
Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

1 Copyright 2003 Accellera. All rights reserved.

Section 29
SystemVerilog Data Read and Write API

This chapter extends the SystemVerilog VPI with read and write facilities so that the Verilog Procedural Inter-
face (VPI) acts as an Application Programming Interface (API) for data access, and tool interaction irrespec-
tive of whether the data is in memory or a persistent form such as a file, and also irrespective of the tool the
user is interacting with.

29.1 Motivation

SystemVerilog is both a design and verification language consequently its VPI has a wealth of design and ver-
ification data access mechanisms. This makes the VPI an ideal vehicle for tool integration in order to replace
arcane, inefficient, and error-prone file-based data exchanges with a new mechanism for tool to tool, and user
to tool interface. Moreover, a single access API eases the interoperability investments for vendors and users
alike. Reducing interoperability barriers allows vendors to focus on tool implementation. Users, on the other
hand, will be able to create integrated design flows from a multitude of best-in-class offerings spanning the
realms of design and verification such as simulators, debuggers, formal, coverage or test bench tools.

29.2 Requirements

The data access API permits access to SystemVerilog data. SystemVerilog adds several design and verification
constructs including:

— C data types such as int, struct, union, and enum.

— Advanced built-in data types such as string.

— User defined data types.

— Test bench data types and facilities.

The API shall be implemented by all tools as a minimal set for a standard means for user-tool or tool-tool inter-
action that involves SystemVerilog object data querying (reading), or storage of such data (writing). In other
words, there is no need for a simulator to be running for this API to be in effect; it is a set of API routines that
can be used for any interaction for example between a user and a waveform tool to read the data stored in its
file database or to write data so that the tool (or any other tool in its class) can store the data.

29.2.1 Naming conventions

All elements added by this interface shall conform to the VPI interface naming conventions.
— All names are prefixed by vpi.

— All type names shall start with vpi, followed by initially capitalized words with no separators, e.g.,
vpiName.

— All callback names shall start with cb, followed by initially capitalized words with no separators, e.g.,
cbValueChange.

— All function names shall start with vpi_, followed by all lowercase words separated by underscores
(_), e.g., vpi_handle().

29.3 Extensions to VPI enumerations

These extensions shall be appended to the contents of the vpi_user.h file, described in IEEE Std. 1364-
2001, Annex G. The numbers in the range 800 - 899 are reserved for the read and write data access portion of
the VPI.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 2

29.3.1 Object type properties

All objects have a vpiType property. This API does not add any new object types. The object types that this
API references, for example to get a value at a specific time for, are all the valid types in the VPI that can be
used as arguments in the VPI routines for logic and strength value processing such as
vpi_get_value(vpiType,<object_handle>). These types include:

— Constants

— Nets and net arrays

— Regs and reg arrays

— Variables

— Memory

— Parameters

— Primitives

— Assertions

In other words, any limitation in vpiType of vpi_get_value(vpiType,<object_handle>) will
also be reflected in this data access API

29.3.2 Object properties

This section lists the object property VPI calls.

29.3.2.1 Static info

/* Create, Load, Check */
#define vpiDataReadIsLoaded 800 // use in vpi_get()
#define vpiDataReadTrvsHndl 801 // use in vpi_handle()
#define vpiDataReadTrvsHasVC 802 // use in vpi_get()

/* Access type */
#define vpiDataReadAccess 803 // tool memory
#define vpiDataReadAccessInteractive 804 // interactive
#define vpiDataReadAccessPostProcess 805 // data file

29.3.2.2 Dynamic info

29.3.2.2.1 Control constants

/* Control Traverse: use in vpi_control() */
#define vpiDataReadTrvsMinTime 805 // min time
#define vpiDataReadTrvsMaxTime 806 // max time
#define vpiDataReadTrvsGotoPrevVC 807
#define vpiDataReadTrvsGotoNextVC 808

/* Jump: use in vpi_data_read_jump() */
#define vpiDataReadTrvsTime 809 // traverse handle time

29.3.2.2.2 Get properties

The following properties are intended to enhance the access efficiency. The function can be alternatively
obtained indirectly through a combination of vpi_control() call to go to the min/max time or without
calling vpi_control() use the place the handle is already pointing at (if valid), and a vpi_get_time()
call. No new properties are added here, the same vpiTypes can be used where the context (get or goto) can

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

3 Copyright 2003 Accellera. All rights reserved.

distinguish the intent.
/* Get: Use in vpi_data_read_get_time() */
//#define vpiDataReadTrvsMinTime 805 // min time
//#define vpiDataReadTrvsMaxTime 806 // max time
//#define vpiDataReadTrvsTime 809 // traverse handle time

29.3.3 System callbacks

This section lists the system callbacks. The reader /writer routines (methods) can be called whenever the user
application task has control and wishes to access data. Primarily the callback is for the writer to know when it
has to write a value: The reason is cbValueChange.

29.4 Usage extensions to VPI routines

Several VPI routines have been extended in usage with the addition of new object properties. In effect, this is
already covered with the addition of the new properties above, we just emphasize this again here to turn the
reader’s attention to the extended usage.

Table 29-1: Usage extensions to existing VPI routines

29.5 New additions to VPI routines

This section lists all the new VPI routine additions.

To Use New Usage

Iterate on all loaded objects vpi_iterate() Add property vpiDataReadIs-
Loaded

Obtain a traverse handle vpi_handle() Add a new property vpiDataR-
eadTrvsHndl

Obtain a property vpi_get() Extended with the new properties

Get a value vpi_get_value() Use traverse handle as argument to
get value where handle points

Get time vpi_get_time() Use traverse handle as argument to
get time where handle points

Free traverse handle vpi_free_object() Use traverse handle as argument

Move traverse handle vpi_control() Use traverse properties

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 4

Table 29-2: New Reader VPI routines

Table 29-3: New Writer VPI routines

29.6 Data reader

29.6.1 Object selection for reading

Selecting an object is done in 3 steps:

1) The first step is to initialize the read access by setting:

a) Access type: The vpi properties set the type of access

i) vpiDataReadAccess: Means that the access will be done for the data stored in the tool
memory (e.g. simulator), the history (or future) that the tool stores is implementation dependent.
If the tool does not store the requested info then the querying routines shall a return a fail. The
file argument to vpi_data_read_init() in this mode will be ignored (even if not NULL).

To Use

Get read interface version vpi_data_read_get_version()

Initialize read interface vpi_data_read_init()

Load data onto memory vpi_data_read_load()

Jump to a specific time vpi_data_read_jump()

Get the traverse handle time vpi_data_read_get_time()

To Use

Get write interface version vpi_data_write_get_version()

Open file, set version, create write object vpi_data_write_open()

Begin tree creation vpi_data_write_begintree()

Set the scale unit vpi_data_write_setscaleunit()

Create a scope (and set as current) vpi_data_write_createscope()

Move up out of current scope vpi_data_write_createupscope()

Create a var in scope vpi_data_write_createvar()

Close the tree creation vpi_data_write_endtree()

Create a time where a value change occurs vpi_data_write_createtime()

Create a value change vpi_data_write_createvalue()

Close (and free) write object (and file) vpi_data_write_close()

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

5 Copyright 2003 Accellera. All rights reserved.

ii) vpiDataReadAccessInteractive: Means that the access will be done interactively. The
tool will then use the data file specified as a “flush” file for its data. This mode is very similar to
the vpiDataReadAccess with the additional requirement that all the past history (before
current time) shall be stored (for the specified scope, see the Access Scope description below).

iii) vpiDataReadAccessPostProcess: Means that the access will be done through the
specified file. All data queries shall return the data stored in the specified file. Data history
depends on what is stored in the file, and can be nothing (i.e. no data).

d) Access scope: The specified scope handle, and nesting mode govern the scope that access returns. Data
queries outside this scope (and its sub-scopes as governed by the nesting mode) shall return a fail in
the access routines.

2) The next step entails obtaining the object handle. This can be done using any of the VPI routines for
traversing the HDL hierarchy and obtaining an object handle based on the type of object relationship to the
starting handle. Namely the routines would be:

Table 29-4: VPI routines for obtaining handle from hierarchy or property

3) Once the object handle is obtained then we can use the VPI load data routine
vpi_data_read_load() to load the data onto memory. The object shall then be accessible to the
user. We do not specify here any memory hierarchy or caching strategy that governs the access speed. That
is left up to application; it can choose any appropriate scheme.

29.6.2 Iterating on loaded objects

The user shall be allowed to iterate on the loaded objects in a specific instantiation scope using
vpi_iterate(). This shall be accomplished by calling vpi_iterate() with the appropriate reference
handle, and using the property vpiDataReadIsLoaded. This is shown below.

a) Iterate all data read loaded objects in the design: use a NULL reference handle (ref_h) to
vpi_iterate(), e.g.,

itr = vpi_iterate(vpiDataReadIsLoaded, /* ref_h */ NULL);
while (loadedObj = vpi_scan(itr)) {
/* process loadedObj */
}

To Use

Obtain a handle for an object with a
one-to-one relationship

vpi_handle()

Obtain a handle for a named object vpi_handle_by_name()

Obtain a handle for an indexed
object

vpi_handle_by_index()

Obtain a handle to a word or bit in
an array

vpi_handle_by_multi_inde
x()

Obtain handles for objects in a one-
to-many relationship

vpi_iterate()
vpi_scan()

Obtain a handle for an object in a
many-to-one relationship

vpi_handle_multi()

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 6

b) Iterate all assertions in an instance: pass the appropriate instance handle as a reference handle to
vpi_iterate(), e.g.,

itr = vpi_iterate(vpiDataReadIsLoaded, /* ref_h */ instanceHandle);
while (loadedObj = vpi_scan(itr)) {
/* process loadedObj */
}

29.6.3 Obtaining value changes

So far we only mentioned how to load an object into memory, in other words, marking this object as a target
for reading. To explain, VPI, before this extension, allows a user to query a value at a specific point in time--
namely the current time, and its access does not require the extra step of loading the object data. We add that
step here because we extend VPI with a temporal access component: The user can ask about all the values in
time (regardless of whether that value is available to a particular tool, or found in memory or a file, the mecha-
nism is provided). Since accessing this value horizon involves a larger memory expense, and possibly a con-
siderable access time, we have added also in this Chapter the notion of loading an objects’s data for read. Let’s
see now how to access and traverse this value timeline of an object.

To access the value changes of an object over time, the notion of a Value Change (VC) traverse handle is
added. Several VPI routines are also added to traverse the value changes (using this new handle) back and
forth. This mechanism is very different from the “iteration” notion of VPI that accesses properties of an object,
the traversal here can walk or jump back and forth on the value change timeline of an object. To create a value
change traverse handle the routine vpi_handle() must be called in the following manner:

vpiHandle trvsHndl = vpi_handle(vpiDataReadTrvsHndl, object_handle);

Note that the user (or tool) application can create more than one value change traverse handle for the same
object, thus providing different views of the value changes. Each value change traverse handle shall have a
means to have an internal index, which is used to point to its “current” time and value change of the place it
points. In fact, the value change traversal can be done by increasing or decreasing this internal index. What this
index is, and how its function is performed is left up to tools’ implementation; we only use it as a concept for
explanation here.

29.6.3.1 Traversing value changes

After getting a traverse vpiHandle, the application can do a forward, backward walk traversal by using
vpi_control() with the new traverse properties. Forward and backward jumping can be performed with
the vpi_data_read_jump() VPI routine. Here is a sample code segment for the complete process from
handle creation to traversal.

vpiHandle instanceHandle;// Some scope object is inside
vpiHandle var_handle; // Object handle
vpiHandle vc_trvs_hdl; // Traverse handle
vpiHandle itr;
p_vpi_value value_p; // value storage
p_vpi_time time_p; // time storage

...

// Initialize the read interface
// Access data from (say simulator) memory, for scope instanceHandle
// and its subscopes
vpi_data_read_init(vpiDataReadAccess, NULL, instanceHandle, 0);

itr = vpi_iterate(vpiVariables, instanceHandle);
while (var_handle = vpi_scan(itr)) {

if (vpi_get(vpiDataReadIsLoaded, var_handle) == 0) { // not loaded

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

7 Copyright 2003 Accellera. All rights reserved.

if (!vpi_data_read_load(var_handle)); // Data not found !
break;

}

vc_trvs_hdl = vpi_handle(vpiDataReadTrvsHndl, var_handle);
// Goto minimum time
vpi_control(vpiDataReadMinTime, vc_trvs_hdl);
vpi_get_time(vc_trvs_hdl, time_p); // Minimum time
vpi_printf(...);
vpi_get_value(vc_trvs_hdl, value_p); // Value
vpi_printf(...);
if (vpi_get(vpiDataReadTrvsHasVC, vc_trvs_hdl))
for (;;) { // scan all the elements in time

if (vpi_control(vpiDataReadGotoNextVC, vc_trvs_hdl) == 0) {
// already at MaxTime
break; // cannot go further

}
vpi_get_time(vc_trvs_hdl, time_p); // Time of VC
vpi_get_value(vc_trvs_hdl, value_p); // VC data

}
}
// free handles
vpi_free_object(...);

The code segment creates a Value Change (VC) traverse handle associated with an object, whose handle is rep-
resented by var_handle, and creates a traverse handle, vc_trvs_hdl. With this traverse handle, it first
calls vpi_control() to get the minimum time where the value has changed, then it moves the handle
(internal index) to that time by calling with a vpiDataReadMinTime; and, finally, it calls
vpi_control() with a vpiDataReadGotoNextVC to move the internal index forward repeatedly until
there is no value change left. vpi_get_time() gets the actual time where this VC is, and data is obtained
by vpi_get_value().

The traverse handle can be freed when it is no longer needed using vpi_free_object().

29.6.3.2 Jump Behavior

Jump behavior refers to the behavior of vpi_data_read_jump(). The user specifies a time to which he or
she would like the traverse handle to jump, but the specified time may or not have value changes. then the
traverse handle shall point to the latest VC equal to or less than the time requested. In the figure below, the
whole simulation run is from time0 to time 65, and a variable has value changes at time 0, 15 and 50.

If we create a value change traverse handle associated with this variable and try to jump to a different time, the
result will be determined as follows:

— Jump to 10; traverse handle return time is 0.

— Jump to 15; traverse handle return time is 15.

— Jump to 65; traverse handle return time is 50.

— Jump to 30; traverse handle return time is 15.

— Jump to (-1); traverse handle return time is 0.

— Jump to 50; traverse handle return time is 50.

If the jump time has a value change, then the internal index of the traverse handle will point to that time.
Therefore, the return time is exactly the same as the jump time. If the jump time does not have a value change,
and if the jump time is not less than the minimum time of the whole trace2 run, then the return time is aligned

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 8

backward. If the jump time is less than the minimum time, then the return time will be the minimum time.

In case the object has hold value semantics between the VCs such as static variables, then the return code of
vpi_data_read_jump() should indicate success. In case the time is greater than the trace maximum
time, or we have an automatic object or an assertion or any other object that does not hold its value between
the VCs then the return code should indicate failure (and the backward time alignment is still performed).

29.6.4 Reader VPI routine definitions

This section describes the additional VPI routines in detail.
vpi_data_read_getversion()

Synopsis: Get the reader version.
Syntax: vpi_data_read_getversion()
Returns: char*, for the version string
Arguments: None
Related routines: None

vpi_data_read_init()

Synopsis: Initialize the reader with access type and access scope.
Syntax: vpi_data_read_init(vpiType prop, char* filename, vpiHandle
scope, PLI_INT32 level)
Returns: PLI_INT32, 1 for success, 0 for fail
Arguments:

vpiType prop:
vpiDataReadAccess: Gets the minimum time of traverse handle
vpiDataReadAccessInteractive: Gets the maximum time of traverse handle
vpiDataReadAccessPostProcess: Gets the time where traverse handle points

char* filename: Data file
vpiHandle scope: Scope of the read
PLI_INT32 level: If 0 then enables access to scope and all its subscopes, 1 means just the scope

Related routines: None

vpi_data_read_get_time()

Synopsis: Retrieve the time of the traverse handle.
Syntax: vpi_data_read_get_time(vpiType prop, vpiHandle obj, p_vpi_time
time_p)
Returns: void
Arguments:

vpiType prop:
vpiDataReadTrvsMinTime: Gets the minimum time of traverse handle
vpiDataReadTrvsMaxTime: Gets the maximum time of traverse handle
vpiDataReadTrvsTime: Gets the time where traverse handle points

vpiHandle obj: Handle to an object
p_vpi_time time_p: Pointer to a structure containing time information

Related routines: None

vpi_data_read_jump()

Synopsis: Try to move value change traverse index to time, if there is no value change at time, then the
value change traverse index is aligned based on the jump behavior defined earlier, and the time will be
updated based on the aligned traverse index. For details on the success or fail return, refer to the jump

2 The word trace can be replaced by “simulation”, we use trace here for generality since a dump file can be
generated by several tools.

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

9 Copyright 2003 Accellera. All rights reserved.

behavior section. If there is a value change occurring at the requested time, then the value change traverse
index is moved to that tag with success return.
Syntax: vpi_data_read_jump(vpiType prop, vpiHandle obj, p_vpi_time
time_p)
Returns: PLI_INT32, 1 for success, 0 for fail
Arguments:

vpiType prop:
vpiDataReadTrvsMinTime: Goto the minimum time of traverse handle
vpiDataReadTrvsMaxTime: Goto the maximum time of traverse handle
vpiDataReadTrvsTime: Goto the time where traverse handle points

vpiHandle obj: Handle to an object
p_vpi_time time_p: Pointer to a structure containing time information

Related routines: None

vpi_data_read_load()

Synopsis: Load the given object into memory for data access and traversal.
Syntax: vpi_data_read_load(vpiHandle obj)
Returns: PLI_INT32, 1 for success, 0 for fail
Arguments:

vpiHandle obj: Handle to an object
Related routines: None

29.7 Data Writer

A dump file may contain two kinds of information: design hierarchies, and value changes. The design hierar-
chies include the hierarchies between each scope (design entity) and the variables that each scope holds. The
value changes are the “waveform” data. Each value change includes a time and a value. In order to write infor-
mation into the dump file, writer shall support two kinds of creation modes:

— Tree creation mode, and

— Value Change (VC) creation mode.

Under tree creation mode, the application calls VPI writer APIs to create the design hierarchies, variables and
their data. Under value change creation mode, the application creates the VC data. A handle for a variable can
be used to write out the data. A variable may have more than one name i.e. an “alias.” For example, a variable
may be called “bus” in scope “top” and “data_bus” in scope “system.” But both “bus” and “data_bus” refer to
the same variable that has a unique handle. The application can create an alias to a variable by calling variable
creation API with the different name but the same handle.

A dump file may contain none, one, or multiple design hierarchies. The design hierarchy is like a multi-tree. A
node corresponds to a scope of the design hierarchy. A scope can contain scopes and variables. The capability
that a scope can contain scopes recursively builds the design hierarchy. In order to traverse the design hierar-
chy, we must introduce the “current scope” concept: meaning “which node we are at now” in the writing pro-
cess. Some of the tree creation APIs can move the “current scope” to another one so that the application can
describe and build the design hierarchy. The “current scope” also determines which scope the newly created
variables belong to: if a variable is created, then it belongs to the “current scope”. The writer is built around a
time-based scheme: the application stops at a specific time where value changes occurred, then it figures out
what variables have value changes at that specific time. Finally, it creates the value changes of those variables
at that specific time. The same steps repeat until it reaches the maximum time of the run. This creation scheme
works quite naturally with the cbValueChange notification approach already built into VPI.

The value change creation is composed of 2 steps:

— Tag time creation

— Value creation at that tag

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 10

The time is created by calling ddwCreateXCoorByHnL, while the value is created by calling ddwCreate-
VarValByHndl API. The value change callback is the VPI cbValueChange simulation event reason.

29.7.1 Writer VPI routines definitions

vpi_data_write_get_version()

Synopsis: Get the writer version.
Syntax: vpi_data_write_get_version()
Returns: char*, for the version string
Arguments: None
Related routines: None

vpi_data_write_open()

Synopsis: Open file with a file name and a version.
Syntax: vpi_data_write_open(char* fname, char* version)
Returns: vpiHandle if successful, NULL otherwise
Arguments:

char* fname: Name of file
char* version:Version string

Related routines: None

vpi_data_write_begintree()

Synopsis: Begin tree creation.
Syntax: vpi_data_write_begintree(vpiHandle data_write_obj)
Returns: PLI_INT32, 1 for success, 0 for fail
Arguments:

vpiHandle data_write_obj: Handle to the write object
Related routines: vpi_data_write_openfile()

vpi_data_write_setscaleunit()

Synopsis: Set the scale unit.
Syntax: vpi_data_write_setscaleunit(vpiHandle data_write_obj, char*
scaleunit)
Returns: PLI_INT32, 1 for success, 0 for fail
Arguments:

vpiHandle data_write_obj: Handle to the write object
char* scaleunit: Scale unit string e.g. 10ps.

Related routines: None

vpi_data_write_createscope()

Synopsis: Create a (sub)scope (under current scope).
Syntax: vpi_data_write_createscope(vpiHandle data_write_obj, vpiType
scopetype, char* name)
Returns: PLI_INT32, 1 for success, 0 for fail
Arguments:

vpiHandle data_write_obj: Handle to the write object
vpiType scopetype: Type of the scope (e.g. module/task/...)
char* name: Name of scope

Related routines: None

vpi_data_write_createupscope()

Synopsis: Make current scope go to its parent scope.
Syntax: vpi_data_write_createupscope(vpiHandle data_write_obj)
Returns: PLI_INT32, 1 for success, 0 for fail
Arguments:

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

11 Copyright 2003 Accellera. All rights reserved.

vpiHandle data_write_obj: Handle to the write object
Related routines: None

vpi_data_write_createvar()

Synopsis: Create a var in scope.
Syntax: vpi_data_write_createvar(vpiHandle data_write_obj, vpiHandle
obj)
Returns: PLI_INT32, 1 for success, 0 for fail
Arguments:

vpiHandle data_write_obj: Handle to the write object
vpiHandle obj: Handle of the var (object)

Related routines: None

vpi_data_write_endtree()

Synopsis: This routine closes the tree creation (and the data creation portion can follow).
Syntax: vpi_data_write_endtree(vpiHandle data_write_obj)
Returns: PLI_INT32, 1 for success, 0 for fail
Arguments:

vpiHandle data_write_obj: Handle to the write object
Related routines: None

vpi_data_write_createtime()

Synopsis: Create a time where a value change occurs.
Syntax: vpi_data_write_createtime(vpiHandle data_write_obj, p_vpi_time
time_p)
Returns: PLI_INT32, 1 for success, 0 for fail
Arguments:

vpiHandle data_write_obj: Handle to the write object
p_vpi_time time_p: Time point to create

Related routines: None

vpi_data_write_createvalue()

Synopsis: Create a value change.
Syntax: vpi_data_write_createvalue(vpiHandle data_write_obj, p_vpi_value
value_p)
Returns: PLI_INT32, 1 for success, 0 for fail
Arguments:

vpiHandle data_write_obj: Handle to the write object
p_vpi_value value_p: Value to create

Related routines: None

vpi_data_write_close()

Synopsis: Close object (and file).
Syntax: vpi_data_write_close(vpiHandle data_write_obj)
Returns: vpiHandle if successful, NULL otherwise
Arguments:

vpiHandle data_write_obj: Handle to the write object
Related routines: None

29.7.2 Write scheme

A writer application needs to first create a tree (say after cbEndofCompile call) at a point when it is sure all
the scopes have been created. It must also register a (value change) callback with the engine that is computing
(e.g. a simulator) so that this write data routine can be called when a value change occurs (in the scope the

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 12

application is interested in). So, with the tree created, the user (or tool) application can then start writing the
data using the writer handle and the object (that has had a value change) handle. By also querying the time at
which this value change occurred the application can write all the (time, value) pairs of the variables it is inter-
ested in.

The flow is then as follows:

1) Tree creation: Can be done at any point the application has control and wishes to write out its own dump
file. Data can come from any tool that implements this VPI interface

a) Open file and set version

b) Set scale unit

c) Begin tree

d) Create scope(s)

e) Create var(s) inside the scopes

f) End tree

g) Register the value creation routine with a value change callback service

2) Value creation: Happens when the routine that does this is called

a) Create a time point

b) Create a value at this time point

The version matching insures that the writer stamps the file it generates with its version, so that only a writer
with a matching version attempts to read such a data file.

