking domain are driven when the corresponding clock event occurs. Bi-directional signals
(inout) are sampled as well as driven.

The skew parameters determine how many time units away from the clock event asignal is to be sampled or
driven. Input skews are implicitly negative, that is, they always refer to atime before the clock, whereas output
skews always refer to a time after the clock (see section 13.3). When the clocking event specifies a simple
edge, instead of a number, the skew may be specified as the opposite edge of the signal. A single skew may be
specified for the entire domain by using adefault clocking item.

The hierarchical_name specifies that, instead of a loca port, the signal to be associated with the clocking
domain is specified by its hierarchical name (cross-module reference).

Example:

clocking bus @ (posedge clockl) ;
EC-CH46 h default input #10ns output #2ns;
input data, ready, enable = top.meml.enable;
output negedge ack;
input #lstep addr;
endclocking

In the above example, the first line declares a clocking domain called bus that isto be clocked on the positive
edge of thesignal c1ock1. The second line specifiesthat by default all signalsin the domain will usea 10ns
input skew and a 2ns output skew. The next line adds three input signals to the domain: data, ready, and
enable; thelast signal refersto the hierarchical signal top.meml . enable. Thefourth line adds the signal
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ack to the domain, and overrides the default output skew so that ack is driven on the negative edge of the
clock. The last line adds the signal addr and overrides the default input skew so that addr is sampled one
step before the positive edge of the clock.

EC-CHS81 |

Unless otherwise specified, the default input skew is 1step and the default output skew is 0. A step isa
special time unit defined to be the smallest possible delay throughout the simulation, that is, the smallest global
precision. Like all other time units, step isnot akeyword. A 1step input skew allowsinput signalsto sample
their steady-state values immediately before the clock event (i.e., at read-only-synchronize immediately before
time advanced to the clock event). Unlike other time units, which represent physical units, a step cannot be
| used to set or modify the either the precision or the fimeunit.

Editor’s Note: The addition in the preceding paragraph from EC-CH81 of a step being the “smallest global preci-
sion” is ambiguous. What if no global timeprecision was specified? |s the module’s precision used? Is the ‘times-
cale precision used? What’s the precedence. | suspect what was intended is that “a step is an increment of 1
simulator time unit. The simulator time unit is defined in the Verilog 1364 standard”. [1364-2001 section
19.8 defines the simulator time as “ The smallest time_precision argument of all the “timescale compiler directives
in the design determines the precision of the time unit of the simulation.“. The PLI sections also refer to “simula-
tor time unit” in several places, and refer to 19.8 for the definition of the simulator time unit”.

| 13.3 Input and output skews

Input (or inout) signals are sampled at the designated clock event. If an input skew is specified then the signal
is sampled at skew time units before the clock event. Similarly, output (or inout) signals are driven skew simu-
lation time units after the corresponding clock event. Figure 13-1 shows the basic sample/drive timing for a
positive edge clock.

Figure 13-1—Sample and drive times including skew
with respect to the positive edge of the clock.

| Editor’s Note: Figure still needs to be recreated.

A skew must be a constant expression-a .
EC-CH47 | eral, and can be specified as a parameter. |If the skew does not specify atl me unlt the current t| me unit is used.

If anumber is used, the skew isinterpreted using the timescale of the current scope.

clocking dram @ (changed clk) ;
input #1ps address;
input #5 output #6 data;
endclocking
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| Editor’s Note: Has the changed keyword been removed from SystemV erilog?

EC-Chas Aninput skew of 1step indicates that the signal isto be sampled an-rfinitesimal-delta-before the elock-event
— | at the end of the previous time step. That is, the value sampled is always the signal’s last value immediately

before the corresponding clock edge.

EC-CH47 |

EC-CH84 | An input skew of #0 forces a skew of zero. Input-signals with zero skew are sampled at the same time as their
corresponding etoeck-edge clocking event, but to avoid races, the samplings-dene after-al-nonblocking-assign-

they are sampled at the start of the verification phase

(after processing non-blocking assignments). lee\lee outputsgnals with zero eutput skew are drlven at the

same time as their specified efeek—edge clocking event, but

{befere-advaneing-thme)-at the end of the verification phase. A detailed explanation for this event ordering is

covered in Section 15.7.

| 13.4 Hierarchical expressions

Any signal in a clocking domain can be associated with an arbitrary hierarchical expression. As described
above, a hierarchical expression is introduced by appending an equal sign (=) followed by the hierarchica
expression:

clocking cdl @ (posedge phil) ;
input #lstep state = top.cpu.state;
endclocking

However, hierarchical expressions are not limited to simple names or signalsin other scopes. They can be used
to declare slices, concatenations, or combinations of signalsin other scopes or in the current scope.

clocking mem @ (changed clock) ;
input instruction = { opcode, regA, regBI[3:1] };
endclocking

Editor’s Note: Has the changed keyword been removed from SystemVerilog?

13.5 Signals in multiple clocking domains

EC-CH85 ||

The same signals—clock, inputs, inouts, or outputs—may appear in more than one clocking domain. Clocking

domains that use the same clock (or clocking expression) will share the same synchronization event, in the
same manner as severa latches can be controlled by the same clock. Tnput semantics are described in section
13.13, and output semantics are described in section 13.14.
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13.6 Clocking domain scope and lifetime

A clocking construct is both a declaration and an instance of that declaration. A separate instantiation step is
not necessary. Instead, one copy is created for each instance of the block containing the declaration (like an
always block). Once declared, the clocking signals are available via the clock-domain name and the dot (.)

EC-CH49 ||
EC-CH49 |

operator:
dom.sig // signal sig in clocking dom

Clocking domains cannot be nested. They cannot be declared inside functions or tasks, or at the global
($root) level. Clocking domains can only be declared inside a module, interface or a program (see section
15).

Clocking domains have static lifetime and scope local to their enclosing module, interface or program.

13.7 Multiple clocking domain example

In this example, a simple test module includes two clocking domains. The program construct used in this
exampleisdiscussed in section 15. In this example, it can be considered a module.

program test( input phil, input [15:0] data, output write,
input phi2, inout [8:1] cmd, input enable
)

clocking cdl @(posedge phil) ;
input data;
output write;
input state = top.cpu.state;
endclocking

clocking cd2 @(posedge phi2) ;
input #2 output #4ps cmd;
input enable;

endclocking

// program begins here

// user can access cdl.data , cd2.cmd , etc..
endprogram

The test module can be instantiated and connected to a device under test (cpu and mem).

module top;
logic phil, phi2;

test main( phil, data, write, phi2, cmd, enable );
cpu cpul( phil, data, write );
mem meml ( phi2, cmd, enable );

endmodule

| 13.8 Interfaces and clocking domains

A clocking encapsulates a set of signals that share a common clock, therefore, specifying a clocking domain
using a SystemVerilog interface can significantly reduce the amount of code needed to connect the test-
bench. Furthermore, since the signal directions in the clocking domain within the test-bench are with respect to
the test-bench, and not the design under test, a modport declaration can appropriately describe either direc-
tion. Conceptually, one can envision a test-bench program as being contained within a program module, and
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whose ports are interfaces that correspond to the signals declared in each clocking domain. The interface’s
wires will have the same direction as specified in the clocking domain when viewed from the test-bench side
(i.e,, modport test), and reversed when viewed from the device under test (i.e., modport dut).

For example, the previous example could be re-written using interfaces as follows:

interface bus A (input clk);
wire [15:0] data;
wire write;
modport test (input data, output write);
modport dut (output data, input write);
endinterface

interface bus B (input clk);
wire [8:1] cmd;
wire enable;
modport test (input enable) ;
modport dut (output enable) ;
endinterface

program test( bus A.test a, bus B.test b );

clocking cdl @ (posedge a.clk);
input a.data;
output a.write;
inout state = top.cpu.state;
endclocking

clocking cd2 @ (posedge b.clk);
input #2 output #4ps b.cmd;
input b.enable;

endclocking

// program begins here

// user can access cdl.a.data , cd2.b.cmd , etc..
endprogram

The test module can be instantiated and connected as before:

module top;
logic phil, phi2;

bus_A a(phil);
bus B b(phi2) ;

test main( a, b );

cpu cpul( a );

mem meml( b );
endmodule

Alternatively, the clocking domain can be written using both interfaces and hierarchical expressions as:

clocking cdl @ (posedge a.clk);
input data = a.data;
output write = a.write;
inout state = top.cpu.state;
endclocking
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clocking cd2 @ (posedge b.clk) ;
input #2 output #4ps cmd = b.cmd;
input enable = b.enable;
endclocking
Thiswould allow using the shorter names (cd1.data, cd2.cmd, ...) instead of the longer interface syntax
(cdl.a.data, cd2.b.cmd,...).

| 13.9 Clocking domain events

The clocking event of a clocking domain is available directly by using the clocking domain name, regardiess
of the actual clocking event used to declare the clocking domain.

For example.
clocking dram @(posedge phil) ;
inout data;
output negedge #1 address;
endclocking
The clocking event of the dram domain can be used to wait for that particular event:

@( dram ) ;

The above statement isequivalent to @ (posedge phil).

: EC-CH18 || e e
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[EC-CH18 | 13.10 Cycle delay: ##

The ## operator can be used to delay execution by a specified number of clocking events, or clock cycles.

The syntax for the cycle delay statement is:

EC-CH51 || ## _[ expression ]_,-

| Editor’s Note: Update preceding syntax with BNF excerpt, once available.

The expression can be any SystemVerilog expression that evaluates to a positive integer value.

What represents acycle is determined by the default clocking in effect (see section 13.11). If no default clock-
ing has been specified for the current module, interface, or program then the compiler will issue an error.

EC-CH52 |

Example:
EC-CH50 || ## [5]; // wait 5 cycles using the default clocking

## [j + 11; // wait j+1 cycles using the default clocking

13.11 Default clocking

One clocking can be specified as the default for all cycle delay operations within a given module, interface, or
program.

The syntax for the default cycle specification statement is.

default clocking decl ; // clocking declaration

default clocking clocking name ; // existing clocking

Editor’s Note: Update preceding syntax with BNF excerpt, once available.
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The clocking_name must be the name of a clocking domain.

Only one default clocking can be specified in a program, module, or interface. Specifying a default clocking
more than once in the same program or module will result in acompiler error.

EC-CH53 || whes-A default clocking isvalid only within the scope containing the default clocking specification. This scope
includes the module, interface, or program that contains the declaration as well as any nested modules or inter-
faces. Tt does not include other instantiated modules or interfaces.

Example 1. Declaring a clocking as the default:

program test ( input bit clk, input reg [15:0] data )
default clocking bus @ (posedge clk) ;
inout data;

endclocking
EC-CH54 || 4 [5];
— if ( bus.data == 10 )
## [11;
else
endprogram

Example 2. Assigning an existing clocking to be the default:

clocking busA @ (posedge clkl); ... endclocking
clocking busB @ (negedge clk2); ... endclocking
EC-CH55 || module processor ...

—_ module cpu( interface y )

default clocking busA ;

initial begin

EC-CH54 || ## [5]; // use busA => (posedge clkl)

end

endprogram—endmodule
endmodule

EC-CH101 | | Editor’s Note: The remaining subsections in.this section were originally in section 14 of 3.1 draft 2

EC-CH95 | 13.12 Syrehrentzatior Synchronous events

EC-CH93 | Explicit synchronization is done via the event control operator, @, operator, which allows a process to wait for
— an-expheit aparticular signal value change, or a clocking event (see section 13.9).

EC-CH94 | The syntax-istorthe synchronization-operator+s:

EC-CH56 |
EC-CH57 |
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EC-CH94 || The syntax is for the synchronization operator is:

event control ::=
@ event identifier
[ @ (_ event expression )
1 e

@ (*)

event expression ::=
expression [ iff expression ]
| hierarchical identifier [ iff expression ]
[ [ edge ] expression [ iff expression ]
| event expression or event expression
| event expression , event expression

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

The expression can denote clocking-domain input, or a slice thereof. Slices can include dynamic indices,
which are evaluated once, when the @ expression executes.

These are some example synchronization statements:
— Wait for the next change of signal ack_1 of clock domain ram bus

@(ram_bus.ack 1);

— Wait for the next clocking event in clock-domain ram bus

@(ram_bus) ;

— Wait for the positive edge of thesignal ram_bus.enable

@ (posedge ram bus.enable) ;

— Wait for the falling edge of the specified 1-bit slice dom. sign [a] . Notethat theindex a is evaluated at
runtime.

@ (negedge dom.signlal) ;

— Wait for either the next positive edge of dom. sigl or the next change of dom. sig2, whichever happens
first.

@ (posedge dom.sigl or dom.sig2);

— Wait for the either the negative edge of dom. sig1 or the positive edge of dom. sig2, whichever hap-
pensfirst.

@ (negedge dom.sigl or posedge dom.sig2) ;
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The values used by the synchronization prinitive event control are the synchronous values, that is, the values
sampled at the corresponding clocking event.

| Editor’s Note: The “primitive” is a keyword with unique meaning in Verilog. It shouldn’t be used in the line above

| 13.13 Signat Input sampling

All clocking domain inputs (input or inout) are sampled at the corresponding clocking event. If the input skew

IS non-zero then the value sampled corresponds to the signal value at read-only-sync [ROSYNCT of the time
step skew time-units prior to the clocking event (seefigure 13-1in section 13.3). If the input skew is zero then
the value sampled corresponds to the signal value at the start of the verification phase.

Samples happen immediately (the calling process does not block). When asignal appearsin an expression, itis
replaced by the signal’s sampled value, that is, the value that was sampled at the last sampling point.

When the same signal is an input to multiple clocking domains, the semantics are straightforward; each clock-
ing domain samples the corresponding signal with its own clocking event.

EC-CH95 |
EC-CH96 |

EC-CH61 |

EC-CH62 |

13.14 Sigrat Synchronous drives

113
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Clocking domain outputs (output or inout) are used to drive values onto their corresponding signals, but at a
Specified time. That is, the corresponding signal changes value at the indicated clocking event as modified by

EC-CH98 ||

the output skew.

The syntax to specify a synchronous drive is similar to an assignment:

[ ## event count ] clockvar expression = expression;

clockvar expression = [ ## event count ] expression;

Editor’s Note: Replace preceding syntax lines with BNF excerpt, once available.

The clockvar_expression is either or abit-select, slice, or the entire clocking domain output whose correspond-
ing Signal isto be driven (concatenation is not alowed):

dom.sig // entire clockvar
dom.sig[2] // bit-select
dom.sig[8:2] // slice

The expression can be any valid expression that is assignment compatible with the type of the corresponding
signal.

The event_count is an integral expression that optionally specifies the number of clocking events (i.e. cycles)
that must pass before the staiement executes. Specifying a non-zero event _count blocks the current process
until the specified number of clocking events have elapsed otherwise the staiement executes at the current
fime. The event _count uses a syntax similar to the cycle-delay operator (see section 13.10), however, the syn-
chronous drive uses the clocking domain of the signal being driven and not the default clocking.

The second form of the synchronous drive uses the intra-assignment syntax. An intra-assignment event-count
specification also delays execution of the statement, but the right-hand side expression is evaluaied before the
process blocks, instead of after.

Examples:
bus.data[3:0] = 4’'h5; // drive in current cycle
##1 bus.data = 8'hz; // wait 1 (bus) cycle and then drive
##[2]; bus.data = 2; // wait 2 default clocking cycles, then drive
bus.data = ##2 r; // sample r, wait 2 (bus) cycles, the drive

Regardless of when the drive statement executes (due to event-count delays), the driven value is assigned to
the corresponding signal only at the time specified by the output skew.

13.14.1 Bleckirgandrenblecking-drives Drives and nonblocking assignments
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EC-CHo8 Synchronous signal drives are queued and processed at the end of the verification phase, like nonblocking
—— || assignments, that 1s, they are propagated in one fell swoop without process execution in between drives.

| Editor’s Note: “one fell swoop” may not be appropriate for an international standard.

A key feature of inout clocking domain variables and synchronous drives is that a driven signal value does
not change the clock domain input. Thisis because reading the input always yields the Tast sasmpled value, and
not the current signal value. Tn thisrespect, an inout clocking domain variable resembles nonblocking assign-
ments since reading the variable immediately after it has been assigned will yield the previous value, not the

assigned value.
// bus.data is a clock domain inout, y is a variable
if ( bus.data == ) if(y == )
bus.data = 0; Yy <= 0;
Sdisplay( bus.data ) ; Sdisplay( v ); // both display 5

13.14.2 Drive value resolution

EC-CH99

;

When more than one synchronous drive is applied to the same clocking domain output (Or inout) at the
same simulation time, the driven values are checked for conflicts. When conflicting drives are detected a runt-
ime error isissued, and each confTicting bit is driven to X (or O for a 2-state port).

CC.CH97 | When the same variable is an output from multiple clocking domains, the last drive determines the value of the

variable. This allows a single module to model mulii-raie devices, such as a DDR memory, using a different
clocking domain to model each active edge. Naturally, clock-domain outputs driving anet (i.e,, through differ-
ent ports) cause the net to be driven to its resolved signal value.

EC-CHS83

(i

EC-CH63
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Seetor314
. .

| Editor’s Note: Other than the intro, this entire section was moved to the end of section 13.
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Section 15
Program Block

Editor’s Note: This entire section is new for draft 1. Only the section titles have been highlighted as new text.

15.1 Introduction (informative)

The module is the basic building block in Verilog. Modules can contain hierarchies of other modules, wires,
task and function declarations, and procedural statements within always and initial blocks. This construct
works extremely well for the description of hardware. However, for the test-bench, the emphasisis not in the
hardware-level details such wires, hierarchy, and interconnect, but in modeling the large environment in which
a device needs to be verified. A lot of effort is spent in getting the environment properly initialized and syn-
chronized, avoiding races between the hardware and the test-bench, automating the generation of input stimuli,
and in reusing existing models and other infrastructure.

A typical test-bench contains type definitions, data declarations, subroutines, some form of structured connec-
tions to the design, and a program block. The program block serves two basic purposes:

1) It provides an entry point where the test-bench begins execution.

2) It creates a scope that encapsulates program-wide data.

A Verilog module provides both of these functions: it creates a new scope, and can include an initial block
to serve as the test-bench entry point. Thus, a module is a natural choice for modeling the program block.
However, such a “ test-bench module” differs from a regular Verilog module in several ways. First, the com-
munication between the test-bench and the design takes place via specia ports that in addition to type, direc-
tion, and size, can a so specify a clocking scheme (see section 13). Second, it provides for race-free cycle and
transaction level abstractions as well as event abstractions. The program construct serves as a clear separator
between the design and the test-bench, and, more importantly, it indicates the special nature of the test-bench
modul e, thus, enabling specialized execution semantics for all elements within the program.

The abstraction and modeling constructs simplify the creation and maintenance of test-benches. Furthermore,
since modeling the environment can be a significant part of a test-bench, the same set of abstract test-bench
constructs can be effective in writing models at a higher Tevel of abstraction than currently provided by Sys-
temVerilog. The ability to instantiaie and individualy connect each instance of a program enables their use as
generalized models.

15.2 The program construct

The connection between design and test-bench uses the same interconnect mechanism as used by SystemVer-
ilog to specify port connections, including interfaces. The syntax for the program block is:

program program name ( list of port declarations );
program declarartions -
program_code

endprogram

| Editor’s Note: Replace preceding syntax lines with BNF excerpt, once available.

| Editor’s Note: Is the Verilog-2001 module parameter list also supported?.

For example:
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program test (input clk, input [16:1] addr, inout [7:0] data);
end;‘n’rc‘)gram
or
program test ( interface device ifc );
end;.n.rc.)gram

Thelist of port declarations alowed by aprogram isthe same asthe one alowed for any Ver-
ilog module. A more complete exampleis included in sections 13.7 and 13.8.

Although the program construct is new to SystemVerilog, its inclusion is a natural extension. The program
construct can be considered the declaration of a specia type of module (i.e,, a module with a test-bench
attribute). Once the program block has been declared, it can be instantiated in the proper hierarchical location
(typically at the top level) and its ports can be connected in the same manner as any other module.

Some of the test-bench constructs and data-types cannot be used in declarative contexts such as module ports,
gates, or continuos assignments. These constructs will be limited to the procedural context (i.e., the test-bench
environment). This limitation is not new either, it simply extends the rules set forth by SystemVerilog, which
disallows automatic variables from triggering event expressions or be written using nonblocking assignments.
Likewise, al the dynamic test-bench constructs—objects handles, dynamic and associative arrays, strings, and
events—will be limited to the procedural context.

15.3 Static data initialization

In SystemVerilog, setting the initial value of a static variable as part of the variable declaration requires that the
initialization occurs before any initial or always blocks are started. Likewise, SystemVerilog allows static
datain a program block (including static class members) to specify an initial value as part of their declaration,
and requires that all such data be initialized before the program block begins execution. It isimportant to note
that SystemVerilog initial values are not constrained to simple constants, but may include run-time expres-
sions, including dynamic memory allocation. For example, a static class can be initialized via its new method
(see section 11.4), or amailbox may beinitialized by calling itsnew method (see section 11.4).

Note: While this does not represent a conflict with SystemVerilog 3.0, it may require a specia pre-initial pass at run-time,
which may need changesto theinitial SystemVerilog simulation cycle. Thisis one of the requirements that differentiates a
program from a module.

Editor’s Note: The preceding paragraph seems rather odd for a standard. Is it necessary to state this at all?

15.4 Scope and lifetime

The following test-bench constructs al have module or program scope. They share the name space at the
hierarchical scope in which they are declared, so no two of them can have the same name:

— Class declarations
— Enumerated types and enumeration Values
— Clocking domains (see section 13)

— Program block

The program block contains a single implicit initial block, and no always blocks or other programs or
modules. Programs blocks cannot be nested.
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All constructs declared within the program are local in scope (local to the program block) and have static life-
time.

Glaobal declarations (outside the program block or any other module) residein $root and have static lifetime.

Class declarations create a new scope.

The program scope rules are consistent with SystemVerilog. The declaration in the closest enclosing scope is
matched: A scope nested inside another scope has visibility of (and may reference) al elements visible or
declared in its parent scope. A name declared inside a scope hides all elements with the same name that are
visible or declared in the parent scope.

15.5 Multiple programs

It isalowed to have any arbitrary number of program definitions or instances. The programs can be fully inde-
pendent (without inter-program communication), or cooperative. Users can control the degree of communica
tion by choosing to share data via $root or hierarchical reference, or making the data private by declaring it
inside the corresponding program block.

15.6 Eliminating zero-skew races

If both input and output skews are set to #0 (see section 13.3) then input signals are sampled at the same time
astheir corresponding clock edge, and output signals are driven at the same time as their corresponding clock
edge. That is, both samples and drives happen at the same time. This type of zero-delay processing is atypical
source of non-determinism that often results in races. However, races are minimized by means of two mecha-
nisms. First, by constraining test-bench processes to execute only after nonblocking assignments, once all
zero-delay transitions have propagated through the design and the system has reached a steady state. Second,
by queuing al outgoing signal drives until the end of the test-bench execution cycle, and then propagating all
the drives as one event. Thisis described in section 13.14.1.

Supporting signals with zero input or output skew without races is an important feature of the test-bench envi-
ronment. This is because test-benches with no timing information are quite common, particularly during the
early phases of adesign, when designers are mostly focused on functionality and not timing.

15.7 Eliminating races and SystemVerilog event queue

There are two major sources of non determinism in Verilog. The first oneis that active events can be taken off
the queue and processed in an arbitrary order. The second one is that statements without time-control con-
structs in behavioral blocks do not execute as one event. However, from the test-bench perspective, these
effects are all unimportant details. The primary task of atest-bench is to generate valid input stimulus for the
design under test, and to verify that the device operates correctly. Furthermore, test-benches that use cycle
abstractions are only concerned with the stable or steady state of the system for both checking the current out-
puts and for computing stimuli for the next cycle. Formal tools al'so work in this fashion.

To avoid the non determinism and races inherent in the Verilog event queue management, test-bench processes

execute only after the system has settled to its steady state. This is after nonblocking assignments have been
processed, thus, treating all transitions towards the steady state in the same consistent manner (from the test-
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bench perspective). Accordingly, signas driven from the test bench with no delay are propagated into the
design as one event immediately before read-only synchronize time. With this behavior, the correct cycle
semantics can be modeled without races, thereby making the test-bench environment compatible with the
assertions mechanisms and formal tools.

It is important to note that simply setting non-zero skews on the signals does not eliminate the potential for
races. Non-zero skews only address a single clocking domain. When multiple clocks are used, the arbitrary
order in which overlapping or simultaneous clocks are processed is still a potential source for races. The solu-
tion requires a special execution time after all events have been processed, including all clocks driven by non-
blocking assignments.

15.8 Blocking tasks in cycle/event mode

Calling tasks or functions in the program block from ether-design modules is not alowed. The rationale for
thisis that the design must not be aware of the test-bench. However, calling subroutines in ether-design mod-
ules from within the program is alowed. Calling afunction presents no problem and can be treated like a reg-
ular function call. However, calling a blocking task outside the program block from inside the program does
require explicit synchronization upon return from the task. That is, postpone execution until after nonblocking
assignments.

15.9 Program control tasks

In addition to the normal simulation control tasks ($stop and $finish), a program can use the $exit con-
trol task.

15.9.1 $exit()

Each program can be finished by calling the sexit system task. When all programs exit, the simulation fin-
ishes.

The syntax for the $exit systemtask is:

task S$exit();

| Editor’s Note: Replace preceding syntax lines with BNF excerpt, once available.

When a program executes its last statement, it implicitly calls sexit. Caling $exit causes all processes
spawned by the current program to be terminated.
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| Editor’s Note: This entire section is superceded by the following section (added for SV 3.1 draft 3).

Copyright 2003 Accellera. All rights reserved. 123



Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

Ie2PreeedalasserHers

proc_assertion ::= /I from Annex A.6.10
immediate_assert
| strobed_assert
| clocked immediate assert
| clocked_strobed assert
immediate_assert ::= assert ( expression )
statement_or_null
[ else statement_or_null ]
strobed _assert ::= assert_strobe ( expression )
restricted_statement_or_null
[ elserestricted_statement_or_null |
clocked immediate assert ::= assert ( expr_sequence) step_control
statement_or_null
[ else statement_or_null ]

clocked_strobed assert ::= assert_strobe ( expr_sequence) step_control
restricted_statement_or_null
[ elserestricted statement_or_null ]

restricted _statement_or_null ::=
restricted_statement
| { attribute_instance} ;
restricted_statement ::=
[ block_identifier : ] restricted_statement_item
restricted _statement_item ::=
{ attribute_instance} proc_assertion
| { attribute_instance} system task_enable
| { attribute_instance} delay_or_event_control statement
| { attribute_instance} restricted_seq block
restricted seq block ::= begin [ : block_identifier ] { block item declaration }{ restricted statement }
end [ : block_identifier ]
expr_sequence ::=

expression
| [ constant_expression ]
| range

| expr_sequence; expr_sequence
| expr_sequence* [ constant_expression |
| expr_sequence* range
| (expr_sequence)
step_control ::=
@@ event_identifier
| @@ ( event_expression)
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Section 16
Assertions

Editor’s Note: This entire section is new for draft 3, and replaces the SV 3.0 section on assertions. Only the Sec-
tion titles have been highlighted as new text.

Editor’s Note: | still need to check all formatting for this section. Also need to map all cross references to the old
assertion section to this new section.

16.1 Introduction (informative)

System Verilog adds features to specify assertions (or properties) of a system. An assertion specifies a specific
behavior of the system. There are two kinds of assertions: concurrent or immediate.

Immediate assertions follow event semantics for their execution and get executed like a statement in a proce-
dural block. Immediate assertions are primarily intended to be used with simulation.

Concurrent assertions are based on clock semantics and use sampled values of variables. One of the goals of
SystemVerilog assertions is to provide a common semantic meaning for assertions so that they may be used to
drive various design and verification tools. Many tools, such as formal verification tools, evaluate circuit
descriptions using a cycle-based semantic which typically relies on aclock signal or signals to drive the evalu-
ation of the circuit. Any timing or event behavior between clock edges is abstracted away. Concurrent asser-
tions incorporate this clock semantics. While this approach generally simplifies the evaluation of a circuit
description, there are a number of scenarios under which this cycle-based evaluation provides different behav-
ior from the standard event-based evaluation of SystemVerilog.

This section describes both types of assertions.

16.2 Immediate assertions

The immediate assertion statement is a test of an expression performed when the statement is executed in the
procedural code. The expression is treated as a condition likein an 1 £ statement. The syntax of the immediate
assertion statement is as follows.

immediate_assertion::=

[ identifier : ] ‘check’ *(* expression ‘)’ action_block
action_block::=

statement_or_null [ ‘else’ statement_or_null ]
statement_or_null::=

statement

[
’

Syntax 16-2—Immediate assertion syntax

The statement associated with the success of the assert statement is called pass statement, and is executed if
the expression evaluates to true. As with the 1 £ statement, if the expression evaluatesto 'x’, 'z’ or ' 0’, then
the assertion fails. The pass statement may, for example, record the number of successes for a coverage log,
but may be omitted altogether. If the pass statement is omitted, then no user specified action is taken when the
assert check expressionistrue. The statement associated with else iscaled afail statement, and is executed if
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the assertion fails (i.e. the expression does not evaluate to a known, non-zero value) and can be omitted. The
optional assertion label (identifier and colon) creates a named block around the assertion statement (or any
other SystemVerilog statement) and can be displayed using the $m format code.

assert foo : check (foo) $display("%$m passed"); else S$display("%m failed");

Note: The pass and fail statements are executed as part of verification code. The distinction between design and verifica-
tion code is being discussed in other commitees, and a specia scheduling mechanism to support the two types of code will
also be devised. The main objective here is to prevent modification of design behavior as aresult of assertion monitoring
activities.

Since the assertion is a statement that something must be true, the failure of an assertion shall have a severity
associated with it. By default, the severity of an assertion failure is“error”. Other severity levels may be spec-
ified by including one of the following severity system tasksin thefail statement:

— $fatal isarun-time Fatal, which terminates the simulation with an error code. The first argument passed
to $£atal shall be consistent with the argument to $finish.

— $error isaRun-time Error.

— $warning iSaRun-time Warning, which can be suppressed in a tool-specific manner.
— s$info indicates that the assertion failure carries no specific severity.

The syntax for these system tasksis shown in section 16.4 of System Verilog3.0 LRM.

Need softwar e cross r efer ence above

All of these severity system tasks shall print a tool-specific message indicating the severity of the failure, and
specific information about the specific failure, which shall include the following information:

— Thefile name and line number of the assertion statement,

— The hierarchical name of the assertion, if it islabeled, or the scope of the assertion if it is not |abel ed.

For simulation tools, these tasks shall also include the simulation run-time at which the severity system task is
called.

Each system task can also include additional user-specified information using the same format as the Verilog
$display.

If more than one of these system tasks isincluded in the else clause, then each shall be executed as specified.

If an assertion fails and no else clause is specified, the tool shall, by default, call $error, unless atool-spe-
cific command-line option is enabled to suppress the failure.

If the severity system task is executed at atime other than when the assertion fails, the actual failure time of the
assertion can be recorded and displayed programmatically. For example:

time t;

always @ (posedge clk)

if (state == REQ)
check (reql || req2)
else begin
t = Stime;
#5 Serror ("assert failed at time %0t",t);
end

If the assertion fails at time 10, the error message will be printed at time 15, but the user-defined string printed
will be “assert failed at time 10".
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The display of messages of warning and info types can be controlled by a tool-specific command-line option.

Since the fail statement, like the pass statement, is any legal SystemVerilog procedural statement, it can also be
used to signal afailure to another part of the testbench.

check (myfunc(a,b)) countl = count + 1; else ->eventl;
check (y == 0); else flag = 1;

16.3 Concurrent assertions

Concurrent assertions describe behavior that spans over time. The evaluation model is based on a clock such
that a concurrent assertion is evaluated only at the occurrence of a clock tick. The values of variables used in
the evaluation are the sampled valued. This way, a predictable result can be obtained from the evaluation,
regardless of the simulator’s internal mechanism of ordering events and evaluating events. This model of exe-
cution also corresponds to the synthesis model of hardware interpretation from an RTL description.

The timing model employed in concurrent assertion specification is based on clock ticks, and uses a general-
ized notion of clock cycles. The definition of aclock is explicitly specified by the user, and can vary from one
expression to another. In addition, a user can choose to use the simulation time as a clock to express asynchro-
nous events.

A clock tick is an atomic moment in time and implies that there is no duration of timein aclock tick. It isalso
given that a clock may tick only once at any simulation time. The value of a variable in an expression at a
clock tick is sampled at the end of one simulation timestep (i.e. at read-only synchronization time, as defined
by the PLI) before the clock tick. In an assertion, the sampled value is the only valid value of avariable a a
clock tick. Figure 16-2 shows the values of avariable asthe clock progresses. The value of signal req islow
at clock ticks 1 and 2. At clock tick 3, the value is sampled as high and remains high until clock tick 9. The
value of variable req at clock tick 9islow and remains low.

i

clock ticks 19 10 11 12 13 14

req

Figure 16-2—Sampling a Variable on Simulation Ticks
The sampled value of asigna with respect to its clock is the value of the variable at the end of the simulation
time (i.e. read-only sync) before the clock event occurs.
An expression is aways tied to a clock definition. The values of variables are sampled only at clock ticks.
These values are used to evaluate value change expressions or boolean sub-expressions that are required to
determine a match with respect to a sequence expression.

Note:

— Itisimportant to ensure that the defined clock behavior is glitch free. Otherwise, wrong values may get
sampled.

— Thetwo words “clock tick” and “sampling event” are used synonymously in this document.

The clock expression that controls evaluation of a sequence may be more complex than just a single signal
name. An expression such as (clk & & gate) could be used to represent a gated clock. Other more complex
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expressions are possible. In order to ensure proper behavior of the system and conform as closely as possible
to truly cycle-based semantics, the signals in a clock expression must be glitch-free and may only transition
once at any simulation time. The clock expressions must be evaluated with zero delay.

16.4 Sequences

A sequenceis alist of SystemVerilog boolean expressionsin alinear order of increasing time. These boolean
expressions must be true at those specific points in time for the sequence to be true over time. A boolean
expression at apoint in time is a simple case of a sequence with time length of one unit.To determine a match
of a sequence, the boolean expressions are evaluated at each successive sample point to satisfy the sequence. If
al expressions are true, then a match of the sequence occurs.

A sequence expression describes one or more sequences by using regular expressions that concisely specify a
range of possibilities of when an expression needs to hold true. These sequential regular expressions can actu-
ally describe a set of one or more sequences that satisfy the sequential expression.

The basic composition of a sequence consist of a boolean expression concatenated by another boolean expres-
sion. The concatenation specifies adelay between the two boolean expressions. The following is the syntax for
seguence concatenation.

sequence_expr =
sequence_phrase { ; [range] sequence_phrase }
sequence phrase ::=
seguence_element
| range sequence_element
sequence_element :: =
boolean_item
| (sequence_expr )
boolean item ::=
boolean_expr
[true
range ::=
[ constant_range_expression |
| [ constant_range_expression : constant_range_expression ]
| [constant_range_expression : inf ]

Syntax 16-3—Sequence concatenation syntax

In this syntax:
— constant_range_ expression isacompile-time constant expression that resultsin an integer value

— constant_range_ expression canonly be O or greater and true unconditionally evaluatesto true
boolean value.

— The keyword tr ue unconditionally evaluates to true boolean value.

— Thekeyword inf isused to indicate the end of simulation. For formal verification tools, inf isinterpreted
asinfinity.
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— When arange is specifies with two expressions, the second expression must be greater or equal to the first
expression.

The context in which a sequence occurs determines when the sequence is evaluated. The first element in a
sequence is checked at the first occurrence of the clock at or after the event that triggered evaluation of the
sequence. Each successive element (if any) in the sequence is checked at the next subsequent occurrence of
the clock.

A ‘;" followed by an optional range specifies that the sequence_expr should occur later than the ‘current’ cycle.
A range of [1] indicates that the next element should occur a single cycle later than the ‘current’ cycle. A *;’
without a range is equivalent to a‘;’ with arange [1]. A range of [0] specifies that the next element should
occur in parallel with the ‘current’ cycle.

When arange specifier appears at the start of the sequence without ‘;’, its meaning isidentical to asif the*; is
prepended to the sequence. The semantics are the same.

The following are examples of unary delay expressions. A unary delay, i.e. an expression with delay asthe pre-
fix, must be enclosed in parenthesis.

([0] a) means a
([1] a) means true; a

([2] a) means true;true;a
([0:3]a) means(a) or (true;a) or (true;true;a) or (true;true;true;a)

An example of adelay expressionis asfollows:
a; [2] b meansa ; true ; b

Note that the following two are equivalent:

a; true ;[2] b means a ; true ; true; b
a; (true;[2] b) means a ; true ; true; b
A sequence:

req; gnt;!reqg

This sequence specifies that req be true on the current clock tick, gnt will be true on the first subsequent tick

and req will be false on the next tick after that. The *;’ operator specifies one clock tick separation. When a

number is appended to semicolon, The number of samplesis prepended to the expression in the sequence, asin
req; [2]gnt

This specifies that req will be true on the current sample, and gnt will be true on the second subsequence sam-
ple, as shown in figure Figure 16-3.

0 sl s2
clk | | | LI ]
req [ |1
gnt [

Figure 16-3—Concatenation

The following specifiesthat ‘b’ will be true on the Nth sample after ‘a:
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a; [Nlb // check b on the Nth sample
To specify concatenation of overlapped sequences, where the end point of one sequence coincides with the
start of the next sequence, avalue of 0 is used as shown below.

a ;b ;c // first sequence seql

d ;e ;f // second sequence seq2

seql ;[0] seqg2 // overlapped concatenation
In the above example, c is the endpoint of sequence seql, and d is the start of sequence seq2. When concate-
nated with [0] sampling, ¢ and d must occur at the same time, resulting in the concatenated sequence being is
equivaent to:

a;b ;c&&d ;e ;f

In cases where the concatenation can occur anytime between two points in time, a time window can be speci-
fied asfollows:

req; [4:32] gnt

In the above case, signal gnt must be true at some sampling event between sampling events ranging from 4 to
32 after the current sample.

The time window can extend to the end of simulation in the example below.
req; [4:inf] gnt

A seguence can be unconditionally extended by using true.
a ;b ;c ;I[3]ltrue

After signal c, the signal length is extended by 3 sample events. Such adjustments in the length of sequences
are required when complex sequences constructed by combining simpler sequences.

16.5 Declaring sequences

Sequences can be reused by declaring them as objects of type sequence with optional parameters:

seq_declaration ::=

sequence [event_control] named_seq{ , named_seq} ;
named_seq ::=

identifier [ (identifier { , identifier} ) ] = (' sequence_expr)

Syntax 16-4—Declaring sequence syntax

The event_control specifies the clock for the sequence.

The declaration can optionaly include arguments that allow the same sequence to be instantiated multiple
times with different argument values. The actual arguments can be boolean or sequence expressions.

Note that variables referenced within a seq that are not formal arguments to the sequence are resolved hierar-
chically from the scope in which the seq is instantiated.
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sequence @ (posedge clk) sl = (a;b;c), s2 = (d;e;f);
sequence @ (nededge clk) s3 = (g;h;1i);

In this example, sequences s1 and s2 are sampled on each successive posedge clk. The sequence s3 is sampled
on negedge clk.

Another example of sequence declaration with argumentsis shown below:
sequence s20_1(data,en) = .(!frame && (data==data bus) ; (c_be[0:3] == en));

A sequence can be referred in properties by referencing its name. A hierarchical name can be be used consis-
tent with the System Verilog naming conventions.

16.6 Sequence operations

16.6.1 Repetition in sequences

Following is the syntax for sequence concatenation (sequence_phrase from concatenation has been extended
with repetition clauses).

sequence_phrase ::=

sequence_element
|[sequence_element * range

| boolean_expr =* range

Syntax 16-5—Sequence concatenation syntax

The repetition counts are specified with range and must be literals or constant expressions.
To specify the repetition of an expression within a sequence, the expression may ssimply be repeated, as:
a;b;b;b;c
or the number of repetitions may be specified with atrailing “*[N]”, as:
a;b*[3];c
A repeat specifies that the item or expression should occur a specified number of times. Each repeated item is
concatenated (with adelay of 1 clock tick) to the next repeated item. A repeat of N specifies that the sequence
should occur N timesin succession - e.g.,

a*[3] means a ; a ; a

The syntax allows combination of a delay and a repeat in the same sequence with no separation by ‘;’, but
requires that the repeated item be delimited by parentheses. The following are both allowed:

true; [3] (a*[3]) means true;true;true;a;a;a
(true; [2]a) *[3] means (true; [2]a); (true; [2]a) ; (true; [2]a)
which means true;true;a;true;true;a;true;true;a

As an example, with named sequences

sequence seql = ([2]a); means true ; true ; a
sequence seg2 = (b;seqgl); means b; ([2]a)
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which means b; (true ; true ; a)
which means b;true;true;a
A sequence can be repeated as follows:
(a ; b)*[5]
issame as:
a;b;a;b;a;b;a;b;a;b

A repetition with arange of maximum and minimum number of times can be expressed with atrailing * [min:max].
As an example, the following two expression are equivalent.

(a ; b)*[1:5]
(a;b)or(a;b;a;b;)or(a;b;a;b;a;b)or(a;b;a;b;a;b;a;b)or(a;b;a;b;a;b;a;b;a;b)

The following two expression are also equivalent.

(a*[0:3];b;c)
(b;c) or (a;b;c) or (aj;a;b;c) or (aj;a;a;b;c).

To specify potentially infinite number of repetitions, the keyword inf is used. So,
a; b*[1:inf] ;c

means ‘& is true on the current sample, then ‘b’ will be true on every subsequent sample until ‘¢’ istrue. On
the sampleinwhich ‘c’ istrue, ‘b’ does not have to be true.

The“*[N]” notation indicates consecutive repetition of an expression. It is also possible to specify non-consec-
utive repetition of a boolean expression with:

a;b*=[min:max] ;c
Thisis equivaent to:
a; (('b*[0:inf]l ;b ) * [min:max]) ;c

Adding the range specification to this allows the construction of useful sequences containing a boolean expres-
sion that istrue for at most N samples:

a;b*=[1:N];c // a followed by at most N occurrences of b, followed by c

The rules for specifying repeat counts are summarized as:

— Each form of repeat count specifies a minimum and maximum number of occurrences
— expr*[n:m], where nis the minimum, m is the maximum

— expr*[n] isthe same as expr*[n:n]

— The sequence as awhole cannot be empty

— If nis 0, then there must be either a prefix, or apost fix concatenation term

16.6.2 Value change functions

Three functions are provided to detect changes in values between two adjacent clock ticks: $rose, $£ell and
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$stable.

value_change functions::=
$rose ( expression )
| $fell ( expression)
| $stable (expression)

Syntax 16-6—Value change function syntax

A value change expression at a clock tick detects the change in value of an expression from the value of that
expression at the previous clock tick. The result of a value change expression is true or false, and can be used
as a boolean expression.

$rose returnstrue if the least significant bit of the expression changed from 0 to 1. Otherwise, it returns false.
$fell returnstrueif theleast significant bit of the expression changed from 1 to 0. Otherwise, it returns false.
$stable returnstrueif the value of the expression did not change. Otherwise, it returns false.

Figure 16-4 illustrates two examples of value changes:
— value change expression el isdefined as $rose (req)

— value change expression e2 isdefinedas $fell (ack)

i

clock ticks 9 10 11 12 13 14

req

ack

el

e2

Figure 16-4—Value Change Expressions

The clock used for sampling the events is different than the simulation ticks. Assume, for now, that this clock
is defined in this language elsewhere. At clock tick 3, e1 occurs because the value of req at clock tick 2 was
low and at clock tick 3, the value is high. Similarly, e2 occurs at clock tick 6 because the value of ack was
sampled as high at clock tick 5 and sampled as low at clock tick 6.

16.6.3 AND operation

The binary operator and is used when both operand expressions are expected to succeed, but the end times of
the operand expressions may be different.
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sequence_expr ::=
sequence_expr and sequence_expr

Syntax 16-7—and operator syntax

The two operands of and are sequence expressions. The requirement for the success of the and operation is
that both the operand expressions must succeed. When one of the operand expressions succeeds, it waits for
the other to succeed. The end time of the composite expression is the end time of the operand expression that
completes |ast.

When tel and te2 are sequences, then the expression:

tel and te2
— Succeedsif tel and te2 succeed.

— Theendtimeisthe end time of either tel or te2, whichever terminates last.
First, let us consider the case when both operands are single sequence evaluations.

An exampleisillustrated in Figure 16-5. Consider the following expression with operator and where the two
operands are sequences.

(tel ;[2] te2) and (te3 ;[2] ted4 ;[2] teb)

Figure 16-5—ANDing (and) Two Sequences

clk 1 2 3 4 5 6 7 8 9 10 1 12 13 14

tel | |

te2

te3 |

ted

te5

tel ;[2] te2

(tel;[2] te2) and !
(te3 ;[2] te4 ;[2] teb) SR S

. !
te3 ;[2] te4 ;[2] te5 A s S ,A

Here, the two operand sequences are (tel ; [2] te2) and (te3 ; [2] te4 ;[2] teb).Thefirst
operand sequence requires that first tel evaluates to true followed by te2 two clock ticks later. The second
sequence requires that first te3 evaluates to true followed by te4 two clock ticks later, followed by tes two
clock ticks later. Figure 16-5 shows the evaluation attempt at clock tick 8.

142 Copyright 2003 Accellera. All rights reserved.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

This attempt results in a match since both operand sequences match. The end times of matches for the individ-
ual sequences are clock ticks 10 and 12. The end time for the entire expression is the last of the two end times,
so amatch is recognized for the expression at clock tick 12.

Now, consider an example where an operand seguence is associated with arange of time specification, such as:
(tel ;[1:5] te2) and (te3 ;[2] te4 ;[2] te5)

The first operand sequence consists of an expression with atime range from 1 to 5 and implies that when tel
evaluatesto true, te2 must follow 1, 2, 3, 4, or 5 clock ticks later. The second operand sequence isthe same as
in the previous example. To consider all possibilities of a match, following steps are taken:

1) Thefirst operand sequence starts five sequences of evaluation.
2)  The second operand sequence has only one possibility of match, so only one sequenceis started.

3) Figure 16-6 shows the attempt to examine at clock tick 8 when both operand sequences start and
succeed. All five sequences for the first operand sequence match, as shown in atime window, at clock
ticks 9, 10, 11, 12 and 13 respectively. The second operand sequence matches at clock tick 12.

4)  To compute the result for the composite expression, each successful sequence from the first operand
sequence is matched against the second operand sequence according to the rules of the and operation
to determine the end time for each match.

The result of this computation is five successes, four of them ending at clock ticks 12, and the fifth ends at
clock tick 13. Figure 16-6 shows the two unique successes at clock ticks 12 and 13.

clk 1 2 3 4 5 6 7 8 9 10 1 12 13 14

e ||

te2

ted

te5

]
]
]
]
te3 | |
]
]
1
]
]
]
I
]

tel ;[1:5] te2 '*’:A A A A A:

te3 ;[2] te4 ;[2] te5 *-r--|--7- *A

(tel ;[1:5] te2) and !
(te3 ;[2] te4 :[2] te5) il I e ’A A

Figure 16-6—ANDing (and) Two Sequences Including a Time Range

If tel and te2 are sampled booleans (not sequences), the expression succeedsif tel and te2 are both eval-
uated to be true.

An example is illustrated in Figure 16-7 to show the results for attempt at every clock tick. The expression
matches at clock tick 1, 3 and 8 because both te1 and te2 are simultaneously true. At all other clock ticks,
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the and operation fails because either tel or te2 isfalse.

clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14

tel |

te2 |

| | | L[] |
etansec A Y A Y VYV AVYYVYA

Figure 16-7—ANDing (and) Two Boolean Expressions

16.6.4 Intersection (AND with length restriction)

The binary operator intersect isused when both operand expressions are expected to succeed, and the end
times of the operand expressions must be the same.

sequence_expr ::=
sequence_expr inter sect sequence_expr

Notice the equence is corrected to sequence

Syntax 16-8—intersect operator syntax

The two operands of intersect are sequence expressions. The requirements for the success of the
intersect operation are:

— Both the operand expressions must succeed.

— Thelength of the two operand sequences must be the same.

The additional requirement on the length of the sequencesis the basic difference between and and
intersect.

For each attempted evaluation of sequence_expr, there could be multiple matches. When there are multiple
matches for each operand segquence expression, the results are computed as follows.

— A match from the first operand is paired with a match from the second operand with the same length.

— If no such pair isfound, theresult of intersect iSno match.

— If such pairs are found, then the result consists of matched sequences, one for each pair. The end time of
each match is determined by the length of the pair.

16.6.5 OR operation

The operator or is used when at least one of the two operand sequences is expected to match.

sequence_expr ::=
sequence_expr or sequence_expr

144 Copyright 2003 Accellera. All rights reserved.



Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

Syntax 16-9—or operator syntax

The two operands of or are sequence expressions.
Let us consider these operand expressions as values, events and sequences separately to illustrate the details of
or operations. For the expression

tel or te2

when the operand expressions tel and te2 are events or values, the expression matches whenever at least
one of two operands tel and te2 isevaluated to true.

Figure 16-8 illustrates or operation using tel and te2 as simple vaues. The expression does not match at
clock ticks 7 and 13 because tel and te2 are both false at those times. At all other times, the expression
matches, as at least one of the two operandsis true.

clock 1 2 3 4 5 6 7 8 9 10 1 12 13 14

||

te2

[ L] ] ] ||
etoez A A A A AAY AAAALAYAD

Figure 16-8—ORing (or) Two Sequences

When tel and te2 are sequences, then the expression:

tel or te2
matches if at least one of the two operand sequences tel and te2 match. To evaluate this expression, first,
the successfully matched sequences of each operand are cal cul ated and assigned to a group. Then, the union of
the two groups is computed. The result of the union provides the result of the expression. The end time of a
match is the end time of any sequence that matched.

An exampleisillustrated in Figure 16-9. Consider an expression with or operator where the two operands are
sequences.
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(tel ;[2] te2) or (te3 ;[2] te4 ;[2] teb)
clk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e ||

te2

te3 |

ted

te5

tel ;[2] te2

]
te3 :[2] ted :[2] te5 R R B »A

1
(tel ;[2] te2) or I
(te3 ;[2] te4 ;[2] teb) :4 S - * S ,A

Figure 16-9—ORing (or) Two Sequences

Here, the two operand sequencesare: (tel ; [2] te2) and (te3 ;[2] te4 ;[2] te5).Thefirst
sequence requiresthat tel first evaluatesto true, followed by te2 two clock ticks later. The second sequence
requires that te3 evauatesto true, followed by te4 two clock ticks later, followed by te5 two clock ticks
later. In Figure 16-9, the evaluation attempt for clock tick 8 is shown. The first sequence matches at clock tick
10 and the second sequence matches at clock tick 12. So, two matches for the expression are recognized.

Consider an example where an operand sequence is associated with time range specification, such as:
(tel ;[1:5] te2) or (te3 ;[2] te4 ;[2] teb)

The first operand sequence consists of an expression with a time range from 1 to 5 and specifies that when
tel evaluatesto true, te2 must betrue 1, 2, 3, 4 or 5 clock ticks later. The sequences from the second oper-
and require that first te3 must be true followed by te4 being true two clock ticks later, followed by tes
being true two clock tickslater. At any clock tick if an operand sequence succeeds, then the composite expres-
sions succeeds. As shown in Figure 16-10, for the attempt at clock tick 8, the first operand sequence matches at
clock ticks 9, 10, 11, 12, and 13, while the second operand matches at clock ticks 12. The match of the com-
posite expression is computed as a union of the matches of the two operand sequences, which results in
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matches at clock ticks 9, 10, 11, 12, and 13.
clk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e ||

te2
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te5
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tel ;[1:5] te2
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=
]

te3 :[2] ted :[2] te5 e e e A
]

(63 {21104 121 %) ~-h A A A A

Figure 16-10—ORing (or) Two Sequences Including a Time Range

| 16.6.6 first match operation

Thefirst_match operator matches only the first match of possibly multiple matches for an evaluation attempt
of a sequence expression. This alows you to discard all subsequent matches from consideration. In particular,
when the sequence expression is a sub-expression of alarger expression, then applying the first_match opera-
tor has significant effect on the evaluation of the embedding expression.

Sequence_expr ;=
first_match ( sequence_expr )

Syntax 16-10—first_match operator syntax

The operand expression can be a sequence expression. sequence_expr isevaluated to determine the match
for the (first match (sequence expr)) expression. For a given evaluation attempt, the composite
expression matchesif sequence expr resultsin at least one match of asequence, and fails to match if none
of the sequences from the expression result in amatch. Following the first successful match for the attempt, the
first match operator stops matching subsequent sequences for sequence expr. For an attempt, if there
are multiple matches with the same end time as the first detected match, then all those matches are considered
asthe result of the expression.

Please note that £irst_match appliesto each attempt for the sequence individually.
Consider an example with a variable delay specification as shown bel ow.

sequence tl = (tel ;[2:5]te2);
sequence tsl = (first match(tel ;[2:5]te2));
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Each attempt of sequencetl can result in matches for up to four following sequences:

tel ;[2] te2
tel ;[3] te2
tel ;[4] te2
tel ;[5] te2

However, sequence tsl can result in amatch for only one of the above four sequences. Whichever of the above
four sequences matches first becomes the result of sequence tsl.

16.6.7 Boolean implication (sequences based on boolean condition)

This construct allows a user to monitor sequences based on satisfying some criteria. Most common uses are to
attach a precondition to a sequence, where the evaluation of the sequence is based on the success of a condi-
tion.

Syntax 16-11—if Boolean implication syntax

sequence_expr::=
boolean_expr => sequence_expr

This clause is used to precondition monitoring of a sequence expression. The condition boolean expr
must be satisfied in order to monitor sequence expr. If the condition boolean expr fails then
sequence_expr is skipped for monitoring and results in a sequence true of length one. boolean expr is
alogical expression that resultsin true or false, and sequence expr iSasequence expression that can result
in one or more matches. If the expression evaluates to true, then thefirst element of the sequence_expr is eval-
uated on the same clock tick.

If the condition is evaluated to true, then the evaluation of sequence_ expr is conducted. The sequence
matches of sequence expr become the matches of implication.

Consider a bus operation for data transfer from a master to atarget device. When the bus enters a data transfer
phase, multiple data phases can occur to transfer a block of data. During the data transfer phase, a data phase
completes on any rising clock edge on which i rdy isasserted and either t rdy or stop is asserted. Note that
an asserted signal here implies avalue of low. The end of a data phase can be expressed as:

sequence @ (posedge mclk) data end =
((data_phase) => ((irdy==0)&&($fell (trdy)||$fell( stop))));

Each time a data phase completes, a match for data_end is recognized. The attempt at clock tick 6 isillus-

trated in Figure 16-11. The values shown for the signals are the sampled values with respect to the clock. At
clock tick 6 data_end is matched because st op gets asserted while i rdy is asserted.
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mclk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

data_phase

irdy

trdy (high)

stop

data_end A

Figure 16-11—Conditional Sequence Matching

data end can be used to ensure that frame is de-asserted within 2 clock ticks after data end occurs.
Further, it is also required that irdy gets de-asserted one clock tick after frame gets de-asserted.

A sequence expression is written to express this condition as shown below.

‘define data _end (data phase &&((irdy==0)&&(Sfell (trdy) ||S$fell(stop))))
sequence @ (posedge mclk)
data_end_rulel =( (‘data_endl) => ([1:2] $rose(frame) ; Srose(irdy)) );

sequence data_end rulel firstevaluatesdata end at every clock tick to test if its valueis true. If
the value is false, then that particular attempt to evaluate data_end rulel is considered a match with a
sequence true of length one.. Otherwise, the following sequence expression is evaluated. The sequence expres-
sion:

[1:2] Srose(frame) ; S$rose(irdy)

Specifies looking for the rising edge of £rame within two clock ticks in the future. After frame toggles
high, irdy must also toggle high after one clock tick. This is illustrated in Figure 16-12. Seguence
data_end is acknowledged at clock tick 6. Next, frame toggles high at clock tick 7. Since this falls within
the timing constraint imposed by [1:21], it satisfies the sequence and continues to monitor further. At clock
tick 8, irdy isevaluated. Signal irdy transitionsto high at clock tick 8, satisfying the sequence specification
completely for the attempt that began at clock tick 6.
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Figure 16-12—Conditional Sequences

Generally, assertions are associated with preconditions so that the checking is performed only under certain
specified conditions. As seen from the previous example, the => operator provides this capability to specify
preconditions with sequences that must be satisfied before continuing to match those sequences. Let us modify
the above example to see the effect on the results of the assertion by removing the precondition for the
sequence. Thisis shown below and illustrated in Figure 16-13.

sequence @ (posedge mclk) data_end rule2 = ( ([1:2] Srose frame) ; S$rose irdy );

mclk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

data_phase

irdy

trdy (high)

stop

frame

]
|
]
|
]
|
|
|
|
data_end |

data_end_ruIeZv v v v;[lzﬂ::"f ‘::A V V V V V v

Ll — — L2

A

Figure 16-13—Results without the Condition

The sequence is evaluated at every clock tick. For the evaluation at clock tick 1, the rising edge of signal
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frame does not occur at clock tick 1 or 2, so the evaluation fails and the result for the sequence is a failed
match at clock tick 1. Similarly, thereisafailure at clock ticks 2, 3, and 4. For attempts starting at clock ticks 5
and 6, the rising edge of signal £rame at clock tick 7 allows checking further. At clock tick 8, the sequences
complete according to the specification, resulting in a match for attempts starting at 5 and 6. All later attempts
to match the sequencefail because rose frame doesnot occur again. That also means that there is no match
a5, 6and?7.

As one can see from Figure 16-13, removing the precondition of checking event data end from the asser-
tion causes failures that are not relevant to the verification objective. It becomes important from the validation
standpoint to determine these preconditions and use them in the assertion to filter out inappropriate or extrane-
ous situations.

Multi-way conditions are expressed by disjunction, using the or operator asillustrated by the example below.

sequence s(len) = ((!trans * [1l:inf] ;trans) * [len]);
sequence word trans =
(((lp == BLK1l)=> s(BLK1l)) or
((lp == BLK2)=> s(BLK2)) or
((lp == BLK3)=> s(BLK3)) or
(((1lp!=BLK1) | | (1p!=BLK2) | | (1p!=BLK3))=> s(BLK_DEFAULT))) ;

16.6.8 Sequential implication (sequences based on sequential conditions)

A sequential implication can aso be specified using the => clause from the preceding section. The syntax is:

sequence_expr::=
sequence_expr_cond => sequence_exprl

Syntax 16-12—Sequential implication syntax

sequence_expr_cond can be any sequence expression.
Thisfeature is useful for chaining sequential implications.

The following points should be noted for sequential implication.
— sequence_expr_cond can result in multiple successful sequences.
— If no sequence succeeds, implication succeeds vacuously by returning a true sequence of length one.

— For each successful match of sequence_expr_cond, sequence_exprl is separately evaluated, beginning at
the end point of the match.That is, the end point of matching sequence from sequence_expr_cond coin-
cides with start point of sequence_exprl

— Al matches of sequence_expr_cond must also match sequence_exprl.
For example:
(a;bj;c) => (d;e)

If the sequence (a;b;c) matches then the sequence (d;e) must also match. On the other hand, if the sequence
(a;b;c) does not match, then the result is true.

Consider now:

(a;[1:3] b;c) => (d;e)
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In the above example, all matches of (a;[1:3] b; ¢) must match (d;e). If there are no matches of (g][1:3] b; c),
then there is a vacuous match for the entire expression, resulting in true.

The following example illustrates chaining of sequential implications.

sequence next event(e) = (le * [1:inf] ; e);
property plé =
((write_en & data valid)=>
((next event (write en&&(retire address[0:4]==addr)))=>
([3:8] write en && !data valid &&(write address[0:4]==addr))));

16.6.9 Conditions over sequences

Sequences of events often occur under the assumptions of some conditions for correct behavior. A logical con-
dition must hold true, for instance, while processing a transaction. Also frequently, occurrence of certain
eventsis prohibited while processing a transaction. Such situations can be expressed directly using the follow-
ing construct:

sequence_expr::=
throughout boolean_expr within sequence_expr

Notice the equence is corrected to sequence

Syntax 16-13—throughout construct syntax

boolean expr is an expression which must evaluate true at every clock tick while monitoring
sequence_expr. If a sequence for sequence expr starts at time t1 and ends at time t2, then
expression must hold true from timetl to t2. If either the sequence expression does not match or the bool-
ean expression becomes false while the sequence is being evaluated, the composite sequence does not match
and a property stated over this composite sequence would declare afailure.

The throughout construct is an abbreviation for writing:
(boolean expr) *[0:inf] intersect sequence expr

Consider the example illustrated in Figure 16-14. If an additional constraint were placed on the expression as
shown below, then the checker burst rule would fail at clock tick 9.

sequence @ (posedge mclk) burstl =
( (fell burst mode)=>
(!burst mode) throughout ([2] ((trdy==0)&&(irdy==0)) * [7]) );
property burst rulel = (burstl) ;
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Figure 16-14—Match with throughout-within Restriction Fails
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In the above expression, the value of signal burst_mode is required to be low during the sequence (from
clock tick 2 to 11), and is checked at every clock tick during that period. At clock ticks from 2 to 8, signal
burst _mode remains low and matches the expression at those clock ticks. At clock tick 9, signal
burst _mode becomes high, thereby failing to match the expression for burst _rulel.

If signal burst_mode wereto be maintained low until clock tick 11, the expression would result in a match

as shown in Figure 16-15.

mclk 2 3 4 5 6 7 8 9 10 11 12 13 14
burst_mode
irdy !
|
]
trdy ]
|
|
(trdy==0) && |
(irdy==0) , 1 |2 [3 |4 |5 |6 |7
]
]
burst_rulel i It i el it iy M ’A
Figure 16-15—Match with throughout-within Restriction Succeeds
16.6.10 Sequence occurrence within another sequence
The containment of a sequence expression within another sequenceis expressed as follows:
sequence_expr ::=
sequence_exprl within sequence_expr2
Syntax 16-14—Sequence within another sequence syntax
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Thewithin construct is an abbreviation for writing:
(true ; [0:1nf] (sequence exprl); [0:inf] true) intersect sequence expr2
The sequence sequence_exprl must occur entirely within the sequence sequence expr2.

That issequence exprl must satisfy the following:

— The start point of sequence_exprl must be between the start point and the end point (start and end
point being inclusive) of sequence expr?2.

— Theend point of sequence_exprl must be between the start point and the end point (start and end
point being inclusive) of sequence expr?2.

16.6.11 Detecting and using endpoint of a sequence

There are two ways in which acomplex sequence can be decomposed into simpler sub-expressions.

To use sequence as asub-expression, or a part of the expression is by ssimply referencing its name. The eval-
uation of a sequence expression that references a sequence expression is performed the same way as if the
sequence expression was a lexical part of the expression. In other words, the sequence expression is
“invoked” from the expression whereit is referenced. An example is shown below:

sequence @(rose sysclk) s = (a;b;c),
rule = ((trans)=> (start trans;s;end trans)) ;

Thisis equivaent to:

sequence @(rose sysclk) s = (a;b;c),
rule = ((trans)=> (start trans;a;b;c;end trans)) ;

Any form of syntactic cyclic dependency of the sequence names is disallowed. The example below illustrates
dependency of s1 on s2, and s2 on s1, which creates a cyclic dependecncy.
sequence @(rose sysclk) sl = (x;s2),
s2 = (y;sl);

Another way to usethe sequence expression isto detect its end point in another sequence. The end point of a
seguence is reached whenever there is a match on its expression. The occurrence of the end point can be tested
in any sequence expression by using the operator ended.

boolean _expr_op ::=
ended seq_name

Syntax 16-15—ended operator syntax

ended is a boolean operator. The result of its operation is true or false. When ended is applied in an expres-
sion, it tests whether sequence seq_name has reached the end point at that particular point in time. The result of
ended does not depend upon the starting point of seq_name.

An example is shown below:

sequence @ (posedge sysclk) el = (Srose ready;procl;proc2),
rule = ( (reset)=> (inst;ended el;branch back)) ;

In this example sequence expression el must end successfully one clock tick after inst. If the keyword ended
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wasn't there, sequence expression el must start one clock tick after inst. Notice that the ended operator only
tests for the end point of el, and has no bearing on the starting point of el.

16.7 Declaring boolean expressions

Because sequences are composed of boolean expressions, it is useful to alow boolean expressions to be
declared as objects of typebool.

bool_declaration ::=

bool [range_or_type] named_bool { , named_bool } ;
named_bool ::=

identifier [ (identifier { , identifier } )] = boolean_expression

Syntax 16-16—bool type declaration syntax

The boolean object can then be declared as:
bool bl(a,b) = a && b && c;
and used in a sequence as:

(bl (foo,bar) ;c;d)
(b1(.a(f1), .b(bl));c;d)

Note that, in the boolean expression b1, the formal arguments ‘a and ‘b’ are replaced by the corresponding
actual arguments when the bool is instantiated. Any variables referenced within the bool that are not formal
arguments get resolved via standard rules from the scope in which the bool is instantiated.

A bool expression can be referenced in properties by its name. A hierarchical name can be be used consistent
with the System Verilog naming conventions.

boolean_expression is an extension of the System Verilog expression and defined as below.
boolean_expr_op ::=
expression
| bool_instance
| “true’
| ‘“ended’ seq_name
| value_change functions
| “$past’ ‘(‘ expression|[ ‘," number_of ticks] ‘)’
| ‘$countones’ ‘(* expression ‘)’

Syntax 16-17—boolean_expression syntax

This should also be BNF below

boolean_expr::= System Verilog expresson where an operand can be System Verilog operand or
boolean_expr_op

The bool feature differs from other features of System Verilog, such as the macro or function feature. It pro-
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vides the following capabilites:
— Itisanamed object.
— It can be instantiated with positional or named parameters.
— It may be defined over multiple physical lines (without requiring line continuation character).

— Boolean expression allows all sequence related boolean operations such as ended, $past and $rose.

16.8 Manipulating data in a sequence

The use of System Verilog variables implies that only one copy exists. Therefore, if data values need to be
checked in pipelined designs, then for each data entering the pipeline we may need a separate variable to store
the predicted output of the pipeline for later comparison when the result actually exits the pipe. We can build
such a storage by using an array of variables arranged in a shift register to mimic the data propagating through
apipeline. However, in more complex situations where the latency of the pipeis variable and out of order, this
construction could become very complex and error prone. In other words, we need variables that are local to
and are used within a particular transaction check which can span an arbitrary interval of time and may overlap
with other transaction checks. Such a variable must thus be dynamically created when needed within an
instance of a sequence and removed when the end of the sequenceis reached.

The dynamic variable creation and destruction can be achieved using the variable declaration at the head of a
sequence:

sequence_expr =
( ({variable_declaration {, variable_declaration}} ) sequence_expr)
variable declaration ::=
type identifier = expression

Syntax 16-18—variable declaration syntax

Thetype of nameis explicitly specified. The value of the expression is sampled at the time of the beginning of
sequence_expr and stored in the dynamically created variable identifier. Inside sequence expr,
the value of the variable remains unchanged for the entire duration of the sequence. Variable identifier
can be used in sequence expr as any other variable. For every attempt, a new instance of variable
identifier iscreated for the sequence expr

For example, assume a pipeline that has a fixed latency of 5 clock cycles. The data enters the pipe on
pipe inwhenvalid in istrueand the value computed by the pipeline appears 5 clock cycles later on the
signal pipe outl. The data as transformed by the pipe is predicted by a function that increments the data.
The following sequence expression verifies this behavior.

sequence e = ( (valid_in) =>
((int x = pipe_in) ([5] (pipe_outl == (x+1))) );

Suppose now that the output of this pipeis chained to another pipe of latency 3 that computes the value as pre-
dicted by dataand pipe val. Thetransfer to the second pipe happens only if the result of thefirst pipe satis-
fies some Boolean variable pipe cont. We can modify and extend the above example as follows:

sequence e two_pipes =
( (valid in) => ((int x = pipe in)
([5] ( pipe outl == (x+1));
(pipe outl==pipe cont)) =>
((int y == x+1)
([3] (pipe_out2==(y+pipe _val)))))));
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The nested variable declaration uses the variable name y which is assigned a value from the enclosing
declared variable x.

Note that, for practical debugging and verification performance reasons, it may be preferable to verify each of
the two pipelines by a separate sequence rather than in one single sequence as in the above example.

If the pipeline supported out-of-order execution in which the outputs can exit with variable latency and in a
different order than the data entered, it is a simple matter to add an 1d to each input data and then check that
data is correct when the id appears on the output. The first example modified to include the 1d on input and
output is as follows:

sequence e with id = ( (valid in) =>((int x = pipe_in, int id = id_in)
([1:inf] ( (id_out == id && valid out)=>
(pipe outl == x+1)))));

In this example, notice the use of two dynamic variables, x and id, assigned in the same declaration by sepa-
rating them by a comma.

16.9 System functions

In addition to accessing values of signals at the time of evaluation of a boolean expression, the past values can
be accessed with the $past function.

$past (expression [, number_of ticks] )

Syntax 16-19—$past function syntax

The argument number_of _ticks specifies the number of clock ticksin the past. If number_of ticksis not spec-
ified, then it defaults to 1. $past returns the sampled value of the expression that was present
number_of _ticks prior to the time of evaluation of $past.

If the specified clock tick in the past is before the start of simulation, the returned value from the $past func-
tionis‘x’.

Another useful function provided for the boolean expression is $countones, to count the number of 1sin abit
Vector expression.

$countones ( expression )

Syntax 16-20—$countones function syntax

The‘x’ and ‘Z' value of abit is not counted towards the number of ones.

16.10 The property definition

A property defines a behavior of the design. A property can be used for verification as an assumption, a
checker or a coverage specification. In order to use the behavior for verification, a verification directive must
be used. A property declaration by itself does not produce any result.
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To declare a property, the property construct is used as shown bel ow.

prop_declaration ::=
property named_prop { , named prop} ;
named_prop ::=
identifier [ (identifier { , identifier } )] = prop_expr
prop_expr ::=
[initial] [accept (expression) ] [never] clocked_sequence
| identifier [( expression _list)]  // identifier must be a property
clocked sequence ::=
[event_control] sequence_expr

Syntax 16-21—property construct syntax

A property declaration is parameterized, like a sequence and bool declaration. When a property isinstan-
tiated, actual arguments can be passed to the property. The property gets expanded with the actual arguments
by replacing the formal arguments with the actual arguments. The semantic checks are performed to ensure
that the expanded property with the actual argumentsis legal.

Theresult of aclocked_sequence for every evaluation attempt is true or false. Thisis accomplished by implic-
itly tranforming sequence_expr to first_match(sequence_expr). That is, as soon as a match of sequence_expr
is determined, the result is considered to be true, and no other matches are required for that evaluation attempt.

The accept clause allows you to specify asynchronous resets. For a particular attempt, if the accept boolean
expression becomes true at any time during the evaluation of the attempt, then the attempt for the property is
considered to be a success.

The never clause states that the expression associated with the property must never evaluate to true. Effec-
tively, it negates the property expression. For each attempt, clocked seguence results in either true of false,
based on whether there is amatch for the sequence. The never clause reverses the result of clocked sequence.
It should be noted that there is no complementation or any form of negation for the sequence itself.

The initial clause states that the property should only be evaluated on the first clock tick. Thereafter, there
should be no evaluation of the property. Without the initial clause the property is evaluated for every clock
tick.

This alows for the following examples:

property rulel
property rule2

@(posedge clk) ( (a) =>(bj;c;d));
(accept = foo) never @(clkev) ((a)=>(b;c;d));

A property can be referred to by directives by referencing its name. A hierarchical name can be be used consis-
tent with the System Verilog naming conventions.

A property by default is not evaluated for checking the expression. A verification directive states the verifica-
tion function to be performed on the property. The directive can be one of the following:

— assert to specify the property as a checker to ensure that the property holds for the design

— cover to monitor the property evaluation for coverage
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property_directive ::=
[identifier : ] assert prop_expr action _block
| [identifier : ] cover prop_expr statement_or_null

Syntax 16-22—Verification directive syntax

The assert directiveis used to enforce a property as a checker. When the property for the assert directiveis
evaluated to be true, the pass statements of the action block are executed. Otherwise, the fail statements of the
action block are executed. For example,

property abc(a,b,c) = accept(a==2) never @clk (b;c);
env_prop: assert abc(rst,inl,in2) pass_stat else fail stat;

When no action is needed, anull statement (i.e. ;) is specified. The default for else_stat is$error. If else stat is
specified, it overrides the default action.

To monitor sequences and other behavioral aspects of the design for coverage, the same syntax is used with the
cover directive. Thetools can gather information about the evaluation and report the results at the end of sim-
ulation. When the property for the cover directive is successful, the pass statements may specify a coverage
function, such as monitoring all paths for a sequences.
A directive can directly specify an expression, without first declaring it as a property. For example,

input prop: assert accept(inl=2) never @clk (f;g);

cover item: cover @clk2 (m;n) pass_stat;

In the above example, two properties are specified, one with the assert clause and the other with the cover
clause.

Please note that a property specification can be just a bool or a sequence.

A directive can be referenced by its optional name. A hierarchical name can be be used consistent with the
System Verilog naming conventions. When aname is not provided, atool shall assign a name to the directive.

16.10.1 Declaring properties outside of procedural code

A property related statement can be used directly within a module as a module_item or within interface as an
interface_item.

A property related statement is one of the following:
— bool definition

— sequence definition

— property definition

— property directive

— template instantiation

— template declaration

— property directive

For example:
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module top (input bit clk);
reg a,b,c;
property rule3 = @(posedge clk) (if(a) (b;c));
endmodule
rule3l isaproperty declared in module top.

16.10.2 Embedding properties in procedural code

A property can also be embedded in a procedural block. A property related statement allowed in a procedural
block is one of the following:

— bool definition

— sequence definition
— property definition
— property directive
— template instantiation

— property directive
A property related statement can be declared or instantiated directly in a procedural block asin:

always @(posedge clk) begin
property rule = (a;b;c);
<statementss>;
<statements>;
end

A procedural property is equivalent to a declarative property in syntax and semantics. Two assumptions are
made from the procedural context: clock from the event control of an always block, and the enabling condi-
tions.

A clock for the property related statement is assumed if it is placed in an aways block with the event control of
the form @ (posedge expr) or @ (negedge expr). In such cases, the event control expression is
assumed to be the clock.

For example:

always @(posedge mclk)begin

g <= di;
property rl = (g != d);
end

The above property rl can be written outside the always block with identical semantics as:

always @ (posedge mclk)begin
q <= dil;
end
property rl = @(posedge mclk) (g != 4);

If the clock is explicitly specified with a property, then it overrides the assumed clock, as shown below:
always @ (posedge mclk)begin

g <= di;
property r2 = @(posedge sclk) (g != 4);
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end

In the above example, (posedge sclk) isthe clock for property r2.

SystemVerilog 3.1/draft 3

Another possible assumption made from the context is the enabling condition for a property. Such derivation
takes place when a property is placed in an if-else block or a case block.The enabling condition assumed from

the context is used as the antecedent of the property.

always @ (posedge mclk)begin
if (a) begin
g <= dl;
property r2 = @(posedge sclk) (g != 4);
end
end

The above example is equivalent to:

always @ (posedge mclk)begin
if (a) begin

g <= dl;
end
end
property r2 = @(posedge sclk) (a => (g != d));

Similarly, enabling condition is also derived from case statements.

always @(posedge mclk)begin
case (a)begin
l:begin g <= di;
property r2 = @(posedge sclk) (g != d);
end
default: gl <= di;
endcase
end

The above example is equivalent to:
always @(posedge mclk)begin

case (a)begin
l:begin g <= di;

end
default: gl <= di;
endcase
property r2 = @(posedge sclk) (a==1) => (g != d);

end
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| 16.11 Grouping assertions as a library

The syntax for library groupings is as follows:

template_declaration ::=

template template_identifier [( template formal_list)] ;

{ template_item_declaration }

endtemplate[ : template_identifier ]
template_formal_list ::=

task_formal_arg{ , task_formal_arg}
task_formal_arg ::=

[data_type] formal_identifier [= boolean_expr | sequence_expr | event_expr | string]
template_item_declaration ::=

property_decl

| property_directive

| seq_decl

| bool_decl

| clocking_decl

Syntax 16-23—Library groupings syntax

This sub-section describes how to group statements to construct alibrary of properties and expressions. Such a
group is called template Which is given a name and can be instantiated with parameters. When instantiated
with parameters, the parameters provide the binding to the actual design objects or other definitions specified
elsewhere in the description.

A formal parameter is used to replace a name in the template body. The formal parameter can have an optional
specification of type. data type refersto the System Verilog data types.

The default values for aformal parameter can be specified by using an equal sign with the |eft-hand side of the
equal sign asthe formal parameter name and right-hand side as the default value. For example,

template hold(exp, min = 0, max = 15, clk);
sequence @ (posedge clk) ova_ e hold = ( past (exp)==exp)* [min:max] );

endtemplate

The body of the template may contain:
— property, sequence and bool declarations
— directives

— clock domain declarations
Note: A clock domain declarion using clocking_decl has been described in elsewhere in System Verilog LRM.

| Need acrossreference above

A template isinstantiated with the following syntax:

template _instantiation ::=
template_identifier [instance_name] [(list_of port_connections)];
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Syntax 16-24—template instantiation syntax

The actual parameters can be given as an ordered list, as a named list. In an ordered list, the parameters are
listed in the same order as in the template definition.
For example, the hold template defined above can be instantiated with:

hold ordered(counter, 2, 5, rose clk);
Or it can be instantiated with:

hold named(.exp (counter), .min(2), .max(5), .clk(rose clk));
The template instance name is optional. When the name is not specified, the nameis the global sequence num-
ber of the instance in the form seq_number. For example, the first template instance compiled would be
assigned the nametil.
Astemplate instances are expanded, the names of declarations in the template body are constructed by append-
ing the definition name with the template instance name and a dot character. Such an expansion of a name

uniquely identifiesits definition. The following example illustrates the name expansion of definitions.

template range() ;

bool ¢l = ( enable );
sequence @ (posedge clk2) crange en = ( ((cl) => (minval <= expr) );
range chk: assert (crange en) ;

endtemplate

range t1();

range t2();

property term check = ((tl.cl) => (p_low ; p end));

The definitions c1, crange _en, and range _chk are expanded as shown below.

bool tl.cl = ( enable );

sequence @(rose clk2) tl.crange en = ( (tl.cl) => (minval <= expr) );
tl range chk: assert (tl.crange en) ;

bool t2.cl = ( enable );

@ (rose clk2) sequence t2.crange en = ( (t2.cl) => (minval <= expr) );
t2.range chk: assert (t2.crange en);

property term chk = ((tl.cl) => (p_low ; p _end;))

Using this naming scheme, an expression defined within atemplate can be referenced outside the template via
astandard hierarchical reference.

The actual parameters may not resolve al signals specified within the template. When the template is instanti-
ated, the parameters and the unresolved signals get bound to the design objects in the instantiating scope.

If aforma parameter is specified with a default value in the template definition, then the corresponding actual
parameter may be optionally omitted. In the example below, the forma parameter max is not supplied when
the template isinstantiated. The default value of 15 for max declared in the template is used.

template hold(exp, min = 0, max = 15, clk);

sequence @(rose clk) e hold = ( ($past(exp) == exp) * [min:max] );
endtemplate
hold hold instance(s, 5, , rose clk);

If the default parameter value is not declared in the template definition, omission of the corresponding actual
parameter value in the template instantiation will result in an error.
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16.12 Binding properties to scopes or instances

To facilitate verification separate from the design, it is possible to specify properties and bind them to specific
modules or instances Following are the goals of providing this feature.

— It alows verification engineers to verify with minimum changes to the design codeffiles.
— It allows a convenient mechanism to attach verification |P to a module or an instance.

— No semantic changes to the assertions are introduced due to this feature. It is equivaent to writing proper-
tieswith XMRs.

— It disallows design code to be attached along with the property.

With this feature, a user can bind a program, where the program contains a group of properties, to amodule or
an instance.

The syntax of the bind construct is.

bind_directive ::=

bind module_instance_name program instantiation ;
module_instance_name ::=

name of amodule or instance
program instantiation ::=

program_name program_instance_name ( port_arguments)

Syntax 16-25—bind construct syntax

A program contains non-design code (either testbench or properties) and executes in the verification phase
(The details of the program construct are being discussed in sv-ec committee)

Example of binding to a module:

bind cpu fpu props fpu rules 1(a,b,c);

— cpuisthe name of module.
— fpu_propsisthe name of the program containing properties fpu_rules 1 isthe program instance name.
— Ports (a, b,c) get bound to signals (a,b,c) of module cpu .

— Every instance of cpu gets the properties.

Example of binding to a specific instance of amodule;
bind cpul fpu props fpu rules 1(a,b,c);
— cpulisthe name of module instance (cpul is an instance of module of module cpu)
— fpu_propsisthe name of the program containing properties.
— fpu_rules_1 isthe program instance name.
— Ports (a, b,c) get bound to signals (a,b,c) of module instance cpul.

— Only cpul instance of cpu gets the properties.

By binding a program to amodule or an instance, the program becomes part of the bound object. The names of
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assertion related declarations can be referenced using the System Verilog hierarchical naming conventions.
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Section 17
Hierarchy

17.1 Introduction (informative)

Verilog has a simple organization. All data, functions and tasks are in modules except for system tasks and
functions, which are global, and may be defined in the PLI. A Verilog module can contain instances of other
modules. Any uninstantiated moduleis at the top level. This does not apply to libraries, which therefore have a
different status and a different procedure for analyzing them. A hierarchical name can be used to specify any
named object from anywhere in the instance hierarchy. The module hierarchy is often arbitrary and a lot of
effort is spent in maintaining port lists.

In Verilog, only net, reg, integer and time data types can be passed through module ports.
SystemVerilog adds many enhancements for representing design hierarchy:

— A global declaration space, visibleto all modules at al levels of hierarchy

— Nested module declarations, to aid in representing self-contained models and libraries

— Relaxed rules on port declarations

— Simplified named port connections, using . name

— Implicit port connections, using .*

— Time unit and time precision specifications bound to modules

— A concept of interfaces to bundle connections between modules (presented in section 18)

An important enhancement in SystemVerilog is the ability to pass any data type through module ports, includ-
ing nets, and all variable typesincluding reals, arrays, and structures.

17.2 The $root top level

In SystemVerilog thereisatop level called $root, which is the whole source text. This allows declarations out-
side any named modules or interfaces, unlike Verilog.

SystemVerilog requires an elaboration phase. All modules and interfaces must be parsed before elaboration.
The order of elaboration shall be: First, look for explicit instantiations in $root. If none, then look for implicit
instantiations (i.e. uninstantiated modules). Next, traverse non-generate instantiations depth-first, in source
order. Finally, execute generate blocks depth-first, in source order.

The source text can include the declaration and use of modules and interfaces. Modules can include the decla-
ration and use of other modules and interfaces. Interfaces can include the declaration and use of other inter-
faces. A module or interface need not be declared beforeit is used in text order.

A module can be explicitly instantiated in the $root top-level. All uninstantiated modules become implicitly
instantiated within the top level, which is compatible with Verilog.

The following paragraphs compare the $root top level and modules.

The $root top level:

— hasasingle occurrence

— can be distributed across any number of files

— variable and net definitions are in a global name space and can be accessed throughout the hierarchy

— task and function definitions are in a global name space and can be accessed throughout the hierarchy
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— shall not contain initial Or always procedures

— shalt can contain procedural statements, which will be executed onetime, asif inan initial procedure

Modules:

— can have any number of module definitions

— can have any number of module instances, which create new levels of hierarchy

— can be distributed across any number of files, and can be defined in any order

— variable and net definitions are in the modul e instance name space and are local to that scope
— task and function definitions are in the modul e instance name space and are local to that scope
— can contain any number of initial and always procedures

— shall not contain procedural statements that are not within an initial procedure, always procedure,
task, or function

When an identifier is referenced within a scope, SystemVerilog follows the Verilog name search rules, and
then searches in the $root global name space. An identifier in the global name space can be explicitly selected
by pre-pending $root. totheidentifier name. For example, aglobal variable named system reset can be
explicitly referenced from any level of hierarchy using $Sroot . system reset.

The $root space can be used to model abstract functionality without modules. The following example illus-
trates using the $root space with just declarations, statements and functions.

typedef int myint;

function void main () ;

myint i,Jj,k;

$display ("entering main...");

left (k) ;

right (i,3,k);

$display ("ending... i=%0d, j=%0d, k=%o0d4d", i, j, k);
endfunction

function void left (output myint k) ;
k = 34;
Sdisplay ("entering left");
endfunction

function void right (output myint i, j, input myint k);
$display ("entering right") ;

i=k/2;

j = k+i;
endfunction
main() ;
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17.3 Module declarations

module _declaration ::= [/l from Annex A.1.3
{ attribute_instance } module_keyword module_identifier [ parameter_port_list ]
[ list_of_ports] ; [unit] [precision] { module_item }
endmodule
| { attribute_instance } module_keyword module_identifier [ parameter_port_list ]
[ list_of port_declarations] ; [unit] [precision] { non_port_ module item }

endmodule
module_keyword ::= module | macromodule /I from Annex A.1.3
timeunits_declaration ::= // from Annex A.1.3

timeunit time _litera ;

| timeprecision time_literal ;

| timeunit time_literd ;
timeprecision time_literal ;

| timeprecision time_literal ;
timeunit time _litera ;

module_or_generate item_declaration ;;= /l from Annex A.1.5

net_declaration

| data_declaration

| event_declaration

| genvar_declaration

| task declaration

| function_declaration

module_item ::= /I from Annex A.1.5
port_declaration ;
| non_port_module_item

non_port_module item ::= [l from Annex A.1.5
{ attribute_instance } generated module_instantiation
| { attribute instance } local_parameter declaration
| { attribute_instance} module_or_generate item
| { attribute_instance} parameter_declaration ;
| { attribute instance} specify_block
| { attribute instance } specparam_declaration
| module_declaration

module_or_generate item ::= [/l from Annex A.1.5
{ attribute_instance } parameter_override
| { attribute_instance} continuous_assign
| { attribute_instance} gate instantiation
| { attribute_instance} udp_instantiation
| { attribute_instance’} module_instantiation
| { attribute_instance} initial_construct
| { attribute_instance } aways construct
| { attribute_instance} combinationa _statement
| { attribute_instance} latch_statement
| { attribute_instance} ff_statement
| module_common_item

module_common_item ::= /[ from Annex A.1.5
{ attribute_instance } module_or_generate item_declaration
| { attribute instance} interface instantiation

Syntax 17-1—Module declaration syntax (excerpt from Annex A)
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In Verilog, a module must be declared apart from other modules, and can only be instantiated within another
module. A module declaration may appear after it isinstantiated in the source text.

SystemVerilog adds the capability to nest module declarations, and to instantiate modules in the $root top-level
space, outside of other modules.

module ml(...); ... endmodule
module m2(...); ... endmodule

module m3(...);

ml i1(...); // instantiates the local ml declared below
m2 i4(...); // instantiates m2 - no local declaration
module ml(...); ... endmodule // nested module declaration,
// ml module name is in m3’'s name space
endmodule
ml i2(...); // module instance in the Sroot space,

// instantiates the module ml that is not nested in another module

17.4 Nested modules

A module can be declared within another module. The outer name space is visible to the inner module, so that
any name declared there can be used, unless hidden by a local hame, provided the module is declared and
instantiated in the same scope.

One purpose of nesting modules is to show the logical partitioning of a module without using ports. Names
that are global are in the outermost scope, and names that are only used locally can be limited to local modules.

// This example shows a D-type flip-flop made of NAND gates
module dff flat (input d, ck, pr, clr, output g, ng);
wire gl, ngl, g2, ng2;

nand glb (ngl, d, clr, ql);
nand gla (gl, ck, ng2, ngl);

nand g2b (ng2, ck, clr, g2);
nand g2a (g2, ngl, pr, ng2);

nand g3a (g, ng2, clr, ng);
nand g3b (ng, gl, pr, q);
endmodule

// This example shows how the flip-flop can be structured into 3 RS latches.
module dff nested(input d4d, ck, pr, clr, output g, ng);
wire gl, ngl, ng2;

module ff1;
nand glb (ngl, d, clr, ql);
nand gla (gl, ck, ng2, nqgl);
endmodule
£f£f1 i1;

module ff2;
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wire g2; // This wire can be encapsulated in ff2
nand g2b (ng2, ck, clr, g2);
nand g2a (g2, ngl, pr, ng2);

endmodule

ff2 i2;

module f£3;
nand g3a (g, ng2, clr, ng);
nand g3b (ng, gl, pr, q);
endmodule
f£f3 i3;
endmodule

The nested module declarations can also be used to create alibrary of modulesthat islocal to part of adesign.

module partl(....);
module and2 (input a; input b; output z);

endmodule
module or2 (input a; input b; output z);
endmodule
and2 ul(....), u2(....), u3(....);
endmodule
This alows the same module name, e.g. and2, to occur in different parts of the design and represent different
modules. Note that an alternative way of handling this problem is to use configurations.

17.5 Port declarations

inout_declaration ::=inout [ port_type] list_of_port_identifiers [/l from Annex A.2.1.2
input_declaration ::= input [ port_type] list_of_port_identifiers /I from Annex A.2.1.2
output_declaration ::= /I from Annex A.2.1.2
output [ port_type] list_of port_identifiers
| output data type list_of variable port_identifiers
interface_port_declaration ::= /l from Annex A.2.1.2
interfacelist_of interface_identifiers
| interface . modport_identifier list_of interface identifiers
| identifier list_of_interface identifiers
| identifier . modport_identifier list_of interface identifiers
port_type ::= /I from Annex A.2.2.1
data type{ packed dimension}
| net_type[ signing ] { packed_dimension }
| trireg [ signing] { packed dimension}

| event
| [ signing ] { packed dimension} range
signing ::=[ signed ] | [ unsigned ] /l from Annex A.2.2.1

Syntax 17-2—Port declaration syntax (excerpt from Annex A)
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With SystemVerilog, a port can be a declaration of a net, an interface, an event, or a variable of any type,
including an array, astructure or a union.

typedef struct {

bit isfloat;

union { int i; shortreal f; } n;
} tagged; // named structure

module mhl (input int inl, input shortreal in2, output tagged out) ;

endmodule
For thefirst port, if neither atype nor adirection is specified, then it shall be assumed to be a member of a port
list, and any port direction or type declarations must be declared after the port list. Thisis compatible with the
Verilog-1995 syntax. If the first port type but no direction is specified, then the port direction shall default to

inout. If thefirst port direction but no type is specified, then the port type shall default to wire. This default
type can be changed using the *default nettype compiler directive, asin Verilog.

// Any declarations must follow the port list, because first port does not
// have either a direction or type specified; Port directions default to inout
module mh4 (x, Vy);

int x;

char vy;

endﬁééule
For subsequent portsin the port lit, if the type and direction are omitted, then both are inherited from the pre-
vious port. If only the direction is omitted, then it is inherited from the previous port. If only the type is omit-
ted, it shall default to wire. This default type can be changed using the *default nettype compiler
directive, asin Verilog.

// second port inherits its direction and type from previous port
module mh3 (input char a, b);

endmodule
A software tool can use the port direction to check against writing to an input port or not writing to an output

port.

Ports which are of a net type can have multiple drivers, which are resolved according to the net’s resolution
function. A driver can be an output port of an instantiation, or a continuous assignment.

If the port is of type 1ogic or any other variable data type, then the port has the value of the last assignment to
it. If the port is an inout, then these assignments can beinside or outside the module. If the port isan output,

then these assignments shall only be inside the module. This provides away to model a port which is meant to
beasingledriver.

17.6 Time unit and precision
Thetime unit can be set by the timeunit keyword to atime which must be a power of 10 units. For example:

timeunit 100ps;

The time unit is determined as follows:
1) If atimeunit has been specified in the current module, then the time unit is set to modul€’s time units.

2) Elsg, if the module definition is nested, then the time unit is inherited from the enclosing module.
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3) Elsg if a‘timescale directive has been specified, then the time unit is set to the units of last ‘timescale
directive.

4) Else, if the $root top level has atime unit, then the time unit set to the time units of the root module.
5) Else, the simulator’s default time units are used.
The simulator’s default time units follow the rules of Verilog.
Thetime precision is set by the timeprecision keyword to atime which must be a power of 10 units e.g.
timeprecision 100fs;

If the timeprecision is not specified, then the precision is determined following the same precedence as
with time units.

It isan error to set a precision larger than the current unit.

The timeunit and timeprecision keywords shall precede any other itemin the top level, module, or inter-
face, because the other items can contain delays and therefore can be dependent on the time unit.

17.7 Module instances

module_instantiation ::= /l from Annex A.4.1.1
module_identifier [ parameter_value_assignment ] module_instance{ , module_instance} ;

parameter_value assignment ::=# ( list_of parameter_assignments)
list_of parameter_assignments ::=
ordered_parameter_assignment { , ordered_parameter_assignment }
| named_parameter_assignment { , named_parameter_assignment }
ordered_parameter_assignment ::= expression | data_type
named_parameter_assignment ::=
. parameter_identifier ([ expression])
| . parameter_identifier ([ data_type])
module_instance ::= name_of_instance ([ list_of port_connections] )
name_of_instance ::= module_instance_identifier { range}
list_of port_connections ::=
ordered_port_connection { , ordered port_connection }

| dot_named port_connection { , dot_named_port_connection }
| { named_port_connection, } dot_star_port_connection{ , named_port_connection }

ordered_port_connection ::= { attribute_instance} [ expression ]
named_port_connection ::={ attribute_instance} .port_identifier ( [ expression] )
dot_named_port_connection ::=
{ attribute_instance } .port_identifier
| named_port_connection
dot_star_port_connection ::={ attribute_instance} .*

Syntax 17-3—Module instance syntax (excerpt from Annex A)

A module can be used (instantiated) in two ways, hierarchical or top level. Hierarchical instantiation allows
more than one instance of the same type. The module hame can be a module previously declared or one
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declared later. Actual parameters can be named or ordered. Port connections can be named, ordered or implic-
itly connected. They can be nets, variables, or other kinds of interfaces, events, or expressions. See below for
the connection rules.

Consider an ALU accumulator (alu_accum) example module that includes instantiations of an ALU mod-
ule, an accumulator register (accum) module and a sign-extension (xtend) module. The module headers for
the three instantiated modules are shown in the following example code.

module alu (
output reg [7:0] alu out,
output reg zero,
input [7:0] ain, bin,
input [2:0] opcode) ;
// RTL code for the alu module
endmodule

module accum (

output reg [7:0] dataout,

input [7:0] datain,

input clk, rst n);

// RTL code for the accumulator module
endmodule

module xtend (

output reg [7:0] dout,

input din,

input clk, rst n);

// RTL code for the sign-extension module
endmodule

17.7.1 Instantiation using positional port connections

Verilog has always permitted instantiation of modules using positional port connections, as shown in the
alu_accuml module example, below.

module alu accuml (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst n);
wire [7:0] alu out;

alu alu (alu out, , ain, bin, opcode) ;

accum accum (dataout([7:0], alu out, clk, rst_n);

xtend xtend (dataout[15:8], alu out[7], clk, rst n);
endmodule

As long as the connecting variables are ordered correctly and are the same size as the instance-ports that they
are connected to, there will be no warnings and the simulation will work as expected.

17.7.2 Instantiation using named port connections

Verilog has aways permitted instantiation of modules using named port connections as shown in the
alu_accum2 module example.

module alu accum2 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,

Copyright 2003 Accellera. All rights reserved. 173



Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

input clk, rst n);
wire [7:0] alu out;

alu alu (.alu_out(alu out), .zero(),
.ain(ain), .bin(bin), .opcode (opcode)) ;
accum accum (.dataout (dataout[7:0]), .datain(alu out),
.clk(clk), .rst n(rst_n));
xtend xtend (.dout (dataout[15:8]), .din(alu out([7]),
.clk(clk), .rst n(rst n));
endmodule

Named port connections do not have to be ordered the same as the ports of the instantiated module. The vari-
ables connected to the instance ports must be the same size or a port-size mismatch warning will be reported.

17.7.3 Instantiation using implicit .name port connections

SystemVerilog adds the capability to implicitly instantiate ports using a .name syntax if the instance-port name
and size match the connecting variable-port name and size. This enhancement eliminates the requirement to
list aport name twice when the port name and signal name are the same, while still listing all of the ports of the
instantiated module for documentation purposes.

Inthefollowing alu_accum3 example, al of the ports of the instantiated alu module match the names of the
variables connected to the ports, except for the unconnected zero port, which is listed using a named port con-
nection, showing that the port is unconnected. Implicit .name port connections are made for all name and size
matching connections on the instantiated module.

In the same alu_accum3 example, the accum module has an 8-bit port called dataout that is connected
to a 16-bit bus called dataout. Because the interna and external sizes of dataout do not match, the port
must be connected by name, showing which bits of the 16-bit bus are connected to the 8-bit port. Thedatain
port on the accum is connected to a bus by a different name (alu_out), so this port is also connected by
name. The clk and rst_n ports are connected using implicit .name port connections. Also in the same
alu_accum3 example, the xtend module has an 8-bit output port called dout and a 1- bit input port called
din. Since neither of these port names match the names (or sizes) of the connecting variables, both are con-
nected by name. The c1k and rst_n ports are connected using implicit .name port connections.

module alu accum3 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst n);
wire [7:0] alu out;

alu alu (.alu out, .zero(), .ain, .bin, .opcode);

accum accum (.dataout (dataout([7:0]), .datain(alu out), .clk, .rst n);

xtend xtend (.dout (dataout[15:8]), .din(alu out[7]), .clk, .rst n);
endmodule

Implicit .name port connections do not have to be ordered the same as the ports of the instantiated module.

The following rules apply to implicit .name port connections:

— For animplicit .name port connection to be legal, the connecting variable name must match the port name
of the instantiated module.

— For animplicit .name port connection to be legal, the connecting variable size must match the port size of
the instantiated module.

— For animplicit .name port connection to be legal, the connecting variable data type must be compatible to
the port data type of the instantiated module. See section 17.7.5 for a description of compatible data types
for implicit port connections.
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— Implicit .name port connections cannot be used in the same instantiation with positional port connections.
— Implicit .name port connections may be used in the same instantiation with named port connections.
— Implicit .name port connections cannot be used in the same instantiation with implicit .* port connections.

— The order of theimplicit .name port connections does not have to match the port-order of the instantiated
module.

— All connecting variables must be explicitly declared, either as a port in the parent module (following the
rules of Verilog-2001) or as an explicit net or variable of one or more hits.

17.7.4 Instantiation using implicit .* port connections

SystemVerilog adds the capability to implicitly instantiate ports using a .* syntax for al ports where the
instance-port name and size match the connecting variable-port name and size. This enhancement eliminates
the requirement to list any port where the name and size of the connecting variable match the name and size of
the instance port. Thisimplicit port connection styleis used to indicate that al port names and sizes match the
connections where emphasisis placed only on the exception ports. The implicit . * port connection syntax can
greatly facilitate rapid block-level testbench generation where al of the testbench variables are chosen to
match the instantiated module port names and sizes.

Inthefollowing alu_ accum4 example, al of the ports of the instantiated alu module match the names of the
variables connected to the ports, except for the unconnected zero port, which is listed using a named port con-
nection, showing that the port is unconnected. The implicit . * port connection syntax connects al other ports
on the instantiated module.

In the same alu_accum4 example, the accum module has an 8-bit port called dataout that is connected
to a 16-bit bus called dataout. Because the interna and external sizes of dataout do not match, the port
must be connected by name, showing which bits of the 16-bit bus are connected to the 8-bit port. The datain
port on the accum is connected to a bus by a different name (alu_out), so this port is also connected by
name. The clk and rst_n ports are connected using implicit .* port connections. Also in the same
alu_accum4 example, the xtend module has an 8-bit output port called dout and a 1- bit input port called
din. Since neither of these port names match the names (or sizes) of the connecting variables, both are con-
nected by name. The c1k and rst_n ports are connected using implicit . * port connections.

module alu accumé4 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst n);
wire [7:0] alu out;

alu alu (.*, .zero());
accum accum (.*, .dataout (dataout[7:0]), .datain(alu out)) ;
xtend xtend (.*, .dout (dataout[15:8]), .din(alu out[7]));

endmodule

The following rules apply to implicit . * port connections:

— For animplicit . * port connection to belegal, all implicitly connected ports must have a connecting vari-
able name to match the port name of the instantiated module.

— For animplicit . * port connection to belegal, all implicitly connected ports must have a connecting vari-
able size to match the port size of the instantiated module.

— For animplicit . * port connection to be legal, the connecting variable data type must be compatible to the
port data type of the instantiated module. See section 17.7.5 for a description of compatible data types for
implicit port connections.

— Implicit . * port connections cannot be used in the same instantiation with positional port connections.
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— Implicit . * port connections may be used in the same instantiation with named port connections.
— Implicit . * port connections cannot be used in the same instantiation with implicit .name port connections.

— If implicit . * port connections are used in an instantiation, all unconnected ports must be shown using
named port connections.

— When theimplicit . * port connection is mixed in the same instantiation with named port connections, the
implicit . * port connection token can be placed anywhere in the port list.

— All connecting variables must be explicitly declared, either as a port in the parent module (following the
rules of Verilog-2001) or as an explicit net or variable of one or more hits.

Modules may be instantiated into the same parent module using any combination of legal positional, named,
implicit .name connected and implicit . * connected instances as shownin alu_accum5 example.

module alu accum5 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst n);
wire [7:0] alu out;

// mixture of named port connections and
// implicit .name port connections
alu alu (.ain(ain), .bin(bin), .alu out, .zero(), .opcode);

// positional port connections
accum accum (dataout([7:0], alu_out, clk, rst_n);

// mixture of named port connections and implicit .* port connections
xtend xtend (.dout (dataout[15:8]), .*, .din(alu out[7]1));
endmodule

17.7.5 Compatible data types for implicit port connections

Implicit port connections are permitted between any two data types that are allowed by SystemVerilog port
connection rules, as long as the SystemVerilog simutaterisnetrequired-terepert standard does not require a

warning about the connection. Any SystemVerilog instantiation that would cause a warning to be issued must
be connected by name if other ports of the instance are instantiated using an implicit port connection style.

If, for example, atop-level module connects asignal named net1 of any data type to an instantiated submod-
uIe with a port also named net 1 of same data type, SystemVerilog wiH+un-this-simdkatien shall run without
warning, because the data types are the same across ports. It is legal to make this type of connection using an
implicit port connection style.

If, for example, atop-level module connects a signal named net2 of type wire to an instantiated submodule

W|th aport also named net2 of type reg, VerHog-sautatorrun-this-simulatien-witheut shall not generate a

warning, because the data types are compatible across ports. It islegal to make this type of connection using an
implicit port connection style.

If, for example, atop-level module connects a signal named net3 of type tril to an instantiated submodule
W|th aport named net 3 of type trio, \eriogsimultaterstssue shall result in awarning and the top-level data
type (tri1) is used during simulation, as described in the IEEE Verilog-2001 Standard. It islegal to make this
type of connection using named port connections but it shall be a syntax error to make this connection using an
implicit port connection style. Any port connection that results in a required warning message shall not be per-
mitted to be instantiated using an implicit port connection style.

A top-level module shall not implicitly connect asignal of any datatype to a port by the same name of another
datatypeif connecting the datatypesisillegal as defined by this SystemVerilog standard.
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17.8 Port connection rules
If aport declaration has a variable data type such as 1ogic, then its direction controls how it can be connected,

asfollows:

— An input can be connected to any expression of a compatible datatype. If unconnected, it hastheinitial
value corresponding to the data type.

— An output can be connected to a variable (or a concatenation) of a compatible data type, and has shared
variable behavior if multiple outputs are connected (last write wins); An output logic can be connected
to anet (to provide aresolution function in the case of multiple drivers).

— An inout can be connected to avariable (or a concatenation) of the same data type.
If aport declaration has awire type (which is the default), or any other net type, then its direction controls
how it can be connected as follows:

— An input can be connected to any expression of a compatible data type. If unconnected, it has the value
''Z.

— An output can be connected to a net type (or a concatenation of net types) or left unconnected, but not to
alogic variable.

— An inout can be connected to a net type (or a concatenation of net types) or left unconnected, but not to a
logic variable.

Note that where the data types differ between the port declaration and connection, aninitial value change event
may be caused at time zero.

If a port declaration has a generic interface type, then it can be connected to an interface of any type. If a
port declaration has a named interface type, then it must be connected to a generic interface or an interface of
the same type.

A mismatch between vector width across a port connection is resolved as follows:
— If the port is a net vector, then the Verilog connection rules for nets are followed.

— If the port isan inout port variable, then a port connection must have the same size and representation on
both sides of the port. It shall be an error if there is a mismatch.

— If the portisan input or an output variable, then the Verilog assignment rules are followed.

For an unpacked array port, the port and the array connected to the port must have the same number of
unpacked dimensions, and each dimension of the port must have the same size as the corresponding dimension
of the array being connected.

If the size and type of the port connection match the size and type of a single instance port, the connection shall
be made to each instance in the array.

If the port connection is an unpacked array, the unpacked array dimensions of each port connection shall be
compared with the dimensions of the instance array. If they match exactly in size, each element of the port con-
nection shall be matched to the port left index to left index, right index to right index. If they do not match it
shall be considered an error.

If the port connection is a packed array, each instance shall get a part-select of the port connection, starting

with all right-hand indices to match the right most part-select, and iterating through the right most dimension
first. Too many or too few bits to connect all the instances shall be considered an error.

17.9 Name spaces

There is one name space hierarchy in SystemVerilog. A type name may be not be the same as an instance
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name. Type names include modules, interfaces, and data types. Instance names include tasks, functions, proce-
dures, variables, constants and labels as well as module and interface instances.

Pre-defined (built-in) names begin with $. For example $root isthe name of thetop level of the hierarchy.
Names areinitially global. A new scopeis defined by:

— amodule or interface

— atask or function

— asequential or parallel block

— astructure or union

Tasks and function definitions cannot be nested within themselves, but can be defined in modules or interfaces.
The declaration in the closest enclosing scope is matched.

17.10 Hierarchical names

Hierarchical names are also caled nested identifiers. They consist of instance names separated by periods,
where an instance name may be an array element.

Sroot.mymodule.ul // absolute name
ul.structl.fieldl // ul must be visible locally or above, including globally
adderl [5] . sum

Nested identifiers can be read (in expressions), written (in assignments or task/function calls) or triggered off
(in event expressions). They can also be used as type, task or function names.
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Section 18
Interfaces

18.1 Introduction (informative)

The communication between blocks of adigital system isacritical areathat can affect everything from ease of
RTL coding, to hardware-software partitioning to performance analysis to bus implementation choices and
protocol checking. The interface construct in SystemVerilog was created specifically to encapsulate the com-
munication between blocks, allowing a smooth migration from abstract system-level design through succes-
sive refinement down to lower-level register-transfer and structural views of the design. By encapsulating the
communication between blocks, the interface construct also facilitates design re-use. Theinclusion of interface
capabilities is one of the major advantages of SystemVerilog.

At itslowest level, an interface is a named bundle of nets or variables. The interface is instantiated in a design
and can be passed through a port as a single item, and the component nets or variables referenced where
needed. A significant proportion of a Verilog design often consists of port lists and port connection lists, which
are just repetitions of names. The ability to replace a group of names by a single name can significantly reduce
the size of a description and improve its maintainability.

Additional power of the interface comes from its ability to encapsulate functionality as well as connectivity,
making an interface, at its highest level, more like a class template. An interface can have parameters, con-
stants, variables, functions and tasks. The types of elementsin an interface can be declared, or the types can be
passed in as parameters. The member variables and functions are referenced relative to the instance name of
the interface as instance.member. Thus, modules that are connected via an interface can simply call the task/
function members of that interface to drive the communication. With the functionality thus encapsulated in the
interface, and isolated from the module, the abstraction level and/or granularity of the communication protocol
can be easily changed by replacing the interface with a different interface containing the same members but
implemented at a different level of abstraction. The modules connected via the interface don’t need to change
at al.

To provide direction information for module ports and to control the use of tasks and functions within particu-
lar modules, themodport construct is provided. Asthe name indicates, the directions are those seen from the
module.

In addition to task/function methods, an interface can also contain processes (i.€. initial Or always blocks)
and continuous assignments, which are useful for system-level medeling modeling and test bench applica-
tions. This allows the interface to include, for example, its own protocol checker that automatically verifies
that all modules connected via the interface conform to the specified protocol. Other applications, such as
functional coverage recording and reporting, protocol checking and assertions can aso be built into the inter-
face.

The methods can be abstract, i.e. defined in one module and called in ancther, using the export and import con-
structs. This could be coded using hierarchical path names, but this would impede re-use because the names
would be design-specific. A better way is to declare the task and function names in the interface, and to use
local hierarchical names from the interface instance for both definition and call. Broadcast communication is
modeled by forkjoin tasks, which can be defined in more than one module and executed concurrently.
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18.2 Interface syntax

modport_declaration ::= modport list_of _modport_identifiers; /I from Annex A.2.9
list_of modport_identifiers::= modport_item { , modport_item }
modport_item ::= modport_identifier ( modport_port { , modport_port } )
modport_port ::= /[ from Annex A.2.9
input [port_type] port_identifier
| output [port_type] port_identifier
| inout [port_type] port_identifier
| interface identifier . port_identifier
| import_export task named_task_proto
| import_export function named_fn_proto
| import_export task_or_function_identifier { , task_or_function_identifier }
import_export ::=import | export
interface port_declaration ::= [/l from Annex A.2.1.2
interfacelist_of interface identifiers
| interface . modport_identifier list_of interface identifiers
| identifier list_of interface identifiers
| identifier . modport_identifier list_of_interface identifiers
interface_or_generate_item ::= /I from Annex A.1.6
{ attribute_instance} continuous _assign
| { attribute_instance} initial_construct
| { attribute_instance} always _construct
| { attribute_instance’} combinational _statement
| { attribute _instance} latch_statement
| { attribute_instance} ff_statement
| { attribute_instance} local_parameter_declaration
| { attribute_instance} parameter_declaration ;
| module_common_item
| { attribute_instance’} modport_declaration

interface item ::= /[ from Annex A.1.6
port_declaration
| non_port_interface item
non_port_interface item :;= /I from Annex A.1.6
{ attribute_instance} generated_interface instantiation
| { attribute _instance} local_parameter_declaration
| { attribute_instance} parameter_declaration ;
| { attribute_instance} specparam_declaration
| interface_or_generate item
| interface_declaration

interface instantiation ::= /I from Annex A.4.1.2
interface _identifier [ parameter_value _assignment ]| module_instance{ , module instance} ;

Syntax 18-1—Interface syntax (excerpt from Annex A)
The interface construct provides a new hierarchical structure. It can contain smaller interfaces and can be
passed through ports.

The aim of interfaces is to encapsulate communication. At the lower level, this means bundling variables and
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wires in interfaces, and bundling ports with directions in modports. The modules can be made generic so that
the interfaces can be changed. The following examples show these features. At a higher level of abstraction,
communication can be done by tasks and functions. Interfaces can include task and function definitions, or just
task and function prototypes with the definition in one module (server/slave) and the call in another (client/
master).
An interface is declared as follows:

interface <identifier>; <interface items> endinterface [: <name> <identifiers]
An interface can be instantiated hierarchically like a module with or without ports. For example:

myinterface #(100) scalarl, vector[9:0];

Interfaces can be declared and instantiated in modules (either flat or hierarchical) but modules can neither be
declared nor instantiated in interfaces.

The simplest use of an interface isto bundle wires, asisillustrated in the examples below.
18.2.1 Example without using interfaces

This example shows a simple bus implemented without interfaces. Note that the logic type can replace wire
and reg if no resolution of multiple driversis needed.

module memMod ( input bit req,
bit clk,
bit start,
logic[1:0] mode,
logic[7:0] addr,
inout logic[7:0] data,
output bit gnt,
bit rdy );
logic avail;
endmodule
module cpuMod (
input bit clk,
bit gnt,
bit rdy,
inout logic [7:0] data,
output bit req,
bit start,

logic[7:0] addr,
logic[1:0] mode ) ;
endmodule
module top;
logic req, gnt, start, rdy; // req is logic not bit here
logic clk = 0;

logic [1:0] mode;
logic [7:0] addr, data;

memMod mem(req, clk, start, mode, addr, data, gnt, rdy);
cpuMod cpu(clk, gnt, rdy, data, req, start, addr, mode) ;

endmodule
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18.2.2 Interface example using a named bundle

The simplest form of a SystemVerilog interface is a bundled collection of variables or nets. When an interface
is used as a port, the variables and netsin it are assumed to be inout ports. The following interface example
shows the basic syntax for defining, instantiating and connecting an interface. Usage of the SystemVerilog
interface capability can significantly reduce the amount of code required to model port connections.

interface simple_bus; // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;
endinterface: simple bus

module memMod (simple bus a, // Use the simple bus interface
input bit clk);
logic avail;
// a.req is the req signal in the ’‘simple bus’ interface
always @ (posedge clk) a.gnt <= a.req & avail;
endmodule
module cpuMod (simple bus b, input bit clk);
endmodule
module top;
logic clk = 0;
simple bus sb_intf(); // Instantiate the interface

memMod mem(sb_intf, clk); // Connect the interface to the module instance
cpuMod cpu(.b(sb _intf), .clk(clk)); // Either by position or by name

endmodule

In the preceding example, if the same identifier, sb_intf, had been used to name the simple_bus interfacein the
memM od and cpuM od modul e headers, then implicit port declarations also could have been used to instantiate
the memMod and cpuMod modules into the top module, as shown bel ow.

module memMod (simple bus sb_intf, input bit clk);

endmodule

module cpuMod (simple bus sb_intf, input bit clk);

endmodule

module top;

logic clk = 0;

simple bus sb _intf () ;

memMod mem (.*); // implicit port connections
cpuMod cpu (.*); // implicit port connections
endmodule
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18.2.3 Interface example using a generic bundle

A module header can be created with an unspecified interface instantiation as a place-holder for an interface to
be selected when the module itself is instantiated. The unspecified interface is referred to as a“ generic” inter-
face port. The following interface example shows how to specify a generic interface port in a module defini-
tion.

// memMod and cpuMod can use any interface
module memMod (interface a, input bit clk);
endmodule
module cpuMod (interface b, input bit clk);
endmodule
interface simple bus; // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;

logic start, rdy;
endinterface: simple bus

module top;
logic clk = 0;
simple bus sb_intf(); // Instantiate the interface

// Connect the sb_intf instance of the simple bus
// interface to the generic interfaces of the
// memMod and cpuMod modules
memMod mem (.a(sb_intf), .clk(clk));
cpuMod cpu (.b(sb_intf), .clk(clk));
endmodule
An implicit port cannot be used to connect to a generic interface. A named port must be used to connect to a
generic interface, as shown below.
module memMod (interface a, input bit clk);
endmodule
module cpuMod (interface b, input bit clk);
endmodule
module top;

logic clk = 0;

simple bus sb_intf();

memMod mem (.*, .a(sb_intf)); // partial implicit port connections
cpuMod cpu (.*, .b(sb_intf)); // partial implicit port connections
endmodule

Copyright 2003 Accellera. All rights reserved. 183



Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

18.3 Ports in interfaces

One limitation of simple interfacesis that the nets and variables declared within the interface are only used to
connect to a port with the same nets and variables. To share an external net or variable, one that makes a con-
nection from outside of the interface as well as forming acommon connection to all module ports that instanti-
ate the interface, an interface port declaration is required. The difference between nets or variables in the
interface port list and other nets or variables within the interface is that only those in the port list can be con-
nected externally by name or position when the interface is instantiated.

interface il (input a, output b, inout c);
wire d;
endinterface

Thewires a, b and ¢ can be individually connected to the interface and thus shared with other interfaces.

The following example shows how to specify an interface with inputs, allowing a wire to be shared between
two instances of the interface.

interface simple bus (input bit clk); // Define the interface
logic reqg, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;
endinterface: simple bus

module memMod (simple bus a); // Uses just the interface
logic avail;

always @ (posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // a.req is in the ’'simple bus’ interface
endmodule

module cpuMod(simple bus b) ;
endmodule
module top;

logic clk = 0;

simple bus sb_intfl(clk); // Instantiate the interface
simple bus sb_intf2(clk); // Instantiate the interface
memMod meml (.a(sb_intfl)); // Connect bus 1 to memory 1
cpuMod cpul(.b(sb_intfl));

memMod mem2 (.a(sb_intf2)); // Connect bus 2 to memory 2
cpuMod cpu2 (.b(sb_intf2))

7

endmodule

Note: Because the instantiated interface names do not match the interface names used in the memMod and
cpuMod modules, implicit port connections cannot be used for this example.

18.4 Modports

To bundle module ports, there are modport lists with directions declared within the interface. The keyword
modport indicates that the directions are declared asif inside the module.
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interface i2;
wire a, b, ¢, d;
modport master (input a, b, output c, d);
modport slave (output a, b, input c, d);
endinterface

Themodport list name (master or slave) can be specified in the modul e header, where the modport name acts
as adirection and the interface name as atype.

module m (i2.master 1i);
endﬁééule
module s (i2.slave 1);
endﬁééule

module top;

BC22-2 || i2 1.0 ;

mul(.i(i));
s u2(.i(i));
endmodule

Themodport list name (master or ave) can aso be specified in the port connection with the modul e instance,
where the modport nameis hierarchical from the interface instance.

module m (i2 i) ;
endﬁééule
module s (i2 1i);
endﬁéaule

module top;

BC22-2 || i2 10 ;

m ul(.1i(i.master));
s u2(.i(i.master));
endmodule

The syntax of interface_name.modport_name instance_name is realy a hierarchical type fol-
lowed by an instance. Note that this can be generalized to any interface with a given modport name by writing
interface.modport name instance name.

In ahierarchical interface, the directionsin amodport declaration can themselves be modport plus name.

interface il;
interface i3;
wire a, b, ¢, d;
modport master (input a, b, output c, d);
modport slave (output a, b, input c, d);
‘ endinterface
BC22-2 || i3 chi(), ch2();
‘ modport master2 (chl.master, ch2.master);
endinterface

Notethat if nomodport isspecified in the module header or in the port connection, then all the wires and vari-
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ablesin theinterface are accessible with direction inout, asin the examples above.

18.4.1 An example of a named port bundle

This interface example shows how to use modports to control signal directions as in port declarations. It uses
the modport name in the module definition.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

modport slave (input req, addr, mode, start, clk,

output gnt, rdy,
inout data) ;

modport master (input gnt, rdy, clk,
output req, addr, mode, start,
inout data) ;

endinterface: simple bus

module memMod (simple bus.slave a); // interface name and modport name
logic avail;

always @ (posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface
endmodule
module cpuMod (simple bus.master b);
endmodule
module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

initial repeat(10) #10 clk++;

memMod mem(.a(sb_intf)); // Connect the interface to the module instance
cpuMod cpu(.b(sb_intf)) ;
endmodule

18.4.2 An example of connecting a port bundle

This interface example shows how to use modports to control signal directions. It uses the modport name in
the modul e instantiation.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, zrdy;
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modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
inout data) ;

modport master (input gnt, rdy, clk,
output req, addr, mode, start,
inout data) ;

endinterface: simple bus

module memMod (simple bus a); // Uses just the interface name
logic avail;

always @ (posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface
endmodule

module cpuMod(simple bus b) ;

endiéaule

module top;
logic clk = 0;
simple_bus sb_intf(clk); // Instantiate the interface
initial repeat(10) #10 clk++;

memMod mem (sb_intf.slave); // Connect the modport to the module instance
cpuMod cpu(sb_intf.master) ;
endmodule

18.4.3 An example of connecting a port bundle to a generic interface

This interface example shows how to use modports to control signal directions. It shows the use of the inter-
face keyword in the module definition. The actual interface and modport are specified in the module instantia-
tion.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, zrdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
inout data) ;

modport master (input gnt, rdy, clk,

output req, addr, mode, start,
inout data) ;

endinterface: simple bus

module memMod (interface a); // Uses just the interface
logic avail;

always @ (posedge a.clk) // the clk signal from the interface
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a.gnt <= a.req & avail; // the gnt and req signal in the interface
endmodule

module cpuMod (interface D) ;
endmodule
module top;

logic clk = 0;

simple bus sb_intf (clk); // Instantiate the interface

memMod mem(sb_intf.slave); // Connect the modport to the module instance
cpuMod cpu(sb_intf.master) ;
endmodule

18.5 Tasks and functions in interfaces

Tasks and functions may be defined within an interface, or they may be defined within one or more of the mod-
ules connected. This allows a more abstract level of modeling. For example “read” and “write” can be defined
as tasks, without reference to any wires, and the master module can merely call these tasks. In a modport
these tasks are declared as import tasks.

If the tasks or functions are defined in a module, using a hierarchical name, they must also be declared as
extern intheinterface, or as export in amodport.

Tasks (not functions) may be defined in amodule that is instantiated twice, e.g. two memories driven from the
same CPU. Such multiple task definitions are alowed by a forkjoin extern declaration in the interface.

18.5.1 An example of using tasks in an interface

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, zrdy;

task masterRead (input logic[7:0] raddr); // masterRead method

//

endtask: masterRead

task slaveRead; // slaveRead method
//

endtask: slaveRead

endinterface: simple bus

module memMod (interface a); // Uses any interface
logic avail;

always @ (posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail // the gnt and req signals in the interface

always @(a.start)

a.slaveRead;
endmodule
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module cpuMod (interface D) ;
enum {read, write} instr;
logic [7:0] raddr;

always @ (posedge b.clk)
if (instr == read)
b.masterRead (raddr); // call the Interface method
endmodule

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem (sb_intf.slave); // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the masterRead task
endmodule

A function prototype specifies the types and directions of the arguments and the return value of a function
which is defined elsewhere. Similarly, atask prototype specifies the types and directions of the arguments of a
task which is defined elsewhere. In a modport, the import and export constructs can either use task or function
prototypes or use just the identifiers.

18.5.2 An example of using tasks in modports

This interface example shows how to use modports to control signal directions and task access in afull read/
write interface.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
inout data,
import task slaveRead(),
task slaveWrite());
// import into module that uses the modport

modport master (input gnt, rdy, clk,
output req, addr, mode, start,
inout data,
import task masterRead (input logic[7:0] raddr),
task masterWrite (input logic[7:0] waddr)) ;
// import requires the full task prototype

task masterRead (input logic[7:0] raddr); // masterRead method

//
endtask

task slaveRead; // slaveRead method
//
endtask

task masterWrite (input logic([7:0] waddr) ;
/] ...
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endtask

task slaveWrite;

/). ..
endtask

endinterface: simple bus

module memMod (interface a); // Uses just the interface
logic avail;

always @ (posedge a.clk) // the clk signal from the interface
b.gnt <= b.req & avail; // the gnt and req signals in the interface

always @(a.start)
if (a.mode[0] == 1’DbO0)
a.slaveRead;
else
a.slaveWrite;
endmodule

module cpuMod (interface D) ;
enum {read, write} instr = $rand();
logic [7:0] raddr = Srand() ;

always @ (posedge b.clk)
if (instr == read)
b.masterRead (raddr); // call the Interface method
//
else
b.masterWrite (raddr) ;
endmodule

module omniMod (interface b) ;

/] ..

endmodule: omniMod

module top;
logic clk = 0;

simple bus sb_intf (clk); // Instantiate the interface

memMod mem(sb_intf.slave); // only has access to the slaveRead task

cpuMod cpu (sb_intf.master); // only has access to the masterRead task

omniMod omni (sb_intf); // has access to all master and slave tasks
endmodule

18.5.3 An example of exporting tasks and functions

This interface example shows how to define tasks in one module and call them in another, using modports to
control task access.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;
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modport slave( input req, addr, mode, start, clk,
output gnt, rdy,
inout data,
export task Read(),
task Write());
// export from module that uses the modport

modport master (input gnt, rdy, clk,

output req, addr, mode, start,
inout data,

import task Read (input logic[7:0] raddr),
task Write (input logic[7:0] waddr)) ;
// import requires the full task prototype

endinterface: simple bus

module memMod (interface a) ;

// Uses just the interface keyword
logic avail;

task a.Read; // Read method

avail = 0;
avail = 1;
endtask

task a.Write;

avail = 0;
avail = 1;
endtask
endmodule

module cpuMod (interface D) ;
enum {read, write} instr;
logic [7:0] raddr;

always @ (posedge b.clk)
if (instr == read)

b.Read(raddr); // call the slave method via the interface

else
b.Write (raddr) ;
endmodule

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem(sb_intf.slave); // exports the Read and Write tasks

cpuMod cpu(sb_intf.master); // imports the Read and Write tasks
endmodule

18.5.4 An example of multiple task exports

It is normally an error for more than one module to export the same task name. However, several instances of
the same modport type may be connected to an interface, such as memory modules in the previous example.
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So that these can still export their read and write tasks, the tasks must be declared in the interface using the
extern forkjoin keywords. Normally, only one module respondsto the task call, e.g. the one containing the
appropriate address. Only then should the task write to the result variables. Note multiple export of functionsis
not allowed, because they must always write to the result.

This interface example shows how to define tasks in more than one module and call them in another using
extern forkjoin. The multiple task export mechanism can also be used to count the instances of a particular
modport that are connected to each interface instance.

interface simple bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;
int slaves;
// tasks executed concurrently as a fork/join block
extern forkjoin task countSlaves( );
extern forkjoin task Read(input logic[7:0] raddr) ;
extern forkjoin task Write(input logic[7:0] waddr) ;

modport slave( input req, addr, mode, start, clk,
output gnt, rdy,
inout data,
export task Read(),
task Write());
// export from module that uses the modport

modport master (input gnt, rdy, clk,
output req, addr, mode, start,
inout data,
import task Read (input logic[7:0] raddr),
task Write (input logic[7:0] waddr)) ;
// import requires the full task prototype

initial begin

slaves = 0;

countSlaves;

Sdisplay ("number of slaves = %d", slaves);
end

endinterface: simple bus

module memMod (interface a); // Uses just the interface keyword
logic avail;

task a.countSlaves;
a.slaves++;

endtask

task a.Read; // Read method
avail = 0;

avail = 1;
endtask

task a.Write;
avail = 0;

avail = 1;
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endtask
endmodule

module cpuMod (interface D) ;
enum {read, write} instr;
logic [7:0] raddr;

always @ (posedge b.clk)
if (instr == read)
b.Read(raddr); // call the slave method via the interface
//
else
b.Write (raddr) ;
endmodule

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod meml (sb_intf.slave); //exports the countSlaves, Read and Write tasks
memMod mem2 (sb_intf.slave); //exports the countSlaves, Read and Write tasks

cpuMod cpu(sb_intf.master); //imports the Read and Write tasks
endmodule

18.6 Parameterized interfaces

Interface definitions can take advantage of parameters and parameter redefinition, in the same manner as mod-

ule definitions. This example shows how to use parametersin interface definitions.

interface simple bus # (parameter AWIDTH = 8, DWIDTH = 8;)
(input bit clk); // Define the interface
logic req, gnt;
logic [AWIDTH-1:0] addr;
logic [DWIDTH-1:0] data;
logic [1:0] mode;
logic start, rdy;

modport slave( input req, addr, mode, start, clk,
output gnt, rdy,
inout data,
import task slaveRead(),
task slaveWrite());
// import into module that uses the modport

modport master (input gnt, rdy, clk,
output req, addr, mode, start,
inout data,

import task masterRead (input logic [AWIDTH-1:0] raddr),
task masterWrite (input logic [AWIDTH-1:0] waddr));

// import requires the full task prototype

task masterRead (input logic [AWIDTH-1:0] raddr); // masterRead method

endtask

task slaveRead; // slaveRead method
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endtask
task masterWrite (input logic [AWIDTH-1:0] waddr) ;
endééék
task slaveWrite;
endééék
endinterface: simple bus

module memMod (interface a); // Uses just the interface keyword
logic avail;

always @ (posedge b.clk) // the clk signal from the interface
a.gnt <= a.req & avail; //the gnt and req signals in the interface

always @(b.start)
if (a.mode[0] == 1'Db0)
a.slaveRead;
else
a.slaveWrite;
endmodule

module cpuMod (interface Db);
enum {read, write} instr;
logic [7:0] raddr;

always @ (posedge b.clk)
if (instr == read)
b.masterRead (raddr); // call the Interface method

//
else
b.masterWrite (raddr) ;
endmodule
module top;

logic clk = 0;

simple_bus sb_intf(clk); // Instantiate default interface
simple bus #(.DWIDTH(16)) wide intf (clk); // Interface with 16-bit data

initial repeat(10) #10 clk++;

memMod mem (sb_intf.slave); // only has access to the slaveRead task
cpuMod cpu (sb_intf.master); // only has access to the masterRead task

memMod memW (wide intf.slave); // 16-bit wide memory

cpuMod cpuW (wide intf.master); // 16-bit wide cpu
endmodule

18.7 Access without Ports

In addition to interfaces being used to connect two or more modules, the interface object/method paradigm
allows for interfaces to be instantiated directly as static data objects within a module. If the methods are used
to access internal state information about the interface, then these methods may be called from different points
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in the design to share information.

interface intf mutex;
task lock ();
endééék
function unlock() ;

endfunction
endinterface

function int f (input int i) ;
return(i); // just returns arg
endfunction

function int g (input int i) ;
return(i); // just returns arg
endfunction

module modl (input int in, output int out);

BC19-2 h intf_mutex mutex();

always begin
#10 mutex.lock () ;
@(in) out = f(in);
mutex.unlock;

end

always begin
#10 mutex.lock () ;
@(in) out = g(in);
mutex.unlock;
end
endmodule
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Section 19
Parameters

19.1 Introduction (informative)

Verilog-2001 providesthree constructs for defining compile time constants: the parameter, localparam and
specparam Statements.

The language provides four methods for setting the value of parameter constants in a design. Each parameter
must be assigned a default value when declared. The default value of a parameter of an instantiated module can
be overridden in each instance of the module using one of the following:

— Implicit in-line parameter redefinition (e.g. foo # (value, value) ul (...); )

— Explicit in-line parameter redefinition (e.9. foo # (.name (value), .name(value)) ul
(...)5 )

— defparam Statements, using hierarchical path names to redefine each parameter

19.1.1 Defparam removal

The defparam statement may be removed from future versions of the language. See section 24.2.

19.2 Parameter declaration syntax

local_parameter_declaration ::= /I from Annex A.2.1.1
localparam [ signing ] { packed dimension } [ range] list_of _param_assignments;
| localparam data type list_of param_assignments;
parameter_declaration ::=
parameter [ signing] { packed dimension} [ range] list_of param_ assignments
| parameter data_type list_of param_ assignments
| parameter type list_of_type assignments
specparam_declaration ::=
specparam [ range] list_of _specparam_assignments ;
list_of param_assignments ::= param_assignment { , param_assignment } // from Annex A.2.3
list_of_specparam_assignments ::= specparam_assignment { , specparam_assignment }
list_of type assignments::=type assignment { , type assignment }
param_assignment ::= parameter_identifier = constant_param_expression /I from Annex A.2.4
Specparam_assignment ::=
specparam_identifier = constant_mintypmax_expression
| pulse_control_specparam
type_assignment ::= type_identifier = data_type

Syntax 19-1—Parameter declaration syntax (excerpt from Annex A)

A module or an interface can have parameters, which are set during elaboration and are constant during simu-
lation. They are defined with data types and default values. With SystemVerilog, if no data type is supplied,
parameters default to type Logic of arbitrary size for Verilog-2001 compatibility and interoperability.

SystemVerilog adds the ability for a parameter to also specify a data type, allowing modules or instances to
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have data whose type is set for each instance.

module ma # ( parameter pl = 1; parameter type p2 = shortint; )
(input logic [pl:0] i, output logic [pl:0] o);
p2 j = 0; // type of j is set by a parameter, which is shortint unless
redefined
always @(i) begin
o = 1i;
J++;
end
endmodule

module mb;

logic [3:0] 1i,0;

ma #(.pl(3), .p2(int)) ul(i,o); //redefines p2 to a type of int
endmodule
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Section 20
EC-CH25| Random Constraints

Editor’s Note: This entire section is new for draft 2. Only the Section titles have been highlighted as new text.

Editor’s Note: Things left to do in this section:

— Add the correct formatting for keywords and other special fonts.
— Revise wording for proper |EEE style of “shall” and “can”.

— Add notes for where BNF syntax needs to be inserted.

— Change hard-coded cross references to linked cross references.
— Add index tags for the entire chapter

20.1 Introduction (informative)

Constraint-driven test generation allows users to automatically generate tests for functional verification. Ran-
dom testing can be more effective than a traditional, directed testing approach. By specifying constraints, one
can easly create tests that can find hard-to-reach corner cases. This proposal alows users to specify con-
straints in a compact, declarative way. The constraints are then processed by a solver that generates random
values that meet the constraints.

Therandom constraints are built on top of an object oriented framework that models the data to be randomized
as objects that contain random variables and user-defined constraints. The constraints determine the legal val-
ues that can be assigned to the random variables. Objects are ideal for representing complex aggregate data
types and protocols such as Ethernet packets.

The next section provides an overview of object-based randomization and constraint programming. The rest of

this document provides detailed information on random variables, constraint blocks, and the mechanisms used
to manipulate them.

| 20.2 Overview

This section introduces the basic concepts and uses for generating random stimulus within objects. The pro-
posed language uses an object-oriented method for assigning random values to the member variables of an
object subject to user-defined constraints. For example:

class Bus;
rand bit[15:0] addr;
rand bit[31:0] data;

constraint word align {addr[1:0] == ‘2b0;}
endclass

The Bus class models a simplified bus with two random variables: addr and data, representing the address and
data values on a bus. The word_align constraint declares that the random values for addr must be such that
addr isword-aligned (the low-order 2 bitsare 0).

The randomize () method iscalled to generate new random values for a bus object:

Bus bus = new;

repeat (50) begin
if ( bus.randomize() == 1 )
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$display ("addr = %16h data = %h\n", bus.addr, bus.data);
else
$display ("Randomization failed.\n");
end

Calling randomize () causes new values to be selected for all of the random variables in an object such that
al of the constraints are true (“satisfied”). In the program test above, a “bus’ object is created and then ran-
domized 50 times. The result of each randomization is checked for success. If the randomization succeeds, the
new random values for addr and data are printed; if the randomization fails, an error messageis printed. In this
example, only the addr value is constrained, while the data value is unconstrained. Unconstrained variables
are assigned any value in their declared range.

Constraint programming is a powerful method that lets users build generic, reusable objects that can later be
extended or constrained to perform specific functions. The approach differs from both traditional procedura
and object-oriented programming, asillustrated in this example that extends the Bus class:

typedef enum {low, mid, high} AddrType;

class MyBus extends Bus;
rand AddrType type;
constraint addr range

{

(type == low ) => addr inside { [0 : 15] };
(type == mid ) => addr imnside { [16 : 127]};
(type == high) => addr inside {[128 : 255]};
}
endclass

TheMyBus classinherits all of the random variables and constraints of the Bus class, and adds a random vari-
able called type that is used to control the address range using another constraint. The addr_range constraint
uses implication to select one of three range constraints depending on the random value of type. When a
MyBus object is randomized, values for addr, data, and type are computed such that all of the constraints are
satisfied. Using inheritance to build layered constraint systems allows uses to devel op general-purpose models
that can be constrained to perform application-specific functions.

Objects can be further constrained using the randomize () with construct, which declares additional con-
straints in-line with the call t0 randomize () :

task exercise bus (MyBus bus) ;
int res;

// EXAMPLE 1: restrict to small addresses
res = bus.randomize() with {type == small;};

// EXAMPLE 2: restrict to address between 10 and 20
res = bus.randomize() with {10 <= addr && addr <= 20;};

// EXAMPLE 3: restrict data values to powers-of-two
res = bus.randomize() with {data & (data - 1) == 0;};
endtask

This exampleillustrates several important properties of constraints:

— Constraints can be any SystemVerilog expression with variables and constants of integral type (bit, reg,
logic, integer, enum, packed struct,acu).

— Constraint expressions follow SystemVerilog syntax and semantics, including precedence, associativity,
sign extension, truncation, and wrap-around.
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— The constraint solver must be able to handle a wide spectrum of equations, such as algebraic factoring,
complex Boolean expressions, and mixed integer and bit expressions. In the example above, the power-of-
two constraint was expressed arithmetically. It could have also been defined with expressions using a shift
operator. For example, 1 << n, where n is a 5-bit random variable.

— If asolution exists, the constraint solver must find it. The solver may fail only when the problem is over-
constrained and there is no combination of random values that satisfy the constraints.

— Constraints interact bi-directionally. In this example, the value chosen for addr depends on type and how it
is constrained, and the value chosen for type depends on addr and how it is constrained. All expression
operators are treated bi-directionally, including the implication operator (=>).

Sometimes it is desirable to disable constraints on random variables. For example, consider the case where we
want to deliberately generate an illegal address (non-word aligned):

task exercise illegal (MyBus bus, int cycles);
int res;

// Disable word alignment constraint.
$constraint mode( OFF, bus.word align );

repeat (cycles) begin

// CASE 1: restrict to small addresses.
res = bus.randomize() with {addr([0] || addr[1];};

end

// Re-enable word alignment constraint.
$constraint mode( ON, bus.word align );
endtask

The $constraint mode () System task can be used to enable or disable any named constraint block in an
object. In this example, the word-alignment constraint is disabled, and the object is then randomized with addi-
tional constraints forcing the low-order address bits to be non-zero (and thus unaligned).

The ability to enable or disable constraints allows users to design a constraint hierarchies. In these hierarchies,
the lowest level constraints can represent physical limits grouped by common properties into named constraint
blocks, which can be independently enabled or disabled.

Similarly, the $rand_mode() method can be used to enable or disable any random variable. When a random
variableis disabled, it behaves in exactly the same way as other non-random variables.

Occasiondly, it is desirable to perform operations immediately before or after randomization. That is accom-
plished via two built-in methods, pre randomize () and post_randomize(), which are automatically called
before and after randomization. These methods can be overloaded with the desired functionality:

class XYPair;
rand integer x, y;
endclass

class MyYXPair extends XYPair
function void pre randomize() ;
super.pre_randomize () ;
printf-gdisplay ("Before randomize x=%0d, y=%0d\n", x, y);
endtask

function void post randomize() ;
super.post randomize () ;

200 Copyright 2003 Accellera. All rights reserved.



Accellera

Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
| printf-$display ("After randomize x=%0d, y=%0d\n", x, y);
endtask
endclass

| Editor’s Note: “function” is paired with “endtask”. Are these tasks or functions?.

By default, pre randomize() and post_randomize() call their overloaded parent class methods. When
pre randomize() or post_randomize() are overloaded, care must be taken to invoke the parent class’ meth-
ods, unless the classis a base class (has no parent class).

The random stimulus generation capabilities and the object-oriented constraint-based verification methodol-
ogy enable usersto quickly develop teststhat cover complex functionality and better assure design correctness.

| 20.3 Random variables

Class variables can be declared random using the rand and randc type-modifier keywords.
The syntax to declare arandom variable in aclassis:

rand variable;
or

randc variable;

Editor’s Note: Add BNF excerpt , once available.

— The solver can randomize scalar variables of any integral type such as integer, enumerated types, and
packed array variables of any size.

— Arrays can be declared rand or randc, in which case al of their member elements are treated as rand or
randc.

— Dynamic and associative arrays can be declared rand or randc. All of the elementsin the array are ran-
domized. If the array elements are of type object, all of the array elements must be non-null. Individua
array elements may be constrained, in which case the index expression must be aliteral constant.

— Thesize of adynamic array declared asrand or randc may aso be constrained. In that case, the array will
be resized according to the size constraint, and then all the array elements will be randomized. The array
size constraint is declared using the size method. For example,

rand bit[7:0] len;
rand integer datal[*];
constraint db { data.size == len );

The variable len is declared to be 8 bits wide. The randomizer computes a random value for the len vari-
able in the 8-bit range of 0 to 255, and then randomizes the first len elements of the data array.

If adynamic array’s size is not constrained then randomize() randomizes all the elementsin the array.
— An object variable can be declared rand in which case al of that object’s variables and constraints are
solved concurrently with the other class variables and constraints. Objects cannot be declared randc.

| 20.3.1 rand modifier

Variables declared with the rand keyword are standard random variables. Their values are uniformly distrib-
uted over their range. For example:
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rand bit[7:0] vy;
Thisis an 8-bit unsigned integer with a range of 0 to 255. If unconstrained, this variable will be assigned any
valuein the range O to 255 with equal probability. In this example, the probability of the same value repeating
on successive calls to randomize is 1/256.

20.3.2 randc modifier

Variables declared with the randc keyword are random-cyclic variables that cycle through all the valuesin a
random permutation of their declared range. Random-cyclic variables can only be of type bit, char, or enumer-
ated types, and may be limited to a maximum size.

To understand randc, consider a 2-bit random variabley:

randc bit[1:0] vy;
The variabley can take on the values 0, 1, 2, and 3 (range 0 to 3). Randomize computes an initial random per-
mutation of the range values of y, and then returns those valuesin order on successive cals. After it returns the

last element of a permutation, it repeats the process by computing a new random permutation.

The basic idea is that randc randomly iterates over all the values in the range and that no value is repeated
within an iteration. When the iteration finishes, a new iteration automatically starts.

initial permutation: 0 53 =22 =1 —]
next permutation: — 2 > 1 = 3 = 0
next permutation: > 2 > 0 -1 —> 3

The permutation sequence for any given randc variable is recomputed whenever the constraints change on
that variable, or when none of the remaining values in the permutation can satisfy the constraints.

To reduce memory requirements, implementations may impose a limit on the maximum size of a randc vari-
able, but it should be no less than 8 bits.

The semantics of cyclical variables requires that they be solved before other random variables. A set of con-

straints that includes both rand and randc variables will be solved such that the randc variables are solved
first, and this may sometimes cause randomize() to fail.

20.4 Constraint blocks

The values of random variables are determined using constraint expressions that are declared using constraint
blocks. Constraint blocks are class members, like tasks, functions, and variables. They must be defined after
the variable declarations in the class, and before the task and function declarations in the class. Constraint
block names must be unique within a class.

The syntax to declare a constraint block is:

constraint constraint name { contraint expressions }

Editor’'s Note: Add BNF excerpt , once available.
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constraint_name is the name of the constraint block. This name can be used to enable or disable a constraint
using the system task $constraint_mode().

constraint_expressionsisalist of expression statements that restrict the range of a variable or define relations
between variables. A constraint expression is any SystemVerilog expression, or one of the constraint-specific
operators. =>, inside and dist.

The declarative nature of constraintsimposes the following restrictions on constraint expressions:
— Calling tasks or functionsis not allowed.

— Operators with side effects, such as++ and -- are not allowed.

— randc variables cannot be specified in ordering constraints (see solve..before in Section 20.12).

— dist expressions cannot appear in other expressions (unlike inside); they can only be top-level expres-
sions.

| 20.5 External constraint blocks

Constraint block bodies can be declared outside a class declaration, just like external task and function bodies:

// class declaration
class XYPair;
rand integer x, Vy;
constraint c;
endclass

// external constraint body declaration
constraint XYPair::c { x < y; }

| 20.6 Inheritance

Constraints follow the same general rules for inheritance as class variables, tasks, and functions:

— A constraint in aderived class that uses the same name as a constraint in its parent classes effectively over-
rides the base class constraints. For example:

class A;
rand integer x;
constraint ¢ { x < 0; }
endclass

class B extends A;
constraint ¢ { x > 0; }
endclass

An instance of class A constrains x to be less than zero whereas an instance of class B constrains x to be
greater than zero. The extended class B overrides the definition of constraint c. In this sense, constraints
are treated the same as virtual functions, so casting an instance of B to an A does not change the con-
straint set.

— Therandomize() task is virtual, accordingly, it treats the class constraints in avirtual manner. When a
named constraint is overloaded, the previous definition is overridden.

— The built-in methods pre_randomize() and post_randomize() are functions and cannot block.
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20.7 Set membership

Constraints support integer value sets and set membership operators.
The syntax to define a set expressionis:

expression inside { value range list };
or

expression inside array; // fixed-size, dynamic, or associative array

Editor’s Note: Add BNF excerpt , once available.

expression is any integral SystemVerilog expression.

value range list isacomma-separated list of integral expressions and ranges. Ranges are specified with alow
and high bound, enclosed by square braces [ ], and separated by a colon: [low_bound : high_bound]. Ranges
include all of the integer elements between the bounds. The bound to the left of the colon MUST be less than
or equal to the bound to the right, otherwise the range is empty and contains no values.

The inside operator evaluatesto true if the expression is contained in the set; otherwise it evaluates to false.

Absent any other constraints, all values (either single values or value ranges), have an equa probability of
being chosen by the inside operator.

The negated form denotes that expression lies outside the set: !(expression inside{ set })
For example:

rand integer x, y, z;
constraint cl {x inside {3, 5, [9:15], [24:32], [y:2*yl, z};}

rand integer a, b, c;
constraint c2 {a inside {b, c};}

Set values and ranges can be any integral expression. Values can be repeated, so values and
value ranges can overlap. It is important to note that the inside operator is bidirectional,
thus, the second exampleisequivalenttoa == b || a == c.

20.8 Distribution

In addition to set membership, constraints support sets of weighted values called distributions. Distributions
have two properties: they are a relational test for set membership, and they specify a statistical distribution
function for the results.

The syntax to define a distribution expressioniis:

expression dist { value range ratio list };

Editor’s Note: Add BNF excerpt , once available.

expression can be any integral SystemVerilog expression.

The distribution operator dist evaluates to true if the expression is contained in the set; otherwise it evaluates
tofalse.

Absent any other constraints, the probability that the expression matches any value in the list is proportional to
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its specified weight.

The value_range ratio_list is a comma-separated list of integral expressions and ranges (the same as the
value range list for set membership). Optionally, each term in the list can have a weight, which is specified
using the := or :/ operators. If no weight is specified, the default weight is 1. The weight may be any integral
SystemVerilog expression.

The := operator assigns the specified weight to the item, or if the item isarange, to every valuein the range.

The :/ operator assigns the specified weight to the item, or if the item is a range, to the range as a whole. If
there are n valuesin the range, the weight of each value is range_weight / n.

For example:
x dist {100 := 1, 200 := 2, 300 := 5}

means x isequal to 100, 200, or 300 with weighted ratio of 1-2-5. If an additional constraint is added that spec-
ifiesthat x cannot be 200:

x = 200;
x dist {100 := 1, 200 := 2, 300 := 5}

then x is equal to 100 or 300 with weighted ratio of 1-5.

It is easier to think about mixing ratios, such as 1-2-5, than the actual probabilities because mixing ratios do
not have to be normalized to 100%. Converting probabilities to mixing ratiosis straightforward.

When weights are applied to ranges, they can be applied to each value in the range, or they can be applied to
the range as awhole. For example,

x dist { [100:102] := 1, 200 := 2, 300 := 5}
means X is equal to 100, 101, 102, 200, or 300 with aweighted ratio of 1-1-1-2-5.
x dist { [100:102] :/ 1, 200 := 2, 300 := 5}
means X is equal to one of 100, 101, 102, 200, or 300 with aweighted ratio of 1/3-1/3-1/3-2-5.

In general, distributions guarantee two properties. set membership and monotonic weighting, which means
that increasing aweight will increase the likelihood of choosing those values.

Limitations:
— A dist operation may not be applied to randc variables.

— A dist expression requires that expression contain at least onerand variable.

20.9 Implication

Constraints provide two constructs for declaring conditional (predicated) relations: implication and if-else.
The implication operator (=>) can be used to declare an expression that implies a constraint.
The syntax to define an implication constraint is:

expression => constraint;
expression => constraint block;

Editor’'s Note: Add BNF excerpt , once available.
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The expression can be any integral SystemVerilog expression.

The implication operator => evaluates to true if the expression is false or the constraint is
satisfied; otherwise it evaluatesto false.

The congtraint is any valid constraint, and constraint_block represents an anonymous constraint block. If the
expression istrue, al of the constraints in the constraint block must also be satisfied.

For example:
mode == small => len < 10;
mode == large => len > 100;

In this example, the value of mode implies that the value of len is less than 10 or greater than 100. If mode is
neither small nor large, the value of len is unconstrained.

The boolean equivalent of (a=> b ) is(!a|| b). Implication is a bidirectional operator. Consider
the following example:

bit[3:0] a, b;
constraint ¢ {(a == 0) => (b == 1) };

Both aand b are 4 bits, so there are 256 combinations of aand b. Constraint ¢ saysthat a== 0 impliesthat b ==
1, thereby eliminating 15 combinations: { 0,0}, {0,2}, ... {0,15}. The probability that a== 0 is thus 1/(256-15)
or 1/241.

It isimportant to that the constraint solver be designed to cover the whole random value space with uniform

probability. This alows randomization to better explore the whole design space than in cases where certain
value combinations are preferred over others.

20.10 if-else constraints

If-else style constraint are also supported.
The syntax to define an if-else constraint is:

if (expression) constraint; [else constraint;]
if (expression) constraint block [else constraint block]

Editor’s Note: Add BNF excerpt , once available.

expression can be any integral SystemVerilog expression.

constraint is any valid constraint. If the expression is true, the first constraint must be satisfied; otherwise the
optional else-constraint must be satisfied.

constraint_block represents an anonymous constraint block. If the expression is true, al of the constraintsin
thefirst constraint block must be satisfied, otherwise al of the constraints in the optional el se-constraint-block
must be satisfied. Constraint blocks may be used to group multiple constraints.

If-else style constraint declarations are equivalent to implications:

if (mode == small)

len < 10;

else if (mode == large)
len > 100;

isequivalent to
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mode == small => len < 10 ;
mode == large => len > 100 ;

In this example, the value of mode implies that the value of len is less than 10, greater than 100, or uncon-
strained.

Just like implication, if-else style constraints are bi-directional. In the declaration above, the value of mode
constraints the value of len, and the value of len constrains the value of mode.

20.11 Global constraints

When an object member of aclassis declared rand, all of its constraints and random variables are randomized
simultaneously along with the other class variables and constraints. Constraint expressions involving random
variables from other objects are called global constraints.

class A; // leaf node

rand bit[7:0] v; e
endclass
class B extends A; // heap node //// \\\\

rand A left;

rand A right; @ vV @ Vv

constraint heapcond {left.v <= v; right.v <= v;}
endclass

This example uses global constraints to define the legal values of an ordered binary tree. Class A represents a
leaf node with an 8-bit value x. Class B extends class A and represents a heap-node with value v, a left sub-
tree, and aright sub-tree. Both sub-trees are declared as rand in order to randomize them at the same time as
other class variables. The constraint block named heapcond has two global constraints relating the left and
right sub-tree values to the heap-node value. When an instance of class B is randomized, the solver simulta-
neously solvesfor B and its left and right children, which in turn may be leaf nodes or more heap-nodes.

The following rules determines which objects, variables, and constraints are to be randomized:

1) First, determine the set of objects that are to be randomized as a whole. Starting with the object that
invoked the randomize() method, add all objects that are contained within it, are declared rand, and
are active (see $rand_mode). The definition is recursive and includes all of the active random objects
that can be reached from the starting object. The objects selected in this step are referred to as the
active random objects.

2)  Next, select dl of the active constraints from the set of active random objects. These are the constraints
that are applied to the problem.

3) Finaly, select al of the active random variables from the set of active random objects. These are the
variables that are to be randomized. All other variable references are treated as state variables, whose
current value is used as a constant.

20.12 Variable ordering

The solver assures that the random values are selected to give a uniform value distribution over lega value
combinations (that is, all combinations of values have the same probability of being chosen). This important
property guarantees that al value combinations are equally probable.

Sometimes, however, it is desirable to force certain combinations to occur more frequently. Consider this case
where a 1-bit “control” variable s constrains a 32-bit “data” value d:
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class B;
rand bit s;
rand bit[31:0] d;

constraint ¢ { s => d == 0; }
endclass

The congtraint ¢ says “s implies d equals zero”. Although this reads as if s determines d, in fact sand d are
determined together. There are 232 valid combinations of {s,d}, but sis only truefor { 1,0}. Thus, the probabil-
ity that sistrueis 1/2%2, which is practically zero.

The constraints provide a mechanism for order variables so that s can be chosen independent of d. This mech-
anism defines a partial ordering on the evaluation of variables, and is specified using the solve keyword.

class B;
rand bit s;
rand bit[31:0] d;

constraint ¢ { s => d == 0; }
constraint order { solve s before d; }
endclass

In this case, the order constraint instructs the solver to solve for s before solving for d. The effect isthat sis
now chosen true with 50% probability, and then d is chosen subject to the value of s. Accordingly, d == 0 will
occur 50% of thetime, and d != 0 will occur for the other 50%.

Variable ordering can be used to force selected corner cases to occur more frequently than they would other-
wise.

The syntax to define variable order in a constraint block is:

solve variable list before variable list ;

Editor’s Note: Add BNF excerpt , once available.

variable_list isacomma-separated list of integral scalar variables or array elements.

The following restrictions apply to variable ordering:

— Only random variables are allowed, that is, they must be rand.

— randc variables are not allowed. randc variables are always solved before any other.
— Thevariables must be integral scalar values.

— A congtraint block may contain both regular value constraints and ordering constraints.

— Theremust be no circular dependenciesin the ordering, such as “solve abefore b” combined with “solve b
before a”.

— Variables that are not explicitly ordered will be solved with the last set of ordered variables. These values
are deferred until as late as possible to assure a good distribution of value.

— Variables can be solved in an order that is not consistent with the ordering constraints, provided that the
outcome is the same. An exampl e situation where this might occur is:

X == H
X < Yi
solve y before x;
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In this case, since x has only one possible assignment (0), x can be solved for before y. The constraint
solver can use this flexibility to speed up the solving process.

20.13 Randomization methods

20.13.1 randomize()

Variablesin an object are randomized using the randomize() class method. Every class has a built-in random-
ize() virtual method, declared as:

virtual function int randomize () ;

The randomize() method isavirtual function that generates random values for al the active random variables
in the object, subject to the active constraints.

The randomize() method returns 1 if it successfully sets all the random variables and objects to valid values,
otherwise it returns 0.

Example:

class SimpleSum;
rand bit[7:0] x, y, z;
constraint ¢ {z == x + y;}
endclass

This class definition declares three random variables, x, y, and z. Calling the randomize() method will ran-
domize an instance of class SimpleSum:

SimpleSum p = new;
int success = p.randomize() ;

if (success == 1)

Checking results is always needed because the actual value of state variables or addition of constraints in
derived classes may render seemingly simple constraints unsatisfiable.

20.13.2 pre_randomize() and post randomize()

Every class contains built-in pre_randomize() and post_randomize() functions, that are automatically called
by randomize() before and after computing new random values.

Built-in definition for pre_randomize():

function void pre randomize;
if (super) super.pre randomize() ;
// Optional programming before randomization goes here.
endfunction

Built-in definition for post_randomize():

function void post randomize;
if (super) super.post randomize() ;
// Optional programming after randomization goes here.
endfunction

When obj.randomize() is invoked, it first invokes pre_randomize() on obj and also all of its random object
members that are enabled. pre randomize() then recursively calls super.pre_randomize(). After the new
random values are computed and assigned, randomize() invokes post_randomize() on obj and also all of
its random object members that are enabled. post_randomize() then recursively cals

Copyright 2003 Accellera. All rights reserved. 209



Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
super.post_randomize().

Users may overload the pre_randomize() in any class to perform initialization and set pre-conditions before
the object is randomized.

Users may overload the post_randomize() in any class to perform cleanup, print diagnostics, and check post-
conditions after the object is randomi zed.

If these methods are overloaded, they must call their associated parent class methods, otherwise their pre- and
post-randomization processing steps will be skipped.

Notes:

— Random variables declared as static are shared by all instances of the classin which they are declared.
Each time the randomize() method is called, the variable is changed in every class instance.

— If randomize&() fails, the constraints are infeasible and the random variables retain their previous values.
— If randomize&() fails post_randomize() is not be called.
— The randomize() method may not be overloaded.

— Therandomize() method implements object random stability. An object can be seeded by the $srandom()
system call, specifying the object in the second argument.

20.14 In-line constraints - randomize() with

By using the randomize() with construct, users can declare in-line constraints at the point where the random-
ize() method is called. These additional constraints are applied along with the object constraints.

The syntax for randomize() with is:

result = object name.randomize () with constraint block;

Editor’s Note: Add BNF excerpt , once available.

object_name is the name of an instantiated object.

The anonymous constraint block contains additional in-line constraints to be applied along with the object
constraints declared in the class.

For example:

class SimpleSum
rand bit[7:0] x, vy, z;
constraint c {z == x + y;}
endclass

task InlineConstraintDemo (SimpleSum p) ;
int success;
success = p.randomize() with {x < y;};

endtask

Thisisthe same exampl e used before, however, randomize() with is used to introduce an additional constraint
that x <v.

The randomize() with construct can be used anywhere an expression can appear. The constraint block follow-
ing with can define all of the same constraint types and forms as would otherwise be declared in a class.

The randomize() with constraint block may also reference local variables and task and function parameters,
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eliminating the need for mirroring alocal state as member variables in the object class. The scope for variable
names in a constraint block, from inner to outer, is: randomize() with object class, automatic and local vari-
ables, task and function parameters, class variables, variables in the enclosing scope. The randomize() with
classis brought into scope at the innermost nesting level.

For example, see below, where the randomize() with classis“Foo.”

class Foo;
rand integer x;
endclass

class Bar;
integer x;
integer y;

task doit (Foo f, integer x, integer z);
int result;
result = f.randomize() with {x <y + z;};
endtask
endclass

In the “f.randomize() with” constraint block, x is a member of class Foo, and hides the x in class Bar. It also
hides the x parameter in the doit() task. y isamember of Bar. zisalocal parameter.

20.15 Disabling random variables

The $rand_mode() system task can be used to control whether arandom variableis active or inactive. When a
random variable is inactive, it is treated the same as if it had not been declared rand or randc. Inactive vari-
ables are not randomized by the randomize() method, and their values are treated as state variables by the
solver. All random variables areinitialy active.

20.15.1 $rand_mode()

The syntax for the $rand_mode() subroutine is:
task $rand mode( ON | OFF, object [.random variable] );
or

function int $rand mode( object.random variable ) ;

Editor’'s Note: Add BNF excerpt , once available.

object is any expression that yields the object handle in which the random variable is defined.

random variableisthe name of the random variable to which the operation is applied. If it is not specified, the
action is applied to all random variables within the specified object.

The first argument to the $rand_mode task determines the operation to be performed:

Table 20-1: $rand_mode first argument

Constant | Value Description

OFF 0 Sets the specified variables to inactive so that they are not ran-
domized on subsequent callsto the randomize() method.
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Table 20-1: $rand_mode first argument

Constant | Value Description

ON 1 Sets the specified variables to active so that they are randomized
on subsequent calls to the randomize() method.

For array variables, random variable can specify individua elements using the corresponding index. Omitting
the index resultsin al the elements of the array being affected by the call.

If the variable is an abject, only the mode of the variable is changed, not the mode of random variables within
that object (see Global Constraintsin Section 20.11).

A compiler error isissued if the specified variable does not exist within the class hierarchy or it exists but is
not declared asrand or randc.

The function form of $rand_mode() returns the current active state of the specified random variable. It returns
1if the variable is active (ON), and O if the variable isinactive (OFF).

The function form of $rand_mode() only accepts scalar variables, thus, if the specified variable is an array, a
single element must be selected viaits index.

Example:

class Packet;
rand integer source value, dest value;
. other declarations
endclass

int ret;

Packet packet a = new;

// Turn off all variables in object.
$rand mode (OFF, packet a);

// ... other code
// Enable source_ value.
$rand mode (ON, packet a.source value );

ret = $rand mode( packet_a.dest_value );

This examplefirst disables all random variablesin the object packet_a, and then enables only the source value
variable. Finaly, it setsthe ret variable to the active status of variable dest_value.

20.16 Disabling constraints

The $constaint_mode() system task can be used to control whether a constraint is active or inactive. When a
constraint isinactive, it is not considered by the randomize() method. All constraints are initialy active.

20.16.1 $constraint_mode()

The syntax for the $constraint_mode() subroutineis:
task $constraint mode( ON | OFF, object [.constraint namel ) ;
or

function int $constraint mode( object. constraint name ) ;
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Editor’s Note: Add BNF excerpt , once available.

object is any expression that yields the object handle in which the constraint is defined.

constraint_name is the name of the constraint block to which the operation is applied. The constraint name can
be the name of any constraint block in the class hierarchy. If no constraint name is specified, the operation is
applied to all constraints within the specified object.

The first argument to the $constraint_mode task determines the operation to be performed:

Table 20-2: $constraint_mode first argument

Constant | Value Description
OFF 0 Sets the specified constraint block to active so that it is considered
by subsequent callsto the randomize() method.
ON 1 Sets the specified constraint block to inactive so that it is not
enforced on subsequent calls to the randomize() method.

A compiler error isissued if the specified constraint block does not exist within the class hierarchy.

The function form of $constraint_mode() returns the current active state of the specified constraint block. It
returns 1 if the constraint is active (ON), and O if the constraint isinactive (OFF).

Example:

class Packet;

rand integer source value;
constraint filterl { source value > 2 * m; }

endclass

function integer toggle rand( Packet p );
if ( $constraint mode( p.filterl ) )
$constraint mode( OFF, p.filterl );

else

$constraint mode( ON, p.filterl );

toggle rand
endfunction

p.randomize () ;

In this example, the toggle rand function first checks the current active state of the constraint filterl in the
specified Packet object p. If the constraint is active then the function will deactivate it; if it'sinactive the func-
tion will activate it. Finally, the function calls the randomize method to generate a new random value for vari-

able source value.

20.17 Static constraint blocks

Constraint blocks can be defined as static by including the static keyword in their definition.

The syntax to declare a static constraint block is:

static constraint constraint name { contraint expressions }

Editor’s Note: Add BNF excerpt , once available.
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If aconstraint block is declared as static, then calls to $constraint_mode() affect al instances of the specified
constraint in all objects. Thus, if a static constraint is set to OFF, it is OFF for al instances of that particular
class.

20.18 Dynamic constraint modification

There are several ways to dynamically modify randomization constraints:
— Implication and if-else style constraints allow declaration of predicated constraints.

— Constraint blocks can be made active or inactive using the $constraint_mode() system task. Initially, all
constraint blocks are active. Inactive constraints are ignored by the randomize() function.

— Random variables can be made active or inactive using the $rand_mode() system task. Initially, all rand
and randc variables are active. Inactive variables are ignored by the randomize() function.

— Theweightsin adist constraint can be changed, affecting the probability that particular values in the set
are chosen.

20.19 Random number system functions

20.19.1 $urandom

The system function $urandom provides a mechanism for generating random numbers. The function returnsa
new 32-bit random number each timeit is called. The number is unsigned.

The syntax for $urandom iS:

function unsigned int $urandom [ (int seed ) 1 ;

Editor’s Note: Add BNF excerpt , once available.

The seed is an optional argument that determines which random number is generated. The seed can be any
integral expression. The random number generator generates the same number every time the same seed is
used.

The random number generator is deterministic. Each time the program executes, it cycles through the same
random sequence. This sequence can be made non-deterministic by seeding the $urandom function with an
extrinsic random variable, such asthe time of day.

For example:

bit [64:1] addr;

$urandom( 254 ); // Initialize the generator
addr = {$urandom, $urandom };// 64-bit random number
number = $urandom & 15; // 4-bit random number

The $urandom function is similar to the $random system function, with two exceptions. $urandom returns
unsigned numbers and it's automatically thread stable (see Section 20.20.2).

20.19.2 $urandom_range()

The $urandom_range() function returns an unsigned integer within a specified range.
The syntax for $urandom_rangeis:

function unsigned int $urandom range( unsigned int maxval,
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unsigned int minval = 0 );

Editor’s Note: Add BNF excerpt , once available.

The function returns an unsigned integer in the range maxval .. minval.
Example: val = $urandom range(7,0);

If minval is omitted, the function returns avalue in the range maxval .. 0.
Example: val = $urandom range(7) ;

If maxval islessthan minval, the arguments are automatically reversed so that the first argument is larger than
the second argument.

Example: val = $urandom range (0,7) ;
All of three previous examples produce avalue in the range of 0to 7, inclusive.
$urandom_range() is automatically thread stable (see Section 20.20.2).

20.19.3 $srandom()

The system function $srandom() allows manually seeding the RNG of objects or threads.
The syntax for the $srandom() system task is:

task $srandom( int seed, [object objl );

Editor’s Note: Add BNF excerpt , once available.

The $srandom() system task initializes the local random number generator using the value of the given seed.
The optional object argument is used to seed an object instead of the current process (thread). The top level
randomizer of each program isinitialized with $srandom(1) prior to any randomization calls.

20.20 Random stability

The Random Number Generator (RNG) is localized to threads and objects. Because the stream of random val-
ues returned by athread or object isindependent of the RNG in other threads or objects, this property is caled
Random Sability. Random stability applies to:

— the system randomization calls, $urandom, $urandom_range(), and $srandom().
— the object randomization method, randomize().
Test-benches with this feature exhibit more stable RNG behavior in the face of small changes to the user code.

Additionally, it enables more precise control over the generation of random vaues by manually seeding
threads and objects.

20.20.1 Random stability properties

Random stability encompasses the following properties:
— Thread stability

Each thread has an independent RNG for al randomization system calls invoked from that thread. When
anew thread is created, its RNG is seeded with the next random value from its parent thread. This prop-
erty iscaled “hierarchical seeding.”
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Program and thread stability is guaranteed as long as thread creation and random number generation is
done in the same order as before. When adding new threads to an existing test, they can be added at the
end of acode block in order to maintain random number stability of previously created work.

— Object stability

Each classinstance (object) has an independent RNG for al randomization methodsin the class. When an
object is created using new, its RNG is seeded with the next random value from the thread that creates the
object.

Object stability is guaranteed as long as object and thread creation, as well as random number generation
is done in the same order as before. In order to maintain random number stability, new objects, threads
and random numbers can be created after existing objects are created.

— Manual seeding

All RNG's can be manually seeded. Combined with hierarchical seeding, this facility allows users to
define the operation of a subsystem (hierarchy sub-tree) completely with a single seed at the root thread
of the system.

20.20.2 Thread stability

Random values returned from the $urandom system call are independent of thread execution order. For exam-
ple:

integer x, vy, z;
fork //set a seed at the start of a thread
begin $srandom(100); x = Surandom; end
//set a seed during a thread
begin y = $urandom; $srandom(200); end
// draw 2 values from the thread RNG
begin z = $urandom + $urandom ; end
join

The above program fragment illustrates several properties:

— Thread Locality. The values returned for X, y and z are independent of the order of thread execution. Thisis
an important property because it allows devel opment of subsystems that are independent, controllable, and
predictable.

— Hierarchical seeding. When athread is created, its random state isinitialized using the next random value
from the parent thread as a seed. The three forked threads are all seeded from the parent thread.

Each thread is seeded with a unique value, determined solely by its parent. The root of athread execution
subtree determines the random seeding of its children. This allows entire subtrees to be moved, and pre-
serve their behavior by manually seeding their root thread.

20.20.3 Object stability

The randomize() method built into every class exhibits object stability. Thisis the property that calls to ran-
domize() in one instance are independent of calls to randomize() in other instances, and independent of calls
to other randomize functions.

For example:
class Foo;
rand integer x;

endclass

class Bar;
rand integer y;
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endclass

initial begin
Foo foo = mew() ;
Bar bar = new() ;
integer z;
void = foo.randomize () ;
// z = S$random;
void = bar.randomize () ;

| begin end

| Editor’s Note: | took the liberty of changing the final “begin” to “end”

— The vaues returned for foo.x and bar.y are independent of each other.

— The calsto randomize() are independent of the $random system call. If one uncommentstheline“z =
$random” above, thereis no change in the values assigned to foo.x and bar.y.

— Each instance has a unique source of random values that can be seeded independently. That random seed is
taken from the parent thread when the instance is created.

— Objects can be seeded at any time using the $srandom() system task with an optional object argument.

class Foo;
function void new (integer seed);
//set a new seed for this instance
$srandom (seed, this);
endfunction
endclass

Once an object is created there is no guarantee that the creating thread can change the object’s random state
before another thread accesses the object. Therefore, it is best that objects self-seed within their new method
rather than externally.

An object’s seed may be set from any thread. However, athread's seed can only be set from within the thread
itself.

| 20.21 Manually seeding randomize

Each object maintains its own internal random number generator, which is used exclusively by its random-
ize() method. This allows objects to be randomized independent of each other and of callsto other system ran-
domization functions. When an object is created, its random number generator (RNG) is seeded using the next
value from the RNG of the thread that creates the object. This processis called hierarchical object seeding.

Sometimes it is desirable to manually seed an object’'s RNG using the $srandom() system call. This can be
done either in a class method, or externa to the class definition:

internaly:

class Packet;
rand bit[15:0] header;

function void new (int seed) ;
$srandom (seed, this);

| endtask endfunction
endclass
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| Editor’s Note: | took the liberty of changing the final “endtask” to “endfunction”

or externally:

Packet p = new(200); // Create p with seed 200.
$srandom (300, p); // Re-seed p with seed 300.

Calling $srandom() in an object’s new() function, assures the object’'s RNG is set with the new seed before
any class member values randomized.
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Section 21
Configuration libraries

21.1 Introduction (informative)

Verilog-2001 provides the ability to specify design configurations, which specify the binding information of
module instances to specific Verilog HDL source code. Configurations utilize libraries. A library is a collec-
tion of modules, primitives and other configurations. Separate library map files specify the source code loca-
tion for the cells contained within the libraries. The names of the library map files is typicaly specified as
invocation options to simulators or other software tools reading in Verilog source code.

SystemVerilog adds support for interfaces to Verilog configurations. SystemVerilog also provides an aternate
method for specifying the names of library map files.

21.2 Libraries

A library is a named collection of cells. A cell is a module, macromodule, primitive, interface, or configura-
tion. A configuration is a specification of which source files bind to each instance in the design.

21.3 Library map files

Verilog 2001 specifies that library declarations, include statements, and config declarations are normally in a
mapping file that is read first by a simulator or other software tool. SystemVerilog does not require a special
library map file. Instead, the mapping information can be specified in the $root top level.
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Section 22
System tasks and system functions

22.1 Introduction (informative)

SystemVerilog adds several system tasks and system functions.

22.2 Expression size system function

size function ::=// notin Annex A
$bits (‘expression )

Syntax 22-1—Size function syntax (not in Annex A)

The $bits system function returns the number of bits required to hold avalue. A 4 state value counts as one

bit. Given the declaration:

logic [31:0] foo;

Then $bits (foo) will return 32, even if a software tool uses more than 32-bits of storage to represent the 4-

state values.

22.3 Array querying system functions

array_query_functions ::=// not in Annex A
array_dimension_function (array_identifier , dimension_expression )
| $dimensions (array_identifier )
array_dimension_function ::=
$left
| $right
| $low
| $high
| $increment
| $length
dimension_expression ::= expression

Syntax 22-2—Array querying function syntax (not in Annex A)

SystemVerilog provides new system functions to return information about an array
— $left shdl return the left bound (msb) of the dimension

— $right shal return the right bound (Isb) of the dimension

— $1low shall return the minimum of $1eft and $right of the dimension

— s$high shall return the maximum of $1eft and $right of the dimension
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— $increment shall return 1if $1eft isgreater than or equal to $right, and-1if $1left islessthan
$right
— $length shal return the number of elements in the dimension, which isequivalent to $high - $low + 1

— $dimensions shall return the number of dimensionsin the array, or O for a scalar object
The dimensions of an array shall be numbered as follows. The slowest varying dimension (packed or
unpacked) is dimension 1. Successively faster varying dimensions have sequentialy higher dimension num-
bers. For instance:

// Dimension numbers

// 3 4 1 2

reg [3:0][2:1] n [1:5]([2:8];

For an integer or bit type, only dimension 1 is defined. For an integer N declared without a range specifier, its
bounds are assumed to be [$bits (N)-1:0].

If an out-of-range dimension is specified, these functions shall return alogic X.

22.4 Assertion severity system tasks

assert_severity _tasks::=// notin Annex A
fatal_message task
| nonfatal_message_task
fatal_message task ::=
$fatal ;
| $fatal (finish_number [, message_argument { , message _argument] } ) ;
nonfatal_message task ::=
severity_task ;
| severity task ([ message_argument { , message _argument] } ) ;
severity_task ::= $error | $warning | $info
finish_number::=0]1]2
message_argument ::= string | expression

Syntax 22-3—Assertion severity system task syntax (not in Annex A)

SystemVerilog assertions have a severity level associated with any assertion failures detected. By default, the
severity of an assertion failureis“error”. The severity levels can be specified by including one of the following
severity system tasks in the assertion fail statement:

— $fatal shall generate arun-time fatal assertion error, which terminates the simulation with an error code.
Thefirst argument passed to $fatal shall be consistent with the corresponding argument to the Verilog
$£inish system task, which setsthelevel of diagnostic information reported by the tool.

— $error shall bearun-time error.
— $warning shal be arun-time warning, which can be suppressed in a tool-specific manner.

— $info shal indicate that the assertion failure carries no specific severity.

All of these severity system tasks shall print atool-specific message, indicating the severity of the failure, and
specific information about the failure, which shall include the following information:

— Thefile name and line number of the assertion statement,
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— The hierarchical name of the assertion, if it islabeled, or the scope of the assertion if it is not label ed.

For simulation tools, these tasks shall also report the simulation run-time at which the severity system task is
caled.

Each of the severity tasks can include optional user-defined information to be reported. The <user-

defined_message> shall use the same syntax as the Verilog $display system task, and can include any num-
ber of arguments.

22.5 Assertion control system tasks

assert_control_tasks::=// notin Annex A
assert task ;
| assert_task (levels|[, list_of_modules or_assertions] ) ;
assert_task ::=
$asserton
| $assertoff
| $assertkill
list of modules or_assertions::=
module_or_assertion { , module_or_assertion }
module_or_assertion ::=
module_identifier
| assertion_identifier
| hierarchical_identifier

Syntax 22-4—Assertion control syntax (not in Annex A)

SystemVerilog provides three system tasks to control assertions.

— s$asserto£ff shal stop the checking of all specified assertions until a subsequent $asserton. An assertion
that is already executing, including execution of the pass or fail statement, is not affected

— $assertkill shall abort execution of any currently executing specified assertions and then stop the
checking of all specified assertions until a subsequent $asserton.

— $asserton shal re-enable the execution of al specified assertions

22.6 Assertion system functions

assert_boolean functions::=// notin Annex A
assert_function ( expression) ;
| $insetz ( expression, expression [ { , expression} ]);
assert_function ::=
$onehot
| $onehot0
| $inset
| $isunknown

Syntax 22-5—Assertion system function syntax (not in Annex A)
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Assertions are commonly used to evaluate certain specific characteristics of a design implementation, such as
whether a particular signal is “one-hot”. The following system functions are included to facilitate such com-
mon assertion functionality:

— S$onehot returnstrueif one and only one bit of expressionis high.
— S$onehot0 returnstrue if at most one bit of expression islow.
— $inset returnstrueif the first expression is equal to at least one of the subsequent expression arguments.

— $insetz returnstrueif the first expression isequal to at least one other expression argument. Comparison
is performed using casez semantics, so z or ? bits are treated as don’t-cares.

— $isunknown returnstrueif any bit of the expression is X. Thisis equivaent to
“expression === ‘bx.

All of the above system functions shall have areturn type of bit. A return value of 1’ b1 shall indicate true,
and areturn value of 1’ bo shall indicate false.
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Section 23
Compiler Directives

23.1 Introduction (informative)

Verilog provides the *define text substitution macro compiler directive. A macro can contain arguments,
whose values can be set for each instance of the macro. For example:

‘define NAND (dval) nand # (dval)

‘NAND (3) il (y, a, b); //'NAND(3) macro substitutes with: nand #(3)
‘NAND (3:4:5) i2 (o, ¢, d); //'NAND(3:4:5) macro substitutes with: nand
#(3:4:5)

SystemVerilog enhances the capabilities of the *define compiler directive to support strings as macro argu-
ments

23.2 ‘define macros

In SystemVerilog, the *define macro text can include a backslash ( \ ) at the end of aline to show continua-
tion on the next line.

The macro text can also include an isolated quote, which must be preceded by a back tick, ~». This allows
macro arguments to be included in strings. If the strings are to contain \», the macro text should be written
=\ ~», Otherwise, the backslash will be treated as the start of an escaped identifier.

The macro text can also include a double back tick, ==, to alow identifiers to be constructed from arguments,
eg.

‘define foo(f) f'' suffix
This expands:
foo (bar)
to:
bar suffix
Note that there must be no space before the parenthesis. Otherwise, it istreated as macro text.
The ‘include directive can be followed by amacro, instead of aliteral string:

‘define f1 "/home/foo/myfile"
‘include ‘f1
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Section 24
Features under consideration for removal from SystemVerilog

24.1 Introduction (informative)

Certain Verilog language features can be simulation inefficient, easily abused, and the source of design prob-
lems. These features are being considered for removal from the SystemVerilog language, if thereis an alternate
method for these features.

The Verilog language features that have been identified in this standard as ones which can be removed from
Verilog are defparam and procedural assign/deassign.

24.2 Defparam statements

The SystemVerilog committee has determined, based on the solicitation of input from tool implementers and
tools users, that the de fparam method of specifying the value of a parameter can be a source of design errors,
and can be an impediment to tool implementation. The defparam statement does not provide a capability that
can not be done by another method, which avoids these problems. Therefore, the committee has placed the
defparam Statement on a deprecation list. This meansisthat a future revision of the Verilog standard may not
require support for this feature. This current standard still requires tools to support the defparam Statement.
However, users are strongly encouraged to migrate their code to use one of the aternate methods of parameter
redefinition.

Prior to the acceptance of the Verilog-2001 Standard, it was common practice to change one or more parame-
ters of instantiated modules using a separate defparam statement. Defparam statements can be a source of tool
complexity and design problems.

A defparam Statement can precede the instance to be modified, can follow the instance to be modified, can be
at the end of the file that contains the instance to be modified, can be in a separate file from the instance to be
modified, can modify parameters hierarchically that in turn must again be passed to other defparam State-
ments to modify, and can modify the same parameter from two different defparam statements (with unde-
fined results). Due to the many ways that a defparam can modify parameters, a Verilog compiler cannot
insure the final parameter values for an instance until after all of the design files are compiled.

Prior to Verilog-2001, the only other method available to change the values of parameters on instantiated mod-
ules was to use implicit in-line parameter redefinition. This method uses # (parameter value) aspart of
the module instantiation. Implicit in-line parameter redefinition syntax requires that al parameters up to and
including the parameter to be changed must be placed in the correct order, and must be assigned values.

Verilog-2001 introduced explicit in-line parameter redefinition, in the form
# (.parameter name (value) ), as part of the module instantiation. This method gives the capability to
pass parameters by name in the instantiation, which supplies all of the necessary parameter information to the
model in the instantiation itself.

The practice of using defparam statementsis highly discouraged. Engineers are encouraged to take advantage
of the Verilog-2001 explicit in-line parameter redefinition capability.

See section 19 for more details on parameters.

24.3 Procedural assign and deassign statements

The SystemVerilog committee has determined, based on the solicitation of input from tool implementers and
tools users, that the procedural assign and deassign Statements can be a source of design errors, and can be
an impediment to tool implementation. The procedural assign/deassign Statements do not provide a capa-
bility that can not be done by another method, which avoids these problems. Therefore, the committee has
placed the procedural assign/deassign Statements on adeprecation list. This means that a future revision of
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the Verilog standard may not require support for theses statements. This current standard still requires tools to
support the procedural assign/deassign Statements. However, users are strongly encouraged to migrate
their code to use one of the alternate methods of procedural or continuous assignments.

Verilog has two forms of the assign statement:
— Continuous assignments, placed outside of any procedures

— Procedura continuous assignments, placed within a procedure

Continuous assignment statements are a separate process that are active throughout simulation. The continuous
assignment statement accurately represents combinational logic at an RTL level of modeling, and is frequently
used.

Procedural continuous assignment statements become active when the assign statement is executed in the
procedure. The process can be de-activated using a deassign statement. The procedural assign/deassign
statements are seldom needed to model hardware behavior. In the unusual circumstances where the behavior of
procedural continuous assignments are required, the same behavior can be modeled using the procedural force
and release statements.

The fact that the assign statement to be used both outside and inside a procedure can cause confusion and
errors in Verilog models. The practice of using the assign and deassign Statements inside of procedural
blocksis highly discouraged.

See section 8 for more information on procedural assignments.
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Annex A
Formal Syntax

(Normative)

The formal syntax of SystemVerilog is described using Backus-Naur Form (BNF). The conventions used are:
— Keywords and punctuation arein bold text.

— Syntactic categories are named in non-bold text.

— A vertical bar ( | ) separates alternatives.

— Squarebrackets( [ 1 ) enclose optional items.

— Braces( { } ) encloseitemswhich may be repeated zero or more times.

The full syntax and semantics of Verilog and SystemVerilog are not described solely using BNF. The norma-
tive text description contained within the chapters of the IEEE 1364-2001 Verilog standard and this System-
Verilog document provide additional details on the syntax and semantics described in this BNF.

A.l Source text

A.1.1 Library source text
library_text ::={ library_descriptions}
library_descriptions ::=
library_declaration
| include_statement
| config_declaration

library_declaration ::=
library library_identifier file_path_spec{{ , file_path spec} }
[ -incdir file_path_spect { , file_path_spec} }];
file_path_spec ::=file_path
include_statement ::=include <file_path_spec> ;

A.1.2 Configuration source text

config_declaration ::=
config config_identifier ;
design_statement
{config_rule_statement}
endconfig
design_statement ::= design { [library_identifier.]cell_identifier } ;
config_rule_statement ::=
default_clause liblist_clause
| inst_clause liblist_clause
| inst_clause use clause
| cell_clause liblist_clause
| cell_clause use clause

default_clause ::= default

inst_clause ::= instance inst_name

inst_name ::= topmodule_identifier{.instance identifier}
cell_clause ::= cell [ library_identifier.]cell_identifier
liblist_clause ::=liblist {{library_identifier}}

use_clause ::= use [library_identifier.]cell_identifier[:config]
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A.1.3 Module and primitive source text
source_text ::= [ timeunits_declaration ] { description }
description ::=
module_declaration
| udp_declaration
| module_root_item
| statement

module_declaration ::=
{ attribute_instance } module_keyword module_identifier [ parameter_port_list ]
flist_of _ports}; [ timeunits_declaration] { module_item }
endmodule
| { attribute_instance} module_keyword module identifier [ parameter_port_list ]
[ list_of port declarations] ; [ timeunits declaration] { non_port_module item}
endmodule

module_keyword ::= module | macromodule

interface_declaration ::=
{ attribute_instance} interface interface identifier [ parameter_port_list ]
Flist_of _ports}; [ timeunits_declaration] { interface item}
endinterface[: interface_identifier]
| { attribute_instance} interfaceinterface identifier [ parameter_port_list ]
[ list_of _port_declarations] ; [ timeunits_declaration] { non_port_interface item}
endinterface[: interface_identifier]
timeunits_declaration ::=
timeunit time_litera ;
| timeprecision time_literal ;
| timeunit time_literal ;
timeprecision time _litera ;
| timeprecision time_literal ;
timeunit time _literal ;

A.1.4 Module parameters and ports
parameter_port_list ::= # ( parameter_declaration { , parameter_declaration } )
list_of ports::=(port{,port})
list_of _port_declarations ::=
( port_declaration { , port_declaration } )
| O)
port ::=
[ port_expression ]
| . port_identifier ([ port_expression] )
port_expression ::=
port_reference
| { port_reference{ , port_reference} }

port_reference ::=
port_identifier
| port_identifier [ constant_expression |
| port_identifier [ range_expression |
port_declaration ::=
{ attribute_instance} inout_declaration
| { attribute_instance} input_declaration
| { attribute_instance} output_declaration
| { attribute_instance} interface port_declaration
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A.1.5 Module items

module_common_item ::=
{ attribute_instance} module_or_generate_item_declaration
| { attribute_instance} interface instantiation
module_item ::=
port_declaration ;
| non_port_module_item
module_or_generate item ::=
{ attribute_instance} parameter_override
| { attribute_instance} continuous assign
| { attribute_instance} gate instantiation
| { attribute_instance} udp_instantiation
| { attribute_instance} module_instantiation
| { attribute_instance} initial_construct
| { attribute_instance} always construct
| { attribute_instance} combinational _statement
| { attribute_instance} latch_statement
| { attribute_instance} ff_statement
| module_common_item
module_root_item ::=
{ attribute_instance} module_instantiation
| { attribute _instance} local_parameter declaration
| interface_declaration
| module_common_item

module_or_generate item_declaration :;=
net_declaration
| data_declaration
| event_declaration
| genvar_declaration
| task _declaration
| function_declaration
non_port_module_item ::=
{ attribute_instance} generated_module_instantiation
| { attribute _instance} local_parameter declaration
| module_or_generate item
| { attribute_instance} parameter_declaration ;
| { attribute_instance} specify_block
| { attribute _instance} specparam_declaration
| module_declaration

parameter_override ::= defparam list_of _param_assignments;

A.1.6 Interface items
interface_or_generate item ::=
{ attribute_instance} continuous_assign
| { attribute_instance} initial_construct
| { attribute_instance} always _construct
| { attribute_instance} combinationa _statement
| { attribute_instance} latch_statement
| { attribute_instance} ff_statement
| { attribute_instance} local_parameter declaration
| { attribute_instance} parameter_declaration ;
| module_common_item
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| { attribute_instance’} modport_declaration
interface item ::=
port_declaration ;
| non_port_interface item
non_port_interface item ::=
{ attribute mstance} generated interface _instantiation
| Letrbutetastanee—esslsaramee—declaraien
| Latrbuterstanee —pararste—Eeslaatien-:

| { attribute_instance} specparam_declaration
| interface_or_generate_item
| interface_declaration

A.2 Declarations
A.2.1 Declaration types

A.2.1.1 Module parameter declarations

local_parameter_declaration ::=
localparam [ signing ] { packed dimension} [ range] list_of param_assignments;
| localparam data type list of param assignments;
parameter_declaration ::=
parameter [ signing ] { packed_dimension} [ range] list_of param assignments
| parameter data_type list_of param_ assignments
| parameter type list_of type assignments
specparam_declaration ::=
specparam [ range] list_of _specparam_assignments ;
A.2.1.2 Port declarations
inout_declaration ::=inout [ port_type] list_of port_identifiers
input_declaration ::=input [ port_type] list_of port_identifiers
output_declaration ::=
output [ port_type] list_of port_identifiers
| output data type list_of variable port_identifiers
interface port_declaration ::=
interfacelist_of_interface identifiers
| interface . modport_identifier list_of interface identifiers
| identifier list_of_interface identifiers
| identifier . modport_identifier list_of interface identifiers
A.2.1.3 Type declarations

block _data declaration ::=
block_variable declaration
| constant_declaration
| type_declaration
constant_declaration ::= const data_type const_assignment ;
data_declaration ::=
variable_declaration
| constant_declaration
| type_declaration
event_declaration ::= event list_of event identifiers;
genvar_declaration ::= genvar list_of _genvar_identifiers;
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net_declaration ::=
net_type[ signing |
[ delay3] list_of _net_identifiers;
| net_type[ drive_strength] [ signing ]
[ delay3] list_of _net_decl_assignments;
| net_type[ vectored | scalared ] [ signing ]
{ packed _dimension } range[ delay3] list_of net_identifiers;
| net_type[ drive _strength] [ vectored | scalared ] [ signing ]
{ packed _dimension } range[ delay3] list_of net _decl_assignments;
| trireg [ charge strength] [ signing ]
[ delay3] list_of _net_identifiers;
| trireg [ drive_strength] [ signing ]
[ delay3] list_of _net_decl_assignments;
| trireg [ charge_strength] [ vectored | scalared ] [ signing ]
{ packed_dimension } range [ delay3] list_of_net_identifiers;
| trireg [ drive_strength] [ vectored | scalared ] [ signing ]
{ packed_dimension } range[ delay3] list_of net decl_assignments;
type _declaration ::=
‘ typedef data type type declaration identifier ;
BC19-12 || | typedef interface_identifier { [ constant_expression] } . type_identifier
‘ type_declaration_identifier ;
block variable declaration ::=
[ lifetime] data_type list_of variable identifiers;
| lifetime data_type list_of variable decl_assignments;
variable _declaration ::=
[ lifetime] data_type list_of variable identifiers_or_assignments;
lifetime ::= static | automatic

A.2.2 Declaration data types

A.2.2.1 Net and variable types
data_type ::=
integer_vector_type[ signing ] { packed_dimension} [ range]
| integer_atom_type|[ signing ] { packed dimension}
| type_declaration_identifier
| non_integer_type
| struct [ packed ] [ signing] { { struct_union_member } }
| union [ packed ] [ signing] { { struct_union_member} }
| enum [ integer_type[ signing ] { packed dimension} ]
{ enum_identifier [ = constant_expression ] { , enum_identifier [ = constant_expression] } }
| void
integer_type ::= integer_vector_type | integer_atom_type
integer_atom_type ::= byte| char | shortint | int | longint | integer
integer_vector_type ::= bit | logic | reg
non_integer_type ::=time | shortreal | real | realtime | $built-in
net_type ::= supplyO | supplyl | tri | triand | trior | triO | tril|wire|wand | wor
port_type::=
BC19-13 || data_type {-packed_dimensiont
| net_type[ signing] { packed dimension}
| trireg [ signing ] { packed_dimension }
| event
| [ signing] { packed dimension} range
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signing ::=f signed } | f unsigned }

simple_type or_number ::= simple_type | number

simple_type ::= integer_type | non_integer_type | type_identifier
struct_union_member ::= data type list_of variable identifiers or_assignments;

A.2.2.2 Strengths
drive_strength ::=
('strengthO, strengthl)

| (strengthl, strengthO)

| (strengthO, highz1)

| (strengthl, highzO)

| (highz0, strengthl)

| (highz1, strengthO)
strengthO ::= supplyO | strongO | pull0 | weakO
strengthl ::= supplyl | strongl | pulll | weak 1
charge strength ::= (small ) | (medium) | (large)

A.2.2.3 Delays

delay3 ::=# delay_value | # (delay—value mintypmax_expression [ , detay—value mintypmax_expression| ,

delay—value mintypmax_expression] ] )
delay? ::=# delay_value | # ( delay—value mintypmax_expression [ , delay—valde mintypmax_expression] )
delay vaue::=

unsigned_number

| | .

| paramete _.E EI E.f

| Atyprax_expression-

| real_number

| identifier

A.2.3 Declaration lists
list_of event identifiers::= event_identifier [-unpacked—dimension { unpacked_dimension }}

{ , event_identifier [-unpacked—dimensien { unpacked_dimension }} }
list_of genvar_identifiers::= genvar_identifier { , genvar_identifier }
list_of interface identifiers::=interface identifier { unpacked dimension}

{ , interface_identifier { unpacked _dimension} }
list_of net decl_assignments::= net_decl_assignment { , net_decl_assignment }
list_of net identifiers::= net_identifier [unpacked—dimensien { unpacked_dimension }}

{, net_identifier [-unpacked—dimension { unpacked_dimension }} }
list_of param_assignments ::= param_assignment { , param_assignment }
list_of port_identifiers::= port_identifier { unpacked dimension }

{ , port_identifier { unpacked dimension} }
list_of _udp_port_identifiers::= port_identifier { , port_identifier }
list_of specparam_assignments ::= specparam_assignment { , specparam_assignment }
list_of type assignments::=type_assignment { , type assignment }
list_of variable decl_assignments::= variable decl_assign identifier { , variable_decl_assign_identifier }
list_of variable identifiers::=variable declaration_identifier { , variable _declaration_identifier }
list_of variable identifiers or_assignments::=

list_of variable decl_assignments
| list_of variable identifiers
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list_of variable port_identifiers::= port_identifier { unpacked _dimension} [ = constant_expression ]

{ , port_identifier { unpacked_dimension } [ = constant_expression ] }

A.2.4 Declaration assignments
const_assignment ::= const_identifier = constant_expression
net_decl_assignment ::= net_identifier = expression
param_assignment ::= parameter_identifier = constant_param_expression
specparam_assignment ::=
specparam_identifier = constant_mintypmax_expression
| pulse_control_specparam
type_assignment ::= type_identifier = data_type
pulse_control_specparam ::=
PATHPUL SE$ = (reject_limit_vaue[ , error_limit_value] ) ;
| PATHPUL SES$specify_input_terminal_descriptor$specify_output_terminal _descriptor
= (rgject_limit_value[ , error_limit_vaue]);
error_limit_value ::=limit_value
reject_limit_value ::=limit_vaue
limit_value ::= constant_mintypmax_expression

A.2.5 Declaration ranges

unpacked_dimension ::= [ dimension_constant_expression : dimension_constant_expression |
packed dimension ::= [ dimension_constant_expression : dimension_constant_expression ]
range ::= [ msb_constant_expression : Isb_constant_expression |

A.2.6 Function declarations

function_declaration ::=
function [ automatic] [ signing] [ range_or_type]
[ interface identifier . ] function_identifier ;
{ function_item_declaration }
{ function_statement }
endfunction [ : function_identifier ]
| function [ automatic] [ signing] [ range_or_type]
[ interface identifier . ] function_identifier ( function_port_list) ;
{ block_item_declaration }
{ function_statement }
endfunction [ : function_identifier ]
function_item_declaration ::=
block_item_declaration
| { attribute_instance} input_declaration ;
| { attribute_instance} output_declaration ;
| { attribute_instance} inout_declaration ;
function_port_item ::=
{ attribute_instance } input_declaration
| { attribute instance} output_declaration
| { attribute _instance} inout_declaration

function_port_list ::= function_port_item{ , function_port_item }

function_prototype ::= function data type (list_of function_proto _formals)
named_function_proto::= function data_type function_identifier (list_of_function_proto formals)
list_of function proto formals::=

[ { attribute instance} function proto formal { , { attribute_instance} function_proto formal } ]
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function_proto_formal ::=
input data_type[ variable_declaration_identifier ]
| inout data type [ variable declaration_identifier ]
| output data type|[ variable declaration_identifier ]
| variable_declaration_identifier
range or_type::=
{ packed_dimension } range
| data type

A.2.7 Task declarations
task_declaration ::=
task [ automatic] [ interface_identifier . ] task_identifier ;
{ task_item_declaration }
{ statement }
endtask [ : task_identifier ]
| task [ automatic] [ interface identifier . ] task_identifier (task_port_list) ;
{ block_item_declaration }
{ statement }
endtask [ : task_identifier ]
task_item_declaration ::=
block_item_declaration
| { attribute_instance} input_declaration ;
| { attribute_instance} output_declaration ;
| { attribute_instance} inout_declaration ;
task_port_list ::=task_port_item { , task_port_item }
| list_of port_identifiers{ , task port item}
task_port_item ::=
{ attribute_instance} input_declaration
| { attribute_instance} output_declaration
| { attribute_instance} inout_declaration
| { attribute instance} port typelist of port_identifiers
task_prototype ::=
task ({ attribute_instance} task_proto_formal { , { attribute instance} task_proto_formal } )
named_task_proto ::=task task_identifier ( task_proto_formal { , task_proto_formal } )

task_proto_formal ::=
input data_type[ variable declaration identifier ]
| inout data type[ variable declaration_identifier ]
| output data type [ variable_declaration_identifier ]

A.2.8 Block item declarations
block_item_declaration ::=
{ attribute_instance} block _data declaration
| { attribute_instance} event_declaration
| { attribute_instance} local_parameter_declaration
| { attribute_instance} parameter_declaration ;
A.2.9 Interface declarations
modport_declaration ::= modport list_of modport_identifiers;
list_of_modport_identifiers ::= modport_item { , modport_item }
modport_item ::= modport_identifier ( modport_port { , modport_port} )
modport_port ::=
input [port_type] port_identifier
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| output [port_type] port_identifier

| inout [port_type] port_identifier

| interface_identifier . port_identifier

| import_export task named_task_proto

| import_export function named_function_proto

| import_export task_or_function_identifier { , task_or_function_identifier }
import_export ::= import | export

A.3 Primitive instances

A.3.1 Primitive instantiation and instances
gate instantiation ::=
cmos_switchtype [delay3] cmos_switch_instance { , cmos_switch_instance} ;
| enable_gatetype [drive_strength] [delay3] enable_gate instance{ , enable_gate instance} ;
| mos_switchtype [delay3] mos_switch_instance{ , mos_switch_instance} ;
| n_input_gatetype [drive_strength] [delay2] n_input_gate instance{ , n_input_gate instance} ;
| n_output_gatetype [drive_strength] [delay2] n_output_gate instance
{ , n_output_gate instance} ;
| pass_en switchtype [delay2] pass_enable switch_instance { , pass_enable switch_instance} ;
| pass_switchtype pass_switch_instance{ , pass_switch_instance} ;
| pulldown [pulldown_strength] pull_gate instance{ , pull_gate instance} ;
| pullup [pullup_strength] pull_gate instance{ , pull_gate instance} ;

cmos_switch_instance ::= [ name_of _gate instance] (output_terminal , input_termina ,
ncontrol_terminal , pcontrol_terminal )

enable_gate instance::=[ name_of _gate instance] ( output_terminal , input_termina , enable terminal )

mos_switch_instance ::= [ name_of _gate instance] ( output_terminal , input_terminal , enable terminal )

n_input_gate instance ::= [ name_of gate instance] ( output_terminal , input_terminal { , input_terminal } )

n_output_gate instance ::=[ name_of_gate instance ] ( output_terminal { , output_terminal } ,
input_terminal )

pass_switch instance ::= [ name_of gate instance] (inout_terminal , inout_terminal )

pass_enable switch_instance ::= [ name_of _gate instance] (inout_terminal , inout_terminal ,
enable_terminal )

pull_gate instance ::=[ name_of gate instance] ( output_terminal )

name_of gate instance ::= gate instance_identifier { range}

A.3.2 Primitive strengths
pulldown_strength ::=
( strengthO, strengthl )
| (strengthl, strengthO)
| (strengthO)

pullup_strength ::=
(' strengthO, strengthl)
| (strengthl, strengthO)
| (strengthl)
A.3.3 Primitive terminals
enable_terminal ::= expression
inout_terminal ::= net_Ivaue
input_terminal ::= expression
ncontrol_terminal ::= expression
output_terminal ::= net_Ivalue
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pcontrol_terminal ::= expression

A.3.4 Primitive gate and switch types
cmos_switchtype ::= cmos | rcmos

enable_gatetype ::= bufifO | bufifl | notifO | notifl
mos_switchtype ::= nmos| pmos | rnmos | rpmos
n_input_gatetype ::= and | nand | or | nor | xor | xnor
n_output_gatetype ::= buf | not

pass_en switchtype::=tranifO | tranifl|rtranifl|rtranifO
pass_switchtype::=tran |rtran

A.4 Module, interface and generated instantiation
A.4.1 Instantiation

A.4.1.1 Module instantiation
module_instantiation ::=
module_identifier [ parameter_value_assignment ] module_instance{ , module_instance} ;
parameter_value assignment ::=# ( list_of parameter_assignments)
list_of parameter_assignments::=
ordered_parameter_assignment { , ordered_parameter_assignment }
| named_parameter_assignment { , named_parameter_assignment }
ordered_parameter_assignment ::= expression | data_type
named_parameter_assignment ::=
. . parameter_identifier ([ expression])
BC19-22 || | . parameter_identifier ( f data_typet)
' module_instance ::= name_of instance ([ list_of port_connections] )
name_of instance ::= module_instance_identifier { range }
list_of _port_connections::=
ordered _port_connection { , ordered_port_connection }

| dot_named_port_connection { , dot_named_port_connection }
| { named_port_connection, } dot_star_port_connection { , named_port_connection }

ordered_port_connection ::= { attribute_instance} [ expression ]
named_port_connection ::={ attribute instance} .port_identifier ( [ expression])
dot_named_port_connection ::=
{ attribute_instance} .port_identifier
| named_port_connection

dot_star_port_connection ::= { attribute instance} .*

A.4.1.2 Interface instantiation
interface_instantiation ::=

interface_identifier [ parameter_value_assignment ] module_instance{ , module_instance} ;
A.4.2 Generated instantiation

A.4.2.1 Generated module instantiation
generated_module_instantiation ::= generate { generate_ module_item } endgener ate
generate_module_item_or_null ::= generate_module_item | ;
generate_module_item ::=
generate_module_conditional_statement
| generate_module case_statement
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| generate_module_|loop_statement
| [ generate_block_identifier : ] generate_module_block
| module_or_generate_item

generate_module_conditional _statement ::=
if (constant_expression ) generate_ module_item_or_null [ else generate_module_item_or_null ]
generate_module_case statement ::=
case ( constant_expression ) genvar_module_case item { genvar_module_case_item } endcase
genvar_module case item ::=
constant_expression { , constant_expression } : generate_module_item_or_null
| default [ : ] generate_module _item_or_null
generate_module_loop_statement ::=
for ( genvar_decl_assignment ; constant_expression ; genvar_assignment )
generate_module_named_block
genvar_assignment ::=
| e = . .
{ genvar_identifier assignment_operator constant_expression
| inc_or_dec_operator genvar_identifier
| genvar_identifier inc_or_dec_operator
genvar_decl_assignment ::=
[ genvar ] genvar_identifier = constant_expression
generate_module_named_block ::=
begin : generate_block_identifier { generate_module _item} end [ : generate_block _identifier |
| generate block_identifier : generate_module_block
generate_module_block ::=
begin [ : generate block_identifier ] { generate_ module_item} end [ : generate block_identifier ]

A.4.2.2 Generated interface instantiation
generated interface _instantiation ::= generate{ generate interface item} endgenerate
generate interface_item_or_null ::= generate _interface item | ;
generate interface item ::=
generate interface _conditiona _statement
| generate interface case statement
| generate interface loop_statement
| [ generate block identifier : ] generate interface block
| interface_or_generate item
generate _interface_conditional _statement ::=
if (constant_expression ) generate _interface item_or_null [ else generate_interface item_or_null ]
generate interface case statement ::=
case ( constant_expression ) genvar_interface case item { genvar_interface case item} endcase
genvar_interface case item ::=
constant_expression { , constant_expression } : generate_interface item_or_null
| default [ : ] generate _interface item_or_null
generate _interface loop_statement ::=
for ( genvar_decl_assignment ; constant_expression ; genvar_assignment )
generate interface named_block
generate interface_named_block ::=
begin : generate block identifier { generate interface item} end [ : generate_block_identifier ]
| generate block_identifier : generate interface block
generate interface block ::=
begin [ : generate block_identifier ]
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{ generate interface item}
end [ : generate_block_identifier ]

A.5 UDP declaration and instantiation

A.5.1 UDP declaration
udp_declaration ::=
{ attribute_instance} primitive udp_identifier (udp_port_list) ;
udp_port_declaration { udp_port_declaration }
udp_body
endprimitive
| { attribute_instance} primitive udp_identifier ( udp_declaration_port_list) ;
udp_body
endprimitive
A.5.2 UDP ports
udp_port_list ::= output_port_identifier , input_port_identifier { , input_port_identifier }
udp_declaration_port_list ::= udp_output_declaration , udp_input_declaration { , udp_input_declaration }

udp_port_declaration ::=
udp_output_declaration ;
| udp_input_declaration ;
| udp_reg_declaration;

udp_output_declaration ::=
{ attribute_instance } output port_identifier

| { attribute_instance} output reg port_identifier [ = constant_expression |
udp_input_declaration ::={ attribute_instance } input list_of udp_port_identifiers
udp_reg_declaration ::={ attribute _instance} reg variable identifier
A.5.3 UDP body
udp_body ::= combinational _body | sequential_body
combinational_body ::= table combinational_entry { combinational_entry } endtable
combinational_entry ::=level_input_list : output_symbol ;
sequential_body ::=[ udp_initial_statement ] table sequential_entry { sequential_entry } endtable
udp_initial_statement ::= initial output_port_identifier = init_val ;
init_val ::=1'b0|1'b1|T'bx |1'bX |T'BO|1'B1|1'Bx|1I'BX|1]0
sequential_entry ::=seq_input_list : current_state : next_state ;
seq_input_list ::=level_input_list | edge_input_list
level_input_list ::=level_symbol { level_symbol }
edge input_list ::={ level_symbol } edge indicator { level_symbol }
edge _indicator ::= ( level_symbol level _symboal ) | edge_symbol
current_state ::= level_symbol
next_state ::= output_symbol | -
output_symbol ::=0|1|x|X
level_symbol ::=0|1|x|X|?|b]|B
edge symbol ::=r |R|[f|F|p|P|n|N|*
A.5.4 UDP instantiation
udp_instantiation ::= udp_identifier [ drive_strength] [ delay2 ] udp_instance{ , udp_instance} ;
udp_instance ::= [ name_of_udp_instance] { range} (output_terminal , input_terminal { , input_terminal } )
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name_of udp_instance ::= udp_instance_identifier [ range]

A.6 Behavioral statements

A.6.1 Continuous assignment statements
continuous_assign ::= assign [ drive_strength ] [ delay3] list_of net_assignments;
list_of net_assignments::= net_assignment { , net_assignment }
net_assignment ::= net_|value = expression
A.6.2 Procedural blocks and assignments
initial_construct ::= initial statement
always construct ::= always statement
combinational _statement ::= always comb statement
latch_statement ::= always latch statement
ff_statement ::= always ff statement
blocking_assignment ::=

variable_Ivalue = delay_or_event_control expression

| operator_assignment

operator_assignment ::= variable |value assignment_operator expression
assignment_operator ::=

=4=]=1*= /= | %= &= | |5 | 1= | <<= | >>= | <<<= | >>>=
nonblocking_assignment ::= variable |value <=[ delay_or_event_control ] expression

procedural_continuous_assignments ::=
assign variable_assignment
| deassign variable Ivalue
| force variable_assignment
| force net_assignment
| release variable Ivalue
| release net_Ivalue

function_blocking_assignment ::= variable lvalue = expression
function_statement_or_null ::=

function_statement
| { attribute_instance} ;

variable_assignment ::= variable |value = expression

A.6.3 Parallel and sequential blocks
function_seq block ::=
begin [ : block_identifier { block_item_declaration} ] { function_statement } end
par_block ::=
fork [ : block_identifier ] { block_item_declaration } { statement} join [ : block _identifier ]
seq block ::=
begin [ : block_identifier ] { block_item_declaration} { statement} end [ : block_identifier ]
A.6.4 Statements
statement ::=[ block_identifier : ] statement_item
statement_item ::=
{ attribute_instance } blocking_assignment ;
| { attribute_instance} nonblocking_assignment ;
| { attribute_instance} procedural_continuous_assignments;;

| { attribute instance} case statement
| { attribute_instance} conditional_statement
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@F | { attribute_instance} inc_or_dec_expression;
| { attribute_instance} function call’
| { attribute_instance} disable statement
| { attribute_instance} event_trigger
| { attribute_instance} loop_statement
| { attribute_instance} jump_statement
| { attribute_instance} par_block
| { attribute_instance} procedural_timing_control _statement
| { attribute_instance} seq block
| { attribute_instance} system task_enable
| { attribute_instance} task_enable
| { attribute instance} wait_statement

[BC42-35 || | { attribute_instance} process statement
' | { attribute_instance} proc_assertion

statement_or_null ::=
statement
| { attribute_instance} ;

[BC19-27 || function_statement ::= [ block_identifier : ] function_statement_item ;

| Editor’s Note: Does adding the semicolon cause a problem with the function_blocking_assignment ; (below)?.

function_statement_item ::=
{ attribute_instance } function_blocking_assignment ;
| { attribute _instance} function_case statement
| { attribute_instance} function_conditional _statement
| { attribute _instance} inc_or_dec_expression
| { attribute_instance} function call’
| { attribute_instance} function_loop_statement
| { attribute_instance} jump_statement
| { attribute_instance} function_seq block
| { attribute_instance} disable statement
| { attribute_instance} system task_enable

A.6.5 Timing control statements

procedural_timing_control_statement ::=
delay_or_event_control statement_or_null

delay_or_event_control ::=
delay_control
| event_control
| repeat ( expression) event_control
delay_control ::=
#delay_vaue
| # ( mintypmax_expression )
event_control ::=
@ event_identifier
| @ (‘event_expression)
| @
| @ (*)
event_expression ;=
expression [ iff expression ]
| hierarchical_identifier [ iff expression ]
| [ edge] expression [ iff expression ]
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| event_expression or

event_expression

| event_expression , event_expression

edge ::= posedge | negedge | ch
jump_statement ::=

anged

return [ expression] ;

| break ;
| continue;

wait_statement ::=

wait ( expression ) statement_or_null

event_trigger ::=

-> hierarchical_event_identifier ;

disable statement ::=

disable hierarchical_task_identifier ;
| disable hierarchical_block_identifier ;

A.6.6 Conditional statem
conditional_statement ::=

ents

SystemVerilog 3.1/draft 3

[ unique_priority ] if ( expression) statement_or_null [ else statement_or_null ]

| if_else if statement
if else if _statement ::=

[ unique_priority ] if ( expression) statement_or_null
{ else[ unique_priority ] if ( expression) statement_or_null }
[ else statement_or_null ]

function_conditional _statement

[ unique_priority ] if ( expression) function_statement_or_null [ else function_statement_or_null ]
| function _if_else if statement

function_if_else if statement ::

[ unique_priority ] if ( expression) function_statement_or_null

{ else[ unique_priority ] if ( expression) function_statement_or_null }

[ else function_statement_or_null ]

unique_priority ::= unique | pri

A.6.7 Case statements
case_statement ::=

[ unique_priority ] case ( expression) case_item { case_item} endcase
| [ unique_priority ] casez ( expression) case item { case item} endcase
| [ unique_priority ] casex ( expression ) case_item { case item} endcase

case item::=

ority

expression{ , expression } : statement_or_null
| default [ : ] statement_or_null

function_case_statement ::=

[ unique_priority ] case ( expression ) function_case item { function_case item } endcase
| [ unique_priority ] casez ( expression ) function_case item { function_case item} endcase
| [ unique_priority ] casex ( expression ) function_case_item { function_case item} endcase

function_case item ::=

expression{ , expression } : function_statement_or_null
| default [ : ] function_statement_or_null

A.6.8 Looping statements

function_loop_statement ::=

forever function_statement
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| repeat ( expression ) function_statement_or_null

| while ( expression ) function_statement_or_null

| for (variable _decl_or_assignment ; expression ; variable _assignment )
function_statement_or_null

| do function_statement while ( expression )

loop_statement ::=
forever statement
| repeat ( expression) statement_or_null
| while (‘expression ) statement_or_null
| for (variable decl_or_assignment ; expression ; variable assignment ) statement_or_null
| do statement while ( expression )
variable decl_or_assignment ::=
data typelist_of variable identifiers or_assignments:
| variable_assignment

A.6.9 Task enable statements
system task _enable ::= system_task_identifier [ ( expression { , expression} )] ;
task_enable ::= hierarchical_task_identifier [ ( expression{ , expression} )] ;

A.6.10 Assertion statements
proc_assertion ::=
immediate_assert
| strobed assert
| clocked immediate assert
| clocked_strobed assert
immediate_assert ::= assert ( expression)
statement_or_null
[ else statement_or_null ]
strobed _assert ::= assert_strobe ( expression )
restricted_statement_or_null
[ elserestricted_statement_or_null ]
clocked_immediate_assert ::= assert ( expr_sequence) step_control
statement_or_null
[ else statement_or_null ]

clocked strobed assert ::= assert_strobe ( expr_sequence) step_control
restricted_statement_or_null
[ elserestricted statement_or_null ]

restricted_statement_or_null ::=
restricted statement
| { attribute_instance} ;
restricted_statement ::=
[ block_identifier : ] restricted_statement_item
restricted_statement_item ::=
{ attribute_instance} proc_assertion
| { attribute_instance} system task_enable
| { attribute_instance} delay_or_event_control statement
| { attribute_instance} restricted _seq block
restricted_seq block ::= begin [ : block_identifier ] { block item declaration }{ restricted statement }
end [ : block_identifier ]
expr_sequence ::=
expression
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| [ constant_expression |
| range
| expr_sequence ; expr_sequence
| expr_sequence * [ constant_expression |
| expr_sequence * range
| ( expr_sequence)
step_control ::=
@@ event_identifier
| @@ (event_expression )

A.7 Specify section

A.7.1 Specify block declaration
specify_block ::= specify { specify_item} endspecify
specify_item ::=
specparam_declaration
| pulsestyle declaration
| showcancelled_declaration
| path_declaration
| system_timing_check
pulsestyle declaration ::=
pulsestyle onevent list_of path outputs;
| pulsestyle ondetect list_of path_outputs ;
showcancelled declaration ::=
showcancelled list_of path_outputs;
| noshowcancelled list_of path _outputs;

A.7.2 Specify path declarations
path_declaration ::=
simple_path_declaration ;
| edge_sensitive path declaration ;
| state_dependent_path_declaration ;
simple_path declaration ::=
parallel_path description = path_delay value
| full_path_description = path_delay_value
parallel_path_description ::=
( specify_input_terminal_descriptor [ polarity_operator | => specify_output_terminal_descriptor )
full_path_description ::=
(list_of path inputs[ polarity_operator ] *> list_of path_outputs)
list_of path inputs::=
specify_input_terminal_descriptor { , specify_input_terminal_descriptor }
list_of path_outputs::=
specify_output_terminal_descriptor { , specify_output_terminal_descriptor }

A.7.3 Specify block terminals
specify_input_terminal_descriptor ::=
input_identifier
| input_identifier [ constant_expression ]
| input_identifier [ range_expression ]
specify_output_terminal_descriptor ::=
output_identifier
| output_identifier [ constant_expression |

Copyright 2003 Accellera. All rights reserved. 243



Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

| output_identifier [ range_expression ]
input_identifier ::= input_port_identifier | inout_port_identifier
output_identifier ::= output_port_identifier | inout_port_identifier

A.7.4 Specify path delays
path_delay value::=
list_of_path_delay_expressions
| (list_of path delay expressions)
list_of path delay expressions::=
t_path_delay_expression
| trise_path_delay_expression, tfall_path_delay_expression
| trise_path_delay_expression, tfall_path_delay _expression , tz_path_delay_expression
| t01_path _delay expression, t10_path delay expression, t0z_path _delay expression,
tz1 _path delay_expression, t1z path_delay expression,tzO path delay expression
| t01_path_delay_expression, t10_path delay_expression, t0z_path delay_expression,
tz1 path delay expression, t1z path delay expression,tzO path delay expression
tOx_path_delay_expression, tx1 path delay expression, t1x_path delay expression,
tx0_path_delay_expression , txz_path delay_expression , tzx_path_delay_expression
t path_delay_expression ::= path_delay_expression
trise_path_delay _expression ::= path_delay_expression
tfall_path _delay expression ::= path_delay expression
tz_path_delay expression ::= path_delay expression
t01 path_delay expression ::= path_delay expression
t10_path_delay_expression ::= path_delay_expression
t0z_path delay expression ::= path_delay expression
tz1 path delay expression ::= path_delay expression
tlz path delay expression ::= path_delay expression
tz0_path delay expression ::= path_delay_expression
tOx_path_delay expression ::= path_delay expression
tx1_path_delay_expression ::= path_delay_expression
tlx_path_delay expression ::= path_delay expression
tx0_path_delay_expression ::= path_delay_expression
txz_path delay expression ::= path_delay expression
tzx_path_delay expression ::= path_delay_expression
path_delay_expression ::= constant_mintypmax_expression
edge sensitive_path declaration ::=
parallel_edge sensitive path description = path_delay value
| full_edge sensitive path description = path_delay value
paralel_edge sensitive path description ;=
([ edge_identifier ] specify_input_terminal_descriptor =>
specify_output_terminal_descriptor [ polarity_operator ] : data _source expression )
full_edge sensitive_path_description ::=
([ edge_identifier ] list_of_path_inputs*>
list_of path_outputs[ polarity operator ] : data source expression )
data_source expression ::= expression
edge _identifier ::= posedge | negedge
state_dependent_path _declaration ::=
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if ( module_path_expression ) simple_path _declaration
| if ( module_path_expression ) edge sensitive path declaration
| ifnone smple_path_declaration

polarity_operator ::= + | -
A.7.5 System timing checks

A.7.5.1 System timing check commands
system_timing_check ::=
$setup_timing_check
| $hold_timing_check
| $setuphold timing_check
| $recovery_timing_check
| $removal_timing_check
| $recrem_timing_check
| $skew_timing_check
| $timeskew_timing_check
| $fullskew_timing_check
| $period_timing_check
| $width_timing_check
| $nochange_timing_check
$setup_timing_check ::=
$setup ( data_event , reference_event , timing_check_limit [, [ notify_reg]]);
$hold_timing_check ::=
$hold ( reference_event , data_event , timing_check_limit [, [ notify_reg]]);
$setuphold_timing_check ::=
$setuphold ( reference_event , data_event , timing_check_limit , timing_check_limit
[, [ notify reg] [, [ stamptime_condition] [, [ checktime _condition ]
[, [ delayed_reference] [, [ delayed data]]]1]]1]);
$recovery timing_check ::=
$recovery ( reference_event , data_event , timing_check_limit [ , [ notify_reg]]);
$removal_timing_check ::=
$removal ( reference_event , data_event , timing_check_limit [, [ notify_reg]]);
$recrem_timing_check ::=
$recrem ( reference event , data_event , timing_check_limit , timing_check_limit
[, [ notify_reg] [, [ stamptime_condition] [ , [ checktime_condition ]
[, [ delayed reference] [, [ delayed_datal]1111);
$skew_timing_check ::=
$skew ( reference_event , data_event , timing_check_limit [, [ notify_reg]]);
$timeskew_timing_check ::=
$timeskew ( reference_event , data event , timing_check_limit
[, [ notify_reg] [, [ event_based flag] [, [ remain_active flag]]]1]1);
$fullskew_timing_check ::=
$fullskew ( reference_event , data_event , timing_check_limit , timing_check_limit
[, [notify_reg] [, [ event_based flag] [, [ remain_active flag]]]]);
$period_timing_check ::=
$period ( controlled_reference_event , timing_check_limit [, [ notify_reg]]);
$width_timing_check ::=
$width ( controlled_reference_event , timing_check_limit , threshold [, [ notify_reg]]) ;
$nochange_timing_check ::=
$nochange ( reference_event , data_event , start_edge offset,
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end_edge offset [, [ notify_reg]]);

A.7.5.2 System timing check command arguments
checktime_condition ::= mintypmax_expression
controlled_reference_event ::= controlled_timing_check event
data_event ::=timing_check_event
delayed data::=
terminal_identifier
| terminal_identifier [ constant_mintypmax_expression |
delayed reference ::=
terminal_identifier
| terminal_identifier [ constant_mintypmax_expression ]
end_edge offset ::= mintypmax_expression
event_based flag ::= constant_expression
notify_reg ::= variable_identifier
reference_event ::=timing_check event
remain_active flag ::= constant_mintypmax_expression
stamptime_condition :;= mintypmax_expression
start_edge offset ::= mintypmax_expression
threshold :;:=constant_expression
timing_check_limit ::= expression

A.7.5.3 System timing check event definitions
timing_check _event ::=

[timing_check _event_control] specify_terminal_descriptor [ & & & timing_check _condition ]
controlled_timing_check_event ::=

timing_check event_control specify _terminal_descriptor [ & & & timing_check condition ]

timing_check_event_control ::=
posedge
| negedge
| edge _control_specifier
specify_terminal_descriptor ::=
specify_input_terminal _descriptor
| specify_output_terminal _descriptor
edge _control_specifier ::= edge [ edge_descriptor [ , edge_descriptor ] ]
edge descriptorl ::=01| 10|z or_x zero _or_one|zero_or_one z_or_X
zero or_ one::=0|1
zorx:=x|X|z|z
timing_check_condition ::=
scalar_timing_check _condition
| (scalar_timing_check condition)
scalar_timing_check condition ::=
expression
| ~expression
| expression == scalar_constant
| expression === scalar_constant
| expression != scalar_constant
| expression !== scalar_constant
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scalar_constant ::= 1'b0 | 1'b1 | 1'BO| I'B1|'b0|’b1|’BO|'B1|1]0

A.8 Expressions

A.8.1 Concatenations

concatenation ::= { expression { , expression } }

constant_concatenation ::= { constant_expression { , constant_expression } }
constant_multiple_concatenation ::= { constant_expression constant_concatenation }
module_path_concatenation ::= { module_path_expression { , module_path _expression} }
module_path multiple_concatenation ::= { constant_expression module_path _concatenation }
multiple_concatenation ::= { constant_expression concatenation }

net_concatenation ::= { net_concatenation_value { , net_concatenation value} }

net_concatenation_value ::=
hierarchical_net_identifier
| hierarchical_net_identifier [ expression] { [ expression] }
| hierarchical_net_identifier [ expression ] { [ expression] } [ range_expression |
| hierarchical_net_identifier [ range_expression |
| net_concatenation
variable_concatenation ::={ variable_concatenation_value{ , variable_concatenation_value} }

variable concatenation value ::=
hierarchical_variable_identifier
| hierarchical_variable identifier [ expression] { [ expression] }
| hierarchical_variable identifier [ expression] { [ expression] } [ range_expression ]
| hierarchical_variable identifier [ range_expression |
| variable_concatenation
A.8.2 Function calls
constant_function_call ::= function_identifier { attribute instance}
( constant_expression { , constant_expression } )
function_call ::= hierarchical_function_identifier{ attribute_instance} ( expression{ , expression} )
genvar_function_call ::= genvar_function_identifier { attribute_instance }
( constant_expression { , constant_expression } )
system_function_call ::= system_function_identifier [ ( expression{ , expression} )]

A.8.3 Expressions
base expression ::= expression
inc_or_dec_expression ::=
inc_or_dec_operator variable |value
| variable Ivalue inc_or_dec_operator
conditional_expression ::= expressionl ? { attribute_instance} expression2 : expression3
constant_base _expression ::= constant_expression
constant_expression ::=
constant_primary
| unary_operator { attribute instance} constant_primary
| constant_expression binary_operator { attribute_instance } constant_expression
| constant_expression ? { attribute instance} constant_expression : constant_expression
| string
constant_mintypmax_expression ::=
constant_expression
| constant_expression : constant_expression : constant_expression
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constant_param_expression ::=
constant_expression
| data_type
constant_range_expression ::=
constant_expression
| msb_constant_expression : Isb_constant_expression
| constant_base expression +: width_constant_expression
| constant_base expression -: width_constant_expression
dimension_constant_expression ::= constant_expression
expressionl ::= expression
expression2 ;= expression
expression3 ::= expression
expression ::=
primary
| unary_operator { attribute instance} primary
| { attribute _instance} inc_or_dec_expression
| (operator_assignment )
| expression binary_operator { attribute instance} expression
| conditional_expression
| string
Isb_constant_expression :;= constant_expression
mintypmax_expression ::=
expression
| expression : expression : expression
module_path _conditional_expression ::= module_path _expression ? { attribute instance }
module_path_expression : module_path_expression
module_path_expression ::=
module_path_primary
| unary_module_path_operator { attribute_instance } module_path_primary
| module_path_expression binary_module path_operator { attribute_instance }
module_path_expression
| module_path_conditional_expression
module_path _mintypmax_expression :;=
module_path_expression
| module_path_expression : module path_expression : module _path_expression
msb_constant_expression ::= constant_expression
range_expression ::=
expression
| msb_constant_expression : Isb_constant_expression
| base_expression +: width_constant_expression
| base_expression -; width_constant_expression
width_constant_expression ::= constant_expression

A.8.4 Primaries
constant_primary ::=
constant_concatenation
| constant_function_call
| ( constant_mintypmax_expression )
| constant_multiple_concatenation
| genvar_identifier
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| number
| parameter_identifier
| specparam_identifier
| time_literal
['o]'1]'z]'Z|'x|'X
module_path_primary ::=
number
| identifier
| module_path_concatenation
| module_path_multiple_concatenation
| function_call
| system_function_call
| constant_function_call
| ( module_path_mintypmax_expression)

primary ::=
number
| hierarchical_identifier
| hierarchical_identifier [ expression] { [ expression] }
| hierarchical_identifier [ expression] { [ expression] } [ range_expression |
| hierarchical_identifier [ range_expression ]
| concatenation
| multiple_concatenation
| function_call
| system_function_call
| constant_function_call
| ( mintypmax_expression )
| { expression { , expression} }
| { expression { expression } }
| smple_type_or_number’ ( expression)
| simple_type or_number ' { expression { , expression} }
| simple_type or_number ’ { expression { expression } }
| time literal
['o]'2]'z]'Z|'x|'X
time litera ::=

unsigned_number time_unit
| fixed_point_number time_unit
time_unit ::=s|ms|us|ns|ps|fs

A.8.5 Expression left-side values
net_Ivaue::=
hierarchical_net_identifier
| hierarchical_net_identifier [ constant_expression ] { [ constant_expression ]
| hierarchical_net_identifier [ constant_expression ] { [ constant_expression |
[ constant_range_expression |
| hierarchical_net_identifier [ constant_range_expression |
| hierarchical_net_identifier ([ constant_expression{ , constant_expression} ])
| net_concatenation
variable Ivalue ::=
variable_Ivalue item [ inc_or_dec operator ]
| hierarchical_variable identifier ([ constant_expression { , constant_expression} ] )
variable Ivalue item ::=
hierarchical_variable_identifier

}
}
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| hierarchical_variable identifier [ expression] { [ expression ]
| hierarchical_variable identifier [ expression] { [ expression |
| hierarchical_variable identifier [ range_expression |

| variable _concatenation

A.8.6 Operators
unary_operator ::=

——

[ range_expression |

-~ & & AN 1~
binary_operator ::=
- % | === === == | && ||| |**

| <|<=|>|>=|& ||| [~ |>> << |>>> ]| <<<
inc_or_dec_operator ::= ++ | --
unary_module_path_operator ::=
H~1& [~& [T~ [ 17~
binary_module_path_operator ::=
=[1=]&& [|[[& [[[™ M~
A.8.7 Numbers
number ::=
decimal_number
| octal_number
| binary_number

| hex_number
| rea_number

decimal_number ::=
unsigned_number

| [ size] decimal_base unsigned _number

| [ size] decimal_base x_digit{ _}

| [ size] decimal_base z digit{ _}
binary_number ::=[ size] binary_base binary_value
octal_number ::=[ size] octal_base octal_vaue
hex_number ::=[ size] hex_base hex_vaue
sign:=+|-
size ::= non_zero_unsigned_number
non_zero_unsigned_number! ::= non_zero_decimal_digit{ _ | decimal_digit}
real_number? ::=

fixed_point_number

| unsigned_number [ . unsigned_number ] exp [ sign] unsigned_number
fixed_poi nt_numberl .= unsigned_number . unsigned_number
exp:=e|E
unsigned_number! ::= decimal_digit{ _| decimal_digit }
binary_val uel ;= bi nary_digit{ _|binary_digit }
octal_value! ::= octal_digit{ _|octal_digit }
hex_value® ::= hex_digit { _|hex_digit }
decimal_base’ ::="[s|S]d | '[s|S]D
binary base! ::='[gS]b | '[s|S|B
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octal_base! ::="[s[S]o | '[s|S]O

hex_base! ::="[s|S]h | [SIS]H

non_zero decimal_digit::=1|2|3]|4|5|6]|7]8]9
decimal_digit:==0|1]2|3|4|5|6|7|8]9

binary_digit ::=x_digit | z_digit|0|1

octal_digit ::= x_digit | z_digit|0|1]2|3]|4|5|6]|7

hex_digit ::= x_digit | z digit|0]|1]2|3|4|5|6]7|8|9|a|b|c|d|e|f|A|B|C|D|E|F

x_digit :=x| X
z_digit::=z|Z|?
A.8.8 Strings
EC-CH1 || string ::=" { Any_ASCIIl_Characters—exeept—rew—tne} "
A.9 General

A.9.1 Attributes
attribute_instance ::= (* attr_spec{ , attr_spec} *)
attr_spec ::=
attr_name = constant_expression
| attr_name
attr_name ::= identifier
A.9.2 Comments

comment ::=
one_line_comment
| block_comment

one_line_comment ::=// comment_text \n
block_comment ::= /* comment_text */
comment_text ::={ Any_ASCII_character }

A.9.3 Identifiers
arrayed_identifier ::=

simple_arrayed identifier

| escaped_arrayed_identifier

block identifier ::= identifier
cell_identifier ::= identifier
config_identifier ::= identifier
const_identifier ::= identifier
enum_identifier ::= identifier
escaped_arrayed identifier ::= escaped_identifier [ range]
escaped_hierarchical_identifier® ::=

escaped_hierarchical_branch { .smple_hierarchical_branch | .escaped_hierarchical _branch }
escaped_identifier ::=\ {any_ ASCII_character_except_white space} white space
event_identifier ::= identifier
function_identifier ::= identifier
gate instance identifier ::= arrayed identifier
generate_block_identifier ::= identifier
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genvar_function_identifier ::= identifier®
genvar_identifier ::= identifier
hierarchical_block_identifier ::= hierarchical_identifier
hierarchical_event_identifier ::= hierarchical_identifier
hierarchical_function_identifier ::= hierarchical_identifier
hierarchical_identifier ::=

simple_hierarchical_identifier

| escaped _hierarchical_identifier

hierarchical_net_identifier ::= hierarchical_identifier
hierarchical_variable_identifier ::= hierarchical_identifier
hierarchical_task_identifier ::= hierarchical_identifier
identifier ::=

simple_identifier

| escaped_identifier

interface identifier ::= identifier
inout_port_identifier ::= identifier
input_port_identifier ::= identifier
instance_identifier ::= identifier
library_identifier ::= identifier
memory_identifier ::= identifier
modport_identifier ::= identifier
module _identifier ::= identifier
module_instance identifier ::= arrayed_identifier
net_identifier ::= identifier
output_port_identifier ::= identifier
parameter_identifier ::= identifier
port_identifier ::= identifier
real_identifier ::= identifier
simple_arrayed identifier ::= simple_identifier [ range]
simple_hierarchical_identifier® ::= simple_hierarchical _branch [ .escaped_identifier ]
simple_identifier? ::=[ a-zA-Z_]{ [ azA-Z0-9 $]}
specparam_identifier ::= identifier
state identifier ::= identifier
system_function_identifier® ::= $ azA-20-9_$1{ [ azA-Z0-9 $]}
system_task_identifier® ::= $[ a-zA-Z0-9_$]{ [ a-zA-Z0-9 $]}
task_or_function_identifier ::= task_identifier | function_identifier
task_identifier ::= identifier
terminal_identifier ::= identifier
text_macro_identifier ::= simple_identifier
topmodule_identifier ::= identifier
type _declaration_identifier ::=type_identifier { packed _dimension }
type_identifier ::= identifier
udp_identifier ::= identifier
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udp_instance_identifier ::= arrayed_identifier

variable_decl_assign_identifier ::= variable identifier { unpacked_dimension} [ = constant_expression ]
variable_declaration_identifier ::= variable identifier { unpacked_dimension }

variable_identifier ::= identifier

A.9.4 Identifier branches

simple_hierarchical_branch® ::=
simple_identifier { [ unsigned number ]} [ { . smple_identifier { [ unsigned_number]} } ]

escaped_hierarchical_branch? ::=
escaped identifier { [ unsigned number] } [ { . escaped_identifier { [ unsigned_number]} } ]

A.9.5 White space
white_space ::= space | tab | newline | eof®

NOTES

1) Embedded spacesareillegal.

2) A simple_identifier and arrayed_reference shall start with an alpha or underscore () character, shall
have at least one character, and shall not have any spaces.

3) Theperiod (.) in simple_hierarchical_identifier and simple_hierarchical_branch shall not be preceded
or followed by white_space.

4) The period in escaped hierarchical _identifier and escaped_hierarchical_branch shall be preceded by
white_space, but shall not be followed by white space.

5) The $ character in a system function_identifier or system task identifier shall not be followed by
white_space. A system function_identifier or system task_identifier shall not be escaped.

6) Endof file.
7) Must beavoid function

8) Hierarchy isnot allowed
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Annex B
Keywords

SystemVerilog reserves the following keywords:
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alias?

a1t

always
always_combT
always ff'
always latch'
and

a-n-y*

assert!
assert_strobeT
assign

asynet
automatic
before’

begin

bit'

break!

buf

bufifo

bufifil

byteT

case

casex

casez

cell

changedT

char'’
class
clocking?
cmos
config
const'
constraintf
continue’
deassign
default
defparam
design
disable
do'

else

end
endcase
endclass
endclocking*
endconfig
endfunction
endgenerate
endinterface
endmodule

¥

+

t

endprimitive
endErogram*
endspecify
endtable

endtask |
endtransition’
enum’ |
event

exportT

extends’

extern'!

finalf

for |
force
forever
fork
forkjoin
function
generate
genvar
handle’
highzo
highzl
if

iff]
ifnone
importT
incdir
include
initial
inout
input
insidef
instance
int!
integer
interface
join
join any
join none
large
liblist
library
localf
localparam
logicT
lcngintT
lcngrealT
macromodule
medium

t

t

+
+

modportT

module |
nand

negedge

new'

nmos |
ﬂ'e'ﬂ'e*

nor
noshowcancelled
not |
notifo

notifl

null?

or

output |
packedT

parameter

pmos

posedge

primitive

priorityT

process’ |
program?

protected*

pullo

pulll

pulldown

pullup

pulsestyle onevent
pulsestyle ondetect
public?

rand’

randc’

rcmos

real |
realtime

reg |
release

repeat

return

rnmos

rpmos

rtran

rtranifo

rtranifl |
scalared

shortint’
shortreal'
showcancelled
signed

small
solve’
specify
specparam
static!
string*
strong0
strongl
struct!
super*
supply0
supplyl
table
task
this?
time
timeprecision
timeunit!
tran
tranifo
tranifl
transition’
tri

trio
tril
triand
trior
trireg
typeT
typedefT
union’
uniqueT
unsigned
use

var?
vectored
virtual?
void!
wait
wand
weak0
weakl
while
wire
with'
wor

Xnor

xXor

t
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T keywords added to the IEEE 1364 Verilog-2001 standard as part of SystemVerilog 3.0
* keywords added to the IEEE 1364 Verilog-2001 standard as part of SystemVerilog 3.1
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Annex C
String Methods

EC-CH105 || (rfermative)

Editor’'s Note: This entire section is new for draft 1. Only the Section titles have been highlighted as new text.

C.4 Introduction

SystemVerilog 3.1 adds the string data type, which is a variable length array. SystemVerilog 3.1 also sup-
ports a wide range of methods that operate and manipulate variables of the string type. These methods use
an object-oriented-like notation, that allow the creation of a large number of built-in, type-specific functions
without cluttering the global name space. These methods are described in the following sections.

Editor's Note: Is it being suggested that SystemVerilog tools build in these methods? If so, something to that
effect should be stated in this intro.

C.5len()

function integer 1len()

— str.1len() returnsthelength of the string, i.e., the number of charactersin the string (excluding any ter-
minating character).

— Ifstris“” then str.len () returnsO.

| C.6putc()

task putc(integer i, string s)

task putc(integer i, char c)
— str.pute (i, c) replacestheith character in str with the given integral value.
— str.putec (i, s) replacestheith character in str with the first character ins.
— scan be any expression that can be assigned to a string.

— putc doesn't changethesizeof str: If i <Oori >= str.len (), then str isunchanged.

Note: str.putc( j, x )isidenticatostr[ j ] = x.

| C.7 getc()

function int getc(integer i)
— str.gete (1) returnsthe ASCII code of the ith character in str.

— Ifi<Qori>=str.len(),then str.getc (1) returnsO.

Note x = str.getc( j ) isidenticatox = str[ j 1.
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| C.8toupper()
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function string toupper ()

— str.toupper () returnsastring with charactersin str converted to uppercase.

— str is unchanged.

| C.9tolower()

function string tolower ()

— str.tolower () returnsastring with charactersin str converted to lowercase.

— str is unchanged.

| C.10 compare()

function compare(string s)

— str.compare (s) comparesstr and s, character by character and returns the difference between thefirst
character in which they differ.

— If thestringsareequal, str. compare (s) returnsO. (like strcmp in ANSI C).

Seetherelational string operatorsin section 3.8, table 3-2.

| C.11licompare()

function icompare(string s)

— str.icompare (s) behavesissimilar to compare (), but the comparison is case insensitive.

| C.12 substr()

function string substr(integer i, integer 3j)

— str.substr (i, 7) returnsasub-string formed by charactersin positioni through j of str.

— If0<=i<=j<str.len(), substr () returns “” (the empty string).

| C.13atoi(), atohex(), atooct(), atobin()

function
function
function
function

integer
integer
integer
integer

atoi ()

atohex ()
atooct ()
atobin ()

— str.atoi () returnstheinteger corresponding to the ASCII decimal representation in str. For example:

str = "1
int i =

23",

str.atoi(); // assigns 123 to i.

The string is converted until to the first non-digit is encountered.

— atohex interprets the string as hexadecimal.

— atooct interpretsthe string as octal .
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— atobin interprets the string as binary.

C.14 atoreal()

function real atoreal()

— str.atoreal () returnsthe real number corresponding to the ASCII decimal representation in str.

C.15itoa()

task itoa(integer i)

— str.itoa (i) storesthe ASCII decimal representation of i into str (inverse of atoi).

C.16 hextoa()

EC-CH10 |I

task hextoa(integer i)

— str.hextoa(i) stores the ASCII hexadecimal representation of i into str (inverse of atohex).

C.17 octtoa()

task octtoa(integer i)

— str.octtoa(i) stores the ASCII octal representation of i into str (inverse of atooct).

C.18 bintoa()

task bintoa(integer i)

— str.bintoa(i) stores the ASCII binary representation of i into str (inverse of atobin).

C.19 realtoa()

task realtoa(integer i)

— str.realtoa(i) storesthe ASCII real representation of i into str (inverse of atoreal).
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Annex D
Linked Lists

(Informative)

Editor’'s Note: This entire section is new for draft 1. Only the Section titles have been highlighted as new text.

The List package is analogous to the C++ STL (Sandard Template Library) List container that is popular with
C++ programmers. However, instead of C++ templates, the generic code is done using macros. This will be
changed to use a parameterized list.

Editor’'s Note: What is being said in the preceding paragraph? Is it being suggested that SystemVerilog tools
include these macros? Or do the tools just provide a macro file that can be included? When will this be “changed
to use a parameterized list”, and who is going to do it?

D.20 List definitions

list —A list isadoubly linked list, where every element has a predecessor and successor. It is a sequence that
supports both forward and backward traversal, as well as amortized constant time insertion and removal of ele-
ments at the beginning, end, or middle.

container—A container is a collection of objects of the same type (for example, a container of network pack-
ets, a container of microprocessor instructions, etc.). Containers are objects that contain and manage other
objects and provide iterators that alow the contained objects to be addressed. A container has methods for

accessing its elements. Every container has an associated iterator type that can be used to iterate through the
container’s elements.

iter ator—Iterators provide the interface to containers. They also provide a meansto traverse the container ele-

ments. Iterators are pointers to nodes within alist. If an iterator points to an object in arange of objects and the
iterator isincremented, the iterator then points to the next object in the range.

D.21 List declaration

The List package supports lists of any arbitrary predefined type, such as integer, string, and class object.
To use a particular type of linked one must declare the list, thus:
‘include <ListMacros.vrh>

‘MakeVeralList (type)

Editor’s Note: Can the SystemVerilog standard use the name “Vera'?

D.21.1 Declaring list variables
A list variable must be declared before using it. Thisis done viathe VeralList construct:

VeralList type listl, list2, ..., 1istN;
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The Veralist construct declares lists of the indicated type. Data stored in the list elements must be of the same
type asthelist declaration.

D.21.2 Declaring list iterators
All list iterators must be declared before using them viathe Veral istlterator construct:
VeralListIterator type iteratorl, ..., iteratorN;

The eraListiterator construct declareslist iterators of the indicated type. An iterator hasto be declared aswith
any other variable declaration.

D.22 Size methods

This section describes the list methods that analyze list sizes.

D.22.1 size()

The size() method returns the number of elementsin the list container:
listl.size();

D.22.2 empty()

The empty() method returns 1 if the number elementsin the list container is O:

listl.empty () ;

D.23 Element access methods

This section describes the list methods used to access list elements.

D.23.1 front()

The front() method returns the first element in the list:
listl.£front();

D.23.2 back()

The back() method returns the last element in the list:

listl.back() ;

D.24 Iteration methods

This section describes the list methods used for iteration.
D.24.1 start()
The start() method returns an iterator pointing to the first element in the list:

listl.start() ;
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D.24.2 finish()

The finish() method returns an iterator pointing to the very end of theligt, (i.e. past the end value(last element)
of thelist. The last element can be accessed list.finish().prev().

D.25 Modifying methods

This section describes the list methods used to modify list containers.
D.25.1 assign()
The assign() method assigns elements of one list to another.
listl.assign(start_iterator, finish iterator);
The method assigns the elements that lie between the two iteratorsto list1.
If the finish iterator points to an element before the start iterator, the range wraps around the end of thelist.

The range iterators must be valid list iterators. If either points to a non-existent element or if they point to dif-
ferent lists, an error is generated.

D.25.2 swap()
The swap() method swaps the contents of two lists.
listl.swap(list2);
The method assigns the elements of listl to list2, and vice versa.
Swapping alist with itself has no effect. Swapping lists of different sizes generates an error.
D.25.3 clear()

The clear () method removes all the elements of the specified list and releases all the memory allocated for the
list (except for the list header).

listl.clear() ;
D.25.4 purge()

The purge() method removes all the elements of the specified list, and releases al the memory alocated for
thelist (including the list header), therefore avoiding possible memory leaks.

listl.purge() ;
To use alist that has been purged, the list must be re-created by calling new().

Both the purge() and clear () methods delete all the elementsin the list. However, the purge() method deletes
the list header as well. Since the clear () method does not delete the list header,

subsequent list addition methods such as push_back() will work without having to do a new() on the list. If
you intend to use the samelist again, uselist1.clear (). If thelist is being deleted forever, never to be used gain,
listl.purge() is recommended.

D.25.5 erase()

The erase() method removes the indicated element:
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new_iterator = listl.erase(position_iterator);
The element in the indicated position of listl is removed from the list.

After the element is removed, subsequent elements are moved up (there is no resultant empty element). Upon
calling the er ase() method, the position iterator is made invalid and the method returns a new iterator.

The position iterator must be a valid list iterator. If it points to a non-existent element, or an element from
another list, an error is generated.

D.25.6 erase_range()
The erase_range() method removes the elementsin the indicated range:
listl.erase range(start_iterator, finish iterator);
The erase_range() method removes the elements in the range from list1l. Note that the elements from start up
to, but not including, finish are removed. After the elements are removed, subsequent elements are moved up

(thereis no resultant empty element). If the finish

iterator points to an element before the start iterator, the range wraps around the end of the list. Any iterators
pointing to elements within the range are made invalid.

The range iterators must be valid list iterators. If either points to a non-existent element or if they point to dif-
ferent lists, an error is generated.

D.25.7 push_back()
The push_back() method inserts data at the end of the list:
listl.push back(data) ;

The datais added as another element at the end of listl. If thelist aready has the maximum allowed e ements,
the element is not added and an overflow error is generated.

The data must be of type a compatible with the list type.

D.25.8 push_front()

The push_front() method inserts data at the front of thelist:
listl.push_front (data) ;

The datais added as another element at the end of listl. If thelist aready has the maximum allowed e ements,
the element is not added and an overflow error is generated.

The data must be of type a compatible with the list type.

D.25.9 pop_front()

The pop_front() method removes the first element of thelist:
listl.pop front () ;

Thefirst element of listl isremoved. If listl is empty, an error message is generated.
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D.25.10 pop_back()
The pop_back() method removes the last element of the list:
listl.pop_back() ;
Thelast element of listl is removed. If listl is empty, an error message is generated.
D.25.11 insert()
Theinsert() method inserts data before the indicated position:
listl.insert (position_ iterator, data);

The method inserts the given data before the indicated position. Subsequent elements are moved backward.
The position iterator must point to an element in the call list.

The data must be of type a compatible with the list type.

D.25.12 insert_range()

Theinsert_range() method inserts elements in a given range before the indicated position:
listl.insert_range(position_iterator, start_iterator, finish iterator);

The method inserts the elements in the range between start and finish before the position given by position.

Note that the elements from start up to, but not including, finish are inserted. If the finish iterator pointsto an

element before the start iterator, the range wraps around the end of the list. The range iterators can specify a

range in another list or arangein listl.

The position iterator must point to an element in the calling list. the range iterators must be valid list iterators.
If either points to a non-existent element or if they point to different lists, an error is generated.

D.26 Iterator methods

This section describes the methods used by iterators.

D.26.1 next()

The next() method moves the iterator so that it points to the next itemin thelist:
Il.next();

D.26.2 prev()

The prev() method moves the iterator so that it points to the previousitem in thelist:
I1l.prev();

D.26.3 eq()

The eq() method compares two iterators:
Il.eq(I2);

The method returns 1 if both iterators point to the same location in the same list. Otherwise, it returns O.
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D.26.4 neq()
The neq() method compares two iterators:
Il.neq(I2);

The method returns 1 if the iterators point to different locations (either different locations in the same list or
any location in different lists). Otherwise, it returns 0.

D.26.5 data()

The data() method returns the data stored at a particular location:
Il.data();

The method returns the data stored at the location pointed to by iterator 11.

The datatypeis of the same type used in declaring the list via M akeVeralL ist(type).
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Annex E
Glossary

(Informative)

Assertion — An assertion is a statement that a certain property must be true. For example, that aread request
must always be followed by aread_grant within 2 clock cycles. Assertions allow for automated checking that
the specified property istrue, and can generate automatic error messages if the property is not true. SystemVer-
ilog provides special assertion constructs, which are discussed in Section 16.

Elaboration — Elaboration is the process of binding together the components that make up a design. These
components can include module instances, primitive instances, interfaces, and the top-level of the design hier-
archy. SystemVerilog requires a specific order of elaboration, which is presented in Section 17.2.

Enumerated type — Enumerated data types provide the capability to declare a variable which can have one
of aset of named values. The numerical equivalents of these values may be specified. Enumerated types can be
easily referenced or displayed using the enumerated names, as opposed to the enumerated values. Section 3.11
discusses enumerated types.

Interface — An interface encapsulates the communication between blocks of a design, alowing a smooth
migration from abstract system-level design through successive refinement down to lower-level register-trans-
fer and structural views of the design. By encapsulating the communication between blocks, the interface con-
struct also facilitates design re-use. The inclusion of interface capabilities is one of the major advantages of
SystemVerilog. Interfaces are covered in Section 18.

LRM — LRM isan abbreviation for Language Reference Manual. “ SystemVerilog LRM” refersto this docu-
ment. “Verilog LRM” refersto the |EEE manual “1364-2001 | EEE Standard for Verilog Hardware Description
Language 2001”. See Annex F for information about this manual.

Packed array — Packed array refers to an array where the dimensions are declared before an object name.
Packed arrays can have any number of dimensions. A one-dimensional packed array is the same as a vector
width declaration in Verilog. Packed arrays provide a mechanism for subdividing a vector into subfields,
which can be conveniently accessed as array elements. A packed array differs from an unpacked array, in that
the whole array is treated as a single vector for arithmetic operations. Packed arrays are discussed in detail in
Section 4.

Process — A process is a thread of one or more programming statements which can be executed indepen-
dently of other programming statements. Each initial procedure, always procedure and continuous assignment
statement in Verilog is a separate process. These are static processes. That is, each time the process starts run-
ning, there is an end to the process. SystemVerilog adds specialized always procedures, which are also static
processes, and dynamic processes, introduced by the process keyword. When dynamic processes are started,
they can run without ending. Processes are presented in Section 9.

SystemVerilog — SystemVerilog refers to the Accellera standard for a set of abstract modeling and verifica
tion extensions to the |EEE 1364-2001 Verilog standard. The many features of the SystemVerilog standard are
presented in this document.

Unpacked array — Unpacked array refers to an array where the dimensions are declared after an object
name. Unpacked arrays are the same as arrays in Verilog, and can have any number of dimensions. An
unpacked array differs from a packed array, in that the whole array cannot be used for arithmetic operations.
Each element must be treated separately. Unpacked arrays are discussed in Section 4.

Verilog — Verilog refers to the |EEE 1364-2001 Verilog Hardware Description Language (HDL), commonly

called Verilog-2001. This language is documented in the IEEE manual “1364-2001 | EEE Standard for Verilog
Hardware Description Language 2001”. See Annex F for information about this manual.
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