
EXAMPLE

9

0.1 Compiled IP Directory Substructure

This section describes the substructure of a compiled IP directory. This directory seems to be rather
exhaustive, but there are only a few items that are mandatory. Many information is only required for a
certain set of compiled simulation IP (e.g. Full Chip Simulation models) or in cases ... Mandatory
information is:

• the model’s source code

• the model’s object code

• the build environment; at a minimum a Makefile that is specific for the type of compiled IP

...

Notes:

Path name Description ???
<parent>/ Parent directory

Model Source Code

source/ Model Source Directory

*.c, *.cpp, *.h
C (*.c) or C++ (*.cpp) source and local header files;
can be grouped within a set of subdirectories).

include/ Model Include Directory

*.h
Include files describing the external interface of the
compiled IP.

Model Object Code

<platform>/
Platform specific object code and data (identifier must
be compliant with the list defined in ...)

*.o Object code

*.a, *.lib Archives and static libraries needed for static linking

*.so, *.sl, *.dll Shared libraries

*.tab PLI table file; must be provided for PLI and ...

Build Environment

makefile.<csip_type>
Standalone Makefile used to compile the source files
into the appropriate type of object code.

... ...

Regression Test Suite

... ...

Simulator Integration

iftype ...

*.v, *.V
Verilog wrapper for the compiled IP
This item is optional. ...

config/
Configuration files needed by the simulator interface
...

caf.<simulator>
Simulator specific arguments to ...
...

Table 1: Directory Structure



EXAMPLE

10

1. Model specific source code must be stored in the source directory, unless it is ...

2. Every source directory (source, ...) might have a module substructure to denote and structure
the various modules or utilities contained. Also, third party software might impose its own, specific
substructure within a module directory. It is recommended to provide an appropriate build script for
each module within these directories.

3. Header files shall be stored in the include directory if and only if they are required for the
integration of the corresponding IP within other modules. Files that are only referred from files
within this block must reside in conjunction with their respective source files in the source
directory. This minimizes the externally visible information and clearly defines the external
interface of a component. As such, it is in line with object oriented (OO) principles of information
hiding and reduces possible namespace problems or the chance for clashes in header file naming.

4. The include directory must not have a substructure; it must be empty, if there a no header files
required to define the interface. The files stored in this directory can be copies of include files in the
source directory, in this case the Makefile must take care of copying them into the include
directory. This still allows modularity below the source directory.

5. The only purpose of the Build Environment is to compile the C/C++ code intended to integrate into
the simulation. It is not related to the code required to integrate this code into the simulation. ...

6. The Build Environment might consist of a single Makefile; the ... The name of the Makefile is
dependent on the type of compiled simulation IP:

a.

b.

c.


