
System Verilog Assertion API-v0.3.doc Version 0.3

System Verilog Assertion API
João Geada

Change Log
Version Date Authors Description
0.1 11/25/2002 Joao First draft proposal for incorporating Synopsys

assertions API donation into SV framework.
0.2 12/03/2002 João Updated with comments/suggestions for sv-cc face

to face meeting on 12/3/2002. Major changes: API
changed to an extension of VPI, making all names
consistent with naming scheme, additional static
information APIs. Also synch-ed up terminology to
current state of sv-ac (eg assertion property)

0.3 1/8/2003 João Updated VPI numeric assignments to fit within
assigned range for assertions (700-799), minor
updates as per last review, added “stepping” API as
per discussions with Bassam. Also changed returned
expressions from textual representation to
vpiHandles to said expressions.

Table of Contents
1 Requirements .. 2

1.1 Naming conventions ... 2
2 Extensions to VPI enumerations... 2
3 Static Information ... 3

3.1 Obtaining assertion handles .. 3
3.2 Obtaining static assertion information .. 4

3.2.1 Additional static information .. 5
4 Dynamic Information.. 5

4.1 Placing assertion “system” callbacks.. 5
4.2 Placing assertions callbacks.. 6

5 Control Functions.. 7
5.1 Assertion System control .. 7
5.2 Assertion control... 8

 Page 1 of 8

System Verilog Assertion API-v0.3.doc Version 0.3

1 Requirements
To provide an API into the SV assertion capabilities providing sufficient capabilities to:
1. enable user’s C code to react to assertion events
2. enable 3rd party assertion “waveform” dumping tools to be written
3. enable 3rd party assertion coverage tools to be written
4. enable 3rd party assertion debug tools to be written
The interface should also be readily extensible/adaptable so that it can easily be kept in
sync with progress made by the sv-ac committee.
In addition, this interface should not unnecessarily duplicate any existing PLI/VPI
interfaces.

1.1 Naming conventions1
All elements added by this interface will conform to the vpi interface naming
conventions:

1. all names will be prefixed by vpi
2. type names will start with “vpi” followed by Capitalized words with no

separators, eg vpiAssertCheck
3. all function names will start with “vpi_” followed by all lowercase words

separated by ‘_’, eg vpi_get_assert_info()

2 Extensions to VPI enumerations2
1. Object types (reserve range 700-729 for types & properties):

1. #define vpiProperty 700 /* temporal assertion */
2. Object properties

1. #define vpiAssertProperty 701
2. #define vpiAssumeProperty 702
3. #define vpiRestrictProperty 703
4. #define vpiCoverProperty 704
5. #define vpiCheckProperty 705 /* (non-temporal) assertion */

3. Callbacks (reserve range 730-749 for callbacks)
1. Property related

• #define cbPropertyStart 730
• #define cbPropertySuccess 731
• #define cbPropertyFailure 732
• #define cbPropertyStepSuccess 733
• #define cbPropertyStepFailure 734
• #define cbPropertyDisable 735
• #define cbPropertyEnable 736
• #define cbPropertyReset 737

1 João comment: these rules are meant to be consistent with the naming conventions used by PLI and VPI
interfaces
2 To be merged to the contents of the “vpi_user.h”, described in 1364-2001, Annex G, pages 764-777
The numbers in the range 700-799 will be reserved for the assertion portion of VPI

 Page 2 of 8

System Verilog Assertion API-v0.3.doc Version 0.3

• #define cbPropertyKill 738
2. “Property System” related

• #define cbPropertySysInitialized 739
• #define cbPropertySysStart 740
• #define cbPropertySysStop 741
• #define cbPropertySysEnd 742
• #define cbPropertySysReset 743

4. Control constants (reserve range 750-769)
1. Property related

• #define vpiPropertyDisable 750
• #define vpiPropertyEnable 751
• #define vpiPropertyReset 752
• #define vpiPropertyKill 753
• #define vpiPropertyEnableStep 754
• #define vpiPropertyDisableStep 755

2. Property stepping related
• #define vpiPropertyClockSteps 756

3. “Property System” related
• #define vpiPropertySysStart 757
• #define vpiPropertySysStop 758
• #define vpiPropertySysEnd 759
• #define vpiPropertySysReset 760

3 Static Information
3.1 Obtaining assertion handles
Extend the VPI module (actually, instance) iterator model to encompass assertions.

module property

all other module ->> object iterators
from IEEE 1364-2001, section 26.6.1 page 634

1. Iterate over all properties in the design: use a NULL reference handle (ref) to

vpi_iterate()
 itr = vpi_iterate(vpiProperty, NULL);
 while (assertion = vpi_scan(itr)) {
 /* process property */
 }

 Page 3 of 8

System Verilog Assertion API-v0.3.doc Version 0.3

5. Iterate over all properties in an instance: pass appropriate instance handle as reference
handle to vpi_iterate()
 itr = vpi_iterate(vpiProperty, instanceHandle);
 while (assertion = vpi_scan(itr)) {
 /* process property */
 }

6. Obtain assertion by name: extend vpi_handle_by_name to also search for assertion
names in the appropriate scope(s)
vpiHandle = vpi_handle_by_name(assertName, scope)
Note that this operation only works for named assertions! Unnamed assertions cannot
be found by name.

NOTE: as with all vpi handles, assertion handles are handles to a specific instance of a
specific assertion.
NOTE: these iterators will return both temporal properties and immediate non-temporal
checks.

3.2 Obtaining static assertion information
The following information about an assertion is considered to be “static”:

1. Assertion name
2. Instance in which the assertion occurs
3. Module definition containing the assertion
4. Assertion directive3:

a. assert
b. check
c. assume
d. cover
e. etc as necessary by assertion updates in sv-ac

5. Assertion source information
file, line and column where assertion defined

6. Assertion clocking domain/expression4
Static information can be obtained directly from an svaAssertID without requiring any
assertion attempts to be started or completed.

typedef struct t_vpi_source_info {
 PLI_BYTE* *fileName;

PLI_INT32 startLine;
PLI_INT32 startColumn;
PLI_INT32 endLine;
PLI_INT32 endColumn;

} s_vpi_source_info, *p_vpi_source_info;
typedef struct t_vpi_property_info {
 PLI_BYTE8 *name; /* name of property */
 vpiHandle instance; /* instance containing property */
 vpiHandle module; /* module containing assertion */
 vpiHandle clock; /* clocking expression */
 PLI_INT32 directive; /* vpiAssume, … */

3 Exact directives will have to be adjusted as per developments in the sv-ac committee
4 Specific clocking domain info will have to be adjusted as per developments in the sv-ac committee

 Page 4 of 8

System Verilog Assertion API-v0.3.doc Version 0.3

 s_vpi_source_info sourceInfo;
} s_vpi_property_info, *p_vpi_property_info;
int vpi_get_property_info(assert_handle, p_vpi_property_info);

This call is used to obtain all the static information associated with an assertion. Note: a
single call returns all the information for efficiency reasons, as most clients will require
most of the data; for efficiency one roundtrip through the API is better than multiple
roundtrips. The inputs are a valid handle to an assertion and a pointer to an existing
s_vpi_property_info datastructure. On success the function returns TRUE and the
s_vpi_property_info datastructure will be filled in as appropriate. On failure, the function
returns FALSE and the contents of the property info datastructure are unpredictable.

3.2.1 Additional static information
There are additional items that could be obtained statically from assertion, including:

1. Structure of assertion
2. Set of HDL variables used by assertion
3. Set of HDL expressions used by assertion

No proposal for these items.

4 Dynamic Information

4.1 Placing assertion “system” callbacks
Use vpi_register_cb(), setting the cb_rtn element to the function to be invoked and the
reason element of the s_cb_data structure to one of the following:

1. cbPropertySysInitialized
Occurs after system has initialized. No assertion specific actions can be performed
until after this callback occurs. Note that the property system may initialize before
or after cbStartOfSimulation

2. cbPropertySysStart
Assertion system has become active and will begin processing property attempts.
Will always occur after cbPropertySysInitialized. Note that by default the
property system will be “started” on simulation startup, but it is possible for a user
to delay this with the appropriate use of property system control actions.

3. cbPropertySysStop
Assertion system has been temporarily suspended. While stopped no property
attempts will be processed and no property related callbacks will occur. The
property system may be stopped and resumed an arbitrary number of times during
a single simulation run.

4. cbPropertySysEnd
Occurs when all assertions have completed and no new attempts will start. Once
this callback occurs no more property related callbacks will occur and property
related actions will have no further effect. Typically occurs after the end of
simulation.

5. cbPropertySysReset
Occurs when the assertion system is reset, eg due to a system control action

 Page 5 of 8

System Verilog Assertion API-v0.3.doc Version 0.3

The callback routine invoked follows the normal vpi callback prototype and is passed a
s_cb_data containing the callback reason and any user data provided to the
vpi_register_cb() call.

4.2 Placing assertions callbacks
Use vpi_register_property_cb()5, whose prototype is as follows:

vpiHandle vpi_register_property_cb(
 vpiHandle, /* handle to property */
 PLI_INT32 event, /* event for which callbacks needed */
 PLI_INT32 (*cb_rtn)(/* callback function */
 PLI_INT32 event,
 vpiHandle property,
 p_vpi_attempt_info info,
 PLI_BYTE8 *userData),
 PLI_BYTE8 *user_data /* user data to be supplied to cb */
);
typedef struct t_vpi_property_step_info {
 PLI_INT32 matched_expression_count;
 vpiHandle *matched_exprs; /* array of expressions */
 p_vpi_source_info *exprs_source_info; /* array of source info */
 PLI_INT32 stateFrom, stateTo; /* identify transition */
} s_vpi_property_step_info, *p_vpi_property_step_info;
typedef struct t_vpi_attempt_info {
 union {
 vpiHandle failExpr;
 p_vpi_property_step_info step;
 } detail;
 s_vpi_time attemptTime,
} s_vpi_attempt_info, *p_vpi_attempt_info;

Where event is any of the following:

1. cbPropertyStart
An assertion attempt has started. For most assertions one attempt will start each
and every clock tick

2. cbPropertySuccess
When an assertion attempt reaches a success state

3. cbPropertyFailure
When an assertion attempt fails to reach a success state

4. cbPropertyStepSucess
progress of one “thread” along an attempt. Note that by default step callbacks are
not enabled on any properties. Note also that step callbacks are enabled on a per-
property/per-attempt basis, rather than on a per-property basis.

5. cbPropertyStepFailure
failure to progress along one “thread” along an attempt. Same notes as per
cbPropertyStepSuccess

6. cbPropertyDisable
Whenever the assertion is disabled (eg as a result of a control action)

5 NOTE can’t just use vpi_register_cb because the prototype of the callback function is different

 Page 6 of 8

System Verilog Assertion API-v0.3.doc Version 0.3

7. cbPropertyEnable
Whenever the assertion is enabled

8. cbPropertyReset
Whenever the assertion is reset

9. cbPropertyKill
When an attempt is killed (eg as a result of a control action)

These callbacks are specific to a given assertion; placing such a callback on one assertion
will not cause the callback to trigger on an event occurring on a different assertion. If the
callback is successfully placed a handle to the callback will be returned. This handle can
be used to remove the callback via vpi_remove_cb(). If there were errors on placing the
callback a NULL handle will be returned. As with all other calls, invoking this function
with invalid arguments will have unpredictable effects.
Once the callback is placed the user-supplied function will be called each time the
specified event occurs on the given property. The callback will continue to be called
whenever the event occurs until the callback is removed.
The callback function will be supplied the following arguments:

the event that caused the callback,
the handle for the assertion,
a pointer to an attempt info structure
a reference to the user data supplied when the callback was placed.

The attempt info structure contains details relevant to the specific event that occurred:
a. on disable, enable, reset and kill events the info field absent (a NULL pointer is

given as the value of info
b. on start and success events, only the attempt time field is valid
c. on a failure event, the attempt time and detail.failExpr are valid
d. on a step callback, the attempt time and detail.step elements are valid.

On a step callback, the detail describes the set of expressions matched in satisfying a step
along the assertion, together with the corresponding source references. In addition the
step also identifies source and destination “states” to uniquely identify the path being
taken through the assertion. State ids are just integers, with 0 identifying the origin state,
1 identifying an accepting state, and any other number representing some intermediate
point in the assertion. It is possible for the number of expressions in a step to be 0, in
which case this represents an unconditional transition. In the case of a failing transition,
the information provided is just as for a successful transition, but the last expression in
the array will represent the expression at which the transition failed. Note that in a failing
transition there will always be at least one element in the expression array.
Note that placing a step callback will result in the same callback function being invoked
for both success and failure steps.

5 Control Functions

5.1 Assertion System control
Use vpi_control(), with one of the following operators and no other arguments:

1. vpiPropertySysReset
discard all attempts in progress for all assertions and restore the entire
assertion system to its initial state.

 Page 7 of 8

System Verilog Assertion API-v0.3.doc Version 0.3

 Page 8 of 8

2. vpiPropertySysStop
consider all attempts in progress as unterminated and disable any further
assertions from being started.

3. vpiPropertySysStart
restart the property system after it was stopped (eg due to
vpiPropertySysStop). Once started, attempts will resume on all properties.

4. vpiPropertySysEnd
discard all attempts in progress and disable any further assertions from
starting.

5.2 Assertion control
Use vpi_control() with one of the following operators:

1. For all the following, the second argument must be a valid property handle.
a. vpiPropertyReset

discards all current attempts in progress for this assertion and resets this
assertion to its initial state

b. vpiPropertyDisable
disables the starting of any new attempts for this assertion. Has no effect on
any existing attempts. No effect if assertion already disabled. Note that by
default all assertions are enabled.

c. vpiPropertyEnable
Enables starting new attempts for this assertion. No effect if assertion already
enabled. No effect on any existing attempts.

2. For all the following, the second argument must be a valid property handle and
the third argument must be an attempt start time (as a pointer to a correctly
initialized s_vpi_time structure)
a. vpiPropertyKill

Discards the given attempts but leaves assertion enabled and does not reset
any state used by this assertion (eg past() sampling)

b. vpiPropertyDisableStep
Disables step callbacks for this assertion. No effect if stepping not enabled or
already disabled

3. For the following, the second argument must be a valid property handle, the third
argument must be an attempt start time (as a pointer to a correctly initialized
s_vpi_time structure) and the fourth argument must be a “step control” constant.
Note that in this release, the only step control constant available is
vpiPropertyClockSteps, indicating callbacks on a per assertion/clock-tick basis.
a. vpiPropertyEnableStep

Enables step callbacks to occur for this property attempt. Note that by default
stepping is disabled for all assertions. This call has no effect if stepping
already enabled for this property+attempt, other than possibly changing the
stepping mode for the attempt iff the attempt has not occurred yet. The
stepping mode of any particular attempt cannot be modified after the assertion
attempt in question has started.

	Requirements
	Naming conventions

	Extensions to VPI enumerations
	Static Information
	Obtaining assertion handles
	Obtaining static assertion information
	Additional static information

	Dynamic Information
	Placing assertion “system” callbacks
	Placing assertions callbacks

	Control Functions
	Assertion System control
	Assertion control

