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Section 29
SystemVerilog Data Read API

This chapter extends the SystemVerilog VPI with read facilities so that the Verilog Procedural Interface (VPI)
acts as an Application Programming Interface (API) for data access and tool interaction irrespective of
whether the data is in memory or a persistent form such as a file, and also irrespective of the tool the user is
interacting with.

29.1 Motivation

SystemVerilog is both a design and verification language consequently its VPI has a wealth of design and ver-
ification data access mechanisms. This makes the VPI an ideal vehicle for tool integration in order to replace
arcane, inefficient, and error-prone file-based data exchanges with a new mechanism for tool to tool, and user
to tool interface. Moreover, a single access API eases the interoperability investments for vendors and users
alike. Reducing interoperability barriers allows vendors to focus on tool implementation. Users, on the other
hand, will be able to create integrated design flows from a multitude of best-in-class offerings spanning the
realms of design and verification such as simulators, debuggers, formal, coverage or test bench tools. 

29.1.1 Requirements

SystemVerilog adds several design and verification constructs including:

— C data types such as int, struct, union, and enum.

— Advanced built-in data types such as string.

— User defined data types.

— Test bench data types and facilities.

The access API shall be implemented by all tools as a minimal set for a standard means for user-tool or tool-
tool interaction that involves SystemVerilog object data querying (reading). In other words, there is no need for
a simulator to be running for this API to be in effect; it is a set of API routines that can be used for any interac-
tion for example between a user and a waveform tool to read the data stored in its file database. This usage
flow is shown in the figure below.

Figure 29-1 — Data read VPI usage model

Our focus in the API is the user view of access. While the API does provide varied facilities to give the user
the ability to effectively architect his or her application, it does not address the tool level efficiency concerns
such as time-based incremental load of the data, and/or predicting or learning the user access. It is left up to
implementors to make this as easy and seamless as possible on the user. To make this easy on tools, the API
provides an initialization routine where the user specifies access type and design scope. The user should be pri-
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marily concerned with the API specified here, and efficiency issues are dealt with behind the scenes.

29.1.2 Naming conventions

All elements added by this interface shall conform to the VPI interface naming conventions.
— All names are prefixed by vpi.

— All type names shall start with vpi, followed by initially capitalized words with no separators, e.g.,
vpiName.

— All callback names shall start with cb, followed by initially capitalized words with no separators, e.g., 
cbValueChange.

— All routine names shall start with vpi_, followed by all lowercase words separated by underscores (_),
e.g., vpi_handle().

29.2 Extensions to VPI enumerations

These extensions shall be appended to the contents of the vpi_user.h file, described in IEEE Std. 1364-
2001, Annex G. The numbers in the range 800 - 899 are reserved for the read data access portion of the VPI.

29.2.1 Object types

All objects in VPI have a vpiType. This API adds a new object type for data traversal, and two other objects
types for object collection and traverse object collection.

/* vpiHandle type for the data traverse object */
#define vpiTrvsObj 800 /* use in vpi_handle() */
#define vpiObjCollection 801 /* Collection of design objs */
#define vpiTrvsCollection 802 /* Collection of vpiTrvsObj’s */

The other object types that this API references, for example to get a value at a specific time, are all the valid
types in the VPI that can be used as arguments in the VPI routines for logic and strength value processing such
as vpi_get_value(<object_handle>, <value_pointer>). These types include:

— Constants

— Nets and net arrays

— Regs and reg arrays

— Variables

— Memory

— Parameters

— Primitives

— Assertions

In other words, any limitation in vpiType of vpi_get_value() will also be reflected in this data access
API.

29.2.2 Object properties

This section lists the object property VPI calls.

29.2.2.1 Static info

/* Check type */
#define vpiDataLoaded 803 /* use in vpi_get() */
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#define vpiTrvsHasVC 804 /* use in vpi_get() */

/* Access type */
#define vpiAccessLimitedInteractive 805 /* interactive */
#define vpiAccessInteractive 806 /* interactive: history */
#define vpiAccessPostProcess 807 /* data file */

/* Member of a collection */
#define vpiMember 808 /* use in vpi_iterate() */

29.2.2.2 Dynamic info

29.2.2.2.1 Control constants

/* Control Traverse: use in vpi_control() or vpi_goto() 
for a vpiTrvsObj type */

#define vpiTrvsMinTime 809 /* min time */
#define vpiTrvsMaxTime 810 /* max time */
#define vpiTrvsPrevVC  811
#define vpiTrvsNextVC 812
#define vpiTrvsTime 813 /* time jump */

29.2.2.2.2 Get properties

The following properties are intended to enhance the access efficiency. The routine
vpi_trvs_get_time() is similar to vpi_get_time() with the additional ability to get the min and
max times of the traverse handle; not just the current place it points (as is the case for vpi_get_time()).
No new properties are added here, the same vpiTypes can be used where the context (get or go to) can distin-
guish the intent.

/* Get: Use in vpi_trvs_get_time() for a vpiTrvsObj type */
/* 
#define vpiTrvsMinTime 809 // min time
#define vpiTrvsMaxTime 810 // max time
#define vpiTrvsTime 813 // traverse handle time
*/

29.2.3 System callbacks

The access API adds no new system callbacks. The reader routines (methods) can be called whenever the user
application has control and wishes to access data.

29.3 VPI object type additions

29.3.1 Traverse object

To access the value changes of an object over time, the notion of a Value Change (VC) traverse handle is
added. A value change traverse object is used to traverse and access value changes not just for the current
value (as calling vpi_get_time() or vpi_get_value() on the object would) but for any point in time:
past, present, or future. To create a value change traverse handle the routine vpi_handle() is called with a
vpiTrvsObj vpiType:

vpiHandle object_handle; /* design object */
vpiHandle trvsHndl = vpi_handle(/*vpiType*/vpiTrvsObj, 

/*vpiHandle*/ object_handle);
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29.3.2 Collection object

In order to read data efficiently, we may need to specify a group of objects for example when loading (or tra-
versing) data we may wish to specify a list of objects that we want to mark as targets of data load (or traversal).
Such a grouping we refer to as a collection. We add the notion of a collection of objects to VPI.

The collection object of type vpiObjCollection represents a user-defined collection of VPI objects in the
design; these cannot be traverse objects of type vpiTrvsObj. The collection contains a set of member VPI
objects and can take on an arbitrary size. The collection may be created at any time and existing objects can be
added to it. The purpose of a collection is to group design objects and permit operating on each element with a
single operation applied to the whole collection group. vpi_iterate(vpiMember,
<collection_handle>) is used to create a member iterator. vpi_scan() can then be used to scan the
iterator for the elements of the collection.

A vpiTrvsCollection is a collection of traverse objects of type vpiTrvsObj.

Our usage here in the read API is of either:

— Design object collections: Used for example in vpi_read_load() to load data for all the objects. A 
collection of objects is of type vpiObjCollection in general (the elements can be any object type 
in the design except traverse objects of type vpiTrvsObj).

— Data traverse objects: Used for example in vpi_control() (or vpi_goto()) to move the 
traverse handles of all the objects in the collection (all are of type vpiTrvsObj). A collection of 
traverse objects is a vpiTrvsCollection.

A collection object is created with vpi_create(). The first call gives NULL handles to the collection object
and the object to be added. Following calls, which can be performed at any time, provide the collection handle
and a handle to the object for addition. The return argument is a handle to the collection object.

For example:
vpiHandle designCollection;
vpiHandle designObj;
vpiHandle trvsCollection;
vpiHandle trvsObj;
/* Create a collection of design objects */
designCollection = vpi_create(vpiObjCollection, NULL, NULL);
/* Add design object designObj into it */
designCollection = vpi_create(vpiObjCollection, designCollection, designObj);

/* Create a collection of traverse objects*/
trvsCollection = vpi_create(vpiTrvsCollection, NULL, NULL);
/* Add traverse object trvsObj into it  */
trvsCollection = vpi_create(vpiTrvsCollection, trvsCollection, trvsObj);

A collection objects exists from the time it is created until its handle is released. It is the application’s respon-
sibility to keep a handle to the created collection, and to release it when it is no longer needed.

29.3.2.1 Operations on collections

We define a method for loading data of objects in a collection: vpi_read_load(). This operation loads all
the objects in the collection. It is equivalent to performing a vpi_read_load() on every single handle of
the object elements in the collection.

A traverse collection can be obtained (i.e. created) from a design collection using vpi_handle(). The call would
take on the form of:

vpiHandle loadCollection;
/* Obtain a traverse collection from the load collection */
vpi_handle(vpiTrvsCollection, loadCollection);
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The usage of this capability is discussed in Section 29.7.6.

We also define methods on collections of traverse handles i.e. collections of type vpiTrvsCollection.
This methods are vpi_control() and vpi_goto(). Their function is equivalent to applying
vpi_control() with the same time control arguments to move the traverse handle of every single object in
the collection.

29.4 Object model diagram additions

A traverse object of type vpiTrvsObj is related to its parent object; it is a means to access the value data of
said object. An object can have several traverse objects each pointing and moving in a different way along the
value data horizon. This is shown graphically in the model diagram below. The traversable class is a represen-
tational grouping consisting of any object that:

— Has a name

— Can take on a value accessible with vpi_get_value(), the value must be variable over time (i.e. 
necessitates creation of a traverse object to access the value over time).

The class consists of nets, net arrays, regs, reg arrays, variables, memory, primitive, primitive arrays, and con-
current assertions.

Figure 29-2 — Model diagram of traverse object

A collection object of type vpiObjCollection groups together a set of design objects Obj (of any type). A
traverse collection object of type vpiTrvsCollection groups together a set of traverse objects trvsObj of
type vpiTrvsObj.
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Figure 29-3 — Model diagram of collection

29.5 Usage extensions to VPI routines

Several VPI routines have been extended in usage with the addition of new object types and/or properties.
While the extensions are fairly obvious, they are emphasized here again to turn the reader’s attention to the
extended usage.

Table 29-1: Usage extensions to existing VPI routines

To Use New Usage

Create iterator for all loaded objects, 
load collections, and traverse collec-
tions.

vpi_iterate() Add properties vpiDataLoaded 
and vpiMember. Extend with col-
lection handle to create a collection 
member element iterator.

Obtain a traverse (collection) handle 
from an object (collection) handle

vpi_handle() Add a new types vpiTrvsObj and 
vpiTrvsCollection

Obtain a property vpi_get() Extended with the new check proper-
ties: vpiDataLoaded and 
vpiTrvsHasVC

Get a value vpi_get_value() Use traverse handle as argument to 
get value where handle points

Get time traverse handle points at vpi_get_time() Use traverse handle as argument to 
get time where handle points

Free traverse handle
Free (traverse) collection handle

vpi_free_object() Use traverse handle as argument
Use (traverse) collection handle as 
argument

Move traverse (collection) handle to 
min, max, or specific time

vpi_control() Use traverse (collection) handles/
types and properties. Extended with a 
time argument in case of jump to spe-
cific time.

collection

objCollection

trvsCollection

collection member

traversable

trvsObj

vpiMember
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29.6 New additions to VPI routines

This section lists all the new VPI routine additions.

Table 29-2: New Reader VPI routines

29.7 Reading data

Reading data is performed in 3 steps:

1) A design object must be selected for loading from a database (or from memory) into active memory. 

2) Once an object is selected, it can then be loaded into memory. This step creates the traverse object handle
used to traverse the design objects stored data.

3) At this point the object is available for reading. A traverse object must be created to permit the data value
traversal and access.

29.7.1 Object selection for loading

Selecting an object is done in 3 steps:

1) The first step is to initialize the read access with a call to vpi_read_init() (or
vpi_read_init_create()) by setting:

a) Access type: The following VPI properties set the type of access

— vpiAccessLimitedInteractive: Means that the access will be done for the data stored in the 
tool memory (e.g. simulator), the history (or future) that the tool stores is implementation dependent. If 

To Use

Create a new handle: used to
- create an object (traverse) collection for loading
- Add a (traverse) object to an existing collection

vpi_create()

Get read interface version vpi_read_get_version()

Initialize read interface vpi_read_init()

Initialize read interface, and create a complete col-
lection of all the objects in the specified scope (and 
sub-scopes if required) and load collection

vpi_read_init_create()

Load data (for a single design object or a collection) 
onto memory

vpi_read_load()

Unload data (for a single design object or a collec-
tion) from memory

vpi_read_unload()

Get the traverse handle min, max, or current time 
where it points.

vpi_trvs_get_time()

Move traverse collection handle to min, max, or spe-
cific time. Return a new collection containing all the 
objects that have a VC at that time.

vpi_goto()
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the tool does not store the requested info then the querying routines shall return a fail. The file argu-
ment to vpi_read_init() in this mode will be ignored (even if not NULL).

— vpiAccessInteractive: Means that the access will be done interactively. The tool will then use 
the data file specified as a “flush” file for its data. This mode is very similar to the vpiAccessLimit-
edInteractive with the additional requirement that all the past history (before current time) shall be 
stored (for the specified scope/collection, see the Access Scope/Collection description below).

— vpiAccessPostProcess: Means that the access will be done through the specified file. All data 
queries shall return the data stored in the specified file. Data history depends on what is stored in the 
file, and can be nothing (i.e. no data).

b) Specifying the elements that will be accessed is accomplished by specifying a scope and/or an item
collection. At least one of the two needs to be specified. If both are specified then the union of all the
object elements forms the entire set of objects the user may access.

— Access scope: The specified scope handle, and nesting mode govern the scope that access returns. Data 
queries outside this scope (and its sub-scopes as governed by the nesting mode) shall return a fail in the 
access routines unless the object belongs to access collection described below. It can be used either in a 
complementary or in an exclusive fashion to access collection. NULL is to be passed to the collection 
when access scope is used in an exclusive fashion.

— Access collection: The specified collection stores the traverse object handles to be loaded. It can be 
used either in a complementary or in an exclusive fashion to access scope. NULL is to be passed to the 
scope when access collection is used in an exclusive fashion.

vpi_read_init() can be called multiple times. The access specification of a call remains valid until the
next call is executed. 

vpi_read_init_create() can be called anywhere vpi_read_init() is called. The two have the
same function; in addition to initialization vpi_read_init_create() creates a load collection list con-
sisting of all the (valued) objects in the specified access scope if any (and its sub-scopes as governed by nest-
ing mode) and the objects in the access collection if any. The return of vpi_read_init_create() is a
collection handle, with NULL indicating failure.

2) The next step entails obtaining the object handle. This can be done using any of the VPI routines for
traversing the HDL hierarchy and obtaining an object handle based on the type of object relationship to the
starting handle. These routines are listed in the following table.
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Table 29-3: VPI routines for obtaining handle from hierarchy or property

Any tool that implements this read API (e.g. waveform tool) shall implement at least a basic subset of these
design navigation VPI routines that shall include vpi_handle_by_name() to permit the user to get a
vpiHandle from an object name. It is left up to tool implementation to support additional design navigation
relationships. It should be noted that an object’s vpiHandle obtained through a post process access mode
(vpiAccessPostProcess) from a waveform tool for example is not interchangeable with a handle
obtained through interactive access mode (vpiAccessLimitedInteractive or vpiAccessInter-
active) from a simulator. This is because objects, their data, and relationships in a stored file database could
be quite different from those in the simulation model.

29.7.2 Loading objects

Once the object handle is obtained then we can use the VPI data load routine vpi_read_load() with the
object’s vpiHandle to load the data for the specific object onto memory. Alternatively, for efficiency consid-
erations, vpi_read_load() can be called with a design object collection handle of type vpiObjCol-
lection. The collection must have already been created by either using vpi_create() (or
vpi_read_init_create()) and the (additional) selected object handles added to the load collection
using vpi_create() with the created collection list passed as argument. The object(s) data is not accessible
as of yet to the user’s read queries; a traverse handle must still be created. This is presented in Section 29.7.3.

Note that loading the object means loading the object from a file into memory, or marking it for active use if it
is already in the memory hierarchy. Object loading is the portion that tool implementors need to look at for
efficiency considerations. Reading the data of an object, if loaded in memory, is a simple consequence of the
load. The API does not specify here any memory hierarchy or caching strategy that governs the access (load or
read) speed. It is left up to tool implementation to choose the appropriate scheme. It is recommended that this
happens in a fashion invisible to the user. The API does provide the tool with the chance to prepare itself with
the vpi_read_init() (or vpi_read_init_create()). With this call, the tool can examine what
type of access, and what signals the user wishes to access before the actual load and then read access is made.

29.7.2.1 Iterating the design for the loaded objects

The user shall be allowed to iterate for the loaded objects in a specific instantiation scope using
vpi_iterate(). This shall be accomplished by calling vpi_iterate() with the appropriate reference
handle, and using the property vpiDataLoaded. This is shown below.

a) Iterate all data read loaded objects in the design: use a NULL reference handle (ref_h) to
vpi_iterate(), e.g.,

To Use

Obtain a handle for an object with a 
one-to-one relationship

vpi_handle()

Obtain a handle for a named object vpi_handle_by_name()

Obtain a handle for an indexed 
object

vpi_handle_by_index()

Obtain a handle to a word or bit in 
an array

vpi_handle_by_multi_inde
x()

Obtain handles for objects in a one-
to-many relationship

vpi_iterate()
vpi_scan()

Obtain a handle for an object in a 
many-to-one relationship

vpi_handle_multi()
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itr = vpi_iterate(vpiDataLoaded, /* ref_h */ NULL);
while (loadedObj = vpi_scan(itr)) {
/* process loadedObj */
}

b) Iterate all data read loaded objects in an instance: pass the appropriate instance handle as a reference
handle to vpi_iterate(), e.g.,

itr = vpi_iterate(vpiDataLoaded, /* ref_h */ instanceHandle);
while (loadedObj = vpi_scan(itr)) {
/* process loadedObj */
}

29.7.2.2 Iterating the load collection for its element loaded objects

The user shall be allowed to iterate for the loaded objects in the load collection using vpi_iterate() and
vpi_scan(). This shall be accomplished by creating an iterator for the members of the collection and then
use vpi_scan() on the iterator handle e.g.

vpiHandle var_handle; /* some object */
vpiHandle varCollection; /* object collection */
vpiHandle loadedVar; /* Loaded object handle */
vpiHandle itr; /* iterator handle */
/* Create load object collection */
varCollection = vpi_create(vpiObjCollection, NULL, NULL);
/* Add elements to the object collection */
varCollection = vpi_create(vpiObjCollection, varCollection,
var_handle);

/* Iterating a collection for its elements */
itr = vpi_iterate(vpiMember, varCollection); /* create iterator */
while (loadedVar = vpi_scan(itr)) { /* scan iterator */
/* process loadedVar */
}

29.7.3 Reading an object

So far we have outlined: 

— How to select an object for loading, in other words, marking this object as a target for access.

— How to load an object into memory by obtaining a handle and then either loading objects individually 
or as a group using the load collection.

— How to iterate the design scope and the load collection to find the loaded objects if needed.

Reading an object means obtaining its value changes. VPI, before this extension, had allowed a user to query a
value at a specific point in time--namely the current time, and its access does not require the extra step of load-
ing the object data. We add that step here because we extend VPI with a temporal access component: The user
can ask about all the values in time (regardless of whether that value is available to a particular tool, or found
in memory or a file, the mechanism is provided). Since accessing this value horizon involves a larger memory
expense, and possibly a considerable access time, we have added also in this Chapter the notion of loading an
objects’s data for read. Let’s see now how to access and traverse this value timeline of an object.

To access the value changes of an object over time we use a traverse object introduced earlier in Section
29.3.1. Several VPI routines are also added to traverse the value changes (using this new handle) back and
forth. This mechanism is very different from the “iteration” notion of VPI that returns objects related to a given
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object, the traversal here can walk or jump back and forth on the value change timeline of an object. To create
a value change traverse handle the routine vpi_handle() must be called in the following manner:

vpiHandle trvsHndl = vpi_handle(vpiTrvsObj, object_handle);

Note that the user (or tool) application can create more than one value change traverse handle for the same
object, thus providing different views of the value changes. Each value change traverse handle shall have a
means to have an internal index, which is used to point to its “current” time and value change of the place it
points. In fact, the value change traversal can be done by increasing or decreasing this internal index. What this
index is, and how its function is performed is left up to tools’ implementation; we only use it as a concept for
explanation here. 

Once created the traverse handle can point anywhere along the timeline; its initial location is left for tool
implementation, however, if the traverse object has no value changes the handle shall point to the minimum
time (of the trace), so that calls to vpi_get_time() can return a valid time. It is up to the user to call an ini-
tial vpi_control() to the desired initial pointing location.

29.7.3.1 Traversing value changes of objects

After getting a traverse vpiHandle, the application can do a forward or backward walk or jump traversal by
using vpi_control() on a vpiTrvsObj object type with the new traverse properties. 

Here is a sample code segment for the complete process from handle creation to traversal.
vpiHandle instanceHandle; /* Some scope object is inside */
vpiHandle var_handle; /* Object handle */
vpiHandle vc_trvs_hdl; /* Traverse handle */
vpiHandle itr;
p_vpi_value value_p; /* Value storage */
p_vpi_time time_p; /* Time storage */
...
/* Initialize the read interface

Access data from (say simulator) memory, for scope instanceHandle
and its subscopes */

/* Call marks access for all the objects in the scope */
vpi_read_init(vpiAccessLimitedInteractive, NULL, NULL, instanceHandle, 0);

itr = vpi_iterate(vpiVariables, instanceHandle);
while (var_handle = vpi_scan(itr)) {

if (vpi_get(vpiDataLoaded, var_handle) == 0) { /* not loaded*/
/* Load data: object-based load, one by one */
if (!vpi_read_load(var_handle)); /* Data not found ! */

break;
}
/* Create a traverse handle for read queries */
vc_trvs_hdl = vpi_handle(vpiTrvsObj, var_handle);
/* Go to minimum time */
vpi_control(vpiTrvsMinTime, vc_trvs_hdl);
/* Get info at the min time */
vpi_get_time(vc_trvs_hdl, time_p); /* Minimum time */
vpi_printf(...);
vpi_get_value(vc_trvs_hdl, value_p); /* Value */
vpi_printf(...);
if (vpi_get(vpiTrvsHasVC, vc_trvs_hdl)) { /* Have VCs ? */

for (;;) { /* All the elements in time */
if (vpi_control(vpiTrvsNextVC, vc_trvs_hdl) == 0) {

/* failure (e.g. already at MaxTime or no more VCs) */
break; /* cannot go further */

}
/* Get Max */
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/* vpi_trvs_get_time(vpiTrvsMaxTime, vc_trvs_hdl, time_p); */
vpi_get_time(vc_trvs_hdl, time_p); /* Time of VC */
vpi_get_value(vc_trvs_hdl, value_p); /* VC data */

}
}

}
/* free handles */
vpi_free_object(...);

The code segment above declares an interactive access scheme, where only a limited history of values is pro-
vided by the tool (e.g. simulator). It then creates a Value Change (VC) traverse handle associated with an
object whose handle is represented by var_handle but only after the object is loaded into memory first. It
then creates a traverse handle, vc_trvs_hdl. With this traverse handle, it first calls vpi_control() to
go to the minimum time where the value has changed and moves the handle (internal index) to that time by
calling vpi_control() with a vpiTrvsMinTime argument. It then repeatedly calls vpi_control()
with a vpiTrvsNextVC to move the internal index forward repeatedly until there is no value change left.
vpi_get_time() gets the actual time where this VC is, and data is obtained by vpi_get_value().

The traverse and collection handles can be freed when they are no longer needed using
vpi_free_object().

29.7.3.2 Jump Behavior 

Jump behavior refers to the behavior of vpi_control() with a vpiTrvsTime property, vpiTrvsObj
type, and a jump time argument. The user specifies a time to which he or she would like the traverse handle to
jump, but the specified time may or not have value changes. In that case, the traverse handle shall point to the
latest VC equal to or less than the time requested. 

In the example below, the whole simulation run is from time0 to time 65, and a variable has value changes at
time 0, 15 and 50. If we create a value change traverse handle associated with this variable and try to jump to
a different time, the result will be determined as follows: 

— Jump to 10; traverse handle return time is 0.

— Jump to 15; traverse handle return time is 15. 

— Jump to 65; traverse handle return time is 50. 

— Jump to 30; traverse handle return time is 15. 

— Jump to (-1); traverse handle return time is 0. 

— Jump to 50; traverse handle return time is 50. 

If the jump time has a value change, then the internal index of the traverse handle will point to that time.
Therefore, the return time is exactly the same as the jump time. 

If the jump time does not have a value change, and if the jump time is not less than the minimum time of the
whole trace2 run, then the return time is aligned backward. If the jump time is less than the minimum time,
then the return time will be the minimum time. In case the object has hold value semantics between the VCs
such as static variables, then the return code of vpi_control() (with a specified time argument to jump to)
should indicate success. In case the time is greater than the trace maximum time, or we have an automatic
object or an assertion or any other object that does not hold its value between the VCs then the return code
should indicate failure (and the backward time alignment is still performed).

2 The word trace can be replaced by “simulation”; we use trace here for generality since a dump file can be 
generated by several tools.
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29.7.4 Sample code using (load and traverse) object collections

vpiHandle scope; /* Some scope we are looking at */
vpiHandle var_handle; /* Object handle */
vpiHandle some_net; /* Handle of some net */
vpiHandle some_reg; /* Handle of some reg */
vpiHandle vc_trvs_hdl1; /* Traverse handle */
vpiHandle vc_trvs_hdl2; /* Traverse handle */
vpiHandle itr; /* Iterator */
vpiHandle loadCollection; /* Load collection */
vpiHandle trvsCollection; /* Traverse collection */

char *datafile = ...;/* data file */
p_vpi_time time_p; /* time */
...
/* Create load collection */
loadCollection = vpi_create(vpiObjCollection, NULL, NULL);

/* Add data to collection: All the nets in scope */
itr = vpi_iterate(vpiNet, scope);
while (var_handle = vpi_scan(itr)) {

loadCollection = vpi_create(vpiObjCollection, loadCollection, var_handle);
}
/* Add data to collection: All the regs in scope */
itr = vpi_iterate(vpiReg, scope);
while (var_handle = vpi_scan(itr)) {

loadCollection = vpi_create(vpiObjCollection, loadCollection, var_handle);
}
/* Initialize the read interface: Post process mode, read from a file,

and focus only on the signals in the load collection: loadCollection */
vpi_read_init(vpiAccessPostProcess, datafile, loadCollection, NULL, 0);

/* Demo scanning the load collection */
itr = vpi_iterate(vpiMember, loadCollection);
while (var_handle = vpi_scan(itr)) {

...
}

/* Load the data in one shot using load collection */
vpi_read_load(loadCollection);

/* Application code here */
some_net = ...;
time_p = ...;
some_reg = ...;
....
vc_trvs_hdl1 = vpi_handle(vpiTrvsObj, some_net);
vc_trvs_hdl2 = vpi_handle(vpiTrvsObj, some_reg);
vpi_control(vpiTrvsTime, vc_trvs_hdl1, time_p);
vpi_control(vpiTrvsTime, vc_trvs_hdl1, time_p);
/* Data querying and processing here */
....

/* free handles*/
vpi_free_object(...);

The code segment above creates an object load collectionloadCollection then adds to it all the objects in
scope of type vpiNet and vpiReg. It then initializes the read interface for post process read access from
file datafile with access to the objects listed in loadCollection. loadCollection can be iterated
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using vpi_iterate() to create iterator and then use vpi_scan() to scan it. The selected objects are then
loaded in one shot using vpi_read_load() with loadCollection as argument. The application code
is then free to obtain traverse handles for the loaded objects, and perform its querying and data processing as it
desires.

If the user application wishes to access all (or a large number of) the objects in a specific scope (and may be its
sub-scopes) it is easier to call vpi_read_init_create() to both initialize the tool and create a load col-
lection of all the objects in a single shot. The code segment below shows a simple code segment that mimics
the function of a $dumpvars call to access data of all the regs in a specific scope and its subscopes and process
the data.

vpiHandle big_scope; /* Some scope we are looking at */
vpiHandle obj_handle; /* Object handle */
vpiHandle obj_trvs_hdl; /* Traverse handle */
vpiHandle big_loadCollection;/* Load collection */
vpiHandle signal_iterator; /* Iterator for signals */
p_vpi_time time_p; /* time */

/* Initialize the read interface
Access data from (say simulator) memory, for scope big_scope
and its subscopes */

/* Call marks access AND creates collection for all the objects in the scope */
big_loadCollection = vpi_read_init_create(vpiAccessLimitedInteractive, NULL, 
NULL, big_scope, 0);

if (big_loadCollection == NULL) {
/* unable to create collection */

}

/* Load the data in one shot using load collection */
vpi_read_load(big_loadCollection);

/* Application code here */
/* Obtain handle for all the regs in scope */
signal_iterator = vpi_iterate(vpiReg, big_scope); 

/* Data querying and processing here */
while ( (obj_handle = vpi_scan(signal_iterator)) != NULL ) {

assert(vpi_get(vpiType, obj_handle) == vpiReg);
/* Create a traverse handle for read queries */
obj_trvs_hdl = vpi_handle(vpiTrvsObj, obj_handle);
time_p = ...; /* some time */
vpi_control(vpiTrvsTime, obj_trvs_hdl, time_p);
/* Get info at time */
vpi_get_value(obj_trvs_hdl, value_p); /* Value */
vpi_printf(“....”);

}
/* free handles*/
vpi_free_object(...);

29.7.5 Object-based traversal

Object based traversal can be performed by creating a traverse handle for the object and then moving it back
and forth to the next or previous Value Change (VC) or by performing jumps in time. A traverse object handle
for any object in the design can be obtained by calling vpi_handle() with a vpiTrvsObj type, and an
object vpiHandle. This is the method described in Section 29.7.3, and used in all the code examples thus far.

Using this method, the traversal would be object-based because the individual object traverse handles are cre-
ated, and then the application can query the (value, time) pairs for each VC. This method works well when the
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design is being navigated and there is a need to access the (stored) data of an object. 

29.7.6 Time-ordered traversal

Alternatively, we may wish to do a time-ordered traversal i.e. a time-based examination of values of several
objects. We can do this by using a collection. We first create a traverse collection of type vpiTrvsCollec-
tion of the objects we are interested in traversing from the design object collection of type vpiObjCol-
lection using vpi_handle() with a vpiTrvsCollection type and collection handle argument. We
can then call vpi_control() or vpi_goto() on the traverse collection to move to next or previous or do
jump in time for the collection as a whole. A move to next (previous) VC means move to the next (previous)
earliest VC among the objects in the collection; any traverse handle that does not have any VC is ignored. A
jump to a specific time aligns the handles of all the objects in the collection (as if we had done this object by
object, but here it is done in one-shot for all elements).

We can choose to loop in time by incrementing the time, and doing a jump to those time increments. This is
shown in the following code snippet.

vpiHandle loadCollection = ...;
vpiHandle trvsCollection;
p_vpi_time time_p;

/* Obtain (create) traverse collection from load collection */
trvsCollection = vpi_handle(vpiTrvsCollection, loadCollection);
/* Loop in time: increments of 100 units */
for (i = 0; i < 1000; i = i + 100) {

time_p = ...;
/* Go to point in time */
vpi_control(vpiTrvsTime, trvsCollection, time_p);

}

Alternatively we may wish to go to the next VC of the traverse collection defined to be the VC with the small-
est time among the VCs in the traverse object in the collection; again traverse objects with no VCs are ignored.
This is shown in the following code snippet.

vpiHandle loadCollection = ...;
vpiHandle trvsCollection;
vpiHandle vc_trvs1_hdl, vc_trvs2_hdl;
p_vpi_time time_p, time1_p, time2_p;

/* Create traverse collection */
trvsCollection = vpi_handle(vpiTrvsCollection, loadCollection);
vc_trvs1_hdl = ... ; /* some element of trvsCollection */
vc_trvs2_hdl = ... ;/* another element of trvsCollection */

/* Go to earliest next VC in the collection */
for (;;) { /* for all collection VCs in time */

if (vpi_control(vpiTrvsNextVC, trvsCollection) == 0) {
/* failure (e.g. already at MaxTime or no more VCs) */
break; /* cannot go further */

}
vpi_get_time(trvsCollection, time_p); /* Time of VC */
/* Test to see which elements have a VC at this time */
vpi_get_time(vc_trvs1_hdl, time1_p);
if (time1_p->real == time_p->real) {

/* Element has a VC */
vpi_get_value(vc_trvs1_hdl, value_p); /* VC data */
/* Do something at this VC point */
...

}
...

}
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By testing the traverse handle time of any element against the collection VC time we can find out if the ele-
ment has a VC at that time or not. This is shown in the last segment of the code sample above.

Alternatively, we may wish to get a new collection returned of all the objects that have a value change at the
given time we moved the traverse collection to. In this case vpi_control() is replaced with a call to
vpi_goto(). The latter returns a new collection with all the traverse objects that have a VC at that time.
This is shown in the code snippet that follows.

...
vpiHandle vctrvsCollection;/* collection for the objects with VC */
vpiHandle itr; /* collection member iterator */
...
/* Go to earliest next VC in the collection */
for (;;) { /* for all collection VCs in time */

vctrvsCollection = vpi_goto(vpiTrvsNextVC, trvsCollection);
if (vctrvsCollection == NULL) {

/* failure (e.g. already at MaxTime or no more VCs) */
break; /* cannot go further */

}
/* create iterator then scan the VC collection */
itr = vpi_iterate(vpiMember, vctrvsCollection);
while (vc_trvs1_hdl = vpi_scan(itr)) {

/* Element has a VC */
vpi_get_value(vc_trvs1_hdl, value_p); /* VC data */
/* Do something at this VC point */
...

}
...

}

29.8 Unloading the data

Once the user application is done with accessing the data it had loaded, it shall call vpi_read_unload()
to unload the data from (active) memory. Failure to call this unload may affect the tool performance and capac-
ity and its consequences are not addressed here since managing the data caching and memory hierarchy is left
to tool implementation.

Calling vpi_read_unload() before releasing (freeing) traverse (collection) handles that are manipulating
the data using vpi_free_object() is not recommended practice by users; the behavior of traversal using
existing handles is not defined here. It is left up to tool implementation to decide how best to handle this. Tools
shall, however, prevent creation of new traverse handles by returning the appropriate fail codes in the respec-
tive creation routines; this situation is similar to attempting to create traverse handles before doing any data
loads with vpi_read_load(), and shall be treated in a similar fashion.

29.9 Reader VPI routines

29.9.1 Extensions to existing routines

This section describes the extensions to existing VPI routines. Most are obvious and shown in Table 29-1.
vpi_control() is described here again for clarity.

vpi_control()

Synopsis: Try to move value change traverse index to min, max or specified time. If the request is for a
next or previous VC and there is none (for collection this means no VC for any object) a fail is returned,
otherwise a success is returned. If there is no value change at specified time in a jump, then the value
change traverse index is aligned based on the jump behavior defined earlier in Section 29.7.3.2, and the
time will be updated based on the aligned traverse point. If there is a value change occurring at the
requested time, then the value change traverse index is moved to that tag with success return, otherwise if
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the object does not have hold semantics a fail is returned. In the case of a collection, a fail is only returned
when none of the objects in its group can return a true.
Syntax: vpi_control(vpiType prop, vpiHandle obj, p_vpi_time time_p)
Returns: PLI_INT32, 1 for success, 0 for fail.
Arguments: 

vpiType prop: 
vpiTrvsMinTime: Goto the minimum time of traverse (collection) handle.
vpiTrvsMaxTime: Goto the maximum time of traverse (collection) handle.
vpiTrvsTime: Jump to the time specified in time_p.

vpiHandle obj: Handle to a traverse object (collection) of type vpitrvsObj 
(vpitrvsCollection)
p_vpi_time time_p: Pointer to a structure containing time information. Used only if prop is
of type vpiTrvsTime, otherwise it is ignored.

Related routines: vpi_goto(). Difference is that vpi_goto() can operate only on traverse collec-
tion handles only, and returns a new traverse collection for the objects that have a VC at the time it moves
to.

29.9.2 Additional routines

This section describes the additional VPI routines in detail.
vpi_read_getversion()

Synopsis: Get the reader version.
Syntax: vpi_read_getversion()
Returns: char*, for the version string
Arguments: None
Related routines: None

vpi_read_init()

Synopsis: Initialize the reader with access type and access scope, and/or access collection of objects.
Syntax: vpi_read_init(vpiType prop, char* filename, vpiHandle loadCol-
lection, vpiHandle scope, PLI_INT32 level)
Returns: PLI_INT32, 1 for success, 0 for fail.
Arguments:

vpiType prop:
vpiAccessLimitedInteractive: Access data in tool memory, with limited history. The 
tool shall at least have the current time value, no history is required.
vpiAccessInteractive: Access data interactively. Tool shall keep value history up 
to the current time.
vpiAccessPostProcess: Access data stored in specified data file.

char* filename: Data file.
vpiHandle loadCollection: Load collection of type vpiObjCollection, a collection

of
design objects.
vpiHandle scope: Scope of the read.
PLI_INT32 level: If 0 then enables access to scope and all its subscopes, 1 means just the
scope.

Related routines: None.

vpi_read_init_create()

Synopsis: Initialize the reader with access type and access scope, and/or access collection of objects. It
returns a load collection of all the (valued) design objects in access scope, and/or access collection.
Syntax: vpi_read_init(vpiType prop, char* filename, vpiHandle loadCol-
lection, vpiHandle scope, PLI_INT32 level)
Returns: vpiHandle of type vpiObjCollection for success, NULL for fail.
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Arguments:
vpiType prop:

vpiAccessLimitedInteractive: Access data in tool memory, with limited history. The 
tool shall at least have the current time value, no history is required.
vpiAccessInteractive: Access data interactively. Tool shall keep value history up 
to the current time.
vpiAccessPostProcess: Access data stored in specified data file.

char* filename: Data file.
vpiHandle loadCollection: Load collection of type vpiObjCollection, a collection

of
design objects.
vpiHandle scope: Scope of the read.
PLI_INT32 level: If 0 then enables access to scope and all its subscopes, 1 means just the
scope.

Related routines: vpi_read_init().

vpi_trvs_get_time()

Synopsis: Retrieve the time of the object or collection of objects traverse handle.
Syntax: vpi_trvs_get_time(vpiType prop, vpiHandle obj, p_vpi_time
time_p)
Returns: PLI_INT32, 1 for success, 0 for fail.
Arguments: 

vpiType prop: 
vpiTrvsMinTime: Gets the minimum time of traverse object or traverse collection. Returns 
failure if traverse object or collection has no value changes and time_p is not modified.
vpiTrvsMaxTime: Gets the maximum time of traverse object or traverse collection. Returns 
failure if traverse object or collection has no value changes and time_p is not modified.
vpiTrvsTime: Gets the time where traverse handle points. Returns failure if traverse object
or collection has no value changes and time_p is not modified. In the case of a collection, it 
returns success (and time_p is updated) only when all the traverse objects in the collection are 
pointing to the same time, otherwise returns failure and time_p is not modified.

vpiHandle obj: Handle to a traverse object of type vpiTrvsObj or a traverse collection of 
type vpiTrvsCollection.
p_vpi_time time_p: Pointer to a structure containing the returned time information.

Related routines: vpi_get_time(). Difference is that vpi_trvs_get_time() is more general
in that it allows an additional vpiType argument to get the min/max/current time of handle.
vpi_get_time() can only get the current time of traverse handle.

vpi_read_load()

Synopsis: Load the data of the given object into memory for data access and traversal if object is an
object handle; load the whole collection (i.e. set of objects) if passed handle is a load collection of type
vpiObjCollection.
Syntax: vpi_read_load(vpiHandle h)
Returns: PLI_INT32, 1 for success of loading (all) object(s) (in collection), 0 for fail of loading (any) object (in
collection).
Arguments: 

vpiHandle h: Handle to a design object (of any valid type) or object collection of 
type vpiObjCollection.

Related routines: None

vpi_read_unload()

Synopsis: Unload the given object data from (active) memory if object is an object handle, unload the
whole collection if passed object is a collection of type vpiObjCollection. See Section 29.8 for a
description of data unloading.
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Syntax: vpi_read_unload(vpiHandle h)
Returns: PLI_INT32, 1 for success, 0 for fail.
Arguments: 

vpiHandle h: Handle to an object or collection (of type vpiObjCollection).
Related routines: None.

vpi_create()

Synopsis: Create or add to a load or traverse collection.
Syntax: vpi_create(vpiType prop, vpiHandle h, vpiHandle obj)
Returns: vpiHandle of type vpiObjCollection for success, NULL for fail.
Arguments: 

vpiType prop: 
vpiObjCollection: Create (or add to) load (vpiObjCollection) or 
traverse (vpiTrvsCollection) collection.

vpiHandle h: Handle to a (object) traverse collection of type (vpiObjCollection)
vpiTrvsCollection, NULL for first call (creation)
vpiHandle obj: Handle of object to add, NULL if for first time creation of collection.

Related routines: None.

vpi_goto()

Synopsis: Try to move value change traverse index of members of collection to min, max or specified
time. If the request is for a next or previous VC and there is no VC for any object in collection a NULL is
returned signifying fail, otherwise a new collection with all objects that have a VC at the time we moved
to is returned signifying success. If there is no value change at specified time in a jump, then the value
change traverse index for each object is aligned based on the jump behavior defined earlier in Section
29.7.3.2, and its time will be updated based on the aligned traverse point. A fail (i.e. NULL collection) is
only returned when none of the objects in its group can return an individual success. See
vpi_control() for a more detailed description of the semantics of individual traverse object handles.
Syntax: vpi_goto(vpiType prop, vpiHandle obj, p_vpi_time time_p)
Returns: vpiHandle of type vpiObjCollection for success, NULL for fail..
Arguments: 

vpiType prop: 
vpiTrvsMinTime: Goto the minimum time of traverse collection handle.
vpiTrvsMaxTime: Goto the maximum time of traverse collection handle.
vpiTrvsTime: Jump to the time specified in time_p.

vpiHandle obj: Handle to a traverse object of type vpiTrvsCollection.
p_vpi_time time_p: Pointer to a structure containing time information. Used only if prop is
of type vpiTrvsTime, otherwise it is ignored.

Related routines: vpi_control(). Difference is that vpi_goto() can operate only on traverse col-
lection handles only, and returns a new traverse collection for the objects that have a VC at the time it
moves to.


