
Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2
Section 1
DirectC C layer

1.1 Overview

This section describes the C layer of the DirectC Interface and applies to calls from either direction: C func-
tions called from SystemVerilog code and exported SystemVerilog functions called from C code.

The SystemVerilog DirectC Interface supports only SystemVerilog data types, which are the sole data types
that can cross the boundary between SystemVerilog and a foreign language in either direction (i.e., when a for-
eign function is called from SystemVerilog code or an exported SystemVerilog function is called from a for-
eign code). On the other hand, the data types used in C code shall be C types; hence, the duality of types.

A value that is passed through the DirectC Interface is specified in SystemVerilog code as a value of System-
Verilog type, while the same value shall be specified in C code as a value of C type. Therefore, passing a value
through the DirectC Interface takes a pair of matching type definitions: the SystemVerilog definition and C
definition.

It is the user’s responsibility to provide these matching definitions. A tool (such as the SystemVerilog com-
piler) can facilitate this by generating C type definitions for the SystemVerilog definitions used in the DirectC
interface for external and exported functions.

Some SystemVerilog types are directly compatible with C types; defining a matching C type for them is
straightforward. There are, however, SystemVerilog-specific types, namely packed types (arrays, structures,
and unions), 2-state or 4-state, which have no natural correspondence in C. DirectC does not require any par-
ticular representation of such types and does not impose any restrictions on SystemVerilog implementation.
This allows implementors to chose the layout and representation of packed types that best suits their simula-
tion performance.

While not specifying the actual representation of packed types, the C layer of DirectC defines the canonical
representation of packed 2-state and 4-state arrays. This canonical representation is actually based on Verilog
legacy Programming Language Interface’s (PLI’s) avalue/bvalue representation of 4-state vectors.
Library functions provide the translation between the representation used in a simulator and the canonical rep-
resentation of packed arrays. There are also functions for bit selects and limited part selects for packed arrays,
which do not require the use of the canonical representation.

The C layer of DirectC basically uses normalized ranges. Normalized ranges mean [n-1:0] indexing for the
packed part (packed arrays are restricted to one dimension) and [0:n-1] indexing for a dimension in the
unpacked part of an array. Normalized ranges are used for the canonical representation of packed arrays and
for System Verilog arrays, with the exception of the actual arguments for open arrays. The elements of an open
array can be accessed in C by using the same range of indices as defined in System Verilog for the actual argu-
ment for that open array and the same indexing as in SystemVerilog.

Formal arguments in SystemVerilog can be specified as open arrays solely in the external declarations;
exported SystemVerilog functions can not have formal arguments specified as open arrays. A formal argument
is an open array when a range of one or more of its dimensions is unspecified (denoted in SystemVerilog by
using square brackets ([])). This is solely a relaxation of the argument-matching rules. An actual argument
shall match the formal one regardless of the range(s) for its corresponding dimension(s), which facilitates writ-
ing a more general C code that can handle SystemVerilog arrays of different sizes.

Function arguments are generally passed by some form of a reference or by value. All formal arguments,
except open arrays, are passed by direct reference or value, and, therefore, are directly accessible in C code.
Only small values of SystemVerilog input arguments (see section 1.7.7) are passed by value. Formal argu-
ments declared in SystemVerilog as open arrays are passed by a handle (type svHandle) and are accessible
via library functions. Array-querying functions are provided for open arrays.

Depending on the data types used for the external (or exported) functions, either binary level or C-source level
compatibility is granted. Binary level is granted for all data types that do not mix SystemVerilog packed and
Copyright 2002 Accellera. All rights reserved. 1

dwarmke
"a foreign code" should be "foreign code"

dwarmke
"chose" should be "choose"

dwarmke
"the" should be "a"

dwarmke
Suggest swapping this "Formal arguments..." paragraph with the paragraph above. That way open arrays will be defined before they are used. (Since the above paragraph currently forward references the concept)

dwarmke
Why "packed arrays and System Verilog arrays"? Do you really mean "both packed and unpacked arrays"? packed arrays are a kind of System Verilog array, so somehow this sentence isn't making sense.

dwarmke
The Overview section should explain the terms "extern function" and "exported function" early on (maybe even in the first paragraph, which is a related topic). The terms are referenced pretty often with no definition given. Most of the section is dedicated to type handling, array issues, and argument issues. If we want the overview at this level of detail, we should also cover function attribute types such as context and pure. We should also mention important limitations such as the prohibition on consuming time within a callee function.

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001
unpacked types and for open arrays which can have both packed and unpacked parts. If a data type that mixes
SystemVerilog packed and unpacked types is used, then the C code needs to be re-compiled using the imple-
mentation -dependent definitions provided by the vendor.

The C layer of the DirectC Interface provides two include files. The main include file, svc.h, is implementa-
tion-independent and defines the canonical representation, all basic types, and all interface functions. The sec-
ond include file, svc_src.h, defines only the actual representation of packed arrays and, hence, its contents
are implementation-dependent. Applications that do not need to include this file are binary-level compatible.

1.2 Naming conventions

All names introduced by this interface shall conform to the following conventions.

— All names defined in this interface are prefixed with sv.

— Function and type names start with sv, followed by initially capitalized words with no separators, e.g.,
svBitPackedArrRef.

— Names of symbolic constants start with sv_, e.g., sv_x.

— Names of macro definitions start with sv_, followed by all upper-case words separated by a dash (-), e.g.,
sv_CANONICAL_SIZE.

1.3 Portability

Depending on the data types used for the external (or exported) functions, the C code can be binary-level or
source-level compatible. Applications that do not use SystemVerilog packed types are always binary compati-
ble. Applications that don’t mix SystemVerilog packed and unpacked types in the same data type can be writ-
ten to guarantee the binary compatibility. Open arrays with both packed and unpacked parts are also binary
compatible.

The values of SystemVerilog packed types can be accessed via interface functions using the canonical repre-
sentation of 2-state and 4-state packed arrays, or directly through pointers using the implementation represen-
tation. The former mode assures binary level compatibility; the latter one allows for tool-specific,
performance-oriented tuning of an application, though it also requires recompiling with the implementation-
dependent definitions provided by the vendor and shipped with the simulator.

1.3.1 Binary compatibility

Binary compatibility means an application compiled for a given platform shall work with every SystemVerilog
simulator on that platform.

1.3.2 Source-level compatibility

Source-level compatibility means an application needs to be re-compiled for each SystemVerilog simulator and
implementation-specific definitions shall be required for the compilation.

1.4 Include files

The C layer of the SystemVerilog DirectC Interface defines two include files corresponding to these two levels
of compatibility: svc.h and svc_src.h.

Binary compatibility of an application depends on the data types of the values passed through the interface. If
all corresponding type definitions can be written in C without the need to include an svc_src.h file, then an
application is binary compatible. If an svc_src.h file is required, then the application is not binary compat-
ible and needs to be recompiled for each simulator of choice.
2 Copyright 2002 Accellera. All rights reserved.

dwarmke
Here I prefer "SV_CANONICAL_SIZE" over "sv_CANONICAL_SIZE".

dwarmke
"the binary compatability" should be "binary compatability"

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2
Applications that pass solely C-compatible data types or standalone packed arrays (both 2-state and 4-state)
require only an svc.h file and, therefore, are binary compatible with all simulators. Applications that use
complex data types which are constructed of both SystemVerilog packed arrays and C-compatible types, also
require an svc_src.h file and, therefore, are not be binary compatible with all simulators. They are source-
level compatible, however.

1.4.1 svc.h include file

Applications which use the DirectC interface with C code usually need this main include file. The include file
svc.h defines the types for canonical representation of 2-state (bit) and 4-state (logic) values and passing
references to SystemVerilog data objects, provides function headers, and defines a number of helper macros
and constants.

This document fully defines the svc.h file. The content of svc.h does not depend on any particular imple-
mentation or platform; all simulators shall use the same file. For more details on svc.h, see section 1.8.1.

Applications which only use svc.h shall be binary-compatible with all SystemVerilog simulators.

1.4.2 svc_src.h include file

This is an auxiliary include file. svc_src.h defines data structures for implementation-specific representa-
tion of 2-state and 4-state SystemVerilog packed arrays. The interface specifies the contents of this file, i.e.,
what symbols are defined. The actual definitions of those symbols, however, are implementation-specific and
shall be provided by the vendors.

Applications that require an svc_src.h file are only source-level compatible, i.e., they need to be compiled
with the version of svc_src.h provided for a particular implementation of SystemVerilog.

1.5 Semantic constraints

This section defines the semantic constraints of the DirectC-C layer interface.

1.5.1 Types of formal arguments

The principle “What You Specify Is What You Get” guarantees the types of formal arguments of external func-
tions — an actual argument is guaranteed to be of the type specified for the formal argument, with the excep-
tion of open arrays (for which unspecified ranges are statically unknown). Formal arguments, other than open
arrays, are fully defined by external declaration; they shall have ranges of packed or unpacked arrays exactly
as specified in the external declaration. Only the declaration site (SystemVerilog) of the external function is
relevant for such formal arguments.

The Formal arguments defined as open arrays have the size and ranges of the actual argument, i.e., have the
ranges of packed or unpacked arrays exactly as that of the actual argument. The unsized ranges of open arrays
are determined at a call site; the rest of type information is specified at the external declaration.

So, if a formal argument is declared as bit [15:8] b [], then it is the external declaration which specifies
the formal argument is an unpacked array of packed bit array with bounds 15 to 8, while the actual argument
used at a particular call site defines the bounds for the unpacked part for that call.

1.5.2 Input arguments

The formal arguments specified in SystemVerilog as input shall not be modified.

1.5.3 Output arguments

The initial values of formal arguments specified in SystemVerilog as output are undetermined and imple-
mentation-dependent.
Copyright 2002 Accellera. All rights reserved. 3

dwarmke
"The Formal arguments" should be "Formal arguments"

dwarmke
The wording in this "The principle..." paragraph is confusing to me. A more natural English rendtion would go something like, "External functions show up in two contexts on the SystemVerilog side of the interface: declarative and call-site. Formal argument types are completely governed by extern function declaration sites. If the actual argument types used at the call sites do not precisely match the formal arguments of the declaration, the system will coerce the actual types to match the formal types. This is the same behavior that already exists for Verilog-to-Verilog function calls."Another point about this entire section is that it only mentions "external functions". I don't believe this section applies to exported functions, but I haven't seen the SV-side-interface in a long time. If there are separate declaration and definition sites for exported functions, then perhaps the same logic should apply to exported functions. In any case I think we need a section that discusses a few basics about prototypes and formal argument types for exported functions called in C code. This might seem obvious, but I think we should mention for completeness that the user will be responsible for properly #including function prototypes for exported functions that are defined in SystemVerilog. We could also give the hint that friendly compilers could offer automatic generation of such function prototypes when compiling exported function declarations.For the time being I think the title of the section should reflect that only external functions are treated. Perhaps call it "Formal argument types for external functions"

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001
1.5.4 Value changes for output and inout arguments

The SystemVerilog simulator is responsible for handling value changes for output and inout arguments.
Such changes shall be detected and handled after the control returns from C code to SystemVerilog code.

1.5.5 context and non-context functions

Some PLI and VPI functions require that the context of their call is known. It takes a special instrumentation of
their call to provide such context; for example, some variables referring to the “current instance” or “current
task” need to be set. To avoid any unnecessary overhead, external function calls in SystemVerilog code are not
instrumented unless the external function is specified as context in its SystemVerilog external declaration.

For the sake of simulation performance, an external function call shall not block SystemVerilog compiler opti-
mizations. An external function not specified as context shall not access any data objects from SystemVer-
ilog other then its actual arguments. Only the actual arguments can be affected (read or written) by its call.
Therefore, a call of non-context function is not a barrier for optimizations. A context function, however,
can access (read or write) any SystemVerilog data objects by calling PLI/VPI; therefore, a call to a context
function is a barrier for SystemVerilog compiler optimizations.

Only the calls of context functions are properly instrumented and cause conservative optimizations; there-
fore, only those functions can safely call all functions from other APIs, including PLI and VPI functions or
exported SystemVerilog functions. For functions not specified as context, the effects of calling PLI, VPI, or
SystemVerilog functions can be unpredictable and such calls can crash if the callee requires a context that has
not been properly set.

1.5.6 pure functions

Only non-void functions with no output or inout arguments can be specified as pure. Functions specified
as pure in their corresponding SystemVerilog external declarations shall have no side effects; their results
need to depend solely on the values of their input arguments. Calls to such functions can be removed by Sys-
temVerilog compiler optimizations or replaced with the values previously computed for the same values of the
input arguments.

Specifically, a pure function is assumed not to directly or indirectly (i.e., by calling other functions):

— perform any file operations

— read or write anything

— access any persistent data, like global or static variables.

If a pure function does not obey the above restrictions, SystemVerilog compiler optimizations can lead to
unexpected behavior, due to eliminated calls or incorrect results being used.

1.5.7 Memory management

The memory spaces owned and allocated by C code and SystemVerilog code are disjoined. Each side is
responsible for its own allocated memory. Specifically, C code shall not free the memory allocated by System-
Verilog code (or the SystemVerilog compiler) nor expect SystemVerilog code to free the memory allocated by
C code (or the C compiler). This does not exclude scenarios in which C code allocates a block of memory, then
passes a handle (i.e., a pointer) to that block to SystemVerilog code, which in turn calls a C function that
directly (if it is the standard function free) or indirectly frees that block.

NOTE—In this last scenario, a block of memory is allocated and freed in C code, even when the standard functions
malloc and free are called directly from SystemVerilog code.

1.6 Data types

This section defines the data types of the DirectC-C layer interface.
4 Copyright 2002 Accellera. All rights reserved.

dwarmke
"the control" should be "control"

dwarmke
"their call" should be "their call instances" or "their call sites"(?)

dwarmke
"read or write anything" is pretty vague. Perhaps "read or write any operating system objects"?

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2
1.6.1 Limitations

Packed arrays can have an arbitrary number of dimensions; though they are eventually always equivalent to a
one-dimensional packed array and treated as such. If the packed part of an array in the type of a formal argu-
ment in SystemVerilog is specified as multi-dimensional, the SystemVerilog compiler linearizes it. Although
the original ranges are generally preserved for open arrays, if the actual argument has a multidimensional
packed part of the array, the equivalent one-dimensional packed array shall be normalized.

NOTE—The actual argument can have both packed and unpacked parts of an array; either can be multidimensional.

1.6.2 Duality of types: SystemVerilog types vs. C types

A value that crosses the DirectC Interface is specified in SystemVerilog code as a value of SystemVerilog type,
while the same value shall be specified in C code as a value of C type. Therefore, each data type that is passed
through the DirectC Interface requires two matching type definitions: the SystemVerilog definition and C def-
inition.

The user needs to provide such matching definitions. Specifically, for each SystemVerilog type used in the
external declarations or export declarations in SystemVerilog code, the user shall provide the equivalent type
definition in C reflecting the argument passing mode for the particular type of SystemVerilog value and the
direction (input, output, or inout) of the formal SystemVerilog argument. For values passed by refer-
ence, a generic pointer void * can be used (conveniently typedefed) without knowing the actual represen-
tation of the value.

1.6.3 Data representation

DirectC imposes the following additional restrictions on the representation of SystemVerilog data types.

— Representation of packed types is implementation-dependent.

— The layout of the unsized (or open) standalone unpacked arrays is implementation-dependent with the fol-
lowing restriction:

an element of an array shall have the same representation as an individual value of the same type,
except for scalars (bit or logic) and packed arrays.

Hence, an array’s elements, other than scalars or packed arrays, can be accessed via pointers similarly to
doing so for individual values.

— The layout of unpacked arrays, with the exception of actual arguments passed for formal arguments speci-
fied as open arrays, is the same as used by a C compiler; this includes arrays embedded in structures and
any standalone arrays (i.e., those not embedded in any structure).

The natural order of elements for each dimension in the layout of an unpacked array shall be used, i.e.,
elements with lower indices go first. For SystemVerilog range [L:R], the element with SystemVerilog
index min(L,R) has the C index 0 and the element with SystemVerilog index max(L,R) has the C
index abs(L-R).

NOTE—This does not actually impose any restrictions on how unpacked arrays are implemented; it only says an array that
does not satisfy this condition shall not be passed as an actual argument for the formal argument which is a sized array; it
can be passed, however, for unsized (i.e., open) array. Therefore, the correctness of an actual argument might be implemen-
tation-dependent. Nevertheless, an open array provides an implementation-independent solution; this seems to be a reason-
able trade-off.

DirectC also supports the following SystemVerilog data types.

— Basic integer and real data types are represented as defined in SystemVerilog LRM sections 3.3 and 3.4.2;
see also section 1.6.4.

— The layout of unpacked structures is same as used by a C compiler (see SystemVerilog LRM section 3.7).
Copyright 2002 Accellera. All rights reserved. 5

dwarmke
"conveniently typedef'd" should be "conveniently typedef'd in svc.h or svc_src.h" (Otherwise the reader might think we are instructing them on how to write their code :)

dwarmke
"The layout of the unsized..." should be "The layout of unsized..."

dwarmke
"can be accessed with pointers" should be "can be accessed from C code with pointers"

dwarmke
This sentence "DirectC also supports the following SystemVerilog data types." doesn't really fit wit the two bullets that follow. Rather, I would say "The following data representation requirements also apply." Maybe it's not even necessary to have the second bullet, since it is already thoroughly treated in the third bullet item directly above.

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001
1.6.4 Basic types

Table 1-1 on page 6 defines the mapping between the basic SystemVerilog data types and the corresponding C
types. **Revise this xref w/ Stu; also check/revise variable settings, etc.**

The representation of SystemVerilog-specific data types like packed bit and logic arrays is implementa-
tion-dependent and generally transparent to the user. Nevertheless, for the sake of performance, applications
can be tuned for a specific implementation and make use of the actual representation used by that implementa-
tion; such applications shall not be binary compatible, however.

1.6.5 Normalized ranges

Packed arrays are treated as one-dimensional; the unpacked part of an array can have arbitrary number of
dimensions. Normalized ranges mean [n-1:0] indexing for the packed part and [0:n-1] indexing for a
dimension of the unpacked part of an array. Normalized ranges are used for accessing all arguments but open
arrays. The canonical representation of packed arrays also uses normalized ranges.

1.6.6 Mapping between SystemVerilog ranges and normalized ranges

The SystemVerilog ranges for a formal argument specified as an open array are those of the actual argument
for a particular call. Open arrays are accessible, however, by using their original ranges and the same indexing
as in the SystemVerilog code.

For all other types of arguments, i.e., all arguments but open arrays, the SystemVerilog ranges are defined in
the corresponding SystemVerilog external or export declaration. Normalized ranges are used for accessing
such arguments in C code. The mapping between SystemVerilog ranges and normalized ranges is defined as
follows.

1) If a packed part of an array has more than one dimension, it is linearized as specified by the
equivalence of packed types.

2) A packed array of range [L:R] is normalized as [abs(L-R):0]; its most significant bit has a
normalized index abs(L-R) and its least significant bit has a normalized index 0.

3) The natural order of elements for each dimension in the layout of an unpacked array shall be used, i.e.,
elements with lower indices go first. For SystemVerilog range [L:R], the element with
SystemVerilog index min(L,R) has the C index 0 and the element with SystemVerilog index
max(L,R) has the C index abs(L-R).

Table 1-1: Mapping data types

SystemVerilog type C type

char char

byte char

shortint short int

int int

longint long long

real double

shortreal float

handle void*

string char*
6 Copyright 2002 Accellera. All rights reserved.

dwarmke
Could there be a cross-reference to a section that defines the "equivalence of packed types"?

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2
NOTE—The above range mapping from SystemVerilog to C applies to calls made in both directions, i.e., SystemVerilog-
calls to C and C-calls to SystemVerilog.

For example, if logic [2:3][1:3][2:0] b [1:10] is used in SystemVerilog, it needs to be defined
in C as if it were declared in SystemVerilog in the following normalized form: logic [17:0] b [0:9].

1.6.7 Canonical representation of packed arrays

The DirectC interface defines the canonical representation of packed 2-state (type svBitVec32) and 4-state
arrays (type svLogicVec32). This canonical representation is actually based on the Verilog legacy PLI’s
avalue/bvalue representation of 4-state vectors. Library functions provide the translation between the rep-
resentation used in a simulator and the canonical representation of packed arrays.

A packed array is represented as an array of one or more elements (of type svBitVec32 for 2-state values
and svLogicVec32 for 4-state values), each element representing a group of 32 bits.The first element of an
array contains the 32 least-significant bits, next element contains the 32 more-significant bits, and so on. The
last element may contain a number of unused bits. The contents of these unused bits is undetermined and the
user is responsible for the masking or the sign extension (depending on the sign) for the unused bits.

Table 1-2 on page 7 defines the encoding used for a packed logic array represented as svLogicVec32.

1.7 Argument passing modes

This section defines the ways to pass arguments in the DirectC-C layer interface.

1.7.1 Overview

The function arguments are generally passed by some form of a reference, with the exception of small values
of SystemVerilog input arguments (see section 1.7.7), which are passed by value. Similarly, the function result,
which is restricted to small values, is passed by value, i.e., directly returned.

The actual arguments passed by reference typically are passed without changing their representation from the
one used by a simulator. There is no inherent copying of arguments (other than any resulting from coercing).

The access to packed arrays via the canonical representation involves copying arguments and does incur some
overhead, however. Alternatively, for the sake of performance the application can be tuned for a particular tool
and access the packed arrays directly through pointers using implementation representation, which could com-
promise binary compatibility.

NOTE—This provides some degree of flexibility and allows the user to control the trade-off of performance vs. portability.

Formal arguments, except open arrays, are passed by direct reference or value, and, therefore, are directly
accessible in C code. Formal arguments declared in SystemVerilog as open arrays are passed by a handle (type
svHandle) and are accessible via library functions.

Table 1-2: Encoding of bits in svLogicVec32

c d Value

0 0 0

0 1 1

1 0 z

1 1 x
Copyright 2002 Accellera. All rights reserved. 7

dwarmke
I think we should include two unpacked dimensions in this example. This will make it clear that the unpacked dimensions are not linearized. Change to "logic [2:3][1:3][2:0] b [1:10][0:31]" and normalized form: "logic [17:0] b [0:9][31:0]" (Note: Andrzej should verify that the 31:0 is in the right order)Point 3) above seems to indicate that the C type corresponding to a N-dimensional unpacked array should itself by a C array of N dimensions. This could be clarified by further extending this example to show an example of actual C code corresponding to such an argument. The main point is that the C code should look something like sv_LOGIC_PACKED_ARRAY(18, b) [10][32];Note the double-dimensioned array range specifier.Maybe Example 2 (Sec 1.8.4) could be extended to include two unpacked dimensions, and then it could simply be cross-referenced here?

dwarmke
"The function arguments" should be "External function arguments"

dwarmke
"The actual arguments" should be "Actual arguments"

dwarmke
"The access" should be "Access"

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001
1.7.2 Calling SystemVerilog functions from C

There is no difference in argument passing between calls from SystemVerilog to C and calls from C to System-
Verilog. Functions exported from SystemVerilog can not have open arrays as arguments. Otherwise, the same
types of formal arguments can be declared in SystemVerilog for exported functions and external functions. A
function exported from SystemVerilog shall have the same function header in C as the external function with
the same function result type and same formal argument list. In the case of arguments passed by reference, an
actual argument to SystemVerilog function called from C shall be allocated using the same layout of data as
SystemVerilog uses for that type of argument; the caller is responsible for the allocation.

1.7.3 Argument passing by value

Only small values of formal input arguments (see section 1.7.7) are passed by value. Function results are also
directly passed by value. The user needs to provide the C-type equivalent to the SystemVerilog type of a for-
mal argument if an argument is passed by value.

1.7.4 Argument passing by reference

For arguments passed by reference, their original simulator-defined representation shall be used and a refer-
ence (a pointer) to the actual data object is passed. The actual argument is usually allocated by a caller. The
caller can also pass over a reference to the object already allocated somewhere else, for example, its own for-
mal argument passed by reference.

If an argument of type T is passed by reference, the formal argument shall be of the type T*. However, packed
arrays can be also passed using generic pointers void* (typedefed accordingly to svBitPackedAr-
rRef or svLogicPackedArrRef).

1.7.5 Allocating actual arguments for SystemVerilog-specific types

This is relevant only for calling (exported) SystemVerilog functions from C code. The caller is responsible for
allocating the actual arguments that are passed by reference.

Statical allocation requires the knowledge of the relevant data type. If such a type involves SystemVerilog
packed arrays, their actual representation needs to be known to C code; thus, the file svc_src.h needs to be
included, which makes the C code implementation-dependent and not binary compatible.

Sometimes the binary compatibility can be achieved by using dynamic allocation functions. The functions
svSizeOfLogicPackedArr() and svSizeOfBitPackedArr() provide the size of the actual repre-
sentation of a packed array, which can be used for the dynamic allocation of an actual argument without com-
promising the portability. Such a technique does not work if a packed array is a part of another type.

1.7.6 Argument passing by sv_handle - open arrays

Arguments specified as open (unsized) arrays are always passed by a handle, regardless of direction of the Sys-
temVerilog formal argument, and are accessible via library functions. The actual implementation of a handle is
simulator-specific and transparent to the user. A handle is represented by the generic pointer void * (type-
defed to sv_handle). Arguments passed by handle shall always have a const qualifier, because the user
shall not modify the contents of a handle.

1.7.7 Input arguments

Input arguments shall always have a const qualifier.

Input arguments, with the exception of open arrays, are passed by value or by reference, depending on the size.
‘Small’ values of formal input arguments are passed by value. The following data types are considered small:

— char, byte, shortint, int, longint, real, shortreal

— handle, string
8 Copyright 2002 Accellera. All rights reserved.

dwarmke
A couple more points could be made in this section (Calling SystemVerilog functions from C):1) If a C function needs to call an exported SV function that has arguments of native SV types (e.g. logic, packed array) then it will necessarily have to use "svc_src.h". Thus such C code is not guaranteed binary compatibility.2) The C programmer needs to be careful to understand when an exported SV function is expecting arguments to be passed by reference rather than value. (Cross-ref the table or paragraph showing which types are passed by reference and which are passed by value.) If the rules are not followed, unexpected (and possibly disastrous) behavior will result.NOTE from DOUG: Actually after I read the following sections 1.7.3-1.7.5, I realize the above points have already been covered. Perhaps my additional observations here could be inserted into the appropriate sections.

dwarmke
"of the type" should be "of type"

dwarmke
"Statical allocation" should be "Static allocation"

dwarmke
"the knowledge" should be "knowledge"

dwarmke
"the binary" should be "binary"

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2
— bit (i.e., 2-state) packed arrays up to 32-bit (canonical representation shall be used, like for a function
result).

Input arguments of other types are passed by reference.

If an input argument is a packed bit array passed by value, its value shall be represented using the canonical
representation svBitVec32. If the size is smaller than 32 bits, the most significant bits are unused and their
contents are undetermined. The user is responsible for the masking or the sign extension, depending on the
sign, for the unused bits.

1.7.8 Inout and output arguments

Inout and output arguments, with the exception of open arrays, are always passed by reference.

1.7.9 Function result

Types of a function result are restricted to the following SystemVerilog data types (see Table 1-1 on page 6 for
the corresponding C type):

— char, byte, shortint, int, longint, real, shortreal, handle, string

— packed bit arrays up to 32 bits.

If the function result type is a packed bit array, the returned value shall be represented using the canonical
representation svBitVec32. If a packed bit array is smaller than 32 bits, the most significant bits are
unused and their contents are undetermined.

1.8 Include files

The C layer of DirectC Interface defines two include files. The main include file, svc.h, is implementation-
independent and defines the canonical representation, all basic types, and all interface functions. The second
include file, svc_src.h, defines only the actual representation of packed arrays and, hence, is implementa-
tion-dependent. Both files are shown in Annex A.

Applications which do not need to include svc_src.h are binary-level compatible.

1.8.1 Binary compatibility include file svc.h

Applications which use the DirectC interface with C code usually need this main include file. The include file
svc.h defines the types for canonical representation of 2-state (bit) and 4-state (logic) values and passing
references to SystemVerilog data objects, provides function headers, and defines a number of helper macros
and constants.

This document fully defines the svc.h file. The content of svc.h does not depend on any particular imple-
mentation or platform; all simulators shall use the same file. The following subsections (and section 1.9.3.1)
detail the contents of the svc.h file.

1.8.1.1 Scalars of type bit and logic

/* canonical representation */

#define sv_0 0
#define sv_1 1
#define sv_z 2 /* representation of 4-st scalar z */
#define sv_x 3 /* representation of 4-st scalar x */

/* common type for ’bit’ and ’logic’ scalars. */
typedef unsigned char svScalar;
Copyright 2002 Accellera. All rights reserved. 9

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001
typedef svScalar svBit; /* scalar */
typedef svScalar svLogic; /* scalar */

1.8.1.2 Canonical representation of packed arrays

/* 2-state and 4-state vectors, modelled upon PLI’s avalue/bvalue */
#define sv_CANONICAL_SIZE(WIDTH) (((WIDTH)+31)>>5)

typedef unsigned int
svBitVec32;/* (a chunk of) packed bit array */

typedef struct { unsigned int c; unsigned int d;} /* as in VCS */
svLogicVec32; /* (a chunk of) packed logic array */

/* Since the contents of the unused bits is undetermined, the following macros
may be handy */
#define sv_MASK(N) (~(-1<<(N)))

#define sv_GET_UNSIGNED_BITS(VALUE,N)\
((N)==32?(VALUE):((VALUE)&sv_MASK(N)))

#define sv_GET_SIGNED_BITS(VALUE,N)\
((N)==32?(VALUE):\
(((VALUE)&(1<<((N)1)))?((VALUE)|~sv_MASK(N)):((VALUE)&sv_MASK(N))))

1.8.1.3 Implementation-dependent representation

/* a handle to a generic object (actually, unsized array) */
typedef void* svHandle;

/* reference to a standalone packed array */
typedef void* svBitPackedArrRef;
typedef void* svLogicPackedArrRef;

/* total size in bytes of the simulator’s representation of a packed array */
/* width in bits */
int svSizeOfLogicPackedArr(int width);
int svSizeOfBitPackedArr(int width);

1.8.1.4 Translation between the actual representation and the canonical representation

/* functions for translation between the representation actually used by
simulator and the canonical representation */

/* s=source, d=destination, w=width */

/* actual <-- canonical */
void svPutBitVec32 (svBitPackedArrRef d, const svBitVec32* s, int w);
void svPutLogicVec32 (svLogicPackedArrRef d, const svLogicVec32* s, int w);

/* canonical <-- actual */
void svGetBitVec32 (svBitVec32* d, const svBitPackedArrRef s, int w);
void svGetLogicVec32 (svLogicVec32* d, const svLogicPackedArrRef s, int w);

The above functions copy the whole array in either direction. The user is responsible for providing the correct
width and for allocating an array in the canonical representation. The contents of the unused bits is undeter-
mined.

Although the put/get functionality provided for bit and logic packed arrays is sufficient, yet basic, it
requires unnecessary copying of the whole packed array when perhaps only some bits are needed. For the sake
10 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2
of the convenience and improved performance, bit selects and limited (up to 32 bits) part selects are also sup-
ported, see section 1.9.3.1 and section 1.9.3.2.

1.8.2 Source-level compatibility include file svc_src.h

Only two symbols are defined: the macros that allow declaring variables to represent the SystemVerilog
packed arrays of type bit or logic.

#define sv_BIT_PACKED_ARRAY(WIDTH,NAME) ...
#define sv_LOGIC_PACKED_ARRAY(WIDTH,NAME) ...

The actual definitions are implementation-specific. For example, VCS might define the later macro as follows.

#define sv_LOGIC_PACKED_ARRAY(WIDTH,NAME) \
svLogicVec32 NAME [sv_CANONICAL_SIZE(WIDTH)]

1.8.3 Example 1 - binary compatible application

SystemVerilog:

typedef struct {int a; int b;} pair;
extern void foo(input int i1, pair i2, output logic [63:0] o3);

export extern $root.exported_sv_func; // whatever is the syntax ...

function void exported_sv_func(input int i, output int o [0:7]);
begin ... end endfunction

C:

#include "svc.h"

typedef struct {int a; int b;} pair;

extern void exported_sv_func(int, int *); /* imported from SystemVerilog */

void foo(const int i1, const pair *i2, svLogicPackedArrRef o3)
{

svLogicVec32 arr[sv_CANONICAL_SIZE(64)]; /* 2 chunks needed */
int tab[8];

printf("%d\n", i1);
arr[1].c = i2->a;
arr[1].d = 0;
arr[2].c = i2->b;
arr[2].d = 0;
svPutLogicVec32 (o3, arr, 64);

/* call SystemVerilog */
exported_sv_func(i1, tab); /* tab passed by reference */
...

}

1.8.4 Example 2 - source level compatible application

SystemVerilog:

typedef struct {int a; bit [6:1][1:8] b [65:2]; int c;} triple;
// troublesome mix of C types and packed arrays
Copyright 2002 Accellera. All rights reserved. 11

dwarmke
"of the convenience" should be "of convenience"

dwarmke
"VCS" should be replaced with "a SystemVerilog simulator"

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001
extern void foo(input triple i);

export extern $root.exported_sv_func; // whatever is the syntax ...

function void exported_sv_func(input int i, output logic [63:0] o);
begin ... end endfunction

C:

#include "svc.h"
#include "svc_src.h"

typedef struct {
int a;
sv_BIT_PACKED_ARRAY(6*8, b) [64]; /* implementation specific

representation */
int c;
} triple;

/* Note that ’b’ is defined as for ’bit [6*8-1:0] b [63:0]’ */

extern void exported_sv_func(int, svLogicPackedArrRef); /* imported from
SystemVerilog */

void foo(const triple *i)
{

int j;
/* canonical representation */
svBitVec32 arr[sv_CANONICAL_SIZE(6*8)]; /* 6*8 packed bits */
svLogicVec32 aL[sv_CANONICAL_SIZE(64)];

/* implementation specific representation */
sv_LOGIC_PACKED_ARRAY(64, my_tab);

printf("%d %d\n", i->a, i->c);
for (j=0; j<64; j++) {
svGetBitVec32(arr, (svBitPackedArrRef)&(i->b[j]), 6*8);
...

}
...
/* call SystemVerilog */
exported_sv_func(2, (svLogicPackedArrRef)&my_tab); /* by reference */
svGetLogicVec32(aL, (svLogicPackedArrRef)&my_tab, 64); ... }

NOTE—a, b, and c are directly accessed as fields in a structure. In the case of b, which represents unpacked array of
packed arrays, the individual element is accessed via the library function svGetBitVec32(), by passing its address
to the function.

1.9 Arrays

Normalized ranges are used for accessing SystemVerilog arrays, with the exception of formal arguments spec-
ified as open arrays.

1.9.1 Multidimensional arrays

Packed arrays shall be one-dimensional. Unpacked arrays can have an arbitrary number of dimensions.
12 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2
1.9.2 Direct access to unpacked arrays

Unpacked arrays, with the exception of formal arguments specified as open arrays, shall have the same layout
as used by a C compiler; they are accessed using C indexing (see section 1.6.6).

1.9.3 Access to packed arrays via canonical representation

Packed arrays are accessible via canonical representation; this C layer interface provides functions for moving
data between implementation representation and canonical representation (any necessary conversion is per-
formed on-the-fly (see section 1.8.1.3)), and for bit selects and limited (up to 32-bit) part selects. (Bit selects
do not involve any canonical representation.)

1.9.3.1 Bit selects

This subsection defines the bit selects portion of the svc.h file (see section 1.8.1 for more details).

/* Packed arrays are assumed to be indexed n-1:0,
where 0 is the index of least significant bit */

/* functions for bit select */

/* s=source, i=bit-index */
svBit svGetSelectBit(const svBitPackedArrRef s, int i);
svLogic svGetSelectLogic(const svLogicPackedArrRef s, int i);

/* d=destination, i=bit-index, s=scalar */
void svPutSelectBit(svBitPackedArrRef d, int i, svBit s);
void svPutSelectLogic(svLogicPackedArrRef d, int i, svLogic s);

1.9.3.2 Part selects

Limited (up to 32-bit) part selects are supported. A part select is a slice of a packed array of types bit or
logic. Array slices are not supported for unpacked arrays.

Functions for part selects only allow access (read/write) to a narrow subrange of up to 32 bits. A canonical rep-
resentation shall be used for such narrow vectors.

/*
* functions for part select
*
* a narrow (<=32 bits) part select is copied between
* the implementation representation and a single chunk of
* canonical representation
* Normalized ranges and indexing [n-1:0] are used for both arrays:
* the array in the implementation representation and the canonical array.
*
* s=source, d=destination, i=starting bit index, w=width
* like for variable part selects; limitations: w <= 32
*/

NOTE—For the sake of symmetry, a canonical representation (i.e., an array) is used both for bit and logic, although a
simpler int can be used for bit-part selects (<= 32-bits):

/* canonical <-- actual */
void svGetPartSelectBit(svBitVec32* d, const svBitPackedArrRef s, int i,

int w);
void svGetPartSelectLogic(svLogicVec32* d, const svLogicPackedArrRef s, int i,

int w);
Copyright 2002 Accellera. All rights reserved. 13

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001
/* actual <-- canonical */
void svPutPartSelectBit(svBitPackedArrRef d, const svBitVec32 s, int i,

int w);
void svPutPartSelectLogic(svLogicPackedArrRef d, const svLogicVec32 s, int i,

int w);

1.10 Open arrays

Formal arguments specified as open arrays allows passing actual arguments of different sizes (i.e., different
range and/or different number of elements), which facilitates writing a more general C code that can handle
SystemVerilog arrays of different sizes. The elements of an open array can be accessed in C by using the same
range of indices and the same indexing as in SystemVerilog. Plus, inquires about the dimensions and the origi-
nal boundaries of SystemVerilog actual argument are supported for open arrays.

All formal arguments declared in SystemVerilog as open arrays are passed by handle (type svHandle),
regardless of the direction of a SystemVerilog formal argument. Such arguments are accessible via interface
functions.

1.10.1 Actual ranges

The formal arguments defined as open arrays have the size and ranges of the actual argument, as determined
on a per-call basis. The programmer shall always have a choice whether to specify a formal argument as a
sized array or as an open (unsized) array.

In the former case, all indices are normalized on the C side (i.e., 0 and up) and the programmer needs to know
the size of an array and be capable of determining how the ranges of the actual argument map onto C-style
ranges (see section 1.6.6).

Hint: programmers may decide to stick to [n:0]name[0:k] style ranges in SystemVerilog.

In the later case, i.e., an open array, individual elements of a packed array are accessible via interface func-
tions, which facilitate the SystemVerilog-style of indexing with the original boundaries of the actual argument.

If a formal argument is specified as a sized array, then it shall be passed by reference, with no overhead, and is
directly accessible as a normalized array. If a formal argument is specified as a open (unsized) array, then it
shall be passed by handle, with some overhead, and is mostly indirectly accessible, again with some overhead,
although it retains the original argument boundaries.

NOTE—This provides some degree of flexibility and allows the programmer to control the trade-off of performance vs.
convenience.

The following example shows the use of sized vs. unsized arrays in SystemVerilog code.

// both unpacked arrays are 64 by 8 elements, packed 16-bit each
logic [15: 0] a_64x8 [63:0][7:0];
logic [31:16] b_64x8 [64:1][-1:-8];

extern void foo(input logic [] i [][]);
// 2-dimensional unsized unpacked array of unsized packed logic

extern void boo(input logic [31:16] i [64:1][-1:-8]);
// 2-dimensional sized unpacked array of sized packed logic

foo(a_64x8);
foo(b_64x8); // C code may use original ranges [31:16][64:1][-1:-8]

boo(b_64x8); // C code must use normalized ranges [15:0][0:63][0:7]
14 Copyright 2002 Accellera. All rights reserved.

dwarmke
"writing a more" should be "writing more"

dwarmke
"inquires" should be "inquiries"

dwarmke
This intro area should specify that both packed and unpacked array dimensions can be unsized.

dwarmke
"as a open" should be "as an open"

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2
1.10.2 Array querying functions

These functions are modelled upon the SystemVerilog array querying functions and use the same semantics.1

If the dimension is 0, then the query refers to the packed part (which is one-dimensional) of an array, and
dimensions > 0 refer to the unpacked part of an array.

/* h= handle to open array, d=dimension */
int svLeft(const svHandle h, int d);
int svRight(const svHandle h, int d);
int svLow(const svHandle h, int d);
int svHigh(const svHandle h, int d);
int svIncrement(const svHandle h, int d);
int svLength(const svHandle h, int d);
int svDimensions(const svHandle h);

1.10.3 Access functions

Similarly to sized arrays, there are functions for copying data between the simulator representation and the
canonical representation and to obtain the actual address of SystemVerilog data object or of an individual ele-
ment of an unpacked array. This information might be useful for simulator-specific tuning of the application.

Depending on the type of an element of an unpacked array, different access methods shall be used.

— Packed arrays (bit or logic) are accessed via copying to or from the canonical representation.

— Scalars (1-bit value of type bit or logic) are accessed (read or written) directly.

— Other types of values (e.g., structures) are accessed via generic pointers; a library function calculates an
address and the user needs to provide the appropriate casting.

— Scalars and packed arrays are accessible via pointers only if the implementation supports this functionality
(per array), e.g., one array can be represented in a form that allows such access, while another array might
use a compacted representation which renders this functionality unfeasible (both occurring within the same
simulator).

SystemVerilog allows arbitrary dimensions and, hence, an arbitrary number of indices. To facilitate this, a vari-
able argument list functions shall be used. For the sake of performance, the specialized versions of all indexing
functions are provided for 1, 2, or 3 indices.

1.10.4 Access to the actual representation

The following functions provide an actual address of the whole array or of its individual element. These func-
tions shall be used for accessing elements of the arrays of types compatible with C. These functions are also
useful for the vendors, because they provide access to the actual representation for all types of arrays.

If the actual layout of the SystemVerilog array passed as an argument for an open unpacked array is different
than the C layout, then it is not be possible to access such array as a whole; therefore, the address and size of
such array shall be undefined (zero (0), to be exact). Nonetheless, the addresses of individual elements of an
array shall be always supported.

NOTE—No specific representation of an array is assumed here; hence, all functions use a generic pointer void *.

/* a pointer to the actual representation of the whole array of any type */
/* NULL if not in C layout */
void *svGetArrayPtr(const svHandle);

1See SystemVerilog 3.0 LRM 16.3.
Copyright 2002 Accellera. All rights reserved. 15

dwarmke
"a variable argument list function" should be "variable argument list functions".

dwarmke
"the specialized" should be "specialized"

dwarmke
"shall be used" should be "shall be used when working with elements."

dwarmke
"element" should be "elements"

dwarmke
"the arrays" should be "arrays"

dwarmke
"the vendors" should be "vendors"

dwarmke
"it is not be possible" should be "it is not possible"

dwarmke
"such array" should be "such an array"

dwarmke
"such array" should be "such an array"

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001
int svSizeOfArray(const svHandle); /* total size in bytes or 0 if not in C
layout */

/* Return a pointer to an element of the array
or NULL if index outside the range or null pointer */

void *svGetArrElemPtr(const svHandle, int indx1, ...);

/* specialized versions for 1-, 2- and 3-dimensional arrays: */
void *svGetArrElemPtr1(const svHandle, int indx1);
void *svGetArrElemPtr2(const svHandle, int indx1, int indx2);
void *svGetArrElemPtr3(const svHandle, int indx1, int indx2, int indx3);

Access to an individual array’s element via pointer makes sense only if the representation of such an element is
the same as it would be for an individual value of the same type. Representation of array elements of type
scalar or packed value is implementation-dependent; the above functions shall return NULL if the represen-
tation of the array elements differs from the representation of individual values of the same type.

1.10.5 Access via canonical representation

This group of functions is meant for accessing elements which are packed arrays (bit or logic).

The following functions copy a single vector from a canonical representation to an element of an open array or
other way round. The element of an array is identified by indices, bound by the ranges of the actual argument,
i.e., the original SystemVerilog ranges are used for indexing.

/* functions for translation between simulator and canonical representations*/
/* s=source, d=destination */
/* actual <-- canonical */
void svPutBitArrElemVec32 (const svHandle d, const svBitVec32* s,

int indx1, ...);
void svPutBitArrElem1Vec32(const svHandle d, const svBitVec32* s, int indx1);
void svPutBitArrElem2Vec32(const svHandle d, const svBitVec32* s, int indx1,

int indx2);
void svPutBitArrElem3Vec32(const svHandle d, const svBitVec32* s,

int indx1, int indx2, int indx3);

void svPutLogicArrElemVec32 (const svHandle d, const svLogicVec32* s,
int indx1, ...);

void svPutLogicArrElem1Vec32(const svHandle d, const svLogicVec32* s,
int indx1);

void svPutLogicArrElem2Vec32(const svHandle d, const svLogicVec32* s,
int indx1, int indx2);

void svPutLogicArrElem3Vec32(const svHandle d, const svLogicVec32* s,
int indx1, int indx2, int indx3);

/* canonical <-- actual */
void svGetBitArrElemVec32 (svBitVec32* d, const svHandle s, int indx1, ...);
void svGetBitArrElem1Vec32(svBitVec32* d, const svHandle s, int indx1);
void svGetBitArrElem2Vec32(svBitVec32* d, const svHandle s, int indx1,

int indx2);
void svGetBitArrElem3Vec32(svBitVec32* d, const svHandle s,

int indx1, int indx2, int indx3);

void svGetLogicArrElemVec32 (svLogicVec32* d, const svHandle s, int indx1,
...);

void svGetLogicArrElem1Vec32(svLogicVec32* d, const svHandle s, int indx1);
void svGetLogicArrElem2Vec32(svLogicVec32* d, const svHandle s, int indx1,

int indx2);
16 Copyright 2002 Accellera. All rights reserved.

dwarmke
This comment is indented one tab stop too far.

dwarmke
"array's" should be "array"

dwarmke
Change title of section to "Access to elements via canonical representation"

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2
void svGetLogicArrElem3Vec32(svLogicVec32* d, const svHandle s,
int indx1, int indx2, int indx3);

The above functions copy the whole packed array in either direction. The user is responsible for allocating an
array in the canonical representation.

1.10.6 Access to scalars (bit and logic)

Another group of functions is needed for scalars (i.e., when an element of an array is a simple scalar, bit, or
logic):

svBit svGetBitArrElem (const svHandle s, int indx1, ...);
svBit svGetBitArrElem1(const svHandle s, int indx1);
svBit svGetBitArrElem2(const svHandle s, int indx1, int indx2);
svBit svGetBitArrElem3(const svHandle s, int indx1, int indx2, int indx3);

svLogic svGetLogicArrElem (const svHandle s, int indx1, ...);
svLogic svGetLogicArrElem1(const svHandle s, int indx1);
svLogic svGetLogicArrElem2(const svHandle s, int indx1, int indx2);
svLogic svGetLogicArrElem3(const svHandle s, int indx1, int indx2, int indx3);

void svPutLogicArrElem (const svHandle d, svLogic value, int indx1, ...);
void svPutLogicArrElem1(const svHandle d, svLogic value, int indx1);
void svPutLogicArrElem2(const svHandle d, svLogic value, int indx1,

int indx2);
void svPutLogicArrElem3(const svHandle d, svLogic value, int indx1, int indx2,

int indx3);

void svPutBitArrElem (const svHandle d, svBit value, int indx1, ...);
void svPutBitArrElem1(const svHandle d, svBit value, int indx1);
void svPutBitArrElem2(const svHandle d, svBit value, int indx1, int indx2);
void svPutBitArrElem3(const svHandle d, svBit value, int indx1, int indx2,

int indx3);

1.10.7 Access to array elements of other types

If an array’s elements are of a type compatible with C, there is no need to use canonical representation. In such
situations, the elements are accessed via pointers, i.e., the actual address of an element shall be computed first
and then used to access the desired element.

1.10.8 Example 3 - two-dimensional open array

SystemVerilog:

typedef struct {int i; ... } MyType;

extern void foo(input MyType i [][]); /* 2-dimensional unsized unpacked array
of MyType */

MyType a_10x5 [11:20][6:2];
MyType a_64x8 [64:1][-1:-8];

foo(a_10x5);
foo(a_64x8);

C:

#include "svc.h"
Copyright 2002 Accellera. All rights reserved. 17

dwarmke
Change title to "Access to scalar elements (bit and logic)"

Accellera
SystemVerilog 3.1/draft 2 Extensions to Verilog-2001
typedef struct {int i; ... } MyType;

void foo(const svHandle h)
{

MyType my_value;
int i, j;
int lo1 = svLow(h, 1);
int hi1 = svHigh(h, 1);
int lo2 = svLow(h, 2);
int hi2 = svHigh(h, 2);

for (i = lo1; i <= hi1; i++) {
for (j = lo2; j <= hi2; j++) {

my_value = *(MyType *)svGetArrElemPtr2(h, i, j);
...
*(MyType *)svGetArrElemPtr2(h, i, j) = my_value;
...
}

...
}

}

1.10.9 Example 4 - open array

SystemVerilog:

typedef struct { ... } MyType;

extern void foo(input MyType i [], output MyType o []);

MyType source [11:20];
MyType target [11:20];

foo(source, target);

C:

#include "svc.h"

typedef struct ... } MyType;

void foo(const svHandle hin, const svHandle hout)
{

int count = svLength(hin, 1);
MyType *s = (MyType *)svGetArrayPtr(hin);
MyType *d = (MyType *)svGetArrayPtr(hout);

if (s && d) { /* both arrays have C layout */

/* an efficient solution using pointer arithmetic */
while (count--)

*d++ = *s++;

/* even more efficient:
memcpy(d, s, svSizeOfArray(hin));

*/

} else { /* less efficient yet implementation independent */
18 Copyright 2002 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1/draft 2
int i = svLow(hin, 1);
int j = svLow(hout, 1);
while (i <= svHigh(hin, 1)) {

*(MyType *)svGetArrElemPtr1(hout, j++) =
*(MyType *)svGetArrElemPtr1(hin, i++);

}

}

}

1.10.10 Example 5 - access to packed arrays

SystemVerilog:

extern void foo(input logic [127:0]);
extern void boo(input logic [127:0] i []);// open array of 128-bit

C:

#include "svc.h"

/* one 128-bit packed vector */
void foo(const svLogicPackedArrRef packed_vec_128_bit)
{

svLogicVec32 arr[sv_CANONICAL_SIZE(128)]; /* canonical representation */

svGetLogicVec32(arr, packed_vec_128_bit, 128);
...

}

/* open array of 128-bit packed vectors */
void boo(const svHandle h)
{

int i;
svLogicVec32 arr[sv_CANONICAL_SIZE(128)]; /* canonical representation */

for (i = svLow(h, 1); i <= svHigh(h, 1); i++) {

svLogicPackedArrRef ptr = (svLogicPackedArrRef)svGetArrElemPtr1(h, i);
/* user need not know the vendor representation! */

svGetLogicVec32(arr, ptr, 128);
...

}
...

}

Copyright 2002 Accellera. All rights reserved. 19

	Section 1 DirectC C layer
	1.1 Overview
	1.2 Naming conventions
	1.3 Portability
	1.3.1 Binary compatibility
	1.3.2 Source-level compatibility

	1.4 Include files
	1.4.1 svc.h include file
	1.4.2 svc_src.h include file

	1.5 Semantic constraints
	1.5.1 Types of formal arguments
	1.5.2 Input arguments
	1.5.3 Output arguments
	1.5.4 Value changes for output and inout arguments
	1.5.5 context and non-context functions
	1.5.6 pure functions
	1.5.7 Memory management

	1.6 Data types
	1.6.1 Limitations
	1.6.2 Duality of types: SystemVerilog types vs. C types
	1.6.3 Data representation
	1.6.4 Basic types
	1.6.5 Normalized ranges
	1.6.6 Mapping between SystemVerilog ranges and normalized ranges
	1.6.7 Canonical representation of packed arrays

	1.7 Argument passing modes
	1.7.1 Overview
	1.7.2 Calling SystemVerilog functions from C
	1.7.3 Argument passing by value
	1.7.4 Argument passing by reference
	1.7.5 Allocating actual arguments for SystemVerilog-specific types
	1.7.6 Argument passing by sv_handle - open arrays
	1.7.7 Input arguments
	1.7.8 Inout and output arguments
	1.7.9 Function result

	1.8 Include files
	1.8.1 Binary compatibility include file svc.h
	1.8.2 Source-level compatibility include file svc_src.h
	1.8.3 Example 1 - binary compatible application
	1.8.4 Example 2 - source level compatible application

	1.9 Arrays
	1.9.1 Multidimensional arrays
	1.9.2 Direct access to unpacked arrays
	1.9.3 Access to packed arrays via canonical representation

	1.10 Open arrays
	1.10.1 Actual ranges
	1.10.2 Array querying functions
	1.10.3 Access functions
	1.10.4 Access to the actual representation
	1.10.5 Access via canonical representation
	1.10.6 Access to scalars (bit and logic)
	1.10.7 Access to array elements of other types
	1.10.8 Example 3 - two-dimensional open array
	1.10.9 Example 4 - open array
	1.10.10 Example 5 - access to packed arrays

