
SystemVerilog Interfacing to Foreign Languages

Comments not intended for inclusion in the LRM are in red text.

Overview

Since the foreign language most often used is C and C linkage is well defined, it is assumed that all

foreign code will use the same interface as C for direct linking of code.There is an assumption in this

document that 2-state (C compatible) data types are passable by reference (pointer) and that C function

prototypes are parseble in SV (since it desirable to minimize re-writing them), i.e. that C ‘*’ and ‘&’

pointer and reference declaration syntax can be used in SV.

Calling C From SV

To call a C routine from SV requires an external declaration in the SV source. Direct binding through

code linkage requires that has a valid C name, since names in Verilog may not be valid an optional C

name can be added to the external declaration. External routines can also be attributed “pure” implying

that there are no side-effects, needing context, or “static” which implies dynamic binding1. The

complete syntax is:

extern_decl ::= extern (attribute (, attribute) *) ?

"linker name" ?

function_decl | task fname (extern_func_args ?)

function_decl ::= function return-type

attribute ::= pure | context | line | static

To declare a standard C function like “write” which is context free one could use the following code in

SV:

extern int write(int, const char *buf, int);

If using write is not going to feedback into the simulation and it is to replace a differently named SV

routine one could use:

extern pure "write" int sv_write(int, const char *buf, int);

The direction qualifier input is considered synonymous with "const", so the following declarations are

equivalent:

extern void bcopy(const void *s1, void *s2, size_t n);

1. There is no direct C entrypoint so no symbol table entry.
Version 2.1 Accellera SystemVerilog -1

extern void bcopy(input void *s1, void *s2, size_t n);

Ellipsis (“...”) can be used as in C to indicate that remaining arguments are of undetermined type.

Using the “line” attribute will allow passing of the all the argument types for a call instance to dynamic

linking mechanisms (described below). This can be used for declaring standard C library calls:

extern int printf(const char *format, /* args*/ ...);

Functions requiring context are called with two extra arguments: a PLI handle for the calling instance

(which may be $root) and a pointer to some permanently allocated memory which the callee can use

for maintaining state.The structure of the permanently allocated space is described in C as:

typedef struct {

union {

void *ptr;

int data[2];

double dbl;

} user_context; /* user-context, initialy zero, 64 bits (aligned) */

int context_version; /* == 0, struct stops here */

union {

struct {

int call_num; /* call on line */

int line_number; /* source line number */

const char *file_name; /* may be null string “” but not null*/

} call_inst; // if (context_version & SVC_CONTEXT_LINE)1

} cvu;

} svcContext;

This can be used by routines for reporting errors, coverage testing etc. and the callee can write its own

values into the user_context union e.g. a pointer to another array of memory. The context_version field

is zero for this struct, other versions which overlay it will use other values. For example, the following

declaration in SV:

extern pure,context,line void check_val(int);

Will expect a C routine like this:

void check_val(handle instance, svcContext *p_context, int data)

{

if (data > 911 && !p_context->user_context.data[0]) {

if (context_version & SVC_CONTEXT_LINE) { // have line info

fprintf(stderr, ”%s:%d(%d) / %s - Error data out of range! = %d\n”,

p_context->cvu.call_inst.file_name,

1. Defined in header file(s)
-2 Verilog-AMS Language Reference Manual Version 2.1

p_context->cvu.call_inst.line_number,

p_context->cvu.call_inst.call_num,

tf_getinstance(),

data);

} else {

fprintf(stderr, ”%s - Error data out of range! = %d\n”,

tf_getinstance(),

data);

}

p_context->user_context.data[0] = 1; // don’t warn again

}

}

If the static version of the external declaration is used, then the user code must register a locator routine

before the simulation initializes so that the simulator can link up routines that are left undefined by

elaboration. The registration routine is svcRegisterLocater:

/* template for external context calls */

typedef void (*svcExtFunc)(handle,svcContext *,...);

/* template for locater routines */

typedef svcExtFunc (*svcLocater)(void *locater_context,

char *mod_spec,

char *inst_name,

char *rtn_name,

svcContext *svcContext,

... /* argument types */);

int svcRegisterLocator(svcLocater,void *locator_context,char *module_spec,

int capabilities)

This method allows modules to bind to C routines which are static or are overloaded in C++, the

following code demonstrates how to set up binding for a C++ function whose name is not predictable1:

The capabilities argument of the locator is reserved for future enhancements; like changing how the

arguments are specified, in this version capabilities should be zero for linking by routine name only

and SVC_ARGS_CSTR2 for argument types to be given as C strings.

extern “C” {

#include “sv2c.h” // svcRegisterLocator etc.

}

1. Due to name mangling by the C++ compiler.

2. Defined as 1 in the header file(s).
Version 2.1 Accellera SystemVerilog -3

static pointer myBinder(void *,char *,char *,char *,void **,...);

class root_cpp {

root_cpp() {svcRegisterLocator(myBinder,this,”$root”,0); }

}

static root_cpp RootCpp; // calls svcRegisterLocator when constructed

static int cpp_routine(handle inst,svcContext *p_context,int data) {

// a routine called from SV: extern context int cpp_routine(int);

}

static svcExtFunc myBinder(void *context,char *modname,char *inst_name,char *rtn_name,

svcContext *p_context,...)

{

svcExtFunc rtn_addr = 0;

if (0 == strcmp(rtn_name,”cpp_routine”)) rtn_addr = cpp_routine;

if (rtn_addr) p_context->user_context.ptr = context; // set context for future calls.

return rtn_addr;

}

The binder function is called once for each context (module or line and position) in which SV calls the

routine so that it can intialize all contexts if the extern declaration had the ”line” attribute set, otherwise

all calls within the module use the same context. The extra arguments to the binder function are the

types of the return and arguments to the routine call in SV, and may vary from context to context; the

list values are C strings and is terminated with a null pointer. If “...” was used in the declaration it will

appear in the list and will be followed by the actual types if the call is being bound per line. The SV

simulator will report a fatal error if no match is found or multiple matches are found with the same

priority. Priority is determined by the matching of the module_spec argument of the locator, an exact

match takes priority over a wild-card which take priority over no module specification (null), binder

functions are not called if there module_spec does not match the instance.

Verilog has various call-back points in its compile and elaboration phases, if locator functions are not

registered by construction they can be registered by the post-compile pre-elaboration call-back.

Scoping

Extern function declarations can appear in any scope where a function or task can be declared, and are

selected using the same rules that would apply to an actual function or task. Extern declarations in

different scopes can use different linker names for the same SystemVerilog name and the

SystemVerilog name can only be used once in a given scope.

Linker Name Specification and Use

In the case of non-static external function declarations the linker name is interpreted as the name of a C
-4 Verilog-AMS Language Reference Manual Version 2.1

routine to be included when the simulator code is linked, or as a library and name pair in the format:

<library name>:<routine name>

The library specification can be given to the simulator in a vendor/platform specific fashion for static

linking or used for dynamic linking at runtime. For example the “lvd:driver” would specify the routine

named “driver” in the library “lvd”. If no prior definition of “lvd” is given the simulator will try to load

the library at runtime and look for the routine “driver” in it. When a library is loaded dynamically the

simulator will attempt to call the function “svcInitLib” within the library so that it can register locator

functions.The only argument to the svcInitLib call is it’s dynamic linker handle1.

On Solaris you could specify “nsl:socket” to link the standard socket call from /usr/lib/libnsl.so, see the

man pages on dlopen for details.

The dynamic library mechanism is also used if the locator functions do not return a match.

Note: dynamic linking does not require re-linking the simulator for a foreign code change.

How to specify a code library to the simulator I would rather leave for later, but I would expect

something like “-olib nsl=/usr/lib/libnsl.a”, the implication being that it is only added to the static link

if there is an “nsl:*” used somewhere in the design.

Calling SVfrom C

To access an SV task or function from C it needs an “export” declaration. Export declarations can be

placed in modules for exporting module specific tasks and functions or in $root for global tasks and

functions, and module specific tasks and functions can also be exported from root using the special

syntax “<module spec>::” in front of the task or function name:

export_decl ::= export attribute (, attribute) * ?

“linker name” ?

[module spec::]fname

attribute ::= static | queueable

module spec ::= (modulename|interfacename) (::(modulename|interfacename))* ?2

As with external declarartions the SV name may not be a valid name so a valid C name can be provided

for use by the linker. Similarly declaring the export as “static” implies only dynamic binding is used.

Routines and tasks exported from $root are context free, routines and tasks exported from modules

need to be called with a reference to the specific instance the call applies to. Standard PLI functions

can be used to find a particular instance and the instance handle is passed by the caller as the first

argument.

1. This platform specific

2. top::foo would refer to a module foo declared inside module top
Version 2.1 Accellera SystemVerilog -5

Non-static exports are handled by the the linker, dynamic linking of context dependent SVroutines is

performed after elaboration. The foreign code calls the SV simulator function svcLocateTF to obtain a

pointer to the appropriate entry point:

/* Template for an exported context task or function */

typedef int (*svcContextTF)(handle pli_inst,...);

/* Locater function */

svcContextTF svcLocateTF(handle pli_inst,int capabilities,const char *tf_name,...);

The extra arguments to svcLocateTF are the types of the arguments and return the caller is expecting to

use (as specified in the next section), and as with external binders the capabilities argument is reserved

for future modification of that interface. The following example shows a simple dynamic binding.

module cboundary;

task munge(input d);

int d;

....

endtask

...

endmodule

export static cboundary::munge; // create a static C entry point for task foo in module cboundary

The corresponding C code could be:

static svcContextTF cboundary_munge;

static handle cboundary_munge_pli;

...

/* find instance */

cboundary_pli = findInst("top.cboundary");

/* get task pointer */

cboundary_munge = svcLocateTF(cboundary_pli, 0,

"munge", /* function/task name */

0, /* void return */

"int" /* argument types */,

0);

/* call SV task */

(*cboundary_munge)(cboundary_pli,0xFF);

The final argument to svcLocateTF can be “...” instead of 0 if the exported function is called with

different argument lists. The return value from svcLocateTF will be null if the simulator cannot support

or cannot find a matching task or function.
-6 Verilog-AMS Language Reference Manual Version 2.1

Queueable Calls

Only tasks can be exported with the “queueable” attribute. A call to such a task from C will execute in

zero time and return a handle which can be queried for completion status. A task exported without the

queuable attribute is not allowed to consume time, doing so would be a runtime error. The handle

returned can be queried with the following routine:

bool svcCallDone(handle);

This call will return false until the task is finished, and then will return true once, the result from further

calls is undefined.

Queueable tasks cannot be called across operating system threads unless control has been passed to

foreign code, it is also illegal to make simultaneous calls into the SV simulator from foreign code,

doing so will cause a runtime error.

Since tasks (in 3.0 and before) use copy-in/copy-out semantics it is easy for the simulator to copy all

the arguments and create a new process to handle the call, since 3.0 introduces dynamic processes this

is only a minor extension.This functionality does not require any multi-threading in the simulator

kernel. The restriction that the task cannot be called across operating system threads while kernel is

active makes the mechanism MT safe. In particular, a multi-threaded SystemC program running

concurrently with SV would only be able to call SV tasks one-at-a-time, and only when SV has passed

it control (by calling a foreign function).

Data Passing between SV and C

The sections above describe how exported and external routines are linked. The passing of data on the

calls is either direct with C pass-by-value semantics (in registers or on the stack), indirect through

pointers for C data types, or through an abstract interface for simulator dependent data types (packed

and 4-state).

Argument Specification

The strings specifying argument types handed to the binder functions above are in a simple canonical

form which includes the language and type using the form "!"<attributes>":"<type declarartion> and

the argument name if it is available (between “$”s1). Attributes are single letters:

s SystemVerilog type

a Abstract access only

c Copy back, implies argument is a pointer

The default interface mode is “C”, so a simple call to C will have straightforward definitions:

extern context void my_write(int,const char *,int);

1. This required for declaring arguments like function pointers, where the type’s location in the string is non-obvi-

ous e.g.: “int (* $$)(...)” - argument is a pointer to a function returning an “int”.
Version 2.1 Accellera SystemVerilog -7

Would give the arguments:

“int $$”, “const char *$$”, “int $$” and return “void”

A more complex call with 4-state (Verilog) types would have more annotation, e.g.:

packed struct my_struct {

logic l1[7:0];

logic l2[7:0];

};

extern context logic my_func(my_struct &data[13:0]);

Gives:

“!sa:packed struct #my_struct# {logic #l1#[7:0];logic #l2#[7:0];} &$data$[13:0]”

and return "!s:logic $$"

Intermediate type names and field names are provided quoted by “#”.

It is not required that the string arguments handed to the binder functions be permanently allocated.

An argument marked “!sa:” will be handled by an abstract interface from C/C++. The run-time value

that is passed for an object handled by abstract access is a VPI handle for the object, other data types

are passed according to the C calling standard (as are return values). The VPI handle for a packed

object can be viewed as a handle to a vector, the size of which can be calculated from the type string.

The canonical form of the argument type should be sufficient information to calculate routine names

generated by C++ mangling, the code for that and the extra functionality to load/find non-context

dependent routines would only need to be written once per C++ compiler - a g++ version could be

added in an appendix as an example. The locator routine could dynamically load libraries if required.

The “!a:” attribute allows for the case where a simulator may have optimized C type data and it no

longer exists in a directly accessible form.

Note: the binding mechanism is not necessarily dependent on PLI/VPI. Only context calls and calls

with abstract types make any use of PLI/VPI.

Pass-by-Value vs Pass-by-Reference

Arguments that are of SystemVerilog type can be passed by value or reference. Pass-by-reference uses

the VPI handle mechanism mentioned above, passing by value causes a C compatible copy of the data

to be generated on the stack, 4-state data is converted to arrays of the svcInteger type (described in the

next section), and bit vectors use arrays of unsigned int. For example the following SystemVerilog

struct:

struct mxd {

int i1;

logic [4:0] lgc;

real r1;
-8 Verilog-AMS Language Reference Manual Version 2.1

bit [63:0] bit1;

};

Is converted to the this C struct when passed as an argument:

typedef struct {

int i1;

svcInteger lgc[1]; /* use only 5 least significant bits */

double r1;

unsigned int bit1[2]; /* use two 32 bit words */

} mxd;

The layout of the C structure can be calculated from the type information passed to binding

routines.Packed structs and unions are passed as simple arrays of svcInteger and unsigned int. The

difference in the exern declaration for pass-by-value rather than pass-by-reference is the presence of

the ‘&’ in the argument:

extern mxd_func(mxd &data_in); // pass by reference

extern mxd_func(mxd data_in); // pass by value

Using ‘*’ which indicates direct pointer access is only allowed for C compatible data types, using it

with any other type is illegal.

Arguments and Direction

Arguments which are normally pass-by-value can be qualified as input, inout or output. The use of

inout and output forces copy-back (pointer) mode for extern calls since C does not directly support the

Verilog copy-back mechanism. Similarly tasks called from C get passed a pointer to the data location

for inout and output arguments. For example the following are matching extern and C definitions:

SystemVerilog:

struct my_strct {...};

extern void c_task_a(input int, input my_strct);

extern void c_task_b(input int, inout my_strct);

C:

typedef struct {...} my_strct;

void c_task_a(int in, my_strct work_tmp);

void c_task_b(int in, my_strct *work_tmp); /* type will be marked !c: */

Type Promotion

Arguments passed by value also follow the C promotion rules: integral types are promoted to int if
Version 2.1 Accellera SystemVerilog -9

smaller, and shortreal (float) is promoted to double.

Routine Return Values

Return values can be for packed abstract types because it is up to the simulator to copy the returned

value to its internal representation of the type, but the type in C is always a 2-state or 4-state vector of

equivalent size. C routines that return a value for an abstract type use an array of the following struct:

typedef struct {

unsigned int data;

unsigned int control;

} svcInteger;

Each bit in the data field represents either 0 or 1 if it’s control bit is zero and Z or X if its control bit is

one. Returning multiword values requires encapsulating an array of these structs in another struct so as

in the following example:

SystemVerilog code:

extern integer [63:0] bus_val();

C code:

typedef struct {

svcInteger v32[2];

} vec64;

vec64 bus_val() {

vec64 ret_val;

ret_val.v32[0].data = C_bus64_lo32();

ret_val.v32[1].data = C_bus64_hi32();

ret_val.v32[0].control = ret_val.v32[0].control = 0; // never Z/X

return ret_val;

}

The zeroeth element of the array returned contains the least significant bits of the value. 2-state data is

returned in a similar fashion using unsigned int:

SystemVerilog code:

extern bit[63:0] bus_val();

C code:
-10 Verilog-AMS Language Reference Manual Version 2.1

typedef struct {

unsigned int v32[2];

} int64;

int64 bus_val() {

int64 ret_val;

ret_val.v32[0] = C_bus64_lo32();

ret_val.v32[1] = C_bus64_hi32();

return ret_val;

}

Unpacked abstract types are returned using the same mechanism that pass-by-value arguments use to

coerce data, but in reverse.
Version 2.1 Accellera SystemVerilog -11

-12 Verilog-AMS Language Reference Manual Version 2.1

	Title - SystemVerilog Interfacing to Foreign Languages
	Heading2 - Overview
	Heading2 - Calling C From SV
	Heading3 - Scoping
	Heading3 - Linker Name Specification and Use

	Heading2 - Calling SVfrom C
	Heading3 - Queueable Calls

	Heading2 - Data Passing between SV and C
	Heading3 - Argument Specification
	Heading3 - Pass-by-Value vs Pass-by-Reference
	Heading3 - Arguments and Direction
	Heading3 - Type Promotion
	Heading3 - Routine Return Values

