
Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 1

Assertion API errata update as of 7-Jan-2004

[all references related to SV 3.1a draft 2,
and assume an earlier application of the changes defined in LRM 121]

Section 28.4.2, "Placing assertion callbacks"

update this part of LRM-121 [related to draft2 paper page 341, prototype for vpi_register_assertion_cb()]:

Change (changes in red and blue):

Use vpi_register_assertion_cb() to place an assertion callback, the prototype is:

 /* typedef for vpi_register_assertion_cb callback function */
 typedef PLI_INT32 (vpi_assertion_callback_func)(
 PLI_INT32 reason, /* callback reason */
 p_vpi_time cb_time, /* callback time */
 vpiHandle assertion, /* handle to assertion */
 p_vpi_attempt_info info, /* attempt related information */
 PLI_BYTE8 *user_data /* user data entered upon registration */
);

 vpiHandle vpi_register_assertion_cb(
 vpiHandle assertion, /* handle to assertion */
 PLI_INT32 reason, /* reason for which callbacks needed */
 PLI_INT32 (*cb_rtn)(/* callback function */
 PLI_INT32 reason, /* callback reason */
 p_vpi_time cb_time, /* callback time */
 vpiHandle assertion,
 p_vpi_attempt_info info,
 PLI_BYTE8 *userData),
 vpi_assertion_callback_func *cb_rtn,
 PLI_BYTE8 *user_data /* user data to be supplied to cb */
);

 typedef struct t_vpi_assertion_step_info {
 PLI_INT32 matched_expression_count;
 vpiHandle *matched_exprs; /* array of expressions */
 p_vpi_source_info *exprs_source_info; /* array of source info */
 PLI_INT32 stateFrom, stateTo; /* identify transition */
 } s_vpi_assertion_step_info, *p_vpi_assertion_step_info;

 typedef struct t_vpi_attempt_info {
 union {
 vpiHandle failExpr;
 p_vpi_assertion_step_info step;
 } detail;
 s_vpi_time attemptStartTime; /* Time attempt triggered */
 } s_vpi_attempt_info, *p_vpi_attempt_info;

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

2 Copyright 2003 Accellera. All rights reserved.

[towards the end of the section (draft2: at paper page 342), make the following changes (in Blue), also add the
3rd and 4th NOTES at the end of this section]

The attempt information structure contains details relevant to the specific event that occurred.

 — On disable, enable, reset and kill callbacks, the info field is NULL.

 — On start and success callbacks, only the attemptStartTime field is valid.

 — On a cbAssertionFailure callback, the attemptStartTime and detail.failExpr fields are
valid.

 — On a step callback, the attemptStartTime and detail.step elements elementsfields are valid.

NOTES

1) ...

2) ...

3) The content of the cb_time field depends on the reason identified by the reason field, as follows:
— cbAssertionStart - cb_time is the time when the assertion attempt has been started.
— cbAssertionSuccess, cbAssertionFailure - cb_time is the time when the assertion
succeeded/failed.
— cbAssertionStepSuccess, cbAssertionStepFailure - cb_time is the time when the
assertion attempt step succeeded/failed.
— cbAssertionDisable, cbAssertionEnable, cbAssertionReset, cbAssertionKill -
not possible, data supplied is NULL.

4) In contrast to cb_time, the content of attemptStartTime is always the start time of the actual attempt of
an assertion. It can be used as an unique ID that distinguishes the attempts of any given assertion.

