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VeraLite: The Language 1

This chapter covers the basics of VeraLite. It introduces the lexical 
elements and some of the basic components of the language. The 
following sections are included:

• Lexical Elements

• Data Types and Variable Declaration

• Arrays

• Enumerated types

• Operators

• Variable Assignment
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Lexical Elements

VeraLite source code consists of a stream of lexical elements. 
Lexical element types are:

• White Space

• Comments

• Statement Blocks

• Identifiers

• Keywords

• Strings

• Numbers

White Space

White space is any sequence of spaces, tabs, newlines, and 
formfeeds. White space is used in VeraLite as a token separator. 
Except within a string, white space is ignored.

Comments

VeraLite supports two forms of comments: a single-line comment 
and a block comment.

A single-line comment starts with a double slash (//) and finishes out 
the line. The syntax is:

any_vera_statement; //One line comment
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A block statement starts with a /* and ends with a */. Everything 
between the start and end tags is a comment. 

The syntax is:

/*Blocks of comments
can take up
multiple lines */

Note:   
Block comments cannot be nested.

Statement Blocks

VeraLite supports two methods of creating statement blocks: 
braces, and fork/join.

The syntax for statement blocks using braces is:

{
// vera_statements

}

Note:   
An empty statement is not legal in VeraLite. For example, the 
following generates a parse error:

if(1) 
 ; 
else 

 ; 

The syntax for fork/join statement blocks is:

fork
process1();
process2();
...
processN();

join
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Forks and joins are discussed in more detail in fork and join on 
page 4-2.

Identifiers

An identifier is a sequence of letters [a-zA-Z], digits[0-9] and 
underscores[ _ ]. Identifiers are case-sensitive and cannot begin with 
a digit.

Strings

A string is a sequence of characters enclosed by double quotes. A 
string must be contained in a single line unless the new line is 
immediately preceded by a back slash. In this case, the back slash 
and new line are ignored. There is no maximum string size limit for 
constants.

Numbers

In VeraLite, a number can be formed using either the LIT_INTEGER 
or NUMBER format.

The LIT_INTEGER format is a simple decimal number specified as 
a sequence of digits from 0 to 9. Negative signs are allowed to 
specify negative integers. Underscores are ignored and may be 
used for clarity. The upper limit for integer sizes is dependent on the 
host machine, but it is generally 32 bits. The syntax is:

[0123456789]+

The NUMBER format takes these forms:

<size>’<base><number>
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<size>:

The <size> specifies the number of bits in the number. If the 
<size> is omitted, the number of bits for <number> defaults to 
the host machine word size. A plus or minus sign before the 
<size> specification signifies the number’s polarity. The 
maximum size is 65535.

<base>:

The <base> is always preceded by a single quote (‘). The 
<base> can be one of the following: d(ecimal), h(exadecimal), 
o(ctal), or b(inary). The base identifier can be either upper or 
lower case.

<number>:

 - The valid elements of <number> for each <base> are:

’b(binary): [01xXzZ_]
’d (decimal): [0123456789_]
’o (octal): [01234567xXzZ_]
’h (hexadecimal): [0123456789abcdefABCDEFxXzZ_]

The X and x represent unknown values, and Z and z represent high 
impedance values in binary, octal, or hexadecimal form. 
Underscores are ignored.

If the most significant specified digit of a <number> representation is 
an x or a z, the VeraLite compiler extends the x or z to fill the higher 
order bits or digits. 

For example, 8’bx is equivalent to 8’bxxxxxxxx, and 8’bz00 is 
equivalent to 8’bzzzzzz00.

If not all the bits are specified and the highest specified bit is not x or 
z, then zero filling takes place.
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Data Types and Variable Declaration

VeraLite’s standard data types are:

• integer

• bit

• string

• event

VeraLite’s user-defined data types are:

• Enumerated types 

• virtual port (port) 

• class

All basic types can be declared as class members and can be used 
to form associative and non-associative arrays.

The term scalar is used in this document to refer to a disjunctive list 
of the data types: “integer,” “bit,” “bit[],” and “enum.” For example, 
instead of the following four prototypes:

function integer function_name(...);
function bit function_name(...);
function bit[msb:lsb] function_name(...);
function enum function_name(...);

As a shorthand notation, scalar is specified:

function scalar function_name(...);

Variables are seen globally if they are declared at the top (program) 
level. If they are declared in blocks (begin/end, {}, fork/join), they are 
seen locally.
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Standard Data Types

integer

Integers are signed variables. The upper limit for integer sizes is 
dependent on the host machine. On 32 bit machines, the allowed 

range is between -231 and 231 -1. An integer may become X 
(unknown) when it is not initialized or when an undefined value is 
stored.

The syntax to declare an integer is:

integer variable_name [=initial_value];

variable_name:

The variable_name can be a valid identifier.

initial_value:

Specifying the initial_value  is optional.

For expressions involving both bit and integer types, the integer 
types are first converted to 32-bit unsigned integers.

bit

Bits can have the value 0, 1, z, or x. 

Table 1-1 Value Levels and Conditions

Value Level Condition

0 logic 0

1 logic 1

z high impedance

x unknown
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The syntax to declare a bit is:

bit variable_name [=initial_value];

variable_name:

The variable_name can be a valid identifier.

initial_value:

Specifying the initial_value  is optional.

VeraLite also supports bit fields. 

The syntax to declare a bit field is:

bit [high:0] variable_name [=initial_value];

High:

High specifies the upper limit on the field. The maximum size of 
a bit field is 65535 bits. When declaring bit fields, you cannot use 
variables for the high specifier.

variable_name:

The variable_name can be a valid identifier.

initial_value:

Specifying the initial_value  is optional.

Note:   
Verilog users: The keyword, reg, is equivalent to the keyword, 
bit. Therefore, reg and bit can be used interchangeably.

string

Strings are character data types that have a wide range of operators 
associated with them for manipulating characters. 
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The syntax to declare a string is:

string variable_name [=initial_value];

variable_name:

The variable_name can be a valid identifier.

initial_value:

Specifying the initial_value is optional. 

String operators are discussed in on page 1-28.

event

Events are pointers to a synchronization object. A synchronization 
object can be either ON or OFF. An event can point either to an 
object or be null. Events are passed as arguments to method calls to 
specify the trigger point. Two or more events can point to the same 
synchronization object. 

The syntax to declare an event is:

event variable_name [=initial_value];

variable_name:

The variable_name can be a valid identifier.

initial_value

The initial_value  can be either null or another event. The 
default  initial_value  is a new synchronization object set to 
OFF. Events assigned to null act as if always ON.



1-10 Part I  

VeraLite: The Language: Data Types and Variable Declaration

User-Defined Data Types

Enumerated types

Enumerated types are named, integer constants. 

The syntax to declare an enumerated type is:

enum category = list;

OR

enum category {list};

category:

The category  is the name of the enumerated type. It is used to 
assign list values to variables.

list:

list  is a list of category values separated by commas. They are 
assigned sequential integer values in the order listed.

Enumerated types cannot be declared inside classes or subroutines.

Enumerated types are discussed in more detail in “Enumerated 
Types” on page 1-18.

class

A class is a collection of data and a set of subroutines that operate 
on that data. A class’s data is referred to as properties, and 
subroutines are called methods. The properties and methods, taken 
together, define the contents and capabilities of a class instance or 
object. Classes are discussed in more detail in Chapter 11.
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Arrays

VeraLite supports one-dimensional and multi-dimensional arrays, 
which are lists of variables that are all of the same type and called 
with the same name. Arrays in VeraLite can be static (global) or 
dynamic (local). You can also create associative arrays that have the 
advantage that each entry of the array is allocated only when it is 
accessed. 

Fixed-size Arrays

Any variable type can be declared as an array. 

The syntax to declare arrays is:

integer array_name[size];
bit [high:0] array_name[size];
port_name array_name[size];
event array_name[size];

size:

The size specifies the number of elements in the array. The 

maximum number of elements in an array is 231-1 elements. For 
larger arrays, you should use associative arrays.

Accessing an array with an unknown bit (‘x’) in the index causes a 
simulation error. Also, writing to an array with an unknown in the 
index is ignored, and reading with an unknown in the index returns 
‘X’s. 

Note that a bit field of an array element cannot be referenced directly. 
To reference a bit field of an array element, use a temporary variable. 
For example:

tmp = memory[42];
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if (tmp[3:2] == 0) ...

Array Initialization

An array can be initialized when declared. The values used for array 
initialization are subject to the same limitations as the initialization of 
scalar variables.

Single-dimensional array example:

integer array[5] = {0, 1, 2, 3, 4};

Concatenation is not supported in array initialization.  An attempt to 
concatenate will result in a compilation error.

Example of an illegal declaration:

 
#define OPCODE 8’ha 
bit [16:0] array1[3] = { {OPCODE, 8’h00}, {OPCODE, 8’h01}, {OPCODE,

8’h02}};

Note:   
In VeraLite v1.0, you cannot initialize an array in the declaration.

Table 1-2

Data Types Supported

integer yes

bit yes

enum yes

string yes

event no

bind no

port no

object no
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Multi-dimensional Arrays

The declaration of a multi-dimensional array variable is similar to that 
of a single dimensional array, with the addition of multiple 
dimensions after the variable name. Any data type that can be used 
for a single dimensional array can also be used for a 
multi-dimensional array.

Examples:

integer matrix [2][5];
Color colors [3][4][2];
event myevent [2][2];

The following program illustrates the use of a three dimensional array.

task cube_add(integer cube[2][2][2], integer offset)
{

integer i, j, k;

for (i=0; i<2; ++i){
for (j=0; j<2; ++j){

for (k=0; k<2; ++k){
cube[i][j][k] += offset;

}
}

}
}

program array
{

integer cube[2][2][2], i, j, k;

    for (i = 0; i < 2; ++i) {
        for (j = 0; j < 2; ++j) {
            for (k = 0; k < 2; ++k) {
                 cube[i][j][k] = i+j+k;
            }
        }
    }

    cube_add(cube,4);
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    for (i = 0; i < 2; ++i){
        for (j = 0; j < 2; ++j) {
            for (k = 0; k < 2; ++k) {
                 printf("cube[%d][%d][%d] = %d\n", i, j, k,

cube[i][j][k]);
            }
        }
    }

}

When referencing elements in a multi-dimensional array, multiple 
indices must be specified as follows:

vname[index_1]...[index_n]

When passing a multi-dimensional array as a parameter to a function, 
the formal argument must be of the same type as the parameter 
passed in. 

For example, the declaration: 

task fun(integer x[2][2])

creates a task “fun” that takes one parameter, a two dimensional 
array where each dimension is two. Any call to “fun” must pass in a 
two dimensional array where each dimension is two. 

Also, the multi-dimensional array does not support bit slicing and 
associative array declarations. An associative array can only have 
one dimension. 

The following generates compilation errors:

integer assoc_matrix[][2]; //Invalid
integer double_assoc_matrix[][]; //Invalid
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Array Initialization

The values used for array initialization are subject to the same 
limitations as the initialization of scalar variables. For example:

integer x[2][2]=
{

{0,1},
{2,3}

};

Initialization is identical to how C and C++ initialize multi-dimensional 
arrays. The order of the data being loaded for the above example is:

x[0][0], x[0][1],
x[1][0], x[1][1]

Concatenation is not supported in array initialization.  An attempt to 
concatenate will result in a compilation error.

Example of an illegal declaration:

Table 1-3

Data Types Supported

integer yes

bit yes

enum yes

string yes

event no

bind no

port no

object no
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#define OPCODE 8’ha 
bit [16:0] array1[3] = { {OPCODE, 8’h00}, {OPCODE, 8’h01}, {OPCODE,

8’h02}};

Associative Arrays

Associative arrays are arrays whose dimensions are not specified. 
The syntax to declare associative arrays is:

integer array_name[];
bit [high:0] array_name[];
port_name array_name[];
event array_name[];

Array elements in associative arrays are allocated dynamically, 
when you access a particular address. The array index tracks those 
elements that have been assigned values and stores those values 
within the array. The index is an unsigned number with a maximum 

value of 2^64-2. When using integer and bit associative arrays, if you 
try to access an element that has not been assigned a value, an ‘X’ 
is returned.

Note:   
Using associative arrays slightly slows down simulation time. The 
effect is usually unnoticeable.

Users can implement the system function, assoc_index() to 
manipulate or analyze associative arrays. 

The syntax for assoc_index is:

function integer assoc_index(CHECK | DELETE | FIRST | NEXT, 
assoc_array_name [, var bit[63:0] index]);
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Key words:

CHECK, DELETE, FIRST, or NEXT determines the function of 
assoc_index().

assoc_array_name:

The assoc_name  is the name of the associate array being 
analyzed. It must be a valid array reference.

index:

The index  is the numerical index of the element being 
analyzed.

Table 1-4

Option Description

CHECK Checks if an element exists at the specified index 
within the array. If it does, a 1 is returned. If 
it does not, a 0 is returned. If the index is 
omitted, the function returns the number of 
allocated elements in the array.

DELETE Deletes the element specified at the specific 
index. If it is successful, a 1 is returned. If the 
element does not exist, a 0 is returned. If the 
index is omitted, all the elements in the array are 
deleted. Only the array elements are deleted, and 
not the array itself.

FIRST Returns the element associated with the first valid 
index. The index is assigned the value of the first 
valid element in the array. The function returns a 
0 if it fails, and 1 if an element is returned.

NEXT When NEXT is used, the function searches for the 
first valid array element with an index greater 
than the passed parameter index. If an element is 
found, the function returns 1, and assigns the new 
index to the parameter index. If none exists, it 
leaves the value of index unchanged, and returns to 
0.



1-18 Part I  

VeraLite: The Language: Enumerated Types

The function assoc_index() returns an integer (1 or 0), or void.

• A “1” is returned when the function call is successful.

• A “0” is returned when the function call is unsuccessful.

In the case of assoc_index(), it is not mandatory to assign the return 
value to a variable.

Enumerated Types

Enumerated types are a user-defined list of named integer 
constants. As discussed in “Enumerated types” on page 1-10 

The syntax to declare an enumerated type is:

enum category = list;

OR

enum category {list}

For example:

enum colors = red, green, blue, yellow, white, black;

This operation assigns a unique number to each of the color 
identifiers, allowing us to create a new data type of type colors.

colors new_color;
integer val;
new_color = green;
new_color = 1; // Invalid assignment.
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This example assigns the color green to the colors variable 
new_color. The second assignment is invalid because of the strict 
typing rules used by enumerated types. 

Different enumerated types cannot share the same name. For 
instance, you cannot define an element called RANDOM for two 
different enumerated type categories list and packet. RANDOM can 
only be defined in one of the categories, not both.

Elements within enumerated type definitions are assigned 
identifiers, which are numbered consecutively, starting from 0. In our 
example, red is assigned 0, green is assigned 1, and so on.

Any explicit value in an enumerated type declaration affects all 
subsequent enums without an explicit value.

You can further specify identifiers in the element list in several ways:

• name: This associates the next consecutive integer with
name.

• name[N]: This generates N names in the sequence (name0,
name1, ..., nameN-1) where N must be a constant
integer.

• name[n:m] :This creates a sequence of names starting with
namen and counting up (or down) to namem.

• name=N: This assigns the constant N to name.

For example:

enum instructions = add=10, sub[5], jmp[6:8];
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This example assigns the number 10 to the enumerated type add. It 
also creates the enumerated types sub0, sub1, sub2, sub3, and 
sub4, and assigns them the values 11-15 respectively. Finally, the 
example creates the enumerated types jmp6, jmp7, and jmp8, and 
assigns them the values 16-18 respectively.

Enumerated Types in Numerical Expressions

Elements of an enumerated type or an enumerated type variable can 
be used in numerical expressions. The value used in the expression 
is the numerical value assigned to the enumerated type element. 

For example:

colors new_color;
integer val1, val2;

val1 = blue * 3;
new_color = yellow;
val2 = new_color + green;

From our previous declaration, blue has a numerical identifier of 2. 
This example assigns val1 a value of 6 (2*3). This example then 
assigns val2 a value of 4 (3+1).

Note:   
Assignments to enumerated type variables are strongly typed. 
Thus, assigning numerical expressions to enumerated type 
variables causes compilation errors.
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Increment and Decrement Operations on Enumerated 
Types

The operators ++, --, +=, and -= have special meanings on 
enumerated type variables.

Note:   
"enum_var += val;" is different than "enum_var = enum_var + 
val;" The former is legal while the latter is illegal because 
"enum_var + val"  evaluates to a numerical expression which 
cannot be assigned to an enumerated type variable.

Table 1-5

Enum Variable/
Operator

Assignment

enum_var++
Assigns the next member (as defined by the 
definition order) to enum_var. The first 
member is selected if enum_var is currently 
holding the last member

enum_var--
Assigns the previous member (as defined by 
the definition order) to enum_var. The last 
member is selected if enum_var is currently 
holding the first member.

enun_var+=val Assigns the val-th next member to enum_var. 
A wrap to the beginning of the list occurs 
when the end of the list is reached.

enum_var-=val Assigns the val-th previous to enum_var. A 
wrap to the end of the list occurs when the 
beginning of the list is reached.
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Operators

VeraLite uses a set of standard operators for expressions and 
concatenation. The increment (++) and decrement (--) operators 
behave just like C/C++. All VeraLite operators which are defined in 
Verilog work the same way as the Verilog operators.  For example:

-1%4 = -1

Table 1-6 lists the basic VeraLite operators.

Table 1-6 VeraLite Operators

Operator Semantics

{} concatenation

´{} concatenation left of assignment

+ - * / arithmetic

% modulus

++ -- increment, decrement

> >= < <= relational

+= -= add and assign, subtract and assign

= assignment 

! logical negation

&& logical and

|| logical or

== logical equality

!= logical inequality

=== case equality

!== case inequality

=?= wild equality

!?= wild inequality

~ bitwise negation

& bitwise and

&~ bitwise nand

| bitwise or
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Operator Precedence

The precedence order of VeraLite operators is defined in Table 1-7.

|~ bitwise nor

^ bitwise exclusive or

^~ bitwise exclusive nor

& unary and

~& unary nand

| unary or

~| unary nor

^ unary exclusive or

~^ unary exclusive nor

<< left shift

>> right shift

?: conditional

Table 1-7 Precedence Order of VeraLite Operators

Operator Precedence

() Highest precedence

.

++ --

& ~& | ~| ^ ~^

* / %

+ -

<< >>

< <= > >=

=?= !?= == != === !==

& &~

^ ^~

| |~

&&

Table 1-6 VeraLite Operators(Continued)

Operator Semantics
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All operators associate left to right. That is, if multiple operators with 
the same precedence are used (as in A + B - C), the expression is 
evaluated left to right (A + B, then - C). When operators differ in 
precedence, the highest precedence operator is executed first. 
Parentheses change the operator precedence.

Arithmetic Operators

The unary arithmetic operators (+ and -) take precedence over the 
binary arithmetic operators (+, -, *, /, and &).

If an operand has any bit with a value of x, the entire result is x.

Relational Operators

The relational operators are:

• a < b (a less than b)

• a > b (a greater than b)

• a <= b (a less than or equal to b)

• a >= b (a greater than or equal to b)

The relational operators yield a scalar value of 0 if the relation is 
false, or a 1 if the relation evaluates to true. If there is are unknown 
bits in the relation (a value of x), the relation yields an unknown value 
(x).

||

?:

= += -= *= /= %=

<<= >>= &= |= ^= ~&= ~|= ~^= Lowest precedence

Table 1-7 Precedence Order of VeraLite Operators(Continued)

Operator Precedence
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Note that relational operators have a lower precedence than the 
arithmetic operators.

Equality Operators

The equality operators are:

• a === b (a equal to b, including x and z values)

• a !==b (a not equal to b, including x and z values)

• a == b (a equal to b, not including x or z values)

• a != b (a not equal to b, not including x or z values)

• a =?= b (a equals b, x and z values are wildcards)

• a !?= b (a not equal to b, x and z values are wildcards)

The wild equality operator (=?=) and inequality operator (!?=) treat 
an x value or z value in a given bit position (for bit values) as a 
wildcard. They match any bit value (0, 1, z, or x) in the value of the 
expression being compared against it.

These operators compare operands bit for bit. If the operands are 
not the same length, 0’s fill the empty spaces. If the relation is true, 
the operator yields a 1. If the relation is false, it yields a 0. 

If the operands have an x or z value, the result is unknown (x) when 
using the == and != operands. When using the === and !== 
operands, x and z values must match exactly.

Logical AND and Logical OR Operators

The logical AND and OR operators are:

• && (AND)

• || (OR)
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The AND and OR operators are logical connectives. Expressions 
connected by these operators are evaluated left to right. If the 
relation is true, the operation yields a 1. If the relation is false, it yields 
a 0. If the result is unknown, it yields an unknown value (x).

Bitwise Operators

Bit-wise operators compare 1 bit in one operand to the equivalent bit 
in another operand to calculate 1 bit for the result. If the operands are 
not the same length, the smaller operand is zero-filled in the most 
significant bit positions. The operator logic tables follow.

~

0 1

1 0

x x

& 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

| 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

^ 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x
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Reduction Operators

The reduction operators perform a bit-wise operation on a single 
operand and yield a single bit result. The first step applies the 
operator between the first and second bits of the operand. 
Subsequent calls apply the operator between the result and the next 
bit in the operand. The logic tables for the reduction operators are 
the same as for the bit-wise operators. The logic tables for the AND, 
OR, NAND, NOR, exclusive OR, and exclusive NOR follow.

Conditional Operator

The conditional operator follows this format:

conditional_expression ::=  expression1 ? exprssion 2: 
expression3

If expression1 evaluates to true (known value other than 0), then  
expression2 is evaluated and used as the result. If expression1 
evaluates to false, (0) then expression3 is evaluated and used as 

^~ 0 1 x z

0 1 0 x x

1 0 1 x x

x x x x x

& | ~& ~|

no bits set 0 0 1 1

all bits set 1 1 0 0

some bits set 0 1 1 0

bit vector of 1, x, and z x 1 x 0

bit vector of 0, x, and z 0 x 1 x

^ ~^

odd number of bits set 1 0

even number of bits set (or none) 0 1
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the result of the conditional expression. If expression1 evaluates 
to an ambiguous value (x or z), then both expression2 and 
expression3 are evaluated and their results are combined, bit by 
bit, using the ?: truth table to calculate the final result (unless 
expression2 or expression3 is real, in which case the result is 
0). If the lengths of expression2 and expression3 are different, 
then the shorter operand is lengthened to match the longer and zero 
filled from the left. This logic table shows the results of unknown 
conditional statements.

Operators for manipulating strings

VeraLite provides a set of operators that can be used to manipulate 
combinations of string variables and string constants. Table 1-8 lists 
the valid operators.

Note:   
You can compare string variables to null.

?: 0 1 x z

0 0 x x x

1 x 1 x x

x x x x x

z x x x x

Table 1-8 Valid VeraLite Operators

Operator Meaning

== Check equality of two strings

!= Check inequality of two strings

{str1,str2..} Generate a concatenated string with 
str1, str2, ...

{num{str}} Generate a string duplicated num times.
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Concatenation 

The syntax for concatenation is:

{var1, var2, ..., varN}

The result of the concatenation is variable. The arguments are 
concatenated sequentially. Any combination of valid data types 
(integer, bit, string and enum) is valid for concatenation. 

For example:

bit [6:0] data;
bit parity;
bit [7:0] foo;
foo = {data, parity};

Multiple concatenation is also supported:

{var1 {var2}}

or

{var1,...,varN}

For example:

{ 32 {1’b1 } }
{ 4 {addr, data} }

This example concatenates addr and data four times.

VeraLite uses the left brace to both open a block, and for 
concatenation. This creates a conflict when using the left brace for 
concatenation on the left-hand side of assignments. Therefore, 
VeraLite uses a single quote to prefix the left brace when it is used 
for concatenation on the left. For example:

’{data,packet,parity} = 256'b0;
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Variable Assignment

Variable assignment is the primitive operation to set a value for a 
variable. 

The syntax to assign values to variables is:

variable_name operator assign_expression

For example:

i = 0;
a = 1’b0;
temp[3:0] = 4’b1000;
memory [53] = 8’b0x0x0x0x;
for (i = 0; i < 10; i += 2)

There are two types of assign operators: the = operator is called the 
simple assignment operator; all others are called compound 
assignment operators. 

For the compound assignment operator, the expression a operator = 
b is equivalent to a = a operator b.

For example, the following are equivalent:

i = i + 5;
i += 5;

VeraLite supports the C-style ++ and -- operators. 

For example:

result = 5;
a = result++;
a = ++result;
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The second line accesses the variable and then increments it. The 
third line increments the variable and then accesses it.

VeraLite does not support assignment recursion. 

This is an illegal assignment:

a = b = c;

The VeraLite source code is type checked at compile time. Event 
variables cannot be used in assignments because they are used 
only for triggering purposes. All other combinations of integer and bit 
variables are valid.

Note:   
To help avoid mistakes, assignments are not expressions.   
Hence, statements like these are invalid:

if(a=b) a=c+d; // should be a==b
while(a=b) a=$random(); // should be a==b
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This chapter documents the basic elements of VeraLite 
programming. It details the fundamental program structure used in 
all VeraLite programs. 

This chapter includes these sections:

• Overview

• Subroutines
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 Overview

A  program involves the integration of several key components of a  
testbench. The constituents are:

• a required program block,

• preprocessor directives, 

• top level constructs. 

The program block, the various constructs and the preprocessor 
directives can occur in any order.

       program program_name

          

          

       
      top_level_constructs

The VeraLite Program

  preprocessor_directives

Program Block     {

     }



 Part I 2-3

Programming Overview: Overview

Program Block

The program block is indicated by the keyword, program. 

The program block contains:

program program_name

{
variable declarations
program block code

}

The main program block is where:

• global variables are declared,

• executable statements are carried out,

• calls to subroutines are made.

VeraLite, like C, supports both top level and lower level scope. 
Variables declared in the main program block are global, whereas 
any variable defined in a task or function has local scope.

Top level constructs

A program can have any number of the top level constructs:  

• class prototypes

• extern declarations

• enumerated type definitions

• class definitions

• subroutines
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• HDL subroutines

• interface declarations

• system clock definitions

• port definitions

• bind definitions

• coverage_definitions definitions

Preprocessor Directives

The preprocessor directives: 

• #define text_macro

• #include "filename"

• #include <vera_defines.vrh>

can occur anywhere in the program.

Referencing Variables

Forward reference is allowed with interface signals, global variables, 
and task and function calls that are present at the top level.

Enumerated types, classes, coverage_def, functions, global 
variables, hdl_tasks and tasks defined in other files require an extern 
declaration in the file referencing that symbol (see External 
Declarations on page 2-13).
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Subroutines

VeraLite supports two means of encapsulating often-executed 
program fragments: functions and tasks. All functions and tasks are 
re-entrant and therefore can be called recursively.

VeraLite subroutines definitions cannot be nested. This means that 
all subroutine declarations must be made at the top level. Since 
tasks and functions are global by default, VeraLite supports 
declaring  subroutines as local. They are then separately compiled. 

You can also declare external subroutines. These separately 
compiled object files are linked at simulation time.

This section includes:

• Functions

• Tasks

• return Statement

• Static Variables

• Subroutine Arguments

• External Declarations

Functions

Functions are provided for implementing mathematical functions 
containing some number of arguments and one return value. 
Functions can be used in expressions in order to perform frequently 
used calculations, or to encapsulate the calculation. 

The syntax to declare a function is:
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function data_type function_name (type 
argument_list){statements;}

data_type:

The data_type  can be any of the valid VeraLite data types, 
(integer, bit, string, event, port, or enum). The value returned 
will be of the same data type with which the function is declared.

function_name:

The function_name is the name by which the function is called 
throughout the program.

argument_list:

 An argument is a variable, including the data type, that is passed 
to the function when the function is called. All data types can be 
passed. Array arguments can be associative, as well as var, (see 
Reference Passing  on page 2-11 for discussion of var). Array 
arguments are strongly typed. The array type, width, and size of 
the call must exactly match the array type, width and size of the 
declaration. Multiple arguments are separated by commas.

statements:

The statements  can be any statement, including function 
calls, timing modifiers, and variable assignments

Functions are designed to return a single value. They can return 
values of any data type as well as data structures. Functions can 
also return bit arrays. However, functions cannot return arrays of 
other types (either fixed size or associative). To set the return value, 
assign a value to the name of the function somewhere within the 
body of the function.

This is an example function declaration:

function bit [3:0] even_byte_parity (bit [31:0] data)
{
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bit [3:0] tmp;
tmp[3] = ^data[31:24];
tmp[2] = ^data[23:16];
tmp[1] = ^data[15: 8];
tmp[0] = ^data[ 7: 0];
even_byte_parity = tmp;

}

This example declares the function even_byte_parity() with the 
argument data. The final line of the function contains the line that 
sets the return value.

Functions can be called in expressions from within the main program 
or from within other functions. 

The syntax to call a function is:

variable = function(argument_list);

For example:

parity = even_byte_parity(Data);

By default, function names are global. Functions declared as local 
can only be used in the file where they are defined. To invoke a 
function defined in another file, you must use the extern declaration 
(see External Declarations on page 2-13). 

The syntax to declare a local function is:

local function data_type function_name (type argument_list) 
{statements;}

For example:

extern local function bit[3:0] g_decode (integer i);
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Discarding Function Return Values

Function return values are enforced by the VeraLite compiler. Calling 
a function as if it has no return value results in compilation errors. To 
discard a function’s return value, use the void construct. 

The syntax for the void construct is:

void = function(argument_list);

Tasks

Tasks are identical to functions except they do not return a value. 

The syntax to declare a task is:

task task_name (type argument_list){statements;}

task_name:

The task_name is the name by which the task is called 
throughout the program.

argument_list:

An argument  is a variable, including the data type, that is 
passed to the function when the function is called. All data types 
can be passed, including ports. Array arguments can be
associative, as well as var, (see Reference Passing on 
page 2-11 for discussion of var). Array arguments are strongly 
typed. Array type, width, and size must match exactly between 
the declaration and the call. Multiple arguments are separated by
commas. 
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statements:

The statements can be any VeraLite statement, including 
function calls, timing modifiers, and variable assignments.

This is an example task declaration:

task handshake_port0(bit direction, bit [7:0] data1, bit[7:0] 
data2)

{

@0,1000 port0.req == 1’b1;
port0.ack = 1’b1;
@1 port0.ack <= 1’b0;

if(direction) port0.data = data1;
else port0.data = data2;

}

Tasks can be invoked as statements. 

The syntax to invoke a task is:

task_name(argument_list);

For example:

print_data(new_data);

By default, task names are global. Tasks declared as local can only 
be used in the file where they are defined. To invoke a task defined 
in another file, you must use the extern declaration (see External 
Declarations on page 2-13). 

The syntax to declare a local task is:

local task task_name (argument_list){statements;}

For example:
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local task print_data (bit[7:0] data)
{

printf("Local data = %h", data);
}

return Statement

Normally, functions and tasks return control to the caller after the last 
statement of the block is executed. VeraLite provides the return 
statement to manually pass control back to the caller. 

The syntax for return is:

return;

When the return statement is executed, the subprocess is 
terminated as if it had been exited normally. If the return statement 
is executed in a function before a value has been assigned, an 
undefined value is returned.

If a return statement is executed at the top code level, the simulation 
is terminated.

Static Variables

By default, variables are local to the function or task that uses them. 
They are allocated when the function or task is called. This construct 
allows tasks and functions to be re-entrant and recursive.

If you want a variable to be shared across all invocations of a 
function or task, use the static declaration. 

The syntax to declare a static variable is:

static data_type variable_name;
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Any data type can be declared as a static variable. 

Note:   
In the case of concurrent accesses, there may be races if 
multiple threads assign to the same variable. Also, static 
variables cannot be declared in a global context.

Subroutine Arguments

VeraLite provides two means of accessing arguments in functions 
and tasks: “pass by value” and “pass by reference.”

Value Passing

“Pass by value” is the default method through which arguments are 
passed into functions and tasks. Each subroutine retains a local 
copy of the argument. If the arguments are changed within the 
subroutine, the changes do not affect the caller.

Reference Passing

In “pass by reference,” functions and tasks directly access the 
specified variables passed as arguments. 

The syntax to pass a subroutine argument by reference is:

subroutine (var data_type variable);

In “pass by reference,” subroutines operate directly on the var 
arguments. The caller sees any changes to variables made within 
the subroutine. Variables of any type can be passed by reference.

This is an example of “pass by reference”:

task IO_read_indirect(bit[63:0] addr, var bit[31:0] io_data)
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{

// ... (modifies both addr and io_data)

// ... (only the change in io_data will be seen by caller)

}

// caller
IO_read_indirect(my_addr, my_data );

In this example, the variable io_data is passed by reference. The 
task modifies all of the arguments passed, but only the change made 
to io_data is seen outside the task.

Note:   
In the case of concurrent accesses, a race condition may arise if 
multiple threads assign to the same variable.

Default Arguments

To handle common cases or allow for unused arguments, VeraLite 
allows you to define default values for each scalar argument. 

The syntax to declare a default argument in a subroutine is:

subroutine(type arg=default_value){statements}

default_value:

The default_value  can be any expression visible at the 
current code level. It can include any combination of constants 
and global variables.

When the subroutine is called, you can omit an argument that has a 
default defined for it. Use an asterisk (*) as a placeholder in the 
subroutine call. If an asterisk is used for a variable that does not have 
a default value, a compilation error occurs.



 Part I 2-13

Programming Overview: Subroutines

This is an example of a subroutine with default arguments:

task read(integer i = 0, integer k, bit[5:0] data = 6’b0)
{

//..

}
read(100, 5, *);
read(*, 5, 6’b000111);

This example declares a task read() with default arguments. The first 
call to read() is equivalent to read(100, 5, 6’b0). The second call to 
read() is equivalent to read(0,5,6’b000111).

External Declarations

External declaration of subroutines enables the use of multiple 
source files. Large functions and tasks can be compiled separately, 
which facilitates debugging.

Declaring External Subroutines

You can create subroutines in multiple source files. You must declare 
these subroutines as external at the top level. 

The syntax to declare a subroutine as external is:

extern task | function subroutine (argument_list);

Note:   
When using external subroutines, the argument types that are 
passed must match exactly. So take extra care when passing 
arguments to external subroutines.
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External Default Arguments

The default values can be set locally, and independently, for each 
compilation unit using extern declarations with default values. A 
general library, which can then be customized for a particular user or 
testbench, can be implemented by using include files with different 
defaults. 

For example, the task write() may be defined in a separate library, 
which is compiled independently. The VeraLite file in which the task 
write() will be used must declare write() as being external. Default 
values can be set in this extern declaration:

// file A (library)
task write (integer i, k, bit[5:0] data)
{

// write definition
}

// file B (testbench)
extern task write(integer i = 10,integer k,bit[5:0] 

data=6’b1);

task xyz () 
{

write (*, 5);
//continue task declaration 

}
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This chapter discusses the VeraLite constructs used for sequential 
flow control. It includes these sections:

• if-else Statements

• case Statements

• repeat loops

• for loops

• while loops

• break and continue
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if-else Statements

The if-else statement is the general form of selection statement. 

The syntax to declare an if-else statement is:

if (expression) if_block [else else_block]

expression:

The expression  can be any valid VeraLite expression.

block:

The if_block  or else_block  can be any valid VeraLite 
statement or block of statements. If a code block is used, the 
entire block is executed.

If the expression  evaluates to true, the if_block  is executed. If 
it evaluates to false, the else_block  is executed.

If  the else_block  is omitted, the conditional is evaluated and the 
if_block  is executed only if it evaluated to true. Otherwise, the 
program continues execution with the first line after the if_block.

Nested if-else statements are supported.

Example:

if (operator==0) y=a+b;
else if (operator==1) y=a-b;
else if (operator==2) y=a*b;
else y=’bx;

This example uses several if-else statements. Note that the final else 
statement is associated with the if_block  immediately preceding 
it.
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case Statements

The case statement provides for multi-way branching. 

The syntax to declare a case statement is:

case (primary_expression) 
{

case1_expression : statement
case2_expression : statement
...
caseN_expression : statement
[default : statement]

}

primary_expression:

The primary_expression  is evaluated. The value of the 
primary_expression is successively checked against each 
case_expression. When an exact match is found, the 
statement corresponding to the matching case is executed, and 
control is passed to the first line of code after the case block. If 
other matches exist, they are not executed. 

case_expression:

The case_expression  can be any valid VeraLite expression.  
Expressions separated by commas allow multiple expressions to 
share the same statement block.

All case expressions must be the same bit length. ‘X’ and ‘Z’ 
values are actual signal values and are not ignored.

statement:

The statement can be any valid VeraLite statement or block of 
statements. If a code block is used, the entire block is executed.
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A case statement must have at least one case item aside from the 
default case, which is optional. The default case must be the last 
item in a case statement. 

An example case block:

case ( bus[3:0] ) 
{

4’b00ZZ: packet = null;
4’booo1, 4’b1001: packet = READ;
4’b0010, 4’b1010: packet = WRITE;
4’b00XX: packet = UNKNOWN;

default: 
{

printf("Error: illegal packet %h detected\n", 
bus[3:0]);

packet_error();
}

}

To use ‘X’ or ‘Z’ as a “don’t care,” use the casex or casez statements. 
When using casex, ‘X’ and 'Z' values in both the primary_expression 
and case_expressions are treated as “don’t care”.  When using 
casez, ‘Z’ values in both the primary_expression and 
case_expressions are treated as “don’t care”.  If no match is found, 
the default statement is executed.
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repeat loops

The repeat loop executes a statement a fixed number of times. 

The syntax to declare a repeat loop is:

repeat (expression) statement

expression:

The expression can be any valid expression, including 
constants.

statement:

The statement can be any valid statement or block of 
statements. If a code block is used, the entire block is executed.

Repeat statements can be used to repeat any statement a fixed 
number of times. The value of the expression is evaluated before the 
repetitions start. Changing a variable within the expression does not 
change the number of loops to be executed.

Repeat statements are often used to implement a wait or pause in 
the simulation. 

For example:

repeat (10) @(posedge CLOCK);

This example pauses the simulation 10 clock cycles.
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for loops

The syntax to declare a for loop is:

for (initial;condition;increment) statement

initial:

The initial  is an assignment statement used to set the loop 
control variables.

condition:

The condition  can be any valid expression.

increment:

The increment  defines how the loop control variable changes 
each time the loop is repeated. It can be any valid expression.

statement:

The statement  can be any valid statement or block of 
statements. If a code block is used, the entire block is executed.

The for loop sets the initial value of the loop control variable. It 
evaluates the condition. If the condition is true, the loop executes a 
single time. When the loop finishes one iteration, the update 
expression is executed. Typically this expression changes the value 
of the loop control variable. Then the condition is checked again and 
the process continues. The loop continues as long as the condition 
evaluates to true. When it does not evaluate to true, the loop stops 
and control is passed to the first line of VeraLite code after the loop.

You can specify multiple variables in the initial statement, separating 
them with commas. Multiple variables can also be used in the 
condition expression. These variables (with their initialized values) 
are passed to the loop and can be used within the loop for loop 
control or in VeraLite expressions.
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VeraLite does not allow assignments within the conditional. The 
conditional c=1 is invalid. Instead, you must use c==1.

Some examples of for loops:

for(count=0;count<3;count=count+1)
value=value+((a[count]) * (count+1));

for(count=0, done=0, i=0;i*count<125;i++)
printf("Value i = %d\n",i);

while loops

The syntax to declare a while loop is:

while (condition) statement

condition:

The condition  can be any valid expression.

statement:

The statement  can be any valid statement or block of 
statements. If a code block is used, the entire block is executed.

The loop iterates while the condition is true. When the condition is 
false, control passes to the first line of code after the loop. The 
condition is checked at the top of each loop.VeraLite does not allow 
assignments within the conditional. The conditional c=1 is invalid. 
Instead, you must use c==1.

This is an example of a while loop:

operator = 0;
while (operator<5)
{

operator=operator+1;
printf("Operator is %d", operator);

}
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This loop continues until operator equals 5. Each time through the 
loop, operator is increased by 1. The check is made at the top of 
each loop. After 5 passes through the loop, the loop ends, and 
control is passed to the first line of code after the loop.

If the condition is a non-zero constant, the loop becomes infinite. 
Infinite loops can only be broken using the break statement (see 
break on page 3-8).

break and continue

The break and continue statements are used for flow control within 
loops.

break

The break statement is used to force the immediate termination of a 
loop, bypassing the normal loop test. 

The syntax to declare a break is:

break;

When the break statement is executed from inside a loop, the loop 
is immediately terminated and control passes to the first line of 
VeraLite code after the loop. If the break statement is executed 
outside of a loop, a syntax error is generated.

This is an example of the break statement:

while (test_flag) 
{

if (done) break;
...

}
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This example breaks if the condition is satisfied. Control returns to 
the first line after the loop.

continue

The continue statement forces the next iteration of a loop to take 
place, skipping any code in between. 

The syntax to declare a continue statement is:

continue;

In a repeat loop, the continue statement passes control back to the 
top of the loop. If the loop is complete, control is then passed to the 
first line of code after the loop. 

In a for loop, the continue statement causes the conditional test and 
increment portions of the loop to execute. 

In a while loop, the continue statement passes control to the 
conditional test.

This is an example of a continue statement:

for (i=0;i<10;i++) 
{

if (skip_loop) continue;
...

}
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This chapter discusses how VeraLite handles concurrency. It 
explains how to model parallel, independent activities and details the 
VeraLite constructs used to control those concurrent threads. 
Included are these sections:

• fork and join

• Synchronizing concurrent processes with event variables

• Semaphores

• Mailboxes

• Timeout Limit
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fork and join

Fork/join blocks provide the primary mechanism for creating 
concurrent processes. 

The syntax to declare a fork/join block is:

fork
{

statement1
}

{
statement2

}

...

{
statementN

}
join [all | any | none]

statement:

The statement can be any valid VeraLite statement or 
sequence of statements.

Keywords:

The all | any | none options specify when the code after the fork/
join block executes. They are optional. 

The default is all. 
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You do not need to specify more than one forked thread. If only a 
single thread is specified in a fork/join block and that thread consists 
of a single VeraLite statement, the thread does not need to be 
encapsulated with braces ({}).

The flow for a fork/join block is shown in Figure 4-1.

Figure 4-1 fork/join Flow Diagram

Note:   
When defining a fork/join block, encapsulating the entire fork 
inside braces ({}) results in the entire block being treated as a 
single thread, and the code executes consecutively.

Table 4-1 all, any, none

all The default option is all. Code after the 
block executes after all of the concurrent 
processes are completed

any When any is used, code after the block 
executes after any single concurrent process 
is completed

none When none is used, code after the block 
executes immediately, without waiting for any 
of the processes to complete

join none

fork

join [all]

fork

join any

fork
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For example, do not use this construct:

fork 
{

statement1 
statement2

}
join                //becomes simply a sequential process

Example of a basic fork/join construct:

 (Default is all)

fork
{

@1,100 bus.ack == 1’b0;
printf("First Block: bus.ack is driven\n");

}

{
@5 bus.req = 1’b0;
@1 bus.req <= 1’b1;
printf("Second Block: bus.req is driven\n");

}
join

The concurrent block executes all the statements in parallel. The 
beginning of each statement is executed at the same point in time. 
Subsequent statements are executed based on any timing 
considerations within the process.

fork and join Control

VeraLite provides several constructs and a system task to control 
fork/join blocks. 

• wait_child()

• wait_var()
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• terminate

• suspend_thread()

The constructs, wait_child() and wait_var(), wait for the completion 
of processes. The terminate construct stops the execution of 
processes. The suspend_thread() system task temporarily 
suspends threads. 

wait_child()

The wait_child() system task is used to ensure that all child 
processes are executed before the VeraLite program terminates. 

The syntax for wait_child() is:

task wait_child();

By default, a simulation is terminated when the end of the program 
is reached, regardless of the status of any child processes. Using the 
wait_child() task causes the simulation to wait until all the child 
processes in the current context are completed before executing the 
next line of code.

This is an example of a program using the wait_child() construct:

program test
{

start_monitors(); /*Starts monitors that loop 
forever in background*/

do_test(); //Performs the actual test
}

task start_monitors()
{

fork
{...}
join none

}
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task do_test()
{

//Code to do testing

fork
{...}
join none /*Creates child processes that take an

indeterminate amount of time to complete*/
wait_child();

}

This example calls two separate tasks. The do_test task forks off 
several child processes that take an indeterminate amount of time to 
complete. The wait_child() call waits for the threads called in the 
do_test task to complete before executing subsequent VeraLite 
code. Note that the wait_child() call does not wait for any child 
processes created outside of its context.

The definition of context assumed here is:

A context is a node in the simulator’s call Stack. VeraLite 
constructs that create a new context are:

- the program block

- task

- function

- each process inside the fork/join

To see how fork/join-all and wait_child() differ, consider the 
following code.



 Part I 4-7

Concurrency Control: fork and join

fork/join-all:

fork
{statement3};
{statement4};
join none

fork
{statement1};
{statement2};
join all

wait_child():

fork
{statement3};
{statement4};
join none

fork
{statement1};
{statement2};
join none

wait_child();

In the fork/join-all example, code following the block executes after 
the concurrent processes,  statements1 and 2 are completed. 
However, code after the block executes immediately,  without waiting 
for statements 3 and 4 to complete.  

In the wait_child() example, statements 3 and 4 are waited for.

wait_var()

The wait_var() system task blocks the calling process until one of 
the variables in its arguments list changes values. 

The syntax for wait_var() is:

task wait_var(integer|bit|string|enum variable_list);
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variable_list:

The variable_list  consists of one or more variables 
(separated by commas) of type integer, bit, string, array, or 
enumerated type.

The wait_var() task blocks the current process until one of the 
specified variables changes value. Only true value changes unblock 
the process. Reassigning the same value does not unblock. If more 
than one variable is specified, a change to any of the variables 
unblocks the process.

This is an example of the wait_var() task:

bit[7:0] data [100];
integer i;

fork
{

wait_var(data[2]);
printf("Data[2] has changed to: %d\n", data[2]);

}
{

for (i=0;i<100;i++)
{

data[i]=$random();
@(posedge CLOCK);

}
}
join

This example forks off concurrent processes. The first thread is 
suspended until the second element of array data is changed. The 
second process randomly changes the values within array data. 
When data[2] is changed, the first process prints its message.
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terminate

The terminate statement terminates all active descendants of the 
process in which it was called. 

The syntax for terminate is:

terminate;

If any of the child processes have other descendants, the terminate 
command terminates them as well. If used at the top level, terminate 
terminates all child processes. When the main program is 
completed, the VeraLite simulator executes an implicit terminate 
statement.

This is an example of how terminate is used within a simple fork/join 
block:

task do_test()
{

// Code to do testing
fork
{...}
join any/* Creates child processes that take an

 indeterminate amount of time to complete
 Code to do more testing*/

terminate;
}

This example forks off several child processes within a task. After 
any of the child processes are complete, the code continues to 
execute. Before the task is completed, all remaining child processes 
are terminated.
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suspend_thread()

The suspend_thread() system task is used to temporarily suspend 
the current thread. 

The syntax suspend_thread() is:

task suspend_thread();

The suspend_thread() system task temporarily suspends the 
current thread and allows other ready concurrent threads to run. 
When all ready threads have had one chance to block, the 
suspended thread resumes execution. 

For example:

for (i=0;i<10;i++)
{

fork 
my_task(i);
join none
suspend_thread();

}

This example forks multiple threads calling my_task(). The thread is 
forked, the task is called, and then the calling thread is suspended. 
The forked thread calling my_task(0) completes and passes control 
back to the for loop. The next iteration of the loop occurs and forks 
the next thread. That thread begins and completes execution. All 10 
threads are created and execute in sequence.

Note:   
Suspended threads execute after all other current threads 
execute. However, relative to simulation time, the thread is still 
executed concurrently with the other threads.
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Maximum Threads

To limit memory consumption set the VERA_MAX_CONTEXTS 
environment variable:

setenv VERA_MAX_CONTEXTS number

If more than number threads are created at the same time, a 
warning message is printed.

Semaphores

A semaphore is an operation used for mutual exclusion and 
synchronization. 

• Conceptual Overview

• Allocating a Semaphore

• Checking Key Availability

• Returning Keys

Conceptual Overview

Conceptually, semaphores can be viewed as a bucket. When you 
allocate a semaphore, you create a virtual bucket. Inside the bucket 
are a number of keys. No process can be executed without first 
having a key. So, if a specific process requires a key, only a finite 
number of occurrences of that process can be in progress 
simultaneously. All others must wait until a key is returned to the 
virtual bucket.

The semaphore system functions are:
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function integer alloc(SEMAPHORE,integer semaphore_id, 
integer semaphore_count, integer key_count);

function integer semaphore_get(WAIT | NO_WAIT, 
integer semaphore_id, integer key_count);

task semaphore_put(integer semaphore_id, integer 
key_count);

Allocating a Semaphore

To allocate a semaphore, you must use the alloc() system function.

 The syntax for alloc() is:

function integer alloc(SEMAPHORE, integer semaphore_id, 
integer semaphore_count, integer key_count);

semaphore_id:

The semaphore_id is the ID number of the particular 
semaphore being created. It must be an integer value. You 
should generally use 0. When you use 0, a semaphore ID is 
automatically generated by the simulator. Using any other 
number explicitly assigns an ID to the semaphore being created.

semaphore_count:

The semaphore_count  specifies how many semaphore 
“buckets” you want to create. It must be an integer value.

key_count:

The key_count  specifies the number of keys initially allocated 
to each semaphore “bucket” you are creating.
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Note:   

The number of keys in the bucket can increase if more keys 
are put into the bucket than are removed. Therefore, 
key_count is not necessarily the maximum number of keys 
in the bucket.

The alloc() function returns the base semaphore ID if the 
semaphores are successfully created. Otherwise, it returns 0.

Checking Key Availability

To check that there are enough keys left in the semaphore, you must 
use the semaphore_get() system function.

The syntax for semaphore_get() is:

function integer semaphore_get(NO_WAIT | WAIT, 
integer semaphore_id, integer key_count);

Predefined Macros:

NO_WAIT

The NO_WAIT option continues code execution even if there are 
not enough keys available.

WAIT

The WAIT option suspends the process until there are enough 
keys available, at which time execution continues.

semaphore_id:

The semaphore_id  specifies which semaphore to get keys 
from.
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key_count:

The key_count  specifies the number of keys being taken from 
the semaphore.

When the semaphore_get() function is called, it checks the 
specified semaphore for the number of required keys. 

• If there are enough keys available, a 1 is returned and execution 
continues. 

• If there are not enough keys available, a 0 is returned and the 
process is suspended depending on the wait option.

The semaphore waiting queue is FIFO based. By default, a process 
will wait at a semaphore without timing out. Users can set a time limit 
with the timeout() system task. See Timeout Limit on page 4-20.

If multiple semaphores are allocated, you can access the Nth 
semaphore using this method:

semID=alloc(SEMAPHORE, 0, 4, 2);
if (semaphore_get(WAIT, semID+2, 1))

printf("The semaphore was successful.");

This example allocates four semaphores with IDs 0 to 3, each with 
two keys. Then it checks to see if there is a key in the third 
semaphore. If there is, a message is printed.

Returning Keys

To put keys back into a semaphore, you must use the 
semaphore_put() system task. 

The syntax for semaphore_put() is:

task semaphore_put(integer semaphore_id, integer key_count);
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semaphore_id:

The semaphore_id specifies which semaphore to return the 
keys to.

key_count:

The key_count specifies the number of keys being returned to 
the semaphore.

When the semaphore_put() system task is called, the specified 
number of keys is returned to the semaphore. If a process has been 
suspended to wait for a key, that process executes when enough 
keys have been returned.

Mailboxes

A mailbox is a mechanism to exchange messages between 
processes. Data can be sent to a mailbox by one process and 
retrieved by another. 

Conceptual Overview

Conceptually, mailboxes behave like real mailboxes. When a letter is 
delivered and put into the mailbox, you can retrieve the letter (and 
any data stored within). However, if the letter has not been delivered 
when you check the mailbox, you must choose whether to wait for 
the letter or retrieve the letter on subsequent trips to the mailbox. 
Similarly, VeraLite’s mailboxes allow you to transfer and retrieve data 
in a very controlled manner.

The mailbox system functions are:
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Allocating a Mailbox

To allocate a mailbox, you must use the alloc() system function. 

The syntax for allocating a Mailbox is:

function integer alloc(MAILBOX, integer  mailbox_id, integer 
mailbox_count);

mailbox_id:

The mailbox_id  is the ID number of the particular mailbox 
being created. It must be an integer value. You should generally 
use 0. A mailbox ID is automatically generated when 0 is used.

mailbox_count:

The mailbox_count  specifies how many mailboxes you want 
to create. It must be an integer value.

The alloc() function returns the base mailbox ID if the mailboxes are 
successfully created. Otherwise, it returns 0.

The maximum number of mailboxes that can be created is 
determined by vera_mailbox_size. 

Sending Data to the Mailbox

The mailbox_put() system task sends data to the mailbox. 

The syntax for mailbox_put() is:

task mailbox_put(integer mailbox_id, scalar data)

mailbox_id:

The mailbox_id  specifies which mailbox receives the data.
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data:

The data  can be any general expression that evaluates to a 
scalar.

The mailbox_put() system task stores data in a mailbox in a FIFO 
manner. Note that when passing objects, only object handles are 
passed through the mailbox. 

Returning Data

The mailbox_get() system function returns data stored in a mailbox. 

The syntax for mailbox_get is:

function integer mailbox_get(NO_WAIT | WAIT | COPY_NO_WAIT | 
COPY_WAIT, integer mailbox_id [, scalar dest_var [, CHECK]]);



4-18 Part I  

Concurrency Control: Mailboxes

Predefined Macros:

Table 4-2 provides the definitions of the various wait options.

mailbox_id:

The mailbox_id  specifies which mailbox data is being 
retrieved from.

dest_var:

 The dest_var is the destination variable of the mailbox data. 

CHECK:

CHECK specifies whether type checking occurs between the 
mailbox data and the destination variable. CHECK is optional.

The mailbox_get() system function assigns any data stored in the 
mailbox to the destination variable and returns the number of entries 
in the mailbox, including the entry just received. 

• If there is a type mismatch between the data sent to the mailbox 
and the destination variable, a runtime error occurs unless the 
CHECK option is used. 

Table 4-2 Wait Option definitions

WAIT OPTIONS Description

NO_WAIT Dequeues mailbox data if it is available. 
Otherwise, it returns an empty status (0).

WAIT Suspends the calling thread until data is 
available in the mailbox, and then dequeues 
the data.

COPY_NO_WAIT Copies mailbox data without dequeuing it if 
it is available. Otherwise, it returns an 
empty status (0).

COPY_WAIT Suspends the calling thread until data is 
available in the mailbox, and then copies 
the data without dequeuing it.
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• If the CHECK option is active, a -1 is returned, and the message 
is left in the mailbox and is dequeued on the next mailbox_get() 
function call. 

• If the mailbox is empty, the function waits for a message to be 
sent, depending on the wait option. If the wait option is NO_WAIT, 
the function returns a 0. 

• If no destination variable is specified, the function returns the 
number of entries in the mailbox, but it does not dequeue an item 
from the mailbox.

For example, this can be used to continue generating mailbox 
entries until a specified number are generated:

mboxID=alloc(MAILBOX, 0, 1);
while (mailbox_count <11)
{

mb_data=$random();
mailbox_put(mboxID, mb_data);
mailbox_count=mailbox_get(NO_WAIT, mboxID);

}

This example generates random numbers and puts them in the 
mailbox. The loop continues while the number of entries is less than 
11.

The mailbox waiting queue is FIFO based. By default, a process will 
wait at a mailbox without timing out. Users can set a time limit with 
the timeout() system task. See Timeout Limit on page 4-20.
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Timeout Limit

A process will wait forever in semaphore and mailbox if the waiting 
resources are not available. However, the system task timeout() can 
be used to set a time limit. 

The syntax for timeout() is:

task timeout(EVENT, integer cycle_limit);

or

task timeout(event event_name, integer cycle_limit]);

or

task timeout(SEMAPHORE | MAILBOX | WAIT_VAR | WAIT_CHILD, 
integer cycle_limit [, integer object_id]);

Predefined Macros:

EVENT, SEMAPHORE, MAILBOX, WAIT_VAR and 
WAIT_CHILD specify the type of object for which the timeout is 
defined. 

cycle_limit:

The cycle_limit  specifies the maximum number of cycles 
any request will wait.

event_name:

The event_name  is an event variable.

object_id:

The object_id  specifies an individual resource for which the 
timeout is set. If it is not specified, the timeout exists for all objects 
of the type specified.
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When the timeout() system task is used, it sets the maximum 
number of cycles that an object will wait for a request. The cycles are 
based on the SystemClock. If the cycle limit is set to 0 cycles, the 
timeout is disabled. You can specify a timeout for a specific event or 
for all events of a certain type.

When a semaphore or event times out, a verification error occurs.

These are examples of timeout statements:

timeout(SEMAPHORE, 100);
timeout(EVENT, 20);
timeout(myevent, 300);

Note:   
Specific timeouts take precedence over global timeouts.
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This chapter covers the properties of the interface specifications, 
and signal declarations.

The interface specification can group signals by clock domains for 
multiple clock designs. There is no limit to the number of interface 
declarations that can be created.

Interface Declaration

The syntax of the VeraLite interface declaration is depicted in 
Figure 5-1. Included are the syntax for port-connected interface 
signals and for direct-connected (HDL) signals.
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Figure 5-1 The VeraLite Interface

The limit on the number of signals that can be declared per interface 
is 4096.

Interface Signal Declarations

This section deals with the properties of:

• Port-connected Interface Signals

• Direct-connect Interface Signals

• Interface Signal of type CLOCK

Port-connected Interface Signals

A port-connected interface signal involves connecting port level 
signal on an VeraLite testbench.

The syntax to declare a port-connected interface signal is:

signal_direction [signal_width] signal_name signal_type ;

inout[signal_width] signal_name input_signal_type 
output_signal_type; 

interface interface_name
{
 signal_direction [signal_width] signal_name signal_type [signal_type]
       [hdl_node "hdl_path"];
}    
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signal_direction:

The signal_direction  specifies the direction of the signal 
with respect to VeraLite and not to the DUT. See Figure 5-2 
on page 5-4

- input indicates that the signal goes from the DUT to 
VeraLite. 

- output indicates that the signal goes from VeraLite to the 
DUT. 

- inout specifies a bi-directional signal.

inout:

The inout specifies the bi-direction of the signal. A 
bi-directional signal has two signal_types for each signal_type. 
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Figure 5-2 Representing the signal in0 in the DUT, Interface and VeraLite 
Program

signal_width:

The signal_width  is a bit vector specifying the width of the 
signal. It must be in the form [msb:0].

signal_name:

The signal_name identifies the signal being defined. It is the 
VeraLite name of the HDL signal being connected at the 
top-level. It is also the name of one of the DUT instance’s ports.

signal_type:

The valid signal types and their definitions are listed in Table 5-1.

  

DUT "adder"

VeraLite Interface "adder" (signals maintained here)

@ 1 adder.in0 = 0; //example of drive

VeraLite Program

input[8:0] in0

output [8:0] in0 INPUT_EDGE #-1;
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For a unidirectional signal, only one signal type can be used. 
Furthermore, input signals are only sampled, and output signals 
are only driven. A bidirectional signal can be both sampled and 
driven. 

Note:   

In order to sample an output signal, declare it as signal type, 
inout. 

Direct-connect Interface Signals 

A direct-connect interface signal involves connecting to an internal 
signal within the hierarchy of the DUT.  

The syntax to declare a direct-connect interface signal is:

Table 5-1 Signal types

Signal type Operation

NHOLD Output is driven on the negative 
edge of the interface clock.

PHOLD Output is driven on the positive edge 
of the interface clock.

NSAMPLE Input is sampled (evaluated) at the 
negative edge of the interface clock.

PSAMPLE Input is sampled (evaluated) at the 
positive edge of the interface clock.

CLOCK Specifies the clock to which the 
interface signals synchronizes.
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signal_direction [signal_width] signal_name signal_type 
hdl_node "hdl_path";

signal_direction:

The signal_direction  specifies the direction of the signal 
with respect to VeraLite. 

- input indicates that the signal goes from the DUT to 
VeraLite. 

- output indicates that the signal goes from VeraLite to the 
DUT. 

- inout specifies a bi-directional signal.

signal_width:

The signal_width  is a bit vector specifying the width of the 
signal. It must be in the form [msb:0].

signal_name:

The signal_name  identifies the signal being defined. It is the 
top-level name of the DUT signal being connected.

signal_type:

The valid signal_types  and their definitions are listed in 
Table 5-1 on page page 5-5.

hdl_path:

The hdl_path  is the HDL path to the specified signal. It must 
be surrounded by double quotes.

Below are samples of HDL node declarations in a Verilog:

input[31:0] grant PSAMPLE #-2 hdl_node 
"sys.cpu2.p0_d1";



 Part I 5-7

Interfacing to the Device Under Test: Interface Signal Declarations

/* "sys" is the top level Verilog module, and "cpu" is the 
DUT */

Notice, that the path always starts from the top level HDL module.  
What can be included in the string is determined by what the 
simulator supports. For example, when using a Verilog simulator, 
you can concatenate multiple Verilog nodes.

Example:
module top()

reg[7:0]datH;
reg[7:0]data:;

endmodule

interface myint
{

input CLOCK...
input[15:0]data...hdl_node"{top.dataH,top.dataL}";

}

 

Interface Signal of type CLOCK

Each interface may include, at most, one input signal of type 
CLOCK. If an input signal of type CLOCK is not designated then the 
interface signals are synchronized using SystemClock.

The syntax for declaration is:

input clock_name CLOCK;

The other signals defined in a given interface are governed by this 
clock. VeraLite samples and drives interface signals on the specified 
edge of this clock.

A signal of type CLOCK can be either a port-connected or a 
direct-connect interface signal. 
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Note:   
Clock domains can be overlapped. The same signal can be 
associated with multiple clocks via multiple interface definitions. 
However, despite multiple interfaces, a single signal cannot be 
driven to two values at the same time. 
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This chapter covers the four primitive statements provided by 
VeraLite  that operate on interface signals; synchronization, drive, 
sample, and expect. This chapter also includes discussion of 
implicitly synchronized, explicitly synchronized and asynchronous 
signal operations. These topics are covered in the following sections:

• Synchronization

• Driving a signal

• Sampling a Signal

• The expect Event

• Implicit Synchronization

• Asynchronous Signal Operations

• Sub-Cycle Delays
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Synchronization 

"Implicit" synchronization involves a signal in an interface being  
synchronized to the interface clock. The synchronization operator 
(@) is used to perform explicit synchronization. That is, you are 
explicitly synchronizing to the signal changing value.

The syntax is:

@([specified_edge] interface_signal);

specified_edge:

The specified_edge  identifies the edge at which the 
synchronization occurs. Either negedge, which specifies a 
negative or falling edge of the interface signal, or posedge, 
which specifies a positive or rising edge of the interface signal, 
can be designated. If no edge is specified, the synchronization 
occurs on the next change in the specified signal.

interface_signal:

The interface_signal  specifies the signal to which the 
synchronization is linked. It can be any signal in an interface 
declaration or CLOCK. The interface signal can be any subfield 
of a signal as well. If CLOCK is specified, the synchronization 
operation is performed on SystemClock.

If the interface signal is a subfield of a signal, the synchronization 
occurs on the first change of the signal subfield. If the subfield is a 
1-bit subfield, you can synchronize on clock edges. If you specify 
variables in the subfield, they are evaluated  at runtime.

You can use the or keyword to specify multiple interface signals. If 
you specify more than one signal, the synchronization occurs on the 
next change of any of the listed signals.
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These are some example synchronization statements:

• In the first example, the synchronization occurs on the next 
change in the signal, ack_1. 

@(ram_bus.ack_l);      

• The second example synchronizes to the SystemClock.

@(CLOCK);              

• The third example synchronizes to the positive edge of the 
interface clock, ram_bus.clock.

@(posedge ram_bus.clock);  

• The fourth example synchronizes to the falling edge of the 
specified subfield, intf.sign[a]. Note that the specified 
subfield must be a 1-bit subfield and a is evaluated at runtime.

@(negedge intf.sign[a]);  

• The final example specifies multiple interface signals. The 
synchronization occurs on the next positive edge of either 
intf.sig1 or intf.sig2, whichever changes first.

@(posedge intf.sig1 or intf.sig2);  

At initialization, HDLs can create edges at time = 0 (for example, 
going from X to the initialized value). This means that 
synchronization conditions can be set before initialization of the 
signal.

Driving a signal

The drive operator sets the value of output interface signals. 
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The syntax to drive a signal is:

[delay] signal_name range drive_operator expression;

delay:

The delay  optionally specifies the number of cycles that pass 
before the signal is driven. It is in the form @n , where n  is the 
number of cycles. When delay is not specified, the default is @0. 

Note:   
Drive delays are specified in VeraLite as integers.  

signal_name:

The signal_name  is the name of the interface signal being 
driven.

range:

The range specifies which bits of the signal are driven. If no 
range is specified, the entire signal is driven.

drive_operator:

The drive_operator  must be either =, which specifies a 
blocking drive, or <=, which specifies a non-blocking drive.

expression:

The expression  can be any valid VeraLite expression.

These are some drive examples:

foo_bus.data[3:0] = 4’h5; // blocking drive
@1 foo_bus.data <= 8’hz; // non-blocking drive

Blocking and Non-Blocking Drives

There are two types of drives specified by the drive operator: 
blocking and non-blocking.
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Blocking drives suspend execution until the statement completes. 
Note that the clock edge (NHOLD or PHOLD) that the drive signal is 
associated with is used for counting the HDL cycles during 
suspension. Once the statement completes, execution resumes. 

Non-blocking drives schedule the drive at a future cycle and  
execution continues. When the specified cycle occurs, the drive is 
executed.

These are examples of blocking and non-blocking drives:

@3 ram_bus.data = 1; // blocking drive 
a = b;

@3 ram_bus.data <= 1; // non-blocking drive 
a = b;

The first block is a blocking drive. Three cycles must pass before 
both lines are executed. The second block is a non-blocking drive. 
The first line is scheduled to be executed 3 cycles in the future, then 
the second line is executed.

ram_bus.data = 1
a=b

a=b ram_bus.data = 1
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Drives

A given signal should only be driven by a single drive at any given 
time. Multiple drives at the same time result in conflicting drives. 
Conflicting drives drive the signal to X and result in a simulation error.

Sampling a Signal

Sample assigns the value of a signal to a variable. 

The syntax is:

variable = signal_name;

The signal_name  is an interface signal. It must be an input or 
inout signal. It is sampled at the next sampling point (specified in the 
interface definition) and the value is assigned to the variable. The 
delay attribute (@ in drive signals) cannot be used. Also remember 
that you can sample subfields within the signal by specifying a 
specific subfield in the signal width.

Note:   
When sampling a signal in an expression, it is done immediately 
(i.e., asynchronously). Output interface signals cannot be used in 
any right hand side part of the expression since it cannot be 
sampled. In particular cannot be used in sscanf(), fprintf(), 
sprintf() or printf().



 Part I 6-7

Signal Operations: Implicit Synchronization

Implicit Synchronization

The drive, sample, and expect primitives perform implicit 
synchronization to the interface CLOCK. That means that the clock 
is advanced only when it is necessary to perform the next signal 
operation. 

Consider the following interface definition as an example:

interface foobus 
{

output reset_l NHOLD;
input strobe_l PSAMPLE;
output ack_l NHOLD;
inout data PSAMPLE NHOLD;
input clock CLOCK;

}

In this interface, output signals are driven at the negative edge of the 
interface clock, and input signals are sampled at the positive edge of 
the interface clock. Thus, the following code advances the simulation 
cycle a half cycle per statement even though a delay is not specified.

Consider these examples: 

• The first signal is driven on the negative clock edge:

foobus.reset_l = 1’b1;
  

• The second signal is sampled on the positive clock edge:

foobus.strobe_l == 1’b1;
 

• The third signal is driven on the negative clock edge:

foobus.ack_l = 1’b0;

• The fourth signal is sampled on the positive clock edge:

foobus.strobe_l == 1’b0;
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The description gets more complicated when delay values are used 
to generate proper timing with respect to different edges. To avoid 
this, use the same edge for inputs and outputs, with appropriate 
output skews. 

For example:

interface foobus 
{

output reset_l PHOLD #2;
input strobe_l PSAMPLE;
output ack_l PHOLD #2;
inout data PSAMPLE PHOLD #2;
input clock CLOCK;

}

Asynchronous Signal Operations

By default, drives, samples, and expects are relative to a clock edge 
(specified in the interface specification). However, the HDL side of 
the simulation may be using very detailed timing constructs. VeraLite 
provides the async and delay constructs to allow detailed timing 
down to the HDL timestep.

async Modifier

The async optional modifier specifies that the operation happen 
immediately, without waiting for the edge specified in the interface. It 
can be used with synchronization operators, drives, samples, and 
expects. 
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The syntax for the async modifier is:

The synchronization construct allows you to act exactly on the 
current edge rather than waiting for the corresponding sampling 
edge.

The drive, sample, and expect constructs force the operation 
immediately instead of waiting for the edge specified in the interface.

These are examples of async statements:

@(posedge main_bus.request async);
memsys.data[3:0] = 4’b1010 async;
data[2:0] = main_bus.data[2:0] async;
main_bus.data[7:4] == 4’b0101 async;

Sub-Cycle Delays

VeraLite provides the delay() system task to block the VeraLite side 
of the simulation while a specified amount of time elapses on the 
HDL side of the simulation. 

The syntax for the delay() system task is:

task delay(integer time);

time:

The time  specifies the length of the delay. It is in the same 
timing units being used by the HDL.

synchronization @(signal_name async);

Drive signal_name range drive_operator expression async;

Sample variable = signal_name async;

Expect expect_list async;
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This is an example of the delay() system task:

@(posedge CLOCK);
delay(5);
function1();
...

This example synchronizes to the positive edge of CLOCK. Then it 
advances the simulation time 5 time ticks. Function1 executes 5 time 
ticks after the clock edge.
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7
Class and Methods 7

This chapter discusses the VeraLite implementation of Object 
Oriented Programming. OOP forms the basis of the data structures, 
encapsulation.

Classes and Objects

A class is a collection of data and a set of subroutines that operate 
on that data. A class’s data is referred to as properties, subroutines 
are called methods, and we will refer to both as members of the 
class. The properties and methods, taken together, usually define 
the contents and capabilities of some kind of object.

For example, a packet is an object. It might have a command field, 
an address, a sequence number, a time stamp, and a packet 
payload. In addition, there are various things we can do with a 
packet: initializing the packet, setting the command, reading the 
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packet’s status, checking the sequence number. Each Packet is 
different, but as a class, packets have certain intrinsic properties 
that we can capture in a definition.

class Packet 
{

bit [3:0] command; // data portion 
bit [40:0] address;
bit [4:0] master_id;
integer time_requested;
integer time_issued;
integer status;

task new() / initialization
{

command = IDLE;
address = 41’b0;
master_id = 5’bx; 

task clean() 
{ 

command = 0; address = 0; master_id = 5’bx; 
}

// public access entry points 

task issue_request( integer delay ) 
{

// send request to bus 
// ...

}

function integer current_status()
{ 

current_status = status; 
}

}

Note that a common convention is to capitalize the first letter of the 
class name, so that it is easy to recognize class declarations.
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Objects and Instance of Classes

So far, we only have the definition of the class Packet. We have 
created a new, complex data type but we can’t do anything with the 
class itself. We need to create an instance of the class, a single 
Packet object. The first step is to create a variable that can hold an 
object’s name (or handle):

Packet p;

Nothing has been created yet. We have just declared that p is a 
variable that can hold the handle of a Packet object. In VeraLite, for 
p to refer to something, we need to explicitly create an instance of 
the class using the new keyword.

Packet p;
p = new;

You can detect uninitialized object handles by comparing them with 
null.

 For example:

class obj_example
{

...
}

task task1 (integer a, (obj_example myexample = null))
{

if (myexample == null) myexample = new;
}

This example checks if myexample is initialized. If it is not, it 
initializes it with the new command.
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Accessing Object Properties

Now that we have created an object, we can use its data fields by 
qualifying property names with an instance name. Looking at the 
earlier example, we can use the commands for our Packet p as 
follows:

Packet p = new;
p.command = INIT;

time = p.time_requested;

Using Object Methods

To access an object’s methods, we use the same syntax we used to 
access properties:

Packet p = new;
status = p.current_status();

Note that we did not say:

status = current_status(p); 

The focus in object-oriented programming is the object, in this case 
the packet, not the function call. Also, objects are self-contained, 
with their own methods for manipulating their own properties. So we 
don’t have to pass arguments to current_status(). The properties of 
a class are freely and broadly available to the methods of the class, 
but each method only accesses the properties associated with its 
object, its instance.
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Constructors

VeraLite does not require the complex memory allocation and 
de-allocation of C++. Construction of an object is straightforward and 
garbage collection, as in Java, is implicit and automatic. There can 
be no memory leaks or other subtle behavior that is so often the bane 
of C++ programmers.

VeraLite provides a mechanism for initializing an instance at the time 
the object is created. When you create an object, for example

Packet p = new;

The system executes the new task associated with the class: 

class Packet 
{

integer command;

task new()
{ 

command = IDLE; 
}

Note that new is now being used in two very different contexts with 
very different semantics. The variable declaration creates an object 
of class Packet. In the course of creating this instance, the new 
subroutine is invoked, if it exists, allowing you to do any initialization 
or start-up functions you require. The new task is also called the 
constructor of a class.

It is also possible to pass arguments to the constructor, to allow for 
run-time customization of the object:

Packet p = new(STARTUP,  get_time(LO));

where the new initialization task in Packet might now look like
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task new (integer in_command=IDLE, bit[40:0] in_address=0, integer
time_stamp=0) 
{

command = in_command; address = in_address; 
time_requested = time_stamp;

}

The conventions for arguments are the same as for subroutine calls, 
including the use of default arguments.

Class Properties

So far, we have only declared instance properties. Each instance of 
the class, each Packet, has its own copy of each of its six variables. 
There are also cases where we only want one copy of the variable, 
to be shared by all instances. These class properties are created 
using the static keyword. Thus, for example, in a case where all 
instances of a class need access to a semaphore id, we might have

class Packet 
{

static integer semId = alloc(SEMAPHORE, 0, 1, 1);

Now, semId will be created and initialized the first time an object of 
the Packet class is created. Thereafter, every packet object can 
access the semaphore in the usual way:

Packet p;
semaphore_get(WAIT, p.semId);
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this 

There are times when you need to unambiguously refer to properties 
or methods in the current instance. For example, the following 
declaration is a common, clean way to write an initialization routine:

class Demo 
{

integer x;

task new (integer x) 
{

this.x = x;
}

The x is now both a property of the class and an argument to the 
task new. In the task new, an unqualified reference to x will be 
resolved by looking at the innermost scope, in this case the 
subroutine argument declaration. To access the instance property, 
we qualify it with this to refer to the current instance.

Note that in writing methods, you can always qualify members with 
this to refer to the current instance, but it is usually unnecessary.

Assignment, Re-naming and Copying

When we declare a class variable, we have only created a name for 
an object. 

Thus

Packet p1;
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creates a variable, p1, that can hold the handle of an object of class 
Packet, but the initial value of p1 is null. It is not until we create an 
instance of type Packet that the object exists, and that p1 contains 
an actual handle.

p1 = new;

Thus, if we create another variable

Packet p2;

and assign p1 to p2

p2 = p1;

then we still have only one object, which we can refer to with either 
the name p1 or p2. Note, we have only executed new once, so we 
have only created one object.

If we rewrite the last expression slightly differently, however, we 
make a copy of p1:

p2 = new p1;

Now we have executed new twice, so we have created two objects. 
With this syntax, however, p2 will be a copy of p1, but it will be what 
is known as a shallow copy. All of the variables are copied across: 
integers, strings, instance handles, etc. Objects, however, are not 
copied, only their handles; as before, we have created two names for 
the same object. This is true even if the class declaration includes 
the instantiation operator new:

class A 
{

integer j = 5; 
}

class B 
{

integer i = 1;
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A a = new;
}

program test 
{

integer test;
B b1 = new; // Create an object of class B
B b2 = new b1; // Create an object that is a copy of b1
b2.i = 10; // i is changed in b2, but not in b1
b2.a.j = 50; // change object a, shared by both b1 and b2
test = b1.i; // test will be set to 1 (b1.i has not changed)
test = b1.a.j; // test will be set to 50 (a.j has changed)

Note several things. We can initialize properties and instantiate 
objects directly in a class declaration. Second, the shallow copy 
does not copy objects. Third, we can chain instance qualifications as 
needed to reach into objects or to reach through objects:

b1.a.j // reaches into a, which is a property of b1
p.next.next.next.next.val /* would chain through a sequence of 

   handles to get to val.*/

To do a full (deep) copy, where everything (including nested objects) 
are copied, you need to write custom code. Thus, we might have

Packet p1 = new;
Packet p2 = new;
p2.copy(p1);

where copy(Packet p) is a method written to copy the object 
specified as its argument into its instance.
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Out of Block Declarations

It is generally good coding practice to keep the class declaration to 
about a page. This makes the class easy to understand and to 
remember; declarations that go on for pages are hard to follow, and 
it is easy to miss short methods buried among the multi-page 
declarations. 

To make this practical, it is best to move long method definitions out 
of the body of the class declaration. You do this in two steps. Within 
the class body, you declare the method prototype - whether it is a 
function or task, any attributes (protected, public, and/or virtual), and 
the full specification of its arguments. Then, outside of the class, you 
declare the full method - including the prototype but without the 
attributes - and, to tie the method back to its class, you qualify the 
method name with the class name and a pair of colons:

class Packet
{

Packet next;
function Packet get_next() // single line
{ 

get_next = next; 
}
protected virtual function integer send (integer value);

}
function integer Packet::send(integer value) 
{ // dropped protected virtual, added Packet::

// body of method
...

}

The first lines of each part of the method declaration are nearly 
identical, except for the attributes and class-reference fields.
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External Classes

As with subroutines, the class declaration can be in a separate file 
from the code that instantiates and invokes the class; you need to 
provide an external declaration of the class to support the tight 
type-checking required by VeraLite. 

The attributes and the method prototypes need to be re-declared:

extern class packet 
{ 

bit [3:0] command;
bit [40:0] address;
bit [4:0] master_id;
task issue_request( integer delay );
function integer current_status(); 

}

An extern class declaration only requires the inclusion of class 
properties and methods referenced in the files that include the 
declaration.

Typedef

Sometimes you need to declare a class variable before the class 
itself has been declared. For example, two classes may each need 
a handle to the other. When, in the course of processing the 
declaration for the first class, the compiler encounters the reference 
to the second class, that reference is undefined and the compiler 
flags it as an error. 

The way around this is to use typedef to provide an interim 
declaration for the second class:

typedef class C2; // C2 is declared to be of type class
class C1 
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{
C2 c;

}
class C2 
{

C1 c;
}

So, C2 is of type class, a fact that is re-enforced later in the source 
code.
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VeraLite supports any type of list (for example, integer, string, and 
class object), with the exception of bit vectors. To use a particular 
type of linked list, you must create it before the main program and 
before any list declarations:

MakeVeraList (data_type)

Note:   
There are no terminating semi-colons. You should only enable a 
particular type of linked list one time, regardless of the  of lists you 
use. You must enable a list type before you declare or use a list 
of that type.

To use linked lists in VeraLiteVeraLite testbenches containing 
multiple source files, you must:

• call MakeVeraList(type) . 
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• include the VeraListProgram.vrh file only in your source code 
containing main/program.

• call ExternVeraList(type) if you want to use a list created in 
some other file. 

In addition to including the file ListMacros.vrh in the files where 
VeraLite linked lists are used, you must include the file 
VeraListProgram.vrh in the main program:

#include <VeraListProgram.vrh>
#include   <ListMacros.vrh>

If you want to use lists across multiple files, call the VeraLite list 
macro, ExternVeraList(type), in the file where you want to use the 
list. 

Multiple includes of ListMacros.vrh are allowed.

The values TRUE and FALSE used with linked lists have been 
redefined as _VERA_TRUE and _VERA_FALSE respectively.

List Definitions

list - A list is a doubly linked list, where every element has a 
predecessor and successor. It is a sequence that supports both 
forward and backward traversal, as well as amortized constant time 
insertion and removal of elements at the beginning, end, or middle.

container - A container is a collection of objects of the same type 
(for example, a container of network packets, a container of 
microprocessor instructions, etc.). Containers are objects that 
contain and manage other objects and provide iterators that allow 
the contained objects (elements) to be addressed. A container has 
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methods for accessing its elements. Every container has an 
associated iterator type that can be used to iterate through the 
container’s elements.

iterator - Iterators provide the interface to containers. They also 
provide a means to traverse the container elements. Iterators are 
pointers to nodes within a list. If an iterator points to an object in a 
range of objects and the iterator is incremented, the iterator then 
points to the next object in the range.

List Declaration

Linked lists are supported via a package that is shipped with 
VeraLite. Alternatively, users can write their own linked list package. 
To use the VeraLite linked list package, you must:

• enable the list type,

• declare the lists, 

• declare the iterators

• include the ListMacros.vrh header file in the file using the list:

#include <ListMacros.vrh>

• include the file VeraListProgram.vrh in the main program: 

#include <VeraListProgram.vrh>

Creating Lists

VeraLite supports any type of list (for example, integer, string, and 
packet). To use a particular type of linked list, you must create it 
before the main program and before any list declarations:

MakeVeraList(data_type)
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Note that there are no terminating semi-colons. You should only 
enable a particular type of linked list one time, regardless of the  of 
lists you use. You must enable a list type before you declare or use 
a list of that type.

Declaring Lists

You must declare all lists before using them via the VeraList 
construct:

VeraList_data_type list1, list2, ..., listN;

The VeraList construct declares lists of the indicated type. List 
declaration must occur before the main VeraLite program and after 
the list enabling statements. Data stored in the list elements must be 
of the same type as the list declaration.

Declaring List Iterators

You must declare all list iterators before using them via the 
VeraListIterator construct:

VeraListIterator_data_type iterator1, iterator2, ..., iteratorN;

The VeraListIterator construct declares list iterators of the indicated 
type. You must declare iterators as you would any other variable 
declaration.

Size Methods

This section describes the list methods that analyze list sizes.

size()

The size() method returns the  of elements in the list container:
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list1.size();

empty()

The empty() method returns 1 if the  elements in the list container is 
0:

list1.empty();

Element Access Methods

This section describes the list methods used to access list elements.

front()

The front() method returns the first element in the list:

list1.front();

back()

The back() method returns the last element in the list:

list1.back();

Iteration Methods

This section describes the list methods used for iteration.

start()

The start() method returns an iterator pointing to the first element in 
the list:

list1.start();
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finish()

The finish() method returns an iterator pointing to the very end of the 
list, (i.e. past the end value(last element) of the list). To access the 
last element in the list, use list.finish() followed by iterator.prev(). 

Modifying Methods

This section describes the list methods used to modify list 
containers.

assign()

list1.assign(start_iterator, finish_iterator);

The assign() method assigns elements of one list to another:

The method assigns the elements between the two iterators to list1. 
If the finish iterator points to an element before the start iterator, the 
range wraps around the end of the list.

The range iterators must be valid list iterators. If either points to a 
non-existent element or if they point to different lists, an error is 
generated.

swap()

The swap() method swaps the contents of two lists.

list1.swap(list2);

The method assigns the elements of list1 to list2, and vice versa. 
Swapping a list with itself has no effect. Swapping lists of different 
sizes generates an error.
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clear()

The clear() method removes all the elements of the specified list and 
releases all the memory allocated for the list (except for the list 
header). 

list1.clear();

purge()

The purge() method removes all the elements of the specified list, 
and releases all the memory allocated for the list (including the list 
header), therefore avoiding possible memory leaks. 

list1.purge();

To use a list that has been purged, you must new() the list. This 
creates a new list header.

Both the purge() and clear() methods delete all the elements in the 
list. However, the purge() method deletes the list header as well. 
Since the clear() method does not delete the list header,  
subsequent list addition methods such as push_back()  will work 
without having to do a new() on the list. If you intend to use the same 
list again, use list1.clear(). If the list is being deleted forever, never 
to be used gain, list1.purge() is recommended.

erase()

The erase() method removes the indicated element:

new_iterator = list1.erase(position_iterator);
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The element in the indicated position of list1 is removed from the list. 
After the element is removed, subsequent elements are moved up 
(there is no resultant empty element). When you call the erase() 
method, the position iterator is made invalid and the method returns 
a new iterator.

The position iterator must be a valid list iterator. If it points to a 
non-existent element, or an element from another list, an error is 
generated.

erase_ra0nge()

list1.erase_range(start_iterator, finish_iterator);

The erase_range() method removes the elements in the indicated 
range:

list1.erase_range(start_iterator, finish_iterator);

The erase_range() method removes the elements in the range from 
list1. Note that the elements from start up to, but not including, finish 
are removed. After the elements are removed, subsequent elements 
are moved up (there is no resultant empty element). If the finish 
iterator points to an element before the start iterator, the range wraps 
around the end of the list. Any iterators pointing to elements within 
the range are made invalid.

The range iterators must be valid list iterators. If either points to a 
non-existent element or if they point to different lists, an error is 
generated.

push_back()

The push_back() method inserts data at the end of the list:
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list1.push_back(data);

The data is added as another element at the end of list1. If the list 
already has the maximum allowed elements, the element is not 
added and an overflow error is generated.

The data must be of type integer, packet, or string, depending on the 
VeraList type.

push_front()

The push_front() method inserts data at the front of the list:

list1.push_front(data);

The data is added as another element at the end of list1. If the list 
already has the maximum allowed elements, the element is not 
added and an overflow error is generated.

The data must be must be of type integer, packet, or string, 
depending on the VeraList type.

pop_front()

The pop_front() method removes the first element of the list:

list1.pop_front();

The first element of list1 is removed. If list1 is empty, an error 
message is generated.

pop_back()

The pop_back() method removes the last element of the list:

list1.pop_back();
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The last element of list1 is removed. If list1 is empty, an error 
message is generated.

insert()

The insert() method inserts data before the indicated position:

list1.insert(position_iterator, data);

The method inserts the given data before the indicated position. 
Subsequent elements are moved backward. The position iterator 
must point to an element in the call list.

The data must be of type integer, packet, or string, depending on the 
VeraList type.

insert_range()

The insert_range() method inserts elements in a given range before 
the indicated position:

list1.insert_range(position_iterator, start_iterator, finish_iterator);

The method inserts the elements in the range between start and 
finish before the position indicated by position. Note that the 
elements from start up to, but not including, finish are inserted. If the 
finish iterator points to an element before the start iterator, the range 
wraps around the end of the list. The range iterators can specify a 
range in another list or a range in list1.
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The position iterator must point to an element in the calling list. the 
range iterators must be valid list iterators. If either points to a 
non-existent element or if they point to different lists, an error is 
generated. 

Iterator Methods

This section describes the methods used by iterators.

next()

The next() method moves the iterator so that it points to the next item 
in the list:

I1.next();

prev()

The prev() method moves the iterator so that it points to the previous 
item in the list:

I1.prev();

eq()

The eq() method compares two iterators:

I1.eq(I2);

The method returns 1 if both iterators point to the same location in 
the same list. Otherwise, it returns 0.

neq()

The neq() method compares two iterators:

I1.neq(I2)
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The method returns 1 if the iterators point to different locations 
(either different locations in the same list or any location in different 
lists). Otherwise, it returns 0.

data()

The data() method returns the data stored at a particular location:

I1.data();

The method returns the data stored at the location pointed to by 
iterator I1. The data type is of the same type used in 
MakeVeraList(type).
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