
SystemVerilog 3.1 Draft 3

Accellera’s Extensions to Verilog®

Abstract: a set of extensions to the IEEE 1364-2001 Verilog Hardware Description Language to aid
in the creation and verification of abstract architectural level models

Copyright © 2002 by Accellera Organization, Inc.
1370 Trancas Street #163
Napa, CA 94558
Phone: (707) 251-9977
Fax: (707) 251-9877

All rights reserved. No part of this document may be reproduced or distributed in any medium what-
soever to any third parties without prior written consent of Accellera Organization, Inc.

SystemVerilog 3.1/draft 3 (2/15/03)

SystemVerilog 3.01 Draft 3

Accellera’s Extensions to Verilog®

Abstract: a set of extensions to the IEEE 1364-2001 Verilog Hardware Description Language to aid
in the creation and verification of abstract architectural level models

Approved by the Accellera Board of Directors on 3 June 2002. This is a preliminary draft for review and
development purposes within the Accellera SystemVerilog committees only. Information within this
document has not been approved by Accellera, and is subject to change.

Editor’s note:
Draft 2 reflects changes made to the released SystemVerilog 3.0 LRM, as well as to draft 1 of this document. The
primary source of the changes in this draft are from the SV-EC (changes 1 through 41) and SV-BC (in
Edits_As_Of_02_12_201.doc).

Legend:
– magenta strike through text indicates text to be deleted from the 3.0 LRM.
– blue text with change bars indicates text that was added for draft 1.
– blue underlined text with change bars indicates text that was added for draft 2.
– blue double-underlined text with change bars indicates text that was added for draft 3.
–red text in boxes indicate editor notes that need to resolve, or that the editor needs to implement in a future draft.

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
Verilog is a registered trademark of Cadence Design Systems, San Jose, CA
ii Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Acknowledgements

This SystemVerilog 3.0 reference manual was developed by experts from many different fields, including
design and verification engineers, Electronic Design Automation (EDA) companies, EDA vendors, and mem-
bers of the IEEE 1364 Verilog standard working group. The primary contributors to the development of Sys-
temVerilog 3.0 include:

Vassilios Gerousis, Chair
Dave Kelf, Co-chair
Stefen Boyd
Dennis Brophy
Kevin Cameron
Cliff Cummings
Simon Davidmann
Tom Fitzpatrick
Peter Flake
Harry Foster
Paul Graham
David Knapp
Adam Krolnik
Mike McNamara
Phil Moorby
Prakash Narian
Anders Nordstrom
Rajeev Ranjan
John Sanguinetti
David Smith
Alec Stanculescu
Stuart Sutherland
Bassam Tabbara
Andy Tsay

Stuart Sutherland served at the technical editor for this document. Stefen Boyd served as editor of the BNF
annex.

Editor’s Note: This page will need to be updated at the conclusion of defining SystemVerilog 3.1
Copyright 2003 Accellera. All rights reserved. iii

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
iv Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Table of Contents

Section 1 Introduction to SystemVerilog .. 1

Section 2 Literal Values.. 3
2.1 Introduction (informative) .. 3
2.2 Literal value syntax... 3
2.3 Integer and logic literals ... 4
2.4 Real literals ... 4
2.5 Time literals .. 4
2.6 String literals... 4
2.7 Array literals ... 5
2.8 Structure literals .. 5

Section 3 Data Types... 6
3.1 Introduction (informative) .. 6
3.2 Data type syntax.. 7
3.3 Integer data types .. 7
3.4 Time data types ... 8
3.5 Real and shortreal data types .. 9
3.6 Void data type ... 9
3.7 Handle data type ... 9
3.8 String data type ... 10
3.9 Event data type.. 13
3.10 User-defined types .. 13
3.11 Enumerations .. 14
3.12 Structures and Unions ... 19
3.13 Class.. 21
3.14 Casting .. 22
3.15 $cast dynamic casting ... 23

Section 4 Arrays .. 25
4.1 Introduction (informative) .. 25
4.2 Packed and unpacked arrays ... 25
4.3 Multiple dimensions ... 26
4.4 Indexing and slicing of arrays... 27
4.5 Array querying functions .. 28
4.6 Dynamic arrays ... 28
4.7 Array assignment .. 29
4.8 Arrays as arguments.. 30
4.9 Associative arrays ... 31
4.10 Associative array methods .. 34
4.11 Associative array assignment.. 36
4.12 Associative array arguments ... 36

Section 5 Data Declarations ... 37
5.1 Introduction (informative) .. 37
5.2 Data declaration syntax... 37
5.3 Constants... 37
5.4 Variables ... 38
5.5 Scope and lifetime .. 38
5.6 Nets, regs, and logic.. 39
5.7 Signal Aliasing ... 39
Copyright 2003 Accellera. All rights reserved. v

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
Section 6 Attributes... 42
6.1 Introduction (informative) .. 42
6.2 Attribute syntax for interfaces .. 42

Section 7 Operators and Expressions.. 43
7.1 Introduction (informative) .. 43
7.2 Operator syntax... 43
7.3 Assignment, incrementor and decrementor operations... 43
7.4 Operations on logic and bit types ... 44
7.5 Wild equality and wild inequality... 45
7.6 Real operators ... 45
7.7 Size.. 45
7.8 Sign ... 45
7.9 Operator precedence and associativity ... 46
7.10 Built-in methods .. 46
7.11 Concatenation ... 47

Section 8 Procedural Statements and Control Flow.. 49
8.1 Introduction (informative) .. 49
8.2 Blocking and nonblocking assignments ... 50
8.3 Selection statements.. 51
8.4 Loop statements .. 52
8.5 Jump statements .. 53
8.6 Final blocks... 54
8.7 Named blocks and statement labels .. 55
8.8 Disable .. 56
8.9 Event control... 57
8.10 Procedural assign and deassign removal .. 58

Section 9 Processes.. 59
9.1 Introduction (informative) .. 59
9.2 Level sensitive logic ... 59
9.3 Latch sensitive logic ... 60
9.4 Edge sensitive logic .. 60
9.5 Continuous assignments ... 60
9.6 Dynamic processes ... 61
9.7 fork...join... 62
9.8 Process execution threads ... 63
9.9 Process control .. 63

Section 10 Tasks and Functions... 66
10.1 Introduction (informative) .. 66
10.2 Tasks ... 67
10.3 Functions... 69
10.4 Task and function scope and lifetime ... 71
10.5 Task and function argument passing .. 71

Section 11 Classes.. 75
11.1 Introduction (informative) .. 75
11.2 Syntax ... 75
11.3 Overview... 75
11.4 Objects (class instance)... 76
11.5 Object properties... 77
11.6 Object methods ... 77
vi Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
11.7 Constructors .. 77
11.8 Class properties... 78
11.9 This ... 79
11.10 Assignment, re-naming and copying .. 79
11.11 Inheritance and subclasses .. 80
11.12 Overridden members... 81
11.13 Super ... 81
11.14 Casting .. 82
11.15 Chaining constructors ... 82
11.16 Data hiding and encapsulation.. 83
11.17 Constant Properties .. 84
11.18 Abstract classes and virtual methods .. 84
11.19 Polymorphism: dynamic method lookup.. 85
11.20 Out of block declarations .. 86
11.21 Parameterized classes ... 86
11.22 Typedef class .. 87
11.23 Classes, structures, and unions ... 88
11.24 Memory management ... 88

Section 12 Inter-Process Synchronization and Communication .. 89
12.1 Introduction (informative) .. 89
12.2 Semaphores ... 89
12.3 try_get() .. 90
12.4 Mailboxes.. 91
12.5 Parameterized mailboxes .. 93
12.6 Event .. 97
12.7 Event synchronization utilities.. 100
12.8 Event variables.. 100
12.9 $wait_var().. 101

Section 13 Clocking Domains... 103
13.1 Introduction (informative) .. 103
13.2 Clocking domain declaration .. 103
13.3 Input and output skews ... 105
13.4 Hierarchical expressions ... 106
13.5 Signals in multiple clocking domains ... 106
13.6 Clocking domain scope and lifetime .. 107
13.7 Multiple clocking domain example .. 107
13.8 Interfaces and clocking domains... 107
13.9 Clocking domain events.. 109
13.10 Cycle delay: ## ... 110
13.11 Default clocking.. 110
13.12 Synchronization Synchronous events ... 111
13.13 Signal Input sampling ... 113
13.14 Signal Synchronous drives.. 113

Section 14 Signal Synchronous Operations .. 117
14.1 Introduction (informative) .. 117

Section 15 Program Block .. 119
15.1 Introduction (informative) .. 119
15.2 The program construct .. 119
15.3 Static data initialization .. 120
15.4 Scope and lifetime .. 120
Copyright 2003 Accellera. All rights reserved. vii

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
15.5 Multiple programs... 121
15.6 Eliminating zero-skew races ... 121
15.7 Eliminating races and SystemVerilog event queue .. 121
15.8 Blocking tasks in cycle/event mode.. 122
15.9 Program control tasks ... 122

Section 16 Assertions [SV 3.0].. 123
16.1 Introduction (informative) .. 123
16.2 Procedural assertions .. 124
16.3 Immediate assertions... 125
16.4 Strobed assertions ... 126
16.5 Sequential assertions... 127
16.6 More expression sequences .. 130
16.7 Aborting assertions externally .. 130
16.8 Controlling assertions ... 131
16.9 System functions... 131

Section 16 Assertions ... 133
16.1 Introduction (informative) .. 133
16.2 Immediate assertions... 133
16.3 Concurrent assertions.. 135
16.4 Sequences.. 136
16.5 Declaring sequences ... 138
16.6 Sequence operations ... 139
16.7 Declaring boolean expressions ... 155
16.8 Manipulating data in a sequence... 156
16.9 System functions... 157
16.10 The property definition ... 157
16.11 Grouping assertions as a library.. 162
16.12 Binding properties to scopes or instances... 164

Section 17 Hierarchy... 166
17.1 Introduction (informative) .. 166
17.2 The $root top level .. 166
17.3 Module declarations.. 168
17.4 Nested modules... 169
17.5 Port declarations ... 170
17.6 Time unit and precision .. 171
17.7 Module instances .. 172
17.8 Port connection rules .. 177
17.9 Name spaces ... 177
17.10 Hierarchical names ... 178

Section 18 Interfaces ... 179
18.1 Introduction (informative) .. 179
18.2 Interface syntax... 180
18.3 Ports in interfaces.. 184
18.4 Modports ... 184
18.5 Tasks and functions in interfaces.. 188
18.6 Parameterized interfaces ... 193
18.7 Access without Ports... 194

Section 19 Parameters .. 196
19.1 Introduction (informative) .. 196
viii Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
19.2 Parameter declaration syntax .. 196

Section 20 Random Constraints ... 198
20.1 Introduction (informative) .. 198
20.2 Overview... 198
20.3 Random variables ... 201
20.4 Constraint blocks .. 202
20.5 External constraint blocks... 203
20.6 Inheritance .. 203
20.7 Set membership... 204
20.8 Distribution ... 204
20.9 Implication .. 205
20.10 if-else constraints .. 206
20.11 Global constraints ... 207
20.12 Variable ordering .. 207
20.13 Randomization methods ... 209
20.14 In-line constraints - randomize() with .. 210
20.15 Disabling random variables .. 211
20.16 Disabling constraints... 212
20.17 Static constraint blocks ... 213
20.18 Dynamic constraint modification.. 214
20.19 Random number system functions.. 214
20.20 Random stability ... 215
20.21 Manually seeding randomize .. 217

Section 21 Configuration libraries .. 219
21.1 Introduction (informative) .. 219
21.2 Libraries .. 219
21.3 Library map files... 219

Section 22 System tasks and system functions ... 220
22.1 Introduction (informative) .. 220
22.2 Expression size system function ... 220
22.3 Array querying system functions .. 220
22.4 Assertion severity system tasks .. 221
22.5 Assertion control system tasks.. 222
22.6 Assertion system functions ... 222

Section 23 Compiler Directives.. 224
23.1 Introduction (informative) .. 224
23.2 ‘define macros... 224

Section 24 Features under consideration for removal from SystemVerilog ... 225
24.1 Introduction (informative) .. 225
24.2 Defparam statements... 225
24.3 Procedural assign and deassign statements... 225

Annex A Formal Syntax.. 227

Annex B Keywords.. 255

Annex C String Methods... 257

C.4 Introduction... 257
Copyright 2003 Accellera. All rights reserved. ix

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
C.5 len() ... 257
C.6 putc() ... 257
C.7 getc() ... 257
C.8 toupper().. 258
C.9 tolower().. 258
C.10 compare() .. 258
C.11 icompare() ... 258
C.12 substr() .. 258
C.13 atoi(), atohex(), atooct(), atobin() ... 258
C.14 atoreal() ... 259
C.15 itoa().. 259
C.16 hextoa() ... 259
C.17 octtoa() .. 259
C.18 bintoa().. 259
C.19 realtoa() ... 259

Annex D Linked Lists.. 261

D.20 List definitions .. 261
D.21 List declaration ... 261
D.22 Size methods ... 262
D.23 Element access methods ... 262
D.24 Iteration methods .. 262
D.25 Modifying methods... 263
D.26 Iterator methods .. 265

Annex E Glossary .. 267

Annex F Bibliography... 269
x Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Section 1
Introduction to SystemVerilog

This document specifies the Accellera extensions for a higher level of abstraction for modeling and verifica-
tion with the Verilog Hardware Description Language. These additions extend Verilog into the systems space
and the verification space and was built on top of the work of the IEEE Verilog 2001 committee.

Throughout this document:

— “Verilog” or “Verilog-2001” refers to the IEEE Std. 1364-2001 standard for the Verilog Hardware Descrip-
tion Language

— “SystemVerilog” refers to the Accellera extensions to the Verilog-2001 standard.

This document numbers the generations of Verilog as follows:

— “Verilog 1.0” is the IEEE Std. 1364-1995 Verilog standard, which is also called Verilog-1995

— “Verilog 2.0” is the IEEE Std. 1364-2001 Verilog standard, commonly called Verilog-2001; this genera-
tion of Verilog contains the first significant enhancements to Verilog since its release to the public in 1990

— “SystemVerilog 3.0x” is Verilog-2001 plus an extensive set of high-level abstraction extensions, as
defined in this document

— SystemVerilog 3.0, approved as an Accellera standard in June 2002, includes enhancements primarily
directed at high-level architectural modeling

— SystemVerilog 3.1, approved as an Accellera standard in , includes enhancements pri-
marily directed at advanced verification and C language integration

The Accellera initiative to extend Verilog is an ongoing effort under the direction of the Accellera HDL+ Tech-
nical Subcommittee. This committee will continue to define additional enhancements to Verilog beyond Sys-
temVerilog 3.01.

SystemVerilog 3.0 is built on top of Verilog 2001. SystemVerilog improves the productivity, readability, and
reusability of Verilog based code. The language enhancements in SystemVerilog provide more concise hard-
ware descriptions, while still providing an easy route with existing tools into current hardware implementation
flows.

SystemVerilog 3.0 adds several new constructs to Verilog-2001, including:

— C data types to provide better encapsulation and compactness of code

— int, char, typedef, struct, union, enum

— Enhancements to existing Verilog constructs, to provide tighter specifications

— Extensions to always blocks to include linting type features

— Logic (0, 1, X, Z) and bit (0, 1) data types

— Automatic/static specification on a per variable instance basis

— Procedural break, continue, return

— Interfaces to encapsulate communication and facilitate “Communication Oriented” design

— Dynamic processes for modeling pipelines

— A $root top level hierarchy which can have global definitions

SystemVerilog 3.1 adds verification enhancements in the following important areas:

— Verification Functionality: Reusable, reactive test-bench data-types and functions.

add final date
Copyright 2003 Accellera. All rights reserved. 1

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
— Built-in types: string, associative array, and dynamic array.

— Pass by reference subroutine parameters.

— Synchronization: Mechanisms for dynamic process creation, process control, and inter-process communi-
cation.

— Enhancements to existing Verilog events.

— Built-in synchronization primitives: Semaphore, Mailbox.

— Classes: Object-Oriented mechanism that provides abstraction, encapsulation, and safe pointer capabili-
ties.

— Dynamic Memory: Automatic memory management in a re-entrant environment that frees users from
explicit de-allocation.

— Cycle-Based Functionality: Clocking domains and cycle-based attributes that help reduce development,
ease maintainability, and promote reusability.

— Cycle-based signal drives and samples

— Synchronous samples

— Race-free program context
2 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH1
Section 2
Literal Values

2.1 Introduction (informative)

The lexical conventions for SystemVerilog literal values are extensions of those for Verilog. SystemVerilog
adds literal time values, literal array values, literal structures and enhancements to literal strings.

2.2 Literal value syntax

Syntax 2-1—Literal values (excerpt from Annex A)

time_literal ::= // from Annex A.8.4
unsigned_number time_unit

| fixed_point_number time_unit

time_unit ::= s | ms | us | ns | ps | fs

number ::= // from Annex A.8.7
decimal_number

| octal_number
| binary_number
| hex_number
| real_number

decimal_number ::=
unsigned_number

| [size] decimal_base unsigned_number
| [size] decimal_base x_digit { _ }
| [size] decimal_base z_digit { _ }

binary_number ::= [size] binary_base binary_value

octal_number ::= [size] octal_base octal_value

hex_number ::= [size] hex_base hex_value

sign ::= + | -

size ::= non_zero_unsigned_number

non_zero_unsigned_number ::= non_zero_decimal_digit { _ | decimal_digit}

real_number ::=
fixed_point_number

| unsigned_number [. unsigned_number] exp [sign] unsigned_number

fixed_point_number ::= unsigned_number . unsigned_number

exp ::= e | E

unsigned_number1 ::= decimal_digit { _ | decimal_digit }

string ::= " { Any_ASCII_Characters_except_new_line } " // from Annex A.8.8
Copyright 2003 Accellera. All rights reserved. 3

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

BC-7
BC-7b
2.3 Integer and logic literals

Literal integer and logic values can be sized or unsized, and follow the same rules for signedness, truncation
and left-extending as Verilog-2001.

SystemVerilog adds the ability to specify unsized literal single bit values with a preceding apostrophe (’), but
without the base specifier. All bits of the unsized value are set to the value of the specified bit. In a self-deter-
mined context these literals have a width of 1 bit, and the value is treated as unsigned.

’0, ’1, ’X, ’x, ’Z, ’z // sets all bits to this value

2.4 Real literals

The default type is real for fixed point format (e.g. 1.2), and exponent format (e.g. 2.0e10).

A cast can be used to convert literal real values to the shortreal type (e.g. shortreal’(1.2)). Casting
is described in section 3.14.

2.5 Time literals

Time is written in integer or fixed point format, followed without a space by a time unit (fs ps ns us ms s).
For example:

0.1ns
40ps

2.6 String literals

A string literal is enclosed in quotes and has its own data type. Non-printing and other special characters are
preceded with a backslash. SystemVerilog adds the following special string characters:

\v vertical tab
\f form feed
\a bell
\x02 hex number

A string literal must be contained in a single line unless the new line is immediately preceded by a \ (back
slash). In this case, the back slash and the new line are ignored. There is no predefined limit to the length of a
string literal.

A string literal can be assigned to a character, or a packed array, as in Verilog-2001. If the size differs, it is right
justified.

char c1 = "A" ; bit [7:0] d = "\n" ;
bit [0:11] [7:0] c2 = "hello world\n" ;

A string literal can be assigned to an unpacked array of characters, and a zero termination is added like in C. If
the size differs, it is left justified.

char c3 [0:12] = "hello world\n" ;

Packed and unpacked arrays are discussed in section 4. The difference between string literals and array literals
is discussed in section 2.7, which follows.

String literals can also be cast to a packed or unpacked array, which shall follow the same rules as assigning a
literal string to a packed or unpacked array. Casting is discussed in section 3.14.
4 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

BC-7b

BC-7c
SystemVerilog 3.1 also includes a string data-type to which a string literal can be assigned. Variables of type
string have arbitrary length; they are dynamically resized to hold any string. String literals are packed arrays
(of a width that is a multiple of 8 bits), and they are implicitly converted to the string type when assigned to a
string type or used in an expression involving string type operands (see annex C).

2.7 Array literals

Arrays literals are syntactically similar to C initializers, but with the replicate operator ({{}}) allowed.

int n[1:2][1:3] = {{0,1,2},{3{4}}};

The nesting of braces must follow the number of dimensions, unlike in C. However, replicate operators can be
nested.

int n[1:2][1:3] = {2{{3{4}}}};

If the type is not given by the context, it must be specified with a cast.

typedef int [1:3] triple; // 3 integers packed together
b = triple’{0,1,2};

2.8 Structure literals

Structure literals are syntactically similar to C initializers. Structure literals must have a type, either from con-
text or a cast.

typedef struct {int a; shortreal b;} ab;
ab c;
c = {0, 0.0}; // structure literal type determined from the left hand context
(c)

Nested braces should reflect the structure. For example:

ab abarr[1:0] = {{1, 1.0}, {2, 2.0}};

Note that the C alternative {1, 1.0, 2, 2.0} is not allowed.
Copyright 2003 Accellera. All rights reserved. 5

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH102
Section 3
Data Types

3.1 Introduction (informative)

To provide for clear translation to and from C, SystemVerilog supports the C built-in types, with the meaning
given by the implementation C compiler. However, to avoid the duplication of int and long without causing
confusion, in SystemVerilog, int is 32 bits and longint is 64 bits. The C float type is called shortreal in
SystemVerilog, so that it will not be confused with the Verilog-2001 real type.

Verilog-2001 has net data types, which may have 0, 1, X or Z, plus 7 strengths, giving 120 values. It also has
variable data types such as reg, which have 4 values 0, 1, X, Z. These are not just different data types, they are
used differently. SystemVerilog adds another 4-value data type, called logic. See section 3.3.2.

SystemVerilog 3.1 adds string, handle and class data types, and enhances the Verilog event and Sys-
temVerilog 3.0 enum data types. SystemVerilog 3.1 also extends the user defined types by providing support
for object-oriented class.

Verilog-2001 provides arbitrary fixed length arithmetic using reg data types. The reg type can have bits at X
or Z, however, and so are less efficient than an array of bits, because the operator evaluation must check for X
and Z, and twice as much data must be stored. SystemVerilog adds a bit type which can only have bits with 0
or 1 values. See section 3.3.2 on 2-state data types.

Automatic type conversions from a smaller number of bits to a larger number of bits involve zero extensions if
unsigned or sign extensions if signed, and do not cause warning messages. Automatic truncation from a larger
number of bits to a smaller number does cause a warning message. Automatic conversions between logic and
bit do not cause warning messages. To convert a logic value to a bit, 1 converts to 1, anything else to 0.

User defined types are introduced by typedef and must be defined before they are used. Data types can also
be parameters to modules or interfaces, making them like class templates in object-oriented programming. One
routine can be written to reverse the order of elements in any array, which is impossible in C and in Verilog.

Structures and unions are complicated in C, because the tags have a separate name space. SystemVerilog fol-
lows the C syntax, but without the optional structure tags.

See also Section 4 on arrays.
6 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH6
EC-CH31
BC46

EC-CH2

EC-CH3
3.2 Data type syntax

Syntax 3-1—data types (excerpt from Annex A)

3.3 Integer data types

SystemVerilog offers several integer data types, representing a hybrid of both Verilog and C data types:

3.3.1 Integral types

The term integral is used throughout this document to refer to the data types that can represent a single integral
value. These are all the basic integer data types, packed struct, packed union, enum, and or time.

Table 3-1: Integer data types

char 2-state C-compatible data type, usually an 8 bit signed integer (ASCII) or a short int (Unicode)

shortint 2-state SystemVerilog data type, 16 bit signed integer

int 2-state SystemVerilog data type, 32 bit signed integer

longint 2-state SystemVerilog data type, 64 bit signed integer

byte 2-state SystemVerilog data type, 8 bit signed integer

bit 2-state SystemVerilog data type, user-defined vector size

logic 4-state SystemVerilog data type, user-defined vector size with different use rules from reg

reg 4-state Verilog-2001 data type, user-defined vector size

integer 4-state Verilog-2001 data type, at least 32 bit signed integer

string arbitrary length character string

class object-oriented class

data_type ::= // from Annex A.2.2.1
integer_vector_type [signing] { packed_dimension } [range]

| integer_atom_type [signing] { packed_dimension }
| type_declaration_identifier
| non_integer_type
| struct { { struct_union_member } }
| union { { struct_union_member } }
| enum { enum_identifier [= constant_expression]

{ , enum_identifier [= constant_expression] } }
| void

integer_type ::= integer_vector_type | integer_atom_type

integer_atom_type ::= byte | char | shortint | int | longint | integer

integer_vector_type ::= bit | logic | reg

non_integer_type ::= time | shortreal | real | realtime | $built-in

signing ::= [signed] | [unsigned]

simple_type ::= integer_type | non_integer_type | type_identifier

struct_union_member ::= data_type list_of_variable_identifiers_or_assignments ;
Copyright 2003 Accellera. All rights reserved. 7

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
3.3.2 2-state (two-value) and 4-state (four-value) data types

Types which can have unknown and high impedance values are called 4-state types. These are logic, reg and
integer. The other types do not have unknown values and are called 2-state types, for example bit and int.

The difference between int and integer is that int is 2-state logic and integer is 4-state logic. 4-state val-
ues have additional bits that encode the X and Z states. 2-state data types should simulate faster, take less
memory, and are preferred in some design styles.

3.3.3 Signed and unsigned data types

Integer types use integer arithmetic and can be signed or unsigned. This affects the meaning of certain opera-
tors such as ‘<’, etc.

int unsigned ui;
int signed si;

The data types char, byte, shortint, int, integer and longint default to signed. The data types bit,
reg and logic default to unsigned, as do arrays of these types.

Note that the signed keyword is part of Verilog-2001. The unsigned keyword is a reserved keyword in Ver-
ilog-2001, but is not utilized.

See also section 7, on operators and expressions.

3.4 Other basic data types

3.4 Time data types

Time is a special data type. It is a 64 bit integer of time steps. The default time step follows the rules of IEEE
Verilog standard. The time step can be changed by the timeprecision declaration. It can also be changed by
a ‘timescale directive.

The timeprecision declaration affects the local accuracy of delays.

module m;
timeprecision 0.1ns;
initial #10.11ns a = 1; // round to #10.1ns according to time precision

endmodule

The timeunit declaration is used to set the current time unit. When a literal time is expressed in SystemVer-
ilog, it can be given with explicit time units, e.g. 12ns. If no time units are specified, the literal number is mul-
tiplied by the current time unit. Time values are scaled to the time precision of the module, following the rules
of Verilog-2001. An integer or real variable is cast to a time value by using the integer or real as a delay.

For example:

#10.11; // multiply by time unit and round according to time precision

See section 17.6 for more information on setting the time units and time precision.

Editor’s Note: I took the liberty of elevating the three sub-subsections within 3.4 of the SV 3.0 LRM to subsection
level, to be more consistent with the levels describing the new string and event data types. Hence:
- SV 3.0 LRM Section 3.4.1 “Time data types” becomes SV 3.1 LRM Section 3.4
- SV 3.0 LRM Section 3.4.2 “Real and shortreal data types” becomes SV 3.1 LRM Section 3.5
- SV 3.0 LRM Section 3.4.3 “Void data type” becomes SV 3.1 LRM Section 3.6
8 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH102
3.5 Real and shortreal data types

The real1 data type is from Verilog-2001, and is the same as a C double. The shortreal data type is a Sys-
temVerilog data type, and is the same as a C float.

3.6 Void data type

The void data type represents non-existent data. This type can be specified as the return type of functions,
indicating no return value.

3.7 Handle data type

The handle data type represents storage for pointers passed across the DirectC interface. The size of this type
is platform dependent and must be at least large enough to hold a pointer on the machine in which the simula-
tor is running. The syntax to declare a handle is as follows:

handle variable_name ;

where variable_name is a valid identifier. Handles shall always be initialized to the value null, which has a
value of 0 on the C side, which represents a non-existent handle. Handles are very restricted on their usage,
with the only legal uses being as follows:

— only the following operators are valid on handle variables:

— equality (==), inequality (!=) with another handle or with null

— case equality (===), case inequality with another handle or with null (same semantics as == and !=)

— only the following assigments can be made to a handle

— assignment from another handle

— assigment to null

— handles can be inserted into associative arrays (refer to section 4.9), but no guarantees will be made on rel-
ative ordering of any two entries in such an associative array, even between successive runs of the same
simulation.

— handles can be used within a class

— handles may be passed as arguments to functions or tasks

— handles can be returned from functions

The use of handles are restricted as follows:

— ports may not have the handle data type

— handles may not be assigned to variables of any other type

1 The real and shortreal types are represented as described by IEEE 734-1985, an IEEE standard for floating point numbers.

Editor’s Note: Is the “DirectC” .name to be used in SystemVerilog?

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

Editor’s Note: I took the liberty of adding “handle” to the keyword list in Annex B

Editor’s Note: Is “null” also a SystemVerilog keyword?.
Copyright 2003 Accellera. All rights reserved. 9

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH4

EC-CH21
— handles cannot be used:

— in any expression other than as permited above

— as a ports

— in sensitivity lists or event expressions

— in continuous assigments

— in structures or unions

— in packed arrays

3.8 String data type

SystemVerilog includes a string data type, which is a variable size, dynamically allocated array of charac-
ters. SystemVerilog also includes a number of special methods to work with strings, which are described in
annex C.

Verilog supports string literals, but only at the lexical level. In Verilog, string literals behave like packed arrays
of a width that is a multiple of 8 bits. A string literal assigned to a packed array is truncated to the size of the
array

In SystemVerilog string literals behave exactly the same as in Verilog However, SystemVerilog also supports
the string data type to which a string literal can be assigned. When using the string data type instead of a
packed array, strings can be of arbitrary length and no truncation occurs. Literal strings are implicitly con-
verted to the string type when assigned to a string type or used in an expression involving string type oper-
ands (see annex C).

Variables of type string can be indexed from 0 to N-1 (the last element of the array), and they can take on the
special value “”, which is the empty string. Uninitialized variables of type string are initialized to “”.

The syntax to declare a string is:

string variable_name [= initial_value];

where variable_name is a valid identifier and the optional initial_value can be a string literal or the
value “” for an empty string. For example:

string myName = "John Smith";

If an initial value is not specified in the declaration, the variable is initialized to “”, the empty string.

SystemVerilog provides a set of operators that can be used to manipulate combinations of string variables and
string literals. The basic operators defined on the string data type are listed in table 3-2, which follows.

A string literal is implicitly converted to string type when it is assigned to a variable of type string or is used
in an expression involving string type operands. A string literal and a concatenation or replication of string lit-
erals are the only types of packed arrays that are allowed to be assigned to variables of type string. A vari-
able of type string can be assigned an expression of type string, string literal, or packed array.

A string literal can be assigned to a string, a character, or a packed array. If their size differs the literal is right
justified and zero filled on the left. For example:

char c = "A"; // assign to c "A"
bit [10:0] a = "\x41"; // assigns to a ‘b000_0100_0001
bit [1:4][7:0] h = "hello" ; // assigns to h "ello"

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.
10 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH5

EC-CH22
A string, string literal, or packed array can be assigned to a string variable. The string variable will grow to
accommodate the packed array. If the size (in bits) of the packed array is not a multiple of 8 then the packed
array is zero filled on the left. For example:

string s1 = "hello"; // sets s1 to "hello"
bit [11:0] b = 12’ha41;
string s2 = b; // sets s2 to ’h0a41

For example:

reg [15:0] r;
integer i = 1;
string b = "";
string a = {"Hi", b};
string b = "";

r = a; // OK
b = r; // Error OK (implicit cast, some implementations

// may issue a warning)
b = "Hi"; // OK
b = {5{"Hi"}}; // OK
a = {i{"Hi"}}; // OK (non constant replication)
r = {i{"Hi"}}; // invalid (non constant replication)
a = {i{b}}; // OK
a = {a,b}; // OK
a = {"Hi",b}; // OK
a[0] = "h"; // OK same as a[0] = "hi")

Table 3-2: String operators

Operator Semantics

Str1 == Str2 Equality. Checks if the two strings are equal. Result is 1 if they are equal
and 0 if they are not. Both strings may be of type string. Or one of
them may be a string literal. If both operands are string literals, the
expression is the same Verilog equality operator for integer types. The
special value “” is allowed.

Str1 != Str2 Inequality. Logical Negation of ==

Str1 < Str2
Str1 <= Str2
Str1 > Str2
Str1 >= Str2

Comparison. Relational operators return 1 if the corresponding condition
is true using the lexicographical ordering of the two strings Str1 and
Str2. The comparison behaves like the ANSI C strcmp function (or
the compare string method). Both operands may be of type string, or
one of them may be a string literal.

{Str1,Str2,...,Strn} Concatenation. Each string may be of type string or a string literal (it
will be implicitly converted to string). If at least one string is of type
string, then the expression evaluates to the concatenated string and is
of type string. If all the strings are string literals then the expression
behaves like a Verilog concatenation of integral types; if the result is then
used in an expression involving string types, it is implicitly converted to
the string type.
Copyright 2003 Accellera. All rights reserved. 11

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH8

EC-CH7

EC-CH9
SystemVerilog also includes a number of special methods to work with strings.

— len() — returns the length of the string

— putc() — replaces a character in a string

— getc() — returns the ASCII code of a character in a string

— toupper() — returns a string with all characters converted to uppercase

— tolower() — returns a string with all characters converted to lowercase

— compare() — compares two strings character by character

— icompare() — compares two strings character by character in a case insensitive mode

— substr() — returns a sub-string from within a string

— atoi()— returns the integer corresponding to the ASCII decimal representation of a string

— atohex()— returns the integer corresponding to the ASCII hexadecimal representation of a string inter-
prets the string as hexadecimal.

— atooct()— returns the integer corresponding to the ASCII ocatal octal representation of a string inter-
prets the string as octal.

— atobin()— returns the integer corresponding to the ASCII binary representation of a string

— atoreal() returns the real number corresponding to the ASCII decimal representation in str.

— itoa(i) stores the ASCII decimal representation of an integer as a string (inverse of atoi).

— hextoa(i) stores the ASCII hexadecimal representation of an integer as a string (inverse
of atohex).

— octtoa(i) stores the ASCII octal representation of an integer as a string (inverse of
atooct).

— bintoa(i) stores the ASCII binary representation of an integer as a string (inverse of
atobin).

— realtoa(r) stores the ASCII representation of a real as a string (inverse of atoreal).

These built-in string methods are described in annex C.

{multiplier{Str}} Replication. Str may be of type string or a string literal. Multiplier
must be of integral type and can be non-constant. If multiplier is non-
constant or Str is of type string, the result is a string containing N
concatenated copies of Str, where N is specified by the multiplier. If
Str is a literal and the multiplier is constant, the expression behaves like
numeric replication in Verilog (if the result is used in another expression
involving string types, it is implicitly converted to the string type).

Str.method(...) The dot (.) operator is used to invoke a specified method on strings. See
annex C for detailed descriptions of the various string methods available.

Table 3-2: String operators

Operator Semantics
12 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH11

EC-CH11

EC-CH11
3.9 Event data type

The event data type is an enhancement over Verilog named events. SystemVerilog events provide a handle to
a synchronization object. Like Verilog, event variables can be explicitly triggered and waited for, however,
SystemVerilog events can also have a persistent triggered state, that is, the synchronization object can be either
ON or OFF that lasts for the duration of the entire time step. Also, event variables can be assigned the special
value null, which breaks the association between the synchronization object and the event variable, or be
assigned another event variable, in which case more than one event variable will refer to the same synchroniza-
tion object. Events can be passed as arguments to tasks.

The syntax to declare an event is:

event variable_name [= initial_value];
event [bit] variable_name [= initial_value];

where variable_name is a valid identifier and the optional initial_value can be another event vari-
able or the special value null.

If an initial value is not specified then the variable is initialized to a new synchronization object whose trig-
gered state is OFF.

If the event is assigned null, the event behaves as if it were permanently triggered (ON state).

If an initial value is not specified then the variable is initialized to a new synchronization object.

The declaration event bit creates a persistent event (as described in section 12.6.2).

If the event is assigned null, the event becomes nonblocking, as if it were permanently triggered.

Examples:

event done; // declare a new event called done
event done_too = done; // declare done_too as alias to done
event bit blast; // persistent event
event bit empty = null; // persistent event variable

Event operations and semantics are discussed in detail in section 12.6.

3.10 User-defined types

Syntax 3-2—user-defined types (excerpt from Annex A)

The user can define a new type using typedef, as in C.

typedef int intP;

This can then be instantiated as:

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

type_declaration ::= // from Annex A.2.1.3
typedef data_type type_declaration_identifier ;

| typedef interface_identifier { [constant_expression] } . type_identifier
type_declaration_identifier ;
Copyright 2003 Accellera. All rights reserved. 13

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

BC10

BC26-1

BC17b
intP a, b;

A type can be used before it is defined, provided it is first identified as a type by an empty typedef:

typedef foo;
foo f = 1;
typedef int foo;

Note that this does not apply to enumeration values, which must be defined before they are used.

If the type is defined within an interface, it must be re-defined locally before being used.

interface it;
typedef int intP;

endinterface

it it1;
typedef it1.intP intP;

User-defined type names must be used for complex data types in casting (see section 3.12, below), and as
parameters.

3.11 Enumerations

Syntax 3-3—enumerated types (excerpt from Annex A)

An enumerated type provides the capability to declare sets of integral named constants. Enumerated data types
provide the capability to abstractly declare strongly typed variables without either a data type or data value(s)
and later add the required data type and value(s) for designs that require more definition. Enumerated data
types also can be easily referenced or displayed using the enumerated names as opposed to the enumerated val-
ues.

The format control string "%n" can be used to display the enumerated name. Any format control string which
can be used to display an integer value can be used to display an enumerated value.

In the absence of a data type declaration, the default data type shall be int. Any other data type used with enu-
merated types shall require an explicit data type declaration.

An enumerated type defines a set of named values. In the following example, “light1” and “light2” are defined
to be variables of the anonymous (unnamed) enumerated int type that includes the three members: “red”, “yel-
low” and “green.”

enum {red, yellow, green} light1, light2; // anonymous int type

An enumerated name with x or z assignments assigned to an enum with no explicit data type or an explicit 2-
state declaration shall be a syntax error.

data_type ::= // from Annex A.2.2.1
...

| enum [integer_type [signing] { packed_dimension }]
{ enum_identifier [= constant_expression] { , enum_identifier [= constant_expression] } }

Editor’s Note: Update preceding BNF excerpt with new BNF, once available.
14 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

BC17d

EC-CH26
// Syntax error: IDLE=2’b00, XX=2’bx <ERROR>, S1=2’b01??, S2=2’b10??
enum {IDLE, XX=’x, S1=2’b01, S2=2’b10} state, next;

An enum declaration of a 4-state type, such as integer, that includes one or more names with x or z assignments
shall be permitted.

// Correct: IDLE=2’b00, XX=2’bx, S1=2’b01, S2=2’b10
enum integer {IDLE, XX=’x, S1=2’b01, S2=2’b10} state, next;

An unassigned enumerated name that follows and enum name with x or z assignments shall be a syntax error.

// Syntax error: IDLE=2’b00, XX=2’bx, S1=??, S2=??
enum integer {IDLE, XX=’x, S1, S2} state, next;

The values can be cast to integer types, and increment from an initial value of 0. This can be overridden.

enum {bronze=3, silver, gold} medal; // silver=4, gold=5

The values can be set for some of the names and not set for other names. A name without a value is automati-
cally assigned an increment of the value of the previous name.

// c is automatically assigned the increment-value of 8
enum {a=3, b=7, c} alphabet;

If an automatically incremented value is assigned elsewhere in the same enumeration, this shall be a syntax
error.

// Syntax error: c and d are both assigned 8
enum {a=0, b=7, c, d=8} alphabet;

If the first name is not assigned a value, it is given the initial value of 0.

// a=0, b=7, c=8
enum {a, b=7, c} alphabet;

A sized constant can be used to set the size of the type. All sizes must be the same.

// silver=4’h4, gold=4’h5 (all are 4 bits wide)
enum {bronze=4’h3, silver, gold} medal4;

// Syntax error: the width of the enum has been exceeded
// in both of these examples
 enum {a=1'b0, b, c} alphabet;
 enum [0:0] {a,b,c} alphabet;

Any enumeration encoding value that is outside the representable range of the enum shall be an error.

Adding a constant range to the enum declaration can be used to set the size of the type. If any of the enum
members are defined with a different sized constant, this shall be a syntax error.

// Error in the bronze and gold member declarations
enum [3:0] {bronze=5’h13, silver, gold=3’h5} medal4;

// Correct declaration - bronze and gold sizes are redundant
enum [3:0] {bronze=4’h13, silver, gold=4’h5} medal4;

The type is checked in assignments, arguments and relational operators (which check the values). Type check-
ing of enumerated types used in assignments, as arguments and with operators is covered in section 3.11.3.
Like C, there is no overloading of literals, so medal and medal4 cannot be defined in the same scope, since
Copyright 2003 Accellera. All rights reserved. 15

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH12

EC-CH13
they contain the same names.

3.11.1 Defining new data types as enumerated types

A type name can be given so that the same type can be used in many places.

typedef enum {NO, YES} boolean;
boolean myvar; // named type

SystemVerilog also provides a shorthand notation for declaring enumerated types:

enum enum_type [integer_type [signing]{packed_dimension}] { value_list };

This modified form declares the enumeration and creates a type called enum_type. This shorthand notation is
similar to the way in which C++ extends C, and allows an enumerated type to be created as part of the enumer-
ation declaration, without the need for a typedef.

For example, to create an enumerated type called StreetLight:

enum StreetLight {red, yellow, green};

To create an enumeration type called Colors whose values are of type bit[1:0].

enum Colors bit [1:0] { unknown = ’x, red = 1, green, blue };

The shorthand form cannot be used to declare both a type and variables of that type. For example, the follow-
ing is an error:

enum Boolean { FALSE, TRUE } myvar;

3.11.2 Enumerated type ranges

A range of enumeration elements can be specified automatically, via the following syntax:

For example:

enum opcode { add=10, sub[5], jmp[6:8] }
enum { add=10, sub[5], jmp[6:8] } ;

This example assigns the number 10 to the enumerated type add. It also creates the enumerated types
sub0,sub1,sub2,sub3,and sub4, and assigns them the values 11..15, respectively. Finally, the example creates
the enumerated types jmp6,jmp7, and jmp8, and assigns them the values 16-18, respectively.

3.11.3 Type checking

SystemVerilog enumerated types are strongly typed, thus, a variable of type enum cannot be assigned a value
that lies outside the enumeration set. This is a powerful type-checking aid that prevents users from accidentally

Table 3-3: Enumeration element ranges

name Associates the next consecutive number with name.

name = N Assigns the constant N to name

name[N] Generates N names in the sequence: name0, name1, ..., nameN-1N must be a constant expres-
sion

name[N:M] Creates a sequence of names starting with nameN and incrementing or decrementing until
reaching name nameM.
16 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH14

EC-CH27

EC-CH15

EC-CH32
assigning nonexistent values to variables of an enumerate type. This restriction only applies to an enumeration
that is explicitly declared as a type. The enumeration values can still be used as constants in expressions, and
the results can be assigned to any variable of a compatible integral type.

Both the enumeration names and their integer values must be unique. The values can be set to any integral con-
stant value, or auto-incremented from an initial value of 0. It is an error to set two values to the same name, or
to set a value to the same auto-incremented value.

Enumerated variables are type-checked in assignments, arguments, and relational operators. Enumerated vari-
ables are auto-cast into integral values, but, assignment of arbitrary expressions to an enumerated variable
requires an explicit cast.

For example:

enum Colors { red, green, blue, yellow, white, black };
typedef enum { red, green, blue, yellow, white, black } Colors;

This operation assigns a unique number to each of the color identifiers, and creates the new data type Colors.
This type can then be used to create variables of that type.

Colors c;
c = green;
c = 1; // Invalid assignment
if (1 == c) // OK. c is auto-cast to integer

In the example above, the value green is assigned to the variable c of type Colors. The second assignment is
invalid because of the strict typing rules enforced by enumerated types.

Casting can be used to perform an assignment of a different data type, or an out of range value, to an enumer-
ated type. Casting is discussed in sections 3.14 and 3.15.

3.11.4 Enumerated Types in Numerical Expressions

Elements of enumerated type variables can be used in numerical expressions. The value used in the expression
is the numerical value associated with the enumerated value. For example:

enum Colors { red, green, blue, yellow, white, black };
typedef enum { red, green, blue, yellow, white, black } Colors;

Colors col;
integer a, b;

a = blue * 3;
col = yellow;
b = col + green;

From the previous declaration, blue has the numerical value 2. This example assigns a the value of 6 (2*3).
Next, it assigns b a value of 4 (3+1).

3.10.5 Increment and decrement operators on enumerated types

SystemVerilog attaches a special semantics to the operators ++,--,+=, and -= when applied to variables of enu-
merated type, as described below:
Copyright 2003 Accellera. All rights reserved. 17

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH32

Note that

enumVar += 5;

is different from

enumVar = enumVar + 5;

The former is legal while the latter is illegal and requires an explicit cast (see sections 3.14 and 3.15), either as:

enumVar = EnumType’(enumVar + 5); // static cast (fast, unsafe)
$cast (enumVar, enumVar + 5); // dynamic cast (safe, slower)

3.11.5 Methods for iterating over enumerated types

VeraLite SystemVerilog includes a set of specialized methods to enable iterating over the values of enumer-
ated types.

3.11.5.1 first()

The syntax for the first() method is:

function enum first();

The first() method returns the value of the first member of the enumeration enum.

3.11.5.2 last()

The syntax for the last() method is:

function enum last();

The last() function return the value of the last member of the enumeration enum.

3.11.5.3 next()

The syntax for the next() method is:

function enum next(unsigned int N = 1);

The next() function returns the Nth next enumeration value (default is the next one) starting from the current
value of the given variable. A wrap to the start of the enumeration occurs when the end of the enumeration is

Table 3-4: Increment and decrement operations on enumerated types

Operator Description

++enumVar Assigns the next enumeration member (according to the definition order) to enumVar. A wrap
around to the first enumeration value occurs when incrementing the last enumeration value.

--enumVar Assigns to enumVar the previous enumeration member (according to the definition order). A
wrap around to the last enumeration value occurs when decrementing the first enumeration
value.

enumVar += N Assigns to enumVar its Nth next value. A wrap to the start of the list occurs when the end of
the list is reached.

enumVar -= N Assigns to enumVar its Nth previous member. A wrap to the end of the list occurs when the
start of the list is reached.
18 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
reached. If the given value is not a member of the enumeration, the next() function returns the first member.

3.11.5.4 prev()

The syntax for the prev() method is:

function enum prev(unsigned int N = 1);

The prev() function returns the Nth previous enumeration value (default is the previous one) starting from
the current value of the given variable. A wrap to the end of the enumeration occurs when the start of the enu-
meration is reached. If the given value is not a member of the enumeration, the prev() function returns the
last member.

3.11.5.5 num()

The syntax for the num() method is:

function int num();

The num() method returns the number of elements in the given enumeration.

3.11.5.6 name()

The syntax for the name() method is:

function string name();

The name() method returns the string representation of the given enumeration value. If the given value is not
a member of the enumeration, the name() function returns the empty string.

Example: The following code fragment shows how to display the name and value of all the members of an
enumeration.

typedef enum { red, green, blue, yellow } Colors;
Colors c = c.first;
forever begin

$display("%s : %d\n", c.name, c);
if(c == c.last) break;
c = c.next;

end

3.12 Structures and Unions

Syntax 3-4—structures and unions (excerpt from Annex A)

Structure and union declarations follow the C syntax, but without the optional structure tags before the ‘{‘.

struct { bit[7:0] opcode; bit [23:0] addr; }IR; // anonymous structure defines
variable IR

data_type ::= // from Annex A.2.2.1
...

| struct { { struct_union_member } }
| union { { struct_union_member } }

struct_union_member ::= data_type list_of_variable_identifiers_or_assignments ;
Copyright 2003 Accellera. All rights reserved. 19

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

BC-5

BC-no #
IR.opcode = 1; // set field in IR.

Some additional examples of declaring structure and unions are:

typedef struct {
bit[7:0] opcode;
bit [23:0] addr;

} instruction; // named structure type
instruction IR; // define variable

typedef union { int i; shortreal f; } num; // named union type
num n;

n.f = 0.0; // set n in floating point format

typedef struct {
bit isfloat;
union { int i; shortreal f; } n; // anonymous type

} tagged; // named structure

tagged a[9:0]; // array of structures

A structure can be assigned as a whole, and passed to or from a function or task as a whole.

Section 2.8 discusses assigning initial values to a structure.

A packed structure consists of bit fields, which are packed together in memory without gaps. This means that
they are easily converted to and from bit vectors. An unpacked structure has an implementation-dependent
packing, normally matching the C compiler.

Like a packed array, a packed structure can be used as a whole with arithmetic and logical operators. The first
member specified is the most significant and subsequent members follow in decreasing significance. The
structures are declared using the packed keyword, which can be followed by the signed or unsigned keywords,
according to the desired arithmetic behavior, which defaults to unsigned:

struct packed signed {
int a;
shortint b;
byte c;
bit [7:0] d;

} pack1; // signed, 2-state

struct packed unsigned {
time a;
integer b;
logic [31:0] c;

} pack2; // unsigned, 4-state

If any data type within a packed structure is masked 2-state, the whole structure is treated as masked 2-state.
Any unmasked 4-state members are converted as if cast, i.e. an X will be read as 0 if it is in a member of type
bit. One or more elements of the packed array may be selected, assuming an [n-1:0] numbering:

pack1 [15:8] // c

Non-integer data types, such as real and shortreal, are not allowed in packed structures or unions. Nor are
unpacked arrays.

A packed structure can be used with a typedef.
20 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

BC-5
BC8-2b
BC-8-8
typedef struct packed { // default unsigned
bit [3:0] GFC;
bit [7:0] VPI;
bit [11:0] VCI;
bit CLP;
bit [3:0] PT ;
bit [7:0] HEC;
bit [47:0] [7:0] Payload;
bit [2:0] filler;

} s_atmcell;

A packed union contains members that are packed structures or arrays of the same size. A packed union shall
contain members that are must be packed structures, or packed arrays or integer data types of the same size.
This ensures that you can read back a union member that was written as another member. If any member is 4-
state, the whole union is 4-state. A packed union can also be used as a whole with arithmetic and logical oper-
ators, and its behavior is determined by the signed or unsigned keyword, the latter being the default. If a
packed union contains a 2-state member and a 4-state member, the entire union is 4 state. There is an implicit
conversion from 4-state to 2-state when reading and from 2-state to 4-state when writing the 2-state bit mem-
ber.

For example, a union can be accessible with different access widths:

typedef union packed { // default unsigned
s_atmcell acell;
bit [423:0] bit_slice;
bit [52:0][7:0] byte_slice;

} u_atmcell;

u_atmcell u1;
byte b; bit [3:0] nib;
b = u1.bit_slice[415:408]; // same as b = u1.byte_slice[51];
nib = u1.bit_slice [423:420]; // same as nib = u1.acell.GFC;

Note that writing one member and reading another is independent of the byte ordering of the machine, unlike a
normal union of normal structures, which are C-compatible and have members in ascending address order.

3.13 Class

A class is a collection of data and a set of subroutines that operate on that data. The data in a class is referred
to as properties, and its subroutines are called methods. The properties and methods, taken together, define the
contents and capabilities of a class instance or object.

The object-oriented class extension allows objects to be created and destroyed dynamically. Classes can also
be passed around by reference via handles, adding a safe-pointer capability.

A Class is declared using the class...endclass keywords. For example:

class Packet
int address; // Properties are address, data, and crc
bit [63:0] data;
shortint crc;
Packet next; // Handle to another Packet

function new(); // Methods are send and new
function bit send();

Editor’s Note: BC-5 and BC8-8 modified the same sentence. I merged the two changes together.
Copyright 2003 Accellera. All rights reserved. 21

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
endclass : Packet

Any data type can be declared as a class member.

Classes are discussed in more detail in section 11.

3.14 Casting

Syntax 3-5—casting (excerpt from Annex A)

A data type may be changed by using a cast (’) operation. The expression to be cast must be enclosed in
parenthesis or within concatenation or replication braces.

int’(2.0 * 3.0)
shortint’{8’hFA,8’hCE}

A decimal number as a data type means a number of bits.

17’(x - 2)

The signedness can also be changed.

signed’(x)

A user-defined type can be used.

mytype’(foo)

When casting to a predefined type, the prefix of the cast must be the predefined type keyword. When casting to
a user-defined type, the prefix of the cast must be the user-defined type identifier.

When a shortreal is converted to an int, its value is rounded as in Verilog. So the conversion can lose
information. When a shortreal is converted to 32 bits, its bit pattern is preserved, which means it can be
converted back to the same value without any loss of information. This technique can also be used for struc-
tures, where the $bits attribute gives the size of a structure in bits (the $bits system function is discussed in
section 22.2):

typedef struct {
bit isfloat;
union { int i; shortreal f; } n; // anonymous type

} tagged; // named structure

typedef bit [$bits(tagged) - 1 : 0] tagbits; // tagged defined above

primary ::= // from Annex A.8.4
...

| simple_type_or_number ’ (expression)
| simple_type_or_number ’ { expression { , expression } }
| simple_type_or_number ’ { expression { expression } }

simple_type_or_number ::= // from Annex A.2.2.1
simple_type | number

simple_type ::= // from Annex A.2.2.1
integer_type | non_integer_type | type_identifier
22 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH34

EC-CH34

EC-CH71

EC-CH28

EC-CH29

EC-CH34
tagged a [7:0]; // unpacked array of structures

tagbits t = tagbits’(a[3]); // convert structure to array of bits
a[4] = tagged’(t); // convert array of bits back to structure

Note that the bit data type loses X values. If these are to be preserved, the logic type should be used instead.

The size of a union in bits is the size of its largest member. The size of a logic in bits is 1.

For compatibility, the Verilog functions $itor, $rtoi, $bitstoreal, $realtobits, $signed,
$unsigned can also be used.

3.15 $cast dynamic casting

SystemVerilog provides the $cast system task to assign values to variables that might not ordinarily be valid
because of differing data type. $cast can be called as either a task or a function.

The syntax for $cast is:

function int $cast(scalar singular dest_var, scalar singular source_exp);

or

task $cast(scalar singular dest_var, scalar singular source_exp);

A singular type includes packed arrays (and structures) and all other data types except unpacked structures,
unpacked arrays, and handles (used for the C interface).

The dest_var is the variable to which the assignment is made. It can be any scalar singular (non-unpacked
array) type (bit, integer, string, enumerated type, event, or object handle).

The source_exp is the expression that is to be assigned to the destination variable.

Use of $cast as either a task or a function determines how invalid assignments are handled.

When called as task, $cast attempts to assign the source expression to the destination variable. If the assign-
ment is invalid, a fatal runtime error occurs a runtime error occurs and the destination variable is left
unchanged.

When called as a function, $cast attempts to assign the source expression to the destination variable, and
returns 1 if the cast is legal. If the cast fails, the function does not make the assignment and returns 0. When
called as a function, no runtime error occurs, and the destination variable is set to its corresponding uninitial-
ized value, which depends on the type of the variable left unchanged.

It’s important to note that $cast performs a run-time check. No type checking is done by the compiler, except
to check that the destination variable and source expression are scalars singulars.

For example:

enum Colors { red, green, blue, yellow, white, black };
Colors col;
$cast(col, 2 + 3);

This example assigns the expression (5 => black) to the enumerated type. Without $cast, this type of
assignment is illegal.

To check if the assignment will succeed, one can use:
Copyright 2003 Accellera. All rights reserved. 23

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
if (! $cast(col, 2 + 8)) // 10: invalid cast
$display("Error in cast");

Alternatively, the preceding examples can be cast using a static SystemVerilog cast operation: For example:

col = Colors’(2 + 3);

However, this is a compile-time cast, i.e, a coercion that always succeeds at run-time, and does not provide for
error checking or warn if the expression lies outside the enumeration values.

Allowing both types of casts gives full control to the user. If users know that it is safe to assign certain expres-
sions to an enumerated variable, the faster static compile-time cast can be used. If users need to check if the
expression lies within the enumeration values, it is not necessary to write a lengthy switch statement manually,
the compiler automatically provides that functionality via the $cast function. By allowing both types of casts,
users can control the time/safety trade-offs.

Note: $cast is similar to the dynamic_cast function available in C++, but, $cast allows users to check if the oper-
ation will succeed, whereas dynamic_cast always raises a C++ exception.
24 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Section 4
Arrays

4.1 Introduction (informative)

An array is a collection of variables, all of the same type, and accessed using the same name plus one or more
indices.

In C, arrays are indexed from 0 by integers, or converted to pointers. Although the whole array can be initial-
ized, each element must be read or written separately in procedural statements.

In Verilog-2001, arrays are indexed from left-bound to right-bound. If they are vectors, they can be assigned as
a single unit, but not if they are arrays. Verilog-2001 allows multiple dimensions.

In Verilog-2001, all data types can be declared as arrays. The reg, wire and all other net types can also have a
vector width declared. A dimension declared before the object name is referred to as the “vector width” dimen-
sion. The dimensions declared after the object name are referred to as the “array” dimensions.

reg [7:0] r1 [1:256]; // [7:0] is the vector width, [1:256] is the array size

SystemVerilog enhances array declarations in several ways. SystemVerilog supports fixed-size arrays,
dynamic arrays, and associative arrays. Fixed-size arrays can be multi-dimensional and have fixed storage
allocated for all the elements of the array. Dynamic arrays also allocate storage for all the elements of the
array, but the array size can be changed dynamically. Dynamic and associative arrays are one-dimensional.
Fixed-size and dynamic arrays are indexed using integer expressions, while associative arrays can be indexed
using arbitrary data types. Associative arrays do not have any storage allocated until it is needed, which makes
them ideal for dealing with sparse data.

4.2 Packed and unpacked arrays

SystemVerilog uses the term “packed array” to refer to the dimensions declared before the object name (what
Verilog-2001 refers to as the vector width). The term “unpacked array” is used to refer to the dimensions
declared after the object name.

bit [7:0] c1; // packed array
real u [7:0]; // unpacked array

A packed array is a mechanism for subdividing a vector into subfields which can be conveniently accessed as
array elements. Consequently, a packed array is guaranteed to be represented as a contiguous set of bits. An
unpacked array may or may not be so represented. A packed array differs from an unpacked array in that, when
a packed array appears as a primary, it is treated as a single vector.

If a packed array is declared as signed, then the array viewed as a single vector shall be signed. A part-select of
a packed array shall be unsigned.

Packed arrays allow arbitrary length integer types, so a 48 bit integer can be made up of 48 bits. These integers
can then be used for 48 bit arithmetic. The maximum size of a packed array may be limited, but shall be at least
65536 (216) bits.

Packed arrays can only be made of the single bit types: bit, logic, reg, wire, and the other net types.
Unpacked arrays can be made up of any type.

Integer types with predefined widths cannot have packed array dimensions declared. These types are: char,
byte, shortint, int, longint, and integer. An integer type with a predefined width can be treated as a
single dimension packed array. The packed dimensions of these integer types shall be numbered down to 0,
such that the right-most index is 0.
Copyright 2003 Accellera. All rights reserved. 25

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH30

BC56

BC56

BC42-4
byte c2; // same as bit [7:0] c2;
integer i1; // same as logic signed [31:0] i1;

Unpacked arrays can be made of any scalar (non-unpacked-array) type. VeraLite SystemVerilog enhances
fixed-size unpacked arrays in that in addition to all other SystemVerilog types, unpacked arrays may also be
made of object handles (see section 11.4) and events (see section 12.6).

Note: VeraLite SystemVerilog accepts a single number (not a range) to specify the size of an unpacked arrays, like C.
SystemVerilog should accept this type of declaration as a shorthand notation, that is [size] becomes the same as [size-1:0].
For example:

int Array[8][32]; is the same as: int Array[7:0][31:0];

The following operations can be performed on all arrays, packed or unpacked. The examples provided with
these rules assume that A and B are arrays of the same shape and type.

— Reading and writing the array, e.g., A = B

— Reading and writing a slice of the array, e.g., A[i:j] = B[i:j]

— Reading and writing a variable slice of the array, e.g., A[x+:c] = B[y+:c]

— Reading and writing an element of the array, e.g., A[i] = B[i]

— Equality operations on the array or slice of the array, e.g. A==B, A[i:j] != B[i:j]

The following operations can be performed on packed arrays, but not on unpacked arrays. The examples pro-
vided with these rules assume that A is an array.

— Assignment from an integer, e.g., A = 8’b11111111;

— Treatment as an integer in an expression, e.g., (A + 3)

When assigning to an unpacked array, the source and target must be arrays with the same number of unpacked
dimensions, and the length of each dimension must be the same. Assignment to an unpacked array is done by
assigning each element of the source unpacked array to the corresponding element of the target unpacked
array. Note that an element of an unpacked array may can be a packed array.

For the purposes of assignment, a packed array is treated as a vector. Any vector expression can be assigned to
any packed array. The packed array bounds of the target packed array do not affect the assignment. A packed
array cannot be assigned to an unpacked array.

4.3 Multiple dimensions

Like Verilog memories, the dimensions following the type set the packed size. The dimensions following the
instance set the unpacked size.

bit [3:0] [7:0] joe [1:10]; // 10 entries of 4 bytes (packed into 32 bit int)

can be used as follows:

joe[9] = joe[8] + 1; // 4 byte add
joe[7][3:2] = joe[6][1:0]; // 2 byte copy

Note that the dimensions declared following the type and before the name ([3:0][7:0] in the preceding
declaration) vary more rapidly than the dimensions following the name ([1:10] in the preceding declara-
tion). When used, the first dimensions ([3:0]) follow the second dimensions ([1:10]).

In a list of dimensions, the right-most one varies most rapidly, as in C. However a packed dimension varies
more rapidly than an unpacked one.
26 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
bit [1:10] foo1 [1:5]; // 1 to 10 varies most rapidly; compatible with
Verilog-2001 arrays

bit foo2 [1:5] [1:10]; // 1 to 10 varies most rapidly, compatible with C

bit [1:5] [1:10] foo3; // 1 to 10 varies most rapidly

bit [1:5] [1:6] foo4 [1:7] [1:8]; // 1 to 6 varies most rapidly, followed by
1 to 5, then 1 to 8 and then 1 to 7

Multiple packed dimensions can also be defined in stages with typedef.

typedef bit [1:5] bsix;
bsix [1:10] foo5; // 1 to 5 varies most rapidly

Multiple unpacked dimensions can also be defined in stages with typedef.

typedef bsix mem_type [0:3]; // array of four ’bsix’ elements
mem_type bar [0:7]; // array of eight ’mem_type’ elements

When the array is used with a smaller number of dimensions, these have to be the slowest varying ones.

bit [9:0] foo6;
foo5 = foo1[2]; // a 10 bit quantity.

As in Verilog-2001, a comma-separated list of array declarations can be made. All arrays in the list will have
the same data type and the same packed array dimensions.

bit [7:0] [31:0] foo7 [1:5] [1:10], foo8 [0:255]; // two arrays declared

If an index expression is of a 4-state type, and the array is of a 4-state type, an X or Z in the index expression
will cause a read to return X, and a write to issue a run-time warning. If an index expression is of a 4-state type,
but the array is of a 2-state type, an X or Z in the index expression shall generate a run-time warning and be
treated as 0. If an index expression is out of bounds, a run-time warning may be generated.

Out of range index values shall be illegal for both reading from and writing to an array of 2-state variables,
such as int. The result of an out of range index value is indeterminate. Implementations shall generate a warn-
ing if an out of range index occurs for a read or write operation.

4.4 Indexing and slicing of arrays

An expression can select part of a packed array, or any integer type, which is assumed to be numbered down to
0.

SystemVerilog uses the term “part select” to refer to a selection of one or more contiguous bits of a single
dimension packed array. This is consistent with the usage of the term “part select” in Verilog.

reg [63:0] data;
reg [7:0] byte2;
byte2 = data[23:16]; // an 8-bit part select from data

SystemVerilog uses the term “slice” to refer to a selection of one or more contiguous elements of an array. Ver-
ilog only permits a single element of an array to be selected, and does not have a term for this selection.

An single element of a packed or unpacked array can be selected using an indexed name.

bit [3:0] [7:0] j; // j is a packed array
byte k;
k = j[2]; // select a single 8-bit element from j
Copyright 2003 Accellera. All rights reserved. 27

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH35
One or more contiguous elements can be selected using a slice name. A slice name of a packed array is a
packed array. A slice name of an unpacked array is an unpacked array.

bit busA [7:0] [31:0] ; // unpacked array of 8 32-bit vectors
int busB [1:0]; // unpacked array of 2 integers
busB = busA[7:6]; // select a slice from busA

The size of the part select or slice must be constant, but the position may be variable. The syntax of Verilog-
2001 is used.

int i = bitvec[j +: k]; // k must be constant.
a = {(b[c -: d]), e}; // d must be constant

Slices of an array can only apply to one dimension, but other dimensions may have single index values in an
expression.

4.5 Array querying functions

SystemVerilog provides new system functions to return information about an array. These are: $left,
$right, $low, $high, $increment, $length, and $dimensions. These functions are described in section
22.3.

4.6 Dynamic arrays

Dynamic arrays are one-dimensional arrays whose size can be set or changed at runtime. The space for a
dynamic array doesn’t exist until the array is explicitly created at runtime.

The syntax to declare a dynamic array is:

data_type array_name [*];

where data_type is the data type of the array elements. Dynamic arrays support the same types as fixed-
size arrays.

For example:

bit [3:0] nibble[*]; // Dynamic array of 4-bit vectors
integer mem[*]; // Dynamic array of integers

The new[] operator is used to set or change the size of the array.

The size() built-in method returns the current size of the array.

The delete() built-in method clears all the elements yielding an empty array (zero size).

4.6.1 new[]

The built-in function new allocates the storage and initializes the newly allocated array elements either to their
default initial value or to the values provided by the optional argument.

The syntax of the new function is:

array_identifier = new[size] [(src_array)];
array_identifier = new[size] [(src_array)];

size

The number of elements in the array. Must be a non-negative integral expression.
28 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH76

EC-CH36

EC-CH75
src_array

Optional. The name of an array with which to initialize the new array. If src_array is not specified, the
elements of array_name are initialized to their default value. src_array must be a dynamic array of the
same data type as array_name, but it need not have the same size. If the size of src_array is less than size,
the extra elements of array_name shall be initialized to their default value. If the size of src_array is
greater than size, the additional elements of src_array shall be ignored.

This parameter is useful when growing or shrinking an existing array. In this situation, src_array is
array_name, so the previous values of the array elements are preserved. For example:

integer addr[*]; // Declare the dynamic array.
addr = new[100]; // Create a 100-element array.
...

// Double the array size, preserving previous values.
addr = new[200](addr);

The new operator follows the SystemVerilog precedence rules. Since both the square brackets [] and the
parenthesis () have the same precedence, the arguments to this operator are evaluated left to right: size first,
and src_array second.

4.6.2 size()

The syntax for the size() method is:

function int size();

The size() method returns the current size of a dynamic array, or zero if the array has not been created.

int j = addr.size;
addr = new[addr.size() * 4] (addr); // quadruple addr array

Note: The size method is equivalent to $length(addr, 1).

4.6.3 delete()

The syntax for the delete() method is:

function void delete();

The delete() method empties the array, resulting in a zero-sized array.

int ab [*] = new[N]; // create a temporary array of size N
// use ab
ab.delete; // delete the array contents
$display(“%d”, ab.size); // prints 0

4.7 Array assignment

Assigning to a fixed-size unpacked array requires that the source and the target both be arrays with the same
number of unpacked dimensions, and the length of each dimension be the same. Assignment is done by assign-
ing each element of the source array to the corresponding element of the target array, which requires that the
source and target arrays be of compatible types. Compatible types are types that are assignment compatible.
Assigning fixed-size unpacked arrays of unequal size to one another shall result in a type check error.

int A[10:1]; // fixed-size array of 10 elements
int B[0:9]; // fixed-size array of 10 elements
int C[24:1]; // fixed-size array of 24 elements
Copyright 2003 Accellera. All rights reserved. 29

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH75

EC-CH40

EC-CH75

EC-CH75

EC-CH75

EC-CH77
A = B; // ok. Compatible type and same size
A = C; // compile-time type check error: different sizes

A dynamic array can be assigned to a one-dimensional fixed-size array of a compatible type, if the size of the
dynamic array is the same as the length of the fixed-size array dimension. Unlike assigning to with a fixed-size
array, this operation requires a run-time check that may result in an error.

int A[100:1]; // fixed-size array of 100 elements
int B[*] = new[100]; // dynamic array of 100 elements
int C[*] = new[8]; // dynamic array of 100 8 elements

A = B; // ok. Compatible type and same size
A = C; // run-time type check error: different sizes

A dynamic array or a one-dimensional fixed-size array can be assigned to a dynamic array of a compatible
type. In this case, the assignment creates a new dynamic array with a size equal to the length of the fixed-size
array. For example:

int A[100:1]; // fixed-size array of 100 elements
int B[*]; // empty dynamic array
int C[*] = new[8]; // dynamic array of size 8

B = A; // ok. B has 100 elements
B = C; // ok. B has 8 elements

The last statement above is equivalent to:

B = new[C.size] (C);

Similarly, the source of an assignment can be a complex expression involving array slices or concatenations.
For example:

string d[5:1] = { "a", "b", "c", "d", "e" };
string p[*];
p = { d[1:3], "hello", d[4:5] };

The preceding example creates the dynamic array p with contents: “a”, “b”, “c”, “hello”, “d”, “e”.

4.8 Arrays as arguments

Arrays can be passed as arguments to tasks or functions. The rules that govern array argument passing by value
are the same as for array assignment (see section 10.5) are the same as for array assignment. When an array
argument is passed by value, a copy of the array is passed to the called task or function. This is true for all
array types: fixed-size, dynamic, or associative.

Passing fixed-size arrays as parameters to subroutines requires that the actual parameter and the formal argu-
ment in the function declaration be of the compatible type and that all dimensions be of the same size.

For example, the declaration:

task fun(int a[3:1][3:1]);

declares task fun that takes one parameter, a two dimensional array with each dimension of size three. A call
to fun must pass a two dimensional array and with the same dimension size 3 for all the dimensions. For
example, given the above description for fun, consider the following actuals:

— int b[3:1][3:1]; //ok: same type, dimension, and size
30 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH41

EC-CH41
— int b[1:3][0:2]; //ok: same type, dimension, & size (different ranges)

— reg b[3:1][3:1]; //error: incompatible type

— int b[3:1]; //error: incompatible number of dimensions

— int b[3:1][4:1]; //error: incompatible size (3 vs. 4)

A subroutine that accepts a one-dimensional fixed-size array can also be passed a dynamic array of a compati-
ble type of the same size.

For example, the declaration:

task bar(string arr[4:1]);

declares a task that accepts one parameter, an array of 4 strings. This task will accept the following actual
parameters:

— string b[4:1]; //ok: same type and size

— string b[5:2]; //ok: same type and size (different range)

— string b[*] = new[4]; //ok: same type and size, requires run-time check

A subroutine that accepts a dynamic array can be passed a dynamic array of a compatible type or a one-dimen-
sional fixed-size array of a compatible type

For example, the declaration:

task foo(string arr[*]);

declares a task that accepts one parameter, a dynamic array of 4 strings. This task will accept any one-dimen-
sional array of strings or any dynamic array of strings.

4.9 Associative arrays

Dynamic arrays are useful for dealing with contiguous collections of variables whose number changes dynam-
ically. When the size of the collection is unknown or the data space is sparse, an associative array is a better
option. Associative arrays do not have any storage allocated until it is used, and the index expressions is not
restricted to integral expressions, but can be of any type.

An associative array implements a lookup table of the elements of its declared type. The data type to be used as
an index serves as the lookup key, and imposes an ordering.

The syntax to declare associative an associative array is:

data_type array_id [[index_type]];

where:

— data_type is the data type of the array elements. Can be any type allowed for fixed-size arrays.

— array_id is the name of the array being declared.

— index_type (optional) is the data-type to be used as an index. If no index is specified then the array is
indexed by any integral expression of arbitrary size. An index type restricts the indexing expressions to a
particular type.

Examples of associative array declarations are:

integer i_array[]; // associative array of integer (unspecified
// index)
Copyright 2003 Accellera. All rights reserved. 31

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH37

EC-CH38

EC-CH38

EC-CH38
bit [20:0] array_b[string]; // associative array of 21-bit vector, indexed
// by string

event ev_array[myClass]; // associative array of event indexed by class
// myClass

Array elements in associative arrays are allocated dynamically: an entry is created the first time it is written.
The associative array maintains the entries that have been assigned values and their relative order according to
the index data type.

4.9.1 Unspecified index type

Example: int array_name [];

Associative arrays that do not specify an index type have the following properties:

— The array can be indexed by any integral data type, including integers, packed arrays of arbitrary length,
string literals, and packed structures. Since the indices can be of different sizes, the same numerical value
may have multiple representations, each of a different size. SystemVerilog resolves this ambiguity by
detecting the number of leading zeros and computing a unique length and representation for every value.

— Non-integral index types are illegal and result in a compiler type check error.

— A 4-state Index containing X or Z is invalid.

— Indices are unsigned.

— Indexing expressions are self-determined: signed indices are not sign extended.

— A string literal index is auto-cast to a bit-vector of equivalent size.

— The ordering is numerical (smallest to largest).

4.9.2 String index

Example: int array_name [string];

Associative arrays that specify a string index have the following properties:

— Indices can be strings or string literals of any length. Other types are illegal and shall result in a compiler
type check error.

— An empty string “” index is valid.

— The ordering is lexicographical (lesser to greater).

4.9.3 Class index

Example: int array_name [some_Class];

Associative arrays that specify a class index have the following properties:

— Indices can be objects of that particular type or derived from that type. Any other type is illegal and shall
result in a compiler type check error.

— A null index is invalid.

— The ordering is deterministic but arbitrary.

4.9.4 Integer (or int) index

Example: int array_name [integer];
32 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH78
Associative arrays that specify an integer index have the following properties:

— Indices can be any integral expression.

— Indices are signed.

— A 4-state Index containing X or Z is invalid.

— Indices smaller than integer are sign extended to 32 bits.

— Indices larger than integer are truncated to 32 bits.

— The ordering is signed numerical.

4.9.5 Signed packed array

Example:typedef bit signed [4:1] Nibble;
int array_name [Nibble];

Associative arrays that specify a signed packed array index have the following properties:

— Indices can be any integral expression.

— Indices are signed.

— Indices smaller than the size of the index type are sign extended.

— Indices larger than the size of the index type are truncated to the size of the index type.

— The ordering is signed numerical.

4.9.6 Unsigned packed array or packed struct

Example:typedef bit [4:1] Nibble;
int array_name [Nibble];

Associative arrays that specify an unsigned packed array index have the following properties:

— Indices can be any integral expression.

— Indices are unsigned.

— A 4-state Index containing X or Z is invalid.

— Indices smaller than the size of the index type are zero filled.

— Indices larger than the size of the index type are truncated to the size of the index type.

— The ordering is numerical.

If an invalid index (i.e., 4-state expression has X’s) is used during a read operation or an attempt is made to
read a non-existent entry then a warning is issued and the default initial value for the array type is returned, as
shown in the table below:

Table 4-1: Invalid array index default initial value
Value read from a nonexistent associative array entry

Type of Array Value Read

4-state integral type ’X

2-state integral type ’0

enumeration first element in the enumeration
Copyright 2003 Accellera. All rights reserved. 33

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH78

EC-CH72

EC-CH39

EC-CH41

EC-CH70

EC-CH73
If an invalid index is used during a write operation, the write is ignored and a warning is issued.

4.10 Associative array methods

In addition to the indexing operators, several built-in methods are provided that allow users to analyze and
manipulate associative arrays, as well as iterate over its indices or keys.

4.10.1 num()

The syntax for the num() method is:

function int num();

The num() method returns the number of entries in the associative array. If the array is empty it returns 0.

int imem[];
imem[2’b3] = 1;
imem[16’hffff] = 2;
imem[4b’1000] = 3;
$display("%0d entries\n", map.num); // prints "3 entries"

4.10.2 delete()

The syntax for the delete() method is:

task delete([input index]);
function void delete([input index]);

Where index is an optional index of the appropriate type for the array in question.

If the index is specified, then the delete delete() method removes the entry at the specified index. If the
entry to be deleted does not exist, the task method issues no warning.

If the index is not specified then the delete delete() method removes all the elements in the array.

int map[string];
map["hello"] = 1;
map["sad"] = 2;
map["world"] = 3;
map.delete("sad"); // remove entry whose index is "sad" from "map"

map.delete; // remove all entries from the associative array "map"

4.10.3 exists()

The syntax for the exists() method is:

function int exists(input index);

Where index is an index of the appropriate type for the array in question.

string “”

class null

event null

Table 4-1: Invalid array index default initial value
Value read from a nonexistent associative array entry
34 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH41
The exists() function checks if an element exists at the specified index within the given array. It returns 1 if
the element exists, otherwise it returns 0.

if (map.exists("hello"))
map["hello"] += 1;

else
map["hello"] = 0;

4.10.4 first()

The syntax for the first() method is:

function int first(var index);

Where index is an index of the appropriate type for the array in question.

The first() function method assigns to the given index variable the value of the first (smallest) index in the
associative array. It returns 0 if the array is empty, and 1 otherwise.

string s;
if (map.first(s))
$display("First entry is : map[%s] = %0d\n", s, map[s]);

4.10.5 last()

The syntax for the last() method is:

function int last(var index);

Where index is an index of the appropriate type for the array in question.

The last() function assigns to the given index variable the value of the last (largest) index in the associative
array. It returns 0 if the array is empty, and 1 otherwise.

string s;
if (map.last(s))

$display("Last entry is : map[%s] = %0d\n", s, map[s]);

4.10.6 next()

The syntax for the next() method is:

function int next(var index);

Where index is an index of the appropriate type for the array in question.

The next() function finds the entry whose index is greater than the given index. If there is a next entry, the
index variable is assigned the index of the next entry, and the function returns 1. Otherwise, index is
unchanged, and the function returns 0.

string s;
if (map.first(s))

do
$display("%s : %d\n", s, map[s]);

while (map.next(s));

4.10.7 prev()

The syntax for the prev() method is:
Copyright 2003 Accellera. All rights reserved. 35

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
function int prev(var index);

Where index is an index of the appropriate type for the array in question.

The prev() function finds the entry whose index is smaller than the given index. If there is a previous entry,
the index variable is assigned the index of the previous entry, and the function returns 1. Otherwise, index is
unchanged, and the function returns 0.

string s;
if (map.last(s))

do
$display("%s : %d\n", s, map[s]);

while (map.prev(s));

If the argument passed to any of the four associative array traversal methods first, last, next, and prev is
smaller than the size of the corresponding index then the function returns –1 and will copy only as much data
as will fit into the argument. For example:

string aa[];
char ix;
int status;
aa[1000] = "a";
status = aa.first(ix);

// status is –1
// ix is 232 (least significant 8 bits of 1000)

4.11 Associative array assignment

Associative arrays can be assigned only to another associative array of a compatible type and with the same
index type. Other types of arrays cannot be assigned to an associative array, nor can associative arrays be
assigned to other types of arrays, whether fixed-size or dynamic.

Assigning an associative array to another associative array causes the target array to be cleared of any existing
entries, and then each entry in the source array is copied into the target array.

4.12 Associative array arguments

Associative arrays can be passed as arguments only to associative arrays of a compatible type and with the
same index type. Other types of arrays, whether fixed-size or dynamic, cannot be passed to subroutines that
accept an associative array as an argument. Likewise, associative arrays cannot be passed to subroutines that
accept other types of arrays.

Passing an associative array by value causes a local copy of the associative array to be created.
36 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Section 5
Data Declarations

5.1 Introduction (informative)

There are several forms of data in SystemVerilog: literals (see section 2), parameters (see section 19), con-
stants, variables, nets, and attributes (see section 6)

C constants are either literals, macros or enumerations. There is also a const, keyword but it is not enforced in
C.

Verilog 2001 constants are literals, parameters, localparams and specparams. Verilog 2001 also has variables
and nets. Variables must be written by procedural statements, and nets must be written by continuous assign-
ments or ports.

SystemVerilog follows Verilog by requiring data to be declared before it is used, apart from implicit nets. The
rules for implicit nets are the same as in Verilog-2001.

A variable can be static (storage allocated on instantiation and never de-allocated) or automatic (stack storage
allocated on entry to a task, function or named block and de-allocated on exit). C has the keywords static
and auto. SystemVerilog follows Verilog in respect of the static default storage class, with automatic tasks and
functions, but allows static to override a default of automatic for a particular variable in such tasks and
functions.

5.2 Data declaration syntax

Syntax 5-1—Data declaration syntax (excerpt from Annex A)

5.3 Constants

Constants are named data items which never change. There are three kinds of constants, declared with the key-
words localparam, specparam and const, respectively. All three can be initialized with a literal.

localparam char colon1 = ":" ;
specparam int delay = 10 ; // specparams are used for specify blocks
const logic flag = 1 ;

A local parameter is a constant which is calculated at elaboration time, and can depend upon parameters or
other local parameters at the top level or in the same module or interface.

A specify parameter is also calculated at elaboration time, but it may be modified by the PLI, and so cannot be

data_declaration ::= // from Annex A.2.1.3
variable_declaration

| constant_declaration
| type_declaration

block_variable_declaration ::=
[lifetime] data_type list_of_variable_identifiers ;

| lifetime data_type list_of_variable_decl_assignments ;

variable_declaration ::=
[lifetime] data_type list_of_variable_identifiers_or_assignments ;

lifetime ::= static | automatic
Copyright 2003 Accellera. All rights reserved. 37

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
used to set parameters or local parameters.

A constant declared with the const keyword is calculated after elaboration. This means that it can contain an
expression with any hierarchical path name. This constant is like a variable which cannot be written.

const logic option = a.b.c ;

A constant expression contains literals and other named constants.

SystemVerilog enhancements to parameter constant declarations are presented in section 19. SystemVerilog
does not change localparam and specparam constants declarations. A const form of constant differs from
a localparam constant in that the localparam must be set during elaboration, whereas a const can be set
during simulation, such as in an automatic task.

5.4 Variables

A variable declaration consists of a data type followed by one or more instances.

shortint s1, s2[0:9];

A variable can be declared with an initializer, which must be a constant expression.

int i = 0;

In Verilog-2001, an initialization value specified as part of the declaration is executed as if the assignment
were made from an initial block, after simulation has started. Therefore, the initialization may cause an event
on that variable at simulation time zero.

In SystemVerilog, setting the initial value of a static variable as part of the variable declaration shall occur
before any initial or always blocks are started, and so does not generate an event. If an event is needed, an
initial block should be used to assign the initial values.

5.5 Scope and lifetime

Any data declared outside a module, interface, task, or function, is global in scope (can be used anywhere after
its declaration) and has a static lifetime (exists for the whole elaboration and simulation time).

SystemVerilog data declared inside a module or interface but outside a task, process or function is local in
scope and static in lifetime (exists for the lifetime of the module or interface). This is roughly equivalent to C
static data declared outside a function, which is local to a file.

Data declared in an automatic task, function or block has the lifetime of the call or activation and a local scope.
This is roughly equivalent to a C automatic variable. Data declared in a dynamic process is also automatic.

Data declared in a static task, function or block defaults to a static lifetime and a local scope. If an initializer is
used, the keyword static must be specified to make the code clearer.

Note that in SystemVerilog, data can be declared in unnamed blocks as well as in named blocks, but in the
unnamed blocks a hierarchical name cannot be used to access it.

Verilog-2001 allows tasks and functions to be declared as automatic, making all storage within the task or
function automatic. SystemVerilog allows specific data within a static task or function to be explicitly declared
as automatic. Data declared as automatic has the lifetime of the call or block, and is initialized on each entry
to the call or block.

SystemVerilog also allows data to be explicitly declared as static. Data declared to be static in an auto-
matic task, function or in a process has a static lifetime and a scope local to the block. This is like C static data
declared within a function.
38 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH24
module msl;
int st0; // static
initial begin

int st1; //static
static int st2; //static
automatic int auto1; //automatic

end
task automatic t1();

int auto2; //automatic
static int st3; //static
automatic int auto3; //automatic

endtask
endmodule

Note that automatic variables cannot be used to trigger an event expression or be written with a nonblocking
assignment.

See also section 10 on tasks and functions.

5.6 Nets, regs, and logic

A net can only be written by one or more continuous assignments, primitive outputs or through module ports.
The resultant value of multiple drivers is determined by the resolution function of the net type. The value can
be overridden by a force statement. If a net on one side of a port is driven by a variable on the other side, a
continuous assignment is implied.

A reg variable can only be written by one or more procedural statements, including procedural (quasi-) contin-
uous assignments. The last write determines the value. The force statement overrides the assign statement
which overrides the normal assignments. A reg variable cannot be written through a port.

A logic variable can be written either by one continuous assignment or primitive output, or by one or more
procedural statements. The last write determines the value. A logic variable can be written through a port. It
shall be an error to have a continuous assignment and a procedural assignment write to the same logic vari-
able, even through ports. The assign statement overrides normal procedural assignments to a logic variable,
until deassigned.

Note the difference between a net declaration with assignment and a variable initialization:

wire w = vara & varb; // continuous assignment
reg r = consta & constb; // initial assignment
logic v = consta & constb; // initial assignment

5.7 Signal Aliasing

The SystemVerilog assign statement is a unidirectional assignment and may incorporate a delay and strength
change. To model a bidirectional short-circuit connection it is necessary to use the alias statement. The
members of an alias list are signals whose bits share the same physical wires. The example below implements
a byte order swapping between bus A and bus B.

module byte_swap (inout A, inout B);
wire [31:0] A,B;
alias {A[7:0],A[15:8],A[23:16],A[31:24]} = B;

endmodule

Editor’s Note: I took the liberty of adding “alias” to the keyword list in annex B, under this change number.
Copyright 2003 Accellera. All rights reserved. 39

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
This example strips out the least and most significant bytes from a four byte bus:

module byte_rip (inout W, inout LSB, inout MSB);
wire [31:0] W;
wire [7:0] MSB,LSB;
alias W[7:0] = LSB;
alias W[31:24] = MSB;

endmodule

The bit overlay rules are the same as those for a packed union with the same member types: each member
should be the same size and connectivity is independent of the simulation host. The types of nets connected
with an alias statement must be compatible, all the nets have to be of the same type or "wire", i.e. it would be
illegal to connect a wand net to a wor net with an alias statement, this is a stricter rule than applied to nets join-
ing at ports because the scope of an alias is limited and such connections are more likely to be a design error.
Variables and hierarchical references cannot be used in alias statements. Any violation of these rules is consid-
ered a fatal error.

The same nets can appear in multiple alias statements, the effects are cumulative. The following two examples
are equivalent, in either case low12[11:4] and high12[7:0] will share the same wires:

module overlap(inout bus16, inout low12, inout high12);
wire [15:0] bus16;
wire [11:0] low12, high12;
alias bus16[11:0] = low12;
alias bus16[15:4] = high12;

endmodule

module overlap(inout bus16, inout low12, inout high12);
wire [15:0] bus16;
wire [11:0] low12,high12;
alias bus16 = {high12,low12[3:0]};
alias high12[7:0] = low12[11:4];

endmodule

To avoid errors in specification it is not allowed to specify an alias from an individual signal to itself or to
specify a given alias more than once, so the following version of the code above would be illegal since the top
four and bottom four bits are the same in both statements:

alias bus16 = {high12[11:8],low12};
alias bus16 = {high12,low12[3:0]};

This alternative is also illegal because the bits of bus16 are being aliased to itself:

alias bus16 = {high12,bus16[3:0]} = {bus16[15:12],low12};

Alias statements can appear anywhere a module instance would appear, and any undeclared nets in the alias
statement are assumed to be scalar as they would with a module instance. The following example uses alias
along with the automatic name binding to connect pins on cells from different libraries to create a standard
macro:

module lib1_dff(Reset,Clk,Data,Q,Q_Bar);
...

endmodule

module lib2_dff(reset,clock,data,a,qbar);
...

endmodule
40 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
module lib3_dff(RST,CLK,D,Q,Q_);
...

endmodule

macromodule my_dff(rst,clk,d,q,q_bar); // wrapper cell
input rst,clk,d;
output q,q_bar;
alias rst = Reset = reset = RST;
alias clk = Clk = clock = CLK;
alias d = data = D;
alias q = Q;
alias Q_ = q_bar = Q_Bar = qbar;
‘LIB_DFF my_dff (.*); // LIB_DFF is any of lib1_dff,lib2_dff or lib3_dff

endmodule

Using a net in an alias statement does not modify it’s syntactic behavior in other statements. Aliasing is per-
formed at elaboration time and cannot be undone.
Copyright 2003 Accellera. All rights reserved. 41

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

42 Copyright 2003 Accellera. All rights reserved.

Section 6
Attributes

6.1 Introduction (informative)

With Verilog-2001, users can add named attributes (properties) to Verilog objects, such as modules, instances,
wires, etc. Attributes can also be specified on SystemVerilog interfaces. SystemVerilog also defines a default
data type for attributes.

6.2 Attribute syntax for interfaces

Syntax 6-1—Interface attribute syntax (excerpt from Annex A)

An example of defining an attribute for an interface declaration is:

(* interface_att = 10 *) interface bus1.... endinterface

The default type of an attribute with no value is bit, with a value of 1. Otherwise, the attribute takes the type of
the expression.

The modport declaration can be preceded by an attribute instance, like any other interface item.

interface_declaration ::= // from Annex A.1.3
{ attribute_instance } interface interface_identifier [parameter_port_list]
[list_of_ports] ; [unit] [precision] { interface_item }
endinterface [: interface_identifier]

| { attribute_instance } interface interface_identifier [parameter_port_list]
[list_of_port_declarations] ; [unit] [precision] { non_port_interface_item }
endinterface [: interface_identifier]

interface_item ::= // from Annex A.1.6
port_declaration

| non_port_interface_item

attribute_instance ::= (* attr_spec { , attr_spec } *) // from Annex A.9.1

attr_spec ::=
attr_name = constant_expression

| attr_name

attr_name ::= identifier

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Section 7
Operators and Expressions

7.1 Introduction (informative)

The SystemVerilog operators are a combination of Verilog and C operators. In both languages, the type and
size of the operands is fixed, and hence the operator is of a fixed type and size. The fixed type and size of oper-
ators is preserved in SystemVerilog. This allows efficient code generation.

Verilog does not have assignment operators or incrementor and decrementor operators. SystemVerilog
includes the C assignment operators, such as +=, and the C incrementor and decrementor operators, ++ and --.

Verilog-2001 added signed nets and reg variables, and signed based literals. There is a difference in the rules
for combining signed and unsigned integers between Verilog and C. SystemVerilog uses the Verilog-2001
rules.

7.2 Operator syntax

Syntax 7-1—Operator syntax (excerpt from Annex A)

7.3 Assignment, incrementor and decrementor operations

In addition to the simple assignment operator, =, SystemVerilog includes the C assignment operators and spe-
cial bitwise assignment operators: +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, <<<=, and >>>=. Assignment
operators may only be used with blocking assignments.

In SystemVerilog, an expression can include a blocking assignment, provided it does not have a timing control.
Note that such an assignment must be enclosed in parentheses to avoid common mistakes such as using a=b
for a==b, or a|=b for a!=b.

if ((a=b)) b = (a+=1);

a = (b = (c = 5));

SystemVerilog also includes the C incrementor and decrementor operators ++i, --i, i++, and i-- (provided
there is no timing control). These can be used in expressions without parentheses. These increment and decre-
ment operations behave as blocking assignments.

unary_operator ::= // from Annex A.8.6
+ | - | ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~

binary_operator ::=
+ | - | * | / | % | == | != | === | !== | && | || | **

| < | <= | > | >= | & | | | ^ | ^~ | ~^ | >> | << | >>> | <<<

inc_or_dec_operator ::= ++ | --

unary_module_path_operator ::=

 ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~

binary_module_path_operator ::=

 == | != | && | || | & | | | ^ | ^~ | ~^

assignment_operator ::=
= | += | -= | *= | /= | %= | &= | |= | ^= | <<= | >>= | <<<= | >>>=
Copyright 2003 Accellera. All rights reserved. 43

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH43

EC-CH43

BC44-3
The behavior of the ++ and -- operators (pre/post increment/decrement) is incompletely defined in the ANSI
C standard. This can lead to unexpected behavior when a single statement modifies the same variable more
than once. For example, the following C code fragment may produce different outputs with different C compil-
ers:

int i = 1;
printf("%d %d %d %d %d %d\n", i++, i++, ++i, --i, i--, i--);

SystemVerilog defines the semantics for computing all arguments and operands. The size of the ++ and --
operators is self-determined. Arguments with the same precedence are evaluated in strict left-to-right order. In
addition, the ++ and -- operators operate on their corresponding variables as they are evaluated. Thus, the
semantics of post and pre increment (++) is roughly equivalent to the code shown below (decrement is analo-
gous).

function integer pre_inc (var integer a); // ++a
a += 1;
pre_inc = a;

endfunction

function integer post_inc (var integer a); // a++
post_inc = a;
a += 1;

endfunction

The above description states a semantic definition for these operators. SystemVerilog’s semantics are compati-
ble with Verilog operators, which are also left to right associative, and may have side-effects. For example:

$display(f(a) + g(b));

If functions f() and g() have side effects on variables a or b, Verilog must enforce the left-to-right semantics to
avoid the ambiguous results.

Verilog enforces left-to-right evaluation in accordance with the associativity to avoid the ambiguous results;
functions f() and g() may have side effects (global or hierarchical reference) on variables a or b.

The type returned by an assignment operator shall be the type of the LHS. If the LHS is a concatenation, the
type returned shall be an unsigned integral value whose bit length is the sum of its operands.

7.4 Operations on logic and bit types

When a binary operator has one operand of type bit and another of type logic, the result is of type logic. If
one operand is of type int and the other of type integer, the result is of type integer.

The operators != and == return an X if either operand contains an X or a Z, as in Verilog-2001. This is con-
verted to a 0 if the result is converted to type bit, e.g. in an if statement.

The unary reduction operators (& ~& | ~| ^ ~^) can be applied to any integer expression (including packed
arrays). The operators shall return a single value of type logic if the packed type is four valued, and of type
bit if the packed type is two valued.

int i;
bit b = &i;
integer j;
logic c = &j;
44 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH82
7.5 Wild equality and wild inequality

SystemVerilog 3.1 introduces the wild-card comparison operators, as described below.

The wild equality operator (=?=) and inequality operator (!?=) treat X and Z values in a given bit position as a
wildcard. A wildcard bit matches any bit value (0, 1,Z, or X) in the value of the expression being compared
against it.

These operators compare operands bit for bit, and return a 1-bit self-determined result. If the operands are not
the same length, the shorter operand is zero-filled. If the operands to the wild-card equality/inequality are of
unequal bit length, the operands are extended in the same manner as for the case equality/inequality operators.
If the relation is true, the operator yields a 1. If the relation is false, it yields a 0.

The three types of equality (and inequality) operators in SystemVerilog behave differently when their oper-
ands contain unknown values (X or Z). The == and != operators will result in X if any of their operands con-
tains an X or Z. The === and !=== check the 4-state explicitly, therefore, X and Z values will either match or
mismatch, never resulting in X. The =?= and !?= operators treat X or Z as wild cards that match any value,
thus, they too never result in X.

7.6 Real operators

Operands of type shortreal have the same operation restrictions as Verilog real operands. The unary oper-
ators ++ and -- can have operands of type real and shortreal (the increment or decrement is by 1.0). The
assignment operators +=, -=, *=, /= can also have operands of type real and shortreal.

If any operand is real, the result is real, except before the ? in the ternary operator. If no operand is real
and any operand is shortreal, the result is shortreal.

Real operands can also be used in the following expressions:

str.realval // structure or union member
realarray[intval] // array element

7.7 Size

The number of bits of an expression is determined by the operands and the context, following the same rules as
Verilog. In SystemVerilog, casting can be used to set the size context of an intermediate value.

With Verilog, some tools may issue a warning when the left and right hand sides of an assignment are different
sizes. Using the SystemVerilog size casting, these warnings can be prevented.

7.8 Sign

The following unary operators give the signedness of the operand: ~ ++ -- + -. All other operators shall fol-
low the same rules as Verilog for performing signed and unsigned operations.

Table 7-1: Wild equality and wild inequality operators

Operator Usage Description

=?= a =?= b a equals b, X and Z values act as wild cards

!?= a !?= b a not equal b, X and Z values act as wild cards
Copyright 2003 Accellera. All rights reserved. 45

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

BC19-1

EC-CH25

EC-CH23

BC19-1

EC-CH23

EC-CH25

EC-CH33

EC-CH87
7.9 Operator precedence and associativity

Operator precedence and associativity is listed in table 7-2, below. The highest precedence is listed first.

Note that & is higher precedence than ^, following the Verilog standard.

7.10 Built-in methods

SystemVerilog introduces classes and the method calling syntax, in which a task or function is called using the
(.) dot notation:

object.task_or_function()

The object uniquely identifies the data on which the task or function operates. Hence, the method concept is
naturally extended to built-in types in order to add functionality that traditionally was done via system tasks or
functions. Unlike system tasks, built-in methods are not prefixed with a $ since they require no special prefix
to avoid collisions with user-defined identifiers. Thus, the method syntax allows extending the language with-
out the addition of new keywords or cluttering the global name space with system tasks.

Built-in methods, unlike system tasks, can not be redefined by users via PLI tasks. Thus, only functions that
users should not be allowed to redefine are good candidates for built-in method calls.

Table 7-2: Operator precedence and associativity

() [] . left

Unary ! ~ ++ -- + - & ~& && | ~| || ^ ~^ ^~ right

** left

* / % left

+ - left

<< >> <<< >>> left

< <= > >= inside dist left

== != === !== =?= !?= left

& &~ left

^ ~^ ^~ left

| |~ left

&& left

|| left

?: right

=> right

= += -= *= /= %= &= ^= |= <<= >>= <<<= >>>= none

{,} concatenation

Editor’s Note: BC19-1 said to add ^~ to lines 2 and 11. I made the second change to line 10 was instead of 11.
46 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH87

EC-CH87

EC-CH74
In general, a built-in method is preferred over a system task when a particular functionality applies to all data
types, or it applies to a specific data type. For example:

dynamic_array.size, associative_array.num, and string.len

These are all similar concepts, but they represent different things. A dynamic array has a size, an associative
array contains a given number of items, and a string has a given length. Using the same system task, such as
$length, for all of them would be less clear and intuitive.

A built-in method can only be associated with a particular data type, therefore, if some functionality is a simple
side effect (i.e., $stop or $reset) or it operates on no specific data (i.e., $random) then a system task must be
used.

When a function or task built-in method call specifies no arguments, the empty parenthesis, (), following the
task/function name is optional. This is also true for tasks or functions that require arguments, when all argu-
ments have defaults specified. For a method, this rule allows simple calls to appear as properties of the object
or built-in type. Similar rules are defined for functions and tasks in section 10.5.5.

7.11 Concatenation

Braces ({ }) are used to show concatenation, as in Verilog. The concatenation is treated as a packed vector of
bits (or logic if any operand is of type logic). It can be used on the left hand side of an assignment or in an
expression.

logic log1, log2, log3;
{log1, log2, log3} = 3’b111;
{log1, log2, log3} = {1’b1, 1’b1, 1’b1}; // same effect as 3’b111

Software tools may generate a warning if the concatenation width on one side of an assignment is different
than the expression on the other side. The following examples can give warning of size mismatch:

bit [1:0] packedbits = {32’b1,32’b1}; // right hand side is 64 bits
int i = {1’b1, 1’b1}; //right hand side is 2 bits

Note that braces are also used for initializers of structures or unpacked arrays. Unlike in C, the expressions
must match element for element and the braces must match the structures and array dimensions. Each element
must match the type being initialized, so the following do not give size warnings:

bit unpackedbits [1:0] = {1,1}; // no size warning, bit can be set to 1
int unpackedints [1:0] = {1’b1,1’b1}; //no size warning, int can be set to 1’b1

A concatenation of unsized values shall be illegal, as in Verilog. However, an array initializer can use unsized
values within the braces, such as {1,1}.

The replication operator (also called a multiple concatenation) form of braces can also be used for initializers .
For example, {3{1}} represents the initializer {1, 1, 1}.

Refer to sections 2.7 and 2.8 for more information on initializing arrays and structures .

SystemVerilog enhances the concatenation operation to allow concatenation of variables of type string. In gen-
eral, if any of the operands is of type string, the concatenation is treated as a string, and all other argu-
ments are implicitly converted to string type (as described in section 3.8). String concatenation is not
allowed on the left hand side of an assignment, only as an expression.

string hello = "hello";
string s;
s = { hello, " ", "world" };
$display("%s\n", s); // displays 'hello world'
s = { s, " and goodbye" };
Copyright 2003 Accellera. All rights reserved. 47

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
$display("%s\n", s); // displays ’hello world and goodbye’

The replication operator (also called a multiple concatenation) form of braces can also be used with variables
of type string. In the case of string replication, a non-constant multiplier is allowed.

int n = 3;
string s = {n { "boo " }};
$display("%s\n", s);// displays ’boo boo boo ’

Note that unlike bit concatenation, the result of a string concatenation or replication is not truncated. Instead,
the destination variable (of type string) is resized to accommodate the resulting string.
48 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH79

EC-CH79
Section 8
Procedural Statements and Control Flow

8.1 Introduction (informative)

Procedural statements are introduced by one of One introduces procedural statements by the following:

initial // do this statement once at the beginning of simulation

final // do this statement once at the end of simulation

always, always_comb, always_latch, always_ff // loop forever (see section 9 on processes)

task // do these statements whenever the task is called

function // do these statements whenever the function is called and return a value

SystemVerilog has the following types of control flow within a process

— Selection, loops and jumps

— Task and function calls

— Sequential and parallel blocks

— Timing control

Verilog procedural statements are in initial or always blocks, tasks or functions. SystemVerilog adds a
final block that executes at the end of simulation.

Verilog includes most of the statement types of C, except for do...while, break, continue and goto.
Verilog has the repeat statement which C does not, and the disable. The use of the Verilog disable to
carry out the functionality of break and continue requires the user to invent block names, and introduces the
opportunity for error.

SystemVerilog adds C-like break, continue and return functionality, which do not require the use of block
names.

Loops with a test at the end are sometimes useful to save duplication of the loop body. SystemVerilog adds a
C-like do...while loop for this capability.

Verilog provides two overlapping methods for procedurally adding and removing drivers for variables: the
force/release statements and the assign/deassign statements. The force/release statements can also be
used to add or remove drivers for nets in addition to variables. A force statement targeting a variable that is
currently the target of an assign will override that assign; however, once the force is released, the assign’s
effect again will be visible.

The keyword assign is much more commonly used for the somewhat similar, yet quite different purpose of
defining permanent drivers of values to nets.

Editor’s Note: The deleted sentence should be kept. The new wording is too informal for a technical language ref-
erence manual.

Editor’s Note: The added comment is not correct. Statements within an initial procedure do not necessarily exe-
cute at the beginning of simulation, as there can be time and/or event controls before the statement

Editor’s Note: I took the liberty of adding “final” to the list of keywords in Annex B.
Copyright 2003 Accellera. All rights reserved. 49

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH88
 built-in

Syntax 8-1—statement syntax (excerpt from Annex A)

8.2 Blocking and nonblocking assignments

Syntax 8-2—blocking and nonblocking assignment syntax (excerpt from Annex A)

The following assignments are allowed in both Verilog-2001 and SystemVerilog:

#1 r = a;
r = #1 a;
r <= #1 a;
r <= a;

statement ::= [block_identifier :] statement_item // from Annex A.6.4

statement_item ::=
{ attribute_instance } blocking_assignment ;

| { attribute_instance } nonblocking_assignment ;
| { attribute_instance } procedural_continuous_assignments ;
| { attribute_instance } case_statement
| { attribute_instance } conditional_statement
| { attribute_instance } transition_to_state statement_or_null
| { attribute_instance } inc_or_dec_expression
| { attribute_instance } function_call /* must be void function */
| { attribute_instance } disable_statement
| { attribute_instance } event_trigger
| { attribute_instance } loop_statement
| { attribute_instance } jump_statement
| { attribute_instance } par_block
| { attribute_instance } procedural_timing_control_statement
| { attribute_instance } seq_block
| { attribute_instance } system_task_enable
| { attribute_instance } task_enable
| { attribute_instance } wait_statement
| { attribute_instance } process statement
| { attribute_instance } proc_assertion

statement_or_null ::=
statement

| { attribute_instance } ;

procedural_timing_control_statement ::=
delay_or_event_control statement_or_null

blocking_assignment ::= // from Annex A.6.2
variable_lvalue = delay_or_event_control expression

| operator_assignment

operator_assignment ::= variable_lvalue assignment_operator expression

assignment_operator ::=
= | += | -= | *= | /= | %= | &= | |= | ^= | <<= | >>= | <<<= | >>>=

nonblocking_assignment ::= variable_lvalue <= [delay_or_event_control] expression
50 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
@c r = a;
r = @c a;
r <= @c a;

SystemVerilog also allows a time unit to specified in the assignment statement, as follows:

#1ns r = a;
r = #1ns a;
r <= #1ns a;

It shall be illegal to make nonblocking assignments to automatic variables.

The size of the left-hand side of an assignment forms the context for the right hand side expression. If the left-
hand side is smaller than the right hand side, and information may be lost, a warning can be given.

8.3 Selection statements

Syntax 8-3—Selection statement syntax (excerpt from Annex A)

In Verilog, an if (expression) is evaluated as a boolean, so that if the result of the expression is 0 or X, the
test is considered false.

SystemVerilog adds the keywords unique and priority, which can be used before an if. If either keyword
is used, it shall be a run-time warning for no condition to match unless there is an explicit else. For example:

unique if((a==0) || (a==1)) $display("0 or 1");
else if (a == 2) $display("2");
else if (a == 4) $display("4"); // values 3,5,6,7 will cause a warning

priority if(a[2:1]==0) $display("0 or 1");
else if (a[2] == 0) $display("2 or 3");
else $display("4 to 7"); //covers all other possible values, so no warning

A unique if indicates that there should not be any overlap in a series of if...else...if conditions, allowing
the expressions to be evaluated in parallel. A software tool shall issue an error if it determines that there is a
potential overlap in the conditions.

conditional_statement ::= // from Annex A.6.6
[unique_priority] if (expression) statement_or_null [else statement_or_null]

| if_else_if_statement

if_else_if_statement ::=
[unique_priority] if (expression) statement_or_null
{ else [unique_priority] if (expression) statement_or_null }
[else statement_or_null]

case_statement ::= // from Annex A.6.7
[unique_priority] case (expression) case_item { case_item } endcase

| [unique_priority] casez (expression) case_item { case_item } endcase
| [unique_priority] casex (expression) case_item { case_item } endcase

case_item ::=
expression { , expression } : statement_or_null

| default [:] statement_or_null

unique_priority ::= unique | priority
Copyright 2003 Accellera. All rights reserved. 51

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
A priority if indicates that a series of if...else...if conditions shall be evaluated in the order listed. In
the preceding example, if the variable ‘a’ had a value of 0, it would satisfy both the first and second condi-
tions, requiring priority logic.

In Verilog, there are three types of case statements, introduced by case, casez and casex. With SystemVer-
ilog, each of these can be qualified by priority or unique. A priority case shall act on the first match
only. A unique case shall guarantee no overlapping case values, allowing the case items to be evaluated in
parallel. If the case is qualified as priority or unique, the simulator shall issue a warning message if an
unexpected case value is found. By specifying unique or priority, it is not necessary to code a default
case to trap unexpected case values. For example:

bit[2:0] a;
unique case(a) // values 3,5,6,7 will cause a run-time warning

0,1: $display("0 or 1");
2: $display("2");
4: $display("4");

endcase

priority casez(a)
2’b00?: $display("0 or 1");
2’b0??: $display("2 or 3");
default: $display("4 to 7");

endcase

The unique and priority keywords shall determine the simulation behavior. It is recommended that synthe-
sis follow simulation behavior where possible. Attributes may also be used to determine synthesis behavior.

8.4 Loop statements

Syntax 8-4—Loop statement syntax (excerpt from Annex A)

Verilog provides for, while, repeat and forever loops. SystemVerilog enhances the Verilog for loop, and
adds a do...while loop.

8.4.1 The do...while loop

do statement while(condition) // as C

loop_statement ::= // from Annex A.6.8
forever statement

| repeat (expression) statement_or_null
| while (expression) statement_or_null
| for (variable_decl_or_assignment ; expression ; variable_assignment) statement_or_null
| do statement while (expression)

variable_decl_or_assignment ::=
data_type list_of_variable_identifiers_or_assignments ;

| variable_assignment

Editor’s Note: A new BNF for the for loop will be required (see changes described below).

Editor’s Note: Subheading titles were added for clarity, due to additional text on for loops..
52 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
The condition can be any expression which can be treated as a boolean. It is evaluated after the statement.

8.4.2 Enhanced for loop

In Verilog, the variable used to control a for loop must be declared prior to the loop. If loops in two or more
parallel procedures use the same loop control variable, there is a potential of one loop modifying the variable
while other loops are still using it.

SystemVerilog adds the ability to declare the for loop control variable within the for loop. This creates a
local variable within the loop. Other parallel loops cannot inadvertently affect the loop control variable. For
example:

module foo;

initial begin
for (int i = 0; i <= 255; i++)

...
end

initial begin
loop2: for (int i = 15; i >= 0; i--)

...
end

endmodule

The local variable declared within a for loop can be referenced hierarchically by adding a statement label
before the for loop (see section 8.7).

Verilog only permits a single initial statement and a single step assignment within a for loop. SystemVerilog
allows the initial declaration or assignment statement to be one or more comma-separated statements. The step
assignment can also be one or more comma-separated assignment statements.

for (int count = 0; count < 3; count++)
value = value +((a[count]) * (count+1));

for (int count = 0, done = 0, int j = 0; j * count < 125; j++)
$display("Value j = %d\n", j);

8.5 Jump statements

Syntax 8-5—Jump statement syntax (excerpt from Annex A)

SystemVerilog adds the C jump statements break, continue and return.

break // out of loop as C
continue // skip to end of loop as C
return expression // exit from a function
return // exit from a task or void function

The continue and break statements can only be used in a loop. The continue statement jumps to the end

jump_statement ::= // from Annex A.6.5
return [expression] ;

| break ;
| continue ;
Copyright 2003 Accellera. All rights reserved. 53

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH79
of the loop and executes the loop control if present. The break statement jumps out of the loop.

The return statement can only be used in a task or function. In a function returning a value, the return must
have an expression of the correct type.

Note that SystemVerilog does not include the C goto statement.

8.6 Final blocks

The final block is like an initial block, defining a procedural block of statements, except that it occurs at
the end of simulation time and executes without delays. A final block is typically used to display statistical
information about the simulation.

final_construct ::= final function_statement

The only statements allowed inside a final block are those permitted inside a function declaration. This guar-
antees that they execute within a single simulation cycle.

After one of the following conditions occur, all spawned processes are terminated, all pending PLI callbacks
are canceled, and then the final block executes.

— The event queue is empty

— Execution of $finish

— Termination of all program blocks, which executes an implicit $finish

— PLI execution of tf_dofinish() or similar routines vpi_control(vpiFinish,...)

final
begin

$display("Number of cycles executed %d",$time/period);
$display("Final PC = %h",PC);

end

Execution of $finish, tf_dofinish(), or vpi_control(vpiFinish,...) from within a final
block will cause the simulation to end immediately. Final blocks can only trigger once in a simulation.

Final blocks execute before any PLI callbacks that indicate the end of simulation.

Editor’s Note: insert final BNF once the BNF is complete.

Editor’s Note: I took the liberty of replacing “similar routines” with the actual PLI routine name.
54 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH89

EC-CH89

EC-CH89

EC-CH89

EC-CH89
8.7 Named blocks and statement labels

Syntax 8-6—Blocks and labels syntax (excerpt from Annex A)

Verilog allows a begin...end, fork...join, fork...join_any or fork...join_none statement block to be
named. A named block is used to identify the entire statement block. A named block creates a new hierarchy
scope. The block name is specified after the begin or fork keyword, preceded by a colon. For example:

begin : blockA // Verilog-2001 named block
...

end

SystemVerilog allows a matching block name to be specified after the block end, join, join_any or
join_none keyword, preceded by a colon. This can help document which end or join, join_any or
join_none is associated with which begin or fork when there are nested blocks. A name at the end of the
block is not required. It shall be an error if the name at the end is different than the block name at the begin-
ning.

begin: blockB // block name after the begin or fork
...

end: blockB

SystemVerilog allows a label to be specified before any statement, as in C. A statement label is used to identify
a single statement. A statement label does not create a hierarchy scope. The label name is specified before the
statement, followed by a colon.

labelA: statement

A begin...end, fork...join, fork...join_any or fork...join_none block is considered a statement, and
can have a statement label before the block. This is not the same as a block name, however, because it does not
create a hierarchy scope.

labelB: fork // label before the begin or fork
...

join : labelB

It shall be illegal to have both a label before a begin or fork and a block name after the begin or fork. A
label cannot appear before the end, join, join_any or join_none, as these keywords do not form a state-
ment.

A statement with a label can be disabled using a disable statement. Disabling a statement shall have the
same behavior as disabling a named block.

par_block ::= // from Annex A.6.3
fork [: block_identifier]

{ block_item_declaration }
{ statement }

join | join_any | join_none [: block_identifier]

seq_block ::=
begin [: block_identifier]

{ block_item_declaration }
{ statement }

end [: block_identifier]

statement ::= [block_identifier :] statement_item
Copyright 2003 Accellera. All rights reserved. 55

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH88

BC44-9

BC44-9
8.7 Processes

Each initial and always block is a process. Each branch of a fork within such a block is also a process.
These are static processes and they can be explicitly named with a statement label as shown above.

A dynamic process can be created using the process keyword. This forks off a statement without waiting for
completion.

process statement

See Section 9 for more information about processes.

8.8 Disable

SystemVerilog has break and continue for a clean way to break out of or continue the execution of loops.
The Verilog-2001 disable can also be used to break out of or continue a loop, but is more awkward than using
break or continue. The disable is also allowed to disable a named block, which does not contain the dis-
able statement. If the block is currently executing, this causes control to jump to the statement immediately
after the block. If the block is a loop body, it acts like a continue. If the block is not currently executing, the
disable has no effect. The disable, break and continue statements shall not affect any nonblocking
assignments which have been started.

It shall be illegal to disable a function, because the return value would be uncertain. However, a function may
disable its calling block.

SystemVerilog has return from a task, but disable is also supported. If disable is applied to a named task,
all current executions of the task are disabled.

module ...
always always1: begin ... t1: task1(); ... end
...
endmodule

always begin
...
disable u1.always1.t1; // exit task1, which was called from always1 (static)

end
56 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

BC44-15

BC42-12

BC44-15
8.9 Event control

Syntax 8-7—Delay and event control syntax (excerpt from Annex A)

Any change in a variable or net can be detected using the @ event control, as in Verilog. If the expression eval-
uates to a result of more than one bit, a change on any of the bits of the result (including an x to z change) will
trigger the event control.

SystemVerilog adds an iff qualifier to the @ event control.

module latch (output logic [31:0] y, input [31:0] a, input enable);
always @(a iff enable == 1)

y <= a; //latch is in transparent mode
endmodule

The event expression only triggers if the expression after the iff is true, in this case when enable is equal to
1. Note that such an expression is evaluated when clk a changes, and not when enable changes. Also note
that iff has precedence over or. This can be made clearer by the use of parentheses.

If a variable or net is not of type logic, then posedge and negedge refer to transitions from 0 and to 0
respectively. If the variable or net is a packed array or structure, it is zero if all elements are 0.

SystemVerilog also allows the @ event control to explicitly state any change, using the changed keyword.

@(myvar) // triggers on any change to myvar

@(changed myvar) // triggers on any change to myvar

The @(changed expression) differs from @(expression) in that the changed keyword explicitly defines that
the event control only triggers on a change of the result of the expression. In certain types of expressions,
@(expression) can trigger on changes to operands of the expression that do not affect the result.

SystemVerilog allows assignment expressions to be used in an event control, e.g. @((a = b + c)). The

delay_or_event_control ::= // from Annex A.6.5
delay_control

| event_control
| repeat (expression) event_control

delay_control ::=
delay_value

| # (mintypmax_expression)

event_control ::=
@ event_identifier

| @ (event_expression)
| @*
| @ (*)

event_expression ::=
expression [iff expression]

| hierarchical_identifier [iff expression]
| [edge] expression [iff expression]
| event_expression or event_expression
| event_expression , event_expression

edge ::= posedge | negedge | changed
Copyright 2003 Accellera. All rights reserved. 57

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
event control shall only be sensitive to changes in the result of the expression on the right-hand side of the
assignment. It shall not be sensitive to changes on the left-hand side expression.

8.10 Procedural assign and deassign removal

SystemVerilog currently supports the procedural assign and deassign statements. However, these state-
ments may be removed from future versions of the language. See section 24.3.
58 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

BC42-14

EC-CH89

EC-CH79
Section 9
Processes

9.1 Introduction (informative)

Verilog-2001 has always and initial blocks which define static processes.

In an always block which is used to model combinational logic, forgetting an else leads to an unintended
latch. To avoid this mistake, SystemVerilog adds specialized always_comb and always_latch blocks,
which indicate design intent to simulation, synthesis and formal verification tools. SystemVerilog also adds an
always_ff block to indicate sequential logic.

In systems modeling, one of the key limitations of Verilog is the inability to create processes dynamically, as
happens in an operating system. Verilog has the fork...join construct, but this still imposes a static limit.

SystemVerilog has both static processes, introduced by always, initial or fork, and dynamic processes,
introduced by process built-in fork...join_any and fork...join_none.

SystemVerilog creates a thread of execution for each initial or always block, for each parallel statement in
a fork...join block and for each dynamic process. Each continuous assignment may also be considered its
own thread. Execution of each thread may be interrupted between statements at a semicolon, but a single state-
ment (not a block) containing no user task or function call is uninterrupted. This allows atomic test-and-set
using assignment operators in an if statement.

SystemVerilog 3.1 adds dynamic processes by enhancing the fork...join construct, in a way that is more nat-
ural to Verilog users. SystemVerilog 3.1 also introduces dynamic process control constructs that can terminate
or wait for processes using their dynamic, parent-child relationship. These are $wait_child,
$suspend_thread, and $terminate.

SystemVerilog final blocks execute in an arbitrary but deterministic sequential order. This is possible
because final blocks are limited to the legal set of statements allowed for functions. SystemVerilog does not
specify the ordering, but implementations should define rules that will preserve the ordering between runs.
This helps keep the output log file stable since final blocks are mainly used for displaying statistics.

9.2 Level sensitive logic

SystemVerilog provides a special always_comb procedure for modeling combinational logic behavior. For
example:

always_comb
a = b & c;

always_comb
d <= #1ns b & c;

The always_comb procedure provides functionality that is different than a normal always procedure:

— There is an inferred sensitivity list that includes every variable read by the procedure.

— The variables written on the left-hand side of assignments may not be written to by any other process.

— The procedure is automatically triggered once at time zero, after all initial and always blocks have
been started, so that the outputs of the procedure are consistent with the inputs.

The SystemVerilog always_comb procedure differs from the Verilog-2001 always @* in the following ways:

— always_comb automatically executes once at time zero, whereas always @* waits until a change occurs
on a signal in the inferred sensitivity list.
Copyright 2003 Accellera. All rights reserved. 59

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

BC42-17
— always_comb is sensitive to changes within the contents of a function, whereas always @* is only sensi-
tive to changes to the arguments of a function.

— Variables on the left-hand side of assignments within an always_comb procedure may not be written to by
any other processes, whereas always @* permits multiple processes to write to the same variable.

Software tools can perform additional checks to warn if the behavior within an always_comb procedure does
not represent combinational logic, such as if latched behavior may be inferred.

9.3 Latch sensitive logic

SystemVerilog also provides a special always_latch procedure for modeling latched logic behavior. For
example:

always_latch
if(ck) q <= d;

The always_latch procedure differs from a normal always procedure in the following ways:

— There is an inferred sensitivity list that includes every variable read by the procedure.

— The variables written on the left-hand side of assignments may not be written to by any other process.

— The procedure is automatically triggered once at time zero, after all initial and always blocks have
been started, so that the outputs of the procedure are consistent with the inputs.

Software tools may perform additional checks to warn if the behavior within an always_latch procedure
does not represent latched logic.

9.4 Edge sensitive logic

The SystemVerilog always_ff procedure can be used to model synthesizable sequential logic behavior. For
example:

always_ff @(posedge clock iff reset == 0 or posedge reset) begin
r1 <= reset ? 0 : r2 + 1;
...

end

The always_ff block imposes the restriction that only one event control is allowed. Software tools may per-
form additional checks to warn if the behavior within an always_ff procedure does not represent sequential
logic.

9.5 Continuous assignments

In Verilog, continuous assignments can only drive nets, and not variables.

SystemVerilog removes this restriction, and permits continuous assignments to drive nets, logic variables,
and any other type of variables, except reg variables. Nets can be driven by multiple continuous assignments,
or a mixture of primitives and continuous assignments. logic variables and other data types can only be
driven by one continuous assignment or one primitive output. It shall be an error for a variable driven by a con-
tinuous assignment or primitive output to have an initializer in the declaration or any procedural assignment.
60 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
9.6 Dynamic processes

The SystemVerilog dynamic process adds capability that behaves like a fork without a join. A dynamic pro-
cess is started as a separate thread, and execution of the current procedure or task continues while the process
is executing. The process does not block the flow of execution of statements within the procedure or task.
Dynamic processes allow the creation of multi-threaded processes, as opposed to multiple procedures, which
are static parallel processes.

A dynamic process shall be created by the process keyword, which is used as follows:

process statement

For example, the following task initiates an endless loop and returns immediately to the caller. The task can be
launched any number of times to display a selected location at every strobe.

task monitorMem(input int address);
process forever @strobe $display("address %h data %h", mem[address]);

endtask

The following example illustrates using a dynamic process to model a pipeline.

// pipeline module
module p(input clk, flush, input int x_in, y_in, z_in);

parameter int latency = 6, throughput = 2;
int z_out;
int processes = 0;

always begin
while (!flush) begin
process begin

int v2, v3, v4, v5; // lifetime matches process
processes++;
v2 = x_in + y_in;
v3 = x_in - z_in;
v4 = v2 * v3;
v5 = v4 * x_in;
repeat(latency) @ (posedge clk);
z_out <= v5;
processes--;

end
repeat(throughput) @(posedge clk);

end
wait(processes == 0); //wait for flush
end

endmodule

In the proceeding example, the while loop contains a delay of two clock cycles, from the repeat statement,
and this determines the pipeline throughput. Each iteration spawns a process which lasts six clock cycles, the
latency of the pipeline. The variable processes keeps a count of the number of currently active processes.
The pipeline flush is not complete until this count has fallen to zero.

SystemVerilog 3.0 does not provide a mechanism to disable a process once it has been started, but all instances
of a named block within a dynamic process can be disabled by referring to a named block.

Editor’s Note: The process statement is deprecated, in favor of fork...join none (see below).
Copyright 2003 Accellera. All rights reserved. 61

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH89

EC-CH44

EC-CH45

EC-CH89

EC-CH89

EC-CH45
9.7 fork...join

The fork...join construct provides the primary mechanism for creating concurrent processes.

The syntax to declare a fork...join block is:

fork
statement1;
statement2;
...
statementn;

join [all | any | none]
join | join_any | join_none

The statement(s) can be any valid statement or block of statements enclosed by begin...end.

One or more statements can be specified, each statement will execute as a concurrent process.

The spawned processes start executing in strict source order: the first statement (statement1), starts execut-
ing first, followed by the second (statement2), and so on.

In Verilog a fork...join block always causes the process executing the fork statement to block until all the
forked off processes terminate. SystemVerilog adds join options the join_any and join_none keywords that
control how the fork is to be carried out.

The join options of all, any or none specify when the parent (forking) process resumes execution. If the join
option is not specified, then SystemVerilog defaults to all, which is the same behavior as Verilog.

A fork...join none statement causes all the spawned processes as well as the parent process to execute con-
currently, but the children processes do not start executing until the parent process executes a blocking state-
ment (see $suspend_thread in section 9.9.3). Nevertheless, the spawned processes will start executing in
source order: starting with the first statement first, and ending with the last.

When defining a fork...join block, encapsulating the entire fork within a begin...end block causes the
entire block to execute as a single process, with each statement executing sequentially.

fork
begin

statement1; // one process with 2 statements
statement2;

end

Table 9-1: fork...join control options

Option Description

all join The parent process blocks until all the processes spawned by this fork complete. This is the
same as a Verilog fork...join .

join_any The parent process blocks until any one of the processes spawned by this fork complete.

join_none The parent process continues to execute concurrently with all the processes spawned by the
fork. The spawned processes do not start executing until the parent thread executes a blocking
statement.

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

Editor’s Note: I implemented change EC-CH89 for the preceding two paragraphs slightly differently than speci-
fied to make the wording flow better.
62 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH89

EC-CH89

EC-CH89

EC-CH100
join

In the following example, two processes are forked off, the first one will wait for 20ns and the second will wait
for the named event eventA to be triggered. Because no join option the join keyword is specified (the same
as all), the parent process will block until the two processes complete, that is, 20ns have elapsed and eventA
has been triggered.

fork
begin

$display("First Block\n");
20ns;

end
begin

$display("Second Block\n");
@eventA;

end
join

A return statement within the context of a fork...join statement is illegal and shall result in a compilation
error. For example:

function int wait_20;
fork

20;
return 4; // Illegal: cannot return; function lives in another process

join_none
endfunction

SystemVerilog 3.0 provided a process statement, which gave the same functionality as the fork...join_none con-
struct. SystemVerilog 3.1 deprecates the process statement, in favor or the more natural fork...join_none form.

9.8 Process execution threads

SystemVerilog creates a thread of execution for:

— Each initial block

— Each always block

— Each parallel statement in a fork...join (or join_any or join_none) statement group

— Each dynamic process

Each continuous assignment may also be considered its own thread.

Execution of each thread can be interrupted between statements at a semicolon, but a single statement (not a
block) containing no user task or function call shall not be interrupted. This allows atomic test-and-set using
assignment operators in an if statement.

9.9 Process control

SystemVerilog provides several constructs that allow one process to terminate or wait for the completion of
other processes. The $wait_child construct waits for the completion of processes. The $terminate con-
struct stops the execution of processes. The $suspend_thread system task temporarily suspends a thread.

9.9.1 $wait_child() wait fork

The $wait_child system task wait fork statement is used to ensure that all child processes (processes cre-
ated by the calling process) have completed their execution.
Copyright 2003 Accellera. All rights reserved. 63

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH100

EC-CH89

EC-CH89

EC-CH100

EC-CH100
The syntax for $wait_child wait fork is:

task $wait_child();
wait fork ;

Calling $wait_child Specifying wait fork causes the calling process to block until all its sub-processes
have completed.

By default, SystemVerilog terminates a simulation run when all its programs finish executing (i.e, they reach
the end of their execute block), regardless of the status of any child processes. The $wait_child task allows
a program to wait for the completion of all its concurrent threads before exiting.

Verilog terminates a simulation run when there is no further activity of any kind. SystemVerilog adds the abil-
ity to automatically terminate the simulation when all its program blocks finish executing (i.e, they reach the
end of their execute block), regardless of the status of any child processes (see section 15.9.1). The wait
fork statement allows a program block to wait for the completion of all its concurrent threads before exiting.

In the following example, in the task do_test, the first two processes are spawned and the task blocks until
one of the two processes completes (either exec1, or exec2). Next, two more processes are spawned in the
background. The call to $wait_child wait fork statement will ensure that the task do_test waits for all
four spawned processes to complete before returning to its caller.

task do_test;
fork

exec1();
exec2();

join_any
fork

exec3();
exec4();

join_none
$wait_child() wait fork;// block until exec1 ... exec4 complete

endtask

9.9.2 $terminate Disable fork

The $terminate disable fork statement terminates all active descendants (sub-processes) of the calling
process.

The syntax for $terminate disable fork is:

$terminate disable fork;

The $terminate command disable fork statement terminates all descendants of the calling process, as
well as the descendants of the process’ descendants, that is, if any of the child processes have descendants of
their own, the $terminate command disable fork statement will terminate them as well.

In the example below the function get_first spawns three versions of a function that will wait for a partic-
ular device (1, 7, or 13). The function wait_device function waits for a particular device to become ready
and then returns the device’s address. When the first device becomes available, the get_first function will
resume execution and proceed to kill the outstanding wait_device processes.

function integer get_first();
fork

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.
64 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH89

EC-CH100

EC-CH89
get_first = wait_device(1);
get_first = wait_device(7);
get_first = wait_device(13);

join_any
$terminate disable fork;

endfunction

Verilog supports the disable construct, which will end a process when applied to the named block being exe-
cuted by the process. $terminate The disable fork statement differs from disable in that $terminate
disable fork considers the dynamic parent-child relationship of the processes, whereas disable uses the
static syntactical information of the disabled block. Thus, disable will end all processes executing a particu-
lar block, whether the processes were forked by the calling thread or not, while $terminate disable fork
will end only those processes that were spawned by the calling thread.

9.9.3 $suspend_thread()

The $suspend_thread system task temporarily suspends the current thread.

The syntax for $suspend_thread is:

task $suspend_thread();

The $suspend_thread system task temporarily suspends the current process allowing other ready processes
to execute. Calling $suspend_thread is conceptually similar to a zero delay statement (#0), however,
$suspend_thread conveys the intent more clearly and may also be called after nonblocking assignments
(see section 15.7) where a zero delay is ill-advised when called during the verification phase.

The following example forks multiple threads each calling my_task(). After each thread is forked, the call-
ing thread is suspended, which allows the newly forked thread to start executing (call my_task) before fork-
ing the next thread.

for(int j=0; j<10; j++)
begin

fork
my_task(i);

join_none
$suspend_thread();

end

Editor’s Note: EC-CH100 did not include the changes to the preceding paragraph. I added those because they
seemed appropriate..

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.
Copyright 2003 Accellera. All rights reserved. 65

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH103
Section 10
Tasks and Functions

10.1 Introduction (informative)

Verilog-2001 has static and automatic tasks and functions. Static tasks and functions share the same storage
space for all calls to the tasks or function within a module instance. Automatic tasks and function allocate
unique, stacked storage for each instance.

SystemVerilog adds the ability to declare automatic variables within static tasks and functions, and static vari-
ables within automatic tasks and functions.

SystemVerilog also adds:

— More capabilities for declaring task and function ports

— Function output and inout ports

— Void functions

— Multiple statements in a task or function without requiring a begin...end or fork...join block

— Returning from a task or function before reaching the end of the task or function

— Passing arguments by reference instead of by value

— Passing argument values by name instead of by position

— Default argument values
66 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
10.2 Tasks

Syntax 10-1—Task syntax (excerpt from Annex A)

A Verilog task declaration either has the formal arguments in parentheses (like ANSI C) or in declarations and
directions.

task mytask1 (output int x, input logic y);
...

endtask

task mytask2;
output x;
input y;
int x;
logic y;
...

endtask

Each formal argument has one of the following directions:

input // copy value in at beginning

output // copy value out at end

inout // copy in at beginning and out at end

task_declaration ::= // from Annex A.2.7
task [automatic] [interface_identifier .] task_identifier ;
{ task_item_declaration }
{ statement }
endtask [: task_identifier]

| task [automatic] [interface_identifier .] task_identifier (task_port_list) ;
{ block_item_declaration }
{ statement }
endtask [: task_identifier]

task_item_declaration ::=
block_item_declaration

| { attribute_instance } input_declaration ;
| { attribute_instance } output_declaration ;
| { attribute_instance } inout_declaration ;

task_port_list ::= task_port_item { , task_port_item }

task_port_item ::=
{ attribute_instance } input_declaration

| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration

task_prototype ::=

 task ({ attribute_instance } task_proto_formal
{ , { attribute_instance } task_proto_formal })

named_task_proto ::= task task_identifier (task_proto_formal { , task_proto_formal })

task_proto_formal ::=
input data_type [variable_declaration_identifier]

| inout data_type [variable_declaration_identifier]
| output data_type [variable_declaration_identifier]
Copyright 2003 Accellera. All rights reserved. 67

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

BC no #
With SystemVerilog, there is a default direction of input if no direction has been specified. Once a direction
is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs.

task mytask3(a, b, output logic [15:0] u, v);
...

endtask

Each formal argument also has a data type which can be explicitly declared or can inherit a default type. The
default type in SystemVerilog is logic, which is compatible with Verilog. The task argument default type in
SystemVerilog is reg.

SystemVerilog allows an array to be specified as a formal argument to a task. For example:

// the resultant declaration of b is input [3:0][7:0] b[3:0]
task mytask4(input [3:0][7:0] a, b[3:0], output [3:0][7:0] y[1:0]);

...
endtask

Verilog-2001 allows tasks to be declared as automatic, so that all formal arguments and local variables are
stored on the stack. SystemVerilog extends this capability by allowing specific formal arguments and local
variables to be declared as automatic within a static task, or by declaring specific formal arguments and local
variables as static within an automatic task.

With SystemVerilog, multiple statements can be written between the task declaration and endtask, which
means that the begin end can be omitted. If begin end is omitted, statements are executed sequen-
tially, the same as if they were enclosed in a begin end group. It shall also be legal to have no statements at
all.

In Verilog, a task exits when the endtask is reached. With SystemVerilog, the return statement can be used to
exit the task before the endtask keyword.
68 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
10.3 Functions

Syntax 10-2—Function syntax (excerpt from Annex A)

A Verilog function declaration either has the formal arguments in parentheses (like ANSI C) or in declarations
and directions:

function logic [15:0] myfunc1(int x, int y);
...

endfunction

function logic [15:0] myfunc2;
input int x;
input int y;
...

endfunction

function_declaration ::= // from Annex A.2.6
function [automatic] [signing] [range_or_type]
[interface_identifier .] function_identifier ;
{ function_item_declaration }
{ function_statement }
endfunction [: function_identifier]

| function [automatic] [signing] [range_or_type]
[interface_identifier .] function_identifier (function_port_list) ;
{ block_item_declaration }
{ function_statement }
endfunction [: function_identifier]

function_item_declaration ::=
block_item_declaration

| { attribute_instance } input_declaration ;
| { attribute_instance } output_declaration ;
| { attribute_instance } inout_declaration ;

function_port_item ::=
{ attribute_instance } input_declaration

| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration

function_port_list ::= function_port_item { , function_port_item }

function_prototype ::= function data_type (list_of_function_proto_formals)

named_function_proto::= function data_type function_identifier (list_of_function_proto_formals)

list_of_function_proto_formals ::=
[{ attribute_instance } function_proto_formal { , { attribute_instance }
function_proto_formal }]

function_proto_formal ::=
input data_type [variable_declaration_identifier]

| inout data_type [variable_declaration_identifier]
| output data_type [variable_declaration_identifier]
| variable_declaration_identifier

range_or_type ::=
{ packed_dimension } range

| data_type
Copyright 2003 Accellera. All rights reserved. 69

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
SystemVerilog extends Verilog functions to allow the formal arguments to be inputs or outputs. Function argu-
ments are all passed by value, i.e. copied.

input // copy value in at beginning

output // copy value out at end

inout // copy in at beginning and out at end

Function declarations default to the formal direction input if no direction has been specified. Once a direction
is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs:

function logic [15:0] myfunc3(int a, int b, output logic [15:0] u, v);
...

endfunction

Each formal argument has a data type which can be explicitly declared or can inherit a default type. The
default type in SystemVerilog is logic, which is compatible with Verilog. SystemVerilog allows an array to
be specified as a formal argument to a function, for example:

function [3:0][7:0] myfunc4(input [3:0][7:0] a, b[3:0]);
...

endfunction

SystemVerilog allows multiple statements to be written between the function header and endfunction,
which means that the begin...end can be omitted. If the begin...end is omitted, statements are executed
sequentially, as if they were enclosed in a begin...end group. It is also legal to have no statements at all, in
which case the function returns the current value of the implicit variable that has the same name as the func-
tion.

10.3.1 Void functions

In Verilog, functions must return values. The return value is specified by assigning a value to the name of the
function.

function [15:0] myfunc1 (input foo);
myfunc1 = 16’hbeef; //return value is assigned to function name

endfunction

SystemVerilog allows functions to be declared as type void, which do not have a return value. For non-void
functions, a value can be returned by assigning the function name to a value, as in Verilog, or by using return
with a value. The return statement shall override any value assigned to the function name. When the return
statement is used, non-void functions must specify an expression with the return.

function [15:0] myfunc2 (input foo);
return 16’hbeef; //return value is specified using return statement

endfunction

In SystemVerilog, a function return can be a structure or union. In this case, a hierarchical name used inside the
function and beginning with the function name is interpreted as a member of the return value. If the function
name is used outside the function, the name indicates the scope of the whole function. If the function name is
used within a hierarchical name, it also indicates the scope of the whole function.

Function calls are expressions unless of type void, which are statements:

Editor’s Note: The subsection title was added by the editor, both for clarity and to give balance with the addition
of subsection 10.3.2 that was added.for draft 1.
70 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH103

EC-CH90

EC-CH90

EC-CH103

EC-CH103

EC-CH103
a = b + myfunc1(c, d); //call myfunc1 (defined above) as an expression

myprint(a); //call myprint (defined below) as a statement

function void myprint (int a);
...

endfunction

10.3.2 Discarding Function Return Values

In Verilog-2001, values returned by functions must be assigned or used in an expression. Calling a function as
if it has no return value can results in a compilation error warning message. SystemVerilog allows using the
void data type to discard a function’s return value. This can be done by casting the function to the void type,
or by assigning the function return to the void type:

void’(some_function());

void = some_function();

With SystemVerilog, a non-void function call can also be used as a statement without explicitly discarding the
return, but this can result in a warning message.

10.4 Task and function scope and lifetime

In Verilog-2001, the default lifetime for tasks and functions is static. Automatic tasks and functions must be
explicitly declared, using the automatic keyword.

SystemVerilog adds an optional module attribute to specify the default lifetime of all tasks and functions
declared within the module. The lifetime attribute can be set to automatic or static. The default is static
for modules, and automatic for the program block (see section 15).

Class methods are by default automatic, regardless of the lifetime attribute of the module in which they are
declared. Classes are discussed in section 11.

10.5 Task and function argument passing

SystemVerilog provides two means for passing arguments to functions and tasks: by value and by reference.
Arguments can also be passed by name as well as by position. Task and function arguments can also be given
a default values, allowing the call to the task or function to not pass arguments.

10.5.1 Pass by value

Pass by value is the default mechanism for passing arguments to subroutines, it is also the only one provided
by Verilog-2001. This argument passing mechanism works by copying each argument into the subroutine area.
If the subroutine is automatic, then the subroutine retains a local copy of the arguments in its stack. If the argu-
ments are changed within the subroutine, the changes are not visible outside the subroutine. When the argu-
ments are large, it may be undesirable to copy the arguments. Also, programs sometimes need to share a
common piece of data that is not declared global.

For example, calling the function bellow will copy 1000 bytes each time the call is made.

function int crc(char [1000:1] packet);
for(int j= 0 1; j < 1094 1000; j++) begin

Editor’s Note: No syntax or examples of these new attributes was provided by the SV-EC.
Copyright 2003 Accellera. All rights reserved. 71

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH92

EC-CH103

EC-CH103

EC-CH92

EC-CH103

EC-CH91

EC-CH103
crc ^= packet[j];
end

endfunction

10.5.2 Pass by reference

Arguments passed by reference are not copied into the subroutine area, rather, a reference to the original argu-
ment is passed to the subroutine. The subroutine can then access the argument data indirectly via the reference.
To indicate argument passing by reference, the argument declaration is preceded by the var keyword. The
general syntax is:

subroutine(var type argument);

For example, the example above can be written as:

function int crc(var char [1000:1] packet);
for(int j= 0 1; j < 1094 1000; j++) begin

crc ^= packet[j];
end

endfunction

Note that in the example, no change other than addition of the var keyword is needed. The compiler knows
that packet is now addressed indirectly via a reference, but users do not need to make these references
explicit either in the callee or at the point of the call. That is, the call to either version of the crc function
remains the same:

char packet[1000:1];
int k = crc(packet1); // pass by value or by reference: call is the same

When the argument is passed by reference, both the caller and the callee subroutine share the same representa-
tion of the argument, so any changes made to the argument either within the caller or the callee subroutine will
be visible to each other.

Arguments passed by reference must match exactly, no promotion, conversion, or auto-casting is possible
when passing arguments by reference. In particular, array arguments must match their type and all dimensions
exactly. Fixed-size arrays cannot be mixed with dynamic arrays and vice-versa.

Passing an argument by reference is a unique parameter passing qualifier, different from input, output, or
inout. Combining var with any other qualifier is illegal. For example, the following declaration results in a
compiler error:

task incr(var input int a); // incorrect: var cannot be qualified

10.5.3 Default argument values

To handle common cases or allow for unused arguments, SystemVerilog allows a subroutine declaration to
specify a default value for each scalar (non-packed-array) singular argument.

The syntax to declare a default argument in a subroutine is:

subroutine(type argument = default_value);

The default_value is any expression that is visible at the current scope. It may include any combination of con-
stants or variables visible at the scope of both the caller and the callee subroutine.

When the subroutine is called, arguments with default values can be omitted from the call and the compiler
will insert their corresponding values. Unspecified (or empty) arguments can be used as placeholders for
default arguments, allowing the use of non-consecutive default arguments. If an unspecified argument is used
72 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH103

EC-CH74
for an argument that does not have a default value, a compiler error shall be issued.

task read(int j = 0, int k, int data = 1);
...

endtask;

This example declares a task read() with two default arguments, j and data. The task can then be called
using various default arguments:

read(, 5); // is equivalent to read(0, 5, 1);

read(2, 5); // is equivalent to read(2, 5, 1);

read(, 5,); // is equivalent to read(0, 5, 1);

read(, 5, 7); // is equivalent to read(0, 5, 7);

read(1, 5, 2); // is equivalent to read(1, 5, 2);

read(); // error; k has no default value

10.5.4 Argument passing by name

SystemVerilog allows arguments to tasks and functions to be passed by name as well as by position. This
allows specifying non-consecutive default arguments and easily specifying the parameter to be passed at the
call. For example:

function int fun(int j = 1, string s = "no");
...

endfunction

The fun function can be called as follows:

fun(.j(2), .s("yes")); // fun(2, “yes”);

fun(.s("yes")); // fun(1, “yes”);

fun(, "yes"); // fun(1, “yes”);

fun(.j(2)); // fun(2, “no”);

fun(2); // fun(2, “no”);

fun(); // fun(1, “no”);

If the arguments have default values, they are treated like parameters to module instances. If the arguments do
not have a default, then they must be given or the compiler shall issue an error.

10.5.5 Optional argument list

When a task or function specifies no arguments, the empty parenthesis, (), following the task/function name
shall be optional. This is also true for tasks or functions that require arguments, when all arguments have
defaults specified.
Copyright 2003 Accellera. All rights reserved. 73

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
74 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH104

EC-CH104
Section 11
Classes

11.1 Introduction (informative)

SystemVerilog 3.0 includes structures for data encapsulation. SystemVerilog 3.1 adds introduces the object-
oriented class framework. Classes allow objects to be dynamically created and deleted, to be assigned, and to
be accessed via handles, which provide a safe pointer-like mechanism to the language. With inheritance and
abstract classes, this framework brings the advantages of C function pointers with none of the type-safety
problems, thus, bringing true polymorphism into Verilog.

11.2 Syntax

11.3 Overview

A class is a collection of data and a set of subroutines that operate on that data. A class is a type that includes
data and subroutines that operate on that data. A class’s data is referred to as properties, and its subroutines are
called methods, both are members of the class. The properties and methods, taken together, define the contents
and capabilities of some kind of object.

For example, a packet might be an object. It might have a command field, an address, a sequence number, a
time stamp, and a packet payload. In addition, there are various things one can do with a packet: initialize the
packet, set the command, read the packet’s status, or check the sequence number. Each Packet is different, but
as a class, packets have certain intrinsic properties that one can capture in a definition.

class Packet ;
bit [3:0] command; // data portion
bit [40:0] address;
bit [4:0] master_id;
integer time_requested;
integer time_issued;
integer status;

function new(); // initialization
command = IDLE;
address = 41’b0;

Editor’s Note: This entire section is new for draft 1. Only the Section titles have been highlighted as new text.

Editor’s Note: The material inserted here is as it was provided by the SV-EC committee. The editor feels it is writ-
ten in a tutorial style, and needs considerable rewording to be appropriate for the SystemVerilog LRM. See section
11.4 as one example where re-wording may be needed.

Editor’s Note: Add BNF excerpt, when available
Copyright 2003 Accellera. All rights reserved. 75

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH106

EC-CH104
master_id = 5’bx;
endfunction

task clean();
command = 0; address = 0; master_id = 5’bx;

endtask
// public access entry points

task issue_request(int delay);
// send request to bus

endtask

function integer current_status();
current_status = status;

endfunction
endclass

A common convention is to capitalize the first letter of the class name, so that it is easy to recognize class dec-
larations.

11.4 Objects (class instance)

The last previous section only provided the definition of a class Packet. That is a new, complex data type, but
one can’t do anything with the class itself. First, one needs to create an instance of the class, a single Packet
object. The first step is to create a variable that can hold an object handle:

Packet p;

Nothing has been created yet. The declaration of p is simply a variable that can hold a handle of a Packet
object. For p to refer to something, an instance of the class must be created using the new function.

Packet p;
p = new;

Uninitialized object handles are set by default to the special value null. One can detect an uninitialized object
by comparing its handle with null.

For example: The task task1 below checks if the object is initialized. If it is not, it creates a new object via
the new command.

class obj_example;
...

endclass

task task1(integer a, obj_example myexample);
if (myexample == null) myexample = new;

endtask

Accessing non-static members or virtual methods via a null object handle is illegal. The result of an illegal
access via a null object is indeterminate, and implementations can issue an error.

System Verilog objects are referenced using an “object handle”. There are some differences between a C
pointer and a System Verilog object handle. C pointers give programmers a lot of latitude in how a pointer
may be used. The rules governing the usage of System Verilog object handles are much more restrictive. A C
pointer may be incremented for example, but a System Verilog object handle may not. In addition to object
handles, section 3.7 introduces the handle data type for use with the DirectC interface.

Editor’s Note: The Editor vehemently objects to reserving the keywords new, this and super! (see Annex B)
76 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

11.5 Object properties

After having created an object in the last section, one can use its data fields by qualifying property names with
an instance name. Looking at the earlier example, the commands for the Packet object p can be used as fol-
lows:

Packet p = new;
p.command = INIT;
p.address = $random;
time = p.time_requested;

11.6 Object methods

An object’s methods can be accessed using the same syntax used to access properties:

Packet p = new;
status = p.current_status();

Note that we did not say:

status = current_status(p);

The focus in object-oriented programming is the object, in this case the packet, not the function call. Also,
objects are self-contained, with their own methods for manipulating their own properties. So the object doesn’t
have to be passed as an argument to current_status(). A class’ properties are freely and broadly avail-
able to the methods of the class, but each method only accesses the properties associated with its object, i.e., its
instance.

11.7 Constructors

SystemVerilog does not require the complex memory allocation and deallocation of C++. Construction of an

Table 11-2: Comparison of pointer and handle types

C pointer SV object
handle SV handle Operation

Allowed Not allowed Not allowed Arithmetic operations (such as incrementing)

Allowed Not allowed Not allowed For arbitrary data types

Error Not allowed Not allowed Dereference when null

Allowed Limited Not allowed Casting

Allowed Not allowed Not allowed Assignment to an address of a data type

No Yes Yes Unreferenced objects are garbage collected

Undefined null null Default value

(C++) Allowed Not allowed For classes

Editor’s Note: Is the “DirectC” .name to be used in SystemVerilog?
Copyright 2003 Accellera. All rights reserved. 77

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH104

EC-CH104
object is straightforward and garbage collection, as in Java, is implicit and automatic. There can be no memory
leaks or other subtle behavior that is so often the bane of C++ programmers.

SystemVerilog provides a mechanism for initializing an instance at the time the object is created. When an
object is created, for example

Packet p = new;

The system executes the new function associated with the class:

class Packet;
integer command;

function new();
command = IDLE;

endfunction
endclass

Note that new is now being used in two very different contexts with very different semantics. The variable dec-
laration creates an object of class Packet. In the course of creating this instance, the new function is invoked,
in which any specialized initialization required may be done. The new task is also called the class constructor.

The new operation is defined as a function with no return type, thus, it must be nonblocking. Even though
new does not specify a return type, the left-hand side of the assignment determines the return type.

Every class has a default (built-in) new method. The default constructor first calls its parent class constructor
(super.new() as described in section 11.13) and then proceeds to initialize each member of the current
object to its default (or uninitialized value).

It is also possible to pass arguments to the constructor, which allows run-time customization of an object:

Packet p = new(STARTUP, $random, $time);

where the new initialization task in Packet might now look like:

function new(int cmd = IDLE, bit[12:0] adrs = 0, int cmd_time);
command = cmd;
address = adrs;
time_requested = cmd_time;

endfunction

The conventions for arguments are the same as for procedural subroutine calls, including the use of default
arguments.

11.8 Class properties

So far, we have only declared instance properties. Each instance of the class (i.e., each object of type Packet),
has its own copy of each of its six variables. Sometimes one needs only one version of a variable to be shared
by all instances. These class properties are created using the keyword static. Thus, for example, in a case
where all instances of a class need access to a common file descriptor:

class Packet ;
static integer fileId = $open("data", "r");

Now, semId will be created and initialized once. Thereafter, every Packet object can access the file descriptor
in the usual way:

Packet p;
c = $fgetc(p.semId p.fileID);
78 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH104

EC-CH104
11.9 This

There are times when one needs to unambiguously refer to properties or methods of the current instance. For
example, the following declaration is a common way to write an initialization task:

class Demo ;
integer x;

function new (integer x)
this.x = x;

endfunction
endclass

The x is now both a property of the class and an argument to the function new. In the function new, an unqual-
ified reference to x will be resolved by looking at the innermost scope, in this case the subroutine argument
declaration. To access the instance property, we qualify it with this to refer to the current instance.

Note that in writing methods, one can always qualify members with this to refer to the current instance, but it
is usually unnecessary.

11.10 Assignment, re-naming and copying

Declaring a class variable only creates the name by which the object is known. Thus:

Packet p1;

creates a variable, p1, that can hold the handle of an object of class Packet, but the initial value of p1 is null.
The object does not exist, and p1 will not contain an actual handle, until an instance of type Packet is created:

p1 = new;

Thus, if one declares another variable and assign the old handle, p1, to the new one:

Packet p2;
p2 = p1;

then there’s still only one object, which can be referred to with either the name p1 or p2. Note, new was exe-
cuted once, so only one object has been created.

If, however, the last expression example above is re-written slightly differently as shown below, it will make a
copy of p1:

Packet p1;
Packet p2;
p1 = new;
p2 = new p1;

This statement has new executing twice, thus creating two objects, p1 and p2. With this syntax, however, p2
will be a copy of p1, but it will be what is The last statement has new executing a second time, thus creating a
new object p2 whose properties are copied from p1, known as a shallow copy. All of the variables are copied
across: integers, strings, instance handles, etc. Objects, however, are not copied, only their handles; as before,
two names for the same object have been created. This is true even if the class declaration includes the instan-
tiation operator new:

class A ;
integer j = 5;

endclass
Copyright 2003 Accellera. All rights reserved. 79

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH104
class B ;
integer i = 1;
A a = new;

endclass

task integer function test;
B b1 = new; // Create an object of class B
B b2 = new b1; // Create an object that is a copy of b1
b2.i = 10; // i is changed in b2, but not in b1
b2.a.j = 50; // change a, shared by both b1 and b2
test = b1.i; // test is set to 1 (b1.i has not changed)
test = b1.a.j; // test is set to 50 (a.j has changed)

endtask endfunction

Several things are noteworthy. First, properties and instantiated objects can be initialized directly in a class
declaration. Second, the shallow copy does not copy objects. Third, instance qualifications can be chained as
needed to reach into objects or to reach through objects:

b1.a.j // reaches into a, which is a property of b1
p.next.next.next.val // chain through a sequence of handles to get to val

To do a full (deep) copy, where everything (including nested objects) are copied, custom code is typically
needed. Thus, we might have

Packet p1 = new;
Packet p2 = new;
p2.copy(p1);

where copy(Packet p) is a custom method written to copy the object specified as its argument into its
instance.

11.11 Inheritance and subclasses

The previous sections defined a class called Packet. Assume one wanted to extend this class so that the pack-
ets can be chained together into a list. One solution would be to create a new class called LinkedPacket
that contains a variable of type Packet called packet_c.

To refer to a property of Packet, one needs to reference the variable packet_c.

class LinkedPacket;
Packet packet_c;
LinkedPacket next;

function LinkedPacket get_next();
get_next = next;

endfunction
endclass

Since LinkedPacket is a specialization of Packet, a more elegant solution is to extend the class creating
a new subclass that inherits the members of the parent class. Thus, for example, we could have:

class LinkedPacket extends Packet;
LinkedPacket next;

function LinkedPacket get_next();
get_next = next;

Editor’s Note: Verilog syntax is “function integer”. Is the “integer function” above correct?
80 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH106

EC-CH106
endfunction
endclass

Now, all of the methods and properties of Packet are part of LinkedPacket—as if they were defined in
LinkedPacket —and LinkedPacket has additional properties and methods.

One can also override the parent’s methods, changing their definitions.

The mechanism provided by SystemVerilog is called Single-Inheritance, that is, each class is derived from a
single parent class.

11.12 Overridden members

Subclass objects are also legal representative objects of their parent classes. For example, every Linked-
Packet object is a perfectly legal Packet object.

One can assign the handle of a LinkedPacket object to a Packet variable:

LinkedPacket lp = new;
Packet p = lp;

In this case, references to p access the methods and properties of the Packet class. So, for example, if prop-
erties and methods in LinkedPacket are overridden, when one references these overridden members
through p one gets the original members in the Packet class. From p, new and all overridden members in
LinkedPacket are now hidden.

class Packet;
integer i = 1;
function integer get();

get = i;
endfunction

endclass

class LinkedPacket extends Packet;
integer i = 2;
function integer get();

get = -i;
endfunction

endclass

LinkedPacket lp = new;
Packet p = lp;
j = p.i; // j = 1, not 2
j = p.get(); // j = 1, not -1 or –2

To get the overridden method To call the overridden method via a parent class object (p in the example), the
parent method needs to be declared virtual (see section 11.18).

11.13 Super

The super keyword is used from within a derived class to refer to properties of the parent class. It is necessary
to use super when the property of the derived class has been overridden and cannot be accessed directly to
access properties of a parent class when those properties are overridden by the derived class.

class Packet; //parent class
integer value;
Copyright 2003 Accellera. All rights reserved. 81

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH106

EC-CH106

EC-CH104

EC-CH106

EC-CH106

EC-CH104

EC-CH106

EC-CH104

EC-CH104

EC-CH106
function integer delay();
delay = value * value;

endfunction
endclass

class LinkedPacket extends Packet; //derived class
integer value;
function integer delay();

delay = super.delay()+ value * super.value;
endfunction

endclass

The property may be a member declared a level up or a member inherited by the class one level up. There is no
way to reach higher (for example, super.super.count is not allowed).

Subclasses are classes that are extensions of the current class. Whereas super-classes superclasses are classes
that the current class is extended from, beginning with the original base class.

Note: When using the super within new, super.new must be the first executable statement in the constructor. This is
because the super-class superclass must be initialized before the current class and if the user code doesn’t provide an ini-
tialization, the compiler will insert a call to super.new automatically.

11.14 Casting

It is always legal to assign a subclass variable to a variable of a class higher in the inheritance tree. It is never
legal to directly assign a super-class superclass variable to a variable of one of its subclasses. However, it may
be legal to place the contents of the superclass handle in a subclass variable.

To check if the assignment is legal, the dynamic cast function $cast() is needed used (see section 3.15).

The syntax for $cast() is:

task $cast(scalar singular dest_handle, scalar singular source_handle);

or

function int $cast(scalar singular dest_handle, scalar singular source_handle
);

This function checks the hierarchy tree (super and subclasses) of the source_handle to see if it contains the
class dest_handle. If it does, $cast() does the assignment; if it is not, $cast() generates a fatal error runt-
ime error occurs and leaves the destination variable unchanged.

The second version of this function allows checking the results without generating an error:

int success = $cast(destination_handle, source_handle);

This version does the assignment and returns 1 if the assignment is valid. Otherwise, it sets the destination han-
dle to null and returns 0 no runtime error occurs, the destination variable is left unchanged, and the function
returns 0.

When used with object handles, $cast() checks the hierarchy tree (super and subclasses) of the source_expr
to see if it contains the class dest_var. If it does, $cast() does the assignment. Otherwise the error handling is
as described in section 3.14.

11.15 Chaining constructors

When a subclass is instantiated, one of the system’s first actions is to invoke the class method new(). The first,
82 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH106

EC-CH106

EC-CH106

EC-CH104

EC-CH104
implicit action new() takes is to invoke the new() method of its super-class superclass, and so on up the
inheritance hierarchy. Thus, all the constructors are called, in the proper order, beginning with the base class
and ending with the current class.

If the initialization method of the super-class superclass requires arguments, one has two choices. To always
supply the same arguments or to use the super keywords. If the arguments are always the same then they can
be specified at the time the class is extended:

class EtherPacket extends Packet(5);

This will pass 5 to the new routine associated with Packet.

A more general approach is to use the super keyword, to call the super-class superclass constructor:

function new();
super.new(5);

endfunction

To use this approach, super.new(…) must be the first executable statement in the function new.

11.16 Data hiding and encapsulation

So far, all class properties and methods have been made available to the outside world without restriction.
However, for most data (and subroutines) one wants to hide them from the outside world Often, it is desirable
to restrict access to properties and methods from outside the class by hiding their names. This keeps other pro-
grammers from relying on a specific implementation, and it also protects against accidental modifications to
properties that are internal to the class. When all data becomes hidden—being accessed only by public meth-
ods —testing and maintenance of the code becomes much easier.

In SystemVerilog, unlabeled properties and methods are public, available to anyone who has access to the
object’s name.

A member identified as local is available only to methods inside the class. Further, these local members are
not visible even to subclasses and cannot be inherited. Of course, non-local methods that access local proper-
ties or methods can be inherited, and work properly as methods of the subclass.

A protected property or method has all of the characteristics of a local member, except that it can be inher-
ited; it is visible to subclasses.

Note that within the class, one can reference a local method or property of the class, even if it is in a different
instance. For example

class Packet;
local integer i;
function integer compare (Packet other);

compare = (this.i == other.i);
endfunction

endclass

A strict interpretation of encapsulation might say that other.i should not be visible inside of this packet, since it
is a local property being referenced from outside its instance. Within the same class, however, these references
are allowed. In this case, this.i will be compared to other.i and the result of the logical comparison will be
returned.

In summary:

— Wherever possible, use local members. Hide members that the outside world doesn’t need to know
about.
Copyright 2003 Accellera. All rights reserved. 83

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH16

EC-CH104
— Use protected members if the outside world doesn’t have a need to know, but subclasses might.

— Public access should only be allowed when it is absolutely necessary, and the access should be limited as
much as possible. Generally, don’t provide direct access to properties but rather provide access methods—
provide, for example, only read access if a variable should never be written. This provides an extra level of
protection and preserves flexibility for future changes.

11.17 Constant Properties

Class properties can be made read-only by a const declaration like any other SystemVerilog variable. How-
ever, because class objects are dynamic objects, class properties allow two forms of read-only variables: Glo-
bal constants and Instance constants.

Global constant properties are those that include an initial value as part of their declaration. They are similar to
other const variables in that they cannot be assigned a value anywhere other than in the declaration.

class Jumbo_Packet;
const int max_size = 9 * 1024; // global constant
byte payload [*];
function new(int size);

payload = new[size > max_size ? max_size : size];
endfunction

endclass

Instance constants do not include an initial value in their declaration, only the const qualifier. This type of con-
stant can be assigned a value at run-time, but the assignment can only be done once in the corresponding class
constructor.

class Big_Packet;
const int size; // instance constant
byte payload [*];
function new();

size = $random % 4096; //one assignment in new -> ok
payload = new[size];

endfunction
endclass

Typically, global constants are also declared static since they are the same for all instances of the class.
However, an instance constant cannot be declared static, since that would disallow all assignments in the
constructor.

11.18 Abstract classes and virtual methods

Often one creates a set of classes that can be viewed as all derived from a common base class. For example, we
might start with a common base class of type BasePacket that sets out the structure of packets but is incom-
plete; one would never want to instantiate it. From this base class, though, one might derive a number of useful
subclasses: Ethernet packets, token ring packets, GPSS packets, satellite packets. Each of these packets might
look very similar, all needing the same set of methods, but they could vary significantly in terms of their inter-
nal details.

The first step is to create the base class that sets out the prototype for these subclasses. Since the base class
doesn’t need to instantiate the base class is not intended to be instantiated, it can be made abstract by
specifying , it can be declared to be abstract by declaring the class to be virtual:

virtual class BasePacket;
84 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH104

EC-CH106

EC-CH104

EC-CH106
By themselves, abstract classes are not tremendously interesting, but abstract classes can also have virtual
methods. Virtual methods provide prototypes for subroutines, all of the information generally found on the
first line of a method declaration: the encapsulation criteria, the type and number of arguments, and the return
type if it is needed. Later, when subclasses override virtual methods, they must follow the prototype exactly.
Thus, all versions of the virtual method will look identical in all subclasses:

virtual class BasePacket;
virtual protected function integer send(bit[31:0] data);
endfunction

endclass

class EtherPacket extends BasePacket;
protected function integer send(bit[31:0] data);

// body of the function
...

endfunction
endclass

EtherPacket is now a class that can be instantiated. In general, if an abstract class has several any virtual meth-
ods, all of the methods must be overridden (and provided with a method body) for the subclass to be instanti-
ated. If all of the methods are not overridden, If any virtual methods have no implementation, the subclass
needs to be abstract.

An abstract class may contain methods for which there is only a prototype and no implementation (i.e., an
incomplete class). An abstract class cannot be instantiated, it can only be derived. Methods of normal classes
can also be declared virtual. In this case, the method must have a body. If the method does have a body, then
the class can be instantiated, as can its subclasses. However, if the subclass overrides the virtual method, then
the new method must exactly match the super-class’s prototype.

11.19 Polymorphism: dynamic method lookup

Polymorphism allows one to use super-class superclass to hold subclass objects, and to reference the methods
of those subclasses directly from the super-class superclass variable. As an example, consider the base class
for the Packet objects, BasePacket. Assuming that it defines, as virtual functions, all of the public meth-
ods that are to be generally used by its subclasses, methods such as send, receive, print, etc. Even though
BasePacket is abstract, it can still be used to declare a variable:

BasePacket packets[100];

Now, one can create instances of various packet objects, and put these into the array just created:

EtherPacket ep = new;
TokenPacket tp = new;
GPSSPacket gp = new;
packets[0] = ep;
packets[1] = tp;
packets[2] = gp;

If the data types were, for example, integers, bits and strings, one couldn’t store all of these types into a single
array, but with polymorphism one can do it. In this example, since the methods were declared as virtual, one
can access the appropriate subclass methods from the superclass variable even though the compiler didn’t
know—at compile time—what was going to be loaded into. For example, packets[1]:

packets[1].send();

will invoke the send method associated with the TokenPacket class. At run-time, the system correctly binds
the method from the appropriate class.
Copyright 2003 Accellera. All rights reserved. 85

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH104

EC-CH104
This is a typical example of polymorphism at work, providing capabilities that are far more powerful than what
is found in a non-object-oriented framework.

11.20 Out of block declarations

It is generally good coding practice to keep the class declaration to about a page. This makes the class easy to
understand and to remember; declarations that go on for pages are hard to follow, and it is easy to miss short
methods buried among the multi-page declarations.

To make this practical, it is best to move long It is convenient to be able to move method definitions out of the
body of the class declaration. This is done in two steps. Declare, within the class body, the method proto-
types—whether it is a function or task, any attributes (local, protected, public, or virtual), and the full
argument specification plus the extern qualifier. The extern qualifier indicates that the body of the method
(it’s implementation) is to be found outside the declaration. Then, outside the class declaration, declare the full
method—like the prototype but without the attributes—and, to tie the method back to its class, qualify the
method name with the class name and a pair of colons:

class Packet;
Packet next;
function Packet get_next();// single line

get_next = next;
endfunction

// out-of-body (extern) declaration
extern protected virtual function int send(int value);

endclass

function int Packet::send(int value);
// dropped protected virtual, added Packet::
// body of method

...
endfunction

The first lines of each part of the method declaration are nearly identical, except for the attributes and class-ref-
erence fields. The out of block method declaration must match the prototype declaration exactly; the only syn-
tactical difference is that the method name is preceded by the class name and scope operator (::).

11.21 Parameterized classes

It is often useful to define a generic class whose objects can be instantiated to have different array sizes or data
types. This avoids writing similar code for each size or type, and allows a single specification to be used for
objects that are fundamentally different, and (like a templated class in C++) not interchangeable.

The normal Verilog parameter mechanism is used to parameterize a class:

class vector #(parameter int size = 1;);
bit [size-1:0] a;

endclass

Instances of this class can then be instantiated like modules or interfaces:

vector #(10) vten; // object with vector of size 10
vector #(.size(2)) vtwo; // object with vector of size 2
typedef vector#(4) Vfour; // Class with vector of size 4
86 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
This feature is particularly useful when using types as parameters:

class stack #(parameter type T = int;);
local T items[*];
task push(T a); ... endtask
task pop(var T a); ... endtask

endclass

The above class defines a generic stack class that can be instantiated with any arbitrary type:

stack is; // default: a stack of int’s
stack#(bit[1:10]) bs; // a stack of 10-bit vector
stack#(real) rs; // a stack of real numbers

Any type can be supplied as a parameter, including a user-defined type such as a class or struct.

The combination of a generic class and the actual parameter values is called a specialization (or variant). Each
specialization of a class has a separate set of static member variables (this is consistent with C++ templated
classes). To share static member variables among several class specializations, they must be placed in a non-
parameterized base class.

class vector #(parameter int size = 1;);
bit [size-1:0] a;
static int count = 0;
function void disp_count();

$display("count: %d of size %d", count, size);
endfunction

endclass

The variable count in the example above can only be accessed by the corresponding disp_count method.
Each specialization of the class vector has its own unique copy of count.

To avoid having to repeat the specialization either in the declaration or to create parameters of that type, a
typedef should be used:

typedef vector#(4) Vfour;
typedef stack#(Vfour) Stack4;
Stack4 s1, s2; // declare objects of type Stack4

11.22 Typedef class

Sometimes a class variable needs to be declared before the class itself has been declared. For example, two
classes may each need a handle to the other. When, in the course of processing the declaration for the first
class, the compiler encounters the reference to the second class, that reference is undefined and the compiler
flags it as an error.

This is resolved using typedef to provide a forward declaration for the second class:

typedef class C2; // C2 is declared to be of type class
class C1

C2 c;
endclass
class C2

C1 c;
endclass

In this example, C2 is declared to be of type class, a fact that is re-enforced later in the source code. Note that
the class construct always creates a type, and does not require a typedef declaration for that purpose (as in
Copyright 2003 Accellera. All rights reserved. 87

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH104

EC-CH104

EC-CH89
typedef class …). This is consistent with common C++ use.

Note that the class keyword in the statement typedef class C2; is not necessary, and is used only for
documentation purposes. The statement typedef C2; is equivalent and will work the same way.

11.23 Classes, structures, and unions

SystemVerilog-3.0 includes struct and union. SystemVerilog 3.1 adds the object-oriented class construct.
On the surface, it might appear that class and struct provide equivalent functionality, and only one of them
is needed. However, that is not true; class differs from struct in four fundamental ways:

1) SystemVerilog struct are strictly static objects; they are created either in a static memory location
(global or module scope) or on the stack of an automatic task. Conversely, SystemVerilog 3.1 objects
(i.e., class instances) are exclusively dynamic, their declaration doesn’t create the object; that is done
by calling new.

2) SystemVerilog structs are type compatible so long as their bit sizes are the same, thus copying structs
of different composition but equal sizes is allowed. In contrast, SystemVerilog 3.1 objects are strictly
strongly-typed. Copying an object of one type onto an object of another is not allowed.

3) SystemVerilog 3.1 objects are implemented using handles, thereby providing C-like pointer
functionality. But, SystemVerilog 3.1 disallows casting handles onto other data types, thus, unlike C,
SystemVerilog 3.1 handles are guaranteed to be safe.

4) SystemVerilog 3.1 objects form the basis of an Object-Oriented framework that provides true
polymorphism. Class inheritance, abstract classes, and dynamic casting are powerful mechanisms that
go way beyond the mere encapsulation mechanism provided by structs.

11.24 Memory management

Memory for objects, strings, and dynamic and associative arrays is allocated dynamically. When objects are
created, SystemVerilog allocates more memory. When an object is not no longer needed anymore, SystemVer-
ilog automatically reclaims the memory, making it available for re-use. The automatic memory management
system is an integral part of SystemVerilog. One might be tempted to think that a manual memory manage-
ment system, such as the one provided by C’s malloc and free, might be sufficient. However, SystemVer-
ilog’s multi-threaded, re-entrant environment create many opportunities for users to shoot themselves in the
foot. For example, consider the following example:

myClass obj = new;
fork

task1(obj);
task2(obj);

join_none

In this example, the main process (the one that forks off the two tasks) doesn’t know when the two processes
might be done using the object obj. Similarly, neither task1 nor task2 knows when any of the other two
processes will no longer be using the object obj. It is evident from this simple example that no single process
has enough information to determine when it is safe to free the object. The only two options available to the
user are (1) play it safe and never reclaim the object, or (2) add some form of reference count that can be used
to determine when it might be safe to reclaim the object. Adopting the first option will cause the system to
quickly run out of memory. The second option places a large burden on users, who, in addition to managing
their test-bench, must also manage the memory using less than ideal schemes. To avoid these shortcomings,
SystemVerilog manages all dynamic memory automatically. Users no longer need to worry about dangling ref-
erences, premature deallocation, or memory leaks. The system will automatically reclaim any object that is no
longer being used. In the example above, all that users do is assign null to the handle obj when they no
longer need it. Similarly, when an object goes out of scope the system implicitly assigns null to the object.
88 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH107

EC-CH107

EC-CH107
Section 12
Inter-Process Synchronization and Communication

12.1 Introduction (informative)

High-level and easy-to-use synchronization and communication mechanism are essential to control the kinds
of interactions that occur between dynamic processes used to model a complex system or a highly reactive
test-bench. Verilog provides basic synchronization mechanisms (i.e., -> and @), but they are all limited to
static objects and are adequate for synchronization at the hardware level, but fall short of the needs of a highly
dynamic, reactive test-bench. At the system level, an essential limitation of Verilog is its inability to create
dynamic events and communication channels, which match the capability to create dynamic processes.

SystemVerilog adds a powerful and easy-to-use set of synchronization and communication mechanisms, all of
which can be created and reclaimed dynamically. SystemVerilog adds a semaphore primitive built-in class,
which can be used for synchronization and mutual exclusion to shared resources, and a mailbox primitive
built-in class that can be used as a communication channel between processes. SystemVerilog also enhances
Verilog’s named event data type to satisfy many of the system-level synchronization requirements. Lastly,
SystemVerilog adds the wait_var mechanism that can be used to synchronize processes using dynamic data.

Semaphores and mailboxes are built-in types, nonetheless, they are classes, and can be used as base classes for
deriving additional higher level classes.

12.2 Semaphores

Conceptually, a semaphore is a bucket. When a semaphore is allocated, a bucket that contains a fixed number
of keys is created. Processes using semaphores must first procure a key from the bucket before they can con-
tinue to execute. If a specific process requires a key, only a fixed number of occurrences of that process can be
in progress simultaneously. All others must wait until a sufficient number of keys is returned to the bucket.
Semaphores are typically used for mutual exclusion, access control to shared resources, and for basic synchro-
nization.

Semaphore is a built-in class that provides the following methods:

— Create a semaphore with a specified number of keys: new()

— Obtain a key one or more keys from the bucket: get()

— Return a key one or more keys into the bucket: put()

— Try to obtain a key without blocking: try_get()

12.2.1 new()

Semaphores are created with the new() method.

The syntax for semaphore new() is:

function new(int key_count = 0);

Editor’s Note: This entire section is new for draft 1. Only the Section titles have been highlighted as new text.

Editor’s Note: Are semaphore and mailbox really “primitives” in the Verilog HDL and PLI sense of “primitive”?
Copyright 2003 Accellera. All rights reserved. 89

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH107

EC-CH107

The key_count specifies the number of keys initially allocated to the semaphore bucket. The number of keys in
the bucket can increase beyond key_count when more keys are put into the semaphore than are removed. The
default value for key_count is 0.

The new() function returns the semaphore handle, or null if the semaphore cannot be created.

12.2.2 put()

The semaphore put() method is used to return keys to a semaphore.

The syntax for put() is:

task put(int keyCount = 1);

keyCount specifies the number of keys being returned to the semaphore. The default is 1.

When the semaphore.put() task is called, the specified number of keys are returned to the semaphore. If a
process has been suspended waiting for a key, that process will execute if enough keys have been returned.

12.2.3 get()

The semaphore get() function method is used to procure a specified number of keys from a semaphore.

The syntax for get() is:

task get(int keyCount = 1);

keyCount specifies the required number of keys to obtain from the semaphore. The default is 1.

If the specified number of keys are available, the task returns and execution continues. If the specified number
of key are not available, the process blocks until the keys become available.

The semaphore waiting queue is First-In First-Out (FIFO).

12.3 try_get()

The semaphore try_get() method is used to procure a specified number of keys from a semaphore, but with-
out blocking.

The syntax for try_get() is:

function int try_get(int keyCount = 1);

keyCount specifies the required number of keys to obtain from the semaphore. The default is 1.

If the specified number of keys are available, the task method returns 1 and execution continues. If the speci-
fied number of key are not available, the function method returns 0.

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.
90 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH107

EC-CH107

EC-CH107
12.4 Mailboxes

A mailbox is a communication mechanism that allows messages to be exchanged between processes. Data can
be sent to a mailbox by one process and retrieved by another.

Conceptually, mailboxes behave like real mailboxes. When a letter is delivered and put into the mailbox, one
can retrieve the letter (and any data stored within). However, if the letter has not been delivered when one
checks the mailbox, one must choose whether to wait for the letter or retrieve the letter on subsequent trips to
the mailbox. Similarly, SystemVerilog’s mailboxes provide processes to transfer and retrieve data in a con-
trolled manner. Mailboxes are created as having either a bounded or unbounded queue size. A bounded mail-
box becomes full when it contains the bounded number of messages. A process that attempts to place a
message into a full mailbox will be suspended until enough room becomes available in the mailbox queue.
Unbounded mailboxes never suspend a thread in a send operation.

Mailbox is a built-in class that provides the following methods:

— Create a mailbox: new()

— Place a message in a mailbox: put()

— Try to place a message in a mailbox without blocking: try_put()

— Retrieve a message from a mailbox: get() or peek()

— Try to retrieve a message from a mailbox without blocking: try_get() or try_peek()

— Retrieve the number of messages in the mailbox: num()

12.4.1 new()

Mailboxes are created with the new() method.

The syntax for mailbox new() is:

function new(int bound = 0);

The new() function returns the mailbox identifier handle, or null if the mailboxes cannot be created. If the
bound argument is zero then the mailbox is unbounded (the default) and a put() operation will never block. If
bound is non-zero, it represents the size of the mailbox queue.

The bound must be positive. Negative bounds are illegal and may result in indeterminate behavior, but imple-
mentations can issue a warning.

12.4.2 num()

The number of messages in a mailbox can be obtained via the num() method.

The syntax for num() is:

function int num();

The num() method returns the number of messages currently in the mailbox.

12.4.3 put()

The put() method places a message in a mailbox.

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.
Copyright 2003 Accellera. All rights reserved. 91

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH107

EC-CH107

EC-CH107

EC-CH107

EC-CH107

EC-CH107

EC-CH107

EC-CH107
The syntax for put() is:

task put(scalar singular message);

The message is any scalar singular (non-unpacked array) expression, including object handles.

The put() method stores a message in the mailbox in strict FIFO order. If the mailbox was created with a
bounded queue the process will be suspended until there is enough room in the queue.

12.4.4 try_put()

The try_put() method attempts to place a message in a mailbox.

The syntax for try_put() is:

function int try_put(scalar singular message);

The message is any scalar singular (non-unpacked array) expression, including object handles.

The try_put() method stores a message in the mailbox in strict FIFO order. This method is meaningful only
for bounded mailboxes. If the mailbox is not full then the specified message is placed in the mailbox and the
function returns 1. If the mailbox is full, the method returns 0.

12.4.5 get()

The get() method retrieves a message from a mailbox.

The syntax for get() is:

task get(var scalar ref singular message);

The message can be any scalar singular (non-unpacked array) expression, and it must be a valid l-value.

The get() method retrieves one message from the mailbox, that is, removes one message from the mailbox
queue. If the mailbox is empty then the current process blocks until a message is placed in the mailbox. If there
is a type mismatch between the message variable and the message in the mailbox, a runtime error is generated.

Simple Non-parameterized mailboxes are type-less, that is, a single mailbox can send and receive any type dif-
ferent types of data. Thus, in addition to the data being sent (i.e., the message queue), a mailbox implementa-
tion must maintain the message data type placed by put(). This is required in order to enable the runtime type
checking.

The mailbox waiting queue is FIFO.

12.4.6 try_get()

The try_get() method attempts to retrieves a message from a mailbox without blocking.

The syntax for try_get() is:

function int try_get(var scalar ref singular message);

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.
92 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH107

EC-CH107

EC-CH107

EC-CH107

EC-CH107

EC-CH107

EC-CH107

EC-CH107

The message can be any scalar singular (non-unpacked array) expression, and it must be a valid l-value.

The try_get() method tries to retrieve one message from the mailbox. If the mailbox is empty, then the func-
tion method returns 0. If there is a type mismatch between the message variable and the message in the mail-
box, the function method returns –1. If a message is available and the message type matches the type of the
message variable, the message is retrieved and the function method returns 1.

12.4.7 peek()

The peek() method copies a message from a mailbox without removing the message from the queue.

The syntax for peek() is:

task peek(var scalar ref singular message);

The message can be any scalar singular (non-unpacked array) expression, and it must be a valid l-value.

The peek() method copies one message from the mailbox without removing the message from the mailbox
queue. If the mailbox is empty then the current process blocks until a message is placed in the mailbox. If there
is a type mismatch between the message variable and the message in the mailbox, a runtime error is generated.

Note that calling peek() may cause one message to unblock more than one process. As long as a message
remains in the mailbox queue, any process blocked in either a peek() or get() operation will become
unblocked.

12.4.8 try_peek()

The try_peek() method attempts to copy a message from a mailbox without blocking.

The syntax for try_peek() is:

function int try_peek(var scalar ref singular message);

The message can be any scalar singular (non-unpacked array) expression, and it must be a valid l-value.

The try_peek() method tries to copy one message from the mailbox without removing the message from the
mailbox queue. If the mailbox is empty, then the function method returns 0. If there is a type mismatch
between the message variable and the message in the mailbox, the function method returns –1. If a message is
available and the message type matches, the type of the message variable, the message is copied and the func-
tion method returns 1.

Mailboxes are a built-in type, nonetheless, they are classes, and can be used as base classes for deriving more
higher level classes.

12.5 Parameterized mailboxes

The default mailbox is type-less, that is, a single mailbox can send and receive any type of data. This is a very

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.

Editor’s Note: Is the preceding paragraph supposed to be a part of the try_peek() subsection? It seems like it
belongs at the end of 19.4, before any of the subsections.
Copyright 2003 Accellera. All rights reserved. 93

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH107

EC-CH17
powerful mechanism that, unfortunately, can also result in run-time errors due to type mismatches between a
message and the type of the variable used to retrieve the message. Frequently, a mailbox is used to transfer a
particular message type, and, in that case, it is useful to detect type mismatches at compile time.

Parameterized mailboxes use the same parameter mechanism as parameterized classes (see section 11.21),
modules, and interfaces:

mailbox#(type = dynamic_type)

Where dynamic_type represents a special type that enables run-time type-checking (the default).

A parameterized mailbox of a specific type is declared by specifying the type:

typedef mailbox #(string) s_mbox;

s_mbox sm = new;
string s;

sm.put(“hello”);
...
sm.get(s); // s <- “hello”

Parameterized mailboxes provide all the same standard methods as dynamic mailboxes: num(), new(),
get(), peek(), put(), try_get(), try_peek(), try_put().

The only difference between a generic (dynamic) mailbox and a parameterized mailbox is that for a parameter-
ized mailbox the compiler ensures that all put, peek, try_get and get calls are compatible with the mailbox
type so that all type mismatches are caught by the compiler and not at run-time.

12.6 Event

In Verilog, named events are triggered via the -> operator, and processes can block until an event is triggered
via the @ operator. A Verilog event is a SystemVerilog event that uses a ONE_SHOT trigger. But, a Sys-
temVerilog event is much more general than a Verilog event. The most salient semantic difference is that
Verilog named events do not have a value nor a duration, whereas SystemVerilog events have a value (ON,
OFF) and a persistency that can be controlled via the trigger options. Also, SystemVerilog events are handles
to synchronization objects, thus, they can be passed as arguments to tasks, and they can be dynamically allo-
cated and reclaimed, whereas named events are static and cannot be passed as arguments. More than a basic
data type, SystemVerilog events behave like object handles; they can be assigned to one another, they can be
assigned the value null, they can be arguments to tasks (but not functions), and they can be dynamically allo-
cated and reclaimed.

Existing Verilog event operations (@ and ->) are backward compatible and will continue to work the same
way, but they will be restricted to named events with static lifetime. The new functionality described below
will work with all events, static or dynamic.

A SystemVerilog event provides a handle to a synchronization object, the $sync() system task can be used
to wait for an event (like @), and the $trigger() can be used to trigger the event.

12.5.1 $sync()

The $sync() system task is used to either check the persistent status of an event, or to block the caller until
one or more events are triggered.

$sync() can be called either a as task or as a function. The syntax to call $sync() is:

task $sync(ALL | ANY | ORDER, event ev_id1, ..., ev_idN);

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.
94 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
or

function int $sync(CHECK, event ev_id1, ..., ev_idN);

Where ev_id1, ..., ev_idN are the event identifiers on which $sync is to operate.

The first argument determines the type of operation that $sync() is to perform, as described by the table
below.

12.5.2 $trigger()

The $trigger() system task is used to change the triggered state of event variables. This state may be persis-
tent or not, depending on the trigger option. A non-persistent trigger state is not visible, only its effect can be
felt. Like the way in which a clock edge triggers a latch but the state of the edge can not be ascertained: if(
posedge clock) is illegal.

The syntax to call $trigger() is:

task $trigger(option, event ev_id1, ..., ev_idN);

Table 12-1: $sync operations

ALL Suspends the calling process until all of the specified events are triggered.

For example:

$sync(ALL, a, b, c);

suspends the current process until the 3 events a, b, and c are triggered.

ANY Suspends the calling process until any one of the specified events are triggered.

For example:

$sync(ANY, a, b, c);

suspends the current process until either event a, or event b, or event c is triggered.

ORDER Suspends the calling process until all of the specified events are triggered (like ALL) but the events
must be received in the given order (left to right). If an event is received out of order, the process
unblocks and generates a run-time error.

When $sync() is called, only the first event in the list can be in the ON state. If any other event is
ON, it generates a run-time error.

For example:

$sync(ORDER, a, b, c);

suspends the current process until events trigger in the order a –> b –> c.

CHECK Called as a function that returns 1 if all the specified events are in the ON state, and 0 otherwise.

This call is only meaningful with persistent events; those triggered via the ON or OFF trigger option
(see section 12.5.2).

For example:

if ($sync(CHECK, eventA))
$display("The event A is ON\n");

The message is only displayed if eventA is in the ON state.
Copyright 2003 Accellera. All rights reserved. 95

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH17
option: ONE_SHOT | ONE_BLAST | HAND_SHAKE | ON | OFF

Where ev_id1, ..., ev_idN are the event identifiers on which $trigger is to operate.

The first argument determines the type of operation that $trigger() is to perform, as described by the table
below.

12.7 Event variables

Event variables serve as the link between $trigger() and $sync(). They are a unique data type with sev-
eral important properties.

12.5.3 Disabling events

If an event variable is assigned the special null value, the event is ignored in subsequent calls to $sync().
That is, when the event is set to null, no process can wait for the event again.

For example:

event E1 = null;
$sync(ALL, E1);

The call $sync doesn’t block because event E1 is no longer blocking.

Table 12-2: $trigger operations

ONE_SHOT Triggers the specified events by turning them ON momentarily, causing all processes currently wait-
ing on the specified events to unblock. Subsequent calls to $sync() on the specified events will
block.

In order for this call to $trigger() to unblock a $sync() call, the call to $sync() must exe-
cute before the call to $trigger().

This trigger option is the same as a Verilog -> operation, except that $trigger() can atomically
trigger more than one event.

ONE_BLAST Similar to ONE_SHOT except that the ON state persists until simulation time advances. Thus, a
ONE_BLAST $trigger() will unblock processes that execute $sync() either before or at the
same simulation time as $trigger().

HAND_SHAKE Unblocks only one process, even if more than one $sync() call is blocked waiting on the same
event. The first process to have executed the $sync() call is unblocked (FIFO ordering).

If at least one process is blocked in $sync() waiting on the specified event, the
$trigger(HAND_SHAKE) unblocks one process.

If there are no processes blocked no the specified event, the event will store the trigger, keeping track
of how many times the event has been triggered using HAND_SHAKE. Then, when a process eventu-
ally calls $sync() on the given event, the trigger is removed from the event (its count is decre-
mented) and the process unblocks immediately.

ON Turns the event ON. All currently waiting as well as subsequent calls to $sync() on the specified
event will unblock.

The ON condition persist until it is explicitly set to OFF.

OFF Turns the event OFF. Subsequent calls to $sync() on the specified event will block.
96 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH17

EC-CH107
12.5.4 Merging Events

When one event variable is assigned to another, the two become merged. Thus, calling $trigger() on either
variable affects $sync() calls waiting on both event variables.

For example:

event a, b, c;
a = b;
$trigger(ON, c);
$trigger(ON, a); // also triggers b
$trigger(ON, b); // also triggers a
a = c;
b = a;
$trigger(ON, a); // also triggers b and c
$trigger(ON, b); // also triggers a and c
$trigger(ON, c); // also triggers a and b

When merging events, the assignment only affects subsequent calls to $trigger() and $sync(). If a process
is blocked waiting for event1 when another event is assigned to event1, the call to $sync() will never
unblock. For example:

fork
T1: while(1) $sync(ALL, E2);
T2: while(1) $sync(ALL, E1);
T3: begin

E2 = E1;
while(1) $trigger(ON, E2);

 end
join

This example forks off three concurrent processes. Each process starts at the same time. Thus, at the same time
that process T1 and T2 are blocked, process T3 assigns event E1 to E2. This means that process T1 will never
unblock, because the event E2 is now E1. To unblock both threads T1 and T2, the merger of E2 and E1 must
take place before the fork.

12.6 Event

In Verilog, named events are static objects that can be triggered via the -> operator, and processes can block
until an event is triggered via the @ operator. SystemVerilog events support the same basic operations, but
enhance Verilog events in several ways. The most salient semantic difference is that Verilog named events do
not have a value or duration, whereas SystemVerilog events can have a persistency that lasts throughout the
time-step on which they are triggered. Also, SystemVerilog events act as handles to synchronization queues,
thus, they can be passed as arguments to tasks, and they can be dynamically allocated and reclaimed. In this
respect, SystemVerilog events behave like object handles; they can be assigned to one another, they can be
assigned the special value null, they can be arguments to tasks (but not functions), and they can be dynamically
allocated and reclaimed.

Existing Verilog event operations (@ and ->) are backward compatible and continue to work the same way
when used in the static Verilog context. The additional functionality described below works with all events in
either the static or dynamic context.

A SystemVerilog event provides a handle to an underlying synchronization object. When a process waits for
an event to be triggered, the process is put on a FIFO queue maintained within the synchronization object. Pro-
cesses can wait for a SystemVerilog event to be triggered either via the @ operator or the wait() construct.
Events are always triggered using the -> operator.

SystemVerilog provides for two different types of events: persistent events and non-persistent events. These
Copyright 2003 Accellera. All rights reserved. 97

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH107
two are described below.

12.6.1 Non-Persistent Events

Non-persistent events are the same as named Verilog events. They behave like a one-shot, that is, their trig-
gered state is not observable, only its effect. This is similar to the way in which an edge can trigger a latch flip-
flop but the state of the edge can not be ascertained: if(posedge clock) is illegal.

Triggering a non-persistent event causes all processes currently waiting on the event to unblock. For a trigger
to unblock a process that is waiting on non-persistent event, that process must execute the wait (or @) before
the triggering process executes the trigger operator, ->. A process that executes wait() on a non-persistent
event after the event has been triggered will block.

The syntax to declare a non-persistent event is:

event event_identifier;

12.6.2 Persistent Events: event bit

Persistent events are similar to non-persistent events except that once triggered, the triggered state persists
throughout the time-step, that is, until simulation time advances. Thus, a persistent event will unblock all pro-
cesses that execute the wait() construct either before or at the same simulation time as the trigger operation.

The persistent trigger behavior helps eliminate a common race condition that occurs when both the trigger and
the wait operations happen at the same time. A process that blocks on a regular (non-persistent) event may or
may not unblock depending on the execution order of the waiting and triggering processes, while a persistent
event always unblock the waiting process, regardless of the order of execution.

The syntax to declare a persistent event is:

event bit event_identifier;

Persistent and non-persistent events support the same set of operators, but they are different types. A persistent
event may only be assigned (or passed as an argument) to another persistent event and vice-versa (see Section
11.6.2).

12.6.3 Triggering an Event

All events regardless of their type (persistent or non-persistent) are triggered via the -> operator.

The syntax to trigger an event is:

-> event_identifier;

If the event_identifier is a persistent event then the event will remain in the triggered state until the simulation
time advances. Otherwise, the persistent state is unobservable.

Triggering a persistent event more than once at the same simulation time has no effect. However, triggering a
non-persistent event more than once, at the same simulation time, results in multiple triggers.

Editor’s Note: Add BNF excerpt, once available.

Editor’s Note: Add BNF excerpt , once available.

Editor’s Note: Add BNF excerpt , once available.
98 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH107
12.6.4 Waiting for an Event

There are two mechanisms that can be used to wait for an event. The @ operator and the wait construct.

The syntax for this use of the @ operator is:

@ event_identifier;

The @ operator always blocks the calling process until an event is triggered.

The syntax for this use of the wait construct is:

wait(event_identifier);

The wait construct blocks if the given event is a non-persistent event or the persistent event has not been trig-
gered at the current simulation time.

Both mechanisms can be used to wait for either a persistent or a non-persistent event. The wait construct is
only meaningful when the event is persistent.

Examples:

event done; // declare a new event
event done_too = done; // declare done_too as alias to done
event bit blast; // persistent event
task trigger(event ev);

-> ev;
endtask
...
fork

@ done_too; // wait for done through done_too
trigger(done); // trigger done through task trigger

join

event bit blast; // persistent event
fork

-> blast; // trigger blast event
wait(blast); // wait for blast event

join

The first fork in the examples shows how two event identifiers done and done_too refer to the same synchroni-
zation object, and also how an event can be passed to a generic task that will trigger either event. In the exam-
ple, the first process waits for the event via done_too, while the actual triggering is done via the trigger task
that is passed done as an argument.

When the second fork executes, the first process may triggers the event blast before the second process
(assuming the processes in a fork…join execute in source order) has a chance to execute and wait for the
event. Nonetheless the second process unblocks and the fork terminates. This is because blast is a persistent
event so it remains in its triggered state for the duration of the time-step. Note that if blast was declared as a
non-persistent event the second process would never unblock.

Editor’s Note: Add BNF excerpt , once available.

Editor’s Note: Add BNF excerpt , once available.
Copyright 2003 Accellera. All rights reserved. 99

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH17

EC-CH17
12.7 Event synchronization utilities

12.7.1 $wait_all()

The $wait_all system tasks suspends the calling process until all of the specified events are triggered.

The syntax for the $wait_all task is:

$wait_all(event_identifier {, event_identifier })

For example:

$wait_all(a, b, c);

suspends the current process until the 3 events a, b, and c are triggered.

Any of the specified events may be triggered more than once; the only requirement to unblock the calling pro-
cess is that each event be triggered at least once.

12.7.2 $wait_any()

The $wait_any system tasks suspends the calling process until any of the specified events are triggered.

The syntax for the $wait_any task is:

$wait_any(event_identifier {, event_identifier })

For example:

$wait_any(a, b, c);

suspends the current process until either event a, or event b, or event c is triggered.

12.7.3 $wait_order()

The $wait_order system task suspends the calling process until all of the specified events are triggered (similar
to $wait_all), but the events must be triggered in the given order (left to right). If an event is received out of
order, the process unblocks and generates a run-time error.

The syntax for the $wait_order task is:

$wait_order(event_identifier {, event_identifier })

When $wait_order() is called, only the first event in the list can be in the triggered state. If any other persistent
event is in triggered state, it generates a run-time error.

For example:

$wait_order(a, b, c);

suspends the current process until events trigger in the order a –> b –> c.

12.8 Event variables

An event is a unique data type with several important properties. Unlike Verilog, SystemVerilog events can be
assigned to one another. When one event is assigned to another the synchronization queue of the source event
is shared by both the source and the destination event. In this sense, events act as full fledged variables and not
merely as labels.
100 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH107

EC-CH107
12.8.1 Disabling Events

If an event variable is assigned the special null value, the event is ignored in subsequent calls to wait(). That
is, when the event is set to null, no process can wait for the event again.

For example:

event E1 = null;
@ E1;

The statement @ E1 does not block because event E1 is no longer blocking.

12.8.2 Merging Events

When one event variable is assigned to another, the two become merged. Thus, executing -> on either event
variable affects processes waiting on either event variable.

For example:

event a, b, c;
a = b;
-> c;
-> a; // also triggers b
-> b; // also triggers a
a = c;
b = a;
-> a; // also triggers b and c
-> b; // also triggers a and c
-> c; // also triggers a and b

When merging events, the assignment only affects subsequent executions of ->and wait(). If a process is
blocked waiting for event1 when another event is assigned to event1, the wait() will never unblock. For exam-
ple:

fork
T1: while(1) @ E2;
T2: while(1) @ E1;
T3: begin

E2 = E1;
while(1) -> E2;

end
join

This example forks off three concurrent processes. Each process starts at the same time. Thus, at the same time
that process T1 and T2 are blocked, process T3 assigns event E1 to E2. This means that process T1 will never
unblock, because the event E2 is now E1. To unblock both threads T1 and T2, the merger of E2 and E1 must
take place before the fork.

12.9 $wait_var()

The $wait_var() system task is a procedural blocking statement that waits for any of the variables in its
argument list to change (the value of the variables must change, assigning the same value to a variable does not
cause a change).

The syntax for $wait_var() is:

task $wait_var(scalar singular variable1,..., variableN);
Copyright 2003 Accellera. All rights reserved. 101

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH107

EC-CH89

The variables variable1,..., variableN can be any one of the integral data types (see section 3.3.1) or string.
Each variable may be either a simple variable, or a var parameter (variable passed by reference) or a member
of an array, associative-array, or object (class) of the aforementioned types. Objects (handles) are not allowed.

Arguments to $wait_var() can be an array subscript expressions, in which case the index expression is eval-
uated only once when $wait_var() is executed. Likewise, passing an object data member to $wait_var()
will block until that particular data member changes value, not when the handle to the object is modified. For
example:

Packer p = new; // Packet 1
Packet q = new; // Packet 2

fork
$wait_var(p.status); // Wait for status in Packet 1 to change
p = q; // Has no effect on the wait in Process 1

join_none

// $wait_var continues to wait for status of Packet 1 to change

The example below forks two concurrent processes. The first process is suspended until the second element of
array data changes. The second process randomly changes the values within array data. When data[2]
changes value, the first process prints its message.

bit [7:0] data [100];

fork
begin

$wait_var(data[2]);
$display("Data[2] has changed to: %d\n", data[2]);

end
begin

for(int j = 0; j < 100; j++)
begin

data[i] = $random;
#10;

end
end

join

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.
102 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH101

EC-CH80

EC-CH80

EC-CH46
Section 13
Clocking Domains

13.1 Introduction (informative)

In Verilog, the communication between blocks is specified using module ports. SystemVerilog adds the inter-
face, a key construct that encapsulates the communication between blocks, thereby enabling users to easily
change the level of abstraction at which the inter-module communication is to be modeled.

An interface can specify the signals or nets through which a test-bench communicates with a device under test.
However, an interface does not explicitly specify any timing disciplines, synchronization requirements, or
clocking paradigms.

SystemVerilog adds the clocking construct that identifies clock signals, and captures the timing and synchro-
nization requirements of the blocks being modeled. A clocking domain assembles signals that are synchronous
to a particular clock, and makes their timing explicit. The clocking domain is a key element in a cycle-based
methodology, which enables users to write test-benches at a higher level of abstraction. Rather than focusing
on signals and transitions in time, the test can be defined in terms of cycles and transactions. Depending on the
environment, a test-bench may contain one or more clocking domains, each containing its own clock plus an
arbitrary number signals.

The clocking domain separates the timing and synchronization details from the structural, functional, and pro-
cedural elements of a test-bench. Thus, the timing for sampling and driving clocking domain signals is implicit
and relative to the clocking-domain’s clock. This enables a set of key operations to be written very succinctly,
without explicitly using clocks or specifying timing. These operations are:

— Synchronous Events

— Input Sampling

— Synchronous Drives

13.2 Clocking domain declaration

The syntax for the clocking construct is:

clocking_decl ::= [default] clocking [identifier] clocking_event ;
{ clocking_item }

endclocking

clocking_event ::= @ identifier
 | @ (event_expression)

event_expression ::= // this item is already defined in the BNF

clocking_item := default default_skew;
| clocking_direction signal_or_assign_list ;

default_skew ::= input skew
 | output skew
 | input skew output skew

clocking_direction ::= input [skew]
| output [skew]

Editor’s Note: This entire section is new for draft 1. Only the Section titles have been highlighted as new text.
Copyright 2003 Accellera. All rights reserved. 103

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH80

EC-CH80

EC-CH46
| input [skew] output [skew]
| inout

signal_or_assign_list ::= signal_or_assign { , signal_or_assign }

signal_or_assign ::= signal_identifier [= hierarchical_expression]

skew ::= [edge] # delay_expression// edge valid only if event_expression is
simple edge
skew ::= edge [# delay_expression] // edge valid only if

| # delay_expression // clocking_event is simple edge

edge ::= posedge | negedge

delay_expression ::= unsigned_number | time_literal

The delay_expression must be either a time literal or a constant expression that evaluates to a positive integer
value.

The identifier specifies the name of the clocking domain being declared.

The signal_identfier identifies a port in the scope enclosing the clocking domain declaration, and declares the
name of a signal in the clocking domain. Unless a hierarchical_expression is used, both the port and the inter-
face signal will share the same name.

The clocking_event designates a particular event to act as the clock for the clocking domain. Typically, this
expression is either the posedge or negedge of a clocking signal. The timing of all the other signals specified
in a given clocking domain are governed by the clocking event. All input or inout signals specified in the
clocking domain are sampled when the corresponding clock event occurs. Likewise, all output or inout sig-
nals in the clocking domain are driven when the corresponding clock event occurs. Bi-directional signals
(inout) are sampled as well as driven.

The skew parameters determine how many time units away from the clock event a signal is to be sampled or
driven. Input skews are implicitly negative, that is, they always refer to a time before the clock, whereas output
skews always refer to a time after the clock (see section 13.3). When the clocking event specifies a simple
edge, instead of a number, the skew may be specified as the opposite edge of the signal. A single skew may be
specified for the entire domain by using a default clocking item.

The hierarchical_name specifies that, instead of a local port, the signal to be associated with the clocking
domain is specified by its hierarchical name (cross-module reference).

Example:

clocking bus @(posedge clock1);
default input #10ns output #2ns;
input data, ready, enable = top.mem1.enable;
output negedge ack;
input #1step addr;

endclocking

In the above example, the first line declares a clocking domain called bus that is to be clocked on the positive
edge of the signal clock1. The second line specifies that by default all signals in the domain will use a 10ns
input skew and a 2ns output skew. The next line adds three input signals to the domain: data, ready, and
enable; the last signal refers to the hierarchical signal top.mem1.enable. The fourth line adds the signal

Editor’s Note: Update preceding BNF excerpt with new BNF, once available.
104 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH81

EC-CH47
ack to the domain, and overrides the default output skew so that ack is driven on the negative edge of the
clock. The last line adds the signal addr and overrides the default input skew so that addr is sampled one
step before the positive edge of the clock.

Unless otherwise specified, the default input skew is 1step and the default output skew is 0. A step is a
special time unit defined to be the smallest possible delay throughout the simulation, that is, the smallest global
precision. Like all other time units, step is not a keyword. A 1step input skew allows input signals to sample
their steady-state values immediately before the clock event (i.e., at read-only-synchronize immediately before
time advanced to the clock event). Unlike other time units, which represent physical units, a step cannot be
used to set or modify the either the precision or the timeunit.

13.3 Input and output skews

Input (or inout) signals are sampled at the designated clock event. If an input skew is specified then the signal
is sampled at skew time units before the clock event. Similarly, output (or inout) signals are driven skew simu-
lation time units after the corresponding clock event. Figure 13-1 shows the basic sample/drive timing for a
positive edge clock.

Figure 13-1—Sample and drive times including skew
with respect to the positive edge of the clock.

A skew must be a constant expression and can be specified either as an unsigned integer value or as a time lit-
eral, and can be specified as a parameter. If the skew does not specify a time unit, the current time unit is used.
If a number is used, the skew is interpreted using the timescale of the current scope.

clocking dram @(changed clk);
input #1ps address;
input #5 output #6 data;

endclocking

Editor’s Note: The addition in the preceding paragraph from EC-CH81 of a step being the “smallest global preci-
sion” is ambiguous. What if no global timeprecision was specified? Is the module’s precision used? Is the ‘times-
cale precision used? What’s the precedence. I suspect what was intended is that “a step is an increment of 1
simulator time unit. The simulator time unit is defined in the Verilog 1364 standard”. [1364-2001 section
19.8 defines the simulator time as “The smallest time_precision argument of all the `timescale compiler directives
in the design determines the precision of the time unit of the simulation.“. The PLI sections also refer to “simula-
tor time unit” in several places, and refer to 19.8 for the definition of the simulator time unit”.

Editor’s Note: Figure still needs to be recreated.
Copyright 2003 Accellera. All rights reserved. 105

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH48

EC-CH47

EC-CH84

EC-CH85

An input skew of 1step indicates that the signal is to be sampled an infinitesimal delta before the clock event
at the end of the previous time step. That is, the value sampled is always the signal’s last value immediately
before the corresponding clock edge.

When skews are not specified, input signals default to a skew of 1step, and output signals default to a skew of
#0.

An input skew of #0 forces a skew of zero. Input signals with zero skew are sampled at the same time as their
corresponding clock edge clocking event, but to avoid races, the sampling is done after all nonblocking assign-
ments (NBA) have been processed (see Section 15.7)they are sampled at the start of the verification phase
(after processing non-blocking assignments). Likewise, output signals with zero output skew are driven at the
same time as their specified clock edge clocking event, but immediately before read-only synchronize time
(before advancing time) at the end of the verification phase. A detailed explanation for this event ordering is
covered in Section 15.7.

13.4 Hierarchical expressions

Any signal in a clocking domain can be associated with an arbitrary hierarchical expression. As described
above, a hierarchical expression is introduced by appending an equal sign (=) followed by the hierarchical
expression:

clocking cd1 @(posedge phi1);
input #1step state = top.cpu.state;

endclocking

However, hierarchical expressions are not limited to simple names or signals in other scopes. They can be used
to declare slices, concatenations, or combinations of signals in other scopes or in the current scope.

clocking mem @(changed clock);
input instruction = { opcode, regA, regB[3:1] };

endclocking

13.5 Signals in multiple clocking domains

The same port may be used in more than one clocking domain. For input signals, the semantics are clear; each
clocking domain samples the signal using a different clock. However, for output signals, there are two possi-
bilities, the output port is either driven to a resolved value or to the latest value assigned (as a procedural
assignment). Typically, this is not an issue since signals in different clocking domains truly are separate sig-
nals and each corresponds to a separate port (in a different module or program). But, sometimes the same port
signal may be driven by more than one clock edge, for example, dual-data-rate memories are driven on both
positive and negative clock edges. Output signals implement logic semantics, that is, the last signal write
determines the value. These semantics are typically useful, but users can easily accomplish value resolution by
using separate ports for the same net.

The same signals—clock, inputs, inouts, or outputs—may appear in more than one clocking domain. Clocking
domains that use the same clock (or clocking expression) will share the same synchronization event, in the
same manner as several latches can be controlled by the same clock. Input semantics are described in section
13.13, and output semantics are described in section 13.14.

Editor’s Note: Has the changed keyword been removed from SystemVerilog?

Editor’s Note: Has the changed keyword been removed from SystemVerilog?
106 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH86

EC-CH49

EC-CH49
13.6 Clocking domain scope and lifetime

A clocking construct is both a declaration and an instance of that declaration. A separate instantiation step is
not necessary. Instead, one copy is created for each instance of the block containing the declaration (like an
always block). Once declared, the clocking signals are available via the clock-domain name and the dot (.)
operator:

dom.sig // signal sig in clocking dom

Clocking domains cannot be nested. They cannot be declared inside functions or tasks, or at the global
($root) level. Clocking domains can only be declared inside a module, interface or a program (see section
15).

Clocking domains have static lifetime and scope local to their enclosing module, interface or program.

13.7 Multiple clocking domain example

In this example, a simple test module includes two clocking domains. The program construct used in this
example is discussed in section 15. In this example, it can be considered a module.

program test(input phi1, input [15:0] data, output write,
input phi2, inout [8:1] cmd, input enable

);

clocking cd1 @(posedge phi1);
input data;
output write;
input state = top.cpu.state;

endclocking

clocking cd2 @(posedge phi2);
input #2 output #4ps cmd;
input enable;

endclocking

// program begins here
...
// user can access cd1.data , cd2.cmd , etc…

endprogram

The test module can be instantiated and connected to a device under test (cpu and mem).

module top;
logic phi1, phi2;

test main(phi1, data, write, phi2, cmd, enable);
cpu cpu1(phi1, data, write);
mem mem1(phi2, cmd, enable);

endmodule

13.8 Interfaces and clocking domains

A clocking encapsulates a set of signals that share a common clock, therefore, specifying a clocking domain
using a SystemVerilog interface can significantly reduce the amount of code needed to connect the test-
bench. Furthermore, since the signal directions in the clocking domain within the test-bench are with respect to
the test-bench, and not the design under test, a modport declaration can appropriately describe either direc-
tion. Conceptually, one can envision a test-bench program as being contained within a program module, and
Copyright 2003 Accellera. All rights reserved. 107

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
whose ports are interfaces that correspond to the signals declared in each clocking domain. The interface’s
wires will have the same direction as specified in the clocking domain when viewed from the test-bench side
(i.e., modport test), and reversed when viewed from the device under test (i.e., modport dut).

For example, the previous example could be re-written using interfaces as follows:

interface bus_A (input clk);
wire [15:0] data;
wire write;
modport test (input data, output write);
modport dut (output data, input write);

endinterface

interface bus_B (input clk);
wire [8:1] cmd;
wire enable;
modport test (input enable);
modport dut (output enable);

endinterface

program test(bus_A.test a, bus_B.test b);

clocking cd1 @(posedge a.clk);
input a.data;
output a.write;
inout state = top.cpu.state;

endclocking

clocking cd2 @(posedge b.clk);
input #2 output #4ps b.cmd;
input b.enable;

endclocking

// program begins here
...
// user can access cd1.a.data , cd2.b.cmd , etc…

endprogram

The test module can be instantiated and connected as before:

module top;
logic phi1, phi2;

bus_A a(phi1);
bus_B b(phi2);

test main(a, b);
cpu cpu1(a);
mem mem1(b);

endmodule

Alternatively, the clocking domain can be written using both interfaces and hierarchical expressions as:

clocking cd1 @(posedge a.clk);
input data = a.data;
output write = a.write;
inout state = top.cpu.state;

endclocking
108 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH18
clocking cd2 @(posedge b.clk);
input #2 output #4ps cmd = b.cmd;
input enable = b.enable;

endclocking

This would allow using the shorter names (cd1.data, cd2.cmd, …) instead of the longer interface syntax
(cd1.a.data, cd2.b.cmd,…).

13.9 Clocking domain events

The clocking event of a clocking domain is available directly by using the clocking domain name, regardless
of the actual clocking event used to declare the clocking domain.

For example.

clocking dram @(posedge phi1);
inout data;
output negedge #1 address;

endclocking

The clocking event of the dram domain can be used to wait for that particular event:

@(dram);

The above statement is equivalent to @(posedge phi1).

13.10 Cycle delay: ##

The ## operator can be used to delay execution by a specified number of clocking events, or clock cycles.

The syntax for the cycle delay statement is:

expression [@ clocking_name] ;

The expression can be any SystemVerilog expression that evaluates to a positive integer value.

The optional clocking_name must be the name of a clocking domain. If it is not specified then the default
clocking is used (see section 13.11). If neither clocking_name nor default clocking has been specified then the
compiler will issue an error.

Example:

5 @busA; // wait 5 cycles using clocking busA
j + 1 @busB // wait j+1 cycles using clocking busB
3; // wait 3 cycles using the default clocking

13.11 Default ##

One clocking event can be specified as the default for all cycle delay operations within a given module or pro-
gram.

The syntax for the default cycle specification statement is:

default ## clocking_name ;

The clocking_name must be the name of a clocking domain.

Only one default clocking can be specified in a program or module. Specifying a default clocking more than
Copyright 2003 Accellera. All rights reserved. 109

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH18

EC-CH51

EC-CH52

EC-CH50
once in the same program or module will result in a compiler error.

A default clocking specified in a module is only valid in that particular module and not in any of its sub-mod-
ules.

program test(input bit clk, input reg [15:0] data)

clocking bus @(posedge clk);
inout data;

endclocking

default ## bus;

5;
if (bus.data == 10)

1;
else

...

endprogram

13.10 Cycle delay: ##

The ## operator can be used to delay execution by a specified number of clocking events, or clock cycles.

The syntax for the cycle delay statement is:

[expression];

The expression can be any SystemVerilog expression that evaluates to a positive integer value.

What represents a cycle is determined by the default clocking in effect (see section 13.11). If no default clock-
ing has been specified for the current module, interface, or program then the compiler will issue an error.

Example:

[5]; // wait 5 cycles using the default clocking

[j + 1]; // wait j+1 cycles using the default clocking

13.11 Default clocking

One clocking can be specified as the default for all cycle delay operations within a given module, interface, or
program.

The syntax for the default cycle specification statement is:

default clocking_decl ; // clocking declaration

or

default clocking clocking_name ; // existing clocking

Editor’s Note: Update preceding syntax with BNF excerpt, once available.

Editor’s Note: Update preceding syntax with BNF excerpt, once available.
110 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH53

EC-CH54

EC-CH55

EC-CH54

EC-CH101

EC-CH95

EC-CH93

EC-CH94

EC-CH56

EC-CH57
The clocking_name must be the name of a clocking domain.

Only one default clocking can be specified in a program, module, or interface. Specifying a default clocking
more than once in the same program or module will result in a compiler error.

A default clocking specified in a module is only valid in that particular module and not in any of its sub-mod-
ules. A default clocking is valid only within the scope containing the default clocking specification. This scope
includes the module, interface, or program that contains the declaration as well as any nested modules or inter-
faces. It does not include other instantiated modules or interfaces.

Example 1. Declaring a clocking as the default:

program test(input bit clk, input reg [15:0] data)
default clocking bus @(posedge clk);

inout data;
endclocking
[5];
if (bus.data == 10)

[1];
else

...
endprogram

Example 2. Assigning an existing clocking to be the default:

clocking busA @(posedge clk1); ... endclocking
clocking busB @(negedge clk2); ... endclocking
module processor ...

module cpu(interface y)
default clocking busA ;
initial begin

[5]; // use busA => (posedge clk1)
...

end
endprogram endmodule

endmodule

13.12 Synchronization Synchronous events

Explicit synchronization is done via the event control operator, @, operator, which allows a process to wait for
an explicit a particular signal value change, or a clocking event (see section 13.9).

The syntax is for the synchronization operator is:

@##([specific_edge] signal {or [specific_edge] signal});

Where specific_edge identifies the edge at which the synchronization occurs and can be:

— negedge : a negative (or falling) edge of the given (1-bit) signal

— posedge : a positive (or rising) edge of the given (1-bit) signal.

If no edge is specified, the synchronization occurs on the next change in the specified signal.

The signal specifies the clocking-domain signal to which the synchronization is linked. It can be any signal in

Editor’s Note: The remaining subsections in.this section were originally in section 14 of 3.1 draft 2
Copyright 2003 Accellera. All rights reserved. 111

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH94
a clocking domain, or a slice thereof. If the signal or the slice represents a 1-bit value, it’s possible to synchro-
nize to posedge or negedge, otherwise the synchronization is only to the next change. Slices can include
dynamic indices, which are evaluated once, when the @## expression executes.

If the operator has more than one expression, joined by the or keyword, then the synchronization occurs when
any of the expressions is satisfied.

The syntax is for the synchronization operator is:

event_control ::=
@ event_identifier
| @ (event_expression)
| @*
| @ (*)

event_expression ::=
expression [iff expression]
| hierarchical_identifier [iff expression]
| [edge] expression [iff expression]
| event_expression or event_expression
| event_expression , event_expression

The expression can denote clocking-domain input, or a slice thereof. Slices can include dynamic indices,
which are evaluated once, when the @ expression executes.

These are some example synchronization statements:

— Wait for the next change of signal ack_1 of clock domain ram_bus

@(ram_bus.ack_l);

— Wait for the next clocking event in clock-domain ram_bus

@(ram_bus);

— Wait for the positive edge of the signal ram_bus.enable

@(posedge ram_bus.enable);

— Wait for the falling edge of the specified 1-bit slice dom.sign[a]. Note that the index a is evaluated at
runtime.

@(negedge dom.sign[a]);

— Wait for either the next positive edge of dom.sig1 or the next change of dom.sig2, whichever happens
first.

@(posedge dom.sig1 or dom.sig2);

— Wait for the either the negative edge of dom.sig1 or the positive edge of dom.sig2, whichever hap-
pens first.

@(negedge dom.sig1 or posedge dom.sig2);

Editor’s Note: Replace preceding syntax line with BNF excerpt, once available.
112 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH58

EC-CH95

EC-CH60

EC-CH60

EC-CH95

EC-CH96

EC-CH61

EC-CH62
The values used by the synchronization primitive event control are the synchronous values, that is, the values
sampled at the corresponding clocking event.

13.13 Signal Input sampling

All input or inout signals in a clocking domain are sampled at the clocking event of the corresponding
clocking. If the signal has a non-zero input skew then the value of the signal is sampled skew time units before
the clock edge (see figure 13-1 in section 13.3).

All clocking domain inputs (input or inout) are sampled at the corresponding clocking event. If the input skew
is non-zero then the value sampled corresponds to the signal value at read-only-sync [ROSYNC] of the time
step skew time-units prior to the clocking event (see figure 13-1 in section 13.3). If the input skew is zero then
the value sampled corresponds to the signal value at the start of the verification phase.

Samples happen immediately (the calling process does not block). When a signal appears in an expression, it is
replaced by the signal’s sampled value, that is, the value that was sampled at the last sampling point.

When the same signal is an input to multiple clocking domains, the semantics are straightforward; each clock-
ing domain samples the corresponding signal with its own clocking event.

13.14 Signal Synchronous drives

Drives are used to propagate the value of output or inout signals at their corresponding clock edge. A drive
is an assignment in which the left hand side is a signal in a clocking domain.

The syntax to drive a signal is:

@##delay signal_expression = expression;

or

signal_expression <= expression;

The delay optionally specifies the number of clocking events (i.e. cycles) that pass before the signal is driven.
When no delay is specified, the default is @0, i.e., the current cycle.

The signal_expression is either a bit-select, slice, or the entire signal in a clocking that is to be driven (concat-
enation is not allowed):

dom.sig // entire signal

dom.sig[2] // bit-select

dom.sig[8:2] // slice

The expression can be any valid expression that is type compatible with the signal.

For example:

bus.data[3:0] = 4’h5; // drive on current cycle
@##1 bus.data = 8’hz; // wait 1 cycle and then drive

The value driven onto an output signal is not applied until the signal’s drive edge (typically the clocking event)
plus any output skew has transpired.

Editor’s Note: The “primitive” is a keyword with unique meaning in Verilog. It shouldn’t be used in the line above
Copyright 2003 Accellera. All rights reserved. 113

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH96

EC-CH98
Clocking domain outputs (output or inout) are used to drive values onto their corresponding signals, but at a
specified time. That is, the corresponding signal changes value at the indicated clocking event as modified by
the output skew.

The syntax to specify a synchronous drive is similar to an assignment:

[## event_count] clockvar_expression = expression;

or

clockvar_expression = [## event_count] expression;

The clockvar_expression is either or a bit-select, slice, or the entire clocking domain output whose correspond-
ing signal is to be driven (concatenation is not allowed):

dom.sig // entire clockvar

dom.sig[2] // bit-select

dom.sig[8:2] // slice

The expression can be any valid expression that is assignment compatible with the type of the corresponding
signal.

The event_count is an integral expression that optionally specifies the number of clocking events (i.e. cycles)
that must pass before the statement executes. Specifying a non-zero event_count blocks the current process
until the specified number of clocking events have elapsed otherwise the statement executes at the current
time. The event_count uses a syntax similar to the cycle-delay operator (see section 13.10), however, the syn-
chronous drive uses the clocking domain of the signal being driven and not the default clocking.

The second form of the synchronous drive uses the intra-assignment syntax. An intra-assignment event-count
specification also delays execution of the statement, but the right-hand side expression is evaluated before the
process blocks, instead of after.

Examples:

bus.data[3:0] = 4’h5; // drive in current cycle

##1 bus.data = 8’hz; // wait 1 (bus) cycle and then drive

##[2]; bus.data = 2; // wait 2 default clocking cycles, then drive

bus.data = ##2 r; // sample r, wait 2 (bus) cycles, the drive

Regardless of when the drive statement executes (due to event-count delays), the driven value is assigned to
the corresponding signal only at the time specified by the output skew.

13.14.1 Blockingand nonblocking drives Drives and nonblocking assignments

All zero-delay signal drives (no cycle delay and no skew) are queued and propagated in one fell swoop, right
before read-only synchronize time. Zero-delay signal drives resemble Verilog nonblocking assignments, thus,
reading the value of an inout signal immediately after it has been driven will yield the previous (sampled)
value, not the driven value:

if(bus.data == 31)
bus.data <= 27;

y = bus.data; // y is 31 (not 27)

Editor’s Note: Replace preceding syntax lines with BNF excerpt, once available.
114 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH98

EC-CH99

EC-CH97

EC-CH83

EC-CH63
It is illegal to drive a clocking domain signal with zero delay using = (blocking drive). If the drive specifies a
delay or an output skew then the blocking drive is allowed.

Synchronous signal drives are queued and processed at the end of the verification phase, like nonblocking
assignments, that is, they are propagated in one fell swoop without process execution in between drives.

A key feature of inout clocking domain variables and synchronous drives is that a driven signal value does
not change the clock domain input. This is because reading the input always yields the last sampled value, and
not the current signal value. In this respect, an inout clocking domain variable resembles nonblocking assign-
ments since reading the variable immediately after it has been assigned will yield the previous value, not the
assigned value.

// bus.data is a clock domain inout, y is a variable
if(bus.data == 5) if(y == 5)

bus.data = 0; y <= 0;
$display(bus.data); $display(y); // both display 5

13.14.2 Drive value resolution

When the same output signal in a clocking-domain is driven more than once at the same time, the drives are
checked for conflicts. When conflicting drives are detected, a runtime error is issued, and each conflicting bit
is driven to X (or 0 for a 2-state port).

When more than one synchronous drive is applied to the same clocking domain output (or inout) at the
same simulation time, the driven values are checked for conflicts. When conflicting drives are detected a runt-
ime error is issued, and each conflicting bit is driven to X (or 0 for a 2-state port).

When the same variable is an output from multiple clocking domains, the last drive determines the value of the
variable. This allows a single module to model multi-rate devices, such as a DDR memory, using a different
clocking domain to model each active edge. Naturally, clock-domain outputs driving a net (i.e., through differ-
ent ports) cause the net to be driven to its resolved signal value.

13.14.3 Drive / assignment ambiguity

The signal drive operator syntax may appear to be ambiguous with certain event control expressions in Sys-
temVerilog. For example:

integer j = 4;
@##j a = b;

The last statement above has the same syntactical form as a signal drive. But, it has two different meanings: in
Verilog the process blocks until j changes value, whereas a signal-drive causes the process to block for j
cycles.

Nevertheless, the compiler can easily resolve the ambiguity by examining the type of operand involved in the
signal drive (a above). If the operand is defined in a clocking domain, the signal is synchronous and should be
driven using cycle semantics via a signal drive. Otherwise, the statement is a regular event control assignment.

Editor’s Note: “one fell swoop” may not be appropriate for an international standard.
Copyright 2003 Accellera. All rights reserved. 115

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
116 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH59

EC-CH101

EC-CH59
Section 14
Signal Synchronous Operations

14.1 Introduction (informative)

The clocking domain (see section 13) separates the timing and synchronization details from the structural,
functional, and procedural elements of a test-bench. Thus, the timing for sampling and driving clocking-
domain signals is implicit and relative to the clocking-domain’s clock. This enables a set of key signal syn-
chronous operations to be written very succinctly, without explicitly using clocks or specifying timing. These
signal synchronous operations are:

— Synchronization

— Sampling

— Driving

Editor’s Note: Other than the intro, this entire section was moved to the end of section 13.
Copyright 2003 Accellera. All rights reserved. 117

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
118 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH67

EC-CH64
Section 15
Program Block

15.1 Introduction (informative)

The module is the basic building block in Verilog. Modules can contain hierarchies of other modules, wires,
task and function declarations, and procedural statements within always and initial blocks. This construct
works extremely well for the description of hardware. However, for the test-bench, the emphasis is not in the
hardware-level details such wires, hierarchy, and interconnect, but in modeling the large environment in which
a device needs to be verified. A lot of effort is spent in getting the environment properly initialized and syn-
chronized, avoiding races between the hardware and the test-bench, automating the generation of input stimuli,
and in reusing existing models and other infrastructure.

A typical test-bench contains type definitions, data declarations, subroutines, some form of structured connec-
tions to the design, and a program block. The program block serves two basic purposes:

1) It provides an entry point where the test-bench begins execution.

2) It creates a scope that encapsulates program-wide data.

A Verilog module provides both of these functions: it creates a new scope, and can include an initial block
to serve as the test-bench entry point. Thus, a module is a natural choice for modeling the program block.
However, such a “test-bench module” differs from a regular Verilog module in several ways. First, the com-
munication between the test-bench and the design takes place via special ports that in addition to type, direc-
tion, and size, can also specify a clocking scheme (see section 13). Second, it provides for race-free cycle and
transaction level abstractions as well as event abstractions. The program construct serves as a clear separator
between the design and the test-bench, and, more importantly, it indicates the special nature of the test-bench
module, thus, enabling specialized execution semantics for all elements within the program.

The abstraction and modeling constructs simplify the creation and maintenance of test-benches. Furthermore,
since modeling the environment can be a significant part of a test-bench, the same set of abstract test-bench
constructs can be effective in writing models at a higher level of abstraction than currently provided by Sys-
temVerilog. The ability to instantiate and individually connect each instance of a program enables their use as
generalized models.

15.2 The program construct

The connection between design and test-bench uses the same interconnect mechanism as used by SystemVer-
ilog to specify port connections, including interfaces. The syntax for the program block is:

program program_name (list_of_port_declarations);
program_declarartions
program_code

endprogram

For example:

Editor’s Note: This entire section is new for draft 1. Only the section titles have been highlighted as new text.

Editor’s Note: Replace preceding syntax lines with BNF excerpt, once available.

Editor’s Note: Is the Verilog-2001 module parameter list also supported?.
Copyright 2003 Accellera. All rights reserved. 119

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH64
program test (input clk, input [16:1] addr, inout [7:0] data);
...

endprogram

or

program test (interface device_ifc);
...

endprogram

The list_of_port_declarations allowed by a program is the same as the one allowed for any Ver-
ilog module. A more complete example is included in sections 13.7 and 13.8.

Although the program construct is new to SystemVerilog, its inclusion is a natural extension. The program
construct can be considered the declaration of a special type of module (i.e., a module with a test-bench
attribute). Once the program block has been declared, it can be instantiated in the proper hierarchical location
(typically at the top level) and its ports can be connected in the same manner as any other module.

Some of the test-bench constructs and data-types cannot be used in declarative contexts such as module ports,
gates, or continuos assignments. These constructs will be limited to the procedural context (i.e., the test-bench
environment). This limitation is not new either, it simply extends the rules set forth by SystemVerilog, which
disallows automatic variables from triggering event expressions or be written using nonblocking assignments.
Likewise, all the dynamic test-bench constructs—objects handles, dynamic and associative arrays, strings, and
events—will be limited to the procedural context.

15.3 Static data initialization

In SystemVerilog, setting the initial value of a static variable as part of the variable declaration requires that the
initialization occurs before any initial or always blocks are started. Likewise, SystemVerilog allows static
data in a program block (including static class members) to specify an initial value as part of their declaration,
and requires that all such data be initialized before the program block begins execution. It is important to note
that SystemVerilog initial values are not constrained to simple constants, but may include run-time expres-
sions, including dynamic memory allocation. For example, a static class can be initialized via its new method
(see section 11.4), or a mailbox may be initialized by calling its new method (see section 11.4).

Note: While this does not represent a conflict with SystemVerilog 3.0, it may require a special pre-initial pass at run-time,
which may need changes to the initial SystemVerilog simulation cycle. This is one of the requirements that differentiates a
program from a module.

15.4 Scope and lifetime

The following test-bench constructs all have module or program scope. They share the name space at the
hierarchical scope in which they are declared, so no two of them can have the same name:

— Class declarations

— Enumerated types and enumeration Values

— Clocking domains (see section 13)

— Program block

The program block contains a single implicit initial block, and no always blocks or other programs or
modules. Programs blocks cannot be nested.

Editor’s Note: The preceding paragraph seems rather odd for a standard. Is it necessary to state this at all?
120 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH65

EC-CH66

EC-CH67
All constructs declared within the program are local in scope (local to the program block) and have static life-
time.

Global declarations (outside the program block or any other module) reside in $root and have static lifetime.

Class declarations create a new scope.

Tasks and functions cannot be nested within themselves, but they can contain block statements that create a
scope. Block statements do not have to be named to create a new scope.

The program scope rules are consistent with SystemVerilog. The declaration in the closest enclosing scope is
matched: A scope nested inside another scope has visibility of (and may reference) all elements visible or
declared in its parent scope. A name declared inside a scope hides all elements with the same name that are
visible or declared in the parent scope.

15.5 Multiple programs

It is allowed to have any arbitrary number of program definitions or instances. The programs can be fully inde-
pendent (without inter-program communication), or cooperative. Users can control the degree of communica-
tion by choosing to share data via $root or hierarchical reference, or making the data private by declaring it
inside the corresponding program block.

The abstraction and modeling constructs simplify the creation and maintenance of test-benches. Furthermore,
since modeling the environment can be a significant part of a test-bench, the same set of abstract test-bench
constructs can be effective in writing models at a higher level of abstraction than currently provided by Sys-
temVerilog. The ability to instantiate and individually connect each instance of a program enables their use as
generalized models.

15.6 Eliminating zero-skew races

If both input and output skews are set to #0 (see section 13.3) then input signals are sampled at the same time
as their corresponding clock edge, and output signals are driven at the same time as their corresponding clock
edge. That is, both samples and drives happen at the same time. This type of zero-delay processing is a typical
source of non-determinism that often results in races. However, races are minimized by means of two mecha-
nisms. First, by constraining test-bench processes to execute only after nonblocking assignments, once all
zero-delay transitions have propagated through the design and the system has reached a steady state. Second,
by queuing all outgoing signal drives until the end of the test-bench execution cycle, and then propagating all
the drives as one event. This is described in section 13.14.1.

Supporting signals with zero input or output skew without races is an important feature of the test-bench envi-
ronment. This is because test-benches with no timing information are quite common, particularly during the
early phases of a design, when designers are mostly focused on functionality and not timing.

15.7 Eliminating races and SystemVerilog event queue

There are two major sources of non determinism in Verilog. The first one is that active events can be taken off
the queue and processed in an arbitrary order. The second one is that statements without time-control con-
structs in behavioral blocks do not execute as one event. However, from the test-bench perspective, these
effects are all unimportant details. The primary task of a test-bench is to generate valid input stimulus for the
design under test, and to verify that the device operates correctly. Furthermore, test-benches that use cycle
abstractions are only concerned with the stable or steady state of the system for both checking the current out-
puts and for computing stimuli for the next cycle. Formal tools also work in this fashion.

To avoid the non determinism and races inherent in the Verilog event queue management, test-bench processes
execute only after the system has settled to its steady state. This is after nonblocking assignments have been
processed, thus, treating all transitions towards the steady state in the same consistent manner (from the test-
Copyright 2003 Accellera. All rights reserved. 121

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH68

EC-CH69
bench perspective). Accordingly, signals driven from the test bench with no delay are propagated into the
design as one event immediately before read-only synchronize time. With this behavior, the correct cycle
semantics can be modeled without races, thereby making the test-bench environment compatible with the
assertions mechanisms and formal tools.

It is important to note that simply setting non-zero skews on the signals does not eliminate the potential for
races. Non-zero skews only address a single clocking domain. When multiple clocks are used, the arbitrary
order in which overlapping or simultaneous clocks are processed is still a potential source for races. The solu-
tion requires a special execution time after all events have been processed, including all clocks driven by non-
blocking assignments.

In order to standardize the cycle behavior, the execution after nonblocking assignments described above must
be added to the SystemVerilog’s event cycle. This is a requirement from many other subsystems such as mon-
itors, checkers, waveform tools, and temporal assertions. However, it is the test-bench that exacerbates this
need because in addition to examining the current state, it must also react and provide new stimuli for the next
cycle, which is often driven with no delay.

15.8 Blocking tasks in cycle/event mode

Calling tasks or functions in the program block from other design modules is not allowed. The rationale for
this is that the design must not be aware of the test-bench. However, calling subroutines in other design mod-
ules from within the program is allowed. Calling a function presents no problem and can be treated like a reg-
ular function call. However, calling a blocking task outside the program block from inside the program does
require explicit synchronization upon return from the task. That is, postpone execution until after nonblocking
assignments.

15.9 Program control tasks

In addition to the normal simulation control tasks ($stop and $finish), a program can use the $exit con-
trol task.

15.9.1 $exit()

Each program can be finished by calling the $exit system task. When all programs exit, the simulation fin-
ishes.

The syntax for the $exit system task is:

task $exit();

When a program executes its last statement, it implicitly calls $exit. Calling $exit causes all processes
spawned by the current program to be terminated.

Editor’s Note: Replace preceding syntax lines with BNF excerpt, once available.
122 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Section 16
Assertions [SV 3.0]

16.1 Introduction (informative)

An assertion is a statement that a property must be true. There are two kinds of assertions: concurrent asser-
tions which state that the property must be always be true, e.g. throughout a simulation, and procedural asser-
tions which are incorporated in procedural code and apply only for a limited time or under limited conditions.

There are various applications of assertions. They can be included in the design, to document the assumptions
made by the designer and to facilitate “white box” testing. They can be outside the design, either in a testbench
to check the response of the design to the stimulus, or to control a tool such as a stimulus generator or a model
checker.

Concurrent assertions can be coded as modules in a library, but this limits the complexity of the property that
can be expressed easily. It is more difficult to code procedural assertions as a library of tasks in Verilog,
because events cannot be arguments, each assertion may need static data, and tasks block.

Editor’s Note: This entire section is superceded by the following section (added for SV 3.1 draft 3).
Copyright 2003 Accellera. All rights reserved. 123

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
16.2 Procedural assertions

Syntax 16-1—Assertion syntax (excerpt from Annex A)

SystemVerilog provides four kinds of procedural assertions, which allow the user to test boolean expressions
or sequences of boolean expressions, and perform some action based on whether the expression or sequence is
true or false. Immediate assertions test the value of a boolean expression at the time the statement is executed,
and may be used in always and initial blocks, tasks and functions. Strobed assertions schedule the evaluation

proc_assertion ::= // from Annex A.6.10
immediate_assert

| strobed_assert
| clocked_immediate_assert
| clocked_strobed_assert

immediate_assert ::= assert (expression)
statement_or_null
[else statement_or_null]

strobed_assert ::= assert_strobe (expression)
restricted_statement_or_null
[else restricted_statement_or_null]

clocked_immediate_assert ::= assert (expr_sequence) step_control
statement_or_null
[else statement_or_null]

clocked_strobed_assert ::= assert_strobe (expr_sequence) step_control
restricted_statement_or_null
[else restricted_statement_or_null]

restricted_statement_or_null ::=
restricted_statement

| { attribute_instance } ;

restricted_statement ::=
[block_identifier :] restricted_statement_item

restricted_statement_item ::=
{ attribute_instance } proc_assertion

| { attribute_instance } system_task_enable
| { attribute_instance } delay_or_event_control statement
| { attribute_instance } restricted_seq_block

restricted_seq_block ::= begin [: block_identifier] { block_item_declaration }{ restricted_statement }
end [: block_identifier]

expr_sequence ::=
expression

| [constant_expression]
| range
| expr_sequence ; expr_sequence
| expr_sequence * [constant_expression]
| expr_sequence * range
| (expr_sequence)

step_control ::=
@@ event_identifier

| @@ (event_expression)
124 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
of the expression to be delayed until the end of the current timeslice, to allow for glitches to settle. Strobed
assertions may be used in initial and always blocks and tasks, but not in functions, since functions must
return immediately.

To test sequences of expressions, it is necessary to specify a sampling clock event on which to test each ele-
ment of the sequence. Therefore, Clocked Immediate and Clocked Strobed assertions are added to allow pro-
gressive evaluation of sequences of expressions. Since these clocked assertions, by definition, take time, they
cannot be used in functions. Clocked immediate assertions evaluate each expression in the sequence when the
clock event triggers, and clocked strobed assertions evaluate each expression at the end of the timeslice at
which the event triggers.

16.3 Immediate assertions

The immediate assert statement is a test of an expression performed when the statement is executed in the pro-
cedural code. The expression is treated as a condition like in an if statement.

[identifier :] assert (expression) [pass_statement] [else fail_statement]

The pass statement is executed if the assertion succeeds, i.e. the expression evaluates to true. As with the if
statement, if the expression evaluates to ’X’, ’Z’ or ’0’, then the assertion fails. The pass statement may, for
example, record the number of successes for a coverage log, but may be omitted altogether. If the pass state-
ment is omitted, then no action is taken if the assert expression is true. The fail statement is executed if the
assertion fails (i.e. the expression does not evaluate to a known, non-zero value) and can be omitted. The
optional assertion label (identifier and colon) creates a notional named block around the assertion statement (or
any other SystemVerilog statement) and can be displayed using the %m format code.

assert_foo : assert (foo) $display("%m passed"); else $display("%m failed");

Since the assertion is a statement that something must be true, the failure of an assertion shall have a severity
associated with it. By default, the severity of an assertion failure is “error”. Other severity levels may be spec-
ified by including one of the following severity system tasks in the fail statement.

— $fatal is a run-time Fatal, which terminates the simulation with an error code. The first argument passed
to $fatal shall be consistent with the argument to $finish.

— $error is a Run-time Error.

— $warning is a Run-time Warning, which can be suppressed in a tool-specific manner.

— $info indicates that the assertion failure carries no specific severity.

The syntax for these system tasks is shown in section 22.4.

All of these severity system tasks shall print a tool-specific message indicating the severity of the failure, and
specific information about the specific failure, which shall include the following information:

— The file name and line number of the assertion statement,

— The hierarchical name of the assertion, if it is labeled, or the scope of the assertion if it is not labeled.

For simulation tools, these tasks shall also include the simulation run-time at which the severity system task is
called.

Each system task can also include additional user-specified information using the same format as the Verilog
$display.

If more than one of these system tasks is included in the else clause, then each shall be executed as specified.

If an assertion fails and no else clause is specified, the tool shall, by default, call $error, unless a tool-spe-
cific command-line option is enabled to suppress the failure.
Copyright 2003 Accellera. All rights reserved. 125

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
If the severity system task is executed at a time other than when the assertion fails, the actual failure time of the
assertion can be recorded and displayed programmatically. For example:

time t;

always @(posedge clk)
if(state == REQ)

assert(req1 || req2)
else begin

t = $time;
#5 $error("assert failed at time %0t",t);

end

If the assertion fails at time 10, the error message will be printed at time 15, but the user-defined string printed
will be “assert failed at time 10”.

The display of messages of warning and info types can be controlled by a tool-specific command-line option.

Since the fail statement, like the pass statement, is any legal SystemVerilog procedural statement, it can also
be used to signal a failure to another part of the testbench.

assert (myfunc(a,b)) count1 = count + 1; else ->event1;
assert (y == 0); else flag = 1;

The assert statement serves as guidance to non-simulation tools that the condition should be true. The second
statement above is equivalent to:

if (y!=0) begin flag = 1; end

16.4 Strobed assertions

If an immediate assertion is in code triggered by a timing control that happens at the same time as a blocking
assignment to the data being tested, there is a risk of the wrong value being sampled. For example:

always @(posedge clock) a = a + 1; // blocking assignment
always @(posedge clock) begin

....
assert (a < b);

end

This can be solved by using a strobed assertion, which waits in the background until the end of the time slot,
like the Verilog $strobe system task.

always @(posedge clock) begin
....
cas:assert_strobe (a < b);

end

Strobed assertions can have pass or fail statements like immediate assertions. However, the statements are
restricted to another assertion statement, a system task call, a statement preceded by a delay control or an event
control, or sequential block containing them. This is because the statement happens after the assertion is eval-
uated, at the end of the time slot, and hence must not create more events at that time slot or change values.
Statements which cause additional events to occur at the current time shall be an error.

The example below illustrates the effect of blocking and nonblocking assignments on immediate and strobed
assertions. The immediate assertions are like $display statements and the strobed assertions are like
$strobe statements.
126 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH88
module test;
reg [3:0] a=0; c=0, d=0;
reg clk = 0;
wire b;

initial begin
#10 clk = 1;
forever #5 clk = !clk; // posedge clk at 10,20,30,40...

end

assign b = a+1;

always @(posedge clk) begin
a1: assert(c<3); // fails at time 40
c = c+1;
a2: assert(c<3); // fails at time 30
a <= a+1;
a3: assert(a<3); // fails at time 40
a4: assert(b<3); // fails at time 40
a5: assert_strobe(a<3); // fails at time 30
a6: assert_strobe(b<3); // fails at time 30

end

always @(a) begin // models transient behavior on comb. nets
d = a+2; // spikes to 2 at 0, 3 at 10, 4 at 20
assert(d<3); // fails at time 10
d = d-1; // settles to 1 at 0, 2 at 10, 3 at 20
assert(d<3); // fails at time 20

end

always @(d) assert_strobe (d<3); // fails at time 20

endmodule

16.5 Sequential assertions

In addition to assertions about single expressions, it is often useful to assert sequences of expressions over
time. One way of doing this is to use nested immediate assertions, where each subsequent assertion is the pass
statement of the previous assertion.

always @(posedge clk or negedge rst)
if(state == REQ)

a7: assert(req1) // no semicolon
@(posedge clk) assert(gnt)
@(posedge clk) assert(!req1);

The above example verifies the sequence that, if state is equal to REQ, the req1 signal must be true immedi-
ately, then on the next posedge clk, gnt must be true and on the following posedge clk, req must be false.
Note that the assertion statement itself is nonblocking, so the sequence in assertion a7 is equivalent to:

always @(posedge clk or negedge rst)
if(state == REQ)
a8: assert(req1)
process
fork

@(posedge clk) assert (gnt)
@(posedge clk) assert(!req1);

join_none
Copyright 2003 Accellera. All rights reserved. 127

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
To simplify this complex nested assertion, a sequential regular expression is used in the assert statement.
Sequential regular expressions require a step control event expression to specify the timing between evalua-
tions of each element in the regular expression. Using a sequential regular expression, the assertion a8 could
be rewritten as:

always @(posedge clk or negedge rst)
if(state == REQ)

a9: assert(req1;gnt;!req1) @@(posedge clk);
// note the @@ token to distinguish the step control from the pass statement

A sequential regular expression is a semicolon-delimited list of expressions. The first expression in the list is
evaluated immediately when the assert statement is executed. The other subsequent expressions are evaluated
one at a time on successive occurrences of the step control event expression. In assertion a9 above, req1 is
evaluated immediately when the assert statement is executed, just as for an immediate assertion, then gnt is
evaluated on the next posedge clk event, and so on.

The ’@@’ token is introduced to distinguish the step control from an ordinary event control at the start of the
pass statement. Consider the following:

always @(posedge clock or negedge rst)
if(state == REQ)

a10: assert (req1)
@(posedge clk) // This is an event control in the pass statement

$display("Hello at time %t", $time);

In this example, the “@(posedge clock)” in the pass statement causes the display action to occur on the
next posedge of clock after the assertion succeeds. Therefore, a new token is required to distinguish the asser-
tion sequence step control from the pass statement.

Note that, since the first expression is evaluated immediately, assertion a9 above is equivalent to:

always @(posedge clk or negedge rst)
if(state == REQ)

assert(req1)
assert(1;gnt;!req1) @@(posedge clk);

The sequence notation “(1;<expression_or_sequence>)” is a convenient shorthand, indicating that
the <expression_or_sequence> is to be evaluated on the next occurrence of the step control event.
This is because the expression ‘1’ is evaluated immediately and is always true.

Sequential assertions using the assert keyword are called clocked immediate assertions, since the expres-
sions are evaluated as with immediate assertions. Similarly, clocked strobed assertions may be written using
the assert_strobe keyword, in which each expression in the sequence is evaluated either at the end of the
timeslice in which the assertion is executed or in which the step control event occurs. The pass and fail state-
ments of clocked strobed assertions have the same restrictions as strobed assertions.

Specifying an explicit step control for a sequence makes it possible to use clocked assertions in combinational
always blocks.

always @(foo,bar)
assert_strobe (a;b;c) @@(posedge clk);
// look for a when foo or bar changes, then look for b on next posedge clk

Since it is common for combinational always blocks to be executed multiple times in a single timestep as the
signals in the event trigger expression settle, it is common to use strobed assertions in combinational always
blocks. Immediate assertions are commonly used in clocked always blocks.

Note that to avoid races, the variables read in clocked immediate assertions should be written by nonblocking
assignments. Expressions in clocked strobed assertions are always sampled at the end of the timestep, so no
128 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
race conditions should occur.

An assertion could be executed twice in the same timestep via a zero-delay loop or a combinational always
block, for example. If a clocked immediate assertion is executed more than once at the same timestep, the first
expression in the sequence will be re-evaluated. If a clocked strobed assertion is executed more than once at
the same timestep, the first expression in the sequence will be evaluated once at the end of the timestep.

An assertion shall only spawn a single process to evaluate the next expression in the sequence at the next step
control event. If the step control event occurs multiple times at the same timestep, then in a clocked immediate
assertion the current expression in the sequence shall be re-evaluated. In a clocked strobed assertion, the cur-
rent expression will still be evaluated only once at the end of the timestep. The next expression in the sequence
shall not be evaluated until the step control occurs in a later timestep.

As mentioned above, the execution of a sequential assertion spawns a process that monitors each event in the
sequence when the step control event occurs. If the sequential assert statement is executed again before the
sequence spawned by the original execution has expired, then a new process shall be spawned that looks for
the sequence starting at the current timestep. It is therefore possible to have multiple processes in-flight, each
monitoring the same sequence, but offset in time. It is possible for these multiple processes to be satisfied by
the same sequential behavior, even though the processes are offset in time. In such a case, both processes shall
terminate at the same timestep, in which both sequences are satisfied. Consider:

module top;
reg clk = 0;
reg a,b,c;

initial begin
#10 clk = 1;
forever begin

clk = 0;
clk = 1; // 2 posedges clk at 10,20,30,40...
#5 clk = 0;
#5 clk = 1;

end
end

always @(posedge clk)
assert(a;b;c) @@(posedge clk);
// ’a’ is evaluated only once at 10, ’b’ once at 20, ’c’ once at 30

Note that the step control expression may be any valid event expression in SystemVerilog. The following
assertions all use valid step control expressions:

bit clk;
event ev1;

always @(posedge clk or negedge reset) begin
assert (a;b;c) @@(negedge clk); // sequence sampled on negedge clk
assert (a;b;c) @@(clk); // sequence sampled on any edge of clk
assert (a;b;c) @@(ev1); // sequence sampled when event ev1 fires
a11: assert(a;b;c) @@(posedge clk iff !rst);

// sequence sampled on posedge clk if rst == 0
end

Note the use of the iff operator in assertion a11 above. In effect, this allows a “gated clock” to control the
assertion without the user having to declare the gated clock explicitly (see section 8.9). Because this could
have significant impact on the ability of Formal Verification tools to evaluate the assertion successfully, it is
recommended that this construct be used only for simulation.

This flexibility also allows nested assertions to use different clocks:
Copyright 2003 Accellera. All rights reserved. 129

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
always @(posedge clk) begin
assert (a;b) @@(posedge clk) // on posedge clk
assert (1;c;d) @@(negedge clk); // look for c and d on negedge clk
assert (e;f) @@(posedge clk2)
assert (1;g;h) @@(ev1);

end

16.6 More expression sequences

A number of steps can be skipped either by writing expressions which are always true:

assert (a;1;1;c) @@(posedge clk); // two steps between a and c

or by using the notation [n] to count the number of steps:

assert (a;[2];c) @@(posedge clk); // two steps between a and c
assert (a;[1];[1];c) @@(posedge clk); // two steps between a and c

Note that in [n], the n must be a non-negative literal or a constant expression. [0] has no effect. The number of
steps to be skipped may also be expressed using [min:max], where the minimum number of steps must be
greater than or equal to zero. Both min and max must be a literal or constant expression.

assert (a;[0:10];b) @@(posedge clk);
// b occurs between the next and 11th clock edges, inclusive

If an expression must be repeated a defined number of times, this can be expressed with a trailing *[n]. If it can
be repeated a minimum or maximum number of times, this can be expressed with a trailing *[min:max]. These
repetition counts must also be literals or constant expressions.

assert ((a; b)*[5]) @@(posedge clk); // a;b;a;b;a;b;a;b;a;b
assert ((a*[0:3];b;c)) @@(posedge clk); // equivalent to

// (b;c) or (a;b;c) or (a;a;b;c) or (a;a;a;b;c).

This means that a sequence a;ab;a;b;c; will pass. The expression sequence is not equivalent to ((a &&
!b)* [0:3];b;c), which would fail the same sequence.

The rules for specifying repeat counts are summarized as:

— Each form of repeat count specifies a minimum and maximum number of occurrences

— expr*[n:m], where n is the minimum, m is the maximum

— expr*[n], same as expr*[n:n]

— [n], same as 1*[n:n]

— The sum of the minimum repeat counts for all terms in a sequence must be greater than 0

— The sequence as a whole cannot be empty

— The last term in a sequence shall not have a min:max range of repetition. If it does, it shall be an error.

16.7 Aborting assertions externally

A named assertion can be disabled like any other named SystemVerilog block. If this is done before the
expression sequence has finished, it means that neither the pass statement nor the fail statement shall be exe-
cuted.

disable cas;
130 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

BC42-18
Note that if the disable is applied at the same simulation time step as the last clock step of a sequence, there
is a race in the case of an immediate assertion, but a strobed assertion is always disabled.

If the pass or fail statement is executing when the disable is executed, the statement shall be disabled, just as if
the statement were in another named block that gets disabled.

If a sequential assertion has been executed multiple times before the sequence has expired, then all instances of
the assertion shall be disabled when the assertion is disabled.

16.8 Controlling assertions

System tasks are provided to limit assertion checking to part of the design and part of the simulation time.

The $assertoff system task stops the checking of all specified assertions. When these assertions are encoun-
tered before a subsequent $asserton, the assert statement shall be ignored. Neither the pass statement nor the
fail statement shall be executed. An assertion that is already executing, including execution of the pass or fail
statement, is not affected by $assertoff.

The $assertkill system task disables all specified assertions and prevents them from executing until a sub-
sequent $asserton. As with disable, the checking of the sequence is aborted, and neither the pass nor fail
statement is executed.

The $asserton system task re-enables the execution of all specified assertions.

The assertion control system tasks may be used with or without arguments. When invoked with no arguments,
the system task refers to all assertions throughout the model. Refer to section 22.5 for the syntax of these sys-
tem tasks.

Assertions are on by default until turned off. When an assertion control task is specified with arguments, the
first argument indicates how many levels of the hierarchy below each specified module instance to turn on or
off. Subsequent arguments specify which scopes of the model in which to control assertions. These arguments
can specify entire modules or individual named assertions within a module. Setting the first argument to 0
causes all assertions in the specified module and in all module instances below the specified module to be
affected. The argument 0 applies only to subsequent arguments which specify module instances, and not to
individual assertions.

16.9 System functions

Assertions are commonly used to evaluate certain specific characteristics of a design implementation, such as
whether a particular signal is “one-hot”. The following system functions are included to facilitate such com-
mon assertion functionality:

— $onehot (<expression>) returns true if only one and only one bit of expression is high.

— $onehot0(<expression>) returns true if at most one bit of expression is low.

— $inset (<expression>, <expression> {, <expression> }) returns true if the first expression is equal to at
least one of the subsequent expression arguments.

— $insetz(<expression>,<expression> {, <expression> }) returns true if the first expression is equal to at
least other expression argument. Comparison is performed using casez semantics, so ‘z’ or ‘?’ bits are
treated as don’t-cares.

— $isunknown(<expression>) returns true if any bit of the expression is ‘x’. This is equivalent to
^<expression> === ’bx.

All of the above system functions have a return type of bit. A return value of 1’b1 indicates true, and a return
value of 1’b0 indicates false.
Copyright 2003 Accellera. All rights reserved. 131

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
132 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Section 16
Assertions

16.1 Introduction (informative)

System Verilog adds features to specify assertions (or properties) of a system. An assertion specifies a specific
behavior of the system. There are two kinds of assertions: concurrent or immediate.

Immediate assertions follow event semantics for their execution and get executed like a statement in a proce-
dural block. Immediate assertions are primarily intended to be used with simulation.

Concurrent assertions are based on clock semantics and use sampled values of variables. One of the goals of
SystemVerilog assertions is to provide a common semantic meaning for assertions so that they may be used to
drive various design and verification tools. Many tools, such as formal verification tools, evaluate circuit
descriptions using a cycle-based semantic which typically relies on a clock signal or signals to drive the evalu-
ation of the circuit. Any timing or event behavior between clock edges is abstracted away. Concurrent asser-
tions incorporate this clock semantics. While this approach generally simplifies the evaluation of a circuit
description, there are a number of scenarios under which this cycle-based evaluation provides different behav-
ior from the standard event-based evaluation of SystemVerilog.

This section describes both types of assertions.

16.2 Immediate assertions

The immediate assertion statement is a test of an expression performed when the statement is executed in the
procedural code. The expression is treated as a condition like in an if statement. The syntax of the immediate
assertion statement is as follows.

Syntax 16-2—Immediate assertion syntax

The statement associated with the success of the assert statement is called pass statement, and is executed if
the expression evaluates to true. As with the if statement, if the expression evaluates to ’X’, ’Z’ or ’0’, then
the assertion fails. The pass statement may, for example, record the number of successes for a coverage log,
but may be omitted altogether. If the pass statement is omitted, then no user specified action is taken when the
assert check expression is true. The statement associated with else is called a fail statement, and is executed if

Editor’s Note: This entire section is new for draft 3, and replaces the SV 3.0 section on assertions. Only the Sec-
tion titles have been highlighted as new text.

Editor’s Note: I still need to check all formatting for this section. Also need to map all cross references to the old
assertion section to this new section.

immediate_assertion::=

[identifier :] ‘check’ ‘(‘ expression ‘)’ action_block

action_block::=

 statement_or_null [‘else’ statement_or_null]

statement_or_null::=

statement

| ‘ ; ‘
Copyright 2003 Accellera. All rights reserved. 133

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
the assertion fails (i.e. the expression does not evaluate to a known, non-zero value) and can be omitted. The
optional assertion label (identifier and colon) creates a named block around the assertion statement (or any
other SystemVerilog statement) and can be displayed using the %m format code.

assert_foo : check (foo) $display("%m passed"); else $display("%m failed");

Note: The pass and fail statements are executed as part of verification code. The distinction between design and verifica-
tion code is being discussed in other commitees, and a special scheduling mechanism to support the two types of code will
also be devised. The main objective here is to prevent modification of design behavior as a result of assertion monitoring
activities.

Since the assertion is a statement that something must be true, the failure of an assertion shall have a severity
associated with it. By default, the severity of an assertion failure is “error”. Other severity levels may be spec-
ified by including one of the following severity system tasks in the fail statement:

— $fatal is a run-time Fatal, which terminates the simulation with an error code. The first argument passed
to $fatal shall be consistent with the argument to $finish.

— $error is a Run-time Error.

— $warning is a Run-time Warning, which can be suppressed in a tool-specific manner.

— $info indicates that the assertion failure carries no specific severity.

The syntax for these system tasks is shown in section 16.4 of System Verilog3.0 LRM.

Need software cross reference above

All of these severity system tasks shall print a tool-specific message indicating the severity of the failure, and
specific information about the specific failure, which shall include the following information:

— The file name and line number of the assertion statement,

— The hierarchical name of the assertion, if it is labeled, or the scope of the assertion if it is not labeled.

For simulation tools, these tasks shall also include the simulation run-time at which the severity system task is
called.

Each system task can also include additional user-specified information using the same format as the Verilog
$display.

If more than one of these system tasks is included in the else clause, then each shall be executed as specified.

If an assertion fails and no else clause is specified, the tool shall, by default, call $error, unless a tool-spe-
cific command-line option is enabled to suppress the failure.

If the severity system task is executed at a time other than when the assertion fails, the actual failure time of the
assertion can be recorded and displayed programmatically. For example:

time t;

always @(posedge clk)
if(state == REQ)

check(req1 || req2)
else begin

t = $time;
#5 $error("assert failed at time %0t",t);

end

If the assertion fails at time 10, the error message will be printed at time 15, but the user-defined string printed
will be “assert failed at time 10”.
134 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
The display of messages of warning and info types can be controlled by a tool-specific command-line option.

Since the fail statement, like the pass statement, is any legal SystemVerilog procedural statement, it can also be
used to signal a failure to another part of the testbench.

check (myfunc(a,b)) count1 = count + 1; else ->event1;
check (y == 0); else flag = 1;

16.3 Concurrent assertions

Concurrent assertions describe behavior that spans over time. The evaluation model is based on a clock such
that a concurrent assertion is evaluated only at the occurrence of a clock tick. The values of variables used in
the evaluation are the sampled valued. This way, a predictable result can be obtained from the evaluation,
regardless of the simulator’s internal mechanism of ordering events and evaluating events. This model of exe-
cution also corresponds to the synthesis model of hardware interpretation from an RTL description.

The timing model employed in concurrent assertion specification is based on clock ticks, and uses a general-
ized notion of clock cycles. The definition of a clock is explicitly specified by the user, and can vary from one
expression to another. In addition, a user can choose to use the simulation time as a clock to express asynchro-
nous events.

A clock tick is an atomic moment in time and implies that there is no duration of time in a clock tick. It is also
given that a clock may tick only once at any simulation time. The value of a variable in an expression at a
clock tick is sampled at the end of one simulation timestep (i.e. at read-only synchronization time, as defined
by the PLI) before the clock tick. In an assertion, the sampled value is the only valid value of a variable at a
clock tick. Figure 16-2 shows the values of a variable as the clock progresses. The value of signal req is low
at clock ticks 1 and 2. At clock tick 3, the value is sampled as high and remains high until clock tick 9. The
value of variable req at clock tick 9 is low and remains low.

Figure 16-2—Sampling a Variable on Simulation Ticks

The sampled value of a signal with respect to its clock is the value of the variable at the end of the simulation
time (i.e. read-only sync) before the clock event occurs.

An expression is always tied to a clock definition. The values of variables are sampled only at clock ticks.
These values are used to evaluate value change expressions or boolean sub-expressions that are required to
determine a match with respect to a sequence expression.

Note:

— It is important to ensure that the defined clock behavior is glitch free. Otherwise, wrong values may get
sampled.

— The two words “clock tick” and “sampling event” are used synonymously in this document.

The clock expression that controls evaluation of a sequence may be more complex than just a single signal
name. An expression such as (clk && gate) could be used to represent a gated clock. Other more complex

1 2 3 4 5 6 7 8 9 10 11 12 13 14clock ticks

req

simulation
ticks
Copyright 2003 Accellera. All rights reserved. 135

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
expressions are possible. In order to ensure proper behavior of the system and conform as closely as possible
to truly cycle-based semantics, the signals in a clock expression must be glitch-free and may only transition
once at any simulation time. The clock expressions must be evaluated with zero delay.

16.4 Sequences

A sequence is a list of SystemVerilog boolean expressions in a linear order of increasing time. These boolean
expressions must be true at those specific points in time for the sequence to be true over time. A boolean
expression at a point in time is a simple case of a sequence with time length of one unit.To determine a match
of a sequence, the boolean expressions are evaluated at each successive sample point to satisfy the sequence. If
all expressions are true, then a match of the sequence occurs.

A sequence expression describes one or more sequences by using regular expressions that concisely specify a
range of possibilities of when an expression needs to hold true. These sequential regular expressions can actu-
ally describe a set of one or more sequences that satisfy the sequential expression.

The basic composition of a sequence consist of a boolean expression concatenated by another boolean expres-
sion. The concatenation specifies a delay between the two boolean expressions. The following is the syntax for
sequence concatenation.

Syntax 16-3—Sequence concatenation syntax

In this syntax:

— constant_range_expression is a compile-time constant expression that results in an integer value

— constant_range_expression can only be 0 or greater and true unconditionally evaluates to true
boolean value.

— The keyword true unconditionally evaluates to true boolean value.

— The keyword inf is used to indicate the end of simulation. For formal verification tools, inf is interpreted
as infinity.

sequence_expr ::=

 sequence_phrase { ; [range] sequence_phrase }

sequence_phrase ::=

 sequence_element

 | range sequence_element

sequence_element :: =

 boolean_item

 | (sequence_expr)

boolean_item ::=

boolean_expr

 | true

range ::=
[constant_range_expression]

 | [constant_range_expression : constant_range_expression]

 | [constant_range_expression : inf]
136 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
— When a range is specifies with two expressions, the second expression must be greater or equal to the first
expression.

The context in which a sequence occurs determines when the sequence is evaluated. The first element in a
sequence is checked at the first occurrence of the clock at or after the event that triggered evaluation of the
sequence. Each successive element (if any) in the sequence is checked at the next subsequent occurrence of
the clock.

A ‘;’ followed by an optional range specifies that the sequence_expr should occur later than the 'current' cycle.
A range of [1] indicates that the next element should occur a single cycle later than the ‘current’ cycle. A ‘;’
without a range is equivalent to a ‘;’ with a range [1]. A range of [0] specifies that the next element should
occur in parallel with the ‘current’ cycle.

When a range specifier appears at the start of the sequence without ‘;’, its meaning is identical to as if the ‘;’ is
prepended to the sequence. The semantics are the same.

The following are examples of unary delay expressions. A unary delay, i.e. an expression with delay as the pre-
fix, must be enclosed in parenthesis.

([0] a) means a
([1] a) means true; a
([2] a) means true;true;a
([0:3]a) means(a) or (true;a) or (true;true;a) or (true;true;true;a)

An example of a delay expression is as follows:

a;[2] b means a ; true ; b

Note that the following two are equivalent:

a; true ;[2] b means a ; true ; true; b
a; (true;[2] b) means a ; true ; true; b

A sequence:

req; gnt;!req

This sequence specifies that req be true on the current clock tick, gnt will be true on the first subsequent tick
and req will be false on the next tick after that. The ‘;’ operator specifies one clock tick separation. When a
number is appended to semicolon, The number of samples is prepended to the expression in the sequence, as in

req;[2]gnt

This specifies that req will be true on the current sample, and gnt will be true on the second subsequence sam-
ple, as shown in figure Figure 16-3.

Figure 16-3—Concatenation

 The following specifies that ‘b’ will be true on the Nth sample after ‘a:

clk

req

gnt

s0 s1 s2
Copyright 2003 Accellera. All rights reserved. 137

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
a;[N]b // check b on the Nth sample

To specify concatenation of overlapped sequences, where the end point of one sequence coincides with the
start of the next sequence, a value of 0 is used as shown below.

a ;b ;c // first sequence seq1
d ;e ;f // second sequence seq2
seq1 ;[0] seq2 // overlapped concatenation

In the above example, c is the endpoint of sequence seq1, and d is the start of sequence seq2. When concate-
nated with [0] sampling, c and d must occur at the same time, resulting in the concatenated sequence being is
equivalent to:

a;b ;c&&d ;e ;f

In cases where the concatenation can occur anytime between two points in time, a time window can be speci-
fied as follows:

req;[4:32] gnt

In the above case, signal gnt must be true at some sampling event between sampling events ranging from 4 to
32 after the current sample.

The time window can extend to the end of simulation in the example below.

req;[4:inf] gnt

A sequence can be unconditionally extended by using true.

a ;b ;c ;[3]true

After signal c, the signal length is extended by 3 sample events. Such adjustments in the length of sequences
are required when complex sequences constructed by combining simpler sequences.

16.5 Declaring sequences

Sequences can be reused by declaring them as objects of type sequence with optional parameters:

Syntax 16-4—Declaring sequence syntax

The event_control specifies the clock for the sequence.

The declaration can optionally include arguments that allow the same sequence to be instantiated multiple
times with different argument values. The actual arguments can be boolean or sequence expressions.

Note that variables referenced within a seq that are not formal arguments to the sequence are resolved hierar-
chically from the scope in which the seq is instantiated.

seq_declaration ::=

sequence [event_control] named_seq { , named_seq} ;

named_seq ::=

identifier [(identifier { , identifier})] = (sequence_expr)
138 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
sequence @(posedge clk) s1 = (a;b;c), s2 = (d;e;f);
sequence @(nededge clk) s3 = (g;h;i);

In this example, sequences s1 and s2 are sampled on each successive posedge clk. The sequence s3 is sampled
on negedge clk.

Another example of sequence declaration with arguments is shown below:

sequence s20_1(data,en) = (!frame && (data==data_bus) ; (c_be[0:3] == en));

A sequence can be referred in properties by referencing its name. A hierarchical name can be be used consis-
tent with the System Verilog naming conventions.

16.6 Sequence operations

16.6.1 Repetition in sequences

Following is the syntax for sequence concatenation (sequence_phrase from concatenation has been extended
with repetition clauses).

Syntax 16-5—Sequence concatenation syntax

The repetition counts are specified with range and must be literals or constant expressions.

To specify the repetition of an expression within a sequence, the expression may simply be repeated, as:

a;b;b;b;c

or the number of repetitions may be specified with a trailing “*[N]”, as:

a;b*[3];c

A repeat specifies that the item or expression should occur a specified number of times. Each repeated item is
concatenated (with a delay of 1 clock tick) to the next repeated item. A repeat of N specifies that the sequence
should occur N times in succession - e.g.,

a*[3] means a ; a ; a

The syntax allows combination of a delay and a repeat in the same sequence with no separation by ‘;’, but
requires that the repeated item be delimited by parentheses. The following are both allowed:

true;[3](a*[3]) means true;true;true;a;a;a
(true;[2]a)*[3] means (true;[2]a);(true;[2]a);(true;[2]a)
 which means true;true;a;true;true;a;true;true;a

 As an example, with named sequences

sequence seq1 = ([2]a); means true ; true ; a
sequence seq2 = (b;seq1); means b;([2]a)

sequence_phrase ::=

sequence_element
|sequence_element * range

| boolean_expr =* range
Copyright 2003 Accellera. All rights reserved. 139

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
which means b;(true ; true ; a)
which means b;true;true;a

A sequence can be repeated as follows:

(a ; b)*[5]

is same as:

a;b;a;b;a;b;a;b;a;b

A repetition with a range of maximum and minimum number of times can be expressed with a trailing *[min:max].
As an example, the following two expression are equivalent.

(a ; b)*[1:5]
(a;b)or(a;b;a;b;)or(a;b;a;b;a;b)or(a;b;a;b;a;b;a;b)or(a;b;a;b;a;b;a;b;a;b)

The following two expression are also equivalent.

(a*[0:3];b;c)
(b;c) or (a;b;c) or (a;a;b;c) or (a;a;a;b;c).

To specify potentially infinite number of repetitions, the keyword inf is used. So,

a; b*[1:inf];c

means ‘a’ is true on the current sample, then ‘b’ will be true on every subsequent sample until ‘c’ is true. On
the sample in which ‘c’ is true, ‘b’ does not have to be true.

The “*[N]” notation indicates consecutive repetition of an expression. It is also possible to specify non-consec-
utive repetition of a boolean expression with:

a;b*=[min:max];c

This is equivalent to:

a;((!b*[0:inf];b))*[min:max]);c

Adding the range specification to this allows the construction of useful sequences containing a boolean expres-
sion that is true for at most N samples:

a;b*=[1:N];c // a followed by at most N occurrences of b, followed by c

The rules for specifying repeat counts are summarized as:

— Each form of repeat count specifies a minimum and maximum number of occurrences

— expr*[n:m], where n is the minimum, m is the maximum

— expr*[n] is the same as expr*[n:n]

— The sequence as a whole cannot be empty

— If n is 0, then there must be either a prefix, or a post fix concatenation term

16.6.2 Value change functions

Three functions are provided to detect changes in values between two adjacent clock ticks: $rose, $fell and
140 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
$stable.

Syntax 16-6—Value change function syntax

A value change expression at a clock tick detects the change in value of an expression from the value of that
expression at the previous clock tick. The result of a value change expression is true or false, and can be used
as a boolean expression.

$rose returns true if the least significant bit of the expression changed from 0 to 1. Otherwise, it returns false.

$fell returns true if the least significant bit of the expression changed from 1 to 0. Otherwise, it returns false.

$stable returns true if the value of the expression did not change. Otherwise, it returns false.

Figure 16-4 illustrates two examples of value changes:

— value change expression e1 is defined as $rose (req)

— value change expression e2 is defined as $fell (ack)

Figure 16-4—Value Change Expressions

The clock used for sampling the events is different than the simulation ticks. Assume, for now, that this clock
is defined in this language elsewhere. At clock tick 3, e1 occurs because the value of req at clock tick 2 was
low and at clock tick 3, the value is high. Similarly, e2 occurs at clock tick 6 because the value of ack was
sampled as high at clock tick 5 and sampled as low at clock tick 6.

16.6.3 AND operation

The binary operator and is used when both operand expressions are expected to succeed, but the end times of
the operand expressions may be different.

value_change_functions::=

$rose (expression)

| $fell (expression)

| $stable (expression)

1 2 3 4 5 6 7 8 9 10 11 12 13 14clock ticks

req

ack

e1

simulation

e2

ticks
Copyright 2003 Accellera. All rights reserved. 141

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
Syntax 16-7—and operator syntax

The two operands of and are sequence expressions. The requirement for the success of the and operation is
that both the operand expressions must succeed. When one of the operand expressions succeeds, it waits for
the other to succeed. The end time of the composite expression is the end time of the operand expression that
completes last.

When te1 and te2 are sequences, then the expression:

te1 and te2

— Succeeds if te1 and te2 succeed.

— The end time is the end time of either te1 or te2, whichever terminates last.

First, let us consider the case when both operands are single sequence evaluations.

An example is illustrated in Figure 16-5. Consider the following expression with operator and where the two
operands are sequences.

(te1 ;[2] te2) and (te3 ;[2] te4 ;[2] te5)

Figure 16-5—ANDing (and) Two Sequences

Here, the two operand sequences are (te1 ;[2] te2) and (te3 ;[2] te4 ;[2] te5). The first
operand sequence requires that first te1 evaluates to true followed by te2 two clock ticks later. The second
sequence requires that first te3 evaluates to true followed by te4 two clock ticks later, followed by te5 two
clock ticks later. Figure 16-5 shows the evaluation attempt at clock tick 8.

sequence_expr ::=

sequence_expr and sequence_expr

1 2 3 4 5 6 7 8 9 10 11 12 13 14clk

te1

te2

te3

te1 ;[2] te2

te3 ;[2] te4 ;[2] te5

te4

te5

(te1 ;[2] te2) and
(te3 ;[2] te4 ;[2] te5)
142 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
This attempt results in a match since both operand sequences match. The end times of matches for the individ-
ual sequences are clock ticks 10 and 12. The end time for the entire expression is the last of the two end times,
so a match is recognized for the expression at clock tick 12.

Now, consider an example where an operand sequence is associated with a range of time specification, such as:
(te1 ;[1:5] te2) and (te3 ;[2] te4 ;[2] te5)

The first operand sequence consists of an expression with a time range from 1 to 5 and implies that when te1
evaluates to true, te2 must follow 1, 2, 3, 4, or 5 clock ticks later. The second operand sequence is the same as
in the previous example. To consider all possibilities of a match, following steps are taken:

1) The first operand sequence starts five sequences of evaluation.

2) The second operand sequence has only one possibility of match, so only one sequence is started.

3) Figure 16-6 shows the attempt to examine at clock tick 8 when both operand sequences start and
succeed. All five sequences for the first operand sequence match, as shown in a time window, at clock
ticks 9, 10, 11, 12 and 13 respectively. The second operand sequence matches at clock tick 12.

4) To compute the result for the composite expression, each successful sequence from the first operand
sequence is matched against the second operand sequence according to the rules of the and operation
to determine the end time for each match.

The result of this computation is five successes, four of them ending at clock ticks 12, and the fifth ends at
clock tick 13. Figure 16-6 shows the two unique successes at clock ticks 12 and 13.

Figure 16-6—ANDing (and) Two Sequences Including a Time Range

If te1 and te2 are sampled booleans (not sequences), the expression succeeds if te1 and te2 are both eval-
uated to be true.

An example is illustrated in Figure 16-7 to show the results for attempt at every clock tick. The expression
matches at clock tick 1, 3 and 8 because both te1 and te2 are simultaneously true. At all other clock ticks,

1 2 3 4 5 6 7 8 9 10 11 12 13 14clk

te1

te2

te3

te1 ;[1:5] te2

te3 ;[2] te4 ;[2] te5

te4

te5

(te1 ;[1:5] te2) and
(te3 ;[2] te4 ;[2] te5)
Copyright 2003 Accellera. All rights reserved. 143

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
the and operation fails because either te1 or te2 is false.

Figure 16-7—ANDing (and) Two Boolean Expressions

16.6.4 Intersection (AND with length restriction)

The binary operator intersect is used when both operand expressions are expected to succeed, and the end
times of the operand expressions must be the same.

Notice the equence is corrected to sequence

Syntax 16-8—intersect operator syntax

The two operands of intersect are sequence expressions. The requirements for the success of the
intersect operation are:

— Both the operand expressions must succeed.

— The length of the two operand sequences must be the same.

The additional requirement on the length of the sequences is the basic difference between and and
intersect.

For each attempted evaluation of sequence_expr, there could be multiple matches. When there are multiple
matches for each operand sequence expression, the results are computed as follows.

— A match from the first operand is paired with a match from the second operand with the same length.

— If no such pair is found, the result of intersect is no match.

— If such pairs are found, then the result consists of matched sequences, one for each pair. The end time of
each match is determined by the length of the pair.

16.6.5 OR operation

The operator or is used when at least one of the two operand sequences is expected to match.

1 2 3 4 5 6 7 8 9 10 11 12 13 14clock

te1

te2

te1 and te2

sequence_expr ::=

sequence_expr intersect sequence_expr

sequence_expr ::=

sequence_expr or sequence_expr
144 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Syntax 16-9—or operator syntax

The two operands of or are sequence expressions.

Let us consider these operand expressions as values, events and sequences separately to illustrate the details of
or operations. For the expression

te1 or te2

when the operand expressions te1 and te2 are events or values, the expression matches whenever at least
one of two operands te1 and te2 is evaluated to true.

Figure 16-8 illustrates or operation using te1 and te2 as simple values. The expression does not match at
clock ticks 7 and 13 because te1 and te2 are both false at those times. At all other times, the expression
matches, as at least one of the two operands is true.

Figure 16-8—ORing (or) Two Sequences

When te1 and te2 are sequences, then the expression:

te1 or te2

matches if at least one of the two operand sequences te1 and te2 match. To evaluate this expression, first,
the successfully matched sequences of each operand are calculated and assigned to a group. Then, the union of
the two groups is computed. The result of the union provides the result of the expression. The end time of a
match is the end time of any sequence that matched.

An example is illustrated in Figure 16-9. Consider an expression with or operator where the two operands are
sequences.

1 2 3 4 5 6 7 8 9 10 11 12 13 14clock

te1

te2

te1 or te2
Copyright 2003 Accellera. All rights reserved. 145

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
(te1 ;[2] te2) or (te3 ;[2] te4 ;[2] te5)

Figure 16-9—ORing (or) Two Sequences

Here, the two operand sequences are: (te1 ;[2] te2) and (te3 ;[2] te4 ;[2] te5). The first
sequence requires that te1 first evaluates to true, followed by te2 two clock ticks later. The second sequence
requires that te3 evaluates to true, followed by te4 two clock ticks later, followed by te5 two clock ticks
later. In Figure 16-9, the evaluation attempt for clock tick 8 is shown. The first sequence matches at clock tick
10 and the second sequence matches at clock tick 12. So, two matches for the expression are recognized.

Consider an example where an operand sequence is associated with time range specification, such as:

(te1 ;[1:5] te2) or (te3 ;[2] te4 ;[2] te5)

The first operand sequence consists of an expression with a time range from 1 to 5 and specifies that when
te1 evaluates to true, te2 must be true 1, 2, 3, 4 or 5 clock ticks later. The sequences from the second oper-
and require that first te3 must be true followed by te4 being true two clock ticks later, followed by te5
being true two clock ticks later. At any clock tick if an operand sequence succeeds, then the composite expres-
sions succeeds. As shown in Figure 16-10, for the attempt at clock tick 8, the first operand sequence matches at
clock ticks 9, 10, 11, 12, and 13, while the second operand matches at clock ticks 12. The match of the com-
posite expression is computed as a union of the matches of the two operand sequences, which results in

1 2 3 4 5 6 7 8 9 10 11 12 13 14clk

te1

te2

te3

te1 ;[2] te2

te3 ;[2] te4 ;[2] te5

te4

te5

(te1 ;[2] te2) or
(te3 ;[2] te4 ;[2] te5)
146 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
matches at clock ticks 9, 10, 11, 12, and 13.

Figure 16-10—ORing (or) Two Sequences Including a Time Range

16.6.6 first_match operation

The first_match operator matches only the first match of possibly multiple matches for an evaluation attempt
of a sequence expression. This allows you to discard all subsequent matches from consideration. In particular,
when the sequence expression is a sub-expression of a larger expression, then applying the first_match opera-
tor has significant effect on the evaluation of the embedding expression.

Syntax 16-10—first_match operator syntax

The operand expression can be a sequence expression. sequence_expr is evaluated to determine the match
for the (first_match (sequence_expr)) expression. For a given evaluation attempt, the composite
expression matches if sequence_expr results in at least one match of a sequence, and fails to match if none
of the sequences from the expression result in a match. Following the first successful match for the attempt, the
first_match operator stops matching subsequent sequences for sequence_expr. For an attempt, if there
are multiple matches with the same end time as the first detected match, then all those matches are considered
as the result of the expression.

Please note that first_match applies to each attempt for the sequence individually.

Consider an example with a variable delay specification as shown below.

sequence t1 = (te1 ;[2:5]te2);
sequence ts1 = (first_match(te1 ;[2:5]te2));

1 2 3 4 5 6 7 8 9 10 11 12 13 14clk

te1

te2

te3

te1 ;[1:5] te2

te3 ;[2] te4 ;[2] te5

te4

te5

(te1 ;[1:5] te2) or
(te3 ;[2] te4 ;[2] te5)

sequence_expr ::=

first_match (sequence_expr)
Copyright 2003 Accellera. All rights reserved. 147

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
Each attempt of sequence t1 can result in matches for up to four following sequences:

te1 ;[2] te2
te1 ;[3] te2
te1 ;[4] te2
te1 ;[5] te2

However, sequence ts1 can result in a match for only one of the above four sequences. Whichever of the above
four sequences matches first becomes the result of sequence ts1.

16.6.7 Boolean implication (sequences based on boolean condition)

This construct allows a user to monitor sequences based on satisfying some criteria. Most common uses are to
attach a precondition to a sequence, where the evaluation of the sequence is based on the success of a condi-
tion.

Syntax 16-11—if Boolean implication syntax

This clause is used to precondition monitoring of a sequence expression. The condition boolean_expr
must be satisfied in order to monitor sequence_expr. If the condition boolean_expr fails then
sequence_expr is skipped for monitoring and results in a sequence true of length one. boolean_expr is
a logical expression that results in true or false, and sequence_expr is a sequence expression that can result
in one or more matches. If the expression evaluates to true, then the first element of the sequence_expr is eval-
uated on the same clock tick.

If the condition is evaluated to true, then the evaluation of sequence_expr is conducted. The sequence
matches of sequence_expr become the matches of implication.

Consider a bus operation for data transfer from a master to a target device. When the bus enters a data transfer
phase, multiple data phases can occur to transfer a block of data. During the data transfer phase, a data phase
completes on any rising clock edge on which irdy is asserted and either trdy or stop is asserted. Note that
an asserted signal here implies a value of low. The end of a data phase can be expressed as:

sequence @(posedge mclk) data_end =
((data_phase) => ((irdy==0)&&($fell(trdy)||$fell(stop))));

Each time a data phase completes, a match for data_end is recognized. The attempt at clock tick 6 is illus-
trated in Figure 16-11. The values shown for the signals are the sampled values with respect to the clock. At
clock tick 6 data_end is matched because stop gets asserted while irdy is asserted.

sequence_expr::=

boolean_expr => sequence_expr
148 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Figure 16-11—Conditional Sequence Matching

data_end can be used to ensure that frame is de-asserted within 2 clock ticks after data_end occurs.
Further, it is also required that irdy gets de-asserted one clock tick after frame gets de-asserted.

A sequence expression is written to express this condition as shown below.

‘define data_end (data_phase &&((irdy==0)&&($fell(trdy)||$fell(stop))))
sequence @(posedge mclk)

data_end_rule1 =((‘data_end1) => ([1:2] $rose(frame) ; $rose(irdy)));

sequence data_end_rule1 first evaluates data_end at every clock tick to test if its value is true. If
the value is false, then that particular attempt to evaluate data_end_rule1 is considered a match with a
sequence true of length one.. Otherwise, the following sequence expression is evaluated. The sequence expres-
sion:

[1:2] $rose(frame) ; $rose(irdy)

Specifies looking for the rising edge of frame within two clock ticks in the future. After frame toggles
high, irdy must also toggle high after one clock tick. This is illustrated in Figure 16-12. Sequence
data_end is acknowledged at clock tick 6. Next, frame toggles high at clock tick 7. Since this falls within
the timing constraint imposed by [1:2], it satisfies the sequence and continues to monitor further. At clock
tick 8, irdy is evaluated. Signal irdy transitions to high at clock tick 8, satisfying the sequence specification
completely for the attempt that began at clock tick 6.

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

data_phase

data_end

irdy

trdy (high)

stop
Copyright 2003 Accellera. All rights reserved. 149

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
Figure 16-12—Conditional Sequences

Generally, assertions are associated with preconditions so that the checking is performed only under certain
specified conditions. As seen from the previous example, the => operator provides this capability to specify
preconditions with sequences that must be satisfied before continuing to match those sequences. Let us modify
the above example to see the effect on the results of the assertion by removing the precondition for the
sequence. This is shown below and illustrated in Figure 16-13.

sequence @(posedge mclk) data_end_rule2 = (([1:2] $rose frame) ; $rose irdy);

Figure 16-13—Results without the Condition

The sequence is evaluated at every clock tick. For the evaluation at clock tick 1, the rising edge of signal

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

data_phase

data_end

irdy

trdy (high)

stop

frame

data_end_rule1

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

data_phase

data_end

irdy

trdy (high)

stop

frame

data_end_rule2
;[1:2]
150 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
frame does not occur at clock tick 1 or 2, so the evaluation fails and the result for the sequence is a failed
match at clock tick 1. Similarly, there is a failure at clock ticks 2, 3, and 4. For attempts starting at clock ticks 5
and 6, the rising edge of signal frame at clock tick 7 allows checking further. At clock tick 8, the sequences
complete according to the specification, resulting in a match for attempts starting at 5 and 6. All later attempts
to match the sequence fail because rose frame does not occur again. That also means that there is no match
at 5, 6 and 7.

As one can see from Figure 16-13, removing the precondition of checking event data_end from the asser-
tion causes failures that are not relevant to the verification objective. It becomes important from the validation
standpoint to determine these preconditions and use them in the assertion to filter out inappropriate or extrane-
ous situations.

Multi-way conditions are expressed by disjunction, using the or operator as illustrated by the example below.

sequence s(len) = ((!trans * [1:inf] ;trans) * [len]);
sequence word_trans =

(((lp == BLK1)=> s(BLK1)) or
 ((lp == BLK2)=> s(BLK2)) or
 ((lp == BLK3)=> s(BLK3)) or

(((lp!=BLK1)||(lp!=BLK2)||(lp!=BLK3))=> s(BLK_DEFAULT)));

16.6.8 Sequential implication (sequences based on sequential conditions)

A sequential implication can also be specified using the => clause from the preceding section. The syntax is:

Syntax 16-12—Sequential implication syntax

sequence_expr_cond can be any sequence expression.

This feature is useful for chaining sequential implications.

The following points should be noted for sequential implication.

— sequence_expr_cond can result in multiple successful sequences.

— If no sequence succeeds, implication succeeds vacuously by returning a true sequence of length one.

— For each successful match of sequence_expr_cond, sequence_expr1 is separately evaluated, beginning at
the end point of the match.That is, the end point of matching sequence from sequence_expr_cond coin-
cides with start point of sequence_expr1

— All matches of sequence_expr_cond must also match sequence_expr1.

For example:

(a;b;c) => (d;e)

If the sequence (a;b;c) matches then the sequence (d;e) must also match. On the other hand, if the sequence
(a;b;c) does not match, then the result is true.

Consider now:

(a;[1:3] b;c) => (d;e)

sequence_expr::=

sequence_expr_cond => sequence_expr1
Copyright 2003 Accellera. All rights reserved. 151

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
In the above example, all matches of (a;[1:3] b; c) must match (d;e). If there are no matches of (a;[1:3] b; c),
then there is a vacuous match for the entire expression, resulting in true.

The following example illustrates chaining of sequential implications.

sequence next_event(e) = (!e * [1:inf] ; e);
property p16 =
 ((write_en & data_valid)=>
 ((next_event(write_en&&(retire_address[0:4]==addr)))=>
 ([3:8] write_en && !data_valid &&(write_address[0:4]==addr))));

16.6.9 Conditions over sequences

Sequences of events often occur under the assumptions of some conditions for correct behavior. A logical con-
dition must hold true, for instance, while processing a transaction. Also frequently, occurrence of certain
events is prohibited while processing a transaction. Such situations can be expressed directly using the follow-
ing construct:

Notice the equence is corrected to sequence

Syntax 16-13—throughout construct syntax

boolean_expr is an expression which must evaluate true at every clock tick while monitoring
sequence_expr. If a sequence for sequence_expr starts at time t1 and ends at time t2, then
expression must hold true from time t1 to t2. If either the sequence expression does not match or the bool-
ean expression becomes false while the sequence is being evaluated, the composite sequence does not match
and a property stated over this composite sequence would declare a failure.

The throughout construct is an abbreviation for writing:

(boolean_expr) *[0:inf] intersect sequence_expr

Consider the example illustrated in Figure 16-14. If an additional constraint were placed on the expression as
shown below, then the checker burst_rule would fail at clock tick 9.

sequence @(posedge mclk) burst1 =
 ((fell burst_mode)=>

 (!burst_mode) throughout ([2] ((trdy==0)&&(irdy==0)) * [7]));
property burst_rule1 = (burst1) ;

sequence_expr::=

throughout boolean_expr within sequence_expr
152 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Figure 16-14—Match with throughout-within Restriction Fails

In the above expression, the value of signal burst_mode is required to be low during the sequence (from
clock tick 2 to 11), and is checked at every clock tick during that period. At clock ticks from 2 to 8, signal
burst_mode remains low and matches the expression at those clock ticks. At clock tick 9, signal
burst_mode becomes high, thereby failing to match the expression for burst_rule1.

If signal burst_mode were to be maintained low until clock tick 11, the expression would result in a match
as shown in Figure 16-15.

Figure 16-15—Match with throughout-within Restriction Succeeds

16.6.10 Sequence occurrence within another sequence

The containment of a sequence expression within another sequence is expressed as follows:

Syntax 16-14—Sequence within another sequence syntax

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

burst_mode

burst_rule1

irdy

trdy

(trdy==0) &&
1 2 3 4 5 6 7 8(irdy==0)

1 2 3 4 5 6 7 8 9 10 11 12 13 14mclk

burst_mode

burst_rule1

irdy

trdy

(trdy==0) &&
1 2 3 4 5 6 7(irdy==0)

sequence_expr ::=

sequence_expr1 within sequence_expr2
Copyright 2003 Accellera. All rights reserved. 153

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
The within construct is an abbreviation for writing:

(true ;[0:inf](sequence_expr1);[0:inf] true) intersect sequence_expr2

The sequence sequence_expr1 must occur entirely within the sequence sequence_expr2.

That is sequence_expr1 must satisfy the following:

— The start point of sequence_expr1 must be between the start point and the end point (start and end
point being inclusive) of sequence_expr2.

— The end point of sequence_expr1 must be between the start point and the end point (start and end
point being inclusive) of sequence_expr2.

16.6.11 Detecting and using endpoint of a sequence

There are two ways in which a complex sequence can be decomposed into simpler sub-expressions.

To use sequence as a sub-expression, or a part of the expression is by simply referencing its name. The eval-
uation of a sequence expression that references a sequence expression is performed the same way as if the
sequence expression was a lexical part of the expression. In other words, the sequence expression is
“invoked” from the expression where it is referenced. An example is shown below:

sequence @(rose sysclk) s = (a;b;c),
 rule = ((trans)=> (start_trans;s;end_trans));

This is equivalent to:

sequence @(rose sysclk) s = (a;b;c),
 rule = ((trans)=> (start_trans;a;b;c;end_trans)) ;

Any form of syntactic cyclic dependency of the sequence names is disallowed. The example below illustrates
dependency of s1 on s2, and s2 on s1, which creates a cyclic dependecncy.

sequence @(rose sysclk) s1 = (x;s2),
 s2 = (y;s1);

Another way to use the sequence expression is to detect its end point in another sequence. The end point of a
sequence is reached whenever there is a match on its expression. The occurrence of the end point can be tested
in any sequence expression by using the operator ended.

Syntax 16-15—ended operator syntax

ended is a boolean operator. The result of its operation is true or false. When ended is applied in an expres-
sion, it tests whether sequence seq_name has reached the end point at that particular point in time. The result of
ended does not depend upon the starting point of seq_name.

An example is shown below:

sequence @(posedge sysclk) e1 = ($rose ready;proc1;proc2),
 rule = ((reset)=> (inst;ended e1;branch_back));

In this example sequence expression e1 must end successfully one clock tick after inst. If the keyword ended

boolean_expr_op ::=

ended seq_name
154 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
wasn’t there, sequence expression e1 must start one clock tick after inst. Notice that the ended operator only
tests for the end point of e1, and has no bearing on the starting point of e1.

16.7 Declaring boolean expressions

Because sequences are composed of boolean expressions, it is useful to allow boolean expressions to be
declared as objects of type bool.

Syntax 16-16—bool type declaration syntax

The boolean object can then be declared as:

bool b1(a,b) = a && b && c;

and used in a sequence as:

(b1(foo,bar);c;d)
(b1(.a(f1),.b(b1));c;d)

Note that, in the boolean expression b1, the formal arguments ‘a’ and ‘b’ are replaced by the corresponding
actual arguments when the bool is instantiated. Any variables referenced within the bool that are not formal
arguments get resolved via standard rules from the scope in which the bool is instantiated.

A bool expression can be referenced in properties by its name. A hierarchical name can be be used consistent
with the System Verilog naming conventions.

boolean_expression is an extension of the System Verilog expression and defined as below.

Syntax 16-17—boolean_expression syntax

This should also be BNF below

boolean_expr::= System Verilog expression where an operand can be System Verilog operand or
boolean_expr_op

The bool feature differs from other features of System Verilog, such as the macro or function feature. It pro-

bool_declaration ::=

bool [range_or_type] named_bool { , named_bool } ;

named_bool ::=

identifier [(identifier { , identifier })] = boolean_expression

boolean_expr_op ::=

expression

| bool_instance

| ‘true’

| ‘ended’ seq_name

| value_change_functions

| ‘$past’ ‘(‘ expression [‘,’ number_of_ticks] ‘)’

| ‘$countones’ ‘(‘ expression ‘)’
Copyright 2003 Accellera. All rights reserved. 155

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
vides the following capabilites:

— It is a named object.

— It can be instantiated with positional or named parameters.

— It may be defined over multiple physical lines (without requiring line continuation character).

— Boolean expression allows all sequence related boolean operations such as ended, $past and $rose.

16.8 Manipulating data in a sequence

The use of System Verilog variables implies that only one copy exists. Therefore, if data values need to be
checked in pipelined designs, then for each data entering the pipeline we may need a separate variable to store
the predicted output of the pipeline for later comparison when the result actually exits the pipe. We can build
such a storage by using an array of variables arranged in a shift register to mimic the data propagating through
a pipeline. However, in more complex situations where the latency of the pipe is variable and out of order, this
construction could become very complex and error prone. In other words, we need variables that are local to
and are used within a particular transaction check which can span an arbitrary interval of time and may overlap
with other transaction checks. Such a variable must thus be dynamically created when needed within an
instance of a sequence and removed when the end of the sequence is reached.

The dynamic variable creation and destruction can be achieved using the variable declaration at the head of a
sequence:

Syntax 16-18—variable declaration syntax

The type of name is explicitly specified. The value of the expression is sampled at the time of the beginning of
sequence_expr and stored in the dynamically created variable identifier. Inside sequence_expr,
the value of the variable remains unchanged for the entire duration of the sequence. Variable identifier
can be used in sequence_expr as any other variable. For every attempt, a new instance of variable
identifier is created for the sequence_expr.

For example, assume a pipeline that has a fixed latency of 5 clock cycles. The data enters the pipe on
pipe_in when valid_in is true and the value computed by the pipeline appears 5 clock cycles later on the
signal pipe_out1. The data as transformed by the pipe is predicted by a function that increments the data.
The following sequence expression verifies this behavior.

sequence e = ((valid_in) =>
 ((int x = pipe_in) ([5] (pipe_out1 == (x+1))));

Suppose now that the output of this pipe is chained to another pipe of latency 3 that computes the value as pre-
dicted by data and pipe_val. The transfer to the second pipe happens only if the result of the first pipe satis-
fies some Boolean variable pipe_cont. We can modify and extend the above example as follows:

sequence e_two_pipes =
 ((valid_in) => ((int x = pipe_in)
 ([5] (pipe_out1 == (x+1));

 (pipe_out1==pipe_cont)) =>
 ((int y == x+1)

 ([3](pipe_out2==(y+pipe_val)))))));

sequence_expr ::=

(({variable_declaration {, variable_declaration}}) sequence_expr)

variable_declaration ::=

type identifier = expression
156 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
The nested variable declaration uses the variable name y which is assigned a value from the enclosing
declared variable x.

Note that, for practical debugging and verification performance reasons, it may be preferable to verify each of
the two pipelines by a separate sequence rather than in one single sequence as in the above example.

If the pipeline supported out-of-order execution in which the outputs can exit with variable latency and in a
different order than the data entered, it is a simple matter to add an id to each input data and then check that
data is correct when the id appears on the output. The first example modified to include the id on input and
output is as follows:

sequence e_with_id = ((valid_in) =>((int x = pipe_in, int id = id_in)
 ([1:inf] ((id_out == id && valid_out)=>

 (pipe_out1 == x+1)))));

In this example, notice the use of two dynamic variables, x and id, assigned in the same declaration by sepa-
rating them by a comma.

16.9 System functions

In addition to accessing values of signals at the time of evaluation of a boolean expression, the past values can
be accessed with the $past function.

Syntax 16-19—$past function syntax

The argument number_of_ticks specifies the number of clock ticks in the past. If number_of_ticks is not spec-
ified, then it defaults to 1. $past returns the sampled value of the expression that was present
number_of_ticks prior to the time of evaluation of $past.

If the specified clock tick in the past is before the start of simulation, the returned value from the $past func-
tion is ‘x’.

Another useful function provided for the boolean expression is $countones, to count the number of 1s in a bit
vector expression.

Syntax 16-20—$countones function syntax

The ‘x’ and ‘z’ value of a bit is not counted towards the number of ones.

16.10 The property definition

A property defines a behavior of the design. A property can be used for verification as an assumption, a
checker or a coverage specification. In order to use the behavior for verification, a verification directive must
be used. A property declaration by itself does not produce any result.

$past (expression [, number_of_ticks])

$countones (expression)
Copyright 2003 Accellera. All rights reserved. 157

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
To declare a property, the property construct is used as shown below.

Syntax 16-21—property construct syntax

A property declaration is parameterized, like a sequence and bool declaration. When a property is instan-
tiated, actual arguments can be passed to the property. The property gets expanded with the actual arguments
by replacing the formal arguments with the actual arguments. The semantic checks are performed to ensure
that the expanded property with the actual arguments is legal.

The result of a clocked_sequence for every evaluation attempt is true or false. This is accomplished by implic-
itly tranforming sequence_expr to first_match(sequence_expr). That is, as soon as a match of sequence_expr
is determined, the result is considered to be true, and no other matches are required for that evaluation attempt.

The accept clause allows you to specify asynchronous resets. For a particular attempt, if the accept boolean
expression becomes true at any time during the evaluation of the attempt, then the attempt for the property is
considered to be a success.

The never clause states that the expression associated with the property must never evaluate to true. Effec-
tively, it negates the property expression. For each attempt, clocked_sequence results in either true of false,
based on whether there is a match for the sequence. The never clause reverses the result of clocked_sequence.
It should be noted that there is no complementation or any form of negation for the sequence itself.

The initial clause states that the property should only be evaluated on the first clock tick. Thereafter, there
should be no evaluation of the property. Without the initial clause the property is evaluated for every clock
tick.

This allows for the following examples:

property rule1 = @(posedge clk) ((a) =>(b;c;d));
property rule2 = (accept = foo) never @(clkev) ((a)=>(b;c;d));

A property can be referred to by directives by referencing its name. A hierarchical name can be be used consis-
tent with the System Verilog naming conventions.

A property by default is not evaluated for checking the expression. A verification directive states the verifica-
tion function to be performed on the property. The directive can be one of the following:

— assert to specify the property as a checker to ensure that the property holds for the design

— cover to monitor the property evaluation for coverage

prop_declaration ::=

property named_prop { , named_prop } ;

named_prop ::=

identifier [(identifier { , identifier })] = prop_expr

prop_expr ::=

[initial] [accept (expression)] [never] clocked_sequence

| identifier [(expression_list)] // identifier must be a property

clocked_sequence ::=

 [event_control] sequence_expr
158 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Syntax 16-22—Verification directive syntax

The assert directive is used to enforce a property as a checker. When the property for the assert directive is
evaluated to be true, the pass statements of the action block are executed. Otherwise, the fail statements of the
action block are executed. For example,

property abc(a,b,c) = accept(a==2) never @clk (b;c);
env_prop: assert abc(rst,in1,in2) pass_stat else fail_stat;

When no action is needed, a null statement (i.e. ;) is specified. The default for else_stat is $error. If else_stat is
specified, it overrides the default action.

To monitor sequences and other behavioral aspects of the design for coverage, the same syntax is used with the
cover directive. The tools can gather information about the evaluation and report the results at the end of sim-
ulation. When the property for the cover directive is successful, the pass statements may specify a coverage
function, such as monitoring all paths for a sequences.

A directive can directly specify an expression, without first declaring it as a property. For example,

input_prop: assert accept(in1=2) never @clk (f;g);
cover_item: cover @clk2 (m;n) pass_stat;

In the above example, two properties are specified, one with the assert clause and the other with the cover
clause.

Please note that a property specification can be just a bool or a sequence.

A directive can be referenced by its optional name. A hierarchical name can be be used consistent with the
System Verilog naming conventions. When a name is not provided, a tool shall assign a name to the directive.

16.10.1 Declaring properties outside of procedural code

A property related statement can be used directly within a module as a module_item or within interface as an
interface_item.

A property related statement is one of the following:

— bool definition

— sequence definition

— property definition

— property directive

— template instantiation

— template declaration

— property directive

For example:

property_directive ::=

[identifier :] assert prop_expr action_block

| [identifier :] cover prop_expr statement_or_null
Copyright 2003 Accellera. All rights reserved. 159

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
module top(input bit clk);
reg a,b,c;
property rule3 = @(posedge clk) (if(a) (b;c));
...
endmodule

rule3 is a property declared in module top.

16.10.2 Embedding properties in procedural code

A property can also be embedded in a procedural block. A property related statement allowed in a procedural
block is one of the following:

— bool definition

— sequence definition

— property definition

— property directive

— template instantiation

— property directive

A property related statement can be declared or instantiated directly in a procedural block as in:

always @(posedge clk) begin
property rule = (a;b;c);
<statements>;
<statements>;
end

A procedural property is equivalent to a declarative property in syntax and semantics. Two assumptions are
made from the procedural context: clock from the event control of an always block, and the enabling condi-
tions.

A clock for the property related statement is assumed if it is placed in an always block with the event control of
the form @(posedge expr) or @(negedge expr). In such cases, the event control expression is
assumed to be the clock.

For example:

always @(posedge mclk)begin
 q <= d1;
 property r1 = (q != d);
end

The above property r1 can be written outside the always block with identical semantics as:

always @(posedge mclk)begin
 q <= d1;
end
property r1 = @(posedge mclk)(q != d);

If the clock is explicitly specified with a property, then it overrides the assumed clock, as shown below:

always @(posedge mclk)begin
 q <= d1;
 property r2 = @(posedge sclk)(q != d);
160 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
end

In the above example, (posedge sclk) is the clock for property r2.

Another possible assumption made from the context is the enabling condition for a property. Such derivation
takes place when a property is placed in an if-else block or a case block.The enabling condition assumed from
the context is used as the antecedent of the property.

always @(posedge mclk)begin
 if (a) begin
 q <= d1;
 property r2 = @(posedge sclk)(q != d);
 end
end

The above example is equivalent to:

always @(posedge mclk)begin
 if (a) begin
 q <= d1;
 end
end
property r2 = @(posedge sclk)(a => (q != d));

Similarly, enabling condition is also derived from case statements.

always @(posedge mclk)begin
 case (a)begin
 1:begin q <= d1;
 property r2 = @(posedge sclk)(q != d);
 end
 default: q1 <= d1;
 endcase
end

The above example is equivalent to:

always @(posedge mclk)begin
 case (a)begin
 1:begin q <= d1;
 end
 default: q1 <= d1;
 endcase
 property r2 = @(posedge sclk)(a==1) => (q != d);
end
Copyright 2003 Accellera. All rights reserved. 161

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
16.11 Grouping assertions as a library

The syntax for library groupings is as follows:

Syntax 16-23—Library groupings syntax

This sub-section describes how to group statements to construct a library of properties and expressions. Such a
group is called template which is given a name and can be instantiated with parameters. When instantiated
with parameters, the parameters provide the binding to the actual design objects or other definitions specified
elsewhere in the description.

A formal parameter is used to replace a name in the template body. The formal parameter can have an optional
specification of type. data_type refers to the System Verilog data types.

The default values for a formal parameter can be specified by using an equal sign with the left-hand side of the
equal sign as the formal parameter name and right-hand side as the default value. For example,

template hold(exp, min = 0, max = 15, clk);
 sequence @(posedge clk) ova_e_hold = (past(exp)==exp)*[min:max]);
endtemplate

The body of the template may contain:

— property, sequence and bool declarations

— directives

— clock domain declarations

Note: A clock domain declarion using clocking_decl has been described in elsewhere in System Verilog LRM.

Need a cross reference above

A template is instantiated with the following syntax:

template_declaration ::=

template template_identifier [(template_formal_list)] ;
{ template_item_declaration }

endtemplate [: template_identifier]

template_formal_list ::=

task_formal_arg { , task_formal_arg }

task_formal_arg ::=

[data_type] formal_identifier [= boolean_expr | sequence_expr | event_expr | string]

template_item_declaration ::=

property_decl

| property_directive

| seq_decl

| bool_decl

| clocking_decl

template_instantiation ::=

template_identifier [instance_name] [(list_of_port_connections)];
162 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Syntax 16-24—template instantiation syntax

The actual parameters can be given as an ordered list, as a named list. In an ordered list, the parameters are
listed in the same order as in the template definition.

For example, the hold template defined above can be instantiated with:

hold ordered(counter, 2, 5, rose clk);

Or it can be instantiated with:

hold named(.exp(counter), .min(2), .max(5), .clk(rose clk));

The template instance name is optional. When the name is not specified, the name is the global sequence num-
ber of the instance in the form seq_number. For example, the first template instance compiled would be
assigned the name ti1.

As template instances are expanded, the names of declarations in the template body are constructed by append-
ing the definition name with the template instance name and a dot character. Such an expansion of a name
uniquely identifies its definition. The following example illustrates the name expansion of definitions.

template range();
bool c1 = (enable);

 sequence @(posedge clk2) crange_en = (((c1) => (minval <= expr));
 range_chk: assert (crange_en);
endtemplate
range t1();
range t2();
property term_check = ((t1.c1) => (p_low ; p_end));

The definitions c1, crange_en, and range_chk are expanded as shown below.

bool t1.c1 = (enable);
sequence @(rose clk2) t1.crange_en = ((t1.c1) => (minval <= expr));
t1_range_chk: assert (t1.crange_en);
bool t2.c1 = (enable);
@ (rose clk2) sequence t2.crange_en = ((t2.c1) => (minval <= expr));
t2.range_chk: assert (t2.crange_en);
property term_chk = ((t1.c1) => (p_low ; p_end;))

Using this naming scheme, an expression defined within a template can be referenced outside the template via
a standard hierarchical reference.

The actual parameters may not resolve all signals specified within the template. When the template is instanti-
ated, the parameters and the unresolved signals get bound to the design objects in the instantiating scope.

If a formal parameter is specified with a default value in the template definition, then the corresponding actual
parameter may be optionally omitted. In the example below, the formal parameter max is not supplied when
the template is instantiated. The default value of 15 for max declared in the template is used.

template hold(exp, min = 0, max = 15, clk);
 sequence @(rose clk) e_hold = (($past(exp) == exp) * [min:max]);
endtemplate
hold hold_instance(s, 5, , rose clk);

If the default parameter value is not declared in the template definition, omission of the corresponding actual
parameter value in the template instantiation will result in an error.
Copyright 2003 Accellera. All rights reserved. 163

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
16.12 Binding properties to scopes or instances

To facilitate verification separate from the design, it is possible to specify properties and bind them to specific
modules or instances Following are the goals of providing this feature.

— It allows verification engineers to verify with minimum changes to the design code/files.

— It allows a convenient mechanism to attach verification IP to a module or an instance.

— No semantic changes to the assertions are introduced due to this feature. It is equivalent to writing proper-
ties with XMRs.

— It disallows design code to be attached along with the property.

With this feature, a user can bind a program, where the program contains a group of properties, to a module or
an instance.

The syntax of the bind construct is:

Syntax 16-25—bind construct syntax

A program contains non-design code (either testbench or properties) and executes in the verification phase
(The details of the program construct are being discussed in sv-ec committee)

Example of binding to a module:

bind cpu fpu_props fpu_rules_1(a,b,c);

— cpu is the name of module.

— fpu_props is the name of the program containing properties fpu_rules_1 is the program instance name.

— Ports (a, b,c) get bound to signals (a,b,c) of module cpu .

— Every instance of cpu gets the properties.

Example of binding to a specific instance of a module:
bind cpu1 fpu_props fpu_rules_1(a,b,c);

— cpu1 is the name of module instance (cpu1 is an instance of module of module cpu)

— fpu_props is the name of the program containing properties.

— fpu_rules_1 is the program instance name.

— Ports (a, b,c) get bound to signals (a,b,c) of module instance cpu1.

— Only cpu1 instance of cpu gets the properties.

By binding a program to a module or an instance, the program becomes part of the bound object. The names of

bind_directive ::=

bind module_instance_name program instantiation ;

module_instance_name ::=

name of a module or instance

program instantiation ::=

program_name program_instance_name (port_arguments)
164 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
assertion related declarations can be referenced using the System Verilog hierarchical naming conventions.
Copyright 2003 Accellera. All rights reserved. 165

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
Section 17
Hierarchy

17.1 Introduction (informative)

Verilog has a simple organization. All data, functions and tasks are in modules except for system tasks and
functions, which are global, and may be defined in the PLI. A Verilog module can contain instances of other
modules. Any uninstantiated module is at the top level. This does not apply to libraries, which therefore have a
different status and a different procedure for analyzing them. A hierarchical name can be used to specify any
named object from anywhere in the instance hierarchy. The module hierarchy is often arbitrary and a lot of
effort is spent in maintaining port lists.

In Verilog, only net, reg, integer and time data types can be passed through module ports.

SystemVerilog adds many enhancements for representing design hierarchy:

— A global declaration space, visible to all modules at all levels of hierarchy

— Nested module declarations, to aid in representing self-contained models and libraries

— Relaxed rules on port declarations

— Simplified named port connections, using .name

— Implicit port connections, using .*

— Time unit and time precision specifications bound to modules

— A concept of interfaces to bundle connections between modules (presented in section 18)

An important enhancement in SystemVerilog is the ability to pass any data type through module ports, includ-
ing nets, and all variable types including reals, arrays, and structures.

17.2 The $root top level

In SystemVerilog there is a top level called $root, which is the whole source text. This allows declarations out-
side any named modules or interfaces, unlike Verilog.

SystemVerilog requires an elaboration phase. All modules and interfaces must be parsed before elaboration.
The order of elaboration shall be: First, look for explicit instantiations in $root. If none, then look for implicit
instantiations (i.e. uninstantiated modules). Next, traverse non-generate instantiations depth-first, in source
order. Finally, execute generate blocks depth-first, in source order.

The source text can include the declaration and use of modules and interfaces. Modules can include the decla-
ration and use of other modules and interfaces. Interfaces can include the declaration and use of other inter-
faces. A module or interface need not be declared before it is used in text order.

A module can be explicitly instantiated in the $root top-level. All uninstantiated modules become implicitly
instantiated within the top level, which is compatible with Verilog.

The following paragraphs compare the $root top level and modules.

The $root top level:

— has a single occurrence

— can be distributed across any number of files

— variable and net definitions are in a global name space and can be accessed throughout the hierarchy

— task and function definitions are in a global name space and can be accessed throughout the hierarchy
166 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

BC42-20
— shall not contain initial or always procedures

— shall can contain procedural statements, which will be executed one time, as if in an initial procedure

Modules:

— can have any number of module definitions

— can have any number of module instances, which create new levels of hierarchy

— can be distributed across any number of files, and can be defined in any order

— variable and net definitions are in the module instance name space and are local to that scope

— task and function definitions are in the module instance name space and are local to that scope

— can contain any number of initial and always procedures

— shall not contain procedural statements that are not within an initial procedure, always procedure,
task, or function

When an identifier is referenced within a scope, SystemVerilog follows the Verilog name search rules, and
then searches in the $root global name space. An identifier in the global name space can be explicitly selected
by pre-pending $root. to the identifier name. For example, a global variable named system_reset can be
explicitly referenced from any level of hierarchy using $root.system_reset.

The $root space can be used to model abstract functionality without modules. The following example illus-
trates using the $root space with just declarations, statements and functions.

typedef int myint;

function void main ();
myint i,j,k;
$display ("entering main...");
left (k);
right (i,j,k);
$display ("ending... i=%0d, j=%0d, k=%0d", i, j, k);

endfunction

function void left (output myint k);
k = 34;
$display ("entering left");

endfunction

function void right (output myint i, j, input myint k);
$display ("entering right");
i = k/2;
j = k+i;

endfunction

main();
Copyright 2003 Accellera. All rights reserved. 167

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
17.3 Module declarations

Syntax 17-1—Module declaration syntax (excerpt from Annex A)

module_declaration ::= // from Annex A.1.3
{ attribute_instance } module_keyword module_identifier [parameter_port_list]
[list_of_ports] ; [unit] [precision] { module_item }
endmodule

| { attribute_instance } module_keyword module_identifier [parameter_port_list]
[list_of_port_declarations] ; [unit] [precision] { non_port_module_item }
endmodule

module_keyword ::= module | macromodule // from Annex A.1.3

timeunits_declaration ::= // from Annex A.1.3
timeunit time_literal ;

| timeprecision time_literal ;
| timeunit time_literal ;

timeprecision time_literal ;
| timeprecision time_literal ;

timeunit time_literal ;

module_or_generate_item_declaration ::= // from Annex A.1.5
net_declaration

| data_declaration
| event_declaration
| genvar_declaration
| task_declaration
| function_declaration

module_item ::= // from Annex A.1.5
port_declaration ;

| non_port_module_item

non_port_module_item ::= // from Annex A.1.5
{ attribute_instance } generated_module_instantiation

| { attribute_instance } local_parameter_declaration
| { attribute_instance } module_or_generate_item
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration
| module_declaration

module_or_generate_item ::= // from Annex A.1.5
{ attribute_instance } parameter_override

| { attribute_instance } continuous_assign
| { attribute_instance } gate_instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct
| { attribute_instance } always_construct
| { attribute_instance } combinational_statement
| { attribute_instance } latch_statement
| { attribute_instance } ff_statement
| module_common_item

module_common_item ::= // from Annex A.1.5
{ attribute_instance } module_or_generate_item_declaration

| { attribute_instance } interface_instantiation
168 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
In Verilog, a module must be declared apart from other modules, and can only be instantiated within another
module. A module declaration may appear after it is instantiated in the source text.

SystemVerilog adds the capability to nest module declarations, and to instantiate modules in the $root top-level
space, outside of other modules.

module m1(...); ... endmodule

module m2(...); ... endmodule

module m3(...);

m1 i1(...); // instantiates the local m1 declared below
m2 i4(...); // instantiates m2 - no local declaration
module m1(...); ... endmodule // nested module declaration,

// m1 module name is in m3’s name space
endmodule

m1 i2(...); // module instance in the $root space,
// instantiates the module m1 that is not nested in another module

17.4 Nested modules

A module can be declared within another module. The outer name space is visible to the inner module, so that
any name declared there can be used, unless hidden by a local name, provided the module is declared and
instantiated in the same scope.

One purpose of nesting modules is to show the logical partitioning of a module without using ports. Names
that are global are in the outermost scope, and names that are only used locally can be limited to local modules.

// This example shows a D-type flip-flop made of NAND gates
module dff_flat(input d, ck, pr, clr, output q, nq);
wire q1, nq1, q2, nq2;

 nand g1b (nq1, d, clr, q1);
 nand g1a (q1, ck, nq2, nq1);

 nand g2b (nq2, ck, clr, q2);
 nand g2a (q2, nq1, pr, nq2);

 nand g3a (q, nq2, clr, nq);
 nand g3b (nq, q1, pr, q);
endmodule

// This example shows how the flip-flop can be structured into 3 RS latches.
module dff_nested(input d, ck, pr, clr, output q, nq);
wire q1, nq1, nq2;

 module ff1;
 nand g1b (nq1, d, clr, q1);
 nand g1a (q1, ck, nq2, nq1);
 endmodule
 ff1 i1;

 module ff2;
Copyright 2003 Accellera. All rights reserved. 169

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
 wire q2; // This wire can be encapsulated in ff2
 nand g2b (nq2, ck, clr, q2);
 nand g2a (q2, nq1, pr, nq2);
 endmodule
 ff2 i2;

 module ff3;
 nand g3a (q, nq2, clr, nq);
 nand g3b (nq, q1, pr, q);
 endmodule
 ff3 i3;
endmodule

The nested module declarations can also be used to create a library of modules that is local to part of a design.

module part1(....);
module and2(input a; input b; output z);
....
endmodule
module or2(input a; input b; output z);
....
endmodule
....
and2 u1(....), u2(....), u3(....);
.....

endmodule

This allows the same module name, e.g. and2, to occur in different parts of the design and represent different
modules. Note that an alternative way of handling this problem is to use configurations.

17.5 Port declarations

Syntax 17-2—Port declaration syntax (excerpt from Annex A)

inout_declaration ::= inout [port_type] list_of_port_identifiers // from Annex A.2.1.2

input_declaration ::= input [port_type] list_of_port_identifiers // from Annex A.2.1.2

output_declaration ::= // from Annex A.2.1.2
output [port_type] list_of_port_identifiers

| output data_type list_of_variable_port_identifiers

interface_port_declaration ::= // from Annex A.2.1.2
interface list_of_interface_identifiers

| interface . modport_identifier list_of_interface_identifiers
| identifier list_of_interface_identifiers
| identifier . modport_identifier list_of_interface_identifiers

port_type ::= // from Annex A.2.2.1
data_type { packed_dimension }

| net_type [signing] { packed_dimension }
| trireg [signing] { packed_dimension }
| event
| [signing] { packed_dimension } range

signing ::= [signed] | [unsigned] // from Annex A.2.2.1
170 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
With SystemVerilog, a port can be a declaration of a net, an interface, an event, or a variable of any type,
including an array, a structure or a union.

typedef struct {
bit isfloat;
union { int i; shortreal f; } n;

} tagged; // named structure

module mh1 (input int in1, input shortreal in2, output tagged out);
...

endmodule

For the first port, if neither a type nor a direction is specified, then it shall be assumed to be a member of a port
list, and any port direction or type declarations must be declared after the port list. This is compatible with the
Verilog-1995 syntax. If the first port type but no direction is specified, then the port direction shall default to
inout. If the first port direction but no type is specified, then the port type shall default to wire. This default
type can be changed using the ‘default_nettype compiler directive, as in Verilog.

// Any declarations must follow the port list, because first port does not
// have either a direction or type specified; Port directions default to inout
module mh4(x, y);

int x;
char y;
...

endmodule

For subsequent ports in the port list, if the type and direction are omitted, then both are inherited from the pre-
vious port. If only the direction is omitted, then it is inherited from the previous port. If only the type is omit-
ted, it shall default to wire. This default type can be changed using the ‘default_nettype compiler
directive, as in Verilog.

// second port inherits its direction and type from previous port
module mh3 (input char a, b);

...
endmodule

A software tool can use the port direction to check against writing to an input port or not writing to an output
port.

Ports which are of a net type can have multiple drivers, which are resolved according to the net’s resolution
function. A driver can be an output port of an instantiation, or a continuous assignment.

If the port is of type logic or any other variable data type, then the port has the value of the last assignment to
it. If the port is an inout, then these assignments can be inside or outside the module. If the port is an output,
then these assignments shall only be inside the module. This provides a way to model a port which is meant to
be a single driver.

17.6 Time unit and precision

The time unit can be set by the timeunit keyword to a time which must be a power of 10 units. For example:

timeunit 100ps;

The time unit is determined as follows:

1) If a timeunit has been specified in the current module, then the time unit is set to module’s time units.

2) Else, if the module definition is nested, then the time unit is inherited from the enclosing module.
Copyright 2003 Accellera. All rights reserved. 171

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
3) Else, if a ‘timescale directive has been specified, then the time unit is set to the units of last ‘timescale
directive.

4) Else, if the $root top level has a time unit, then the time unit set to the time units of the root module.

5) Else, the simulator’s default time units are used.

The simulator’s default time units follow the rules of Verilog.

The time precision is set by the timeprecision keyword to a time which must be a power of 10 units e.g.

timeprecision 100fs;

If the timeprecision is not specified, then the precision is determined following the same precedence as
with time units.

It is an error to set a precision larger than the current unit.

The timeunit and timeprecision keywords shall precede any other item in the top level, module, or inter-
face, because the other items can contain delays and therefore can be dependent on the time unit.

17.7 Module instances

Syntax 17-3—Module instance syntax (excerpt from Annex A)

A module can be used (instantiated) in two ways, hierarchical or top level. Hierarchical instantiation allows
more than one instance of the same type. The module name can be a module previously declared or one

module_instantiation ::= // from Annex A.4.1.1
module_identifier [parameter_value_assignment] module_instance { , module_instance } ;

parameter_value_assignment ::= # (list_of_parameter_assignments)

list_of_parameter_assignments ::=
ordered_parameter_assignment { , ordered_parameter_assignment }

| named_parameter_assignment { , named_parameter_assignment }

ordered_parameter_assignment ::= expression | data_type

named_parameter_assignment ::=
. parameter_identifier ([expression])

| . parameter_identifier ([data_type])

module_instance ::= name_of_instance ([list_of_port_connections])

name_of_instance ::= module_instance_identifier { range }

list_of_port_connections ::=
ordered_port_connection { , ordered_port_connection }

| dot_named_port_connection { , dot_named_port_connection }
| { named_port_connection , } dot_star_port_connection { , named_port_connection }

ordered_port_connection ::= { attribute_instance } [expression]

named_port_connection ::= { attribute_instance } .port_identifier ([expression])

dot_named_port_connection ::=
{ attribute_instance } .port_identifier

| named_port_connection

dot_star_port_connection ::= { attribute_instance } .*
172 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
declared later. Actual parameters can be named or ordered. Port connections can be named, ordered or implic-
itly connected. They can be nets, variables, or other kinds of interfaces, events, or expressions. See below for
the connection rules.

Consider an ALU accumulator (alu_accum) example module that includes instantiations of an ALU mod-
ule, an accumulator register (accum) module and a sign-extension (xtend) module. The module headers for
the three instantiated modules are shown in the following example code.

module alu (
output reg [7:0] alu_out,
output reg zero,
input [7:0] ain, bin,
input [2:0] opcode);
// RTL code for the alu module

endmodule

module accum (
output reg [7:0] dataout,
input [7:0] datain,
input clk, rst_n);
// RTL code for the accumulator module

endmodule

module xtend (
output reg [7:0] dout,
input din,
input clk, rst_n);
// RTL code for the sign-extension module

endmodule

17.7.1 Instantiation using positional port connections

Verilog has always permitted instantiation of modules using positional port connections, as shown in the
alu_accum1 module example, below.

module alu_accum1 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst_n);
wire [7:0] alu_out;

alu alu (alu_out, , ain, bin, opcode);
accum accum (dataout[7:0], alu_out, clk, rst_n);
xtend xtend (dataout[15:8], alu_out[7], clk, rst_n);

endmodule

As long as the connecting variables are ordered correctly and are the same size as the instance-ports that they
are connected to, there will be no warnings and the simulation will work as expected.

17.7.2 Instantiation using named port connections

Verilog has always permitted instantiation of modules using named port connections as shown in the
alu_accum2 module example.

module alu_accum2 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
Copyright 2003 Accellera. All rights reserved. 173

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
input clk, rst_n);
wire [7:0] alu_out;

alu alu (.alu_out(alu_out), .zero(),
 .ain(ain), .bin(bin), .opcode(opcode));

accum accum (.dataout(dataout[7:0]), .datain(alu_out),
 .clk(clk), .rst_n(rst_n));

xtend xtend (.dout(dataout[15:8]), .din(alu_out[7]),
 .clk(clk), .rst_n(rst_n));

endmodule

Named port connections do not have to be ordered the same as the ports of the instantiated module. The vari-
ables connected to the instance ports must be the same size or a port-size mismatch warning will be reported.

17.7.3 Instantiation using implicit .name port connections

SystemVerilog adds the capability to implicitly instantiate ports using a .name syntax if the instance-port name
and size match the connecting variable-port name and size. This enhancement eliminates the requirement to
list a port name twice when the port name and signal name are the same, while still listing all of the ports of the
instantiated module for documentation purposes.

In the following alu_accum3 example, all of the ports of the instantiated alu module match the names of the
variables connected to the ports, except for the unconnected zero port, which is listed using a named port con-
nection, showing that the port is unconnected. Implicit .name port connections are made for all name and size
matching connections on the instantiated module.

In the same alu_accum3 example, the accum module has an 8-bit port called dataout that is connected
to a 16-bit bus called dataout. Because the internal and external sizes of dataout do not match, the port
must be connected by name, showing which bits of the 16-bit bus are connected to the 8-bit port. The datain
port on the accum is connected to a bus by a different name (alu_out), so this port is also connected by
name. The clk and rst_n ports are connected using implicit .name port connections. Also in the same
alu_accum3 example, the xtend module has an 8-bit output port called dout and a 1- bit input port called
din. Since neither of these port names match the names (or sizes) of the connecting variables, both are con-
nected by name. The clk and rst_n ports are connected using implicit .name port connections.

module alu_accum3 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst_n);
wire [7:0] alu_out;

alu alu (.alu_out, .zero(), .ain, .bin, .opcode);
accum accum (.dataout(dataout[7:0]), .datain(alu_out), .clk, .rst_n);
xtend xtend (.dout(dataout[15:8]), .din(alu_out[7]), .clk, .rst_n);

endmodule

Implicit .name port connections do not have to be ordered the same as the ports of the instantiated module.

The following rules apply to implicit .name port connections:

— For an implicit .name port connection to be legal, the connecting variable name must match the port name
of the instantiated module.

— For an implicit .name port connection to be legal, the connecting variable size must match the port size of
the instantiated module.

— For an implicit .name port connection to be legal, the connecting variable data type must be compatible to
the port data type of the instantiated module. See section 17.7.5 for a description of compatible data types
for implicit port connections.
174 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
— Implicit .name port connections cannot be used in the same instantiation with positional port connections.

— Implicit .name port connections may be used in the same instantiation with named port connections.

— Implicit .name port connections cannot be used in the same instantiation with implicit .* port connections.

— The order of the implicit .name port connections does not have to match the port-order of the instantiated
module.

— All connecting variables must be explicitly declared, either as a port in the parent module (following the
rules of Verilog-2001) or as an explicit net or variable of one or more bits.

17.7.4 Instantiation using implicit .* port connections

SystemVerilog adds the capability to implicitly instantiate ports using a .* syntax for all ports where the
instance-port name and size match the connecting variable-port name and size. This enhancement eliminates
the requirement to list any port where the name and size of the connecting variable match the name and size of
the instance port. This implicit port connection style is used to indicate that all port names and sizes match the
connections where emphasis is placed only on the exception ports. The implicit .* port connection syntax can
greatly facilitate rapid block-level testbench generation where all of the testbench variables are chosen to
match the instantiated module port names and sizes.

In the following alu_accum4 example, all of the ports of the instantiated alu module match the names of the
variables connected to the ports, except for the unconnected zero port, which is listed using a named port con-
nection, showing that the port is unconnected. The implicit .* port connection syntax connects all other ports
on the instantiated module.

In the same alu_accum4 example, the accum module has an 8-bit port called dataout that is connected
to a 16-bit bus called dataout. Because the internal and external sizes of dataout do not match, the port
must be connected by name, showing which bits of the 16-bit bus are connected to the 8-bit port. The datain
port on the accum is connected to a bus by a different name (alu_out), so this port is also connected by
name. The clk and rst_n ports are connected using implicit .* port connections. Also in the same
alu_accum4 example, the xtend module has an 8-bit output port called dout and a 1- bit input port called
din. Since neither of these port names match the names (or sizes) of the connecting variables, both are con-
nected by name. The clk and rst_n ports are connected using implicit .* port connections.

module alu_accum4 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst_n);
wire [7:0] alu_out;

alu alu (.*, .zero());
accum accum (.*, .dataout(dataout[7:0]), .datain(alu_out));
xtend xtend (.*, .dout(dataout[15:8]), .din(alu_out[7]));

endmodule

The following rules apply to implicit .* port connections:

— For an implicit .* port connection to be legal, all implicitly connected ports must have a connecting vari-
able name to match the port name of the instantiated module.

— For an implicit .* port connection to be legal, all implicitly connected ports must have a connecting vari-
able size to match the port size of the instantiated module.

— For an implicit .* port connection to be legal, the connecting variable data type must be compatible to the
port data type of the instantiated module. See section 17.7.5 for a description of compatible data types for
implicit port connections.

— Implicit .* port connections cannot be used in the same instantiation with positional port connections.
Copyright 2003 Accellera. All rights reserved. 175

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

BC42-25

BC42-26

BC42-27

BC42-28
— Implicit .* port connections may be used in the same instantiation with named port connections.

— Implicit .* port connections cannot be used in the same instantiation with implicit .name port connections.

— If implicit .* port connections are used in an instantiation, all unconnected ports must be shown using
named port connections.

— When the implicit .* port connection is mixed in the same instantiation with named port connections, the
implicit .* port connection token can be placed anywhere in the port list.

— All connecting variables must be explicitly declared, either as a port in the parent module (following the
rules of Verilog-2001) or as an explicit net or variable of one or more bits.

Modules may be instantiated into the same parent module using any combination of legal positional, named,
implicit .name connected and implicit .* connected instances as shown in alu_accum5 example.

module alu_accum5 (
output [15:0] dataout,
input [7:0] ain, bin,
input [2:0] opcode,
input clk, rst_n);
wire [7:0] alu_out;

// mixture of named port connections and
// implicit .name port connections
alu alu (.ain(ain), .bin(bin), .alu_out, .zero(), .opcode);

// positional port connections
accum accum (dataout[7:0], alu_out, clk, rst_n);

// mixture of named port connections and implicit .* port connections
xtend xtend (.dout(dataout[15:8]), .*, .din(alu_out[7]));

endmodule

17.7.5 Compatible data types for implicit port connections

Implicit port connections are permitted between any two data types that are allowed by SystemVerilog port
connection rules, as long as the SystemVerilog simulator is not required to report standard does not require a
warning about the connection. Any SystemVerilog instantiation that would cause a warning to be issued must
be connected by name if other ports of the instance are instantiated using an implicit port connection style.

If, for example, a top-level module connects a signal named net1 of any data type to an instantiated submod-
ule with a port also named net1 of same data type, SystemVerilog will run this simulation shall run without
warning, because the data types are the same across ports. It is legal to make this type of connection using an
implicit port connection style.

If, for example, a top-level module connects a signal named net2 of type wire to an instantiated submodule
with a port also named net2 of type reg, Verilog simulator run this simulation without shall not generate a
warning, because the data types are compatible across ports. It is legal to make this type of connection using an
implicit port connection style.

If, for example, a top-level module connects a signal named net3 of type tri1 to an instantiated submodule
with a port named net3 of type tri0, Verilog simulators issue shall result in a warning and the top-level data
type (tri1) is used during simulation, as described in the IEEE Verilog-2001 Standard. It is legal to make this
type of connection using named port connections but it shall be a syntax error to make this connection using an
implicit port connection style. Any port connection that results in a required warning message shall not be per-
mitted to be instantiated using an implicit port connection style.

A top-level module shall not implicitly connect a signal of any data type to a port by the same name of another
data type if connecting the data types is illegal as defined by this SystemVerilog standard.
176 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
17.8 Port connection rules

If a port declaration has a variable data type such as logic, then its direction controls how it can be connected,
as follows:

— An input can be connected to any expression of a compatible data type. If unconnected, it has the initial
value corresponding to the data type.

— An output can be connected to a variable (or a concatenation) of a compatible data type, and has shared
variable behavior if multiple outputs are connected (last write wins); An output logic can be connected
to a net (to provide a resolution function in the case of multiple drivers).

— An inout can be connected to a variable (or a concatenation) of the same data type.

If a port declaration has a wire type (which is the default), or any other net type, then its direction controls
how it can be connected as follows:

— An input can be connected to any expression of a compatible data type. If unconnected, it has the value
’z.

— An output can be connected to a net type (or a concatenation of net types) or left unconnected, but not to
a logic variable.

— An inout can be connected to a net type (or a concatenation of net types) or left unconnected, but not to a
logic variable.

Note that where the data types differ between the port declaration and connection, an initial value change event
may be caused at time zero.

If a port declaration has a generic interface type, then it can be connected to an interface of any type. If a
port declaration has a named interface type, then it must be connected to a generic interface or an interface of
the same type.

A mismatch between vector width across a port connection is resolved as follows:

— If the port is a net vector, then the Verilog connection rules for nets are followed.

— If the port is an inout port variable, then a port connection must have the same size and representation on
both sides of the port. It shall be an error if there is a mismatch.

— If the port is an input or an output variable, then the Verilog assignment rules are followed.

For an unpacked array port, the port and the array connected to the port must have the same number of
unpacked dimensions, and each dimension of the port must have the same size as the corresponding dimension
of the array being connected.

If the size and type of the port connection match the size and type of a single instance port, the connection shall
be made to each instance in the array.

If the port connection is an unpacked array, the unpacked array dimensions of each port connection shall be
compared with the dimensions of the instance array. If they match exactly in size, each element of the port con-
nection shall be matched to the port left index to left index, right index to right index. If they do not match it
shall be considered an error.

If the port connection is a packed array, each instance shall get a part-select of the port connection, starting
with all right-hand indices to match the right most part-select, and iterating through the right most dimension
first. Too many or too few bits to connect all the instances shall be considered an error.

17.9 Name spaces

There is one name space hierarchy in SystemVerilog. A type name may be not be the same as an instance
Copyright 2003 Accellera. All rights reserved. 177

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
name. Type names include modules, interfaces, and data types. Instance names include tasks, functions, proce-
dures, variables, constants and labels as well as module and interface instances.

Pre-defined (built-in) names begin with $. For example $root is the name of the top level of the hierarchy.

Names are initially global. A new scope is defined by:

— a module or interface

— a task or function

— a sequential or parallel block

— a structure or union

Tasks and function definitions cannot be nested within themselves, but can be defined in modules or interfaces.
The declaration in the closest enclosing scope is matched.

17.10 Hierarchical names

Hierarchical names are also called nested identifiers. They consist of instance names separated by periods,
where an instance name may be an array element.

$root.mymodule.u1 // absolute name
u1.struct1.field1 // u1 must be visible locally or above, including globally
adder1[5].sum

Nested identifiers can be read (in expressions), written (in assignments or task/function calls) or triggered off
(in event expressions). They can also be used as type, task or function names.
178 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

BC42-29
Section 18
Interfaces

18.1 Introduction (informative)

The communication between blocks of a digital system is a critical area that can affect everything from ease of
RTL coding, to hardware-software partitioning to performance analysis to bus implementation choices and
protocol checking. The interface construct in SystemVerilog was created specifically to encapsulate the com-
munication between blocks, allowing a smooth migration from abstract system-level design through succes-
sive refinement down to lower-level register-transfer and structural views of the design. By encapsulating the
communication between blocks, the interface construct also facilitates design re-use. The inclusion of interface
capabilities is one of the major advantages of SystemVerilog.

At its lowest level, an interface is a named bundle of nets or variables. The interface is instantiated in a design
and can be passed through a port as a single item, and the component nets or variables referenced where
needed. A significant proportion of a Verilog design often consists of port lists and port connection lists, which
are just repetitions of names. The ability to replace a group of names by a single name can significantly reduce
the size of a description and improve its maintainability.

Additional power of the interface comes from its ability to encapsulate functionality as well as connectivity,
making an interface, at its highest level, more like a class template. An interface can have parameters, con-
stants, variables, functions and tasks. The types of elements in an interface can be declared, or the types can be
passed in as parameters. The member variables and functions are referenced relative to the instance name of
the interface as instance.member. Thus, modules that are connected via an interface can simply call the task/
function members of that interface to drive the communication. With the functionality thus encapsulated in the
interface, and isolated from the module, the abstraction level and/or granularity of the communication protocol
can be easily changed by replacing the interface with a different interface containing the same members but
implemented at a different level of abstraction. The modules connected via the interface don’t need to change
at all.

To provide direction information for module ports and to control the use of tasks and functions within particu-
lar modules, the modport construct is provided. As the name indicates, the directions are those seen from the
module.

In addition to task/function methods, an interface can also contain processes (i.e. initial or always blocks)
and continuous assignments, which are useful for system-level modelling modeling and test bench applica-
tions. This allows the interface to include, for example, its own protocol checker that automatically verifies
that all modules connected via the interface conform to the specified protocol. Other applications, such as
functional coverage recording and reporting, protocol checking and assertions can also be built into the inter-
face.

The methods can be abstract, i.e. defined in one module and called in another, using the export and import con-
structs. This could be coded using hierarchical path names, but this would impede re-use because the names
would be design-specific. A better way is to declare the task and function names in the interface, and to use
local hierarchical names from the interface instance for both definition and call. Broadcast communication is
modeled by forkjoin tasks, which can be defined in more than one module and executed concurrently.
Copyright 2003 Accellera. All rights reserved. 179

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
18.2 Interface syntax

Syntax 18-1—Interface syntax (excerpt from Annex A)

The interface construct provides a new hierarchical structure. It can contain smaller interfaces and can be
passed through ports.

The aim of interfaces is to encapsulate communication. At the lower level, this means bundling variables and

modport_declaration ::= modport list_of_modport_identifiers ; // from Annex A.2.9

list_of_modport_identifiers ::= modport_item { , modport_item }

modport_item ::= modport_identifier (modport_port { , modport_port })

modport_port ::= // from Annex A.2.9
input [port_type] port_identifier

| output [port_type] port_identifier
| inout [port_type] port_identifier
| interface_identifier . port_identifier
| import_export task named_task_proto
| import_export function named_fn_proto
| import_export task_or_function_identifier { , task_or_function_identifier }

import_export ::= import | export

interface_port_declaration ::= // from Annex A.2.1.2
interface list_of_interface_identifiers

| interface . modport_identifier list_of_interface_identifiers
| identifier list_of_interface_identifiers
| identifier . modport_identifier list_of_interface_identifiers

interface_or_generate_item ::= // from Annex A.1.6
{ attribute_instance } continuous_assign

| { attribute_instance } initial_construct
| { attribute_instance } always_construct
| { attribute_instance } combinational_statement
| { attribute_instance } latch_statement
| { attribute_instance } ff_statement
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration ;
| module_common_item
| { attribute_instance } modport_declaration

interface_item ::= // from Annex A.1.6
port_declaration

| non_port_interface_item

non_port_interface_item ::= // from Annex A.1.6
{ attribute_instance } generated_interface_instantiation
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specparam_declaration
| interface_or_generate_item
| interface_declaration

interface_instantiation ::= // from Annex A.4.1.2
interface_identifier [parameter_value_assignment] module_instance { , module_instance } ;
180 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
wires in interfaces, and bundling ports with directions in modports. The modules can be made generic so that
the interfaces can be changed. The following examples show these features. At a higher level of abstraction,
communication can be done by tasks and functions. Interfaces can include task and function definitions, or just
task and function prototypes with the definition in one module (server/slave) and the call in another (client/
master).

An interface is declared as follows:

interface <identifier>; <interface_items> endinterface [: <name> <identifier>]

An interface can be instantiated hierarchically like a module with or without ports. For example:

myinterface #(100) scalar1, vector[9:0];

Interfaces can be declared and instantiated in modules (either flat or hierarchical) but modules can neither be
declared nor instantiated in interfaces.

The simplest use of an interface is to bundle wires, as is illustrated in the examples below.

18.2.1 Example without using interfaces

This example shows a simple bus implemented without interfaces. Note that the logic type can replace wire
and reg if no resolution of multiple drivers is needed.

module memMod(input bit req,
bit clk,
bit start,
logic[1:0] mode,
logic[7:0] addr,

inout logic[7:0] data,
output bit gnt,

bit rdy);
logic avail;

...
endmodule

module cpuMod(
input bit clk,

bit gnt,
bit rdy,

inout logic [7:0] data,
output bit req,

bit start,
logic[7:0] addr,
logic[1:0] mode);

...
endmodule

module top;
logic req, gnt, start, rdy; // req is logic not bit here
logic clk = 0;
logic [1:0] mode;
logic [7:0] addr, data;

memMod mem(req, clk, start, mode, addr, data, gnt, rdy);
cpuMod cpu(clk, gnt, rdy, data, req, start, addr, mode);

endmodule
Copyright 2003 Accellera. All rights reserved. 181

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

BC19-2

BC19-2
18.2.2 Interface example using a named bundle

The simplest form of a SystemVerilog interface is a bundled collection of variables or nets. When an interface
is used as a port, the variables and nets in it are assumed to be inout ports. The following interface example
shows the basic syntax for defining, instantiating and connecting an interface. Usage of the SystemVerilog
interface capability can significantly reduce the amount of code required to model port connections.

interface simple_bus; // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

endinterface: simple_bus

module memMod(simple_bus a, // Use the simple_bus interface
 input bit clk);

logic avail;
// a.req is the req signal in the ’simple_bus’ interface
always @(posedge clk) a.gnt <= a.req & avail;

endmodule

module cpuMod(simple_bus b, input bit clk);
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf(); // Instantiate the interface

memMod mem(sb_intf, clk); // Connect the interface to the module instance
cpuMod cpu(.b(sb_intf), .clk(clk)); // Either by position or by name

endmodule

In the preceding example, if the same identifier, sb_intf, had been used to name the simple_bus interface in the
memMod and cpuMod module headers, then implicit port declarations also could have been used to instantiate
the memMod and cpuMod modules into the top module, as shown below.

module memMod (simple_bus sb_intf, input bit clk);
...

endmodule

module cpuMod (simple_bus sb_intf, input bit clk);
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf();

memMod mem (.*); // implicit port connections
cpuMod cpu (.*); // implicit port connections

endmodule
182 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

BC19-2

BC19-2
18.2.3 Interface example using a generic bundle

A module header can be created with an unspecified interface instantiation as a place-holder for an interface to
be selected when the module itself is instantiated. The unspecified interface is referred to as a “generic” inter-
face port. The following interface example shows how to specify a generic interface port in a module defini-
tion.

// memMod and cpuMod can use any interface
module memMod (interface a, input bit clk);

...
endmodule

module cpuMod(interface b, input bit clk);
...

endmodule

interface simple_bus; // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

endinterface: simple_bus

module top;
logic clk = 0;

simple_bus sb_intf(); // Instantiate the interface

// Connect the sb_intf instance of the simple_bus
// interface to the generic interfaces of the
// memMod and cpuMod modules
memMod mem (.a(sb_intf), .clk(clk));
cpuMod cpu (.b(sb_intf), .clk(clk));

endmodule

An implicit port cannot be used to connect to a generic interface. A named port must be used to connect to a
generic interface, as shown below.

module memMod (interface a, input bit clk);
...

endmodule

module cpuMod (interface b, input bit clk);
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf();

memMod mem (.*, .a(sb_intf)); // partial implicit port connections
cpuMod cpu (.*, .b(sb_intf)); // partial implicit port connections

endmodule
Copyright 2003 Accellera. All rights reserved. 183

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
18.3 Ports in interfaces

One limitation of simple interfaces is that the nets and variables declared within the interface are only used to
connect to a port with the same nets and variables. To share an external net or variable, one that makes a con-
nection from outside of the interface as well as forming a common connection to all module ports that instanti-
ate the interface, an interface port declaration is required. The difference between nets or variables in the
interface port list and other nets or variables within the interface is that only those in the port list can be con-
nected externally by name or position when the interface is instantiated.

interface i1 (input a, output b, inout c);
wire d;

endinterface

The wires a, b and c can be individually connected to the interface and thus shared with other interfaces.

The following example shows how to specify an interface with inputs, allowing a wire to be shared between
two instances of the interface.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

endinterface: simple_bus

module memMod(simple_bus a); // Uses just the interface
logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // a.req is in the ’simple_bus’ interface

endmodule

module cpuMod(simple_bus b);
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf1(clk); // Instantiate the interface
simple_bus sb_intf2(clk); // Instantiate the interface

memMod mem1(.a(sb_intf1)); // Connect bus 1 to memory 1
cpuMod cpu1(.b(sb_intf1));
memMod mem2(.a(sb_intf2)); // Connect bus 2 to memory 2
cpuMod cpu2(.b(sb_intf2));

endmodule

Note: Because the instantiated interface names do not match the interface names used in the memMod and
cpuMod modules, implicit port connections cannot be used for this example.

18.4 Modports

To bundle module ports, there are modport lists with directions declared within the interface. The keyword
modport indicates that the directions are declared as if inside the module.
184 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

BC22-2

BC22-2

BC22-2
interface i2;
wire a, b, c, d;
modport master (input a, b, output c, d);
modport slave (output a, b, input c, d);

endinterface

The modport list name (master or slave) can be specified in the module header, where the modport name acts
as a direction and the interface name as a type.

module m (i2.master i);
...

endmodule

module s (i2.slave i);
...

endmodule

module top;
i2 i();

m u1(.i(i));
s u2(.i(i));

endmodule

The modport list name (master or slave) can also be specified in the port connection with the module instance,
where the modport name is hierarchical from the interface instance.

module m (i2 i);
...

endmodule

module s (i2 i);
...

endmodule

module top;
i2 i();

m u1(.i(i.master));
s u2(.i(i.master));

endmodule

The syntax of interface_name.modport_name instance_name is really a hierarchical type fol-
lowed by an instance. Note that this can be generalized to any interface with a given modport name by writing
interface.modport_name instance_name.

In a hierarchical interface, the directions in a modport declaration can themselves be modport plus name.

interface i1;
interface i3;

wire a, b, c, d;
modport master (input a, b, output c, d);
modport slave (output a, b, input c, d);

endinterface
i3 ch1(), ch2();
modport master2 (ch1.master, ch2.master);

endinterface

Note that if no modport is specified in the module header or in the port connection, then all the wires and vari-
Copyright 2003 Accellera. All rights reserved. 185

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
ables in the interface are accessible with direction inout, as in the examples above.

18.4.1 An example of a named port bundle

This interface example shows how to use modports to control signal directions as in port declarations. It uses
the modport name in the module definition.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
inout data);

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data);

endinterface: simple_bus

module memMod (simple_bus.slave a); // interface name and modport name
logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface

endmodule

module cpuMod (simple_bus.master b);
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

initial repeat(10) #10 clk++;

memMod mem(.a(sb_intf)); // Connect the interface to the module instance
cpuMod cpu(.b(sb_intf));

endmodule

18.4.2 An example of connecting a port bundle

This interface example shows how to use modports to control signal directions. It uses the modport name in
the module instantiation.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;
186 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
inout data);

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data);

endinterface: simple_bus

module memMod(simple_bus a); // Uses just the interface name
logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface

endmodule

module cpuMod(simple_bus b);
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

initial repeat(10) #10 clk++;

memMod mem(sb_intf.slave); // Connect the modport to the module instance
cpuMod cpu(sb_intf.master);

endmodule

18.4.3 An example of connecting a port bundle to a generic interface

This interface example shows how to use modports to control signal directions. It shows the use of the inter-
face keyword in the module definition. The actual interface and modport are specified in the module instantia-
tion.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
inout data);

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data);

endinterface: simple_bus

module memMod(interface a); // Uses just the interface
logic avail;

always @(posedge a.clk) // the clk signal from the interface
Copyright 2003 Accellera. All rights reserved. 187

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
a.gnt <= a.req & avail; // the gnt and req signal in the interface
endmodule

module cpuMod(interface b);
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem(sb_intf.slave); // Connect the modport to the module instance
cpuMod cpu(sb_intf.master);

endmodule

18.5 Tasks and functions in interfaces

Tasks and functions may be defined within an interface, or they may be defined within one or more of the mod-
ules connected. This allows a more abstract level of modeling. For example “read” and “write” can be defined
as tasks, without reference to any wires, and the master module can merely call these tasks. In a modport
these tasks are declared as import tasks.

If the tasks or functions are defined in a module, using a hierarchical name, they must also be declared as
extern in the interface, or as export in a modport.

Tasks (not functions) may be defined in a module that is instantiated twice, e.g. two memories driven from the
same CPU. Such multiple task definitions are allowed by a forkjoin extern declaration in the interface.

18.5.1 An example of using tasks in an interface

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

task masterRead(input logic[7:0] raddr); // masterRead method
// ...

endtask: masterRead

task slaveRead; // slaveRead method
// ...

endtask: slaveRead

endinterface: simple_bus

module memMod(interface a); // Uses any interface
logic avail;

always @(posedge a.clk) // the clk signal from the interface
a.gnt <= a.req & avail // the gnt and req signals in the interface

always @(a.start)
a.slaveRead;

endmodule
188 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
module cpuMod(interface b);
enum {read, write} instr;
logic [7:0] raddr;

always @(posedge b.clk)
if (instr == read)

b.masterRead(raddr); // call the Interface method
...

endmodule

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem(sb_intf.slave); // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the masterRead task

endmodule

A function prototype specifies the types and directions of the arguments and the return value of a function
which is defined elsewhere. Similarly, a task prototype specifies the types and directions of the arguments of a
task which is defined elsewhere. In a modport, the import and export constructs can either use task or function
prototypes or use just the identifiers.

18.5.2 An example of using tasks in modports

This interface example shows how to use modports to control signal directions and task access in a full read/
write interface.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;

modport slave (input req, addr, mode, start, clk,
output gnt, rdy,
inout data,
import task slaveRead(),

 task slaveWrite());
// import into module that uses the modport

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data,
import task masterRead(input logic[7:0] raddr),

 task masterWrite(input logic[7:0] waddr));
// import requires the full task prototype

task masterRead(input logic[7:0] raddr); // masterRead method
// ...

endtask

task slaveRead; // slaveRead method
// ...

endtask

task masterWrite(input logic[7:0] waddr);
//...
Copyright 2003 Accellera. All rights reserved. 189

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
endtask

task slaveWrite;
//...

endtask

endinterface: simple_bus

module memMod(interface a); // Uses just the interface
logic avail;

always @(posedge a.clk) // the clk signal from the interface
b.gnt <= b.req & avail; // the gnt and req signals in the interface

always @(a.start)
if (a.mode[0] == 1’b0)

a.slaveRead;
else

a.slaveWrite;
endmodule

module cpuMod(interface b);
enum {read, write} instr = $rand();
logic [7:0] raddr = $rand();

always @(posedge b.clk)
if (instr == read)

b.masterRead(raddr); // call the Interface method
// ...
else

b.masterWrite(raddr);
endmodule

module omniMod(interface b);
//...

endmodule: omniMod

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem(sb_intf.slave); // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the masterRead task
omniMod omni(sb_intf); // has access to all master and slave tasks

endmodule

18.5.3 An example of exporting tasks and functions

This interface example shows how to define tasks in one module and call them in another, using modports to
control task access.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;
190 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
modport slave(input req, addr, mode, start, clk,
output gnt, rdy,
inout data,
export task Read(),

 task Write());
 // export from module that uses the modport

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data,
import task Read(input logic[7:0] raddr),

 task Write(input logic[7:0] waddr));
 // import requires the full task prototype

endinterface: simple_bus

module memMod(interface a); // Uses just the interface keyword
logic avail;

task a.Read; // Read method
avail = 0;
...
avail = 1;

endtask

task a.Write;
avail = 0;
...
avail = 1;

endtask
endmodule

module cpuMod(interface b);
enum {read, write} instr;
logic [7:0] raddr;

always @(posedge b.clk)
if (instr == read)

b.Read(raddr); // call the slave method via the interface
...

else
b.Write(raddr);

endmodule

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem(sb_intf.slave); // exports the Read and Write tasks
cpuMod cpu(sb_intf.master); // imports the Read and Write tasks

endmodule

18.5.4 An example of multiple task exports

It is normally an error for more than one module to export the same task name. However, several instances of
the same modport type may be connected to an interface, such as memory modules in the previous example.
Copyright 2003 Accellera. All rights reserved. 191

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
So that these can still export their read and write tasks, the tasks must be declared in the interface using the
extern forkjoin keywords. Normally, only one module responds to the task call, e.g. the one containing the
appropriate address. Only then should the task write to the result variables. Note multiple export of functions is
not allowed, because they must always write to the result.

This interface example shows how to define tasks in more than one module and call them in another using
extern forkjoin. The multiple task export mechanism can also be used to count the instances of a particular
modport that are connected to each interface instance.

interface simple_bus (input bit clk); // Define the interface
logic req, gnt;
logic [7:0] addr, data;
logic [1:0] mode;
logic start, rdy;
int slaves;
// tasks executed concurrently as a fork/join block
extern forkjoin task countSlaves();
extern forkjoin task Read(input logic[7:0] raddr);
extern forkjoin task Write(input logic[7:0] waddr);

modport slave(input req, addr, mode, start, clk,
output gnt, rdy,
inout data,
export task Read(),

 task Write());
// export from module that uses the modport

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data,
import task Read(input logic[7:0] raddr),

 task Write(input logic[7:0] waddr));
// import requires the full task prototype

initial begin
slaves = 0;
countSlaves;
$display ("number of slaves = %d", slaves);

end

endinterface: simple_bus

module memMod(interface a); // Uses just the interface keyword
logic avail;

task a.countSlaves;
a.slaves++;

endtask

task a.Read; // Read method
avail = 0;
...
avail = 1;

endtask

task a.Write;
avail = 0;
...
avail = 1;
192 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
endtask
endmodule

module cpuMod(interface b);
enum {read, write} instr;
logic [7:0] raddr;

always @(posedge b.clk)
if (instr == read)

b.Read(raddr); // call the slave method via the interface
// ...

else
b.Write(raddr);

endmodule

module top;
logic clk = 0;

simple_bus sb_intf(clk); // Instantiate the interface

memMod mem1(sb_intf.slave); //exports the countSlaves, Read and Write tasks
memMod mem2(sb_intf.slave); //exports the countSlaves, Read and Write tasks
cpuMod cpu(sb_intf.master); //imports the Read and Write tasks

endmodule

18.6 Parameterized interfaces

Interface definitions can take advantage of parameters and parameter redefinition, in the same manner as mod-
ule definitions. This example shows how to use parameters in interface definitions.

interface simple_bus #(parameter AWIDTH = 8, DWIDTH = 8;)
 (input bit clk); // Define the interface

logic req, gnt;
logic [AWIDTH-1:0] addr;
logic [DWIDTH-1:0] data;
logic [1:0] mode;
logic start, rdy;

modport slave(input req, addr, mode, start, clk,
output gnt, rdy,
inout data,
import task slaveRead(),

 task slaveWrite());
// import into module that uses the modport

modport master(input gnt, rdy, clk,
output req, addr, mode, start,
inout data,
import task masterRead(input logic[AWIDTH-1:0] raddr),

 task masterWrite(input logic[AWIDTH-1:0] waddr));
// import requires the full task prototype

task masterRead(input logic[AWIDTH-1:0] raddr); // masterRead method
...

endtask

task slaveRead; // slaveRead method
...
Copyright 2003 Accellera. All rights reserved. 193

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
endtask

task masterWrite(input logic[AWIDTH-1:0] waddr);
...

endtask

task slaveWrite;
...

endtask

endinterface: simple_bus

module memMod(interface a); // Uses just the interface keyword
logic avail;

always @(posedge b.clk) // the clk signal from the interface
a.gnt <= a.req & avail; //the gnt and req signals in the interface

always @(b.start)
if (a.mode[0] == 1’b0)

a.slaveRead;
else

a.slaveWrite;
endmodule

module cpuMod(interface b);
enum {read, write} instr;
logic [7:0] raddr;

always @(posedge b.clk)
if (instr == read)

b.masterRead(raddr); // call the Interface method
// ...

else
b.masterWrite(raddr);

endmodule

module top;

logic clk = 0;

simple_bus sb_intf(clk); // Instantiate default interface
simple_bus #(.DWIDTH(16)) wide_intf(clk); // Interface with 16-bit data

initial repeat(10) #10 clk++;

memMod mem(sb_intf.slave); // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the masterRead task

memMod memW(wide_intf.slave); // 16-bit wide memory
cpuMod cpuW(wide_intf.master); // 16-bit wide cpu

endmodule

18.7 Access without Ports

In addition to interfaces being used to connect two or more modules, the interface object/method paradigm
allows for interfaces to be instantiated directly as static data objects within a module. If the methods are used
to access internal state information about the interface, then these methods may be called from different points
194 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

BC19-2
in the design to share information.

interface intf_mutex;

task lock ();
...

endtask

function unlock();
...

endfunction
endinterface

function int f(input int i);
return(i); // just returns arg

endfunction

function int g(input int i);
return(i); // just returns arg

endfunction

module mod1(input int in, output int out);

intf_mutex mutex();

always begin
#10 mutex.lock();
@(in) out = f(in);
mutex.unlock;

end

always begin
#10 mutex.lock();
@(in) out = g(in);
mutex.unlock;

end
endmodule
Copyright 2003 Accellera. All rights reserved. 195

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
Section 19
Parameters

19.1 Introduction (informative)

Verilog-2001 provides three constructs for defining compile time constants: the parameter, localparam and
specparam statements.

The language provides four methods for setting the value of parameter constants in a design. Each parameter
must be assigned a default value when declared. The default value of a parameter of an instantiated module can
be overridden in each instance of the module using one of the following:

— Implicit in-line parameter redefinition (e.g. foo #(value, value) u1 (...);)

— Explicit in-line parameter redefinition (e.g. foo #(.name(value), .name(value)) u1
(...);)

— defparam statements, using hierarchical path names to redefine each parameter

19.1.1 Defparam removal

The defparam statement may be removed from future versions of the language. See section 24.2.

19.2 Parameter declaration syntax

Syntax 19-1—Parameter declaration syntax (excerpt from Annex A)

A module or an interface can have parameters, which are set during elaboration and are constant during simu-
lation. They are defined with data types and default values. With SystemVerilog, if no data type is supplied,
parameters default to type logic of arbitrary size for Verilog-2001 compatibility and interoperability.

SystemVerilog adds the ability for a parameter to also specify a data type, allowing modules or instances to

local_parameter_declaration ::= // from Annex A.2.1.1
localparam [signing] { packed_dimension } [range] list_of_param_assignments ;

| localparam data_type list_of_param_assignments ;

parameter_declaration ::=
parameter [signing] { packed_dimension } [range] list_of_param_assignments

| parameter data_type list_of_param_assignments
| parameter type list_of_type_assignments

specparam_declaration ::=
specparam [range] list_of_specparam_assignments ;

list_of_param_assignments ::= param_assignment { , param_assignment } // from Annex A.2.3

list_of_specparam_assignments ::= specparam_assignment { , specparam_assignment }

list_of_type_assignments ::= type_assignment { , type_assignment }

param_assignment ::= parameter_identifier = constant_param_expression // from Annex A.2.4

specparam_assignment ::=
specparam_identifier = constant_mintypmax_expression

| pulse_control_specparam

type_assignment ::= type_identifier = data_type
196 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
have data whose type is set for each instance.

module ma #(parameter p1 = 1; parameter type p2 = shortint;)
(input logic [p1:0] i, output logic [p1:0] o);

p2 j = 0; // type of j is set by a parameter, which is shortint unless
redefined

always @(i) begin
o = i;
j++;

end
endmodule

module mb;
logic [3:0] i,o;
ma #(.p1(3), .p2(int)) u1(i,o); //redefines p2 to a type of int

endmodule
Copyright 2003 Accellera. All rights reserved. 197

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH25
Section 20
Random Constraints

20.1 Introduction (informative)

Constraint-driven test generation allows users to automatically generate tests for functional verification. Ran-
dom testing can be more effective than a traditional, directed testing approach. By specifying constraints, one
can easily create tests that can find hard-to-reach corner cases. This proposal allows users to specify con-
straints in a compact, declarative way. The constraints are then processed by a solver that generates random
values that meet the constraints.

The random constraints are built on top of an object oriented framework that models the data to be randomized
as objects that contain random variables and user-defined constraints. The constraints determine the legal val-
ues that can be assigned to the random variables. Objects are ideal for representing complex aggregate data
types and protocols such as Ethernet packets.

The next section provides an overview of object-based randomization and constraint programming. The rest of
this document provides detailed information on random variables, constraint blocks, and the mechanisms used
to manipulate them.

20.2 Overview

This section introduces the basic concepts and uses for generating random stimulus within objects. The pro-
posed language uses an object-oriented method for assigning random values to the member variables of an
object subject to user-defined constraints. For example:

class Bus;
rand bit[15:0] addr;
rand bit[31:0] data;

constraint word_align {addr[1:0] == ‘2b0;}
endclass

The Bus class models a simplified bus with two random variables: addr and data, representing the address and
data values on a bus. The word_align constraint declares that the random values for addr must be such that
addr is word-aligned (the low-order 2 bits are 0).

The randomize() method is called to generate new random values for a bus object:

Bus bus = new;

repeat (50) begin
if(bus.randomize() == 1)

Editor’s Note: This entire section is new for draft 2. Only the Section titles have been highlighted as new text.

Editor’s Note: Things left to do in this section:
— Add the correct formatting for keywords and other special fonts.
— Revise wording for proper IEEE style of “shall” and “can”.
— Add notes for where BNF syntax needs to be inserted.
— Change hard-coded cross references to linked cross references.
— Add index tags for the entire chapter
198 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
$display ("addr = %16h data = %h\n", bus.addr, bus.data);
else

$display ("Randomization failed.\n");
end

Calling randomize() causes new values to be selected for all of the random variables in an object such that
all of the constraints are true (“satisfied”). In the program test above, a “bus” object is created and then ran-
domized 50 times. The result of each randomization is checked for success. If the randomization succeeds, the
new random values for addr and data are printed; if the randomization fails, an error message is printed. In this
example, only the addr value is constrained, while the data value is unconstrained. Unconstrained variables
are assigned any value in their declared range.

Constraint programming is a powerful method that lets users build generic, reusable objects that can later be
extended or constrained to perform specific functions. The approach differs from both traditional procedural
and object-oriented programming, as illustrated in this example that extends the Bus class:

typedef enum {low, mid, high} AddrType;

class MyBus extends Bus;
rand AddrType type;
constraint addr_range
{

(type == low) => addr inside { [0 : 15] };
(type == mid) => addr inside { [16 : 127]};
(type == high) => addr inside {[128 : 255]};

}
endclass

The MyBus class inherits all of the random variables and constraints of the Bus class, and adds a random vari-
able called type that is used to control the address range using another constraint. The addr_range constraint
uses implication to select one of three range constraints depending on the random value of type. When a
MyBus object is randomized, values for addr, data, and type are computed such that all of the constraints are
satisfied. Using inheritance to build layered constraint systems allows uses to develop general-purpose models
that can be constrained to perform application-specific functions.

Objects can be further constrained using the randomize() with construct, which declares additional con-
straints in-line with the call to randomize():

task exercise_bus (MyBus bus);
int res;

// EXAMPLE 1: restrict to small addresses
res = bus.randomize() with {type == small;};

// EXAMPLE 2: restrict to address between 10 and 20
res = bus.randomize() with {10 <= addr && addr <= 20;};

// EXAMPLE 3: restrict data values to powers-of-two
res = bus.randomize() with {data & (data - 1) == 0;};

endtask

This example illustrates several important properties of constraints:

— Constraints can be any SystemVerilog expression with variables and constants of integral type (bit, reg,
logic, integer, enum, packed struct, etc…).

— Constraint expressions follow SystemVerilog syntax and semantics, including precedence, associativity,
sign extension, truncation, and wrap-around.
Copyright 2003 Accellera. All rights reserved. 199

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

EC-CH42
— The constraint solver must be able to handle a wide spectrum of equations, such as algebraic factoring,
complex Boolean expressions, and mixed integer and bit expressions. In the example above, the power-of-
two constraint was expressed arithmetically. It could have also been defined with expressions using a shift
operator. For example, 1 << n, where n is a 5-bit random variable.

— If a solution exists, the constraint solver must find it. The solver may fail only when the problem is over-
constrained and there is no combination of random values that satisfy the constraints.

— Constraints interact bi-directionally. In this example, the value chosen for addr depends on type and how it
is constrained, and the value chosen for type depends on addr and how it is constrained. All expression
operators are treated bi-directionally, including the implication operator (=>).

Sometimes it is desirable to disable constraints on random variables. For example, consider the case where we
want to deliberately generate an illegal address (non-word aligned):

task exercise_illegal(MyBus bus, int cycles);
int res;

// Disable word alignment constraint.
$constraint_mode(OFF, bus.word_align);

repeat (cycles) begin

// CASE 1: restrict to small addresses.
res = bus.randomize() with {addr[0] || addr[1];};

...
end

// Re-enable word alignment constraint.
$constraint_mode(ON, bus.word_align);
endtask

The $constraint_mode() system task can be used to enable or disable any named constraint block in an
object. In this example, the word-alignment constraint is disabled, and the object is then randomized with addi-
tional constraints forcing the low-order address bits to be non-zero (and thus unaligned).

The ability to enable or disable constraints allows users to design a constraint hierarchies. In these hierarchies,
the lowest level constraints can represent physical limits grouped by common properties into named constraint
blocks, which can be independently enabled or disabled.

Similarly, the $rand_mode() method can be used to enable or disable any random variable. When a random
variable is disabled, it behaves in exactly the same way as other non-random variables.

Occasionally, it is desirable to perform operations immediately before or after randomization. That is accom-
plished via two built-in methods, pre_randomize() and post_randomize(), which are automatically called
before and after randomization. These methods can be overloaded with the desired functionality:

class XYPair;
rand integer x, y;

endclass

class MyYXPair extends XYPair
function void pre_randomize();

super.pre_randomize();
printf $display("Before randomize x=%0d, y=%0d\n", x, y);

endtask

function void post_randomize();
super.post_randomize();
200 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
printf $display("After randomize x=%0d, y=%0d\n", x, y);
endtask

endclass

By default, pre_randomize() and post_randomize() call their overloaded parent class methods. When
pre_randomize() or post_randomize() are overloaded, care must be taken to invoke the parent class’ meth-
ods, unless the class is a base class (has no parent class).

The random stimulus generation capabilities and the object-oriented constraint-based verification methodol-
ogy enable users to quickly develop tests that cover complex functionality and better assure design correctness.

20.3 Random variables

Class variables can be declared random using the rand and randc type-modifier keywords.

The syntax to declare a random variable in a class is:

rand variable;

or

randc variable;

— The solver can randomize scalar variables of any integral type such as integer, enumerated types, and
packed array variables of any size.

— Arrays can be declared rand or randc, in which case all of their member elements are treated as rand or
randc.

— Dynamic and associative arrays can be declared rand or randc. All of the elements in the array are ran-
domized. If the array elements are of type object, all of the array elements must be non-null. Individual
array elements may be constrained, in which case the index expression must be a literal constant.

— The size of a dynamic array declared as rand or randc may also be constrained. In that case, the array will
be resized according to the size constraint, and then all the array elements will be randomized. The array
size constraint is declared using the size method. For example,

rand bit[7:0] len;
rand integer data[*];
constraint db { data.size == len);

The variable len is declared to be 8 bits wide. The randomizer computes a random value for the len vari-
able in the 8-bit range of 0 to 255, and then randomizes the first len elements of the data array.

If a dynamic array’s size is not constrained then randomize() randomizes all the elements in the array.

— An object variable can be declared rand in which case all of that object’s variables and constraints are
solved concurrently with the other class variables and constraints. Objects cannot be declared randc.

20.3.1 rand modifier

Variables declared with the rand keyword are standard random variables. Their values are uniformly distrib-
uted over their range. For example:

Editor’s Note: “function” is paired with “endtask”. Are these tasks or functions?.

Editor’s Note: Add BNF excerpt , once available.
Copyright 2003 Accellera. All rights reserved. 201

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
rand bit[7:0] y;

This is an 8-bit unsigned integer with a range of 0 to 255. If unconstrained, this variable will be assigned any
value in the range 0 to 255 with equal probability. In this example, the probability of the same value repeating
on successive calls to randomize is 1/256.

20.3.2 randc modifier

Variables declared with the randc keyword are random-cyclic variables that cycle through all the values in a
random permutation of their declared range. Random-cyclic variables can only be of type bit, char, or enumer-
ated types, and may be limited to a maximum size.

To understand randc, consider a 2-bit random variable y:

randc bit[1:0] y;

The variable y can take on the values 0, 1, 2, and 3 (range 0 to 3). Randomize computes an initial random per-
mutation of the range values of y, and then returns those values in order on successive calls. After it returns the
last element of a permutation, it repeats the process by computing a new random permutation.

The basic idea is that randc randomly iterates over all the values in the range and that no value is repeated
within an iteration. When the iteration finishes, a new iteration automatically starts.

The permutation sequence for any given randc variable is recomputed whenever the constraints change on
that variable, or when none of the remaining values in the permutation can satisfy the constraints.

To reduce memory requirements, implementations may impose a limit on the maximum size of a randc vari-
able, but it should be no less than 8 bits.

The semantics of cyclical variables requires that they be solved before other random variables. A set of con-
straints that includes both rand and randc variables will be solved such that the randc variables are solved
first, and this may sometimes cause randomize() to fail.

20.4 Constraint blocks

The values of random variables are determined using constraint expressions that are declared using constraint
blocks. Constraint blocks are class members, like tasks, functions, and variables. They must be defined after
the variable declarations in the class, and before the task and function declarations in the class. Constraint
block names must be unique within a class.

The syntax to declare a constraint block is:

constraint constraint_name { contraint_expressions }

initial permutation: 0 → 3 → 2 → 1

next permutation: → 2 → 1 → 3 → 0

next permutation: → 2 → 0 → 1 → 3 ...

Editor’s Note: Add BNF excerpt , once available.
202 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
constraint_name is the name of the constraint block. This name can be used to enable or disable a constraint
using the system task $constraint_mode().

constraint_expressions is a list of expression statements that restrict the range of a variable or define relations
between variables. A constraint expression is any SystemVerilog expression, or one of the constraint-specific
operators: =>, inside and dist.

The declarative nature of constraints imposes the following restrictions on constraint expressions:

— Calling tasks or functions is not allowed.

— Operators with side effects, such as ++ and -- are not allowed.

— randc variables cannot be specified in ordering constraints (see solve..before in Section 20.12).

— dist expressions cannot appear in other expressions (unlike inside); they can only be top-level expres-
sions.

20.5 External constraint blocks

Constraint block bodies can be declared outside a class declaration, just like external task and function bodies:

// class declaration
class XYPair;

rand integer x, y;
constraint c;

endclass

// external constraint body declaration
constraint XYPair::c { x < y; }

20.6 Inheritance

Constraints follow the same general rules for inheritance as class variables, tasks, and functions:

— A constraint in a derived class that uses the same name as a constraint in its parent classes effectively over-
rides the base class constraints. For example:

class A;
rand integer x;
constraint c { x < 0; }

endclass

class B extends A;
constraint c { x > 0; }

endclass

An instance of class A constrains x to be less than zero whereas an instance of class B constrains x to be
greater than zero. The extended class B overrides the definition of constraint c. In this sense, constraints
are treated the same as virtual functions, so casting an instance of B to an A does not change the con-
straint set.

— The randomize() task is virtual, accordingly, it treats the class constraints in a virtual manner. When a
named constraint is overloaded, the previous definition is overridden.

— The built-in methods pre_randomize() and post_randomize() are functions and cannot block.
Copyright 2003 Accellera. All rights reserved. 203

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
20.7 Set membership

Constraints support integer value sets and set membership operators.

The syntax to define a set expression is:

expression inside { value_range_list };

or

expression inside array; // fixed-size, dynamic, or associative array

expression is any integral SystemVerilog expression.

value_range_list is a comma-separated list of integral expressions and ranges. Ranges are specified with a low
and high bound, enclosed by square braces [], and separated by a colon: [low_bound : high_bound]. Ranges
include all of the integer elements between the bounds. The bound to the left of the colon MUST be less than
or equal to the bound to the right, otherwise the range is empty and contains no values.

The inside operator evaluates to true if the expression is contained in the set; otherwise it evaluates to false.

Absent any other constraints, all values (either single values or value ranges), have an equal probability of
being chosen by the inside operator.

The negated form denotes that expression lies outside the set: !(expression inside { set })

For example:

rand integer x, y, z;
constraint c1 {x inside {3, 5, [9:15], [24:32], [y:2*y], z};}

rand integer a, b, c;
constraint c2 {a inside {b, c};}

Set values and ranges can be any integral expression. Values can be repeated, so values and
value ranges can overlap. It is important to note that the inside operator is bidirectional,
thus, the second example is equivalent to a == b || a == c.

20.8 Distribution

In addition to set membership, constraints support sets of weighted values called distributions. Distributions
have two properties: they are a relational test for set membership, and they specify a statistical distribution
function for the results.

The syntax to define a distribution expression is:

expression dist { value_range_ratio_list };

expression can be any integral SystemVerilog expression.

The distribution operator dist evaluates to true if the expression is contained in the set; otherwise it evaluates
to false.

Absent any other constraints, the probability that the expression matches any value in the list is proportional to

Editor’s Note: Add BNF excerpt , once available.

Editor’s Note: Add BNF excerpt , once available.
204 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
its specified weight.

The value_range_ratio_list is a comma-separated list of integral expressions and ranges (the same as the
value_range_list for set membership). Optionally, each term in the list can have a weight, which is specified
using the := or :/ operators. If no weight is specified, the default weight is 1. The weight may be any integral
SystemVerilog expression.

The := operator assigns the specified weight to the item, or if the item is a range, to every value in the range.

The :/ operator assigns the specified weight to the item, or if the item is a range, to the range as a whole. If
there are n values in the range, the weight of each value is range_weight / n.

For example:

x dist {100 := 1, 200 := 2, 300 := 5}

means x is equal to 100, 200, or 300 with weighted ratio of 1-2-5. If an additional constraint is added that spec-
ifies that x cannot be 200:

x != 200;
x dist {100 := 1, 200 := 2, 300 := 5}

then x is equal to 100 or 300 with weighted ratio of 1-5.

It is easier to think about mixing ratios, such as 1-2-5, than the actual probabilities because mixing ratios do
not have to be normalized to 100%. Converting probabilities to mixing ratios is straightforward.

When weights are applied to ranges, they can be applied to each value in the range, or they can be applied to
the range as a whole. For example,

x dist { [100:102] := 1, 200 := 2, 300 := 5}

means x is equal to 100, 101, 102, 200, or 300 with a weighted ratio of 1-1-1-2-5.

x dist { [100:102] :/ 1, 200 := 2, 300 := 5}

means x is equal to one of 100, 101, 102, 200, or 300 with a weighted ratio of 1/3-1/3-1/3-2-5.

In general, distributions guarantee two properties: set membership and monotonic weighting, which means
that increasing a weight will increase the likelihood of choosing those values.

Limitations:

— A dist operation may not be applied to randc variables.

— A dist expression requires that expression contain at least one rand variable.

20.9 Implication

Constraints provide two constructs for declaring conditional (predicated) relations: implication and if-else.

The implication operator (=>) can be used to declare an expression that implies a constraint.

The syntax to define an implication constraint is:

expression => constraint;
expression => constraint_block;

Editor’s Note: Add BNF excerpt , once available.
Copyright 2003 Accellera. All rights reserved. 205

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
The expression can be any integral SystemVerilog expression.

The implication operator => evaluates to true if the expression is false or the constraint is
satisfied; otherwise it evaluates to false.

The constraint is any valid constraint, and constraint_block represents an anonymous constraint block. If the
expression is true, all of the constraints in the constraint block must also be satisfied.

For example:

mode == small => len < 10;
mode == large => len > 100;

In this example, the value of mode implies that the value of len is less than 10 or greater than 100. If mode is
neither small nor large, the value of len is unconstrained.

The boolean equivalent of (a => b) is (!a || b). Implication is a bidirectional operator. Consider
the following example:

bit[3:0] a, b;
constraint c {(a == 0) => (b == 1)};

Both a and b are 4 bits, so there are 256 combinations of a and b. Constraint c says that a == 0 implies that b ==
1, thereby eliminating 15 combinations: {0,0}, {0,2}, … {0,15}. The probability that a == 0 is thus 1/(256-15)
or 1/241.

It is important to that the constraint solver be designed to cover the whole random value space with uniform
probability. This allows randomization to better explore the whole design space than in cases where certain
value combinations are preferred over others.

20.10 if-else constraints

If-else style constraint are also supported.

The syntax to define an if-else constraint is:

if (expression) constraint; [else constraint;]
if (expression) constraint_block [else constraint_block]

expression can be any integral SystemVerilog expression.

constraint is any valid constraint. If the expression is true, the first constraint must be satisfied; otherwise the
optional else-constraint must be satisfied.

constraint_block represents an anonymous constraint block. If the expression is true, all of the constraints in
the first constraint block must be satisfied, otherwise all of the constraints in the optional else-constraint-block
must be satisfied. Constraint blocks may be used to group multiple constraints.

If-else style constraint declarations are equivalent to implications:

if (mode == small)
len < 10;
else if (mode == large)
len > 100;

is equivalent to

Editor’s Note: Add BNF excerpt , once available.
206 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
mode == small => len < 10 ;
mode == large => len > 100 ;

In this example, the value of mode implies that the value of len is less than 10, greater than 100, or uncon-
strained.

Just like implication, if-else style constraints are bi-directional. In the declaration above, the value of mode
constraints the value of len, and the value of len constrains the value of mode.

20.11 Global constraints

When an object member of a class is declared rand, all of its constraints and random variables are randomized
simultaneously along with the other class variables and constraints. Constraint expressions involving random
variables from other objects are called global constraints.

This example uses global constraints to define the legal values of an ordered binary tree. Class A represents a
leaf node with an 8-bit value x. Class B extends class A and represents a heap-node with value v, a left sub-
tree, and a right sub-tree. Both sub-trees are declared as rand in order to randomize them at the same time as
other class variables. The constraint block named heapcond has two global constraints relating the left and
right sub-tree values to the heap-node value. When an instance of class B is randomized, the solver simulta-
neously solves for B and its left and right children, which in turn may be leaf nodes or more heap-nodes.

The following rules determines which objects, variables, and constraints are to be randomized:

1) First, determine the set of objects that are to be randomized as a whole. Starting with the object that
invoked the randomize() method, add all objects that are contained within it, are declared rand, and
are active (see $rand_mode). The definition is recursive and includes all of the active random objects
that can be reached from the starting object. The objects selected in this step are referred to as the
active random objects.

2) Next, select all of the active constraints from the set of active random objects. These are the constraints
that are applied to the problem.

3) Finally, select all of the active random variables from the set of active random objects. These are the
variables that are to be randomized. All other variable references are treated as state variables, whose
current value is used as a constant.

20.12 Variable ordering

The solver assures that the random values are selected to give a uniform value distribution over legal value
combinations (that is, all combinations of values have the same probability of being chosen). This important
property guarantees that all value combinations are equally probable.

Sometimes, however, it is desirable to force certain combinations to occur more frequently. Consider this case
where a 1-bit “control” variable s constrains a 32-bit “data” value d:

class A; // leaf node
rand bit[7:0] v;

endclass

class B extends A; // heap node
rand A left;
rand A right;

constraint heapcond {left.v <= v; right.v <= v;}
endclass

.v .v

B

A A
Copyright 2003 Accellera. All rights reserved. 207

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
class B;
rand bit s;
rand bit[31:0] d;

constraint c { s => d == 0; }
endclass

The constraint c says “s implies d equals zero”. Although this reads as if s determines d, in fact s and d are
determined together. There are 232 valid combinations of {s,d}, but s is only true for {1,0}. Thus, the probabil-
ity that s is true is 1/232, which is practically zero.

The constraints provide a mechanism for order variables so that s can be chosen independent of d. This mech-
anism defines a partial ordering on the evaluation of variables, and is specified using the solve keyword.

class B;
rand bit s;
rand bit[31:0] d;
constraint c { s => d == 0; }
constraint order { solve s before d; }

endclass

In this case, the order constraint instructs the solver to solve for s before solving for d. The effect is that s is
now chosen true with 50% probability, and then d is chosen subject to the value of s. Accordingly, d == 0 will
occur 50% of the time, and d != 0 will occur for the other 50%.

Variable ordering can be used to force selected corner cases to occur more frequently than they would other-
wise.

The syntax to define variable order in a constraint block is:

solve variable_list before variable_list ;

variable_list is a comma-separated list of integral scalar variables or array elements.

The following restrictions apply to variable ordering:

— Only random variables are allowed, that is, they must be rand.

— randc variables are not allowed. randc variables are always solved before any other.

— The variables must be integral scalar values.

— A constraint block may contain both regular value constraints and ordering constraints.

— There must be no circular dependencies in the ordering, such as “solve a before b” combined with “solve b
before a”.

— Variables that are not explicitly ordered will be solved with the last set of ordered variables. These values
are deferred until as late as possible to assure a good distribution of value.

— Variables can be solved in an order that is not consistent with the ordering constraints, provided that the
outcome is the same. An example situation where this might occur is:

x == 0;
x < y;
solve y before x;

Editor’s Note: Add BNF excerpt , once available.
208 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
In this case, since x has only one possible assignment (0), x can be solved for before y. The constraint
solver can use this flexibility to speed up the solving process.

20.13 Randomization methods

20.13.1 randomize()

Variables in an object are randomized using the randomize() class method. Every class has a built-in random-
ize() virtual method, declared as:

virtual function int randomize();

The randomize() method is a virtual function that generates random values for all the active random variables
in the object, subject to the active constraints.

The randomize() method returns 1 if it successfully sets all the random variables and objects to valid values,
otherwise it returns 0.

Example:

class SimpleSum;
rand bit[7:0] x, y, z;
constraint c {z == x + y;}

endclass

This class definition declares three random variables, x, y, and z. Calling the randomize() method will ran-
domize an instance of class SimpleSum:

SimpleSum p = new;
int success = p.randomize();
if (success == 1) ...

Checking results is always needed because the actual value of state variables or addition of constraints in
derived classes may render seemingly simple constraints unsatisfiable.

20.13.2 pre_randomize() and post_randomize()

Every class contains built-in pre_randomize() and post_randomize() functions, that are automatically called
by randomize() before and after computing new random values.

Built-in definition for pre_randomize():

function void pre_randomize;
if (super) super.pre_randomize();

// Optional programming before randomization goes here.
endfunction

Built-in definition for post_randomize():

function void post_randomize;
if (super) super.post_randomize();

// Optional programming after randomization goes here.
endfunction

When obj.randomize() is invoked, it first invokes pre_randomize() on obj and also all of its random object
members that are enabled. pre_randomize() then recursively calls super.pre_randomize(). After the new
random values are computed and assigned, randomize() invokes post_randomize() on obj and also all of
its random object members that are enabled. post_randomize() then recursively calls
Copyright 2003 Accellera. All rights reserved. 209

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
super.post_randomize().

Users may overload the pre_randomize() in any class to perform initialization and set pre-conditions before
the object is randomized.

Users may overload the post_randomize() in any class to perform cleanup, print diagnostics, and check post-
conditions after the object is randomized.

If these methods are overloaded, they must call their associated parent class methods, otherwise their pre- and
post-randomization processing steps will be skipped.

Notes:

— Random variables declared as static are shared by all instances of the class in which they are declared.
Each time the randomize() method is called, the variable is changed in every class instance.

— If randomize() fails, the constraints are infeasible and the random variables retain their previous values.

— If randomize() fails post_randomize() is not be called.

— The randomize() method may not be overloaded.

— The randomize() method implements object random stability. An object can be seeded by the $srandom()
system call, specifying the object in the second argument.

20.14 In-line constraints - randomize() with

By using the randomize() with construct, users can declare in-line constraints at the point where the random-
ize() method is called. These additional constraints are applied along with the object constraints.

The syntax for randomize() with is:

result = object_name.randomize() with constraint_block;

object_name is the name of an instantiated object.

The anonymous constraint block contains additional in-line constraints to be applied along with the object
constraints declared in the class.

For example:

class SimpleSum
rand bit[7:0] x, y, z;
constraint c {z == x + y;}

endclass

task InlineConstraintDemo(SimpleSum p);
int success;
success = p.randomize() with {x < y;};

endtask

This is the same example used before, however, randomize() with is used to introduce an additional constraint
that x < y.

The randomize() with construct can be used anywhere an expression can appear. The constraint block follow-
ing with can define all of the same constraint types and forms as would otherwise be declared in a class.

The randomize() with constraint block may also reference local variables and task and function parameters,

Editor’s Note: Add BNF excerpt , once available.
210 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
eliminating the need for mirroring a local state as member variables in the object class. The scope for variable
names in a constraint block, from inner to outer, is: randomize() with object class, automatic and local vari-
ables, task and function parameters, class variables, variables in the enclosing scope. The randomize() with
class is brought into scope at the innermost nesting level.

For example, see below, where the randomize() with class is “Foo.”

class Foo;
rand integer x;

endclass

class Bar;
integer x;
integer y;

task doit(Foo f, integer x, integer z);
int result;
result = f.randomize() with {x < y + z;};

endtask
endclass

In the “f.randomize() with” constraint block, x is a member of class Foo, and hides the x in class Bar. It also
hides the x parameter in the doit() task. y is a member of Bar. z is a local parameter.

20.15 Disabling random variables

The $rand_mode() system task can be used to control whether a random variable is active or inactive. When a
random variable is inactive, it is treated the same as if it had not been declared rand or randc. Inactive vari-
ables are not randomized by the randomize() method, and their values are treated as state variables by the
solver. All random variables are initially active.

20.15.1 $rand_mode()

The syntax for the $rand_mode() subroutine is:

task $rand_mode(ON | OFF, object [.random_variable]);

or

function int $rand_mode(object.random_variable);

object is any expression that yields the object handle in which the random variable is defined.

random_variable is the name of the random variable to which the operation is applied. If it is not specified, the
action is applied to all random variables within the specified object.

The first argument to the $rand_mode task determines the operation to be performed:

Table 20-1: $rand_mode first argument

Constant Value Description

OFF 0 Sets the specified variables to inactive so that they are not ran-
domized on subsequent calls to the randomize() method.

Editor’s Note: Add BNF excerpt , once available.
Copyright 2003 Accellera. All rights reserved. 211

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
For array variables, random_variable can specify individual elements using the corresponding index. Omitting
the index results in all the elements of the array being affected by the call.

If the variable is an object, only the mode of the variable is changed, not the mode of random variables within
that object (see Global Constraints in Section 20.11).

A compiler error is issued if the specified variable does not exist within the class hierarchy or it exists but is
not declared as rand or randc.

The function form of $rand_mode() returns the current active state of the specified random variable. It returns
1 if the variable is active (ON), and 0 if the variable is inactive (OFF).

The function form of $rand_mode() only accepts scalar variables, thus, if the specified variable is an array, a
single element must be selected via its index.

Example:

class Packet;
rand integer source_value, dest_value;
... other declarations

endclass

int ret;
Packet packet_a = new;
// Turn off all variables in object.
$rand_mode(OFF, packet_a);

// ... other code
// Enable source_value.
$rand_mode(ON, packet_a.source_value);

ret = $rand_mode(packet_a.dest_value);

This example first disables all random variables in the object packet_a, and then enables only the source_value
variable. Finally, it sets the ret variable to the active status of variable dest_value.

20.16 Disabling constraints

The $constaint_mode() system task can be used to control whether a constraint is active or inactive. When a
constraint is inactive, it is not considered by the randomize() method. All constraints are initially active.

20.16.1 $constraint_mode()

The syntax for the $constraint_mode() subroutine is:

task $constraint_mode(ON | OFF, object [.constraint_name]);

or

function int $constraint_mode(object. constraint_name);

ON 1 Sets the specified variables to active so that they are randomized
on subsequent calls to the randomize() method.

Table 20-1: $rand_mode first argument

Constant Value Description
212 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

object is any expression that yields the object handle in which the constraint is defined.

constraint_name is the name of the constraint block to which the operation is applied. The constraint name can
be the name of any constraint block in the class hierarchy. If no constraint name is specified, the operation is
applied to all constraints within the specified object.

The first argument to the $constraint_mode task determines the operation to be performed:

A compiler error is issued if the specified constraint block does not exist within the class hierarchy.

The function form of $constraint_mode() returns the current active state of the specified constraint block. It
returns 1 if the constraint is active (ON), and 0 if the constraint is inactive (OFF).

Example:

class Packet;
rand integer source_value;
constraint filter1 { source_value > 2 * m; }

endclass

function integer toggle_rand(Packet p);
if($constraint_mode(p.filter1))

$constraint_mode(OFF, p.filter1);
else

$constraint_mode(ON, p.filter1);

toggle_rand = p.randomize();
endfunction

In this example, the toggle_rand function first checks the current active state of the constraint filter1 in the
specified Packet object p. If the constraint is active then the function will deactivate it; if it’s inactive the func-
tion will activate it. Finally, the function calls the randomize method to generate a new random value for vari-
able source_value.

20.17 Static constraint blocks

Constraint blocks can be defined as static by including the static keyword in their definition.

The syntax to declare a static constraint block is:

static constraint constraint_name { contraint_expressions }

Table 20-2: $constraint_mode first argument

Constant Value Description

OFF 0 Sets the specified constraint block to active so that it is considered
by subsequent calls to the randomize() method.

ON 1 Sets the specified constraint block to inactive so that it is not
enforced on subsequent calls to the randomize() method.

Editor’s Note: Add BNF excerpt , once available.

Editor’s Note: Add BNF excerpt , once available.
Copyright 2003 Accellera. All rights reserved. 213

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
If a constraint block is declared as static, then calls to $constraint_mode() affect all instances of the specified
constraint in all objects. Thus, if a static constraint is set to OFF, it is OFF for all instances of that particular
class.

20.18 Dynamic constraint modification

There are several ways to dynamically modify randomization constraints:

— Implication and if-else style constraints allow declaration of predicated constraints.

— Constraint blocks can be made active or inactive using the $constraint_mode() system task. Initially, all
constraint blocks are active. Inactive constraints are ignored by the randomize() function.

— Random variables can be made active or inactive using the $rand_mode() system task. Initially, all rand
and randc variables are active. Inactive variables are ignored by the randomize() function.

— The weights in a dist constraint can be changed, affecting the probability that particular values in the set
are chosen.

20.19 Random number system functions

20.19.1 $urandom

The system function $urandom provides a mechanism for generating random numbers. The function returns a
new 32-bit random number each time it is called. The number is unsigned.

The syntax for $urandom is:

function unsigned int $urandom [(int seed)] ;

The seed is an optional argument that determines which random number is generated. The seed can be any
integral expression. The random number generator generates the same number every time the same seed is
used.

The random number generator is deterministic. Each time the program executes, it cycles through the same
random sequence. This sequence can be made non-deterministic by seeding the $urandom function with an
extrinsic random variable, such as the time of day.

For example:

bit [64:1] addr;

$urandom(254); // Initialize the generator
addr = {$urandom, $urandom };// 64-bit random number
number = $urandom & 15; // 4-bit random number

The $urandom function is similar to the $random system function, with two exceptions. $urandom returns
unsigned numbers and it’s automatically thread stable (see Section 20.20.2).

20.19.2 $urandom_range()

The $urandom_range() function returns an unsigned integer within a specified range.

The syntax for $urandom_range is:

function unsigned int $urandom_range(unsigned int maxval,

Editor’s Note: Add BNF excerpt , once available.
214 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
unsigned int minval = 0);

The function returns an unsigned integer in the range maxval .. minval.

Example: val = $urandom_range(7,0);

If minval is omitted, the function returns a value in the range maxval .. 0.

Example: val = $urandom_range(7);

If maxval is less than minval, the arguments are automatically reversed so that the first argument is larger than
the second argument.

Example: val = $urandom_range(0,7);

All of three previous examples produce a value in the range of 0 to 7, inclusive.

$urandom_range() is automatically thread stable (see Section 20.20.2).

20.19.3 $srandom()

The system function $srandom() allows manually seeding the RNG of objects or threads.

The syntax for the $srandom() system task is:

task $srandom(int seed, [object obj]);

The $srandom() system task initializes the local random number generator using the value of the given seed.
The optional object argument is used to seed an object instead of the current process (thread). The top level
randomizer of each program is initialized with $srandom(1) prior to any randomization calls.

20.20 Random stability

The Random Number Generator (RNG) is localized to threads and objects. Because the stream of random val-
ues returned by a thread or object is independent of the RNG in other threads or objects, this property is called
Random Stability. Random stability applies to:

— the system randomization calls, $urandom, $urandom_range(), and $srandom().

— the object randomization method, randomize().

Test-benches with this feature exhibit more stable RNG behavior in the face of small changes to the user code.
Additionally, it enables more precise control over the generation of random values by manually seeding
threads and objects.

20.20.1 Random stability properties

Random stability encompasses the following properties:

— Thread stability

Each thread has an independent RNG for all randomization system calls invoked from that thread. When
a new thread is created, its RNG is seeded with the next random value from its parent thread. This prop-
erty is called “hierarchical seeding.”

Editor’s Note: Add BNF excerpt , once available.

Editor’s Note: Add BNF excerpt , once available.
Copyright 2003 Accellera. All rights reserved. 215

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
Program and thread stability is guaranteed as long as thread creation and random number generation is
done in the same order as before. When adding new threads to an existing test, they can be added at the
end of a code block in order to maintain random number stability of previously created work.

— Object stability

Each class instance (object) has an independent RNG for all randomization methods in the class. When an
object is created using new, its RNG is seeded with the next random value from the thread that creates the
object.

Object stability is guaranteed as long as object and thread creation, as well as random number generation
is done in the same order as before. In order to maintain random number stability, new objects, threads
and random numbers can be created after existing objects are created.

— Manual seeding

All RNG’s can be manually seeded. Combined with hierarchical seeding, this facility allows users to
define the operation of a subsystem (hierarchy sub-tree) completely with a single seed at the root thread
of the system.

20.20.2 Thread stability

Random values returned from the $urandom system call are independent of thread execution order. For exam-
ple:

integer x, y, z;
fork //set a seed at the start of a thread

begin $srandom(100); x = $urandom; end
//set a seed during a thread

begin y = $urandom; $srandom(200); end
// draw 2 values from the thread RNG

begin z = $urandom + $urandom ; end
join

The above program fragment illustrates several properties:

— Thread Locality. The values returned for x, y and z are independent of the order of thread execution. This is
an important property because it allows development of subsystems that are independent, controllable, and
predictable.

— Hierarchical seeding. When a thread is created, its random state is initialized using the next random value
from the parent thread as a seed. The three forked threads are all seeded from the parent thread.

Each thread is seeded with a unique value, determined solely by its parent. The root of a thread execution
subtree determines the random seeding of its children. This allows entire subtrees to be moved, and pre-
serve their behavior by manually seeding their root thread.

20.20.3 Object stability

The randomize() method built into every class exhibits object stability. This is the property that calls to ran-
domize() in one instance are independent of calls to randomize() in other instances, and independent of calls
to other randomize functions.

For example:

class Foo;
rand integer x;

endclass

class Bar;
rand integer y;
216 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
endclass

initial begin
Foo foo = new();
Bar bar = new();
integer z;
void = foo.randomize();
// z = $random;
void = bar.randomize();

begin end

— The values returned for foo.x and bar.y are independent of each other.

— The calls to randomize() are independent of the $random system call. If one uncomments the line “z =
$random” above, there is no change in the values assigned to foo.x and bar.y.

— Each instance has a unique source of random values that can be seeded independently. That random seed is
taken from the parent thread when the instance is created.

— Objects can be seeded at any time using the $srandom() system task with an optional object argument.

class Foo;
function void new (integer seed);

//set a new seed for this instance
$srandom(seed, this);

endfunction
endclass

Once an object is created there is no guarantee that the creating thread can change the object’s random state
before another thread accesses the object. Therefore, it is best that objects self-seed within their new method
rather than externally.

An object’s seed may be set from any thread. However, a thread’s seed can only be set from within the thread
itself.

20.21 Manually seeding randomize

Each object maintains its own internal random number generator, which is used exclusively by its random-
ize() method. This allows objects to be randomized independent of each other and of calls to other system ran-
domization functions. When an object is created, its random number generator (RNG) is seeded using the next
value from the RNG of the thread that creates the object. This process is called hierarchical object seeding.

Sometimes it is desirable to manually seed an object’s RNG using the $srandom() system call. This can be
done either in a class method, or external to the class definition:

internally:

class Packet;
rand bit[15:0] header;
...
function void new (int seed);

$srandom(seed, this);
...

endtask endfunction
endclass

Editor’s Note: I took the liberty of changing the final “begin” to “end”
Copyright 2003 Accellera. All rights reserved. 217

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

or externally:

Packet p = new(200); // Create p with seed 200.
$srandom(300, p); // Re-seed p with seed 300.

Calling $srandom() in an object’s new() function, assures the object’s RNG is set with the new seed before
any class member values randomized.

Editor’s Note: I took the liberty of changing the final “endtask” to “endfunction”
218 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

Copyright 2003 Accellera. All rights reserved. 219

Section 21
Configuration libraries

21.1 Introduction (informative)

Verilog-2001 provides the ability to specify design configurations, which specify the binding information of
module instances to specific Verilog HDL source code. Configurations utilize libraries. A library is a collec-
tion of modules, primitives and other configurations. Separate library map files specify the source code loca-
tion for the cells contained within the libraries. The names of the library map files is typically specified as
invocation options to simulators or other software tools reading in Verilog source code.

SystemVerilog adds support for interfaces to Verilog configurations. SystemVerilog also provides an alternate
method for specifying the names of library map files.

21.2 Libraries

A library is a named collection of cells. A cell is a module, macromodule, primitive, interface, or configura-
tion. A configuration is a specification of which source files bind to each instance in the design.

21.3 Library map files

Verilog 2001 specifies that library declarations, include statements, and config declarations are normally in a
mapping file that is read first by a simulator or other software tool. SystemVerilog does not require a special
library map file. Instead, the mapping information can be specified in the $root top level.

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
Section 22
System tasks and system functions

22.1 Introduction (informative)

SystemVerilog adds several system tasks and system functions.

22.2 Expression size system function

Syntax 22-1—Size function syntax (not in Annex A)

The $bits system function returns the number of bits required to hold a value. A 4 state value counts as one
bit. Given the declaration:

logic [31:0] foo;

Then $bits(foo) will return 32, even if a software tool uses more than 32-bits of storage to represent the 4-
state values.

22.3 Array querying system functions

Syntax 22-2—Array querying function syntax (not in Annex A)

SystemVerilog provides new system functions to return information about an array

— $left shall return the left bound (msb) of the dimension

— $right shall return the right bound (lsb) of the dimension

— $low shall return the minimum of $left and $right of the dimension

— $high shall return the maximum of $left and $right of the dimension

size_function ::= // not in Annex A
$bits (expression)

array_query_functions ::= // not in Annex A
array_dimension_function (array_identifier , dimension_expression)

| $dimensions (array_identifier)

array_dimension_function ::=
$left

| $right
| $low
| $high
| $increment
| $length

dimension_expression ::= expression
220 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
— $increment shall return 1 if $left is greater than or equal to $right, and -1 if $left is less than
$right

— $length shall return the number of elements in the dimension, which is equivalent to $high - $low + 1

— $dimensions shall return the number of dimensions in the array, or 0 for a scalar object

The dimensions of an array shall be numbered as follows: The slowest varying dimension (packed or
unpacked) is dimension 1. Successively faster varying dimensions have sequentially higher dimension num-
bers. For instance:

// Dimension numbers
// 3 4 1 2
reg [3:0][2:1] n [1:5][2:8];

For an integer or bit type, only dimension 1 is defined. For an integer N declared without a range specifier, its
bounds are assumed to be [$bits(N)-1:0].

If an out-of-range dimension is specified, these functions shall return a logic X.

22.4 Assertion severity system tasks

Syntax 22-3—Assertion severity system task syntax (not in Annex A)

SystemVerilog assertions have a severity level associated with any assertion failures detected. By default, the
severity of an assertion failure is “error”. The severity levels can be specified by including one of the following
severity system tasks in the assertion fail statement:

— $fatal shall generate a run-time fatal assertion error, which terminates the simulation with an error code.
The first argument passed to $fatal shall be consistent with the corresponding argument to the Verilog
$finish system task, which sets the level of diagnostic information reported by the tool.

— $error shall be a run-time error.

— $warning shall be a run-time warning, which can be suppressed in a tool-specific manner.

— $info shall indicate that the assertion failure carries no specific severity.

All of these severity system tasks shall print a tool-specific message, indicating the severity of the failure, and
specific information about the failure, which shall include the following information:

— The file name and line number of the assertion statement,

assert_severity_tasks ::= // not in Annex A
fatal_message_task

| nonfatal_message_task

fatal_message_task ::=
$fatal ;

| $fatal (finish_number [, message_argument { , message_argument] }) ;

nonfatal_message_task ::=
severity_task ;

| severity_task ([message_argument { , message_argument] }) ;

severity_task ::= $error | $warning | $info

finish_number ::= 0 | 1 | 2

message_argument ::= string | expression
Copyright 2003 Accellera. All rights reserved. 221

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
— The hierarchical name of the assertion, if it is labeled, or the scope of the assertion if it is not labeled.

For simulation tools, these tasks shall also report the simulation run-time at which the severity system task is
called.

Each of the severity tasks can include optional user-defined information to be reported. The <user-
defined_message> shall use the same syntax as the Verilog $display system task, and can include any num-
ber of arguments.

22.5 Assertion control system tasks

Syntax 22-4—Assertion control syntax (not in Annex A)

SystemVerilog provides three system tasks to control assertions.

— $assertoff shall stop the checking of all specified assertions until a subsequent $asserton. An assertion
that is already executing, including execution of the pass or fail statement, is not affected

— $assertkill shall abort execution of any currently executing specified assertions and then stop the
checking of all specified assertions until a subsequent $asserton.

— $asserton shall re-enable the execution of all specified assertions

22.6 Assertion system functions

Syntax 22-5—Assertion system function syntax (not in Annex A)

assert_control_tasks ::= // not in Annex A
assert_task ;

| assert_task (levels [, list_of_modules_or_assertions]) ;

assert_task ::=
$asserton

| $assertoff
| $assertkill

list_of_modules_or_assertions ::=
module_or_assertion { , module_or_assertion }

module_or_assertion ::=
module_identifier

| assertion_identifier
| hierarchical_identifier

assert_boolean_functions ::= // not in Annex A
assert_function (expression) ;

| $insetz (expression, expression [{ , expression }]) ;

assert_function ::=
$onehot

| $onehot0
| $inset
| $isunknown
222 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Assertions are commonly used to evaluate certain specific characteristics of a design implementation, such as
whether a particular signal is “one-hot”. The following system functions are included to facilitate such com-
mon assertion functionality:

— $onehot returns true if one and only one bit of expression is high.

— $onehot0 returns true if at most one bit of expression is low.

— $inset returns true if the first expression is equal to at least one of the subsequent expression arguments.

— $insetz returns true if the first expression is equal to at least one other expression argument. Comparison
is performed using casez semantics, so Z or ? bits are treated as don’t-cares.

— $isunknown returns true if any bit of the expression is X. This is equivalent to
^expression === ’bx.

All of the above system functions shall have a return type of bit. A return value of 1’b1 shall indicate true,
and a return value of 1’b0 shall indicate false.
Copyright 2003 Accellera. All rights reserved. 223

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

224 Copyright 2003 Accellera. All rights reserved.

Section 23
Compiler Directives

23.1 Introduction (informative)

Verilog provides the ‘define text substitution macro compiler directive. A macro can contain arguments,
whose values can be set for each instance of the macro. For example:

‘define NAND(dval) nand #(dval)

‘NAND(3) i1 (y, a, b); //‘NAND(3) macro substitutes with: nand #(3)

‘NAND(3:4:5) i2 (o, c, d); //‘NAND(3:4:5) macro substitutes with: nand
#(3:4:5)

SystemVerilog enhances the capabilities of the ‘define compiler directive to support strings as macro argu-
ments

23.2 ‘define macros

In SystemVerilog, the ‘define macro text can include a backslash (\) at the end of a line to show continua-
tion on the next line.

The macro text can also include an isolated quote, which must be preceded by a back tick, `". This allows
macro arguments to be included in strings. If the strings are to contain \", the macro text should be written
`\`". Otherwise, the backslash will be treated as the start of an escaped identifier.

The macro text can also include a double back tick, ``, to allow identifiers to be constructed from arguments,
e.g.

‘define foo(f) f‘‘_suffix

This expands:

foo(bar)

to:

bar_suffix

Note that there must be no space before the parenthesis. Otherwise, it is treated as macro text.

The ‘include directive can be followed by a macro, instead of a literal string:

‘define f1 "/home/foo/myfile"
‘include ‘f1

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Section 24
Features under consideration for removal from SystemVerilog

24.1 Introduction (informative)

Certain Verilog language features can be simulation inefficient, easily abused, and the source of design prob-
lems. These features are being considered for removal from the SystemVerilog language, if there is an alternate
method for these features.

The Verilog language features that have been identified in this standard as ones which can be removed from
Verilog are defparam and procedural assign/deassign.

24.2 Defparam statements

The SystemVerilog committee has determined, based on the solicitation of input from tool implementers and
tools users, that the defparam method of specifying the value of a parameter can be a source of design errors,
and can be an impediment to tool implementation. The defparam statement does not provide a capability that
can not be done by another method, which avoids these problems. Therefore, the committee has placed the
defparam statement on a deprecation list. This means is that a future revision of the Verilog standard may not
require support for this feature. This current standard still requires tools to support the defparam statement.
However, users are strongly encouraged to migrate their code to use one of the alternate methods of parameter
redefinition.

Prior to the acceptance of the Verilog-2001 Standard, it was common practice to change one or more parame-
ters of instantiated modules using a separate defparam statement. Defparam statements can be a source of tool
complexity and design problems.

A defparam statement can precede the instance to be modified, can follow the instance to be modified, can be
at the end of the file that contains the instance to be modified, can be in a separate file from the instance to be
modified, can modify parameters hierarchically that in turn must again be passed to other defparam state-
ments to modify, and can modify the same parameter from two different defparam statements (with unde-
fined results). Due to the many ways that a defparam can modify parameters, a Verilog compiler cannot
insure the final parameter values for an instance until after all of the design files are compiled.

Prior to Verilog-2001, the only other method available to change the values of parameters on instantiated mod-
ules was to use implicit in-line parameter redefinition. This method uses #(parameter_value) as part of
the module instantiation. Implicit in-line parameter redefinition syntax requires that all parameters up to and
including the parameter to be changed must be placed in the correct order, and must be assigned values.

Verilog-2001 introduced explicit in-line parameter redefinition, in the form
#(.parameter_name(value)), as part of the module instantiation. This method gives the capability to
pass parameters by name in the instantiation, which supplies all of the necessary parameter information to the
model in the instantiation itself.

The practice of using defparam statements is highly discouraged. Engineers are encouraged to take advantage
of the Verilog-2001 explicit in-line parameter redefinition capability.

See section 19 for more details on parameters.

24.3 Procedural assign and deassign statements

The SystemVerilog committee has determined, based on the solicitation of input from tool implementers and
tools users, that the procedural assign and deassign statements can be a source of design errors, and can be
an impediment to tool implementation. The procedural assign/deassign statements do not provide a capa-
bility that can not be done by another method, which avoids these problems. Therefore, the committee has
placed the procedural assign/deassign statements on a deprecation list. This means that a future revision of
Copyright 2003 Accellera. All rights reserved. 225

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
the Verilog standard may not require support for theses statements. This current standard still requires tools to
support the procedural assign/deassign statements. However, users are strongly encouraged to migrate
their code to use one of the alternate methods of procedural or continuous assignments.

Verilog has two forms of the assign statement:

— Continuous assignments, placed outside of any procedures

— Procedural continuous assignments, placed within a procedure

Continuous assignment statements are a separate process that are active throughout simulation. The continuous
assignment statement accurately represents combinational logic at an RTL level of modeling, and is frequently
used.

Procedural continuous assignment statements become active when the assign statement is executed in the
procedure. The process can be de-activated using a deassign statement. The procedural assign/deassign
statements are seldom needed to model hardware behavior. In the unusual circumstances where the behavior of
procedural continuous assignments are required, the same behavior can be modeled using the procedural force
and release statements.

The fact that the assign statement to be used both outside and inside a procedure can cause confusion and
errors in Verilog models. The practice of using the assign and deassign statements inside of procedural
blocks is highly discouraged.

See section 8 for more information on procedural assignments.
226 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

BC19-3

BC19-5
Annex A
Formal Syntax

(Normative)

The formal syntax of SystemVerilog is described using Backus-Naur Form (BNF). The conventions used are:

— Keywords and punctuation are in bold text.

— Syntactic categories are named in non-bold text.

— A vertical bar (|) separates alternatives.

— Square brackets ([]) enclose optional items.

— Braces ({ }) enclose items which may be repeated zero or more times.

The full syntax and semantics of Verilog and SystemVerilog are not described solely using BNF. The norma-
tive text description contained within the chapters of the IEEE 1364-2001 Verilog standard and this System-
Verilog document provide additional details on the syntax and semantics described in this BNF.

A.1 Source text

A.1.1 Library source text
library_text ::= { library_descriptions }

library_descriptions ::=
library_declaration

| include_statement
| config_declaration

library_declaration ::=
library library_identifier file_path_spec [{ , file_path_spec }]

[-incdir file_path_spec [{ , file_path_spec }]] ;

file_path_spec ::= file_path

include_statement ::= include <file_path_spec> ;

A.1.2 Configuration source text
config_declaration ::=

config config_identifier ;
design_statement
{config_rule_statement}

endconfig

design_statement ::= design { [library_identifier.]cell_identifier } ;

config_rule_statement ::=
default_clause liblist_clause

| inst_clause liblist_clause
| inst_clause use_clause
| cell_clause liblist_clause
| cell_clause use_clause

default_clause ::= default

inst_clause ::= instance inst_name

inst_name ::= topmodule_identifier{.instance_identifier}

cell_clause ::= cell [library_identifier.]cell_identifier

liblist_clause ::= liblist [{library_identifier}]

use_clause ::= use [library_identifier.]cell_identifier[:config]
Copyright 2003 Accellera. All rights reserved. 227

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

BC19-6

BC19-7

BC19-8
A.1.3 Module and primitive source text
source_text ::= [timeunits_declaration] { description }

description ::=
module_declaration

| udp_declaration
| module_root_item
| statement

module_declaration ::=
{ attribute_instance } module_keyword module_identifier [parameter_port_list]

[list_of_ports] ; [timeunits_declaration] { module_item }
endmodule

| { attribute_instance } module_keyword module_identifier [parameter_port_list]
[list_of_port_declarations] ; [timeunits_declaration] { non_port_module_item }

endmodule

module_keyword ::= module | macromodule

interface_declaration ::=
{ attribute_instance } interface interface_identifier [parameter_port_list]

[list_of_ports] ; [timeunits_declaration] { interface_item }
endinterface [: interface_identifier]

| { attribute_instance } interface interface_identifier [parameter_port_list]
[list_of_port_declarations] ; [timeunits_declaration] { non_port_interface_item }

endinterface [: interface_identifier]

timeunits_declaration ::=
timeunit time_literal ;

| timeprecision time_literal ;
| timeunit time_literal ;

timeprecision time_literal ;
| timeprecision time_literal ;

timeunit time_literal ;

A.1.4 Module parameters and ports
parameter_port_list ::= # (parameter_declaration { , parameter_declaration })

list_of_ports ::= (port { , port })

list_of_port_declarations ::=
(port_declaration { , port_declaration })

| ()

port ::=
[port_expression]

| . port_identifier ([port_expression])

port_expression ::=
port_reference

| { port_reference { , port_reference } }

port_reference ::=
port_identifier

| port_identifier [constant_expression]
| port_identifier [range_expression]

port_declaration ::=
{ attribute_instance } inout_declaration

| { attribute_instance } input_declaration
| { attribute_instance } output_declaration
| { attribute_instance } interface_port_declaration
228 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
A.1.5 Module items
module_common_item ::=

{ attribute_instance } module_or_generate_item_declaration
| { attribute_instance } interface_instantiation

module_item ::=
port_declaration ;

| non_port_module_item

module_or_generate_item ::=
{ attribute_instance } parameter_override

| { attribute_instance } continuous_assign
| { attribute_instance } gate_instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct
| { attribute_instance } always_construct
| { attribute_instance } combinational_statement
| { attribute_instance } latch_statement
| { attribute_instance } ff_statement
| module_common_item

module_root_item ::=
{ attribute_instance } module_instantiation

| { attribute_instance } local_parameter_declaration
| interface_declaration
| module_common_item

module_or_generate_item_declaration ::=
net_declaration

| data_declaration
| event_declaration
| genvar_declaration
| task_declaration
| function_declaration

non_port_module_item ::=
{ attribute_instance } generated_module_instantiation

| { attribute_instance } local_parameter_declaration
| module_or_generate_item
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration
| module_declaration

parameter_override ::= defparam list_of_param_assignments ;

A.1.6 Interface items
interface_or_generate_item ::=

{ attribute_instance } continuous_assign
| { attribute_instance } initial_construct
| { attribute_instance } always_construct
| { attribute_instance } combinational_statement
| { attribute_instance } latch_statement
| { attribute_instance } ff_statement
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration ;
| module_common_item
Copyright 2003 Accellera. All rights reserved. 229

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

BC19-9

BC19-10

BC19-11/
BC27
| { attribute_instance } modport_declaration

interface_item ::=
port_declaration ;

| non_port_interface_item

non_port_interface_item ::=
{ attribute_instance } generated_interface_instantiation
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration ;
| { attribute_instance } specparam_declaration
| interface_or_generate_item
| interface_declaration

A.2 Declarations

A.2.1 Declaration types

A.2.1.1 Module parameter declarations

local_parameter_declaration ::=
localparam [signing] { packed_dimension } [range] list_of_param_assignments ;

| localparam data_type list_of_param_assignments ;

parameter_declaration ::=
parameter [signing] { packed_dimension } [range] list_of_param_assignments

| parameter data_type list_of_param_assignments
| parameter type list_of_type_assignments

specparam_declaration ::=
specparam [range] list_of_specparam_assignments ;

A.2.1.2 Port declarations

inout_declaration ::= inout [port_type] list_of_port_identifiers

input_declaration ::= input [port_type] list_of_port_identifiers

output_declaration ::=
output [port_type] list_of_port_identifiers

| output data_type list_of_variable_port_identifiers

interface_port_declaration ::=
interface list_of_interface_identifiers

| interface . modport_identifier list_of_interface_identifiers
| identifier list_of_interface_identifiers
| identifier . modport_identifier list_of_interface_identifiers

A.2.1.3 Type declarations

block_data_declaration ::=
block_variable_declaration

| constant_declaration
| type_declaration

constant_declaration ::= const data_type const_assignment ;

data_declaration ::=
variable_declaration

| constant_declaration
| type_declaration

event_declaration ::= event list_of_event_identifiers ;

genvar_declaration ::= genvar list_of_genvar_identifiers ;
230 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

BC19-12

BC19-13
net_declaration ::=
net_type [signing]

[delay3] list_of_net_identifiers ;
| net_type [drive_strength] [signing]

[delay3] list_of_net_decl_assignments ;
| net_type [vectored | scalared] [signing]

{ packed_dimension } range [delay3] list_of_net_identifiers ;
| net_type [drive_strength] [vectored | scalared] [signing]

{ packed_dimension } range [delay3] list_of_net_decl_assignments ;
| trireg [charge_strength] [signing]

[delay3] list_of_net_identifiers ;
| trireg [drive_strength] [signing]

[delay3] list_of_net_decl_assignments ;
| trireg [charge_strength] [vectored | scalared] [signing]

{ packed_dimension } range [delay3] list_of_net_identifiers ;
| trireg [drive_strength] [vectored | scalared] [signing]

{ packed_dimension } range [delay3] list_of_net_decl_assignments ;

type_declaration ::=
typedef data_type type_declaration_identifier ;

| typedef interface_identifier { [constant_expression] } . type_identifier
type_declaration_identifier ;

block_variable_declaration ::=
[lifetime] data_type list_of_variable_identifiers ;

| lifetime data_type list_of_variable_decl_assignments ;

variable_declaration ::=
[lifetime] data_type list_of_variable_identifiers_or_assignments ;

lifetime ::= static | automatic

A.2.2 Declaration data types

A.2.2.1 Net and variable types

data_type ::=
integer_vector_type [signing] { packed_dimension } [range]

| integer_atom_type [signing] { packed_dimension }
| type_declaration_identifier
| non_integer_type
| struct [packed] [signing] { { struct_union_member } }
| union [packed] [signing] { { struct_union_member } }
| enum [integer_type [signing] { packed_dimension }]

{ enum_identifier [= constant_expression] { , enum_identifier [= constant_expression] } }
| void

integer_type ::= integer_vector_type | integer_atom_type

integer_atom_type ::= byte | char | shortint | int | longint | integer

integer_vector_type ::= bit | logic | reg

non_integer_type ::= time | shortreal | real | realtime | $built-in

net_type ::= supply0 | supply1 | tri | triand | trior | tri0 | tri1 | wire | wand | wor

port_type ::=
data_type { packed_dimension }

| net_type [signing] { packed_dimension }
| trireg [signing] { packed_dimension }
| event
| [signing] { packed_dimension } range
Copyright 2003 Accellera. All rights reserved. 231

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

BC19-14

BC19-15

BC19-16

BC19-17
signing ::= [signed] | [unsigned]

simple_type_or_number ::= simple_type | number

simple_type ::= integer_type | non_integer_type | type_identifier

struct_union_member ::= data_type list_of_variable_identifiers_or_assignments ;

A.2.2.2 Strengths

drive_strength ::=
(strength0 , strength1)

| (strength1 , strength0)
| (strength0 , highz1)
| (strength1 , highz0)
| (highz0 , strength1)
| (highz1 , strength0)

strength0 ::= supply0 | strong0 | pull0 | weak0

strength1 ::= supply1 | strong1 | pull1 | weak1

charge_strength ::= (small) | (medium) | (large)

A.2.2.3 Delays

delay3 ::= # delay_value | # (delay_value mintypmax_expression [, delay_value mintypmax_expression [,
delay_value mintypmax_expression]])

delay2 ::= # delay_value | # (delay_value mintypmax_expression [, delay_value mintypmax_expression])

delay_value ::=
unsigned_number

| parameter_identifier
| specparam_identifier
| mintypmax_expression
| real_number
| identifier

A.2.3 Declaration lists
list_of_event_identifiers ::= event_identifier [unpacked_dimension { unpacked_dimension }]

{ , event_identifier [unpacked_dimension { unpacked_dimension }] }

list_of_genvar_identifiers ::= genvar_identifier { , genvar_identifier }

list_of_interface_identifiers ::= interface_identifier { unpacked_dimension }
{ , interface_identifier { unpacked_dimension } }

list_of_net_decl_assignments ::= net_decl_assignment { , net_decl_assignment }

list_of_net_identifiers ::= net_identifier [unpacked_dimension { unpacked_dimension }]
{ , net_identifier [unpacked_dimension { unpacked_dimension }] }

list_of_param_assignments ::= param_assignment { , param_assignment }

list_of_port_identifiers ::= port_identifier { unpacked_dimension }
{ , port_identifier { unpacked_dimension } }

list_of_udp_port_identifiers ::= port_identifier { , port_identifier }

list_of_specparam_assignments ::= specparam_assignment { , specparam_assignment }

list_of_type_assignments ::= type_assignment { , type_assignment }

list_of_variable_decl_assignments ::= variable_decl_assign_identifier { , variable_decl_assign_identifier }

list_of_variable_identifiers ::= variable_declaration_identifier { , variable_declaration_identifier }

list_of_variable_identifiers_or_assignments ::=
list_of_variable_decl_assignments

| list_of_variable_identifiers
232 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
list_of_variable_port_identifiers ::= port_identifier { unpacked_dimension } [= constant_expression]
{ , port_identifier { unpacked_dimension } [= constant_expression] }

A.2.4 Declaration assignments
const_assignment ::= const_identifier = constant_expression

net_decl_assignment ::= net_identifier = expression

param_assignment ::= parameter_identifier = constant_param_expression

specparam_assignment ::=
specparam_identifier = constant_mintypmax_expression

| pulse_control_specparam

type_assignment ::= type_identifier = data_type

pulse_control_specparam ::=
PATHPULSE$ = (reject_limit_value [, error_limit_value]) ;

| PATHPULSE$specify_input_terminal_descriptor$specify_output_terminal_descriptor
= (reject_limit_value [, error_limit_value]) ;

error_limit_value ::= limit_value

reject_limit_value ::= limit_value

limit_value ::= constant_mintypmax_expression

A.2.5 Declaration ranges
unpacked_dimension ::= [dimension_constant_expression : dimension_constant_expression]

packed_dimension ::= [dimension_constant_expression : dimension_constant_expression]

range ::= [msb_constant_expression : lsb_constant_expression]

A.2.6 Function declarations
function_declaration ::=

function [automatic] [signing] [range_or_type]
[interface_identifier .] function_identifier ;

{ function_item_declaration }
{ function_statement }
endfunction [: function_identifier]

| function [automatic] [signing] [range_or_type]
[interface_identifier .] function_identifier (function_port_list) ;

{ block_item_declaration }
{ function_statement }
endfunction [: function_identifier]

function_item_declaration ::=
block_item_declaration

| { attribute_instance } input_declaration ;
| { attribute_instance } output_declaration ;
| { attribute_instance } inout_declaration ;

function_port_item ::=
{ attribute_instance } input_declaration

| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration

function_port_list ::= function_port_item { , function_port_item }

function_prototype ::= function data_type (list_of_function_proto_formals)

named_function_proto::= function data_type function_identifier (list_of_function_proto_formals)

list_of_function_proto_formals ::=
[{ attribute_instance } function_proto_formal { , { attribute_instance } function_proto_formal }]
Copyright 2003 Accellera. All rights reserved. 233

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

BC19-19

BC19-19

BC19-28
function_proto_formal ::=
input data_type [variable_declaration_identifier]

| inout data_type [variable_declaration_identifier]
| output data_type [variable_declaration_identifier]
| variable_declaration_identifier

range_or_type ::=
{ packed_dimension } range

| data_type

A.2.7 Task declarations
task_declaration ::=

task [automatic] [interface_identifier .] task_identifier ;
{ task_item_declaration }
{ statement }
endtask [: task_identifier]

| task [automatic] [interface_identifier .] task_identifier (task_port_list) ;
{ block_item_declaration }
{ statement }
endtask [: task_identifier]

task_item_declaration ::=
block_item_declaration

| { attribute_instance } input_declaration ;
| { attribute_instance } output_declaration ;
| { attribute_instance } inout_declaration ;

task_port_list ::= task_port_item { , task_port_item }
| list_of_port_identifiers { , task_port_item }

task_port_item ::=
{ attribute_instance } input_declaration

| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration
| { attribute_instance } port_type list_of_port_identifiers

task_prototype ::=
task ({ attribute_instance } task_proto_formal { , { attribute_instance } task_proto_formal })

named_task_proto ::= task task_identifier (task_proto_formal { , task_proto_formal })

task_proto_formal ::=
input data_type [variable_declaration_identifier]

| inout data_type [variable_declaration_identifier]
| output data_type [variable_declaration_identifier]

A.2.8 Block item declarations
block_item_declaration ::=

{ attribute_instance } block_data_declaration
| { attribute_instance } event_declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration ;

A.2.9 Interface declarations
modport_declaration ::= modport list_of_modport_identifiers ;

list_of_modport_identifiers ::= modport_item { , modport_item }

modport_item ::= modport_identifier (modport_port { , modport_port })

modport_port ::=
input [port_type] port_identifier
234 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

BC19-20
| output [port_type] port_identifier
| inout [port_type] port_identifier
| interface_identifier . port_identifier
| import_export task named_task_proto
| import_export function named_function_proto
| import_export task_or_function_identifier { , task_or_function_identifier }

import_export ::= import | export

A.3 Primitive instances

A.3.1 Primitive instantiation and instances
gate_instantiation ::=

cmos_switchtype [delay3] cmos_switch_instance { , cmos_switch_instance } ;
| enable_gatetype [drive_strength] [delay3] enable_gate_instance { , enable_gate_instance } ;
| mos_switchtype [delay3] mos_switch_instance { , mos_switch_instance } ;
| n_input_gatetype [drive_strength] [delay2] n_input_gate_instance { , n_input_gate_instance } ;
| n_output_gatetype [drive_strength] [delay2] n_output_gate_instance

{ , n_output_gate_instance } ;
| pass_en_switchtype [delay2] pass_enable_switch_instance { , pass_enable_switch_instance } ;
| pass_switchtype pass_switch_instance { , pass_switch_instance } ;
| pulldown [pulldown_strength] pull_gate_instance { , pull_gate_instance } ;
| pullup [pullup_strength] pull_gate_instance { , pull_gate_instance } ;

cmos_switch_instance ::= [name_of_gate_instance] (output_terminal , input_terminal ,
ncontrol_terminal , pcontrol_terminal)

enable_gate_instance ::= [name_of_gate_instance] (output_terminal , input_terminal , enable_terminal)

mos_switch_instance ::= [name_of_gate_instance] (output_terminal , input_terminal , enable_terminal)

n_input_gate_instance ::= [name_of_gate_instance] (output_terminal , input_terminal { , input_terminal })

n_output_gate_instance ::= [name_of_gate_instance] (output_terminal { , output_terminal } ,
input_terminal)

pass_switch_instance ::= [name_of_gate_instance] (inout_terminal , inout_terminal)

pass_enable_switch_instance ::= [name_of_gate_instance] (inout_terminal , inout_terminal ,
enable_terminal)

pull_gate_instance ::= [name_of_gate_instance] (output_terminal)

name_of_gate_instance ::= gate_instance_identifier { range }

A.3.2 Primitive strengths
pulldown_strength ::=

(strength0 , strength1)
| (strength1 , strength0)
| (strength0)

pullup_strength ::=
(strength0 , strength1)

| (strength1 , strength0)
| (strength1)

A.3.3 Primitive terminals
enable_terminal ::= expression

inout_terminal ::= net_lvalue

input_terminal ::= expression

ncontrol_terminal ::= expression

output_terminal ::= net_lvalue
Copyright 2003 Accellera. All rights reserved. 235

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

BC19-22
pcontrol_terminal ::= expression

A.3.4 Primitive gate and switch types
cmos_switchtype ::= cmos | rcmos

enable_gatetype ::= bufif0 | bufif1 | notif0 | notif1

mos_switchtype ::= nmos | pmos | rnmos | rpmos

n_input_gatetype ::= and | nand | or | nor | xor | xnor

n_output_gatetype ::= buf | not

pass_en_switchtype ::= tranif0 | tranif1 | rtranif1 | rtranif0

pass_switchtype ::= tran | rtran

A.4 Module, interface and generated instantiation

A.4.1 Instantiation

A.4.1.1 Module instantiation

module_instantiation ::=
module_identifier [parameter_value_assignment] module_instance { , module_instance } ;

parameter_value_assignment ::= # (list_of_parameter_assignments)

list_of_parameter_assignments ::=
ordered_parameter_assignment { , ordered_parameter_assignment }

| named_parameter_assignment { , named_parameter_assignment }

ordered_parameter_assignment ::= expression | data_type

named_parameter_assignment ::=
. parameter_identifier ([expression])

| . parameter_identifier ([data_type])

module_instance ::= name_of_instance ([list_of_port_connections])

name_of_instance ::= module_instance_identifier { range }

list_of_port_connections ::=
ordered_port_connection { , ordered_port_connection }

| dot_named_port_connection { , dot_named_port_connection }
| { named_port_connection , } dot_star_port_connection { , named_port_connection }

ordered_port_connection ::= { attribute_instance } [expression]

named_port_connection ::= { attribute_instance } .port_identifier ([expression])

dot_named_port_connection ::=
{ attribute_instance } .port_identifier

| named_port_connection

dot_star_port_connection ::= { attribute_instance } .*

A.4.1.2 Interface instantiation

interface_instantiation ::=
interface_identifier [parameter_value_assignment] module_instance { , module_instance } ;

A.4.2 Generated instantiation

A.4.2.1 Generated module instantiation

generated_module_instantiation ::= generate { generate_module_item } endgenerate

generate_module_item_or_null ::= generate_module_item | ;

generate_module_item ::=
generate_module_conditional_statement

| generate_module_case_statement
236 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

BC19-25
| generate_module_loop_statement
| [generate_block_identifier :] generate_module_block
| module_or_generate_item

generate_module_conditional_statement ::=
if (constant_expression) generate_module_item_or_null [else generate_module_item_or_null]

generate_module_case_statement ::=
case (constant_expression) genvar_module_case_item { genvar_module_case_item }endcase

genvar_module_case_item ::=
constant_expression { , constant_expression } : generate_module_item_or_null

| default [:] generate_module_item_or_null

generate_module_loop_statement ::=
for (genvar_decl_assignment ; constant_expression ; genvar_assignment)

generate_module_named_block

genvar_assignment ::=
genvar_identifier = constant_expression

| genvar_identifier assignment_operator constant_expression
| inc_or_dec_operator genvar_identifier
| genvar_identifier inc_or_dec_operator

genvar_decl_assignment ::=
[genvar] genvar_identifier = constant_expression

generate_module_named_block ::=
begin : generate_block_identifier { generate_module_item } end [: generate_block_identifier]

| generate_block_identifier : generate_module_block

generate_module_block ::=
begin [: generate_block_identifier] { generate_module_item } end [: generate_block_identifier]

A.4.2.2 Generated interface instantiation

generated_interface_instantiation ::= generate { generate_interface_item } endgenerate

generate_interface_item_or_null ::= generate_interface_item | ;

generate_interface_item ::=
generate_interface_conditional_statement

| generate_interface_case_statement
| generate_interface_loop_statement
| [generate_block_identifier :] generate_interface_block
| interface_or_generate_item

generate_interface_conditional_statement ::=
if (constant_expression) generate_interface_item_or_null [else generate_interface_item_or_null]

generate_interface_case_statement ::=
case (constant_expression) genvar_interface_case_item { genvar_interface_case_item } endcase

genvar_interface_case_item ::=
constant_expression { , constant_expression } : generate_interface_item_or_null

| default [:] generate_interface_item_or_null

generate_interface_loop_statement ::=
for (genvar_decl_assignment ; constant_expression ; genvar_assignment)

generate_interface_named_block

generate_interface_named_block ::=
begin : generate_block_identifier { generate_interface_item } end [: generate_block_identifier]

| generate_block_identifier : generate_interface_block

generate_interface_block ::=
begin [: generate_block_identifier]
Copyright 2003 Accellera. All rights reserved. 237

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
{ generate_interface_item }
end [: generate_block_identifier]

A.5 UDP declaration and instantiation

A.5.1 UDP declaration
udp_declaration ::=

{ attribute_instance } primitive udp_identifier (udp_port_list) ;
udp_port_declaration { udp_port_declaration }
udp_body

endprimitive
| { attribute_instance } primitive udp_identifier (udp_declaration_port_list) ;

udp_body
endprimitive

A.5.2 UDP ports
udp_port_list ::= output_port_identifier , input_port_identifier { , input_port_identifier }

udp_declaration_port_list ::= udp_output_declaration , udp_input_declaration { , udp_input_declaration }

udp_port_declaration ::=
udp_output_declaration ;

| udp_input_declaration ;
| udp_reg_declaration ;

udp_output_declaration ::=
{ attribute_instance } output port_identifier

| { attribute_instance } output reg port_identifier [= constant_expression]

udp_input_declaration ::= { attribute_instance } input list_of_udp_port_identifiers

udp_reg_declaration ::= { attribute_instance } reg variable_identifier

A.5.3 UDP body
udp_body ::= combinational_body | sequential_body

combinational_body ::= table combinational_entry { combinational_entry } endtable

combinational_entry ::= level_input_list : output_symbol ;

sequential_body ::= [udp_initial_statement] table sequential_entry { sequential_entry } endtable

udp_initial_statement ::= initial output_port_identifier = init_val ;

init_val ::= 1’b0 | 1’b1 | 1’bx | 1’bX | 1’B0 | 1’B1 | 1’Bx | 1’BX | 1 | 0

sequential_entry ::= seq_input_list : current_state : next_state ;

seq_input_list ::= level_input_list | edge_input_list

level_input_list ::= level_symbol { level_symbol }

edge_input_list ::= { level_symbol } edge_indicator { level_symbol }

edge_indicator ::= (level_symbol level_symbol) | edge_symbol

current_state ::= level_symbol

next_state ::= output_symbol | -

output_symbol ::= 0 | 1 | x | X

level_symbol ::= 0 | 1 | x | X | ? | b | B

edge_symbol ::= r | R | f | F | p | P | n | N | *

A.5.4 UDP instantiation
udp_instantiation ::= udp_identifier [drive_strength] [delay2] udp_instance { , udp_instance } ;

udp_instance ::= [name_of_udp_instance] { range } (output_terminal , input_terminal { , input_terminal })
238 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

BC42-34
name_of_udp_instance ::= udp_instance_identifier [range]

A.6 Behavioral statements

A.6.1 Continuous assignment statements
continuous_assign ::= assign [drive_strength] [delay3] list_of_net_assignments ;

list_of_net_assignments ::= net_assignment { , net_assignment }

net_assignment ::= net_lvalue = expression

A.6.2 Procedural blocks and assignments
initial_construct ::= initial statement

always_construct ::= always statement

combinational_statement ::= always_comb statement

latch_statement ::= always_latch statement

ff_statement ::= always_ff statement

blocking_assignment ::=
variable_lvalue = delay_or_event_control expression

| operator_assignment

operator_assignment ::= variable_lvalue assignment_operator expression

assignment_operator ::=
= | += | -= | *= | /= | %= | &= | |= | ^= | <<= | >>= | <<<= | >>>=

nonblocking_assignment ::= variable_lvalue <= [delay_or_event_control] expression

procedural_continuous_assignments ::=
assign variable_assignment

| deassign variable_lvalue
| force variable_assignment
| force net_assignment
| release variable_lvalue
| release net_lvalue

function_blocking_assignment ::= variable_lvalue = expression

function_statement_or_null ::=
function_statement

| { attribute_instance } ;

variable_assignment ::= variable_lvalue = expression

A.6.3 Parallel and sequential blocks
function_seq_block ::=

begin [: block_identifier { block_item_declaration }] { function_statement } end

par_block ::=
fork [: block_identifier] { block_item_declaration } { statement } join [: block_identifier]

seq_block ::=
begin [: block_identifier] { block_item_declaration } { statement } end [: block_identifier]

A.6.4 Statements
statement ::= [block_identifier :] statement_item

statement_item ::=
{ attribute_instance } blocking_assignment ;

| { attribute_instance } nonblocking_assignment ;
| { attribute_instance } procedural_continuous_assignments ;
| { attribute_instance } case_statement
| { attribute_instance } conditional_statement
Copyright 2003 Accellera. All rights reserved. 239

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

BC19-27

BC42-35

BC19-27
| { attribute_instance } inc_or_dec_expression ;

| { attribute_instance } function_call7
| { attribute_instance } disable_statement
| { attribute_instance } event_trigger
| { attribute_instance } loop_statement
| { attribute_instance } jump_statement
| { attribute_instance } par_block
| { attribute_instance } procedural_timing_control_statement
| { attribute_instance } seq_block
| { attribute_instance } system_task_enable
| { attribute_instance } task_enable
| { attribute_instance } wait_statement
| { attribute_instance } process statement
| { attribute_instance } proc_assertion

statement_or_null ::=
statement

| { attribute_instance } ;

function_statement ::= [block_identifier :] function_statement_item ;

function_statement_item ::=
{ attribute_instance } function_blocking_assignment ;

| { attribute_instance } function_case_statement
| { attribute_instance } function_conditional_statement
| { attribute_instance } inc_or_dec_expression

| { attribute_instance } function_call7
| { attribute_instance } function_loop_statement
| { attribute_instance } jump_statement
| { attribute_instance } function_seq_block
| { attribute_instance } disable_statement
| { attribute_instance } system_task_enable

A.6.5 Timing control statements
procedural_timing_control_statement ::=

delay_or_event_control statement_or_null

delay_or_event_control ::=
delay_control

| event_control
| repeat (expression) event_control

delay_control ::=
delay_value

| # (mintypmax_expression)

event_control ::=
@ event_identifier

| @ (event_expression)
| @*
| @ (*)

event_expression ::=
expression [iff expression]

| hierarchical_identifier [iff expression]
| [edge] expression [iff expression]

Editor’s Note: Does adding the semicolon cause a problem with the function_blocking_assignment ; (below)?.
240 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
| event_expression or event_expression
| event_expression , event_expression

edge ::= posedge | negedge | changed

jump_statement ::=
return [expression] ;

| break ;
| continue ;

wait_statement ::=
wait (expression) statement_or_null

event_trigger ::=
-> hierarchical_event_identifier ;

disable_statement ::=
disable hierarchical_task_identifier ;

| disable hierarchical_block_identifier ;

A.6.6 Conditional statements
conditional_statement ::=

[unique_priority] if (expression) statement_or_null [else statement_or_null]
| if_else_if_statement

if_else_if_statement ::=
[unique_priority] if (expression) statement_or_null
{ else [unique_priority] if (expression) statement_or_null }
[else statement_or_null]

function_conditional_statement ::=
[unique_priority] if (expression) function_statement_or_null [else function_statement_or_null]

| function_if_else_if_statement

function_if_else_if_statement ::=
[unique_priority] if (expression) function_statement_or_null
{ else [unique_priority] if (expression) function_statement_or_null }
[else function_statement_or_null]

unique_priority ::= unique | priority

A.6.7 Case statements
case_statement ::=

[unique_priority] case (expression) case_item { case_item } endcase
| [unique_priority] casez (expression) case_item { case_item } endcase
| [unique_priority] casex (expression) case_item { case_item } endcase

case_item ::=
expression { , expression } : statement_or_null

| default [:] statement_or_null

function_case_statement ::=
[unique_priority] case (expression) function_case_item { function_case_item } endcase

| [unique_priority] casez (expression) function_case_item { function_case_item } endcase
| [unique_priority] casex (expression) function_case_item { function_case_item } endcase

function_case_item ::=
expression { , expression } : function_statement_or_null

| default [:] function_statement_or_null

A.6.8 Looping statements
function_loop_statement ::=

forever function_statement
Copyright 2003 Accellera. All rights reserved. 241

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001

BC19-36
| repeat (expression) function_statement_or_null
| while (expression) function_statement_or_null
| for (variable_decl_or_assignment ; expression ; variable_assignment)

function_statement_or_null
| do function_statement while (expression)

loop_statement ::=
forever statement

| repeat (expression) statement_or_null
| while (expression) statement_or_null
| for (variable_decl_or_assignment ; expression ; variable_assignment) statement_or_null
| do statement while (expression)

variable_decl_or_assignment ::=
data_type list_of_variable_identifiers_or_assignments ;

| variable_assignment

A.6.9 Task enable statements
system_task_enable ::= system_task_identifier [(expression { , expression })] ;

task_enable ::= hierarchical_task_identifier [(expression { , expression })] ;

A.6.10 Assertion statements
proc_assertion ::=

immediate_assert
| strobed_assert
| clocked_immediate_assert
| clocked_strobed_assert

immediate_assert ::= assert (expression)
statement_or_null
[else statement_or_null]

strobed_assert ::= assert_strobe (expression)
restricted_statement_or_null
[else restricted_statement_or_null]

clocked_immediate_assert ::= assert (expr_sequence) step_control
statement_or_null
[else statement_or_null]

clocked_strobed_assert ::= assert_strobe (expr_sequence) step_control
restricted_statement_or_null
[else restricted_statement_or_null]

restricted_statement_or_null ::=
restricted_statement

| { attribute_instance } ;

restricted_statement ::=
[block_identifier :] restricted_statement_item

restricted_statement_item ::=
{ attribute_instance } proc_assertion

| { attribute_instance } system_task_enable
| { attribute_instance } delay_or_event_control statement
| { attribute_instance } restricted_seq_block

restricted_seq_block ::= begin [: block_identifier] { block_item_declaration }{ restricted_statement }
end [: block_identifier]

expr_sequence ::=
expression
242 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
| [constant_expression]
| range
| expr_sequence ; expr_sequence
| expr_sequence * [constant_expression]
| expr_sequence * range
| (expr_sequence)

step_control ::=
@@ event_identifier

| @@ (event_expression)

A.7 Specify section

A.7.1 Specify block declaration
specify_block ::= specify { specify_item } endspecify

specify_item ::=
specparam_declaration

| pulsestyle_declaration
| showcancelled_declaration
| path_declaration
| system_timing_check

pulsestyle_declaration ::=
pulsestyle_onevent list_of_path_outputs ;

| pulsestyle_ondetect list_of_path_outputs ;

showcancelled_declaration ::=
showcancelled list_of_path_outputs ;

| noshowcancelled list_of_path_outputs ;

A.7.2 Specify path declarations
path_declaration ::=

simple_path_declaration ;
| edge_sensitive_path_declaration ;
| state_dependent_path_declaration ;

simple_path_declaration ::=
parallel_path_description = path_delay_value

| full_path_description = path_delay_value

parallel_path_description ::=
(specify_input_terminal_descriptor [polarity_operator] => specify_output_terminal_descriptor)

full_path_description ::=
(list_of_path_inputs [polarity_operator] *> list_of_path_outputs)

list_of_path_inputs ::=
specify_input_terminal_descriptor { , specify_input_terminal_descriptor }

list_of_path_outputs ::=
specify_output_terminal_descriptor { , specify_output_terminal_descriptor }

A.7.3 Specify block terminals
specify_input_terminal_descriptor ::=

input_identifier
| input_identifier [constant_expression]
| input_identifier [range_expression]

specify_output_terminal_descriptor ::=
output_identifier

| output_identifier [constant_expression]
Copyright 2003 Accellera. All rights reserved. 243

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
| output_identifier [range_expression]

input_identifier ::= input_port_identifier | inout_port_identifier

output_identifier ::= output_port_identifier | inout_port_identifier

A.7.4 Specify path delays
path_delay_value ::=

list_of_path_delay_expressions
| (list_of_path_delay_expressions)

list_of_path_delay_expressions ::=
t_path_delay_expression

| trise_path_delay_expression , tfall_path_delay_expression
| trise_path_delay_expression , tfall_path_delay_expression , tz_path_delay_expression
| t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression ,

tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression
| t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression ,

tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression
t0x_path_delay_expression , tx1_path_delay_expression , t1x_path_delay_expression ,
tx0_path_delay_expression , txz_path_delay_expression , tzx_path_delay_expression

t_path_delay_expression ::= path_delay_expression

trise_path_delay_expression ::= path_delay_expression

tfall_path_delay_expression ::= path_delay_expression

tz_path_delay_expression ::= path_delay_expression

t01_path_delay_expression ::= path_delay_expression

t10_path_delay_expression ::= path_delay_expression

t0z_path_delay_expression ::= path_delay_expression

tz1_path_delay_expression ::= path_delay_expression

t1z_path_delay_expression ::= path_delay_expression

tz0_path_delay_expression ::= path_delay_expression

t0x_path_delay_expression ::= path_delay_expression

tx1_path_delay_expression ::= path_delay_expression

t1x_path_delay_expression ::= path_delay_expression

tx0_path_delay_expression ::= path_delay_expression

txz_path_delay_expression ::= path_delay_expression

tzx_path_delay_expression ::= path_delay_expression

path_delay_expression ::= constant_mintypmax_expression

edge_sensitive_path_declaration ::=
parallel_edge_sensitive_path_description = path_delay_value

| full_edge_sensitive_path_description = path_delay_value

parallel_edge_sensitive_path_description ::=
([edge_identifier] specify_input_terminal_descriptor =>

specify_output_terminal_descriptor [polarity_operator] : data_source_expression)

full_edge_sensitive_path_description ::=
([edge_identifier] list_of_path_inputs *>

list_of_path_outputs [polarity_operator] : data_source_expression)

data_source_expression ::= expression

edge_identifier ::= posedge | negedge

state_dependent_path_declaration ::=
244 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
if (module_path_expression) simple_path_declaration
| if (module_path_expression) edge_sensitive_path_declaration
| ifnone simple_path_declaration

polarity_operator ::= + | -

A.7.5 System timing checks

A.7.5.1 System timing check commands

system_timing_check ::=
$setup_timing_check

| $hold_timing_check
| $setuphold_timing_check
| $recovery_timing_check
| $removal_timing_check
| $recrem_timing_check
| $skew_timing_check
| $timeskew_timing_check
| $fullskew_timing_check
| $period_timing_check
| $width_timing_check
| $nochange_timing_check

$setup_timing_check ::=
$setup (data_event , reference_event , timing_check_limit [, [notify_reg]]) ;

$hold_timing_check ::=
$hold (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;

$setuphold_timing_check ::=
$setuphold (reference_event , data_event , timing_check_limit , timing_check_limit

[, [notify_reg] [, [stamptime_condition] [, [checktime_condition]
[, [delayed_reference] [, [delayed_data]]]]]]) ;

$recovery_timing_check ::=
$recovery (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;

$removal_timing_check ::=
$removal (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;

$recrem_timing_check ::=
$recrem (reference_event , data_event , timing_check_limit , timing_check_limit

[, [notify_reg] [, [stamptime_condition] [, [checktime_condition]
[, [delayed_reference] [, [delayed_data]]]]]]) ;

$skew_timing_check ::=
$skew (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;

$timeskew_timing_check ::=
$timeskew (reference_event , data_event , timing_check_limit

[, [notify_reg] [, [event_based_flag] [, [remain_active_flag]]]]) ;

$fullskew_timing_check ::=
$fullskew (reference_event , data_event , timing_check_limit , timing_check_limit

[, [notify_reg] [, [event_based_flag] [, [remain_active_flag]]]]) ;

$period_timing_check ::=
$period (controlled_reference_event , timing_check_limit [, [notify_reg]]) ;

$width_timing_check ::=
$width (controlled_reference_event , timing_check_limit , threshold [, [notify_reg]]) ;

$nochange_timing_check ::=
$nochange (reference_event , data_event , start_edge_offset ,
Copyright 2003 Accellera. All rights reserved. 245

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
end_edge_offset [, [notify_reg]]) ;

A.7.5.2 System timing check command arguments

checktime_condition ::= mintypmax_expression

controlled_reference_event ::= controlled_timing_check_event

data_event ::= timing_check_event

delayed_data ::=
terminal_identifier

| terminal_identifier [constant_mintypmax_expression]

delayed_reference ::=
terminal_identifier

| terminal_identifier [constant_mintypmax_expression]

end_edge_offset ::= mintypmax_expression

event_based_flag ::= constant_expression

notify_reg ::= variable_identifier

reference_event ::= timing_check_event

remain_active_flag ::= constant_mintypmax_expression

stamptime_condition ::= mintypmax_expression

start_edge_offset ::= mintypmax_expression

threshold ::=constant_expression

timing_check_limit ::= expression

A.7.5.3 System timing check event definitions

timing_check_event ::=
[timing_check_event_control] specify_terminal_descriptor [&&& timing_check_condition]

controlled_timing_check_event ::=
timing_check_event_control specify_terminal_descriptor [&&& timing_check_condition]

timing_check_event_control ::=
posedge

| negedge
| edge_control_specifier

specify_terminal_descriptor ::=
specify_input_terminal_descriptor

| specify_output_terminal_descriptor

edge_control_specifier ::= edge [edge_descriptor [, edge_descriptor]]

edge_descriptor1 ::= 01 | 10 | z_or_x zero_or_one | zero_or_one z_or_x

zero_or_one ::= 0 | 1

z_or_x ::= x | X | z | Z

timing_check_condition ::=
scalar_timing_check_condition

| (scalar_timing_check_condition)

scalar_timing_check_condition ::=
expression

| ~ expression
| expression == scalar_constant
| expression === scalar_constant
| expression != scalar_constant
| expression !== scalar_constant
246 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
scalar_constant ::= 1’b0 | 1’b1 | 1’B0 | 1’B1 | ’b0 | ’b1 | ’B0 | ’B1 | 1 | 0

A.8 Expressions

A.8.1 Concatenations
concatenation ::= { expression { , expression } }

constant_concatenation ::= { constant_expression { , constant_expression } }

constant_multiple_concatenation ::= { constant_expression constant_concatenation }

module_path_concatenation ::= { module_path_expression { , module_path_expression } }

module_path_multiple_concatenation ::= { constant_expression module_path_concatenation }

multiple_concatenation ::= { constant_expression concatenation }

net_concatenation ::= { net_concatenation_value { , net_concatenation_value } }

net_concatenation_value ::=
hierarchical_net_identifier

| hierarchical_net_identifier [expression] { [expression] }
| hierarchical_net_identifier [expression] { [expression] } [range_expression]
| hierarchical_net_identifier [range_expression]
| net_concatenation

variable_concatenation ::= { variable_concatenation_value { , variable_concatenation_value } }

variable_concatenation_value ::=
hierarchical_variable_identifier

| hierarchical_variable_identifier [expression] { [expression] }
| hierarchical_variable_identifier [expression] { [expression] } [range_expression]
| hierarchical_variable_identifier [range_expression]
| variable_concatenation

A.8.2 Function calls
constant_function_call ::= function_identifier { attribute_instance }

(constant_expression { , constant_expression })

function_call ::= hierarchical_function_identifier{ attribute_instance } (expression { , expression })

genvar_function_call ::= genvar_function_identifier { attribute_instance }
(constant_expression { , constant_expression })

system_function_call ::= system_function_identifier [(expression { , expression })]

A.8.3 Expressions
base_expression ::= expression

inc_or_dec_expression ::=
inc_or_dec_operator variable_lvalue

| variable_lvalue inc_or_dec_operator

conditional_expression ::= expression1 ? { attribute_instance } expression2 : expression3

constant_base_expression ::= constant_expression

constant_expression ::=
constant_primary

| unary_operator { attribute_instance } constant_primary
| constant_expression binary_operator { attribute_instance } constant_expression
| constant_expression ? { attribute_instance } constant_expression : constant_expression
| string

constant_mintypmax_expression ::=
constant_expression

| constant_expression : constant_expression : constant_expression
Copyright 2003 Accellera. All rights reserved. 247

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
constant_param_expression ::=
constant_expression

| data_type

constant_range_expression ::=
constant_expression

| msb_constant_expression : lsb_constant_expression
| constant_base_expression +: width_constant_expression
| constant_base_expression -: width_constant_expression

dimension_constant_expression ::= constant_expression

expression1 ::= expression

expression2 ::= expression

expression3 ::= expression

expression ::=
primary

| unary_operator { attribute_instance } primary
| { attribute_instance } inc_or_dec_expression
| (operator_assignment)
| expression binary_operator { attribute_instance } expression
| conditional_expression
| string

lsb_constant_expression ::= constant_expression

mintypmax_expression ::=
expression

| expression : expression : expression

module_path_conditional_expression ::= module_path_expression ? { attribute_instance }
module_path_expression : module_path_expression

module_path_expression ::=
module_path_primary

| unary_module_path_operator { attribute_instance } module_path_primary
| module_path_expression binary_module_path_operator { attribute_instance }

module_path_expression
| module_path_conditional_expression

module_path_mintypmax_expression ::=
module_path_expression

| module_path_expression : module_path_expression : module_path_expression

msb_constant_expression ::= constant_expression

range_expression ::=
expression

| msb_constant_expression : lsb_constant_expression
| base_expression +: width_constant_expression
| base_expression -: width_constant_expression

width_constant_expression ::= constant_expression

A.8.4 Primaries
constant_primary ::=

constant_concatenation
| constant_function_call
| (constant_mintypmax_expression)
| constant_multiple_concatenation
| genvar_identifier
248 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
| number
| parameter_identifier
| specparam_identifier
| time_literal
| ’0 | ’1 | ’z | ’Z | ’x | ’X

module_path_primary ::=
number

| identifier
| module_path_concatenation
| module_path_multiple_concatenation
| function_call
| system_function_call
| constant_function_call
| (module_path_mintypmax_expression)

primary ::=
number

| hierarchical_identifier
| hierarchical_identifier [expression] { [expression] }
| hierarchical_identifier [expression] { [expression] } [range_expression]
| hierarchical_identifier [range_expression]
| concatenation
| multiple_concatenation
| function_call
| system_function_call
| constant_function_call
| (mintypmax_expression)
| { expression { , expression } }
| { expression { expression } }
| simple_type_or_number ’ (expression)
| simple_type_or_number ’ { expression { , expression } }
| simple_type_or_number ’ { expression { expression } }
| time_literal
| ’0 | ’1 | ’z | ’Z | ’x | ’X

time_literal ::=
unsigned_number time_unit

| fixed_point_number time_unit

time_unit ::= s | ms | us | ns | ps | fs

A.8.5 Expression left-side values
net_lvalue ::=

hierarchical_net_identifier
| hierarchical_net_identifier [constant_expression] { [constant_expression] }
| hierarchical_net_identifier [constant_expression] { [constant_expression] }

[constant_range_expression]
| hierarchical_net_identifier [constant_range_expression]
| hierarchical_net_identifier ([constant_expression { , constant_expression }])
| net_concatenation

variable_lvalue ::=
variable_lvalue_item [inc_or_dec_operator]

| hierarchical_variable_identifier ([constant_expression { , constant_expression }])

variable_lvalue_item ::=
hierarchical_variable_identifier
Copyright 2003 Accellera. All rights reserved. 249

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
| hierarchical_variable_identifier [expression] { [expression] }
| hierarchical_variable_identifier [expression] { [expression] } [range_expression]
| hierarchical_variable_identifier [range_expression]
| variable_concatenation

A.8.6 Operators
unary_operator ::=

+ | - | ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~

binary_operator ::=
+ | - | * | / | % | == | != | === | !== | && | || | **

| < | <= | > | >= | & | | | ^ | ^~ | ~^ | >> | << | >>> | <<<

inc_or_dec_operator ::= ++ | --

unary_module_path_operator ::=

 ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~

binary_module_path_operator ::=

 == | != | && | || | & | | | ^ | ^~ | ~^

A.8.7 Numbers
number ::=

decimal_number
| octal_number
| binary_number
| hex_number
| real_number

decimal_number ::=
unsigned_number

| [size] decimal_base unsigned_number
| [size] decimal_base x_digit { _ }
| [size] decimal_base z_digit { _ }

binary_number ::= [size] binary_base binary_value

octal_number ::= [size] octal_base octal_value

hex_number ::= [size] hex_base hex_value

sign ::= + | -

size ::= non_zero_unsigned_number

non_zero_unsigned_number1 ::= non_zero_decimal_digit { _ | decimal_digit}

real_number1 ::=
fixed_point_number

| unsigned_number [. unsigned_number] exp [sign] unsigned_number

fixed_point_number1 ::= unsigned_number . unsigned_number

exp ::= e | E

unsigned_number1 ::= decimal_digit { _ | decimal_digit }

binary_value1 ::= binary_digit { _ | binary_digit }

octal_value1 ::= octal_digit { _ | octal_digit }

hex_value1 ::= hex_digit { _ | hex_digit }

decimal_base1 ::= ’[s|S]d | ’[s|S]D

binary_base1 ::= ’[s|S]b | ’[s|S]B
250 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH1
octal_base1 ::= ’[s|S]o | ’[s|S]O

hex_base1 ::= ’[s|S]h | ’[s|S]H

non_zero_decimal_digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

decimal_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

binary_digit ::= x_digit | z_digit | 0 | 1

octal_digit ::= x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

hex_digit ::= x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | f | A | B | C | D | E | F

x_digit ::= x | X

z_digit ::= z | Z | ?

A.8.8 Strings
string ::= " { Any_ASCII_Characters_except_new_line } "

A.9 General

A.9.1 Attributes
attribute_instance ::= (* attr_spec { , attr_spec } *)

attr_spec ::=
attr_name = constant_expression

| attr_name

attr_name ::= identifier

A.9.2 Comments
comment ::=

one_line_comment
| block_comment

one_line_comment ::= // comment_text \n

block_comment ::= /* comment_text */

comment_text ::= { Any_ASCII_character }

A.9.3 Identifiers
arrayed_identifier ::=

simple_arrayed_identifier
| escaped_arrayed_identifier

block_identifier ::= identifier

cell_identifier ::= identifier

config_identifier ::= identifier

const_identifier ::= identifier

enum_identifier ::= identifier

escaped_arrayed_identifier ::= escaped_identifier [range]

escaped_hierarchical_identifier4 ::=
escaped_hierarchical_branch { .simple_hierarchical_branch | .escaped_hierarchical_branch }

escaped_identifier ::= \ {any_ASCII_character_except_white_space} white_space

event_identifier ::= identifier

function_identifier ::= identifier

gate_instance_identifier ::= arrayed_identifier

generate_block_identifier ::= identifier
Copyright 2003 Accellera. All rights reserved. 251

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
genvar_function_identifier ::= identifier8

genvar_identifier ::= identifier

hierarchical_block_identifier ::= hierarchical_identifier

hierarchical_event_identifier ::= hierarchical_identifier

hierarchical_function_identifier ::= hierarchical_identifier

hierarchical_identifier ::=
simple_hierarchical_identifier

| escaped_hierarchical_identifier

hierarchical_net_identifier ::= hierarchical_identifier

hierarchical_variable_identifier ::= hierarchical_identifier

hierarchical_task_identifier ::= hierarchical_identifier

identifier ::=
simple_identifier

| escaped_identifier

interface_identifier ::= identifier

inout_port_identifier ::= identifier

input_port_identifier ::= identifier

instance_identifier ::= identifier

library_identifier ::= identifier

memory_identifier ::= identifier

modport_identifier ::= identifier

module_identifier ::= identifier

module_instance_identifier ::= arrayed_identifier

net_identifier ::= identifier

output_port_identifier ::= identifier

parameter_identifier ::= identifier

port_identifier ::= identifier

real_identifier ::= identifier

simple_arrayed_identifier ::= simple_identifier [range]

simple_hierarchical_identifier3 ::= simple_hierarchical_branch [.escaped_identifier]

simple_identifier2 ::= [a-zA-Z_] { [a-zA-Z0-9_$] }

specparam_identifier ::= identifier

state_identifier ::= identifier

system_function_identifier5 ::= $[a-zA-Z0-9_$]{ [a-zA-Z0-9_$] }

system_task_identifier5 ::= $[a-zA-Z0-9_$]{ [a-zA-Z0-9_$] }

task_or_function_identifier ::= task_identifier | function_identifier

task_identifier ::= identifier

terminal_identifier ::= identifier

text_macro_identifier ::= simple_identifier

topmodule_identifier ::= identifier

type_declaration_identifier ::= type_identifier { packed_dimension }

type_identifier ::= identifier

udp_identifier ::= identifier
252 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
udp_instance_identifier ::= arrayed_identifier

variable_decl_assign_identifier ::= variable_identifier { unpacked_dimension } [= constant_expression]

variable_declaration_identifier ::= variable_identifier { unpacked_dimension }

variable_identifier ::= identifier

A.9.4 Identifier branches

simple_hierarchical_branch3 ::=
simple_identifier { [unsigned_number] } [{ . simple_identifier { [unsigned_number] } }]

escaped_hierarchical_branch4 ::=
escaped_identifier { [unsigned_number] } [{ . escaped_identifier { [unsigned_number] } }]

A.9.5 White space

white_space ::= space | tab | newline | eof6

NOTES

1) Embedded spaces are illegal.

2) A simple_identifier and arrayed_reference shall start with an alpha or underscore (_) character, shall
have at least one character, and shall not have any spaces.

3) The period (.) in simple_hierarchical_identifier and simple_hierarchical_branch shall not be preceded
or followed by white_space.

4) The period in escaped_hierarchical_identifier and escaped_hierarchical_branch shall be preceded by
white_space, but shall not be followed by white_space.

5) The $ character in a system_function_identifier or system_task_identifier shall not be followed by
white_space. A system_function_identifier or system_task_identifier shall not be escaped.

6) End of file.

7) Must be a void function

8) Hierarchy is not allowed
Copyright 2003 Accellera. All rights reserved. 253

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
254 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH19

BC-CH20

EC-CH24

EC-CH25

BC19-59b

EC-CH79

EC-CH89

EC-CH102
Annex B
Keywords

SystemVerilog reserves the following keywords:

alias‡
all‡
always
always_comb†
always_ff†

always_latch†

and
any‡
assert†

assert_strobe†

assign
async‡
automatic
before‡
begin
bit†

break†

buf
bufif0
bufif1
byte†

case
casex
casez
cell
changed†

char†

class‡
clocking‡
cmos
config
const†

constraint‡
continue†

deassign
default
defparam
design
disable
do†

else
end
endcase
endclass‡
endclocking‡
endconfig
endfunction
endgenerate
endinterface†

endmodule

endprimitive
endprogram‡
endspecify
endtable
endtask
endtransition†

enum†

event
export†

extends‡
extern†

final‡

for
force
forever
fork
forkjoin†

function
generate
genvar
handle‡
highz0
highz1
if
iff†

ifnone
import†

incdir
include
initial
inout
input
inside‡
instance
int†

integer
interface†

join
join_any‡
join_none‡
large
liblist
library
local‡
localparam
logic†

longint†

longreal†

macromodule
medium

modport†

module
nand
negedge
new‡
nmos
none‡
nor
noshowcancelled
not
notif0
notif1
null‡
or
output
packed†

parameter
pmos
posedge
primitive
priority†

process†

program‡
protected‡
pull0
pull1
pulldown
pullup
pulsestyle_onevent
pulsestyle_ondetect
public‡
rand‡
randc‡
rcmos
real
realtime
reg
release
repeat
return
rnmos
rpmos
rtran
rtranif0
rtranif1
scalared
shortint†

shortreal†

showcancelled
signed

small
solve‡
specify
specparam
static†

string‡
strong0
strong1
struct†

super‡
supply0
supply1
table
task
this‡
time
timeprecision†

timeunit†

tran
tranif0
tranif1
transition†

tri
tri0
tri1
triand
trior
trireg
type†

typedef†

union†

unique†

unsigned
use
var‡
vectored
virtual‡
void†

wait
wand
weak0
weak1
while
wire
with‡
wor
xnor
xor
Copyright 2003 Accellera. All rights reserved. 255

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
† keywords added to the IEEE 1364 Verilog-2001 standard as part of SystemVerilog 3.0
‡ keywords added to the IEEE 1364 Verilog-2001 standard as part of SystemVerilog 3.1
256 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH105
Annex C
String Methods

(Informative)

C.4 Introduction

SystemVerilog 3.1 adds the string data type, which is a variable length array. SystemVerilog 3.1 also sup-
ports a wide range of methods that operate and manipulate variables of the string type. These methods use
an object-oriented-like notation, that allow the creation of a large number of built-in, type-specific functions
without cluttering the global name space. These methods are described in the following sections.

C.5 len()

function integer len()

— str.len() returns the length of the string, i.e., the number of characters in the string (excluding any ter-
minating character).

— If str is “” then str.len() returns 0.

C.6 putc()

task putc(integer i, string s)
task putc(integer i, char c)

— str.putc(i, c) replaces the ith character in str with the given integral value.

— str.putc(i, s) replaces the ith character in str with the first character in s.

— s can be any expression that can be assigned to a string.

— putc doesn't change the size of str: If i < 0 or i >= str.len(), then str is unchanged.

Note: str.putc(j, x) is identical to str[j] = x.

C.7 getc()

function int getc(integer i)

— str.getc(i) returns the ASCII code of the ith character in str.

— If i < 0 or i >= str.len(), then str.getc(i) returns 0.

Note: x = str.getc(j) is identical to x = str[j].

Editor’s Note: This entire section is new for draft 1. Only the Section titles have been highlighted as new text.

Editor’s Note: Is it being suggested that SystemVerilog tools build in these methods? If so, something to that
effect should be stated in this intro.
Copyright 2003 Accellera. All rights reserved. 257

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
C.8 toupper()

function string toupper()

— str.toupper() returns a string with characters in str converted to uppercase.

— str is unchanged.

C.9 tolower()

function string tolower()

— str.tolower() returns a string with characters in str converted to lowercase.

— str is unchanged.

C.10 compare()

function compare(string s)

— str.compare(s) compares str and s, character by character and returns the difference between the first
character in which they differ.

— If the strings are equal, str.compare(s) returns 0. (like strcmp in ANSI C).

See the relational string operators in section 3.8, table 3-2.

C.11 icompare()

function icompare(string s)

— str.icompare(s) behaves is similar to compare(), but the comparison is case insensitive.

C.12 substr()

function string substr(integer i, integer j)

— str.substr(i, j) returns a sub-string formed by characters in position i through j of str.

— If 0 <= i <= j < str.len(), substr() returns “” (the empty string).

C.13 atoi(), atohex(), atooct(), atobin()

function integer atoi()
function integer atohex()
function integer atooct()
function integer atobin()

— str.atoi() returns the integer corresponding to the ASCII decimal representation in str. For example:

str = "123";
int i = str.atoi(); // assigns 123 to i.

The string is converted until to the first non-digit is encountered.

— atohex interprets the string as hexadecimal.

— atooct interprets the string as octal.
258 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3

EC-CH10
— atobin interprets the string as binary.

C.14 atoreal()

function real atoreal()

— str.atoreal() returns the real number corresponding to the ASCII decimal representation in str.

C.15 itoa()

task itoa(integer i)

— str.itoa(i) stores the ASCII decimal representation of i into str (inverse of atoi).

C.16 hextoa()

task hextoa(integer i)

— str.hextoa(i) stores the ASCII hexadecimal representation of i into str (inverse of atohex).

C.17 octtoa()

task octtoa(integer i)

— str.octtoa(i) stores the ASCII octal representation of i into str (inverse of atooct).

C.18 bintoa()

task bintoa(integer i)

— str.bintoa(i) stores the ASCII binary representation of i into str (inverse of atobin).

C.19 realtoa()

task realtoa(integer i)

— str.realtoa(i) stores the ASCII real representation of i into str (inverse of atoreal).
Copyright 2003 Accellera. All rights reserved. 259

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
260 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Annex D
Linked Lists

(Informative)

The List package is analogous to the C++ STL (Standard Template Library) List container that is popular with
C++ programmers. However, instead of C++ templates, the generic code is done using macros. This will be
changed to use a parameterized list.

D.20 List definitions

list —A list is a doubly linked list, where every element has a predecessor and successor. It is a sequence that
supports both forward and backward traversal, as well as amortized constant time insertion and removal of ele-
ments at the beginning, end, or middle.

container—A container is a collection of objects of the same type (for example, a container of network pack-
ets, a container of microprocessor instructions, etc.). Containers are objects that contain and manage other
objects and provide iterators that allow the contained objects to be addressed. A container has methods for
accessing its elements. Every container has an associated iterator type that can be used to iterate through the
container’s elements.

iterator—Iterators provide the interface to containers. They also provide a means to traverse the container ele-
ments. Iterators are pointers to nodes within a list. If an iterator points to an object in a range of objects and the
iterator is incremented, the iterator then points to the next object in the range.

D.21 List declaration

The List package supports lists of any arbitrary predefined type, such as integer, string, and class object.

To use a particular type of linked one must declare the list, thus:

‘include <ListMacros.vrh>
...
‘MakeVeraList(type)

D.21.1 Declaring list variables

A list variable must be declared before using it. This is done via the VeraList construct:

VeraList_type list1, list2, ..., listN;

Editor’s Note: This entire section is new for draft 1. Only the Section titles have been highlighted as new text.

Editor’s Note: What is being said in the preceding paragraph? Is it being suggested that SystemVerilog tools
include these macros? Or do the tools just provide a macro file that can be included? When will this be “changed
to use a parameterized list”, and who is going to do it?

Editor’s Note: Can the SystemVerilog standard use the name “Vera”?
Copyright 2003 Accellera. All rights reserved. 261

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
The VeraList construct declares lists of the indicated type. Data stored in the list elements must be of the same
type as the list declaration.

D.21.2 Declaring list iterators

All list iterators must be declared before using them via the VeraListIterator construct:

VeraListIterator_type iterator1, ..., iteratorN;

The VeraListIterator construct declares list iterators of the indicated type. An iterator has to be declared as with
any other variable declaration.

D.22 Size methods

This section describes the list methods that analyze list sizes.

D.22.1 size()

The size() method returns the number of elements in the list container:

list1.size();

D.22.2 empty()

The empty() method returns 1 if the number elements in the list container is 0:

list1.empty();

D.23 Element access methods

This section describes the list methods used to access list elements.

D.23.1 front()

The front() method returns the first element in the list:

list1.front();

D.23.2 back()

The back() method returns the last element in the list:

list1.back();

D.24 Iteration methods

This section describes the list methods used for iteration.

D.24.1 start()

The start() method returns an iterator pointing to the first element in the list:

list1.start();
262 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
D.24.2 finish()

The finish() method returns an iterator pointing to the very end of the list, (i.e. past the end value(last element)
of the list. The last element can be accessed list.finish().prev().

D.25 Modifying methods

This section describes the list methods used to modify list containers.

D.25.1 assign()

The assign() method assigns elements of one list to another.

list1.assign(start_iterator, finish_iterator);

The method assigns the elements that lie between the two iterators to list1.

If the finish iterator points to an element before the start iterator, the range wraps around the end of the list.

The range iterators must be valid list iterators. If either points to a non-existent element or if they point to dif-
ferent lists, an error is generated.

D.25.2 swap()

The swap() method swaps the contents of two lists.

list1.swap(list2);

The method assigns the elements of list1 to list2, and vice versa.

Swapping a list with itself has no effect. Swapping lists of different sizes generates an error.

D.25.3 clear()

The clear() method removes all the elements of the specified list and releases all the memory allocated for the
list (except for the list header).

list1.clear();

D.25.4 purge()

The purge() method removes all the elements of the specified list, and releases all the memory allocated for
the list (including the list header), therefore avoiding possible memory leaks.

list1.purge();

To use a list that has been purged, the list must be re-created by calling new().

Both the purge() and clear() methods delete all the elements in the list. However, the purge() method deletes
the list header as well. Since the clear() method does not delete the list header,

subsequent list addition methods such as push_back() will work without having to do a new() on the list. If
you intend to use the same list again, use list1.clear(). If the list is being deleted forever, never to be used gain,
list1.purge() is recommended.

D.25.5 erase()

The erase() method removes the indicated element:
Copyright 2003 Accellera. All rights reserved. 263

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
new_iterator = list1.erase(position_iterator);

The element in the indicated position of list1 is removed from the list.

After the element is removed, subsequent elements are moved up (there is no resultant empty element). Upon
calling the erase() method, the position iterator is made invalid and the method returns a new iterator.

The position iterator must be a valid list iterator. If it points to a non-existent element, or an element from
another list, an error is generated.

D.25.6 erase_range()

The erase_range() method removes the elements in the indicated range:

list1.erase_range(start_iterator, finish_iterator);

The erase_range() method removes the elements in the range from list1. Note that the elements from start up
to, but not including, finish are removed. After the elements are removed, subsequent elements are moved up
(there is no resultant empty element). If the finish

iterator points to an element before the start iterator, the range wraps around the end of the list. Any iterators
pointing to elements within the range are made invalid.

The range iterators must be valid list iterators. If either points to a non-existent element or if they point to dif-
ferent lists, an error is generated.

D.25.7 push_back()

The push_back() method inserts data at the end of the list:

list1.push_back(data);

The data is added as another element at the end of list1. If the list already has the maximum allowed elements,
the element is not added and an overflow error is generated.

The data must be of type a compatible with the list type.

D.25.8 push_front()

The push_front() method inserts data at the front of the list:

list1.push_front(data);

The data is added as another element at the end of list1. If the list already has the maximum allowed elements,
the element is not added and an overflow error is generated.

The data must be of type a compatible with the list type.

D.25.9 pop_front()

The pop_front() method removes the first element of the list:

list1.pop_front();

The first element of list1 is removed. If list1 is empty, an error message is generated.
264 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
D.25.10 pop_back()

The pop_back() method removes the last element of the list:

list1.pop_back();

The last element of list1 is removed. If list1 is empty, an error message is generated.

D.25.11 insert()

The insert() method inserts data before the indicated position:

list1.insert(position_iterator, data);

The method inserts the given data before the indicated position. Subsequent elements are moved backward.
The position iterator must point to an element in the call list.

The data must be of type a compatible with the list type.

D.25.12 insert_range()

The insert_range() method inserts elements in a given range before the indicated position:

list1.insert_range(position_iterator, start_iterator, finish_iterator);

The method inserts the elements in the range between start and finish before the position given by position.
Note that the elements from start up to, but not including, finish are inserted. If the finish iterator points to an
element before the start iterator, the range wraps around the end of the list. The range iterators can specify a
range in another list or a range in list1.

The position iterator must point to an element in the calling list. the range iterators must be valid list iterators.
If either points to a non-existent element or if they point to different lists, an error is generated.

D.26 Iterator methods

This section describes the methods used by iterators.

D.26.1 next()

The next() method moves the iterator so that it points to the next item in the list:

I1.next();

D.26.2 prev()

The prev() method moves the iterator so that it points to the previous item in the list:

I1.prev();

D.26.3 eq()

The eq() method compares two iterators:

I1.eq(I2);

The method returns 1 if both iterators point to the same location in the same list. Otherwise, it returns 0.
Copyright 2003 Accellera. All rights reserved. 265

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
D.26.4 neq()

The neq() method compares two iterators:

I1.neq(I2);

The method returns 1 if the iterators point to different locations (either different locations in the same list or
any location in different lists). Otherwise, it returns 0.

D.26.5 data()

The data() method returns the data stored at a particular location:

I1.data();

The method returns the data stored at the location pointed to by iterator I1.

The data type is of the same type used in declaring the list via MakeVeraList(type).
266 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Annex E
Glossary

(Informative)

Assertion — An assertion is a statement that a certain property must be true. For example, that a read_request
must always be followed by a read_grant within 2 clock cycles. Assertions allow for automated checking that
the specified property is true, and can generate automatic error messages if the property is not true. SystemVer-
ilog provides special assertion constructs, which are discussed in Section 16.

Elaboration — Elaboration is the process of binding together the components that make up a design. These
components can include module instances, primitive instances, interfaces, and the top-level of the design hier-
archy. SystemVerilog requires a specific order of elaboration, which is presented in Section 17.2.

Enumerated type — Enumerated data types provide the capability to declare a variable which can have one
of a set of named values. The numerical equivalents of these values may be specified. Enumerated types can be
easily referenced or displayed using the enumerated names, as opposed to the enumerated values. Section 3.11
discusses enumerated types.

Interface — An interface encapsulates the communication between blocks of a design, allowing a smooth
migration from abstract system-level design through successive refinement down to lower-level register-trans-
fer and structural views of the design. By encapsulating the communication between blocks, the interface con-
struct also facilitates design re-use. The inclusion of interface capabilities is one of the major advantages of
SystemVerilog. Interfaces are covered in Section 18.

LRM — LRM is an abbreviation for Language Reference Manual. “SystemVerilog LRM” refers to this docu-
ment. “Verilog LRM” refers to the IEEE manual “1364-2001 IEEE Standard for Verilog Hardware Description
Language 2001”. See Annex F for information about this manual.

Packed array — Packed array refers to an array where the dimensions are declared before an object name.
Packed arrays can have any number of dimensions. A one-dimensional packed array is the same as a vector
width declaration in Verilog. Packed arrays provide a mechanism for subdividing a vector into subfields,
which can be conveniently accessed as array elements. A packed array differs from an unpacked array, in that
the whole array is treated as a single vector for arithmetic operations. Packed arrays are discussed in detail in
Section 4.

Process — A process is a thread of one or more programming statements which can be executed indepen-
dently of other programming statements. Each initial procedure, always procedure and continuous assignment
statement in Verilog is a separate process. These are static processes. That is, each time the process starts run-
ning, there is an end to the process. SystemVerilog adds specialized always procedures, which are also static
processes, and dynamic processes, introduced by the process keyword. When dynamic processes are started,
they can run without ending. Processes are presented in Section 9.

SystemVerilog — SystemVerilog refers to the Accellera standard for a set of abstract modeling and verifica-
tion extensions to the IEEE 1364-2001 Verilog standard. The many features of the SystemVerilog standard are
presented in this document.

Unpacked array — Unpacked array refers to an array where the dimensions are declared after an object
name. Unpacked arrays are the same as arrays in Verilog, and can have any number of dimensions. An
unpacked array differs from a packed array, in that the whole array cannot be used for arithmetic operations.
Each element must be treated separately. Unpacked arrays are discussed in Section 4.

Verilog — Verilog refers to the IEEE 1364-2001 Verilog Hardware Description Language (HDL), commonly
called Verilog-2001. This language is documented in the IEEE manual “1364-2001 IEEE Standard for Verilog
Hardware Description Language 2001”. See Annex F for information about this manual.
Copyright 2003 Accellera. All rights reserved. 267

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
268 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Annex F
Bibliography

(Informative)

[B1] IEEE Std. 754-1985, IEEE Standard for Binary Floating-Point Arithmetic 1985. ISBN 1-5593-7653-8.
IEEE Product No. SH10116-TBR.

[B2] IEEE Std. 1364-1995, IEEE Standard Hardware Description Language Based on the Verilog¨ Hardware
Description Language 1995. ISBN 0-7381-3065-6. IEEE Product No. WE94418-TBR.

[B3] IEEE Std. 1364-2001, IEEE Standard for Verilog Hardware Description Language 2001. ISBN 0-7381-
2827-9. IEEE Product No. SH94921-TBR.
Copyright 2003 Accellera. All rights reserved. 269

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
270 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
Index

Symbols
$assertkill 222
$assertoff 222
$asserton 222
$bits 22, 220
$dimensions 28, 221
$error 125, 134, 221
$fatal 125, 134, 221
$high 28, 220
$increment 28, 221
$info 125, 134, 221
$inset 223
$insetz 223
$isunknown 223
$left 28, 220
$length 28, 221
$low 28, 220
$onehot 223
$onehot0 223
$right 28, 220
$root 166–167
$warning 125, 134, 221
%= operator 43
&= operator 43
’ cast operator 22
*= operator 43, 45
-- operator 43
++ operator 43
+= operator 43, 45
.* port connections 175
.name port connections 174
/= operator 43, 45
<<<= operator 43
<<= operator 43
-= operator 43, 45
>>= operator 43
>>>= operator 43
@@ step control 128
\ line continuation 224
\a bell 4
\f form feed 4
\v vertical tab 4
\x02 hex number 4
^= operator 43
‘ " isolated quote 224
‘ ‘ double back tick 224
‘define 224
‘timescale 8, 172
|= operator 43
Copyright 2003 Accellera
Numerics
2-state types 8
4-state types 8

A
always @* 59
always_comb 59–60
always_ff 60
always_latch 59–60
and 141–142
anding sequences 141
array literals 5
array part selects 27
array querying functions 28, 220
array slices 27
arrays 25
assert 125
assert_strobe 126
assertion expression sequence 130
assertion system functions 222
assertion system tasks 221–222
assertions 123–131, 267
assign 39, 49, 58, 225
assignment operators 43
assignments in expressions 43
atobin() 259
atohex() 258
atoi() 258
atooct() 258
atoreal() 259
attributes 42
automatic 37–39, 66
automatic tasks 68

B
bell 4
bintoa() 259
bit 6–8
block name 55
blocking assignments 50
boolean expression 136
break 49, 53, 56
byte 7–8

C
casting 22
changed 57
char 7–8
check 134
class 7
clock tick 135
clocked immediate assertions 128
combinational logic 59
compare() 258
concatenation 47
. All rights reserved. 271

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
configurations 219
const 37
constants 37
continue 49, 53, 56
continuous assignment 60

D
data declarations 37
data types 6
deassign 49, 58, 225
decrementor operator 43
defparam 196, 225
disable 56
do...while loop 49, 52
double 9
dynamic processes 59, 61

E
edge event 141
elaboration 37–38, 166, 267
enum 14–15
enumerated types 14–15, 267
export 188
extern 188, 192

F
first_match 147
float 9
force 39, 49
forkjoin 179, 188, 192
form feed 4
functions 69
functions in interfaces 188

G
getc() 257
goto 54

H
hextoa() 259
hierarchical names 178

I
icompare() 258
iff 57
immediate assertions 125, 133
implicit port connections 176
import 188
incrementor operator 43
int 6–8
integer 7–8
integer literals 4
interface 42, 179–194, 267
intersect 144
introduction to SystemVerilog 1
itoa() 259
272 Copyright 2003 Accellera
L
labels 55
latched logic 60
len() 257
libraries 219
library map files 219
literal values 3
localparam 196
logic 6–8, 39
longint 6–8
LRM 267

M
modport 179, 184
module instantiation 173–175
multiple dimension arrays 26

N
name space 177
named blocks 55
named port connections 174
nested identifiers 178
nested modules 169
nonblocking assignments 50

O
octtoa() 259
operator associativity 46
operator precedence 46
or 144
oring sequences 144
overview of SystemVerilog 1

P
packed arrays 25–26, 44, 267
parameter 196
parameter type 196
part selects 27
port connections, .* 175
port connections, .name 174
port connections, implicit 176
port declarations 171, 177
precedence 46
priority 51–52
process 56, 59, 61, 267
process execution threads 63
putc() 257

R
real 4, 6, 9, 45
real literals 4
realtoa() 259
reg 6–8
release 49
return 49, 53, 56, 68, 70
. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 3
S
sequence expression 136
sequential assertions 127
sequential logic 60
sequential regular expression 128
shortint 7–8
shortreal 4, 6, 9, 45
signed types 8
slices 27
specparam 196
statement labels 55
static 37–39, 66
static processes 56, 59
static tasks 68
step control 128
string 7, 257
string literals 4
string methods

atobin() 259
atohex() 258
atoi() 258
atooct() 258
atoreal() 259
bintoa() 259
compare() 258
getc() 257
hextoa() 259
icompare() 258
itoa() 259
len() 257
octtoa() 259
putc() 257
realtoa() 259
substr() 258
tolower() 258
toupper() 258

strobed assertions 126
struct 19
structure literals 5
structures 19
substr() 258
SystemVerilog, overview 1
SystemVerilog,version numbers 1

T
tasks 67
tasks in interfaces 188
threads 63
time literals 4
time unit 4
timeprecision 8, 172
timeunit 8, 171
tolower() 258
top level 166
Copyright 2003 Accellera
toupper() 258
type 196
typedef 6, 13

U
union 20
unions 19
unique 51–52
unpacked arrays 25–26, 267
unsigned types 8
unsized literals 4
user-defined types 13

V
variable initialization 38
vertical tab 4
void 9
void functions 66, 70

W
while 49, 52
. All rights reserved. 273

Accellera
SystemVerilog 3.1/draft 3 Extensions to Verilog-2001
274 Copyright 2003 Accellera. All rights reserved.

	Acknowledgements
	Table of Contents
	Section 1 Introduction to SystemVerilog
	Section 2 Literal Values
	2.1 Introduction (informative)
	2.2 Literal value syntax
	2.3 Integer and logic literals
	2.4 Real literals
	2.5 Time literals
	2.6 String literals
	2.7 Array literals
	2.8 Structure literals

	Section 3 Data Types
	3.1 Introduction (informative)
	3.2 Data type syntax
	3.3 Integer data types
	3.3.1 Integral types
	3.3.2 2-state (two-value) and 4-state (four-value) data types
	3.3.3 Signed and unsigned data types

	3.4 Time data types
	3.5 Real and shortreal data types
	3.6 Void data type
	3.7 Handle data type
	3.8 String data type
	Table�3�2: String operators

	3.9 Event data type
	3.10 User-defined types
	Syntax�3�2— user-defined types (excerpt from Annex A)

	3.11 Enumerations
	Syntax�3�3— enumerated types (excerpt from Annex A)
	3.11.1 Defining new data types as enumerated types
	3.11.2 Enumerated type ranges
	Table�3�3: Enumeration element ranges

	3.11.3 Type checking
	3.11.4 Enumerated Types in Numerical Expressions
	Table�3�4: Increment and decrement operations on enumerated types

	3.11.5 Methods for iterating over enumerated types
	3.11.5.1 first()
	3.11.5.2 last()
	3.11.5.3 next()
	3.11.5.4 prev()
	3.11.5.5 num()
	3.11.5.6 name()

	3.12 Structures and Unions
	Syntax�3�4— structures and unions (excerpt from Annex A)

	3.13 Class
	3.14 Casting
	Syntax�3�5— casting (excerpt from Annex A)

	3.15 $cast dynamic casting

	Section 4 Arrays
	4.1 Introduction (informative)
	4.2 Packed and unpacked arrays
	4.3 Multiple dimensions
	4.4 Indexing and slicing of arrays
	4.5 Array querying functions
	4.6 Dynamic arrays
	4.6.1 new[�]
	4.6.2 size()
	4.6.3 delete()

	4.7 Array assignment
	4.8 Arrays as arguments
	4.9 Associative arrays
	4.9.1 Unspecified index type
	4.9.2 String index
	4.9.3 Class index
	4.9.4 Integer (or int) index
	4.9.5 Signed packed array
	4.9.6 Unsigned packed array or packed struct

	4.10 Associative array methods
	4.10.1 num()
	4.10.2 delete()
	4.10.3 exists()
	4.10.4 first()
	4.10.5 last()
	4.10.6 next()
	4.10.7 prev()

	4.11 Associative array assignment
	4.12 Associative array arguments

	Section 5 Data Declarations
	5.1 Introduction (informative)
	5.2 Data declaration syntax
	5.3 Constants
	5.4 Variables
	5.5 Scope and lifetime
	5.6 Nets, regs, and logic
	5.7 Signal Aliasing

	Section 6 Attributes
	6.1 Introduction (informative)
	6.2 Attribute syntax for interfaces

	Section 7 Operators and Expressions
	7.1 Introduction (informative)
	7.2 Operator syntax
	7.3 Assignment, incrementor and decrementor operations
	7.4 Operations on logic and bit types
	7.5 Wild equality and wild inequality
	7.6 Real operators
	7.7 Size
	7.8 Sign
	7.9 Operator precedence and associativity
	Table�7�2: Operator precedence and associativity�

	7.10 Built-in methods
	7.11 Concatenation

	Section 8 Procedural Statements and Control Flow
	8.1 Introduction (informative)
	8.2 Blocking and nonblocking assignments
	Syntax�8�2— blocking and nonblocking assignment syntax (excerpt from Annex A)

	8.3 Selection statements
	Syntax�8�3— Selection statement syntax (excerpt from Annex A)

	8.4 Loop statements
	Syntax�8�4— Loop statement syntax (excerpt from Annex A)
	8.4.1 The do...while loop
	8.4.2 Enhanced for loop

	8.5 Jump statements
	Syntax�8�5— Jump statement syntax (excerpt from Annex A)

	8.6 Final blocks
	8.7 Named blocks and statement labels
	Syntax�8�6— Blocks and labels syntax (excerpt from Annex A)

	8.8 Disable
	8.9 Event control
	Syntax�8�7— Delay and event control syntax (excerpt from Annex A)

	8.10 Procedural assign and deassign removal

	Section 9 Processes
	9.1 Introduction (informative)
	9.2 Level sensitive logic
	9.3 Latch sensitive logic
	9.4 Edge sensitive logic
	9.5 Continuous assignments
	9.6 Dynamic processes
	9.7 fork...join
	9.8 Process execution threads
	9.9 Process control
	9.9.1 $wait_child() wait fork
	9.9.2 $terminate Disable fork
	9.9.3 $suspend_thread()

	Section 10 Tasks and Functions
	10.1 Introduction (informative)
	10.2 Tasks
	10.3 Functions
	Syntax�10�2— Function syntax (excerpt from Annex A)
	10.3.1 Void functions
	10.3.2 Discarding Function Return Values

	10.4 Task and function scope and lifetime
	10.5 Task and function argument passing
	10.5.1 Pass by value
	10.5.2 Pass by reference
	10.5.3 Default argument values
	10.5.4 Argument passing by name
	10.5.5 Optional argument list

	Section 11 Classes
	11.1 Introduction (informative)
	11.2 Syntax
	11.3 Overview
	11.4 Objects (class instance)
	Table�11�2: Comparison of pointer and handle types

	11.5 Object properties
	11.6 Object methods
	11.7 Constructors
	11.8 Class properties
	11.9 This
	11.10 Assignment, re-naming and copying
	11.11 Inheritance and subclasses
	11.12 Overridden members
	11.13 Super
	11.14 Casting
	11.15 Chaining constructors
	11.16 Data hiding and encapsulation
	11.17 Constant Properties
	11.18 Abstract classes and virtual methods
	11.19 Polymorphism: dynamic method lookup
	11.20 Out of block declarations
	11.21 Parameterized classes
	11.22 Typedef class
	11.23 Classes, structures, and unions
	1) SystemVerilog struct are strictly static objects; they are created either in a static memory l...
	2) SystemVerilog structs are type compatible so long as their bit sizes are the same, thus copyin...
	3) SystemVerilog 3.1 objects are implemented using handles, thereby providing C-like pointer func...
	4) SystemVerilog 3.1 objects form the basis of an Object-Oriented framework that provides true po...

	11.24 Memory management

	Section 12 Inter-Process Synchronization and Communication
	12.1 Introduction (informative)
	12.2 Semaphores
	12.2.1 new()
	12.2.2 put()
	12.2.3 get()

	12.3 try_get()
	12.4 Mailboxes
	12.4.1 new()
	12.4.2 num()
	12.4.3 put()
	12.4.4 try_put()
	12.4.5 get()
	12.4.6 try_get()
	12.4.7 peek()
	12.4.8 try_peek()

	12.5 Parameterized mailboxes
	12.5.1 $sync()
	12.5.2 $trigger()
	Table�12�2: $trigger operations

	12.5.3 Disabling events
	12.5.4 Merging Events

	12.6 Event
	12.6.1 Non-Persistent Events
	12.6.2 Persistent Events: event bit
	12.6.3 Triggering an Event
	12.6.4 Waiting for an Event

	12.7 Event synchronization utilities
	12.7.1 $wait_all()
	12.7.2 $wait_any()
	12.7.3 $wait_order()

	12.8 Event variables
	12.8.1 Disabling Events
	12.8.2 Merging Events

	12.9 $wait_var()

	Section 13 Clocking Domains
	13.1 Introduction (informative)
	13.2 Clocking domain declaration
	13.3 Input and output skews
	Figure 13�1— Sample and drive times including skew with respect to the positive edge of the clock.

	13.4 Hierarchical expressions
	13.5 Signals in multiple clocking domains
	13.6 Clocking domain scope and lifetime
	13.7 Multiple clocking domain example
	13.8 Interfaces and clocking domains
	13.9 Clocking domain events
	13.10 Cycle delay: ##
	13.11 Default clocking
	13.12 Synchronization Synchronous events
	13.13 Signal Input sampling
	13.14 Signal Synchronous drives
	13.14.1 Blockingand nonblocking drives Drives and nonblocking assignments
	13.14.2 Drive value resolution
	13.14.3 Drive / assignment ambiguity

	Section 14 Signal Synchronous Operations
	14.1 Introduction (informative)

	Section 15 Program Block
	15.1 Introduction (informative)
	1) It provides an entry point where the test-bench begins execution.
	2) It creates a scope that encapsulates program-wide data.

	15.2 The program construct
	15.3 Static data initialization
	15.4 Scope and lifetime
	15.5 Multiple programs
	15.6 Eliminating zero-skew races
	15.7 Eliminating races and SystemVerilog event queue
	15.8 Blocking tasks in cycle/event mode
	15.9 Program control tasks
	15.9.1 $exit()

	Section 16 Assertions [SV 3.0]
	16.1 Introduction (informative)
	16.2 Procedural assertions
	16.3 Immediate assertions
	16.4 Strobed assertions
	16.5 Sequential assertions
	16.6 More expression sequences
	16.7 Aborting assertions externally
	16.8 Controlling assertions
	16.9 System functions

	Section 16 Assertions
	16.1 Introduction (informative)
	16.2 Immediate assertions
	Syntax�16�2— Immediate assertion syntax

	16.3 Concurrent assertions
	Figure 16�2— Sampling a Variable on Simulation Ticks

	16.4 Sequences
	Syntax�16�3— Sequence concatenation syntax
	Figure 16�3— Concatenation

	16.5 Declaring sequences
	Syntax�16�4— Declaring sequence syntax

	16.6 Sequence operations
	16.6.1 Repetition in sequences
	Syntax�16�5— Sequence concatenation syntax

	16.6.2 Value change functions
	Syntax�16�6— Value change function syntax
	Figure 16�4— Value Change Expressions

	16.6.3 AND operation
	Syntax�16�7— and operator syntax
	Figure 16�5— ANDing (and) Two Sequences
	1) The first operand sequence starts five sequences of evaluation.
	2) The second operand sequence has only one possibility of match, so only one sequence is started.
	3) Figure�16�6 shows the attempt to examine at clock tick 8 when both operand sequences start and...
	4) To compute the result for the composite expression, each successful sequence from the first op...

	Figure 16�6— ANDing (and) Two Sequences Including a Time Range
	Figure 16�7— ANDing (and) Two Boolean Expressions

	16.6.4 Intersection (AND with length restriction)
	Syntax�16�8— intersect operator syntax

	16.6.5 OR operation
	Syntax�16�9— or operator syntax
	Figure 16�8— ORing (or) Two Sequences
	Figure 16�9— ORing (or) Two Sequences
	Figure 16�10— ORing (or) Two Sequences Including a Time Range

	16.6.6 first_match operation
	Syntax�16�10— first_match operator syntax

	16.6.7 Boolean implication (sequences based on boolean condition)
	Syntax�16�11— if Boolean implication syntax
	Figure 16�11— Conditional Sequence Matching
	Figure 16�12— Conditional Sequences
	Figure 16�13— Results without the Condition

	16.6.8 Sequential implication (sequences based on sequential conditions)
	Syntax�16�12— Sequential implication syntax

	16.6.9 Conditions over sequences
	Syntax�16�13— throughout construct syntax
	Figure 16�14— Match with throughout-within Restriction Fails
	Figure 16�15— Match with throughout-within Restriction Succeeds

	16.6.10 Sequence occurrence within another sequence
	Syntax�16�14— Sequence within another sequence syntax

	16.6.11 Detecting and using endpoint of a sequence
	Syntax�16�15— ended operator syntax

	16.7 Declaring boolean expressions
	Syntax�16�16— bool type declaration syntax
	Syntax�16�17— boolean_expression syntax

	16.8 Manipulating data in a sequence
	Syntax�16�18— variable declaration syntax

	16.9 System functions
	Syntax�16�19— $past function syntax
	Syntax�16�20— $countones function syntax

	16.10 The property definition
	Syntax�16�21— property construct syntax
	Syntax�16�22— Verification directive syntax
	16.10.1 Declaring properties outside of procedural code
	16.10.2 Embedding properties in procedural code

	16.11 Grouping assertions as a library
	Syntax�16�23— Library groupings syntax
	Syntax�16�24— template instantiation syntax

	16.12 Binding properties to scopes or instances
	Syntax�16�25— bind construct syntax

	Section 17 Hierarchy
	17.1 Introduction (informative)
	17.2 The $root top level
	17.3 Module declarations
	17.4 Nested modules
	17.5 Port declarations
	Syntax�17�2— Port declaration syntax (excerpt from Annex A)

	17.6 Time unit and precision
	1) If a timeunit has been specified in the current module, then the time unit is set to module’s ...
	2) Else, if the module definition is nested, then the time unit is inherited from the enclosing m...
	3) Else, if a ‘timescale directive has been specified, then the time unit is set to the units of ...
	4) Else, if the $root top level has a time unit, then the time unit set to the time units of the ...
	5) Else, the simulator’s default time units are used.

	17.7 Module instances
	Syntax�17�3— Module instance syntax (excerpt from Annex A)
	17.7.1 Instantiation using positional port connections
	17.7.2 Instantiation using named port connections
	17.7.3 Instantiation using implicit .name port connections
	17.7.4 Instantiation using implicit .* port connections
	17.7.5 Compatible data types for implicit port connections

	17.8 Port connection rules
	17.9 Name spaces
	17.10 Hierarchical names

	Section 18 Interfaces
	18.1 Introduction (informative)
	18.2 Interface syntax
	18.2.1 Example without using interfaces
	18.2.2 Interface example using a named bundle
	18.2.3 Interface example using a generic bundle

	18.3 Ports in interfaces
	18.4 Modports
	18.4.1 An example of a named port bundle
	18.4.2 An example of connecting a port bundle
	18.4.3 An example of connecting a port bundle to a generic interface

	18.5 Tasks and functions in interfaces
	18.5.1 An example of using tasks in an interface
	18.5.2 An example of using tasks in modports
	18.5.3 An example of exporting tasks and functions
	18.5.4 An example of multiple task exports

	18.6 Parameterized interfaces
	18.7 Access without Ports

	Section 19 Parameters
	19.1 Introduction (informative)
	19.1.1 Defparam removal

	19.2 Parameter declaration syntax

	Section 20 Random Constraints
	20.1 Introduction (informative)
	20.2 Overview
	20.3 Random variables
	20.3.1 rand modifier
	20.3.2 randc modifier

	20.4 Constraint blocks
	20.5 External constraint blocks
	20.6 Inheritance
	20.7 Set membership
	20.8 Distribution
	20.9 Implication
	20.10 if-else constraints
	20.11 Global constraints
	1) First, determine the set of objects that are to be randomized as a whole. Starting with the ob...
	2) Next, select all of the active constraints from the set of active random objects. These are th...
	3) Finally, select all of the active random variables from the set of active random objects. Thes...

	20.12 Variable ordering
	20.13 Randomization methods
	20.13.1 randomize()
	20.13.2 pre_randomize() and post_randomize()

	20.14 In-line constraints - randomize() with
	20.15 Disabling random variables
	20.15.1 $rand_mode()

	20.16 Disabling constraints
	20.16.1 $constraint_mode()
	Table�20�2: $constraint_mode first argument

	20.17 Static constraint blocks
	20.18 Dynamic constraint modification
	20.19 Random number system functions
	20.19.1 $urandom
	20.19.2 $urandom_range()
	20.19.3 $srandom()

	20.20 Random stability
	20.20.1 Random stability properties
	20.20.2 Thread stability
	20.20.3 Object stability

	20.21 Manually seeding randomize

	Section 21 Configuration libraries
	21.1 Introduction (informative)
	21.2 Libraries
	21.3 Library map files

	Section 22 System tasks and system functions
	22.1 Introduction (informative)
	22.2 Expression size system function
	22.3 Array querying system functions
	Syntax�22�2— Array querying function syntax (not in Annex A)

	22.4 Assertion severity system tasks
	Syntax�22�3— Assertion severity system task syntax (not in Annex A)

	22.5 Assertion control system tasks
	Syntax�22�4— Assertion control syntax (not in Annex A)

	22.6 Assertion system functions
	Syntax�22�5— Assertion system function syntax (not in Annex A)

	Section 23 Compiler Directives
	23.1 Introduction (informative)
	23.2 ‘define macros

	Section 24 Features under consideration for removal from SystemVerilog
	24.1 Introduction (informative)
	24.2 Defparam statements
	24.3 Procedural assign and deassign statements

	Annex A Formal Syntax
	A.1 Source text
	A.1.1 Library source text
	A.1.2 Configuration source text
	A.1.3 Module and primitive source text
	A.1.4 Module parameters and ports
	A.1.5 Module items
	A.1.6 Interface items

	A.2 Declarations
	A.2.1 Declaration types
	A.2.1.1 Module parameter declarations
	A.2.1.2 Port declarations
	A.2.1.3 Type declarations

	A.2.2 Declaration data types
	A.2.2.1 Net and variable types
	A.2.2.2 Strengths
	A.2.2.3 Delays

	A.2.3 Declaration lists
	A.2.4 Declaration assignments
	A.2.5 Declaration ranges
	A.2.6 Function declarations
	A.2.7 Task declarations
	A.2.8 Block item declarations
	A.2.9 Interface declarations

	A.3 Primitive instances
	A.3.1 Primitive instantiation and instances
	A.3.2 Primitive strengths
	A.3.3 Primitive terminals
	A.3.4 Primitive gate and switch types

	A.4 Module, interface and generated instantiation
	A.4.1 Instantiation
	A.4.1.1 Module instantiation
	A.4.1.2 Interface instantiation

	A.4.2 Generated instantiation
	A.4.2.1 Generated module instantiation
	A.4.2.2 Generated interface instantiation

	A.5 UDP declaration and instantiation
	A.5.1 UDP declaration
	A.5.2 UDP ports
	A.5.3 UDP body
	A.5.4 UDP instantiation

	A.6 Behavioral statements
	A.6.1 Continuous assignment statements
	A.6.2 Procedural blocks and assignments
	A.6.3 Parallel and sequential blocks
	A.6.4 Statements
	A.6.5 Timing control statements
	A.6.6 Conditional statements
	A.6.7 Case statements
	A.6.8 Looping statements
	A.6.9 Task enable statements
	A.6.10 Assertion statements

	A.7 Specify section
	A.7.1 Specify block declaration
	A.7.2 Specify path declarations
	A.7.3 Specify block terminals
	A.7.4 Specify path delays
	A.7.5 System timing checks
	A.7.5.1 System timing check commands
	A.7.5.2 System timing check command arguments
	A.7.5.3 System timing check event definitions

	A.8 Expressions
	A.8.1 Concatenations
	A.8.2 Function calls
	A.8.3 Expressions
	A.8.4 Primaries
	A.8.5 Expression left-side values
	A.8.6 Operators
	A.8.7 Numbers
	A.8.8 Strings

	A.9 General
	A.9.1 Attributes
	A.9.2 Comments
	A.9.3 Identifiers
	A.9.4 Identifier branches
	A.9.5 White space
	1) Embedded spaces are illegal.
	2) A simple_identifier and arrayed_reference shall start with an alpha or underscore (_) characte...
	3) The period (.) in simple_hierarchical_identifier and simple_hierarchical_branch shall not be p...
	4) The period in escaped_hierarchical_identifier and escaped_hierarchical_branch shall be precede...
	5) The $ character in a system_function_identifier or system_task_identifier shall not be followe...
	6) End of file.
	7) Must be a void function
	8) Hierarchy is not allowed

	Annex B Keywords
	Annex C String Methods
	C.4 Introduction
	C.5 len()
	C.6 putc()
	C.7 getc()
	C.8 toupper()
	C.9 tolower()
	C.10 compare()
	C.11 icompare()
	C.12 substr()
	C.13 atoi(), atohex(), atooct(), atobin()
	C.14 atoreal()
	C.15 itoa()
	C.16 hextoa()
	C.17 octtoa()
	C.18 bintoa()
	C.19 realtoa()

	Annex D Linked Lists
	D.20 List definitions
	D.21 List declaration
	D.21.1 Declaring list variables
	D.21.2 Declaring list iterators

	D.22 Size methods
	D.22.1 size()
	D.22.2 empty()

	D.23 Element access methods
	D.23.1 front()
	D.23.2 back()

	D.24 Iteration methods
	D.24.1 start()
	D.24.2 finish()

	D.25 Modifying methods
	D.25.1 assign()
	D.25.2 swap()
	D.25.3 clear()
	D.25.4 purge()
	D.25.5 erase()
	D.25.6 erase_range()
	D.25.7 push_back()
	D.25.8 push_front()
	D.25.9 pop_front()
	D.25.10 pop_back()
	D.25.11 insert()
	D.25.12 insert_range()

	D.26 Iterator methods
	D.26.1 next()
	D.26.2 prev()
	D.26.3 eq()
	D.26.4 neq()
	D.26.5 data()

	Annex E Glossary
	Annex F Bibliography
	[B1] IEEE Std. 754-1985, IEEE Standard for Binary Floating-Point Arithmetic 1985. ISBN 1-5593-765...
	[B2] IEEE Std. 1364-1995, IEEE Standard Hardware Description Language Based on the Verilog¨ Hardw...
	[B3] IEEE Std. 1364-2001, IEEE Standard for Verilog Hardware Description Language 2001. ISBN 0-73...
	Index

