
SystemVerilog 3.1/draft X Accellera
Extensions to Verilog-2001

V-to-C

mVer-

 this

he stan-
clara-

voids
 con-
oblem.
Section 11
Inter-Language Function Calls

11.1 Introduction (informative)

This section defines special declarations that can be used to allow SystemVerilog code to call C functions (S
direction) or to allow C code to call SystemVerilog functions (C-to-SV direction).

11.2 Mapping SystemVerilog function argument types to C function argument types

TBD.

11.3 SV-to-C function calls

Syntax 11-1 External C function declaration syntax (excerpt from Annex A)

External C function declarations declare that a legal SystemVerilognamed_function_proto function prototype (see
section 10.3, Annex A.2.6) is externally implemented in C and is callable in the same way that a native Syste
ilog function would be called.

Author’s Note: Should we change theextern keyword toimport ? This would make it more symmetrical withexport
for the C-to-SV direction.

The quotedcname is an optional C alias for the function. If present, the external C function would actually have
name but all SystemVerilog code that calls the function would refer to it as thefunction_identifier (see section 10.3)
in thenamed_function_proto. If thecname is absent, the C function name must match exactly with the
function_identifier. In this case, thefunction_identifier would be restricted to legal C identifier syntax.

External C function declarations can be decorated with a number of pre-defined attributes. The attributes use t
dard SystemVerilog attribute syntax that is listed in Annex A.9.1. For the specific case of external C function de
tions the allowable values for the attributeidentifierarepure, context, andqueueable. These attributes are discussed
in the following sub-sections.

Author’s Note: I changed attributes to follow standard SystemVerilog attribute syntax as per chapter 6. This a
pollution of keyword space by making attributes pre-standardized identifiers rather than reserved keywords. A
cern was raised at the general SystemVerilog face to face meeting that keyword pollution is getting to be a pr

extern_function_declaration ::= // from Annex ???
extern [attribute_instance] named_function_proto [“ cname”] ;

attribute_instance ::=(* attr_spec {, attr_spec }*) // from Annex A.9.1

attr_spec ::=
attr_name= constant_expression

| attr_name

attr_name ::= identifier

Pre-defined values for identifier:pure | context | queueable
1Copyright 2002 Accellera. All rights reserved.

SystemVerilog 3.1/draft X Accellera
Extensions to Verilog-2001

ni-
.

 free

d

For
ed, the
11.3.1 Pure function calls
Pure function calls are attributed with thepure identifier. Calling pure function calls must have no side effects ma
fested in the SystemVerilog space of the design. The function’s outputs must be purely a function of its inputs

11.3.2 Simple static call bindings
The simplest type of SV-to-C function call name binding is, static name match. In this case the C function is a
standing function and is associated with no instance specific context.

In this simple usage the user is required to do only the following:

• Define a C function in C code.

• Declare that function in SystemVerilog code using theextern_function_declaration syntax described above.

• Call the function from anywhere in the SystemVerilog code within the scope of the function declaration an
within the semantic requirements of all SystemVerilog function calls (described in section 10.3).

The user will be required to compile the C code into an object file that is linked with the SystemVerilog code.
static call binding, linking must be done based on symbol name match and argument profiles. If aliasing is us
linked function name must match thecname. Otherwise it must match exactly with thefunction_identifier. Aliasing
can be used in cases where the SystemVerilog function name is not a legal C identifier.

Here are examples of external C function declarations and the associated function calls from SystemVerilog:

Example 11-1 Pure C function callable from SystemVerilog

Declare an external pure callable C function the SystemVerilog side:

 extern (* pure *) integer MyCFunc(input integer portID);

Define the function on the C side:

int MyCFunc(int portID){
 return locallyMapped(portID);
}

It can be called from the SystemVerilog side as follows:

always @(clock) begin
if(reset) begin

..
end
else begin

if(state == READY) begin
mappedID <= MyCFunc(portID); // Call to C.
state <= WAITING;

end
...

end
end
2 Copyright 2002 Accellera. All rights reserved.

SystemVerilog 3.1/draft X Accellera
Extensions to Verilog-2001

ystem-
ext of
ever
ich it is

nment
of user

dels are
t refers

to the
stance
fined C

text
ed to
VPI
Example 11-2 Pure void aliased C function callable from SystemVerilog

11.3.3 Context sensitive static call bindings
Notice that in both of the examples above, the C functions are free standing functions that can be called from S
Verilog. In this case the C functions have no way of knowing any information about the module instance cont
the caller. For simpler applications where only truly pure functions are needed, this should be adequate. How
there are many cases where the C function must be able to differentiate the module instance context from wh
called. This would be typically be the case in a multi-threaded, object oriented C++ testbench modeling enviro
such as SystemC where it is desired to couple SystemVerilog model instances to multiple concurrent instances
defined C++ models. In this case, the user may very much care about which specific instances of hardware mo
making the function call and for those instances the user may wish to somehow associate a context pointer tha
to a specific C++ model or object instance with the specific SystemVerilog module instance making the call.

This is where thecontext attribute in the C function declaration can help. If thecontext attribute is present in the
extern declaration, the SystemVerilog infrastructure shall automatically pass a VPI handle as the first argument
C function, followed by the remaining arguments in the declaration. The VPI handle shall denote the module in
of the SystemVerilog module that is calling the function. This handle then can be used to associate a user de
model context pointer with the SystemVerilog instances usingvpi_set_user_data() and vpi_get_user_data() .

Author’s Note: One change I made here was the removal of the need to call tf_getinstance() to get the calling
instance. I felt that it was cleaner just to have the infrastructure pass the SV module context directly if the con
attribute is used. This avoids an extra call and reduces reliance on VPI even more - while still avoiding the ne
add new API calls which is the intent of Joao’s original request that we replace dedicated calls with pre-existing
calls.

Declare an external pure callable void aliased C function on the SystemVerilog side:

extern (* pure *) void MapPortID(
 input integer portID, output integer mappedID) “MyCFunc”;

Define the function on the C side:

 void MyCFunc(int portID, int *mappedID){
 *mappedID = locallyMapped(portID);
}

It can be called from the SystemVerilog side as follows:

always @(clock) begin
if(reset) begin

..
end
else begin

if(state == READY) begin
MapID(portID, mappedID); // Call to C.
state <= WAITING;

end
...

end
end
3Copyright 2002 Accellera. All rights reserved.

SystemVerilog 3.1/draft X Accellera
Extensions to Verilog-2001

l from

 11-1

f the
,

ramifi-
 conve-
vision
ple fea-

s for
iven
nces.
Here is an example of a C++ model, an external, context sensitive C function, and its associated function cal
SystemVerilog:

Example 11-3 Context sensitive C function callable from SystemVerilog

On the SystemVerilog side, the calling syntax would be identical to that for simple binding shown in Example
on page 2. But now the C side uses VPI API functions,vpi_get_user_data() , vpi_set_user_data() and
vpi_handle_by_name() to efficiently associate a SystemVerilog module instance context (denoted by thevpiHandle

context argument) with a C++ model instance context (denoted by “this” pointer).

Example 11-3 shows how this is done. Notice that the constructor of the model does a one-time association o
C++ model “this” pointer with the SystemVerilog module instance path. It does this by using the VPI functions
vpi_handle_by_name() andvpi_put_user_data() . By doing this simple association, each time the C functionMyC-

Func is called, the local C++ model context can be efficiently retrieved usingvpi_get_user_data() .

Author’s Note: Context association as described above seem like a rather trivial, unnecessary feature. But the
cations of what it buys us is significant. While our simple caller binding use model gives us the simplicity and
nience of the existing CBlend and DirectC use model, what those use models are significantly lacking is a pro
for a good interface between HDL models and specific instances of objects that represent C++ models. A sim
ture of being able to associate user defined C++ model contexts with specific instances of HDL models allow
extremely flexible interconnect between software and hardware models. It facilitates multiple instances of a g
software model type and connections between those software instances and their associated hardware insta

Declare an external, callable, aliased, context sensitive C function

extern (* context *) integer MapID(input integer portID) “MyCFunc”;

Define the function and model class on the C++ side:

class MyCModel {
private:

int locallyMapped(int portID);

public:
MyCModel(const char *svInstancePath){

vpiHandle svInstance = vpi_handle_by_name(svInstancePath, NULL);
vpi_put_user_data(svInstance, this); // Associate “this” with SV instance

}

friend int MyCFunc(vpiHandle context, int portID);
};

int MyCFunc(vpiHandle context, int portID){
MyCModel *me = (MyCModel *)vpi_get_user_data(context); // Retrieve local context.
return me->locallyMapped(portID);

}

4 Copyright 2002 Accellera. All rights reserved.

SystemVerilog 3.1/draft X Accellera
Extensions to Verilog-2001

reuse.

e
ith the
h this

.

To understand where context association is useful, consider the following scenario:

Figure 11-1 Scenario where context specific C functions are needed

A typical way of modeling this in a C++ testbench is to define a class representing the software model,EthPortWrap-

per . The user will then want to instantiate 4 copies of the same model to take maximum advantage of model
Suppose the pointers to these 4 model instances arecontext1 , context2 , context3 , andcontext4 . It may also be the
case that 4 independent threads are driving eachEthPortWrapper .

On the hardware side, the user will have 4 instances of the Verilog moduleEthPort , namely, top.u1 , top.u2 ,
top.u3 , and top.u4 .

Now suppose eachEthPort module declares an external callable C function to receive output packets from theEth-

Port modules on the SystemVerilog side. The user may define a C function called HandleOutputPacket() . When
this C function is called, how will the user know whichEthPortWrapper object is to receive the packet? This is wher
the context association can be used. The C function can associate the “this” pointer of each C model instance w
SystemVerilog module instance in a manner similar to that shown in Example 11-3 on page 4. It can then fetc
pointer usingvpi_get_user_data() each time the call is made to gain access to the local instance of theEthPort-

Wrapper model. In C++, the C function can be declared afriend function with private access privileges into the class
For example, HandleOutputPacket() could be a friend ofEthPortWrapper that has full access privileges to all its
private data members.

SystemVerilog

EthPort EthPort

EthPortEthPort

C++ Stimulus and Monitor Testbench

EthPortWrapper

EthPortWrapper

EthPortWrapper

EthPortWrapper

EthPacketRouter

context2

context4

context1

context3

u1 u2

u4u3

top

DUT
5Copyright 2002 Accellera. All rights reserved.

SystemVerilog 3.1/draft X Accellera
Extensions to Verilog-2001
Here is an example showing excerpts of theEthPortWrapper C++ models and theEthPort SystemVerilog modules.

Example 11-4 Ethernet packet router model association - C side

Define the function and model class on the C++ side:

class EthPortWrapper: public CModel {
private:

CModel *myParent;
int dumpPayload(vpiHandle payload);

public:
EthPortWrapper(CModel *parent, const char *svInstancePath) : myParent(parent) {

vpiHandle svInstance = vpi_handle_by_name(svInstancePath, NULL);
vpi_put_user_data(svInstance, this);

}

friend int HandleOutputPacket(vpiHandle context, int portID, vpiHandle payload);
};

void HandleOutputPacket(vpiHandle context, int portID, vpiHandle payload){
EthPortWrapper *me = vpi_get_user_data(context);
me->myParent->BumpNumOutputs(); // Let top level know another packet received.
me->dumpPayload(payload);

}

Prior to simulation, the user can make the following calls to constructEthPortWrapper models and associate them
with the appropriateEthPort module instances:

void *context1 = (void *)new EthPortWrapper(this, “top.u1”);
void *context2 = (void *)new EthPortWrapper(this, “top.u2”);
void *context3 = (void *)new EthPortWrapper(this, “top.u3”);
void *context4 = (void *)new EthPortWrapper(this, “top.u4”);
6 Copyright 2002 Accellera. All rights reserved.

SystemVerilog 3.1/draft X Accellera
Extensions to Verilog-2001

andle
ling
or C++

aving
s are an
They are
well

cog-
does is
n of
The code on the SystemVerilog side is listed here:

Example 11-5 Ethernet packet router model association - SystemVerilog side

Notice that the actual C function nameHandleOutputPacket() is aliased to the SystemVerilog namesendPacket() .

Author’s Note: With this simple solution we have completely generalized the SV-to-C function call interface to h
multi-model instance bindings. This feature buys a lot in object oriented, multi-threaded C++ testbench mode
environments like SystemC, TestBuilder, CynLibs, etc. It even applies to home-brewed single threaded pure C
test environments which happen to use multiple instances of classes associated with the hardware.

11.3.4 Queueable function calls
Thequeueableattribute can be used to give the compiler a hint that a function call can be queued rather than h
to wait for a full round trip confirmation that the callee has been called and has returned. Queueable function
easy way to implement the equivalent of SystemC channels, Unix sockets, message queues, name pipes, etc.
useful for creating efficient 1-way channels between SystemVerilog processes and C threads. They are also
suited to implement optimized streaming channels between models.

Author’s note: Ironically, the OpenVera LRM has a similar facility called the VSV interface. So they apparently re
nized the need to have something above and beyond DirectC for this type of capability. But what this proposal
it gives you the entire capability without adding a whole new API to support it. With an ultra simple modificatio

module EthPort(
MiiOutData, MiiInData,
MiiOutEnable, MiiInEnable,
MiiOutError, MiiInError,
clk, reset);

input [7:0] MiiOutData; output [7:0] MiiInData;reg [7:0] MiiInData;
input MiiOutEnable; output MiiInEnable; reg MiiInEnable;
input MiiOutError; output MiiInError; reg MiiInError;
input clk, reset;

extern (* context *) void sendPacket(
input integer portID, input reg [1439:0] payload) “HandleOutputPacket”;

reg [1439:0] outputPacketData;

always @(clk) begin // output packet FSM
if(reset) begin

...
end
else begin
if(outstate == READY) begin

if(MiiOutEnable)
state <= PROCESS_OUTPUT_PACKET;

end
end
else if(outstate == PROCESS_OUTPUT_PACKET) begin

// Assemble output packet byte by byte ...
end
else if(outstate == OUTPUT_PACKET_COMPLETE) begin

sendPacket(myPortID, outputPacketData); // Make call to C side to handle it.
end

end
endmodule
7Copyright 2002 Accellera. All rights reserved.

SystemVerilog 3.1/draft X Accellera
Extensions to Verilog-2001

id the

n be
g the

re is
tion
n spe-

ctly

nction

rride

e form
nction

to actu-
es to

ally
DirectC, you can cleanly support a socket type of channel like VSV did. And, in an implementation, if you've pa
price to implement DirectC function calls, with slightly more work you can get this feature almost for free.

The only requirement of queueable functions is that they can only have input arguments, no outputs. They ca
thought of as one way transaction channels that the infrastructure can queue to arbitrary depth before blockin
caller. From the point of view of the SystemVerilog caller, a queueable function call will return immediately if the
room in the queue. At this point the caller will resume execution at the point after the call. But in fact the func
may not called on the C side until some time later. The depth of a queueable function queue is implementatio
cific. Only when it fills will the caller be blocked.

Implementations that do not provide special optimizations for queueable functions will continue to work corre
although possibly not as efficiently.

Here is an example of a queueable, aliased, context sensitive C function declaration:

Example 11-6 Queueable, aliased, context sensitive C function declaration

11.3.5 Scoping
An external C function declaration can occur within module scope or root scope. No matter where external fu
declaration exists, the C function that it denotes is always considered to be of global scope.

External function declarations can exist in more than one place. Locally scoped declarations shall always ove
globally scope definitions. If two globally scoped external declarations have the same function profile
(named_function_proto), but differing C names or attributes, it shall be considered an error.

11.4 C-to-SV function calls

Syntax 11-2 Exported SystemVerilog function declaration syntax (excerpt from Annex A)

SystemVerilog functions can be designated as callable from the C side by providing an export declaration of th
shown above. If the compiler detects an exported SystemVerilog function, it generates a special C wrapper fu
that is directly callable from the C side. This wrapper function then performs the internal operations required
ally call the SystemVerilog function. One of these operations is to map the C function input argument data typ
SystemVerilog data types and to map the output and/or return arguments back to C data types.

The quotedcnameis an optional C alias for the function. If present, the generated C wrapper function would actu
have this name but internally it would call the SystemVerilog function by its realfname. If thecname is absent, the

extern (* queueable, context *) void MyCFunc(input integer portID) “AliasedCFunc”;

exported_function_declaration ::= // from Annex ???
export [attribute_instance] [scopename{::scopename}::]fname[“ cname”] ;

attribute_instance ::=(* attr_spec {, attr_spec }*) // from Annex A.9.1

attr_spec ::=
attr_name= constant_expression

| attr_name

attr_name ::= identifier

Pre-defined values for identifier:pure | context | queueable
8 Copyright 2002 Accellera. All rights reserved.

SystemVerilog 3.1/draft X Accellera
Extensions to Verilog-2001

of exter-

ni-
.

 func-
ntext.

mVer-
n sym-

ot a

erefore
 func-
generated C wrapper function name will match exactly with thefname. In this case, thefname would be restricted to
legal C identifier syntax.

Exported SystemVerilog function declarations can be decorated with a number of pre-defined attributes. The
attributes use the standard SystemVerilog attribute syntax that is listed in Annex A.9.1. For the specific case
nal C function declarations the allowable values for the attributeidentifier arepure, context, andqueueable. These
attributes are discussed in the following sub-sections.

11.4.1 Pure function calls
Pure function calls are attributed with thepure identifier. Calling pure function calls must have no side effects ma
fested in the SystemVerilog space of the design. The function’s outputs must be purely a function of its inputs

11.4.2 Simple static call bindings
The simplest type of C-to-SV function call name binding is, static name match. In this case the SystemVerilog
tion is a free standing function that resides in root scope. It is associated with no instance specific module co

In this simple usage the user is required to do only the following:

• Define a function in root scope of the SystemVerilog code.

• Declare that function as exportedexport_function_declaration syntax described above.

• Call the function from anywhere in the C code using normal C function call semantics.

The user will be required to compile the C caller code into an object file that is linked with the compiled Syste
ilog code that includes the generated C wrapper functions. For static call binding, linking must be done based o
bol name match and argument profiles. If aliasing is used the linked function name will match thecname. Otherwise
it must match exactly with thefname. Aliasing can be used in cases where the SystemVerilog function name is n
legal C identifier.

Here is an example of an exported SystemVerilog function that is called from C:

Example 11-7 Pure SystemVerilog function callable from C

11.4.3 Context sensitive static call bindings
In most cases where C calls SystemVerilog functions, those functions will be defined in module scope and th
will be instance specific. In these cases C caller must know the module instance context of the SystemVerilog
tion that it calls.

Declare an exported pure C callable SystemVerilog function:

export (* pure *) MySvFunc;

function MySvFunc;
input integer portID;
output integer mappedID;

mappedID = map[portID];
endfunction

It can be called from the C side as follows:

void MyCModel::RunTest(int portID){
 MySvFunc(portID, &mappedID);
 ...
}

9Copyright 2002 Accellera. All rights reserved.

SystemVerilog 3.1/draft X Accellera
Extensions to Verilog-2001

argu-
tance

alling
 is

e
otypes
er C
roper

ation
described

 C:
This is where thecontext attribute in the exported function declaration is used. Ifcontext is present in theexport
declaration, the C wrapper function generated by SystemVerilog compiler will expect a VPI handle as its first
ment. This will be followed by the actual function call arguments. The VPI handle shall denote the module ins
of the SystemVerilog module containing the function.

Here is an example of C++ code calling an instance specific SystemVerilog function:

Example 11-8 Context sensitive SystemVerilog function callable from SystemVerilog

On the C side, the user code does a one time initialization of the SystemVerilog function instance handle by c
vpi_handle_by_name(). It then passes the handle as the first argument each time the SystemVerilog function
called from C, followed by the remaining function arguments.

In the example, the functionMySvModule_MySvFunc() is a C wrapper function that is automatically generated by th
SystemVerilog compiler. Some implementations may also wish to generate a header file with the function prot
of all exported SystemVerilog functions as a convenience to the user. This header file can be included with us
code to declare exported functions on the C side. This naturally lets the C compiler automatically perform the p
function argument type checking.

11.4.4 Queueable function calls
As for the SV-to-C direction thequeueable attribute can be used to give the compiler a hint that a SystemVerilog
function call can be queued when called from the C side, rather than having to wait for a full round trip confirm
that the callee has been called and has returned. Queueable C-to-SV function calls have all the advantages
for queueable SV-to-C calls as described in Section 11.3.4 on page 7.

Declare an exported, context sensitive, aliased, void C callable SystemVerilog function:

export (* context *) MySvModule::MySvFunc “MySvModule_MySvFunc”;

module MySvModule(...);
 ...
 function MySvFunc;
 input integer portID;
 output integer mappedID;

 mappedID = map[portID];
 endfunction
 ...
endmodule

Initialize context handle one time in constructor, pass it each time the SystemVerilog function is called from

class MyCModel {
private:

vpiHandle svContext;

public:
MyCModel(const char *svInstancePath){

svContext = vpi_handle_by_name(svInstancePath, NULL); }

void RunTest(int portID){
int mappedID;
MySvModule_MySvFunc(dSvContext, portID, &mappedID);
...

}
};
10 Copyright 2002 Accellera. All rights reserved.

SystemVerilog 3.1/draft X Accellera
Extensions to Verilog-2001

n be
g the
the

alled
ecific.

ctly

scope
he
me

ace.

rt

r the
ist in
rations
The only requirement of queueable functions is that they can only have input arguments, no outputs. They ca
thought of as one way transaction channels that the infrastructure can queue to arbitrary depth before blockin
caller. From the point of view of the C caller, a queueable function call will return immediately if there is room in
queue. At this point the caller will resume execution at the point after the call. But in fact the function may not c
on the SystemVerilog side until some time later. The depth of a queueable function queue is implementation sp
Only when it fills will the caller be blocked.

Implementations that do not provide special optimizations for queueable functions will continue to work corre
although possibly not as efficiently.

Here is an example of a queueable, aliased, context sensitive SystemVerilog function export declaration:

Example 11-9 Queueable, aliased, context sensitive SystemVerilog function export declaration

11.4.5 Scoping
Export declarations for SystemVerilog functions can be defined anywhere. If the function is defined in module
but the export declaration is in root scope, the function name must be qualified with the module name using t
[scopename{::scopename}::] syntax to prefix the function name shown in Syntax 11-2 on page 8. The scope na
can either refer to a module scope or an interface scope for the case where functions are defined in an interf

Example 11-8 on page 10 shows an example of this. In this case the export declaration forMySvFunc is shown in root
scope and uses theMySvModule:: qualifier to indicate that the function is defined in a module scope. If the expo
declaration had been placed inside theMySvModule , the extra qualifier would not have been necessary.

Export declarations can exist in multiple places. However, if multiple export declarations exist in root scope fo
same SystemVerilog function, it is an error if they are not identical. If export declarations for a given function ex
both root and module scope, the local module scope declaration will override the root declaration if the decla
are not identical.

export (* queueable, context *) MySVFunc “MySvModule_MySvFunc”;
11Copyright 2002 Accellera. All rights reserved.

	Section 11 Inter-Language Function Calls
	11.1 Introduction (informative)
	11.2 Mapping SystemVerilog function argument types to C function argument types
	11.3 SV-to-C function calls
	11.3.1 Pure function calls
	11.3.2 Simple static call bindings
	11.3.3 Context sensitive static call bindings
	11.3.4 Queueable function calls
	11.3.5 Scoping

	11.4 C-to-SV function calls
	11.4.1 Pure function calls
	11.4.2 Simple static call bindings
	11.4.3 Context sensitive static call bindings
	11.4.4 Queueable function calls
	11.4.5 Scoping

