Clarification to Testbench Donation
SytemVerilog 3.1

Addendumto Version 1.1
September 4, 2002

SYNOPSYS

Clarification to TestBench Donation Pageii of 53

Table of Contents

R 1110 [FTox 1 o o PP RPRPRPN 1
1.1 DOCUMENE FOMMEL........ccueiiiiieeiie e ne e sne e sane e 1
2 LanNQUAagES OVEIVIEW.......ccoueeieieeerie e steeteeee st ste e ae e steeneesseesseeneesreesesneesneenseens 2
2.1 SyStEMVENTOg 3.0 et a e 2
2.2 VEIALITE. ...t a b ns 2
3 Veralitel TNE LANQUAE........coeeieeueerieeiesee sttt s re e e sse e 3
3.1 LeXiCal EIBMENTS....ccoiiieiieciieeeeee et 3
3.2 Veralite KeYWOIdS (1-2) ...c.ccoueieerieeie ittt sttt sne e 3
3.21 Veralite Predefined CONSLANLS.........ccocerereririieienie et 3
3.2.2 Vealite Predefined Clocking Identifiers.........ccocoeoiieeiincenenieneeeeeneee 4
3.3 Statement BIOCKS (1-3)ccoieierieieeierieeieseesteeteseeste e sae e e sesnaesseenesneensens 4
O S {1 010 S (USRS 4
T N[0 101 o= £ (1) S 5
3.6 DataTypesand Variable Declaration (1-6)cccceeeererienienesee e 5
IS 7 aTo =0 [DT = 1Y/ o= 5
0 R 1 1o = (4 TSR 5
A o | o (1 4 PSR PS RSP 5
G S {1 0o (1) OSSPSR 6
3.8 User-Defined Dala TYPES......ccueeiieriesieeieseesieesiesseesteseesseessesseesseesessesssessssssesssesees 6
3.8.1 Enumerated types (1-10) ..cceeoeereereereerieeie e sieeee et 6
TS I A VX (K) OSSR 7
3.8.3 Array INtialiZation (1-12)cceceieeieeieneeie e e 8
3.8.4 Multi-dimensional Arrays (1-13)cccveceeeereee e cee e 8
3.8.5 Array INtialiZation (1-15)cccoeoeieeieeiesieie e e 9
3.9 ASSOCIAVE AITAYS (1-16) .oveeeeeeeeieeiesieerte e e et ste et e e e te e sneeaeeneeneens 9
G0 (O)Y 0= 0 4 [0 1 = R 10
3.10.1 DYNAMIC ATTAYS ...eeeieeriertieiesieeeeeesteseessestessesseesesnsestessestessessessesseensesesseseenes 10
T80 (02 1= 11 RS PRTRRTRN 10
3.10.3 get_ATAY SIZE() .eeveeereereerierierieeeee ettt 11
3.11 Enumerated Typesin Numerical EXpressions (1-20)cccccoceevereeneesieeseennnnn 11
I D2 @ o< - (o (=Y (12 S 12
3.13 Operator PrecedenCe (1-23)ccceieriereerienee et s 14
3.14 ArithmetiC OPerators (1-24)cceieeieieeieeeeseereseesessee e sae e e e saesseesneenaeens 14
315 BitwiSe Operators (1-26)cceerereereriieniesiesieesieeseeseesesseesesseessee e ssesseesseenes 14
3.16 Conditional OPErator (1-27)cccucceereeieseeseeieesreeseeeseeseesseseesseeseeseessesseesseenes 15
3.17 Sideeffecting operators: Increment and Decrement............ccccceveveeceeveecneenee. 15
3.18 Operatorsfor manipulating Strings (1-28)......cccceceieeieeieereeieseese e 16
3.18.1 Methods 0N SEHNG (1-28)eoiveeiieiesiee et 17
3.19 Concatenation (1-29)......ccccceieeieiieseese e steesee e sre et nreeaeere s 19
3.20 variable ASSINMENT (1-31) ..cceeiieiieiieiieie et e 19
3.21 Expressions and Operators (GeNneral)........ccovveeeveeresieeseeieeseese e seeeee e 19
7S T 015 o VAL 101 Ko 10T o [N 20
4 Programming OVEINVIEWeccueeiereeiieseeseeseesseesseessesseessesssssesssessssssesssessesssesssenns 20
4.1 Program BlOCK (2-3)......coiieiiiieieeie ettt s 20

September 4, 2002 i

Clarification to TestBench Donation Pageiii of 53

8

4.1.1 Static Data INitialiZalioN.......ccccoieeieeieniereee e 21
4.1.2 SCOPE RUIES.......cecueecieeie ettt ee ettt s ae e e s seentesneesreennennnens 21
4.1.3 MUIIPIE PrOgramsS.......c.oocuiiierieiie ettt sttt s nneas 22
4.2 PreproCessor DIr€CHIVES (2-4)ocieieeeeieeieseeseeee st e e ee e ae e sae e e e 23
4.3 SUDIOULINGES (2-5) ...veiueeieeeieeie sttt sttt st ae b e saeeeesneens 23
4.4 Discarding Function Return Values (2-8)ccevveeereeieseereeee e eee e enee s 23
R =S Y 720) TS 24
4.6 return StAEMENt (2-10) ..oc.eeceeeeeeeie e ne e 24
4.7 External DeClarations (2-13)cccceoeeirreerienieeseenie e sies e sieesse s sessaeeneesneens 24
SequeNtial CONLIOL.........coeieeieee et e e ne e nreenes 24
5.1 Case SEAEMENTS (3-3) ..veeeiiieiirieriee ettt sttt st sae e 24
322 o g (o] 0= (2 21) 1S 24
5.3 break and continUe (3-8)cooeiiiiiriieee e e 25
CONCUITENCY CONLIONcveeieeeeie e sees et ee e e et e e s reente s e sseeneeneesseennennes 25
6.1 FOrK @Nd JOIN (4-2) ...eeeeeeiieeee ettt s nre s 25
O A V7= () IS 25
ORI (40 11 = (= L) R 26
6.4 SUSPENd_thread (4-10) ...c.oceeeeeee et re e reeneenns 26
6.5 Maximum THreadsS (4-11)cccoooiieeeee e e 26
O Y7 0| £ (L) S 26
6.6.1 Synchronizing concurrent processes with event variables...........ccccccooenneee. 26
6.6.2 Sync System Task Or FUNCLIONcceveriririnieese e 26
6.6.3 trigger SYStEM TasK.....ccociieirieeiieeie e 27
6.6.4 EVENT VaTaDlES.. ..o 28
6.6.5 DisabliNg EVENLSoceiiiiiiieeeeee et 29
6.6.6 MErgiNg EVENES.......coiiiiiiiiieee e 30
S 1070 0] = S PRT 31
6.7.1 Allocating a Semaphore (4-12)cccccveeereereeieeseeie e e sseesreesee e see e sns 31
6.8 MAIDOXES......oiiiieieieeie e e e a e nr e 31
6.8.1 Allocating aMailboX (4-16).......cccceeuereerieriesieeieseeseesee e se e sre e e 31
6.8.2 Returning Data: mailboX_get() (4-17)....cccoeeremiiniereeie e 32
NS T 1 0= o 10 T) S 32
Interfacing to the Device UNder TESE ..o e 32
7.1 INterface DECIAIAION......cc.ciieieieie ettt 32
7.1.1 Signalsin Multiple Clocking DOMAINS..........ccoveererienieneere e 35
7.2 Interface Signal DeclarationS (5-2)covveeveeieesiereeceese e 35
7.3 Cycle Behavior with SystemVerilog Event QUEUE............cccoeeverieeneeneneeneeeeee 37
7.3.1 Blocking Tasksin Cycle/EVent MOGE.........cccovevueeeereeiieseeseee e e eee e 37
A oo [7= 1 I LG SRS 37
7.5 Interface Signal of type CLOCK (5-8)....cceeiieiiiiieriicie et eie e 38
SIgNal OPEratioNS (B-1)eeverueerieeieriiesieeiee ettt be e nre s 38
8.1 SYNCHroNIiZatioN (6-2).......ccieeiueiierieeieseese e st e se e e e e ae e e aesseesneeee e 38
8.1.1 Interface SigNal (6-2)oceerveerieriierieeie et e 38
8.1.2 Synchronization (6-3)........cccereerurrierieeieseeseeseeseesteeseeseesseeseesseeseeseesseenseens 39
8.2 Blocking and Non-Blocking Drives (6-5)cccceverriineenenie e 39
8.2 1 DIIVES (B-6) ..oueeueiiesiisiiriesiieie ettt ettt st ae e 40

September 4, 2002 i

Clarification to TestBench Donation Pageiv of 53

8.3 Sampling @ SIgNal (6-6).......cevueeriiiiirieeierie e 40
8.4 Implicit Synchronization (6-7)ccccoveceiieriee e 40
8.5 Asynchronous Signal Operations (6-8)ccceevereerieriirrieriesieseeee e 41
8.6 SUD-CyCIE DE@YS (6-9)eeiveeeiereerieeie e rieetesee e eee e te e e sae e s enseeneesneenne e 41
L I O =S S= T 1o 1Y, = 1 10T S 41
9.1 Objectsand Instance Of ClasseS (7-3) ...c.ecceereererieerireieseese e esee e eee e 41
0.2 CONSLIUCLONS (7-5) .eeuveeueeieeeiieeiesieesieseestee st st e st e st sbe e ee s sbeeae st e saeeeesneesaeenee e 42
0.3 EXterNal ClaSSES (7-11) ..ueeceeeerieeiieeeesieeieeeesteeeesree e eee s sae e saeeae e e nseennesneenes 42
S Y o 1= o (= (7 1 TSRS 42
9.5 Classes, Structs, and UNIONSccicuvieiiieccrie et cree et e v sbe e enes 42
9.6 Automatic Memory Managementcocveeererirreenenee e s 43
O A 1= 1 7= (0= O 43
9.7.1 Subclasses and INNEMTTANCE.eevviiciiee e 44
9.7.2 OVETIAEN MEMDELS.......ooiciiiiiteee ettt ae e e sare e e snree s 44

L R = U o SR 45

L A O = (] o (R 46
9.7.5 ChaiNiNg CONSITUCIOIS.uvviiiiiiiiie e e e erre e s e srbe e e e s ebae e s s eesrreas 46
9.7.6 DataHiding and ENCApSUIGLION..........ceeeeviriiiieciiee et 47
9.7.7 Abstract Classes and Virtual Methods..........cccceevieeeeieecciee e 48
9.7.8 Polymorphism: Dynamic Method LOOKUP.........cccovveeuvieicieeeeieee e 49
10 LiNKEA LISES (8-1) ...ueeiiiieiteeie ettt ettt sttt et e sbe b e st nesneesreennesneenneas 49
O 0 R I 1 Y=o (0 LS =) S 49

September 4, 2002 iv

Clarification to Testbench Donation
SystemVerilog 3.1

1 Introduction

Veraliteisasubset of verification constructs from the Veralanguage that has been
submitted to the Accellera committee to become part of the test-bench extensions of
SystemVerilog (3.1). Verawasinitially designed as a set of enhancementsto Verilog 1.0
(1995), thus, the lexical and syntactical elements of both languages are the same. While
many of the test-bench constructs are unique to Vera, the semantics of the constructs
common to both languages, including data-types and operators, remain largely the same.
This makes Veralite an ideal candidate for inclusion into SystemVerilog. Nonetheless,
Vera, since itsinception, has evolved as a separate language. Verilog too has evolved,
first into the Verilog —2001 standard and more recently into SystemVerilog 3.0. Assuch,
VeralLite and SystemV erilog exhibit several conflicts and areas of functional overlap.
The purpose of this document is to identify areas of conflict between SystemVerilog and
Veralite, offer resolution to those conflicts, and suggest improvements that will simplify
the resulting language. Since VeralLite is based largely on Verilog-1995, the first set of
conflictsis resolved by updating Verato be compatible with Verilog-2001. Thiswill
allow Veral ite to become a natural extension to SystemVerilog, an important point that
is not stated in the donation.

1.1 Document Format

The following section provides a high level overview of the two languages, Veralite and
SystemVerilog. Therest of this document is organized in the same order asthe VeralLite
donation to Accellera. It isintended to be read as a companion to the original donation.
We chose this format so that this document can be added to the original donation as an
appendix, rather than as are-write. This document provides a set of brief clarifications
and recommendations in the spirit of cooperation with the committee in order to expedite
the task before them. This document doesn’t address or attempt to solve every
inconsistency or problem. It merely resolves the most salient problems, leaving the more
detailed issues to be worked out by the committee.

Some of the issues addressed by this document arise because the donation was derived
from an earlier version of the VeralLite manual that was not in strict LRM form, and
contains mistakes, omissions, and incomplete semantic detail. The donation isaso
missing severa sections that were clearly intended to be included. This document
addresses the confusion caused by references to missing items in the original donation by
attaching the relevant sections. At the end of each section heading, a cross-reference to
the corresponding pages in the donation is enclosed in parentheses.

Missing sections that have been attached are shown with aright-hand side bar, like this.

Clarification to Testbecnh Donation Page 2 of 53

2 Languages Overview

2.1 SystemVerilog 3.0
SystemV erilog enhances Verilog for designersin the following broad areas:

Interfaces: High level abstractions for module connections.
Enhanced Hierarchy: Global declarations and statements (implicit top-level $root),
nested modules for better encapsulation, and unnamed blocks with data declarations.
Enhanced Time Unit and Precision: Physical time units (ns, ps,..) and precision can
be specified in any module.
Abstract Data Types. Predefined 2-state and 4-state data-types for easier modeling.
» char, int, shortint, longint, byte, bit, logic, and shortreal
» Type casting
* User Defined Types:
* typedef of user defined types
e enum, struct, and union
Enhanced Arrays. Packed and unpacked multidimensional arrays.
Dynamic Processes: Enables multithreaded process creation
Enhanced Sequential Flow Control: C-like loops and jump statements
* break, continue, return, do ...while
* Additional C-like compound operators: ++, --, +=, -=, /=, *=, %=, ...
New Procedures. Procedures that explicitly indicate the intent of the logic
» always comb, always ff, always latch

2.2 Veralite
Veral ite enhances SystemVerilog in the following important areas:

Test-bench Functions: Reusable, reactive test-bench data-types and functions.
Synchronization: Mechanisms for process creation, control, and inter-process
communication.

Classes: Object-Oriented mechanism that provides abstraction, encapsulation, and
safe pointer capabilities.

Dynamic M emory: Automatic memory management in are-entrant environment
using a garbage collection mechanism that frees users from explicit de-allocation.
Cycle-Based Functionality: Clocking domains and cycle-based attributes that help
reduce development, ease maintainability, and promote reusability.

In addition, VeraLite provides the following aspects useful for test-benches:

Predefined abstract data-types: string, event

User defined data-types. enum, class, associative-array

Enhanced Dynamic Process: fork ... join {alljany|none}

Process Synchronization: Semaphore, Mailbox, wait_var (), wait_child()
Clocking domains and Associated Signal Drives and Expects

Clarification to TestBench Donation Page 3 of 53

Note that VeralLite constructs are applicable only in the behavioral context. The usage of
Veral ite makes sense and should be allowed only ininitial or always blocks.

3 VeralLite: The Language

3.1 Lexical Elements

Veralite lexical conventions are the same as in SystemV erilog. There are no known
conflicts.

3.2 Veralite Keywords (1-2)

Clarification: VeraLite recognizes the keywords shown in the table below. Keywords
unigueto VeraLite (not in SystemVerilog) are shown in boldface. Keywords that
conflict with SystemV erilog are shown in boldface and underlined.

al | end interface r epeat
any endcl ass join return
async endpr ogr am | ocal static
begin enum negedge string
bit event new super
br eak ext ends none task
case extern nul | this
casex for or t ypedef
casez fork out put var

cl ass function posedge voi d
CLOCK i f program vi rt ual
conti nue i nout pr ot ect ed whil e
def aul t i nput public

el se i nt eger reg

3.2.1 VeralLite Predefined Constants

Veraliteintroduces several predefined constants. The table below lists the predefined
constant identifiers.

ALL DELETE NO WAI'T ORDER

ANY FI RST OFF SEVAPHORE
CHECK HAND_SHAKE ON VWAI'T
COPY_NO WAI' T MAI LBOX ONE_BLAST

COPY_WAIT NEXT ONE_SHOT

These predefined constants are defined using the following enumerated types:
enum Tri gger Modes { OFF, QN, ONE_SHOT, ONE_BLAST, HAND SHAKE };

enum CheckMbde { CHECK = 0 };
enum SynchMbdes { ALL = 1, ANY, ORDER };

September 4, 2002 3

Clarification to Testbench Donation Page 4 of 53

enum Assocl dxMbdes { FIRST = 1, NEXT, DELETE };
enum Mai | boxModes { NOVWAIT, WAI'T, COPY_NO WAIT, COPY WAIT };
enum Al | ocTypes { SEMAPHORE, MAI LBOX };

3.2.2 Veralite Predefined Clocking Identifiers

Veralite recognizes four signal clocking identifiers. These are neither keywords nor
predefined constants, but constant identifiers recognized only within the parsing context
of a clocking-domain (see Section 7.1). The predefined clocking identifiers are:

NHOLD NSAMPLE PHOLD PSAVPLE

3.3 Statement Blocks (1-3)

Conflict: VeraLite uses braces‘{* and '}’ to denote the start and end of ablock. This
includes execute blocks as well as declaration blocks (class, interface, end enum).
SystemVerilog uses begin and end for execute blocks, and some declarations have an
implicit begin and a specialized end: module ... endmodule, task ... endtask, etc....
Resolution: VeralLite will adopt begin and end for execute blocks, and SystemV erilog
syntax for task and function declarations. In addition, the syntax for class and program
declarations will be changed in a manner consistent with SystemV erilog, as shown in the
table below?:

Old Syntax New Syntax
class nane { . . . } class name . . . endcl ass
programnane { . . . } program nane . . . endprogram

Braces will continue to be used, but only for those constructs in which their useis
consistent with SystemV erilog, these are: the concatenation and replication operators,
array initialization, declaration of enumerated data-types, and declaration of clocking
domains.

3.4 Strings (1-4)

In SystemVerilog string literals (character strings enclosed by double quotes) behave like
packed arrays (of awidth that isamultiple of 8 bits). InVeraLiteastring literal behaves
the same way. Unlike SystemVerilog, however, Veralite aso has the string data type to
which astring literal can be assigned. In SystemVerilog, astring literal assigned to a
packed array is truncated to the size of the array, whereas in VeraL ite, the strings can be
of arbitrary length and no truncation occurs. This does not represent a conflict, but, the
donation doesn't differentiate between string (a Veralite data-type) and string literal.

! By allowing braces‘{* and ‘}" to denote blocks VeraL ite creates a syntactical conflict with Verilog: The
left-hand-side concatenation operator is ambiguous with the start of a block and was thus renamed *{}.

2 The additional keywords needed for this change are already included in the table of Section 3.2.

September 4, 2002 4

Clarification to Testbench Donation Page 5 of 53

Clarification: string literals behave exactly asin SystemVerilog, except that they are
implicitly converted to the string type when assigned to a string type or used in an
expression involving string type operands (see Section 3.18).

Limitation: VeralLite only acceptsthe ‘C’ notation ‘\ddd’ to denote an ascii character
(wheredisany octal digit). SystemVerilog also alows the notation ‘\xhh’ to denote an
ascii character (where his ahexadecimal digit).

Resolution: VeralLite will accept both character notations.

3.5 Numbers (1-5)

Limitation: In SystemVerilog, a numerical constant that doesn’t specify the size extends
the leftmost digit to fill the variableit isassigned to (bit [2:0] =1 isextended to 3'b111).
VeralLite doesn’t handle this type of extension.

Resolution: Remove thislimitation. VeralLite will extend un-sized constantsto the size
of the left-hand side operand.

3.6 Data Types and Variable Declaration (1-6)

Clarification: The donation lists virtual port as one of the user-defined types. Thisisan
error, the virtual port is not supported by Veralite. Please disregard the section 3.6 of the
Veralite donation.

3.7 Standard Data Types
3.7.1 Integer (1-7)

Correction: The donation states “ The upper limit for integer sizes is dependent on the
host machine...”. That statement isincorrect. integer isa 32-bit signed data-type on all
implementations. Thisisthe same as SystemVerilog.

Clarification: The donation doesn’t specify the default value for an uninitialized integer.
The default valueisal X’s, i.e., 32'bX

Conflict: A VeralLiteinteger does not allow setting individual bitsto X or Z. Assigning
any one bit to X or Z causes the entire integer to become X. SystemVerilog does allow
setting individual bits of an integer to X or Z.

Resolution: VeralLite integer will behave exactly like a SystemVerilog integer.

3.7.2 bit (1-7)

Conflict: In VeralLite bit is a4-state data-type for vectors of user-defined size. In
SystemVerilog, bit isa2-state data-type for vectors of user-defined size. VeralLite' sbit
data-type is equivalent to a SystemV erilog reg data-type.

Resolution: VeralLite will use reg instead of bit.

September 4, 2002 5

Clarification to Testbench Donation Page 6 of 53

In addition, VeralLite will accept all the SystemV erilog types (char, shortint, int, byte,
longint, bit, logic) plusthe 2 Verilog-2001 types already supported (reg and integer).
The remainder of the VeraLite documentation shall be amended to consider bit asreg.

Limitation: VeraLite (like Verilog-1995) only allows one-dimensional bit vectors while
SystemVerilog allows multi-dimensional bit-vectors (packed arrays).

Resolution: Remove this limitation. VeraLite will support multidimensional packed
arrays. Note that anywhere Veral ite accepts a numerical value, it will also accept a
multi-dimensional packed array.

Limitation: Packed arraysin SystemV erilog can be specified using arbitrary indices, as
in: reg [MSB:LSB]. Veralite bit-vectors can only be specified asreg [M SB:0] (LSB
must be 0).

Proposal: Remove this limitation. Veralite will accept arbitrary indices.

3.7.3 String (1-8)

Clarification: The donation doesn’t specify the default value for an uninitialized string.
The default value is the special constant null, which denotes an uninitialized string.
Note that null is not the same as“”, which is a zero-length string or empty string.

3.8 User-Defined Data Types
3.8.1 Enumerated types (1-10)

Conflict: The VeralLite syntax for declaring an enum is different from SystemVerilog's.
Veralite uses

enum name{ ... };
which always creates an enum type called name, whereas SystemV erilog uses

enum{ ... } vname;
and only creates a type when used with atypedef construct:

typedef enum{ ... } name;
Resolution: VeralLite will support the SystemVerilog syntax. Also allow the VeralLite
syntax as a shorthand for the SystemVerilog typedef form, in the same manner as C++
extends C. This enhancement requires the compiler to distinguish a new type name from
an exiting type or size specification (see next point).

Conflict: In VeralLite all enumerated values are represented by 2-state integer values
(likein C/C++). SystemVerilog allowsthe size and type (2-state/4-state) to be specified.
Resolution: Remove thislimitation. VeralLite will support SystemVerilog enums. For
unspecified enumerated types, the default is the same (2-state integer).

September 4, 2002 6

Clarification to Testbench Donation Page 7 of 53

Conflict: VeraLite definesthe++, --, +=, and - = operatorsto iterate over the
enumerated values, SystemV erilog doesn’t specify what thoee operators do when applied
to an enum.

Resolution: SystemVerilog should adopt the VeralL ite operator semantics.

Veralite enumerated types are strongly typed, thus, a variable of type enum cannot be
assigned a value that lies outside the enumeration set. Thisis a powerful type-checking
aid that prevents users from accidentally assigning nonexistent valuesto variables of an
enumerate type. Thisrestriction only applies to an enumeration that is explicitly declared
as atype. The enumeration values can still be used as constants in expressions, and the
results can be assigned to any variable of a compatible integral type. For example:

typedef enum{ RED, GREEN, BLUE } Col or;
Col or co;

i nt i;
co = RED;
co = RED + 3; /I not allowed

i = RED +3; /I allowed
if (1 > BLUE) begin $display(“error”); end /Il allowed

Since enum types are strongly typed, the only two options available are to either disallow
the ++ and - - operators (asin C++), or to attach a semantic meaning that is consistent
with astrongly-typed enum type. VeralLite optsfor the latter, providing a useful feature
to iterate over the enumeration values.

Clarification: The donation doesn’t specify the default value for an uninitialized enum.
The default value is the value of the first element in the enumeration.

3.8.2 Arrays (1-11)

Correction: The exampleslist an array of port_name. Thisisan error. Please
disregard.

Conflict: VeralLite abides by Verilog-1995 rules and hence explicitly disallows slicing of
an array element (donation example showing memory[42][3:2]). SystemVerilog allows
dlicing of array elements.

Resolution: Remove this limitation. Allow Veraliteto dlice array elements.

Conflict: SystemVerilog allows unpacked arrays to be sliced by any arbitrary number of
dimensions. Veralite does not allow unpacked array dlices:

integer a_arr[10:0], b_arr[1:0];

b arr=a arr[2:1];
Resolution: Remove this limitation. VeralLite will support both array slicing, and allow
arrays to be used on the |l eft-hand-side of assignments (L-values).

September 4, 2002 7

Clarification to Testbench Donation Page 8 of 53

3.8.3 Array Initialization (1-12)

Conflict: VeralLite does not alow concatenation or replication in array initialization. For
example, the following is not allowed:

integer a[2][2] = {1,2, {2'bl0,2" h01}, 3 };
Thisrestriction arises because in VeralLite (like in C/C++) the braces used to group the
elements of adimension are optional. For example, the following are all valid in
VeralLite:

integer a[2][?2] {1, 2, 3, 4 };

i nteger a[2][2] {{1, 2}, 3, 4 };

integer a[2][2] = {{1, 2}, {3, 4} };
Since the braces are optional, they become ambiguous in this context; they can either be a
concatenation or anew array dimension. Basically, this grammar construct is not context-
free and the compiler cannot parse this grammar, thusit’s disallowed in VeraLite.
In SystemVerilog all the dimensional braces are required, which does not remove the
grammatical ambiguity, but does allow the compiler to distinguish concatenation from
dimensional brackets.
Resolution: Removethislimitation. Veralitewill require that all dimensional braces be
specified, likein SystemVerilog. Thiswill remove the ambiguity and allow replication
or concatenation as part of array initialization.

Correction: The donation states that “you cannot initialize an array in the declaration”.
Thisisan error. Itisallowed.

3.8.4 Multi-dimensional Arrays (1-13)

Conflict: In VeralLite, array dimensions are specified likein ‘C’, with a single number
denoting the number of elementsin agiven dimension. SystemV erilog uses the more
genera indexing notation [msb:Isb] that is also used for packed arrays (bit fields).
Resolution: Remove thislimitation. VeralLite will accept the SystemV erilog syntax for
both packed and unpacked arrays. Also, SystemV erilog should accept Veralite' s array
declaration as a shorthand notation, that is: [size] becomes the same as[size — 1:0].
For example:

int Array[8][32]; isthesameas. int Array[7:0][31:0];

Conflict: VeralLite does not allow dlicing of (unpacked) arrays. SystemVerilog does.
Resolution: Enhance VeralL ite to alow slicing of multi-dimensional arrays, both packed
and unpacked.

Clarification: VeraLite will allow packed arrays of the same types as SystemVerilog, but

it won't support packed arrays of additional types that are not part of SystemVerilog 3.0.
This explicitly excludes strings, events, associative arrays, and objects.

September 4, 2002 8

Clarification to Testbench Donation Page 9 of 53

3.8.5 Array Initialization (1-15)

See the correction in Section 3.8.3. The same corrections apply to multi-dimensional
arrays.

3.9 Associative Arrays (1-16)

Correction: The examplesincorrectly list an array of port_name. Please disregard.

Correction: The donation states that an associative array index “is an unsigned number
with amaximum value of 2264- 2”. Thisisincorrect. Associative arrays can be
declared with a specific index type or with no index type. Associative arrays that do not
specify an index type have the following properties:

* unspecified index type: t ype array_nane[];

* Thearray can beindexed by any integral datatype, including integers, bit-vectors
of arbitrary length, and string literals. Since the indices can be of different sizes,
the same numerical value may have multiple representations, each of a different
size. Veraliteresolves this ambiguity by detecting the number of leading zeros
and computing a unique length and representation for every value.

* Indicesare unsigned.

* Indexing expressions are self-determined: signed indices are not sign extended.

* 4-stateindices containing X or Z result in arun-time error (see conflict below).

* A string literal index is auto-cast to an equal size bit-vector.

» Thetraversal order is numerica (smallest to largest).

An associative array that specifies an index type restricts the indexing expressions to a
particular type. Currently, VeralLite only supports the following index types:
e stringindex: type array_nane[string];
« Indices can be strings or string literals of any length. Other typesresult in a
compiler error.
e A null index result in arun-time error.
e Thetraversal order islexicographical (lesser to greater).
* Object index: type array_nane[sone_d ass];
» Indices can be objets of that particular type or derived from that type. Any other
type resultsin acompiler error.
* Thetraversa order isarbitrary.
e A nullindex isvalid and will be smaller than all other objects (for traversal).
* integer index: type array_nane[integer];
* Indices can be any integral expression.
* Indicesare signed.
* Indices smaller that integer are sign extended to 32 hits.
* Indiceslarger than integer are truncated to 32 bits.
* Indices containing an X or Z result in arun-time error (see conflict below).
* Thetraversal order isnumerical.

September 4, 2002 9

Clarification to Testbench Donation Page 10 of 53

Limitation: Associative arrays do not support arbitrary user-defined numerical types,
suchasreg[21: 2] .
Resolution: Veralite will support any arbitrary user-defined numerical type, provided
that the type has been previoudly defined viaatypedef. For example:

typedef bit [3:0] nibble;

integer arr[nibble]; Il associative array of integer indexed by bit[3:0]

Conflict: In SystemVerilog an index expression containing X or Z values does not result
in arun-time error, instead, the result depends on the operation and the array type. If the
array is of a4-state type, aread returns X; for a 2-state array aread returns a0 and issues
awarning. A write always causes a warning to be issued and the operation isignored.
Resolution: VeralLite associative arrays will be compatible with SystemV erilog arrays.
When the index expression contains an X or Z, aread will return the default value for the
corresponding array type (i.e., null for string or class). In addition, awrite operation or a
read operation from an associative array that is not a4-state type will result in awarning.

3.10 Dynamic Arrays

Dynamic arrays complement static and associative arrays, the description ismissing in
the donation, and attached below.

3.10.1 Dynamic Arrays

Dynamic arrays are one-dimensional arrays whose sizeis set or changed at runtime. The
space for adynamic array doesn’t exist until the array is explicitly created at runtime.

The syntax to declare adynamic array is:

data_type array_nane[*];

data_type
The data type of the array elements. Dynamic arrays support the same types as fixed-
Size arrays.
For example:
bit[3:0] nibblel*]; /'l Dynamic array of 4-bit vectors
i nteger nmeni*]; /1 Dynam c array of integers

To set or change the size of the array, use the new([] operator. To get the current size of
the array, usethe get_array_size() function.

3.10.2 new]]

The syntax to set or change the size of adynamic array is:

array_nanme = new size] [(src_array)];

size

September 4, 2002 10

Clarification to Testbench Donation Page 11 of 53

The number of elementsin the array. Must be a non-negative integral expression.
src_array

Optional. The name of an array with which to initialize the new array. If src_array is

not specified, the elements of array_name are left uninitialized. src_array must be a

dynamic array of the same datatype asarray_name, but it doesn’t have to be of the

same size. If the size of src_array islessthan size, the extra elements of array _name

are left uninitialized. If the size of src_array is greater than size, the additional

elements of src_array are ignored.

This parameter is very useful when growing or shrinking an existing array. In this

situation, src_array isarray_name so the previous values of the array elements are

preserved. For example:
i nteger addr[*]; // Declare the dynanic array.
addr = new 100]; // Create a 100-el enent array .

.'// Doubl e the array size, preserving previous val ues.
addr = new 200] (addr);

3.10.3 get _array size()
The syntax for the get_array_size() function is:
function integer get_array_size(array_nane);
The function returns the current size of adynamic array, or zero if the array has not been
created.

3.11 Enumerated Types in Numerical Expressions (1-20)

Clarification: The donation seemsto imply that it is not possible to assign a numerical
value to an enumerated type. Thisis not true, enum variables can be assigned numerical
values (arbitrary expressions) using the run-time cast _assign system function. That part
of the manual was omitted from the donation. The relevant portion is attached below.

Assigning Values to Variables
Veralite provides the cast_assign() system function to assign values to variables that
might not ordinarily be valid because of differing datatype.
The syntax for cast_assign() is:
function integer cast_assign(scal ar dest_var
scal ar source_exp [, CHECK]);

dest_var:
The dest_var isthe variable to which the assignment is made. It can be any scalar
(non-array) type (bit, integer, string, enumerated type, event, and object handle).
source_exp:
The source_exp isthe expression that is to be assigned to the destination variable.
CHECK:
The pre-defined constant, CHECK, is optional. Its use determines how the
function handles invalid assignments.

September 4, 2002 11

Clarification to Testbench Donation Page 12 of 53

When the cast_assign() system function is called without CHECK, the function assigns
the source expression to the destination variable. If the assignment isillegal, afatal
runtime error occurs.
When the cast_assign() system function is called with null specified, the function makes
the assignment and returns a 1 if the casting is successful. If the casting is unsuccessful,
the function does not make the assignment and returnsa 0. In the latter case, no runtime
error occurs, and the destination variable is set to its corresponding uninitialized value,
depending on the data type.
Note:
The compiler only checks that the destination variable and source expression are
scalars. Otherwise, no type checking is done at compile time.

Thisisan example of the cast_assign() system function:

cast _assign(enumvar, 12*7);
This example assigns the expression to the enumerated type. Without cast_assign(), this
assignment is not allowed because of strong typing of enumerated types.

Resolution: Include the cast_asssign functionality in the donation.

Alternatively, users could specify this operation using a SystemV erilog cast operation:
EnumType enum_var = EnumType (12* 7)

However, SystemVerilog casts are all compile-time casts, whereas cast_assignisarun-

time operation. Also, SystemV erilog casts do not provide for error checking (the CHECK

variant of cast_assign), nor for the possibility of arun-time error dueto a cast.

Note: cast_assign is similar to the dynamic_cast function available in C++, however,
cast_assign allows users to check if the operation will succeed, whereas dynamic_cast
always raises a C++ exception.

3.120perators (1-22)

Clarification: All Veralite operators that are also defined in Verilog have the same
semantics as described in SystemVerilog. Any extensions of these semantics for VeralLite
datatypes not in Verilog 2001 are described in the corresponding section for that data
type in this document. All the VeralLite operators are shown in the table below.
Operatorsthat do not exist in SystemV erilog or behave different are shown in boldface.

Qper at or Description Semantics

September 4, 2002 12

Clarification to Testbench Donation Page 13 of 53

{} RHS nuneri c concatenation Sane as System Veril og
{} LHS numeric concatenation Sane as LHS {} in
Syst emVeri | og®
{{}} Nureric Replication Sane as SystenVeril og
{} String concatenation Not in SystenVeril og*
{{}} String replication Not in SystemVeril og
+ - * Arithnetic Sane as SystenVeril og
% Modul us Sane as SystenVeril og
++ - - I ncrenent/ Decrenment (post) Sanme as SystenVeril og®
++ - - I ncrenent/ Decrenment (pre) Sane as SystenVeril og
t= -=*= /= % Conmpound assi gnnent Sane as SystenVeril og
<<= >>= &= | = A=
...&: ...l = ~N=
= Si npl e Assi gnnent Sane as Verilog 2001
< <= > >= Rel ati onal Sane as Verilog 2001
I && || == 1= Logi cal operators Sane as Verilog 2001
=== l== Case equality, inequality Sane as Verilog 2001
== 17?= WIld equality, inequality Not in SystemVeril og
~ Bi t-w se negation Sane as Verilog 2001
& | N N~ Bit-w se binary operators Sane as Verilog 2001
& | ~ Bit-wi se NAND, NOR Not in SysytenVeril og
& | N ~& ~] " Reducti on operators Sane as SystenVeril og
<< >> Shi ft Sane as SystenVeril og
?: Condi ti onal Unli ke SystenVeril og®

VeralLite Operators

Clarification: The bitwise NAND (&~) and bitwise NOR (|~) have these meaning:

a & b is equivalent to: ~(a & b)
a|~bis equivalent to: ~(a | b)

Conflict: Introducing the &+ and |~ operators changes the meaning of existing Verilog
expressions that contain the & or | operators followed by ~ without any space in between.
For example, the expression:

a=>b & c;

Isinterpreted as:
SystemVerilog: a = b & (~c); /1 b AND (NOT c)
VeralLite: a=b>b & c; /1 b NAND c

The situation is similar to the ambiguity involving the SystemVerilog xnor ("~) operator:
a”~ bisdifferent from a” ~b, which means a”(~b)

Resolution: Remove these operators from the donation. They exist only for the sake of

completeness, but are not vital.

% This was addressed before (see Statement Blocks (1-3)): Will be changed to use SystemVerilog's {}.
* These operators don’t exist in SystemVerilog when applied to string variables (see 3.18).

® The behavior of ++ and - - isincompletely specified in SystemVerilog (see 3.17).

® The behavior of this operator is different as explained below (see Conditional Operator (1-27)).

September 4, 2002 13

Clarification to Testbench Donation

Page 14 of 53

Clarification: The donation doesn’t specify the data types allowed by the wild equality
=?= and wild inequality ! ?= operators. These operators accept any integral expression,

that is, bit, integer, or enumerated type.

Limitation: The operatorsin the table below exist in SystemVerilog, but not in Veral ite.

Qper at or Description Semantics

<< >>> arithnmetic shift sign preserving shift
<<<= >>>= Conpound assi gnnment arithnmetic shift assign
*x power exponenti ati on

Resolution: Remove this limitation. VeralLite will support al SystemVerilog operators.

3.13 Operator Precedence (1-23)

Clarification: The donation doesn’t explicitly list operator associativity, aswell as
distinguish clearly between unary and binary operators. The following table lists the
precedence and associativity of all Veralite operators. Highest precedence operators are

listed first.

Operator Associativity
O [1 |eft
Unary ! ~ ++ -- & ~& | ~| ~ ~" right
* % left
+ - left
<< >> | eft
< <= > >= | eft
== |l = === |l == =7= | 2= |eft
& & left
NN left

| |~ left
&& left

| | left
? right
= 4= |l = *= [= O &= | = N= <<= >>= | none

3.14 Arithmetic Operators (1-24)

Clarification: The donations states “If an operand has any bit with avalue of x, the
entireresultisx.”. That statement isincomplete. It should say “If an operand has any bit

with avalue of x or z, the entireresult is x.”

3.15 Bitwise Operators (1-26)

September 4, 2002

14

Clarification to Testbench Donation Page 15 of 53

Clarification: The donation does not include the table for the bitwise NAND (&~) and
bitwise NOR (|~) operators. These are included below.

&~ 0 1 X z |~ 0 1 X z
0 1 1 1 1 0 1 0 X X
1 1 0 X X 1 0 0 0 0
X 1 X X X X X 0 X X

3.16 Conditional Operator (1-27)

Clarification: The donation incorrectly describes the semantics of the conditional
operator. The correct description is:

expressionl ? expression2 : expression3

If expressionl evaluates to true (known value other than 0) then expression2 is evaluated
and used asthe result. If expressionl evaluates to false (0) then expression3 is evaluated
and used asthe result. If expressionl evaluatesto X or Z, it istreated as false.

The behavior of this operator was modified to behave asin ‘C’ in order to avoid having
to evaluate both expressions (as stated in the donation). Thisis because expression2 or
expression3 (or both) may contain side effects that require that only one of them should
be evaluated. Consider the following examples:

a = (b) ? d++ : e++; /I increment d or e but not both!

X =(p ==null) ? -1 : p.value; // do not dereference null handle

Conflict: The conditional operator is not compliant with SystemV erilog when the
conditional expression evaluates to an ambiguous value (X or Z). Inthat case,
SystemVerilog evaluates both expression2 and expression3 and the results are combined
bit by bit (expanding the shorter operand by zero-filling). VeralLite considers an
ambiguous value the same as a false and evaluates expression3 only.

Resolution: VeralLite will support SystemV erilog semantics. It may be desirableto
introduce another conditional operator (perhaps ??) that behaves like C.

3.17 Side effecting operators: Increment and Decrement

The behavior of the pre/post increment/decrement operators is not completely defined in
SystemVerilog. This can lead to unexpected behavior when a single statement modifies
the same variable more than once. For C/C++, the ANSI-C standard states that the
behavior is undefined so every compiler isfreeto do it differently, and indeed they do.
For example, the following C/Vera code fragment produces the output shown below:

int i = 1;
printf("%d % % % % %\n", i++, Qi+, o, --0, Qi--, Pi--);

September 4, 2002 15

Clarification to Testbench Donation Page 16 of 53

vera 124332 gcec-g 124332
cc (solaris) 121132 gcc -02 121132
cc (dec) 112111 cc (linux) 0-1-1-201

Vera defines the semantics for computing all arguments and operands. Arguments with
the same precedence are evaluated in strict left-to-right order. In addition, the pre and
post increment operators operate on their corresponding variable as they are evaluated.
Thus, the semantics of post and pre increment (++) isroughly equivalent to the code
shown below (decrement is analogous).

function integer pre_inc (var integer a); begin [l ++a

a += 1,
pre_inc = a;
end

endfuncti on

function integer post_inc (var integer a); begin // a++
post _inc = a;
a += 1,

end

endf uncti on

Clarification: The above section does not represent a conflict. It merely states a possible
semantic definition for the ++ and -- operators. Veralite' s semantics are compatible with
Verilog operators, which are also | eft to right associative, and may have side-effects. For
example:

$display(f(a)+g(b));
If functions f() and g() have side effects on aor b, Verilog must enforce the | eft-to-right
semantics to avoid the ambiguous results.

3.18 Operators for manipulating strings (1-28)

In VeralLite astring literal isimplicitly converted to string type when it is assigned to a
string type variable or is used in an expression involving string type operands. A string
literal and a concatentation or replication of string literals are the only types of regs that
are allowed to be assigned to a string type variable.

For example:
reg [15:0] r
integer i = 1,
string a = {“H ", b};
string b = “";
r = a; /1 valid
b =r; [l Error
b ="H"; /1 valid
b = {5{“H"}}; [/ valid
a={i{“H"}}; [/ valid

September 4, 2002 16

Clarification to Testbench Donation Page 17 of 53

(i {“H"});
{i {b}};
{a,b};
{“Hi ",b};

QoYL

/1 invalid in Verilog

/1 valid
/1 valid
/1 valid

The basic operators defined on the string data type are listed in the following table.

Operator

Meaning

Strq, == Str,

Checksif the two strings are equal. Result is 1 if they are equal
and O if they are not. Both strings may be of type string. Or one
of them may be a string literal. Note that if both are string
literals, the expression is the same Verilog equality operator for
numeric types.

Strq !'= Str,

Logical Negation of ==

{Strq, Str,, ..., Str.}

Each Str; may be of type string or may be a string literal (it will
be implicitly converted to string). If at least one Str; is of type
string, then the expression evaluates to the concatenated string
and is of type string. Note that if all the Str; are string literals,
then the expression behaves like Verilog concatenation for
numeric types (if the result is used in another expression
involving string types, it isimplicitly converted to string type).

{multiplier{Str}}

Str may be of type string or may be a string literal. Multiplier is
of numeric type and can be non-constant. If Strisaliteral and
the multiplier is constant, the expression behaves like numeric
replication in Verilog (if the result is used in another expression
involving string types, it isimplicitly converted to string type).

Str.nethod(...)

The dot (.) operator is used to invoke a specified method on
strings. See Section 3.18.1 for detailed descriptions of the
various string methods available

3.18.1 Methods on String (1-28)

Clarification: This section was omitted from the donation. It is attached below.

Veral ite supports the following methods on the string data type:

function integer Ien()

September 4, 2002

17

Clarification to Testbench Donation Page 18 of 53

» dtr.len() returns the number of charactersin the string excluding any terminating
null character
o dr.len() returnsO, if strisnull

task putc(integer i, string s)
task putc(integer i, integer c)
o str.putc(i, c) replaces the i™ character in str with the given value.
o str.putc(i, s) replaces the i™ character in str with the first character in s. s can be
any expression that can be assigned to a string.
* dtr.putc leaves str unchanged, if i <0 or i >=str.len()

function integer getc(integer i)
o str.getc(i) returnsthe ASCII code of thei™ character in str
o str.getc(i) returns O, if i <O ori >=str.len()

function string toupper()
function string tol ower ()

o dtr.tolower() and str.toupper() return strings with charactersin str converted to
lowercase and uppercase respectively. str is unchanged.

function conpare(string s)
function icompare(string s)

» str.compare(s) compares str and s character by character and returns the difference
between the ASCII codes of the first character in which they differ; returns O if
the string are equal. str.icompare(s) behaves similarly but the comparison is case
insensitive

function string substr(integer i, integer j)
» str.substr(i, j) returns a sub string formed by charactersin position i through j of
strif 0<=i <=j < dtr.len(); returns“” (not null), otherwise

function integer atoi()

function integer atohex()
function integer atooct()
function integer atobin()

» dir.atoi() returns the integer corresponding to the ASCII decimal representation in
str. Example. str = “123"; i = str.atoi() assigns 123 to i. The string is converted to
the first non-digit. atohex, atooct and atobin are similar except that instead of
decimal the string is interpreted as hexadecimal, octal and binary respectively.

task itoa(integer i)
o str.itoa(i) writes the ASCII decimal representation of i into str.

Limitation: The donations doesn’t list support for parsing real numbers.

Resolution: The following string function will be added:
function real atoreal ()

September 4, 2002 18

Clarification to Testbench Donation Page 19 of 53

3.19 Concatenation (1-29)

Clarification: The donation does not explicitly state that the arguments to the replication
operator can be concatenations, asin SystemVerilog. They can, as shown in the second
example of thedonation: {4 {addr, data}}.

3.20 variable Assignment (1-31)

Conflict: VeralLite does not support assignment recursion:
a=b=g;
Thisform is not supported by SystemV erilog either, but it does support a modified form
that uses parenthesisin order to avoid common mistakes:
a=(b=c);
Likewise, assignments within conditionals are not alowed by VeralLite:
ifla=b)a=c+d;
but SystemV erilog does allow the modified form:
if((a=b))a=c+d;
Resolution: VeralLite will accept SystemVerilog's form.

Clarification: In the presence of side-effecting operators, SystemVerilog is not specific
as to what the result should be. For example:

a = 1,

a = (b = a++);
What isthevaluea? 1 or 2? (see Section 3.17 for more puzzlers).

3.21 Expressions and Operators (General)

Clarification: In SystemVerilog, the type and size of all expressionsis determined at
compiletime. This allows the compiler to compute the size of al expression temporaries
and apply strict rules regarding extension, truncation, and sign extension. The same rules
apply to VeraLite. Although, the VeraL ite donation does not state so explicitly, the
arguments to the concatenation, replication, and slicing operators must be constants. If
that were not so, it would not be possible to compute all expression sizes at compile time.

Limitation: SystemVerilog provides a syntax for specifying fixed-size, variable position
dices: [position +: size] and [position -: size]. VeralLitedoesnot
support these operators.

Resolution: Remove thislimitation. VeralLite will support the +: and -: dlicing operators.

September 4, 2002 19

Clarification to Testbench Donation Page 20 of 53

3.22 Signed vs. Unsigned

Conflict: VeralLite does not follow the SystemVerilog sign extension rule. Instead, it
follows the Verilog-1995 rule: zero fills when converting a signed number (i.e. integer) to
anumber of higher precision (i.e., reg[64:0]). SystemVerilog requires that the sign be
extended.

Resolution: Perform sign extension according to SystemV erilog.

4 Programming Overview

4.1 Program Block (2-3)

Clarification: A typical VeralLite test-bench contains type definitions, data declarations,
subroutines, connections to the design via VeralL ite-interfaces (not to be confused with
SystemVerilog interfaces), and a program block. The program block serves two basic
purposes:

1. It provides an entry point where the test-bench begins execution.

2. It creates a scope that encapsulates program-wide (global) data.

A SystemVerilog module provides both of these functions: it creates a new scope, and
can include an initial block to serve as the test-bench entry point. Thus, amoduleis
anatural choice for modeling the program block. However, such a“ test-bench module”
differs from aregular SystemVerilog module in several ways. First, the communication
between the test-bench and the design takes place via special portsthat in addition to
type, direction, and size, can also specify a clocking scheme (see section 7.1). Second,
Veralite provides for execution using cycle semantics as well as event semantics. The
program construct serves as a clear separator between the design and the test-bench, and,
more importantly, it indicates the special nature of the test-bench module, which allows a
compiler to enable the cycle semantics for all el ements within the program. Finally, the
program block contains asingle implicit initial block, and no always blocks or other
programs (unlike modules, programs can’t be nested).

Simplification: In the donation, a program block is shown as containing no arguments.
Unlike SystemVerilog, in which ports are explicitly declared in a module declaration, a
program connects to the design through an implicit set of ports that are derived from a
series of Veralite interface declarations. Implicit port declarations can be confusing,
error prone, and, in afluid design environment, hard to maintain. Without loosing any
generality, the connection between design and test-bench can be significantly simplified
by using the same paradigm used by SystemV erilog to specify port connections. This
simple change makes the program block much more consistent with SystemVerilog. The
syntax for the program block then becomes:

program program nane (list _of ports);
program decl arartions

September 4, 2002 20

Clarification to Testbench Donation Page 21 of 53

pr ogr am code
endpr ogr am

For example:
programtest (input clk, input [16:1] addr, inout [7:0] data);

endbr (.)gr.am

Thel i st _of ports alowed by aprogram shal be the same as the one alowed for
any SystemVerilog module. A more complete exampleisincluded in Section 7.

Clarification: Although the program construct is new to SystemVerilog, itsinclusion
does not represent a conflict, but a natural extension. The program construct should be
considered the declaration of a special type of module (i.e., amodule with atest-bench
attribute). Once the program block has been declared, it can be instantiated in the proper
hierarchical location (typically at the top level) and its ports can be connected in the same
manner as any other module.

Limitation: Some Veral ite constructs and data-types cannot be used in declarative
contexts such as module ports, gates, or continuos assignments. These constructs will
need aformal definition (possibly viaBNF) and additional semantic restrictions that limit
their use within the procedural (test-bench) environment. Note that this limitation is not
new to VeralLite, it simply extends the rules set forth by SystemVerilog, which disallows
automatic variables from triggering event expressions or be written using non-blocking
assignments.

4.1.1 Static Data Initialization

In SystemV erilog, setting the initial value of a static variable as part of the variable
declaration requires that the initialization occurs before any initial or always blocks are
started. Likewise, VeralLite allows static data (including static class members) to specify
an initial value as part of their declaration, and, like SystemVerilog, VeralLite requires
that all such data beinitialized before the program (see section 4.1) starts executing. It is
important to note that VeralLite initial values are not constrained to simple constants, but
may include run-time expressions, including dynamic memory alocation. For example, a
static class can beinitialized viaits new method, or a Semaphor e may be initialized by
calling its alloc function. While this does not represent a conflict with SystemVerilog, it
may require aspecia pre-initial pass at run-time, which may need changes to theinitial
SystemV erilog simulation cycle.

4.1.2 Scope Rules
In the donation, the following Veral ite language constructs are always defined in global
scope, sharing the global name space so no two of them can have the same name:
* Typedeclarations: Classes and Enumerated Types
» Elements of each enumerated type

September 4, 2002 21

Clarification to Testbench Donation Page 22 of 53

» Subroutines: Tasks and Functions

* VeralLite Interfaces (see Section 7.1)

e Program block

» Datadeclared in the outermost block of the program block
» Datadeclared outside any block, in the global scope

Conflict: VeralLite does not alow type declarations (class or enums), tasks, or functions
inside the program block (i.e. the test-bench module). Thisisinconsistent with

SystemV erilog scope rules.

Resolution: Allow VeraLite type declarations, tasks, and functions inside the program
block (in the scope of the test-bench module). All such definitions can be encapsulated in
amanner consistent with SystemV erilog scope rules. Data declared within the program
will belocal in scope (local to the program block) and will have static lifetime.

Global declarations (outside the program block or any other module) will reside in $root
and have static lifetime.

Clarification: Thefollowing VeraLite constructs create a new scope:
* A classdefinition
* A task or function definition
* A block statement
o A fork-join does not create a scope unlessit contains a block statement.

Subroutines (tasks and functions) cannot be nested within themselves, but they can
contain block statements that do create a scope. Block statements do not have to be
named to create a new scope.

The declaration in the closest enclosing scope is matched: A scope nested inside another
scope has visibility of (and may reference) all elements visible or declared in its parent
scope. A name declared inside a scope hides all elements with the same name that are
visible or declared in the parent scope. All these rules are consistent with SystemV erilog.

Limitation: VeralLite does not allow explicit references to global data, only to global
datathat isvisible within a given scope. If alocally declared element shares the same
name as a global element, the global element is not visible and cannot be referenced.
SystemV erilog alows references to a global name via explicit use of $root.name.
Resolution: Remove this limitation and allow explicit references to global data.

4.1.3 Multiple Programs

Clarification: The donation does not mention the possibility of having multiple test-
bench programs, however, it is completely compatible with both SystemV erilog and
VeralLite to have any arbitrary number of program definitions or instances. The programs
can be fully independent (without inter-program communication), or cooperative. Users
can control the degree of communication by choosing to share data via $root or making
the data private by declaring it inside the corresponding program block.

September 4, 2002 22

Clarification to Testbench Donation Page 23 of 53

Clarification: The VeraLite constructs simplify the creation and maintenance of test-
benches. Furthermore, since modeling the environment can be a significant part of atest-
bench, the same set of VeralL ite constructs can be effectively used for writing models at a
higher abstraction level than currently provided by SystemVerilog. The ability to
instantiate and individually connect each instance of a program enables their use as
generalized models.

4.2 Preprocessor Directives (2-4)

Conflict: Veralite uses # for preprocessor directives (like C), but SystemVerilog uses .
Resolution: VeralLite will use the same preprocessor directives as SystemVerilog.

4.3 Subroutines (2-5)

Conflict: VeralLite allows blocking functions, SystemV erilog does not.
Resolution: VeralLite will disallow blocking functions.
Also, functions will be restricted to disallow passing arguments of type event.

Conflict: In VeraLite the default lifetime for tasks and functionsis automatic. In
SystemVerilog the default lifetimeis static.

Resolution: VeralLite will Adopt the SystemVerilog defaullt.

In addition, we propose an optional module attribute that specifies the default lifetime of
all tasks and functions declared within the module. The lifetime attribute can be set to
automatic or static. The default is static for regular modules, and automatic for the
program block. This enhancement allows existing Veral ite code to execute unchanged.
Also, class methods are by default automatic, regardless of the lifetime attribute of the
module in which they are declared.

4.4 Discarding Function Return Values (2-8)

Conflict: Both VeralLite and SystemV erilog have avoid keyword. In SystemVerilog
void isatype, whereasin Veraliteit isaspecia syntactical value that can used (1) to
discard function values, and (2) in specia operations such as void drives.
In VeralLite, void is strictly a compiler scheme. For example:

void = sone_function();
instructs the compiler to ignore the return value from the function.

In SystemV erilog the same can be done using a cast:
voi d’ (some_function());

Resolution: Adopt SystemVerilog's cast operator to discard return values. Propose using

the VeraLiteform ‘voi d =’ asan aternative since it shows the intent more clearly than
acast, and doesn’t force usersto use an extra set of parenthesis.

September 4, 2002 23

Clarification to Testbench Donation Page 24 of 53

4.5 Tasks (2-9)

Clarification: The section describes the syntax for declaring alocal task, atask with file
scope. In SystemV erilog subroutines can have global or module scope, not file scope, so
alocal task declaration is unnecessary, thus deprecated.

4.6 return Statement (2-10)

Conflict: SystemVerilog allows the return statement from afunction to include an
expression, whereas Veral ite doesn’t.

Resolution: Allow the more general SystemVerilog form. This can be done by asimple
trangdlation:

function int foo() begin function int foo() begin
return expression; => foo = expression
end return;
end

4.7 External Declarations (2-13)

Conflict: The VeralLite extern keyword is used to support separate compilation, in a
manner similar to C. Thiscollides with SystemVerilog's use of extern, which is used by
a SystemVerilog interface to declare tasks external to the interface.

Resolution: VeralLite extern declarations have no effect and can beignored. The use of
extern is deprecated by VeralL ite.

Alternatively, the compiler could be instructed to allow the extern modifier, and ignoreit.

5 Sequential Control
5.1 case Statements (3-3)

Limitation: VeralLite does not support SystemVerilog' sunique and priority qualifiers
for if-else, case, casez and casex statements.

Resolution: VeralLite will support the unique and priority qualifiersfor if-else, case,
casez and casex statements. This qualifiers do not represent a conflict.

5.2 for loops (3-6)

Limitation: VeralLite only allows data declarations at the start of a block, however,
SystemVerilog allows aloop variable to be declared following the for keyword. For
example:

for(integer j = 0; j < n; j++) begin $display(j); end

September 4, 2002 24

Clarification to Testbench Donation Page 25 of 53

The scope of the variable is the loop itself.
Resolution: Remove thislimitation. VeralLite will allow loop variables to be declared
within the loop.

5.3 break and continue (3-8)

Clarifications. Both break and continue, although not in Verilog-1995, have the same
semanticsin both Veral ite and SystemV erilog.

6 Concurrency Control

6.1 fork and join (4-2)

Veralite and SystemV erilog have similar functionality for starting dynamic processes:
the ability to fork threads without a join that forces the parent processto block. VeralLite
usesthefork .. join none construct, while SystemVerilog uses the process qualifier. In
addition, VeralL ite supports the existing fork .. join (same asjoin all), and one more
variant: fork ... join any, in which the parent process blocks until at least one of its
children terminate.

Overlap: VeralLite sfork/join constructs do not represent a conflict, but fork .. join any
does overlap with SystemVerilog's process qualifier.

Resolution: While both forms can coexist, they may lead to confusion. We propose
deprecation of process and adoption of the fork .. join any construct, which is more
natural to existing Verilog (and Vera) users.

6.2 wait_var() (4-8)

Correction: The donation incorrectly states the data-types allowed as arguments to the
wait_var () system task. The document should state:

variable |i st
Thevari abl e_I| i st consistsof one or more variables (separated by commas)
of type integer, bit (i.e, reg), bit[], enum, or string. Each variable may be either
asimple variable, or avar parameter (variable passed by reference), or a member
of an array, associative-array, or object (class). Object handles are not allowed.

Clarification: Argumentsto wait_var () can be an array subscript expressions, in which
case the index expression is evaluated only once when wait_var () is executed.

Clarification: Thisisa system task and should use the appropriate syntax: $wait_var ().

September 4, 2002 25

Clarification to Testbench Donation Page 26 of 53

6.3 terminate (4-9)

Clarification: SystemV erilog supports the disable construct, which will end a process
when applied to the block being executed by the process. However, terminate differs
from disable in that ter minate considers the dynamic parent-child relationship of the
processes, whereas disable uses the static syntactical information of the disabled block.
Thus, disable will end all processes executing a particular block, whether the processes
were forked by the calling thread or not, while ter minate will end only those processes
that were spawned by the calling thread.

Clarification: Thisisa system task and should use the appropriate syntax: $ter minate().

6.4 suspend_thread (4-10)

Clarification: Calling suspend_thread() is conceptually similar to a0 delay statement:
#0;

Clarification: Thisisasystem task and should use the appropriate syntax:

$suspend_thread().

6.5 Maximum Threads (4-11)
Thisfeature is deprecated and is not supported by Veralite. Please disregard.

6.6 Events (1-9)

Section 1-9 of the donation briefly describes Veral ite events, but the section describing
event operations in detail ismissing. The missing sections are attached below.

6.6.1 Synchronizing concurrent processes with event variables
Events are variables that synchronize concurrent processes. When asynciscaled, a
process blocks until another process sends atrigger to unblock it. Events act as the go-
between for triggers and syncs.
This subsection includes:

* sync System Task

» trigger System Task

* event Variables

6.6.2 sync System Task or Function

The sync() system task synchronizes statement execution to one or more triggers. sync
can be used as either atask or afunction.
The syntax to call the sync() task is:

September 4, 2002 26

Clarification to Testbench Donation Page 27 of 53

task sync(ALL | ANY | ORDER, event event_nanel, ..., event_naneN);
function integer sync(CHECK, event event_nanel, ..., event_naneN);
event_name:

The event_name is the event variable name on which the sync is activated.
Predefined Macros:

ALL
The ALL sync type suspends the process until all of the specified events are
triggered. For example:
sync(ALL, event_a, event_b, event_c);
This example suspends the thread until each of the events are triggered. Once they
aretriggered, the statement immediately following the sync() call is executed.
ANY
The ANY sync type suspends the process until any of the specified eventsis
triggered. For example:
sync(ANY, event _a, event_b, event c);
This example suspends the thread until any of the specified eventsistriggered.
Once one of the eventsistriggered, the statement immediately following the
sync() call is executed.
ORDER
sync(ORDER, event _a, event_b, event c);
This example suspends the thread until all of the specified events aretriggered. As
soon as an event isreceived out of order, the process unblocks and a simulation
error occurs. Also, only thefirst event can be in the ON state when the syncis
called. If both event_a and event_b are ON when the call is made, a simulation
error Occurs.
Note: Events set to null are treated as if they were received in the correct order.

CHECK
The CHECK sync typeiscaled as afunction. It does not suspend the thread. It
returnsalif thetrigger isON and a0 if it is not. This sync type can only be used
with ON and OFF trigger types. For example:
if (sync(CHECK, event_a))
printf("The event is ON.\n");
If the event ison, this sync() call returns a1 the messageis printed. If the event is
OFF, sync() returnsaO.

6.6.3 trigger System Task

Triggers are used to turn events ON or OFF. By default, al events are OFF.

The syntax to call atrigger is.
task trigger (ONE_SHOT | ONE_BLAST | HAND SHAKE | ON | OFF,
event event_nanel , ... , event_naneN);

event_name:
The event_name is the event variable name on which the sync is activated.

September 4, 2002 27

Clarification to Testbench Donation Page 28 of 53

Predefined M acros:

ONE_SHOT
The ONE_SHOT trigger turns on the vent momentarily, causing all currently
waiting syncs to unblock; subsequent syncs will not unblock. If there are no
processes waiting for the trigger, the trigger is discarded. Note that in order for a
trigger to activate a sync, the sync must execute before the trigger.

ONE_BLAST
ONE_BLAST triggers are similar to ONE_SHOT triggers with one exception:
the ON condition persists until simulation time advances. Thus, ONE_BLAST
triggers will unblock any sync that executes before or at the same simulation time
asthetrigger.
Veral ite does not yet support ONE_BLAST, but it’sincluded here for
completeness. Also, it easy to implement and it can be useful.

HAND_SHAKE
A HAND_SHAKE trigger unblocks only one sync, even if multiple syncs are
waiting for triggers. If async has been called and iswaiting for atrigger then the
HAND_SHAKE trigger will unblock the sync. If no sync has been called when
the trigger executes, the HAND_SHAKE trigger isstored. Whenasyncis
eventually called, the sync isimmediately unblocked and the trigger is removed.
Verauses LIFO scheduling for events, but that is inconsistent with all other
synchronization primitives. Veralite proposes using FIFO. We may choose to
document that here or leave it open.

ON
The ON trigger turns the event on, causing al currently waiting as well as
subsequent syncs on that event to unblock. This condition will persist until there
isatrigger (OFF) call.

OFF

The OFF trigger turns an event OFF, causing subsequent syncs on that evebnnt
to block.

6.6.4 Event Variables

Event variables serve as the link between triggers and syncs. They are a unique data type
with several important properties.

Bidirectional Event Variables
Event variables are bidirectional variables when used as arguments in syncs and triggers.
The same event variable can be used to pass and receive triggers. For example:

task T1 (event trigger_a)
{
printf("\nT1l syncing");
sync(ALL, trigger_a); /1 Bl ocked: proceed after receiving
[1trigger
printf("\nT1l event trigger_a received");

September 4, 2002 28

Clarification to Testbench Donation Page 29 of 53

repeat (7) @ posedge CLOCK);
printf("\nTl triggering trigger_a");
trigger (ONE_SHOT, trigger_a);

}

programtrigger play
{

event triggerl;
/1l top block code starts here

fork
T1(triggerl); /] start T1l and go on
j 0i n none
repeat (8) @posedge CLOCK); // blocks waiting for trigger

fork

{
printf("\nPROGRAM triggering triggerl");

printf("\nPROGRAM Thi s unbl ocks T1");
trigger(ONE_SHOT, triggerl); /1 unbl ock the waiting

repeat (5) @ posedge CLOCK);

printf("\nPROGRAM synci ng\n\n");

sync (ALL, triggerl); // wait for Tl to unblock ne
}

join

wait_child();

printf("\nTrigger play done!");
}

This example declares thetask T1, which is called in the main program. Then T1iscaled
in athread forked off from the main program. The program continues without waiting for
the child thread to complete. Because T1 contains a sync within its definition, the child
thread blocks, waiting for atrigger. Then another fork is used to fork off atrigger, which
unblocks the suspended T1. A second thread in that fork then calls a sync. This sync
occurs as Tl isunblocked. T1 then continues its execution, which includes the execution
of the trigger that unblocks the final child thread.

6.6.5 Disabling Events

If an event variableis assigned a null value, the event isignored in subsequent sync()
calls that may be waiting for atrigger on the event variable. That is, when the event is set
to null, any blocking sync becomes non-blocking. Thereis no way to make it block again.

For example:
event E1 = null;

September 4, 2002 29

Clarification to Testbench Donation Page 30 of 53

sync(ALL, El);
The sync isimmediately satisfied because of the null value assigned to E1.

6.6.6 Merging Events

When an event is assigned to another event, the two are merged, which causes triggers on
either one to affect both.

For example:
event El1, E2, E3;
El = E2;
trigger(QON, E3);
trigger(ON, E1); // this will trigger E2, as well
trigger(ON, E2); // this will trigger El, as wel
El = ES;
E2 = EI,
trigger(ON, E1l); // this will trigger E2 and E3, as well
trigger(ON, E2); // this will trigger E1 and E3, as well
trigger(ON, E3); // this will trigger E1 and E2, as well

However, use caution when merging events. The assignment only affects subsequent
triggers and syncs. For example, if aprocessis blocked waiting for event1l when you
assign another event to eventl, the sync will never unblock. For example:

fork
{

while (1) {sync (ALL, E2);}
}
{

while (1) {sync (ALL, E1);}
}
{

E2 = EI,
while (1) {trigger(ON, E2);}

join
This example forks off three concurrent threads. Each starts at the same timein the
simulation. So, at the same time that threads 1 and 2 are blocked, thread 3 assigns the
event E1 to E2. This means that thread 1 can never unblock, because the event E2 is now
E1l. To unblock both threads 1 and 2, the merger of E2 and E1 must take place before the
fork.

Conflict: VeraLite' s event data-type collides with SystemVerilog's named events. In
SystemVerilog, named events are triggered viathe - > operator, and processes can wait
for events using an @ operation.

A SystemVerilog event is analogous to a VeralL ite event that usesa ONE_SHOT trigger.
However, Veral ite events are much more general than SystemVerilog events. The most

September 4, 2002 30

Clarification to Testbench Donation Page 31 of 53

salient semantic difference is that SystemV erilog named events do not have a value nor a
duration, whereas Veral ite events have a value (ON, OFF) and a persistency that can be
controlled viathe trigger options. Also, Veral ite events are handles to synchronization
objects, thus, they can be passed as arguments to tasks, and they can be dynamically
alocated and reclaimed, whereas named events are static and cannot be passed as
arguments. Rather than a basic datatype, Veralite events behave more like object
handles; they can be assigned to one another, they can be assigned the value null, they
can be arguments to tasks, and they are dynamically allocated and reclaimed.

Resolution: Extend SystemV erilog event to encompass the VeralLite functionality. The
new event data-type will continue to support the old Verilog operations and semantics,
which are completely backward compatible. Thus, an event that is triggered viathe - >
operator, and that is used in @ expression, will continue to behave exactly as it does now.
The backward compatible declarative operations (@and - >) will be restricted to events
with static lifetime. In addition, the event data-type will be extended to support the new
Veral ite operations and semantics.

Clarification: Eventsincorporate a set of system tasks and should use the appropriate
syntax: $sync(), and $trigger ().

6.7 Semaphores
6.7.1 Allocating a Semaphore (4-12)

Clarification: The prototype for the alloc() function is shown as:

function integer alloc(SEMAPHORE, integer semaphore_id,
i nt eger senmaphore_count, integer key count);

Veralite imposes the following restrictions:
* semaphore_id must be 0.
« semaphore_count must be 1.

Proposal: This function should be simplified to:
function integer alloc(SEMAPHORE, integer key count);

6.8 Mailboxes
6.8.1 Allocating a Mailbox (4-16)

Clarification: The prototype for the alloc() function is shown as:

function integer alloc(MAILBOX, integer nailbox_id,
i nteger mail box_count);

September 4, 2002 31

Clarification to Testbench Donation Page 32 of 53

VeralLite imposes the following restrictions:
e mailbox_id must beO.
« mailbox_count must be 1.

Proposal: Thisfunction should be simplified to:
function integer alloc(MA LBOX);

6.8.2 Returning Data: mailbox_get() (4-17)

Clarification: Mailboxes are type-less, that is, a single mailbox can send and receive any
type of data. Thus, in addition to the data being transmitted (i.e., the message), mailbox
implementations must maintain the message data type placed by mailbox_put. Thisis
required in order to enable run-time type checking.

Clarification: Semaphore and Mailbox incorporate a set of system tasks and should use
the appropriate syntax: $alloc(), $mailbox_get(), $mailbox_put(), etc.

6.9 Timeout Limit (4-20)

Clarification: VeralLite does not support timeout limits. Please disregard this section.

7 Interfacing to the Device Under Test

7.1 Interface Declaration

Veralite interfaces specify how a VeralL ite test-bench communicates with the device
under test (i.e., the Verilog design). A test-bench may contain one or more interfaces.
Each interface contains an arbitrary number signals (with designated size, and input,
output, or inout direction), and at most one of the signals that is designated as the clock.
A VeralLiteinterface servestwo functions. First, it itemizes and describes the signals
(nets) through which the test-bench will interact with the design being tested. Thus, the
signal's that comprise the interfaces denote the boundary between the design and the test”.
Second, and most importantly, an interface groups together signals that are synchronous
to aparticular clock, that is, it defines a clocking domain. The clocking domain is the
core element in a cycle-based methodology. This methodology enables usersto write
test-benches at a higher level of abstraction. Rather than focusing on signals and
transitionsin time, the test can be defined in terms of cycles and transactions.

" In the newly proposed program declaration this boundary is specified in part by the program ports.

September 4, 2002 32

Clarification to Testbench Donation Page 33 of 53

Conflict: VeraLite uses an interface to connect the test-bench to the device under test.
The keyword interface collides with SystemVerilog' s inter face.

Resolution: As described above, the key function of athe VeraLite interface isto enable
the clocking domain abstraction. Therefore, a more appropriate name for this construct is
clocking_domain. The term clocking_domain not only eliminates the conflict with
SystemVerilog, but also elucidates this construct’ s main function.

As proposed in Section 4.1, the signals through which the program interacts with the rest
of the design are specified viathe program ports, while the clocking_domain specifies
the synchronization or communication paradigm used by those signals. Thus, using this
simplified and more general approach, the clocking_domain applies only to a particular
program and must be declared within the program, that is, a clocking_domain will have
program scope.

Simplification: A VeralLite interface requires that each one of its elements specify not
only the synchronization paradigm, but also its direction and size. Since the direction and
size information and can be easily deduced from the synchronization constructs (PHOLD,
, ...) Or the program’ s ports, this information becomes optional. Note that it may still be
needed for cross-module references (see hdl-node in Section 7.4), but for regular ports,
thisinformation can be omitted.

For example:

programtest (i nput phil, input [15:0] data, output wite,
i nput phi 2, inout [8:1] cnd, input enable
)

cl ocki ng_domai n cdl

{
phi 1 CLOCK;
data PSAMPLE #-1,;
wite PHOLD #1;
i nput [2:0] state PSAMPLE #-1 hdl _node “top.cpu.state”;

}

cl ocki ng_domai n cd2
phi 2 CLOCK;

cmd NSAMVPLE #- 2ps NHOLD;
enabl e PSAMPLE #1;

/1 program begi ns here

// user can access cdl.data , cd2.cnd , etc...
endpr ogr am

And, the test module can be instantiated and connected to the device under test.

September 4, 2002 33

Clarification to Testbench Donation Page 34 of 53

nodul e top;
| ogi ¢ phil, phiZ2;

mai n_test(phil, data, wite, phi2, cnd, enable);
cpu(phil, data, wite);
men{ phi 2, cnd, enable);

endnodul e

Clarification: A clocking_domain encapsulates a set of signals that share acommon
clock, therefore, specifying a clocking domain using a SystemV erilog inter face can
significantly reduce the amount of code needed to connect the test-bench. Furthermore,
since the signal directions in the clocking domain are with respect to the test-bench, and
not the design under test, amodport declaration can appropriatel y describe the direction.
Conceptually, one can envision a Veral ite program as being contained within a program
module, and whose ports are interfaces that correspond to the signals declared in each
clocking-domain. The interface’ swireswill have the same direction as specified in the
clocking-domain when viewed from the test-bench side (i.e., modport test), and reversed
when viewed from the device under test (i.e., modport dut).

For example, the previous example could be re-written as:

interface bus_A (input clKk);
wire [15:0] data;
wire wite;
nmodport test (input data, output wite);
nmodport dut (output data, input wite);
endi nterface

interface bus_B (input clKk);
wire [8:1] cnd;
w re enabl e;
nodport test (input enable);
nodport dut (output enable);
endi nterface

programtest(bus A test a, bus B.test b);

cl ocki ng_domai n cdl

{

a.clk CLOCK

a. data PSAMPLE #-1,;

a.wite PHOLD #1

i nput [2:0] state PSAMPLE #-1 hdl _node “top.cpu.state”;
}

cl ocki ng_domai n cd2
b.cl k CLOCK

b. cmd NHOLD #- 2ps NSAMPLE;
b. enabl e PSAMPLE

September 4, 2002 34

Clarification to Testbench Donation Page 35 of 53

/1 program begi ns here

// user can access cdl.a.data , cd2.b.cnd , etc...
endpr ogram

And, the test modul e can be instantiated and connected to the device under test.

nodul e top;
| ogi ¢ phil, phi?2;

bus_A a(phil);
bus_B b(phi 2);

test(a, b);
cpu(a);
men(b);

endnodul e

Clarification: The signals names in the clocking domain must match the names of the
portsin the program block. Thus, asignal can appear only oncein a particular clocking
domain. However, the same port can be included in multiple clocking domains.

7.1.1 Signals in Multiple Clocking Domains

The proposed organization for the program block and clocking domains, does not
disallow using the same port in more than one clocking domain. For input signals, the
semanticsis clear; each clocking domain samples the signal using a different clock.
However, for output signals, there are two possibilities, the output port is either driven to
aresolved value or to the latest value assigned (as a procedural assignment). Typically,
thisis not an issue since signalsin different clocking domains truly are separate signals
and each corresponds to a separate port. But, sometimes a signal may be driven by more
than one clock edge, for example, dua-data-rate memories are driven on both the positive
and negative edges of aclock. In those situations the procedural (last drive wins) isthe
more useful choice. Users can easily accomplish value resolution by using separate ports
for the same net.

7.2 Interface Signal Declarations (5-2)

Correction: The donation includes the termsinput_signal _type and output_signal _type,

but does not define them.

* input_signal_type: Aninput signal type consists of one the words NSAMPLE or
PSAMPLE plus an optiona input skew, whose syntax is: #-skew_value.

e output_signal_type: An output signal type consists of one the words NHOLD or
PHOL D plus an optional output skew, whose syntax is: #skew_value.

Note that the input skew contains aminus sign (-), whereas the output skew does not.

September 4, 2002 35

Clarification to Testbench Donation Page 36 of 53

Veralite samplesinput and inout signals at a specific edge (positive-edge for PSAMPLE
and negative-edge for NSAMPLE) of their corresponding clock. If the optional input
skew is specified in the signal declaration then the value of the signal sampled is the one
at skew simulation time units before the clock edge.

Similarly, an output signal that specifies an output skew is driven skew simulation time
units after the corresponding clock edge. The figure below depicts the sample and drive
times for asignal with respect to the positive edge of a clock.

signal sampled here signal driven here

clock

«
AJ 1
input skew i L» output skew

Sample and drivetimesfor a signal with optional input and output skews

Limitation: SystemVerilog alows physical time units to be specified, whereas VeralLite
accepts only time ticks to specify skews.
Resolution: Remove thislimitation. VeralLite will accept both timeticks aswells as
physical time units to specify skews.
For example:

i nput [16:0] data NSAMPLE - 12ps;

Clarification: The input skew specification #-0 has a special meaning that specifies the
signal should be sampled an infinitessmal delta before the clock edge. That is, the value
sampled is always the signal’ s last value before the clock edge.

Clarification: When signals in a clocking-domain do not specify a skew, VeralLite uses a
skew of zero, that is, no skew. Signalswith no input skew are sampled at the same time
astheir specified clock edge. Likewise, signals with no output skew are driven at the
same time as their specified clock edge. Note that this type of zero-delay processing is a
typical source of non-determinism that often resultsin races, however, Veralite avoids
both of these by means of two mechanisms. First, by constraining VeralL ite processes to
execute only at synchronize time (see Section 7.3), once all zero-delay transitions have
propagated through the design and the system has reached a steady state. Second, by
gueuing all outgoing signal drives until the end of the VeraL ite execution cycle, and then
propagating al the drives as one event. Thisisdescribed in more detail in Section 8.2.

September 4, 2002 36

Clarification to Testbench Donation Page 37 of 53

Supporting signals with zero (input or output) skew without races is an important feature
of the test-bench environment. Thisis because test-benches with no timing information
are quite common, particularly during the early phases of a design, when designers are
mostly focused on functionality and not timing.

7.3 Cycle Behavior with SystemVerilog Event Queue

There are two major sources of nondeterminism in SystemVerilog. Thefirst oneis that
active events can be taken off the queue and processed in any arbitrary order. The second
oneisthat statements without time-control constructs in behavioral blocks do not execute
asone event. However, from the test-bench perspective, these effects are all unimportant
details. The primary task of atest-bench isto generate valid input stimulus for the design
under test, and to verify that the device operates correctly. Furthermore, test-benches that
use cycle abstractions are only concerned with the stable or steady state of the system for
both checking the current outputs and for computing stimuli for the next cycle.

To avoid the nondeterminsm and races inherent in Verilog' s event queue management,
Veral ite executes test-bench processes only after the system has settled to its steady
state. Until now, this was done at synchronize time, but that was mostly due to PLI
limitations. Recently, this behavior has been modified to execute after non-blocking
assignments, thus, treating all transitions towards the steady state in the same consistent
manner. Accordingly, signals driven from the test bench with no delay are propagated
into the design as one event immediately before read-only synchronize time. With this
behavior, the correct cycle semantics can be model ed without races, and make the test-
bench compatible with the various assertions mechanisms.

Proposal: In order to standardize the cycle behavior, the execution after non-blocking
assignments described above should be added to SystemVerilog's event cycle. Thisis
not a requirement unique to the test-bench. Many other subsystems such as monitors,
checkers, waveform tools, and temporal assertions, have similar requirements. However,
it is the test-bench that exacerbates this need because in addition to examining the current
state it must also react and provide new stimuli for the next cycle, which is often driven
with no delay.

7.3.1 Blocking Tasks in Cycle/Event mode

Calling functions in the program block from other modules and vice-versais permitted
and needs no special handling. Likewise, calling ablocking task in the program block
from outside the program block presents no problem and can be treated like aregular task
call. The blocking task will smply block using cycle semantics. However, caling a
blocking task outside the program block from inside the program (where cycle semantics
are observed) requires explicit synchronization upon return from the task.

7.4 hdl_path (5-6)

Clarification: An hdl_path stands for a hierarchical name, or cross-module reference.
Veralite accepts any valid Verilog hierarchical expression.

September 4, 2002 37

Clarification to Testbench Donation Page 38 of 53

Correction: Page 5-7 of the donation states that “the path always starts from the top level
HDL module’. Thisisincorrect. The path can specify any hierarchical path that can be
reached from the point of instantiation of the program module (see Section 4.1) according
to SystemVerilog's scope search rules.

7.5 Interface Signal of type CLOCK (5-8)

Clarification: The note in the donation states that “.. the same signal can be associated
with multiple clocks via multiple interface definitions. However, despite multiple
interfaces, asingle signal cannot be driven to two values at the same time.”

That statement is misleading. When each signal in an interface (i.e., clocking-domain)
represents a Verilog wire, each output signal has a register associated with the signal that
will hold the last value to which the signal isdriven . If the same net is an output from
more than one interface then that net has multiple drivers, and Verilog' s resolution
function will determine the net’sfinal value. However, when the same output signal is
driven (from within VeraLite) more than once at the same time then VeraL ite checks for
conflicting drives. When conflicting drives are detected, VeralL ite issues a simulation
error, and drives an X onto each conflicting bit.

8 Signal Operations (6-1)

The donation lists “The expect event” as one of the topics covered in the chapter. That
section is not part of the donation. Please disregard.

8.1 Synchronization (6-2)

8.1.1 Interface_signal (6-2)

The donation states “... It can be any signal in an interface declaration or CLOCK. The

interface signal can be any subfield of asignal aswell. If CLOCK is specified, the

synchronization operation is performed on SystemClock.

Clarification: SystemClock is not defined. SystemClock is alegacy concept based on

designs that were either single clocked or had a discernable master clock (or system

clock). Every Veral ite test-bench has an implicit clocking signal called SystemClock,

which serves two functions:

1. Itusused asaclock so that messages are issued in terms of cycle numbers, such as:
“Error in program testl (testl.vr, line 19, cycle 20)”.

2. It allowsuse of @(CLOCK) asashorthand for @(interface_name.clock _name).

In atrue multi-clocking environment, System Clock can be confusing.

Resolution: Eliminate the need for SystemClock, and change the meaning of CLOCK in

this context to represent the clock signal within a particular clocking-domain. Thiswill

September 4, 2002 38

Clarification to Testbench Donation Page 39 of 53

alow usersto specify @(interface_name.CL OCK) regardless of the name that was
given to the clock signal.

For example:
interface nylfc

{
i nput CLOCK cl k;

}
Given the clocking-domain declaration above, users would be allowed to usenyl f c. cl k
or nyl fc. CLOCK. However, use of @(CLOCK) by itself is deprecated.
Error messages should be issued using simulation time. If it is deemed important to have
cycle-based messages, users may be allowed to associate a clocking signal via a system
task, for example $set_system_cycle(clock_signal);

8.1.2 Synchronization (6-3)

Correction: The second synchronization example uses @(CLOCK). This use should be
deprecated. Instead, require explicit naming of the clocking-domain (see Section 8.1.1).
asin: @(ram_bus.CLOCK).

Correction: The last paragraph of the Synchronization section that section states “ At
initialization, HDLs can create edges at time = 0 (for example, going from X to the
initialized value). This means that synchronization conditions can be set before
initialization of the signal.”

That statement isincorrect. Veralite delays execution of aprogram’sinitial statements
until al such activity has settled (see Section 7.3).

Also, thismeans that any clock edges at time O will not trigger anew cycle. Thisavoids
races between the various initial blocks and the test-bench, and is more consistent with
SystemVerilog' sinitiaization rules.

8.2 Blocking and Non-Blocking Drives (6-5)

Clarification: The donation implies that blocking and non-blocking drivesin VeralL ite
are analogous to the Verilog operators by the same name. That isnot true. In VeralLite
all drives are queued, regardless of whether they are blocking or non-blocking. Aslong
as Veralite has processes ready to execute at the current time, these drives will remainin
the queue. Then, at the end of all (VeraLite) process execution, al drives are propagated
into the design in one fell swoop. Thus, in Veralite a non-blocking drive simply means
that when the delay cycle count is not zero, the process that executes the drive continues
to execute without blocking. It does not mean that those drives will be propagated as a
Verilog non-blocking assignment (NBA)! Likewise, VeralLite blocking drives seem to
imply that the driven value is propagated through the design immediately, perhaps
unblocking other processes that are sensitive to the driven signal. As explained above,
thisis not the case: All drives are queued until the end of the Veral ite processing.

September 4, 2002 39

Clarification to Testbench Donation Page 40 of 53

Conflict: Veralite uses the same syntax as SystemVerilog for non-blocking drives, but
their semantic is very different.
Resolution: Eliminate the confusion by simplifying VeralL ite to support only one type of
drive: the non-blocking drive (=). If users wish to emulate the current Vera non-blocking
behavior, they can easily do so by means of an auxiliary thread:

ifc.sig <= val ue; becomes fork ifc.sig = value; joinnone
If the non-blocking syntax is to be supported then it should behave asin SystemV erilog.

Clarification: The signal drive operator syntax may appear to be ambiguous with certain
event control expressionsin SystemVerilog. For example:

integer | = 4,

@ a = b;

The last statement above has the same syntactical form asasignal drive. But, it hastwo
different meanings: in SystemV erilog the process blocks until j changes value, whereas a
signal-drive causes the process to block for j cycles.

Nevertheless, the compiler can easily resolve the ambiguity by examining the type of
operand involved in the signal drive (aabove). If the operand is defined in aclocking
domain, the signal is synchronous and should be driven using cycle semantics viaasignal
drive. Otherwise, the statement is aregular event control assignment.

8.2.1 Drives (6-6)

Correction: Thelast line of the first paragraph states “ Conflicting drives drive the signal
to X and result inasimulation error”. That description isinaccurate, it should state:
“Conflicting drives drive the conflicting bitsto X and result in asimulation error”. Also
see Section 8.2 for an explanation of blocking vs. non-blocking VeraLite drives.

8.3 Sampling a Signal (6-6)

Correction: The note states that “when sampling asignal in an expression, it is done
immediately (i.e., asynchronously).” . That isincorrect. A synchronous Veral ite signal
always evaluates to the sampled value, i.e., the synchronous value. That statement would
imply that the following code segments might yield different results:

/'l expression /] assi gnment
integer y = ifc.sig; i nt eger v;
y = ifc.sig;

8.4 Implicit Synchronization (6-7)

Clarification: Please disregard the second example:
foobus.strobe 1 ==1'b1,

September 4, 2002 40

Clarification to Testbench Donation Page 41 of 53

That operation is not part of the donation.

8.5 Asynchronous Signal Operations (6-8)

Limitation: The async modifier is not supported by VeralLite. If asignal istruly
asynchronous, it should not be declared in a synchronous clocking-domain.

Resolution: To create an asynchronous clocking domain, smply omit the CLOCK signal
from the corresponding clocking-domain. When a clocking domain has no clock
specification, VeralLite will consider al signalsin the domain to be asynchronous:. the
signals will not be sampled at any clock edge, instead their instantaneous value will be
used.

8.6 Sub-Cycle Delays (6-9)

Limitation: SystemVerilog alows physical time units to be specified, but the VeralL ite
delay task accepts only time ticks to specify atime.

Resolution: Remove this limitation. The delay task will accept both time ticks as well as
physical time units.

Clarification: Calling the delay task delay(n) is analogousto a# n declaration. The
only difference isthat Veral ite always executes after non-blocking assignments (see
Section 7.3). whereas the # operator does not specify this behavior. Also, delay(0), is
simply ignored, to accomplish adelay(0) suspend_thread() (see Section 6.4).

9 Class and Methods

9.1 Objects and Instance of Classes (7-3)

Clarification: The donation states that an instance of aclassis created using the new
keyword. That should state using the new task.

Correction: The example liststaskl as:

task task1 (integer a, (obj_example myexample = null))
That notation isincorrect. The use of parenthesis to create optional argumentsis not
supported by Veral ite.

September 4, 2002 41

Clarification to Testbench Donation Page 42 of 53

9.2 Constructors (7-5)

Clarification: Event though the new operation is defined as atask, it istreated as a
function, that is, the new task may not block. The VeralLite compiler will issue an error if
the new task is determined to be blocking.

Clarification: The donation doesn’t mention that every class has a default (built-in) new
method. That method first callsits parent class (super.new) and then proceeds to initialize
each member of the current object to its default value.

9.3 External Classes (7-11)
Resolution: This use of the extern keyword is deprecated. See discussion in section 4.7

9.4 Typedef (7-11)

Overlap: Thetypedef keyword is used by SystemVerilog to define any arbitrary user-
defined type. For example: typedef bit [4:1] nibble.

Veralite usesthe typedef keyword only for forward-referencing of class declarationsin
order to satisfy the rule that atype must be declared before its use.

Resolution: Extend SystemVerilog' s typedef to allow forward references for classes.
The two uses do not represent a conflict and can coexist without problem.

Note that the class construct always creates atype, it does not require atypedef
declaration asintypedef class Thisisthesameasin C++.

9.5 Classes, Structs, and Unions

SystemV erilog includes structs and unions. Veral ite supports the object-oriented class
construct. On the surface, it might appear that class and struct provide equivalent
functionality, and only one of them is needed. However, that is not true; classes differ
from structs in four fundamental ways:

1. SystemVerilog structs are strictly static objects; they are created either in astatic
memory location (global or module scope) or on the stack of an automatic task.
Conversely, Veralite objects (i.e., class instances) are exclusively dynamic, their
declaration doesn’t create the object; that is done by calling new.

2. SystemVerilog structs are type compatible so long as their bit sizes are the same, thus
copying structs of different composition but equal sizesisallowed. In contrast,
VeralLite objects are strictly strongly-typed. Copying an object of one type onto an
object of another is not allowed.

3. VeralLite objects are implemented using handles, thereby providing C-like pointer
functionality. But, VeralLite disallows casting handles onto other data types, thus,
unlike C, VeraLite handles are guaranteed to be safe (no memory crashes).

September 4, 2002 42

Clarification to Testbench Donation Page 43 of 53

4. Veralite objects form the basis of an Object-Oriented framework that provides true
polymorphism. Class inheritance, abstract classes, and dynamic casting are powerful
mechanisms that go way beyond the mere encapsulation mechanism provided by
structs.

9.6 Automatic Memory Management

The memory used by VeralLite objects and strings is allocated dynamically. When
objects are created, VeralL ite allocates more memory. When an object is not needed
anymore, VeralLite automatically reclaims the memory, making available for re-use. The
automatic memory management system is an integral part of VeralLite. One might be
tempted to think that a manual memory management system, such as the one provided by
C’smalloc and free, might be sufficient. However, VeralLite's (and SystemVerilog's)
multi-threaded, re-entrant environment create many opportunities for users to shoot
themselves in the foot. For example, consider the following example:

myCl ass obj = new,
fork
taskl(obj);
task2(obj);
j 0i n none

In this example, the main process (the one that forks off the two tasks) doesn’t know
when the two processes might be done using the object obj. Similarly, neither task1 nor
task2 knows when any of the other processes will no longer be using the object obj. Itis
evident from this simple example that no single process has enough information to
determine when it is safe to free the object. The only two options available to the user
are (1) play it safe and never reclaim the object, or (2) add some form of reference count
that can be used to determine when it might be safe to reclaim the object. Adopting the
first option will cause the system to quickly run out of memory. The second option
places alarge burden on the users, who in addition to managing their test-bench, must
also manage the memory using less than ideal schemes. To avoid these shortcomings,
Veralite manages al dynamic memory automatically. Users no longer need to worry
about dangling references, premature memory free's, or memory leaks. The system will
automatically reclaim any object that is no longer being used. In the example above, all
that users do is assign null to the handle obj when they no longer need it.

9.7 Inheritance

The donation briefly refers to Object-Orientated Programming, but the section describing
classinheritance is missing. The missing sections are attached below.

Inheritance introduces several new keywords (these have already been accounted for in
Section 3.2). Those keywords are:

*« extends
* |oca
e protected

September 4, 2002 43

Clarification to Testbench Donation Page 44 of 53

e super
e virtual

9.7.1 Subclasses and Inheritance

In the previous section we have defined a class called Packet. Assume we want to extend
this class so the packets can be chained together into alist. One solution would be to
create anew class called LinkedPacket that contains a variable of type Packet.

Whenever we refer to a property of Packet, we need to reference the variable packet.

cl ass Li nkedPacket

{ Packet packet;
Li nkedPacket next;
function Li nkedPacket get next()
{ get _next = next;

}

Since LinkedPacket is a specialization of Packet, a more elegant solution isto extend the
class creating a new subclass that inherits the members of the parent class. Thus, for
example, we could have:

cl ass Li nkedPacket extends Packet

Li nkedPacket next;
function Li nkedPacket get_next()

{
}

get _next = next;
}

Now, al of the methods and properties of Packet are part of LinkedPacket - asif they
were defined in LinkedPacket — and LinkedPacket has additional properties and methods.
We can also override the parent’ s methods, changing their definitions.

9.7.2 Overriden Members

Subclass objects are also legal representative objects of their parent classes. For example,
every LinkedPacket object is a perfectly legal Packet object.
We can assign the handle of a LinkedPacket object to a Packet variable:

Li nkedPacket | p = new,
Packet p = Ip;

In this case, references to p access the methods and properties of the Packet class. So, for
example, if you have overridden properties and methods in LinkedPacket, when you
reference these overridden members through p you get the original membersin the

September 4, 2002 44

Clarification to Testbench Donation Page 45 of 53

Packet class. From p, new and all overridden members in LinkedPacket are hidden from

you.
cl ass Packet

{
integer i = 1,
function integer get()

get =i;

cl ass Li nkedPacket extends Packet

{
integer i = 2;
function integer get()
{
get = -i;
}

Li nkedPacket | p = new,
Packet p = Ip;
j ;

J

1, not 2
1, not -1 or -2

/
/

~ ~

p.i; i
p.get(); J
Note that thisis different from the semantics of, for example, Java. In Java, you would
get the original properties, but you would get the overridden methods of the child class.
In VERA, to get the overridden method, the parent method needs to be declared virtual
(see below).

9.7.3 super

The super keyword is used from within a derived classto refer to properties of the parent
class. It is necessary to use super when the property of the derived class has been
overridden, and cannot be accessed directly.

cl ass Packet /] parent cl ass

{

i nt eger val ue;
function integer delay()

del ay = value * val ue;

}
}

cl ass Li nkedPacket extends Packet //derived cl ass

{

i nt eger val ue;
function integer del ay()

del ay = super. del ay() +val ue * super. val ue;

}

super . val ue;
super. del ay();

September 4, 2002 45

Clarification to Testbench Donation Page 46 of 53

The property may be amember declared alevel up or amember inherited by the class
onelevel up. Thereisno way to reach higher (for example, super.super.count is not
allowed).

Subclasses are classes that are extensions of the current class. Whereas super-classes are
classes that the “ current” classis extended from, beginning with the original base class.

Note:
When using the super within new, it must be the first statement in the constructor.

9.7.4 Casting

It isaways legal to assign subclass variable to a variable of superclass higher in the
inheritance tree. It is never legal to directly assign a superclass variable to a variable of
one of its subclasses. However, it may be legal to place the contents of the superclass
handle in a subclass variable.

To check if the assignment will be legal, use the cast_assign() function.
The basic syntax for cast_assign() is:

function integer cast_assign(var destination_handle
sour ce_handl e) ;
This function checks the hierarchy tree (super and subclasses) of the source_handle to see
if it contains the class destination_handle. If it does, cast_assign() does the assignment; if
itisnot, cast_assign() generates an error and terminates.

A second version of this function allows you to check the results without generating an

error:
cast _assi gn(destinati on_handl e, source_handl e, CHECK);

does the assignment and returnsa 1 if the assignment isvalid. Otherwise, it setsthe
destination handle to null and returnsa 0.

9.7.5 Chaining Constructors

When a subclass is instantiated, one of the system’ sfirst actionsis to invoke the class
method new(). Thefirst, implicit action new() takes isto invoke the new() method of its
superclass, and so on up the inheritance hierarchy. Thus, al the constructors are called,
in the proper order, beginning with the base class and ending with the current class.

If the initialization method of the super-class requires arguments, you have two choices.
If you want to always supply the same arguments, you can specify them at the time you
extend the class:

cl ass Et herPacket extends Packet (5) {

Thiswill pass 5 to the new routine associated with Packet.

September 4, 2002 46

Clarification to Testbench Donation Page 47 of 53

A more genera approach isto use the super keyword, to call the superclass constructor:

task new() {
super. new(5) ;
If you use this approach then this must be the first executable statement in new.

9.7.6 Data Hiding and Encapsulation

So far, we have made al of our properties and methods available to the outside world
without restriction. However, for most data (and most subroutines) we want to hide them
away from the outside world, “seal them away in the capsule” of the class. This keeps
other programmers from relying on your specific implementation - so you can safely
modify it later - and it also protects against accidental modifications to propertiesthat are
internal to the class. When al data becomes hidden - being accessed only by public
methods - testing and maintenance of the code becomes much easier.

Unlabeled properties and methods are public, available to anyone who has access to the
object’ s name.

A member identified aslocal is available only to methods inside the class. Further, these
local members are not visible even to subclasses and cannot be inherited. Of course, non-
local methods that access local properties or methods can be inherited, and work properly
as methods of the subclass.

A protected property or method has all of the characteristics of alocal member, except
that it can be inherited; it is visible to subclasses.

Note that within the class, we can reference alocal method or property of our class, even

if itisin adifferent instance. For example
cl ass Packet

{
| ocal integer i;
function integer conpare (Packet other)
{
conpare = (this.i == other.i);
}
}

A dtrict interpretation of encapsulation might say that other.i should not be visible inside
of this packet, since it isalocal property being referenced from outside its instance.
Within the same class, however, these references are allowed. In this case, this.i will be
compared to other.i and the result of the logical comparison will be returned.

In summary:

* Wherever possible, use local members. Hide members that the outside world doesn’t
need to know about.

» Useprotected membersif the outside world doesn’'t have a need to know, but
subclasses might.

* Public access should only be allowed when it is absolutely necessary, and the access
should be limited as much as possible. Generally, don’'t provide direct access to
properties but rather provide access methods - provide, for example, only read access

September 4, 2002 47

Clarification to Testbench Donation Page 48 of 53

if avariable should never be written. This provides an extra level of protection and
preserves flexibility for future changes.

9.7.7 Abstract Classes and Virtual Methods

Often we create a set of classes that can be viewed as all derived from a common base
class. For example, we might start with a common base class of type BasePacket that sets
out the structure of packets but isincomplete; we would never want to instantiate it.

From this base class, though, we might derive a number of useful subclasses: Ethernet
packets, token ring packets, GPSS packets, satellite packets. Each of these packets might
look very similar, al needing the same set of methods, but they could vary significantly
in terms of their internal details.

We start by creating the base class that sets out the prototype for these subclasses. Since
we don’t need to instantiate the base class, we declare it to be abstract by declaring the
classto bevirtual:

virtual class BasePacket ({

By themselves, abstract classes are not tremendously interesting, but abstract classes can
also have virtual methods. Virtual methods provide prototypes for subroutines, al of the
information generally found on the first line of a method declaration: the encapsul ation
criteria, the type and number of arguments, and the return type if it is needed. Later, when
subclasses override virtual methods, they must follow the prototype exactly. Thus, all
versions of the virtual method will ook identical in all subclasses:

virtual class BasePacket

{

virtual protected function integer send(bit[31:0] data);

cl ass Et her Packet extends BasePacket

{
protected function integer send(bit[31:0] data)

/1 body of the function

}

EtherPacket is now a class we can instantiate. In general, if an abstract class has severa
virtual methods, all of the methods must be overridden for the subclass to be instantiated.
If all of the methods are not overridden, the subclass needs to be abstract.

Methods of normal classes can also be declared virtual. In this case, the method must
have a body. If the method does have a body, then the class can be instantiated, as can its
subclasses. However, if the subclass overrides the virtual method, then the new method
must exactly match the superclass's prototype.

September 4, 2002 48

Clarification to Testbench Donation Page 49 of 53

9.7.8 Polymorphism: Dynamic Method Lookup

Polymorphism allows us to use superclass variables to hold subclass objects, and to
reference the methods of those subclasses directly from the superclass variable. As an
example, consider the base class for our packet objects, BasePacket. Assume that it
defines, as virtual functions, all of the public methods that are to be generally used by its
subclasses, methods such as send, receive, print, etc. Even though BasePacket is abstract,
we can still useit to declare avariable:

BasePacket packets[100];

We can now create instances of various packet objects, and we can put these into the
array we just created:

Et her Packet ep new,

TokenPacket tp new,

GPSSPacket gp = new,

packets[0] = ep; packets[1l] = tp; packets[2] = gp;

If our datatypes were, for example, integers, bits and strings, we couldn’t store al of
these types into a single array, but with polymor phism we can with objects. In this
example, since the methods were declared as virtual, we can access the appropriate
subclass methods from the superclass variable even though the compiler didn’t know - at
compile time - what was going to be loaded into, for example, packets[1]:

packet s[1] . send();

will invoke the send method associated with the TokenPacket class. At run-time, the
system correctly binds the method from the appropriate class.

Thisisatypica example of polymorphism at work, providing capabilities that are far
more powerful than what is found in a non-object-oriented language.

10 Linked Lists (8-1)

Clarification: The donation doesn’t mention this, but, the Linked List packageis
analogousto the C++ STL (Standard Template Library) List container, that is popular
with C++ programmers. Note, however, that Veralite doesn’t support C++ templates.
Instead, the generic code is accomplished via macros.

10.1List Macros (8-2)

Correction: The only necessary macro isMakeVeraL ist(type). The second macro
mentioned in the donation, ExternVeraList isunnecessary. Also, unnecessary isthe
inclusion of any header file other than ListMacros.vrh. In particular, thefile
VeralListProgram.vrh is deprecated and unnecessary.

September 4, 2002 49

	Introduction
	Document Format
	L

	Languages Overview
	SystemVerilog 3.0
	VeraLite

	VeraLite: The Language
	Lexical Elements
	VeraLite Keywords (1-2)
	VeraLite Predefined Constants
	VeraLite Predefined Clocking Identifiers

	Statement Blocks (1-3)
	Strings (1-4)
	Numbers (1-5)
	Data Types and Variable Declaration (1-6)
	Standard Data Types
	Integer (1-7)
	bit (1-7)
	String (1-8)

	User-Defined Data Types
	Enumerated types (1-10)
	Arrays (1-11)
	Array Initialization (1-12)
	Multi-dimensional Arrays (1-13)
	Array Initialization (1-15)

	Associative Arrays (1-16)
	Dynamic Arrays
	Dynamic Arrays
	new[]
	get_array_size()

	Enumerated Types in Numerical Expressions (1-20)
	Operators (1-22)
	Operator Precedence (1-23)
	Arithmetic Operators (1-24)
	Bitwise Operators (1-26)
	Conditional Operator (1-27)
	Side effecting operators: Increment and Decrement
	Operators for manipulating strings (1-28)
	Methods on String (1-28)

	Concatenation (1-29)
	variable Assignment (1-31)
	Expressions and Operators (General)
	Signed vs. Unsigned

	Programming Overview
	Program Block (2-3)
	Static Data Initialization
	Scope Rules
	Multiple Programs

	Preprocessor Directives (2-4)
	Subroutines (2-5)
	Discarding Function Return Values (2-8)
	Tasks (2-9)
	return Statement (2-10)
	External Declarations (2-13)

	Sequential Control
	case Statements (3-3)
	for loops (3-6)
	break and continue (3-8)

	Concurrency Control
	fork and join (4-2)
	wait_var() (4-8)
	terminate (4-9)
	suspend_thread (4-10)
	Maximum Threads (4-11)
	Events (1-9)
	Synchronizing concurrent processes with event variables
	sync System Task or Function
	trigger System Task
	Event Variables
	Disabling Events
	Merging Events

	Semaphores
	Allocating a Semaphore (4-12)

	Mailboxes
	Allocating a Mailbox (4-16)
	Returning Data: mailbox_get() (4-17)

	Timeout Limit (4-20)

	Interfacing to the Device Under Test
	Interface Declaration
	Signals in Multiple Clocking Domains

	Interface Signal Declarations (5-2)
	Cycle Behavior with SystemVerilog Event Queue
	Blocking Tasks in Cycle/Event mode

	hdl_path (5-6)
	Interface Signal of type CLOCK (5-8)

	Signal Operations (6-1)
	Synchronization (6-2)
	Interface_signal (6-2)
	Synchronization (6-3)

	Blocking and Non-Blocking Drives (6-5)
	Drives (6-6)

	Sampling a Signal (6-6)
	Implicit Synchronization (6-7)
	Asynchronous Signal Operations (6-8)
	Sub-Cycle Delays (6-9)

	Class and Methods
	Objects and Instance of Classes (7-3)
	Constructors (7-5)
	External Classes (7-11)
	Typedef (7-11)
	Classes, Structs, and Unions
	Automatic Memory Management
	Inheritance
	Subclasses and Inheritance
	Overriden Members
	super
	Casting
	Chaining Constructors
	Data Hiding and Encapsulation
	Abstract Classes and Virtual Methods
	Polymorphism: Dynamic Method Lookup

	Linked Lists (8-1)
	List Macros (8-2)

