
Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

1 Copyright 2003 Accellera. All rights reserved.

Section 30
SystemVerilog Data Read API

This chapter extends the SystemVerilog VPI with read facilities so that the Verilog Procedural Interface (VPI)
acts as an Application Programming Interface (API) for data access and tool interaction irrespective of
whether the data is in memory or a persistent form such as a database, and also irrespective of the tool the user
is interacting with.

30.1 Motivation

SystemVerilog is both a design and verification language consequently its VPI has a wealth of design and ver-
ification data access mechanisms. This makes the VPI an ideal vehicle for tool integration in order to replace
arcane, inefficient, and error-prone file-based data exchanges with a new mechanism for tool to tool, and user
to tool interface. Moreover, a single access API eases the interoperability investments for vendors and users
alike. Reducing interoperability barriers allows vendors to focus on tool implementation. Users, on the other
hand, will be able to create integrated design flows from a multitude of best-in-class offerings spanning the
realms of design and verification such as simulators, debuggers, formal, coverage or test bench tools.

30.1.1 Requirements

SystemVerilog adds several design and verification constructs including:

— C data types such as int, struct, union, and enum.

— Advanced built-in data types such as string.

— User defined data types and corresponding methods.

— Data types and facilities that enhance the creation and functionality of testbenches.

The access API shall be implemented by all tools as a minimal set for a standard means for user-tool or tool-
tool interaction that involves SystemVerilog object data querying (reading). In other words, there is no need for
a simulator to be running for this API to be in effect; it is a set of API routines that can be used for any interac-
tion for example between a user and a waveform tool to read the data stored in its database. This usage flow is
shown in the figure below.

Figure 30-1 — Data read VPI usage model

Our focus in the API is the user view of access. While the API does provide varied facilities to give the user
the ability to effectively architect his or her application, it does not address the tool level efficiency concerns
such as time-based incremental load of the data, and/or predicting or learning the user access. It is left up to
implementors to make this as easy and seamless as possible on the user. To make this easy on tools, the API
provides an initialization routine where the user specifies access type and design scope. The user should be pri-

SystemVerilog

Foreign

Waveform Database Foreign

VPI
Read

User

Application

VPI
Read

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 2

marily concerned with the API specified here, and efficiency issues are dealt with behind the scenes.

30.1.2 Naming conventions

All elements added by this interface shall conform to the VPI interface naming conventions.
— All names are prefixed by vpi.

— All type names shall start with vpi, followed by initially capitalized words with no separators, e.g.,
vpiName.

— All callback names shall start with cb, followed by initially capitalized words with no separators, e.g.,
cbValueChange.

— All routine names shall start with vpi_, followed by all lowercase words separated by underscores (_),
e.g., vpi_handle().

30.2 Extensions to VPI enumerations

These extensions shall be appended to the contents of the vpi_user.h file, described in IEEE Std. 1364-
2001, Annex G. The numbers in the range 800 - 899 are reserved for the read data access portion of the VPI.

30.2.1 Object types

All objects in VPI have a vpiType. This API adds a new object type for data traversal, and two other objects
types for object collection and traverse object collection.

/* vpiHandle type for the data traverse object */
#define vpiTrvsObj 800 /* use in vpi_handle() */
#define vpiCollection 810 /* Collection of VPI handles */
#define vpiObjCollection 811 /* Collection of traversable

design objs */
#define vpiTrvsCollection 812 /* Collection of vpiTrvsObj’s */

The other object types that this API references, for example to get a value at a specific time, are all the valid
types in the VPI that can be used as arguments in the VPI routines for logic and strength value processing such
as vpi_get_value(<object_handle>, <value_pointer>). These types include:

— Constants

— Nets and net arrays

— Regs and reg arrays

— Variables

— Memory

— Parameters

— Primitives

— Assertions

In other words, any limitation in vpiType of vpi_get_value() will also be reflected in this data access
API.

30.2.2 Object properties

This section lists the object property VPI calls.

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

3 Copyright 2003 Accellera. All rights reserved.

30.2.2.1 Static info

/* Check */
/* use in vpi_get() */
#define vpiIsLoaded 820 /* is loaded */
#define vpiHasDataVC 821 /* has at least one VC

at some point in time
in the database */

#define vpiHasVC 822 /* has VC at specific
time */

#define vpiHasNoValue 823 /* has no value at
specific time */

#define vpiInExtension 824 /* in the extension */

/* Access */
#define vpiAccessLimitedInteractive 830 /* interactive */
#define vpiAccessInteractive 831 /* interactive: history */
#define vpiAccessPostProcess 832 /* database */

/* Member of a collection */
#define vpiMember 840 /* use in vpi_iterate() */
/* Iteration on instances for loaded */
#define vpiDataLoaded 850 /* use in vpi_iterate() */

30.2.2.2 Dynamic info

30.2.2.2.1 Control constants

/* Control Traverse: use in vpi_goto() for a vpiTrvsObj type */
#define vpiMinTime 860 /* min time */
#define vpiMaxTime 861 /* max time */
#define vpiPrevVC 862
#define vpiNextVC 863
#define vpiTime 864 /* time jump */

These properties can also be used in vpi_trvs_get_time() to enhance the access efficiency. The routine
vpi_trvs_get_time() is similar to vpi_get_time() with the additional ability to get the min, max,
current, previous VC, and next VC times of the traverse handle; not just the current place it points (as is the
case for vpi_get_time()). These same vpiTypes can then be used for access or for moving the traverse
handle where the context (get or go to) can distinguish the intent.

30.2.3 System callbacks

The access API adds no new system callbacks. The reader routines (methods) can be called whenever the user
application has control and wishes to access data.

30.3 VPI object type additions

30.3.1 Traverse object

To access the value changes of an object over time, the notion of a Value Change (VC) traverse handle is
added. A value change traverse object is used to traverse and access value changes not just for the current
value (as calling vpi_get_time() or vpi_get_value() on the object would) but for any point in time:
past, present, or future. To create a value change traverse handle the routine vpi_handle() is called with a
vpiTrvsObj vpiType:

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 4

vpiHandle object_handle; /* design object */
vpiHandle trvsHndl = vpi_handle(/*vpiType*/vpiTrvsObj,

/*vpiHandle*/ object_handle);

A traverse object exists from the time it is created until its handle is released. It is the application’s responsibil-
ity to keep a handle to the created traverse object, and to release it when it is no longer needed.

30.3.2 VPI Collection

In order to read data efficiently, we may need to specify a group of objects for example when traversing data
we may wish to specify a list of objects that we want to mark as targets of data traversal. To do this grouping
we need the notion of a collection. A collection represents a user-defined collection of VPI handles. The col-
lection is an ordered list of VPI handles. The vpiType of a collection handle can be vpiCollection,
vpiObjCollection, or vpiTrvsCollection:

— A collection of type vpiCollection is a general collection of VPI handles of objects of any type.

— The collection object of type vpiObjCollection represents a collection of VPI traversable objects
in the design.

— A vpiTrvsCollection is a collection of traverse objects of type vpiTrvsObj.

Our usage here in the read API is of either:

— Collections of traversable design objects: Used for example in vpi_handle() to create traverse han-
dles for the collection. A collection of traversable design objects is of type vpiObjCollection (the
elements can be any object type in the design except traverse objects of type vpiTrvsObj).

— Collections of data traverse objects: Used for example in vpi_goto() to move the traverse handles
of all the objects in the collection (all are of type vpiTrvsObj). A collection of traverse objects is a
vpiTrvsCollection.

The collection contains a set of member VPI objects and can take on an arbitrary size. The collection may be
created at any time and existing objects can be added to it. The purpose of a collection is to group design
objects and permit operating on each element with a single operation applied to the whole collection group.
vpi_iterate(vpiMember, <collection_handle>) is used to create a member iterator.
vpi_scan() can then be used to scan the iterator for the elements of the collection.

A collection object is created with vpi_create(). The first call provides NULL handles to the collection
object and the object to be added. Following calls, which can be performed at any time, provide the collection
handle and a handle to the object for addition. The return argument is a handle to the collection object.

For example:
vpiHandle designCollection;
vpiHandle designObj;
vpiHandle trvsCollection;
vpiHandle trvsObj;
/* Create a collection of design objects */
designCollection = vpi_create(vpiObjCollection, NULL, NULL);
/* Add design object designObj into it */
designCollection = vpi_create(vpiObjCollection, designCollection, designObj);

/* Create a collection of traverse objects*/
trvsCollection = vpi_create(vpiTrvsCollection, NULL, NULL);
/* Add traverse object trvsObj into it */
trvsCollection = vpi_create(vpiTrvsCollection, trvsCollection, trvsObj);

Sometimes it is necessary to filter a collection and extract a set of handles which meet, or do not meet, a spe-
cific criterion for a given collection. The function vpi_filter() can be used for this purpose in the form

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

5 Copyright 2003 Accellera. All rights reserved.

of:

vpiHandle colFilterHdl = vpi_filter((vpiHandle) colHdl, (PLI_INT32) fil-
terType, (PLI_INT32) flag);

The first argument of vpi_filter(), colHdl, shall be the collection on which to apply the filter operation.
The second argument, filterType can be any vpiType or VPI Boolean property. This argument is the criterion
used for filtering the collection members. The third argument, flag, is a Boolean value. If set to TRUE,
vpi_filter() shall return a collection of handles which match the criterion indicated by filterType, if set to
FALSE, vpi_filter() shall return a collection of handles which do not match the criterion indicated by
filterType. The original collection passed as a first argument remains unchanged.

A collection object exists from the time it is created until its handle is released. It is the application’s responsi-
bility to keep a handle to the created collection, and to release it when it is no longer needed.

30.3.2.1 Operations on collections

A traverse collection can be obtained (i.e. created) from a design collection using vpi_handle(). The call
would take on the form of:

vpiHandle objCollection;
/* Obtain a traverse collection from the object collection */
vpi_handle(vpiTrvsCollection, objCollection);

The usage of this capability is discussed in Section 30.7.7.

We define another optional method, used in the case the user wishes to directly control the data load, for load-
ing data of objects in a collection: vpi_load(). This operation loads all the objects in the collection. It is
equivalent to performing a vpi_load() on every single handle of the object elements in the collection.

We also define a traversal method on collections of traverse handles i.e. collections of type vpiTrvsCol-
lection. The method is vpi_goto().

30.4 Object model diagrams

A traverse object of type vpiTrvsObj is related to its parent object; it is a means to access the value data of
said object. An object can have several traverse objects each pointing and moving in a different way along the
value data horizon. This is shown graphically in the model diagram below. The traversable class is a represen-
tational grouping consisting of any object that:

— Has a name

— Can take on a value accessible with vpi_get_value(), the value must be variable over time (i.e.
necessitates creation of a traverse object to access the value over time).

The class includes nets, net arrays, regs, reg arrays, variables, memory, primitive, primitive arrays, concurrent

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 6

assertions, and parameters. It also includes part selects of all the design object types that can have part selects.

Figure 30-2 — Model diagram of traverse object

A collection object of type vpiObjCollection groups together a set of design objects Obj (of any type). A
traverse collection object of type vpiTrvsCollection groups together a set of traverse objects trvsObj of
type vpiTrvsObj.

 net array

trvs obj

-> name
 str: vpiName

->time: trvs time

 vpi_get_time()
-> value

vpiParent

 nets

traversable

primitive array

 primitive

 reg array

 regs

 str: vpiFullName

variables

 memory

concurrent assertions

-> trvs loaded
 bool: vpiIsLoaded

instances
vpiDataLoaded

 max time, min time,
 next VC, prev VC
vpi_get_trvs_time()

 parameter

bool: vpiHasDataVC

vpi_goto()
next VC, prev VC
max time, min time,

-> control: trvs time

bool: vpiHasNoValue

-> Is in extension
bool: vpiInExtension

-> has value change

vpi_get_value()

bool: vpiHasVC

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

7 Copyright 2003 Accellera. All rights reserved.

Figure 30-3 — Model diagram of collection

30.5 Usage extensions to VPI routines

Several VPI routines, that have existed before SystemVerilog, have been extended in usage with the addition
of new object types and/or properties. While the extensions are fairly obvious, they are emphasized here again
to turn the reader’s attention to the extended usage.

collection

objCollection

trvsCollection

traversable

trvsObj

vpiMember

-> control: trvs time
 max time, min time,
 next VC, prev VC
 vpi_goto()

-> creation, addition
 vpi_create()
-> filtering
 vpi_filter()

-> load, unload
 vpi_load()
 vpi_unload()

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 8

Table 30-1: Usage extensions to Verilog 2001 VPI routines

30.6 VPI routines added in SystemVerilog

This section lists all the VPI routines added in SystemVerilog.

To Use New Usage

Get tool’s reader version vpi_get_vlog_info() Reader version return

Create an iterator for the loaded
objects (using
vpi_iterate(vpiData-
Loaded, <instance>)).
Create an iterator for (object or
traverse) collections using
vpi_iterate(vpiMember,
<collection>).

vpi_iterate() Add iteration types vpiData-
Loaded and vpiMember. Extended
with collection handle to create a col-
lection member element iterator.

Obtain a traverse (collection) handle
from an object (collection) handle

vpi_handle() Add new types vpiTrvsObj and
vpiTrvsCollection.
Extended with collection handle (of
traversable objects) to create a
traverse collection from an object col-
lection.

Obtain a property. vpi_get() Extended with the new check proper-
ties: vpiIsLoaded , vpiHas-
DataVC, vpiHasVC,
vpiHasNoValue, and vpiIsEx-
tension.

Get a value. vpi_get_value() Use traverse handle as argument to
get value where handle points.

Get time traverse handle points at. vpi_get_time() Use traverse handle as argument to
get time where handle points.

Free traverse handle
Free (traverse) collection handle.

vpi_free_object() Use traverse handle as argument
Use (traverse) collection handle as
argument.

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

9 Copyright 2003 Accellera. All rights reserved.

Table 30-2: VPI routines added in SystemVerilog

30.7 Reading data

Reading data is performed in 3 steps:

1) A design object must be selected for traverse access from a database (or from memory).

2) Indicate the intent to access data. This is typically done by a vpi_load_init() call as a hint from the
user to the tool on which areas of the design are going to be accessed. The tool will then load the data in an
invisible fashion to the user (for example, either right after the call, or at traverse handle creation, or
usage). Alternatively, if the user wishes he can (also) choose to add a specific vpi_load() call (this can
be done at any point in time) to load, or force the load of, a specific object or collection of objects. This can
be done either instead of, or in addition to, the objects in the scope or collection specified in
vpi_load_init()). vpi_unload() can be used by the user to force the tool to unload specific
objects. It should be noted that traverse handle creation will fail for unloaded objects or collections.

3) Once an object is selected, and marked for load, a traverse object handle can be created and used to
traverse the design objects’ stored data.

To Use

Create a new handle: used to
- create an object (traverse) collection
- Add a (traverse) object to an existing collection.

vpi_create()

Initialize read interface by loading the appropriate
reader extension library (simulator, waveform, or
other tool). All VPI routines defined by the reader
extension library shall be called by indirection
through the returned pointer; only built-in VPI rou-
tines can be called directly.

vpi_load_extension()

Close database and perform any tool cleanup (if
opened in vpiAccessPostProcess or vpi-
AccessInteractive mode).

vpi_close()

Initialize load access. vpi_load_init()

Load data (for a single design object or a collection)
onto memory if the users wishes to exercise this
level of data load control.

vpi_load()

Unload data (for a single design object or a collec-
tion) from memory if the user wishes to exercise this
level of data load control.

vpi_unload()

Get the traverse handle min, max, current, previous
VC, or next VC time.

vpi_trvs_get_time()

Move traverse (collection) to min, max, or specific
time. Return a new traverse (collection) handle con-
taining all the objects that have a VC at that time.

vpi_goto()

Filter a collection and extract a set of handles
which meet, or do not meet, a specific criterion
for a given collection.

vpi_filter()

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 10

4) At this point the object is available for reading. The traverse object permits the data value traversal and
access.

30.7.1 VPI read initialization and load access initialization

Selecting an object is done in 3 steps:

1) The first step is to initialize the read access with a call to vpi_load_extension() to load the reader
extension and set:

a) Name of the reader library to be used specified as a character string. This is either a full pathname to
this library or the single filename (without path information) of this library, assuming a vendor specific
way of defining the location of such a library. The latter method is more portable and therefore
recommended. Neither the full pathname, nor the single filename shall include an extension, the name
of the library must be unique and the appropriate extension for the actual platform should be provided
by the application loading this library More details are in Section 30.9.

b) Name of the database holding the stored data or flush database in case of
vpiAccessPostProcess or vpiAccessInteractive respectively; a NULL can be used in
case of vpiAccessLimitedInteractive. This is the logical name of a database, not the name
of a file in the file system. It is implementation dependent whether there is any relationship to an actual
on-disk object and the provided name. See access mode below for more details on the access modes.

c) Access mode: The following VPI properties set the mode of access

— vpiAccessLimitedInteractive: Means that the access will be done for the data stored in the
tool memory (e.g. simulator), the history (or future) that the tool stores is implementation dependent. If
the tool does not store the requested info then the querying routines shall return a fail. The database
name argument to vpi_load_extension() in this mode will be ignored (even if not NULL).

— vpiAccessInteractive: Means that the access will be done interactively. The tool will then use
the database specified as a “flush” area for its data. This mode is very similar to the vpiAccessLim-
itedInteractive with the additional requirement that all the past history (before current time) shall be
stored (for the specified scope/collection, see the access scope/collection description of
vpi_load_init().

— vpiAccessPostProcess: Means that the access will be done through the specified database. All
data queries shall return the data stored in the specified database. Data history depends on what is
stored in the database, and can be nothing (i.e. no data).

vpi_load_extension() can be called multiple times for different reader interface libraries (coming
from different tools), database specification, and/or read access. A call with vpiAccessInteractive
means that the user is querying the data stored inside the simulator database and uses the VPI routines sup-
ported by the simulator. A call with vpiAccessPostProcess means that the user is accessing the data
stored in the database and uses the VPI services provided by the waveform tool. The application, if accessing
several databases and/or using multiple read API libraries, can use the routine vpi_get(vpiInExten-
sion, <vpiHandle>) to check whether a handle belongs to that database. The call is performed as fol-
lows:

reader_extension_ptr->vpi_get(vpiInExtension, <vpiHandle>);

where reader_extension_ptr is the reader library pointer returned by the call to
vpi_load_extension(). TRUE is returned if the passed handle belongs to that extension, and FALSE
otherwise. If the application uses the built-in library (i.e. the one provided by the tool it is running under), there
is no need to use indirection to call the VPI routines; they can be called directly. An initial call must however
be made to set the access mode, specify the database, and check for error indicated by a NULL return.

In case of vpiAccessPostProcess or vpiAccessInteractive mode vpi_close() shall be
called to allow the tool to close the opened database and perform any cleanup. Handles obtained before the call

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

11 Copyright 2003 Accellera. All rights reserved.

to vpi_close() are no longer valid after this call.

Multiple databases, possibly in different access modes (for example a simulator database opened in vpi-
AccessInteractive and a database opened in vpiAccessPostProcess, or two different databases
opened in vpiAccessPostProcess) can be accessed at the same time. Section 30.9 shows an example of
how to access multiple databases from multiple read interfaces simultaneously.

2) Next step is to specify the elements that will be accessed. This is accomplished by calling
vpi_load_init() and specifying a scope and/or an item collection. At least one of the two (scope or
collection) needs to be specified. If both are specified then the union of all the object elements forms the
entire set of objects the user may access.

— Access scope: The specified scope handle, and nesting mode govern the scope that access returns. Data
queries outside this scope (and its sub-scopes as governed by the nesting mode) shall return a fail in the
access routines unless the object belongs to access collection described below. It can be used either in a
complementary or in an exclusive fashion to access collection. NULL is to be passed to the collection
when access scope is used in an exclusive fashion.

— Access collection: The specified collection stores the traverse object handles to be loaded. It can be
used either in a complementary or in an exclusive fashion to access scope. NULL is to be passed to the
scope when access collection is used in an exclusive fashion.

vpi_load_init() enables access to the objects stored in the database and can be called multiple times.
The load access specification of a call remains valid until the next call is executed. This routine serves to ini-
tialize the tool load access and provides an entry point for the tool to perform data access optimizations.

30.7.2 Object selection for traverse access

In order to select an object for access, we must first obtain the object handle. This can be done using the VPI
routines (that are supported in the tool being used) for traversing the HDL hierarchy and obtaining an object
handle based on the type of object relationship to the starting handle.

Any tool that implements this read API (e.g. waveform tool) shall implement at least a basic subset of the
design navigation VPI routines that shall include vpi_handle_by_name() to permit the user to get a
vpiHandle from an object name. It is left up to tool implementation to support additional design navigation
relationships. Therefore, if the application wishes to access similar elements from one database to another, it
shall use the name of the object, and then call vpi_handle_by_name(), to get the object handle from the
relevant database. This level of indirection is always safe to do when switching the database query context, and
shall be guaranteed to work.

It should be noted that an object’s vpiHandle depends on the access mode specified in
vpi_load_extension() and the database accessed (identified by the returned extension pointer, see Sec-
tion 30.9). A handle obtained through a post process access mode (vpiAccessPostProcess) from a
waveform tool for example is not interchangeable in general with a handle obtained through interactive access
mode (vpiAccessLimitedInteractive or vpiAccessInteractive) from a simulator. Also han-
dles obtained through post process access mode of different databases are not interchangeable. This is because
objects, their data, and relationships in a stored database could be quite different from those in the simulation
model, and those in other databases.

30.7.3 Optionally loading objects

As mentioned earlier vpi_load_init() allows the tool implementing the reader to load objects in a fash-
ion that is invisible to the user. Optionally, if the user chooses to do their own loading at some point in time,
then once the object handle is obtained they can use the VPI data load routine vpi_load() with the object’s
vpiHandle to load the data for the specific object onto memory. Alternatively, for efficiency considerations,
vpi_load() can be called with a design object collection handle of type vpiObjCollection. The col-
lection must have already been created by either using vpi_create() and the (additional) selected object
handles added to the load collection using vpi_create() with the created collection list passed as argu-
ment. The object(s) data is not accessible as of yet to the user’s read queries; a traverse handle must still be cre-

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 12

ated. This is presented in Section 30.7.4.

Note that loading the object means loading the object from a database into memory, or marking it for active use
if it is already in the memory hierarchy. Object loading is the portion that tool implementors need to look at for
efficiency considerations. Reading the data of an object, if loaded in memory, is a simple consequence of the
load initialization (vpi_load_init()) and/or vpi_load() optionally called by the user. The API does
not specify here any memory hierarchy or caching strategy that governs the access (load or read) speed. It is
left up to tool implementation to choose the appropriate scheme. It is recommended that this happens in a fash-
ion invisible to the user without requiring additional routine calls.

The API here provides the tool with the chance to prepare itself for data load and access with the
vpi_load_init(). With this call, the tool can examine what objects the user wishes to access before the
actual read access is made. The API also provides the user the ability to force loads and unloads but it is rec-
ommended to leave this to the tool unless there is a need for the user application to influence this aspect.

30.7.3.1 Iterating the design for the loaded objects

The user shall be allowed to optionally iterate for the loaded objects in a specific instantiation scope using
vpi_iterate(). This shall be accomplished by calling vpi_iterate() with the appropriate reference
handle, and using the property vpiDataLoaded. This is shown below.

a) Iterate all data read loaded objects in the design: use a NULL reference handle (ref_h) to
vpi_iterate(), e.g.,

itr = vpi_iterate(vpiDataLoaded, /* ref_h */ NULL);
while (loadedObj = vpi_scan(itr)) {
/* process loadedObj */
}

b) Iterate all data read loaded objects in an instance: pass the appropriate instance handle as a reference
handle to vpi_iterate(), e.g.,

itr = vpi_iterate(vpiDataLoaded, /* ref_h */ instanceHandle);
while (loadedObj = vpi_scan(itr)) {
/* process loadedObj */
}

30.7.3.2 Iterating the object collection for its member objects

The user shall be allowed to iterate for the design objects in a design collection using vpi_iterate() and
vpi_scan(). This shall be accomplished by creating an iterator for the members of the collection and then
use vpi_scan() on the iterator handle e.g.

vpiHandle var_handle; /* some object */
vpiHandle varCollection; /* object collection */
vpiHandle Var; /* object handle */
vpiHandle itr; /* iterator handle */
/* Create object collection */
varCollection = vpi_create(vpiObjCollection, NULL, NULL);
/* Add elements to the object collection */
varCollection = vpi_create(vpiObjCollection, varCollection,
var_handle);

/* Iterating a collection for its elements */
itr = vpi_iterate(vpiMember, varCollection); /* create iterator */
while (Var = vpi_scan(itr)) { /* scan iterator */

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

13 Copyright 2003 Accellera. All rights reserved.

/* process Var */
}

30.7.4 Reading an object

The sections above have outlined:

— How to select an object for access, in other words, marking this object as a target for access. This is
where the design navigation VPI is used.

— How to call vpi_load_init() as a hint on the areas to be accessed, and/or optionally load an
object into memory after obtaining a handle and then either loading objects individually or as a group
using the object collection.

— How to optionally iterate the design scope and the object collection to find the loaded objects if needed.

In this section reading data is discussed. Reading an object data means obtaining its value changes. VPI, before
this extension, had allowed a user to query a value at a specific point in time--namely the current time, and its
access does not require the extra step of giving a load hint or actually loading the object data. We add that step
here because we extend VPI with a temporal access component: The user can ask about all the values in time
(regardless of whether that value is available to a particular tool, or found in memory or a database, the mech-
anism is provided) since accessing this value horizon involves a larger memory expense, and possibly a con-
siderable access time. Let’s see now how to access and traverse this value timeline of an object.

To access the value changes of an object over time we use a traverse object as introduced earlier in Section
30.3.1. Several VPI routines are also added to traverse the value changes (using this new handle) back and
forth. This mechanism is very different from the “iteration” notion of VPI that returns objects related to a given
object, the traversal here can walk or jump back and forth on the value change timeline of an object. To create
a value change traverse handle the routine vpi_handle() must be called in the following manner:

vpiHandle trvsHndl = vpi_handle(vpiTrvsObj, object_handle);

Note that the user (or tool) application can create more than one value change traverse handle for the same
object, thus providing different views of the value changes. Each value change traverse handle shall have a
means to have an internal index, which is used to point to its “current” time and value change of the place it
points. In fact, the value change traversal can be done by increasing or decreasing this internal index. What this
index is, and how its function is performed is left up to tools’ implementation; we only use it as a concept for
explanation here.

Once created the traverse handle can point anywhere along the timeline; its initial location is left for tool
implementation. However, if the traverse object has no value changes the handle shall point to the minimum
time (of the trace), so that calls to vpi_get_time() can return a valid time. It is up to the user to call an ini-
tial vpi_goto() to move to the desired initial pointing location.

30.7.4.1 Traversing value changes of objects

After getting a traverse vpiHandle, the application can do a forward or backward walk or jump traversal by
using vpi_goto() on a vpiTrvsObj object type with the new traverse properties.

Here is a sample code segment for the complete process from handle creation to traversal.
p_vpi_extension reader_p; /* Pointer to VPI reader extension structure */
vpiHandle instanceHandle; /* Some scope object is inside */
vpiHandle var_handle; /* Object handle */
vpiHandle vc_trvs_hdl; /* Traverse handle */
vpiHandle itr;
p_vpi_value value_p; /* Value storage */
p_vpi_time time_p; /* Time storage */
PLI_INT32 code; /* return code */
...
/* Initialize the read interface: Access data from memory */

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 14

/* NOTE: Use built-in VPI (e.g. that of simulator application is running
under) */

reader_p = vpi_load_extension(NULL, NULL, vpiAccessLimitedInteractive);

if (reader_p == NULL) ... ; /* Not successful */

/* Initialize the load: Access data from simulator) memory, for scope
instanceHandle and its subscopes */
/* NOTE: Call marks access for all the objects in the scope */
vpi_load_init(NULL, instanceHandle, 0);

itr = vpi_iterate(vpiVariables, instanceHandle);
while (var_handle = vpi_scan(itr)) {
/* Demo how to force the load, this part can be skipped in general */

if (vpi_get(vpiIsLoaded, var_handle) == 0) { /* not loaded*/
/* Load data: object-based load, one by one */
if (!vpi_load(var_handle)); /* Data not found ! */

break;
}

/*-- End of Demo how to force the load, this part can be skipped in general */
/* Create a traverse handle for read queries */
vc_trvs_hdl = vpi_handle(vpiTrvsObj, var_handle);
/* Go to minimum time */
vc_trvs_hdl = vpi_goto(vpiMinTime, vc_trvs_hdl, NULL, NULL);
/* Get info at the min time */
vpi_get_time(vc_trvs_hdl, time_p); /* Minimum time */
vpi_printf(...);
vpi_get_value(vc_trvs_hdl, value_p); /* Value */
vpi_printf(...);
if (vpi_get(vpiHasDataVC, vc_trvs_hdl)) { /* Have any VCs ? */

for (;;) { /* All the elements in time */
vc_trvs_hdl = vpi_goto(vpiNextVC, vc_trvs_hdl, NULL, &code);
if (!code) {

/* failure (e.g. already at MaxTime or no more VCs) */
break; /* cannot go further */

}
/* Get Max */
/* vpi_trvs_get_time(vpiMaxTime, vc_trvs_hdl, time_p); */
vpi_get_time(vc_trvs_hdl, time_p); /* Time of VC */
vpi_get_value(vc_trvs_hdl, value_p); /* VC data */

}
}

}
/* free handles */
vpi_free_object(...);

The code segment above declares an interactive access scheme, where only a limited history of values is pro-
vided by the tool (e.g. simulator). It then creates a Value Change (VC) traverse handle associated with an
object whose handle is represented by var_handle but only after vpi_load_init() is called. It then
creates a traverse handle, vc_trvs_hdl. With this traverse handle, it first calls vpi_goto() to move to
the minimum time where the value has changed. It moves the handle (internal index) to that time by calling
vpi_goto() with a vpiMinTime argument. It then repeatedly calls vpi_goto() with a vpiNextVC to
move the internal index forward repeatedly until there is no value change left. vpi_get_time() gets the
actual time where this VC is, and data is obtained by vpi_get_value().

The traverse and collection handles can be freed when they are no longer needed using
vpi_free_object().

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

15 Copyright 2003 Accellera. All rights reserved.

30.7.4.2 Jump Behavior

Jump behavior refers to the behavior of vpi_goto() with a vpiTime property, vpiTrvsObj type, and a
jump time argument. The user specifies a time to which he or she would like the traverse handle to jump, but
the specified time may or not have value changes. In that case, the traverse handle shall point to the latest VC
equal to or less than the time requested.

In the example below, the whole simulation run is from time 10 to time 65, and a variable has value changes
at time 10, 15 and 50. If we create a value change traverse handle associated with this variable and try to
jump to a different time, the result will be determined as follows:

— Jump to 12; traverse handle return time is 10.

— Jump to 15; traverse handle return time is 15.

— Jump to 65; traverse handle return time is 50.

— Jump to 30; traverse handle return time is 15.

— Jump to 0; traverse handle return time is 10.

— Jump to 50; traverse handle return time is 50.

If the jump time has a value change, then the internal index of the traverse handle will point to that time.
Therefore, the return time is exactly the same as the jump time.

If the jump time does not have a value change, and if the jump time is not less than the minimum time of the
whole trace2 run, then the return time is aligned backward. If the jump time is less than the minimum time,
then the return time will be the minimum time. In case the object has hold value semantics between the VCs
such as static variables, then the return of vpi_goto() (with a specified time argument to jump to) is a new
handle pointing to that time to indicate success. In case the time is greater than the trace maximum time, or we
have an automatic object or an assertion or any other object that does not hold its value between the VCs then
the return code should indicate failure (and the backward time alignment is still performed). In other words the
time returned by the traverse object shall never exceed the trace maximum; the maximum point in the trace is
not marked as a VC unless there is truly a value change at that point in time (see the example in this sub-sec-
tion).

30.7.4.3 Dump off regions

When accessing a database, it is likely that there are gaps along the value time-line where possibly the data
recording (e.g. dumping from simulator) was turned off. In this case the starting point of that interval shall be
marked as a VC if the object had a stored value before that time. vpi_goto(), whether used to jump to that
time or using next VC or previous VC traversal from a point before or after respectively, shall stop at that VC.
Calling vpi_get_value() on the traverse object pointing to that VC shall have no effect on the value argu-
ment passed; the time argument will be filled with the time at that VC. vpi_get() can be called in the form:
vpi_get(vpiHasNoValue, <traverse handle>) to return TRUE if the traverse handle has no
value (i.e. pointing to the start of a dump off region) and FALSE otherwise.

There is, of course, another VC (from no recorded value to an actual recorded value) at the end of the dump off
interval, if the end exits i.e. there is additional dumping performed and data for this object exits before the end
of the trace. There are no VCs in between the two marking the beginning and end (if they exist); a move to the
next VC from the start point leads to the end point.

30.7.5 Sample code using object (and traverse) collections

p_vpi_extension reader; /* Pointer to reader VPI library */
vpiHandle scope; /* Some scope we are looking at */
vpiHandle var_handle; /* Object handle */

2 The word trace can be replaced by “simulation”; we use trace here for generality since a dump file can be
generated by several tools.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 16

vpiHandle some_net; /* Handle of some net */
vpiHandle some_reg; /* Handle of some reg */
vpiHandle vc_trvs_hdl1; /* Traverse handle */
vpiHandle vc_trvs_hdl2; /* Traverse handle */
vpiHandle itr; /* Iterator */
vpiHandle objCollection; /* Object collection */
vpiHandle trvsCollection; /* Traverse collection */

PLI_BYTE8 *data = “my_database”;/* database */
p_vpi_time time_p; /* time */
PLI_INT32 code; /* Return code */

/* Initialize the read interface: Post process mode, read from a database */
/* NOTE: Uses “toolX” library */
reader_p = vpi_load_extension(“toolX”, data, vpiAccessPostProcess);

if (reader_p == NULL) ... ; /* Not successful */

/* Get the scope using its name */
scope = reader_p->vpi_handle_by_name(“top.m1.s1”, NULL);
/* Create object collection */
objCollection = reader_p->vpi_create(vpiObjCollection, NULL, NULL);

/* Add data to collection: All the nets in scope */
/* ASSUMPTION: (waveform) tool “toolX” supports this navigation

relationship */
itr = reader_p->vpi_iterate(vpiNet, scope);
while (var_handle = reader_p->vpi_scan(itr)) {

objCollection = reader_p->vpi_create(vpiObjCollection, objCollection,
var_handle);

}
/* Add data to collection: All the regs in scope */
/* ASSUMPTION: (waveform) tool supports this navigation relationship */
itr = reader_p->vpi_iterate(vpiReg, scope);
while (var_handle = reader_p->vpi_scan(itr)) {

objCollection = reader_p->vpi_create(vpiObjCollection, objCollection,
var_handle);

}

/* Initialize the load: focus only on the signals in the object collection:
objCollection */
reader_p->vpi_load_init(objCollection, NULL, 0);

/* Demo scanning the object collection */
itr = reader_p->vpi_iterate(vpiMember, objCollection);
while (var_handle = reader_p->vpi_scan(itr)) {

...
}

/* Application code here */
some_net = ...;
time_p = ...;
some_reg = ...;
....
vc_trvs_hdl1 = reader_p->vpi_handle(vpiTrvsObj, some_net);
vc_trvs_hdl2 = reader_p->vpi_handle(vpiTrvsObj, some_reg);
vc_trvs_hdl1 = reader_p->vpi_goto(vpiTime, vc_trvs_hdl1, time_p, &code);
vc_trvs_hdl2 = reader_p->vpi_goto(vpiTime, vc_trvs_hdl2, time_p, &code);

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

17 Copyright 2003 Accellera. All rights reserved.

/* Data querying and processing here */
....

/* free handles*/
reader_p->vpi_free_object(...);

/* close database */
reader_p->vpi_close(0, data);

The code segment above initializes the read interface for post process read access from database data. It then
creates an object collection objCollection then adds to it all the objects in scope of type vpiNet and
vpiReg (assuming this type of navigation is allowed in the tool). Load access is initialized and set to the
objects listed in objCollection. objCollection can be iterated using vpi_iterate() to create the
iterator and then using vpi_scan() to scan it assuming here that the waveform tool provides this navigation.
The application code is then free to obtain traverse handles for the objects, and perform its querying and data
processing as it desires.

The code segment below shows a simple code segment that mimics the function of a $dumpvars call to access
data of all the regs in a specific scope and its subscopes and process the data.

p_vpi_extension reader_p; /* Reader library pointer */
vpiHandle big_scope; /* Some scope we are looking at */
vpiHandle obj_handle; /* Object handle */
vpiHandle obj_trvs_hdl; /* Traverse handle */
vpiHandle signal_iterator; /* Iterator for signals */
p_vpi_time time_p; /* time */

/* Initialize the read interface: Access data from simulator */
/* NOTE: Use built-in VPI (e.g. that of simulator application is running

under */
reader_p = vpi_load_extension(NULL, NULL, vpiAccessLimitedInteractive);

if (reader_p == NULL) ... ; /* Not successful */

/* Initialize the load access: data from (simulator) memory, for scope
big_scope and its subscopes */

/* NOTE: Call marks load access */
vpi_load_init(NULL, big_scope, 0);

/* Application code here */
/* Obtain handle for all the regs in scope */
signal_iterator = vpi_iterate(vpiReg, big_scope);

/* Data querying and processing here */
while ((obj_handle = vpi_scan(signal_iterator)) != NULL) {

assert(vpi_get(vpiType, obj_handle) == vpiReg);
/* Create a traverse handle for read queries */
obj_trvs_hdl = vpi_handle(vpiTrvsObj, obj_handle);
time_p = ...; /* some time */
obj_trvs_hdl = vpi_goto(vpiTime, obj_trvs_hdl, time_p, &code);
/* Get info at time */
vpi_get_value(obj_trvs_hdl, value_p); /* Value */
vpi_printf(“....”);

}
/* free handles*/
vpi_free_object(...);

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 18

30.7.6 Object-based traversal

Object based traversal can be performed by creating a traverse handle for the object and then moving it back
and forth to the next or previous Value Change (VC) or by performing jumps in time. A traverse object handle
for any object in the design can be obtained by calling vpi_handle() with a vpiTrvsObj type, and an
object vpiHandle. This is the method described in Section 30.7.4, and used in all the code examples thus far.

Using this method, the traversal would be object-based because the individual object traverse handles are cre-
ated, and then the application can query the (value, time) pairs for each VC. This method works well when the
design is being navigated and there is a need to access the (stored) data of any individual object.

30.7.7 Time-ordered traversal

Alternatively, we may wish to do a time-ordered traversal i.e. a time-based examination of values of several
objects. We can do this by using a collection. We first create a traverse collection of type vpiTrvsCollec-
tion of the objects we are interested in traversing from the design object collection of type vpiObjCol-
lection using vpi_handle() with a vpiTrvsCollection type and collection handle argument. We
can then call vpi_goto() on the traverse collection to move to next or previous or do jump in time for the
collection as a whole. A move to next (previous) VC means move to the next (previous) earliest VC among the
objects in the collection; any traverse handle that does not have any VC is ignored; on return its new handle
points to the same place as its old. A jump to a specific time aligns the new returned handles of all the objects
in the collection (as if we had done this object by object, but here it is done in one-shot for all elements).

We can choose to loop in time by incrementing the time, and doing a jump to those time increments. This is
shown in the following code snippet.

vpiHandle objCollection = ...;
vpiHandle trvsCollection;
p_vpi_time time_p;
PLI_INT32 code;

/* Obtain (create) traverse collection from object collection */
trvsCollection = vpi_handle(vpiTrvsCollection, objCollection);
/* Loop in time: increments of 100 units */
for (i = 0; i < 1000; i = i + 100) {

time_p = ...;
/* Go to point in time */
trvsCollection = vpi_goto(vpiTime, trvsCollection, time_p, &code);
...

}

Alternatively, we may wish to get a new collection returned of all the objects that have a value change at the
given time we moved the traverse collection to. In this case vpi_filter() follows the call to
vpi_goto(). The latter returns a new collection with all the new traverse objects, whether they have a VC
or not. vpi_filter() allows us to filter the members that have a VC at that time. This is shown in the code
snippet that follows.

...
vpiHandle rettrvsCollection; /* Collection for all the objects */
vpiHandle vctrvsCollection; /* collection for the objects with VC */
vpiHandle itr; /* collection member iterator */
...
/* Go to earliest next VC in the collection */
for (;;) { /* for all collection VCs in time */

rettrvsCollection = vpi_goto(vpiNextVC, trvsCollection, NULL, &code);
if (!code) {

/* failure (e.g. already at MaxTime or no more VCs) */
break; /* cannot go further */

}

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

19 Copyright 2003 Accellera. All rights reserved.

vctrvsCollection = vpi_filter(rettrvsCollection, vpiHasVC, 1);
/* create iterator then scan the VC collection */
itr = vpi_iterate(vpiMember, vctrvsCollection);
while (vc_trvs1_hdl = vpi_scan(itr)) {

/* Element has a VC */
vpi_get_value(vc_trvs1_hdl, value_p); /* VC data */
/* Do something at this VC point */
...

}
...

}

30.8 Optionally unloading the data

The implementation tool should handle unloading the unused data in a fashion invisible to the user. Managing
the data caching and memory hierarchy is left to tool implementation but it should be noted that failure to
unload may affect the tool performance and capacity.

The user can optionally choose to call vpi_unload() to unload the data from (active) memory if the user
application is done with accessing the data.

Calling vpi_unload() before releasing (freeing) traverse (collection) handles that are manipulating the
data using vpi_free_object() is not recommended practice by users; the behavior of traversal using
existing handles is not defined here. It is left up to tool implementation to decide how best to handle this. Tools
shall, however, prevent creation of new traverse handles, after the call to vpi_unload(), by returning the
appropriate fail codes in the respective creation routines.

30.9 Reading data from multiple databases and/or different read library providers

The VPI routine vpi_load_extension() is used to load VPI extensions. Such extensions include reader
libraries from such tools as waveform viewers. vpi_load_extension() shall return a pointer to a func-
tion pointer structure with the following definition.

typedef struct {
 void *user_data; /* Attach user data here if needed */

 /* Below this point user application MUST NOT modify any values */
 size_t struct_size; /* Must be set to sizeof(s_vpi_extension) */
 long struct_version; /* Set to 1 for SystemVerilog 3.1a */
 PLI_BYTE8 *extension_version;
 PLI_BYTE8 *extension_name;

/* One function pointer for each of the defined VPI routines:
 - Each function pointer has to have the correct prototype
*/

 ...
 PLI_INT32 (*vpi_chk_error)(error_info_p);
 ...
 PLI_INT32 (*vpi_vprintf)(PLI_BYTE8 *format, ...);
 ...

} s_vpi_extension, *p_vpi_extension;

Subsequent versions of the s_vpi_extension structure shall only extend it by adding members at the end;
previously existing entries must not be changed, removed, or re-ordered in order to preserve backward com-
patability. The struct_size entry allows users to perform basic sanity checks (e.g. before type casting),

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 20

and the struct_version permits keeping track and checking the version of the s_vpi_extension
structure. The structure also has a user_data field to give users a way to attach data to a particular load of
an extension if they wish to do so.

The structure shall have an entry for every VPI routine. If a particular extension does not support a specific
VPI routine, then it shall still have an entry (with the correct prototype), and a dummy body that shall always
have a return (consistent with the VPI prototype) to signify failure (i.e. NULL or FALSE as the case may be).
The routine call must also raise the appropriate VPI error, which can be checked by vpi_chk_error(),
and/or automatically generate an error message in a manner consistent with the specific VPI routine.

The order of the VPI routines must be exactly that of the standard. If tool providers want to add their own
implementation extensions, those extensions must only have the effect of making the s_vpi_extension
structure larger and any non-standard content must occur after all the standard fields. This permits applica-
tions to use the pointer to the extended structure as if it was a p_vpi_extension pointer, yet still allow the
applications to go beyond and access or call tool-specific fields or routines in the extended structure. For
example, a tool extended s_vpi_extension could be:

typedef struct {
/* inline a copy of s_vpi_extension */
/* begin */
void *user_data;
...
/* end */
/* “toolZ” extension with one additional routine */
int (*toolZfunc)(int);

} s_toolZ_extension, *p_toolZ_extension;

An example of use of the above extended structure is as follows:

p_vpi_extension h;
p_toolZ_extension hZ;

h = vpi_load_extension(“toolZ”, <args>);
if (h && (h->struct_size >= ...)

 && !(strcmp(h->extension_version, “...”)
 && !strcmp(h->extension_name, “toolZ”)) {

hZ = (p_toolZ_extension) h;
/* Can now use hZ to access all the VPI routines, including toolZ’s

‘toolZfunc’ */
...

}

The SystemVerilog tool the user application is running under is responsible for loading the appropriate exten-
sion, i.e. the reader API library in the case of the read API. The extension name is used for this purpose, fol-
lowing a specific policy, for example, this extension name can be the name of the library to be loaded. Once
the reader API library is loaded all VPI function calls that wish to use the implementation in the library shall be
performed using the returned p_vpi_extension pointer as an indirection to call the function pointers spec-
ified in s_vpi_extension or the extended vendor specific structure as described above. Note that, as stated ear-
lier, in the case the application is using the built-in routine implementation (i.e. the ones provided by the tool
(e.g. simulator) it is running under) then the de-reference through the pointer is not necessary.

Multiple databases can be opened for read simultaneously by the application. After a
vpi_load_extension() call, a top scope handle can be created for that database to be used later to derive
any other handles for objects in that database. An example of multiple database access is shown below. In the
example, scope1 and scope2 are the top scope handles used to point into database1 and database2 respectively
and perform the processing (comparing data in the two databases for example).

p_vpi_extension reader_pX; /* Pointer to reader libraryfunction struct */
p_vpi_extension reader_pY; /* Pointer to reader libraryfunction struct */

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

21 Copyright 2003 Accellera. All rights reserved.

vpiHandle scope1, scope2; /* Some scope we are looking at */
vpiHandle var_handle; /* Object handle */
vpiHandle some_net; /* Handle of some net */
vpiHandle some_reg; /* Handle of some reg */
vpiHandle vc_trvs_hdl1; /* Traverse handle */
vpiHandle vc_trvs_hdl2; /* Traverse handle */
vpiHandle itr; /* Iterator */
vpiHandle objCollection1, objCollection2;/* Object collection */
vpiHandle trvsCollection1, trvsCollection2;/* Traverse collection*/
p_vpi_time time_p; /* time */

PLI_BYTE8 *data1 = “database1”;
PLI_BYTE8 *data2 = “database2”;

/* Initialize the read interface: Post process mode, read from a database */
/* NOTE: Use library from “toolX” */
reader_pX = vpi_load_extension(“toolX”, data1, vpiAccessPostProcess);
/* Get the scope using its name */
/* NOTE: scope handle comes from database: data1 */
scope1 = reader_pX->vpi_handle_by_name(“top.m1.s1”, NULL);

/* Initialize the read interface: Post process mode, read from a database */
/* NOTE: Use library from “toolY” */
reader_pY = vpi_load_extension(“toolY”, data2, vpiAccessPostProcess);
/* Get the scope using its name */
/* NOTE: scope handle comes from database: data2 */
scope2 = reader_pY->vpi_handle_by_name(“top.m1.s1”, NULL);

/* Create object collections */
objCollection1 = reader_pX->vpi_create(vpiObjCollection, NULL, NULL);
objCollection2 = reader_pY->vpi_create(vpiObjCollection, NULL, NULL);

/* Add data to collection1: All the nets in scope1,
data comes from database1 */

/* ASSUMPTION: (waveform) tool supports this navigation relationship */
itr = reader_pX->vpi_iterate(vpiNet, scope1);
while (var_handle = reader_pX->vpi_scan(itr)) {

objCollection1 = reader_pX->vpi_create(vpiObjCollection, objCollection1,
var_handle);

}

/* Add data to collection2: All the nets in scope2,
data comes from database2 */

/* ASSUMPTION: (waveform) tool supports this navigation relationship */
itr = reader_pY->vpi_iterate(vpiNet, scope2);
while (var_handle = reader_pY->vpi_scan(itr)) {

objCollection2 = reader_pY->vpi_create(vpiObjCollection, objCollection2,
var_handle);

}

/* Initialize the load: focus only on the signals in the object collection:
objCollection */
reader_pX->vpi_load_init(objCollection1, NULL, 0);
reader_pY->vpi_load_init(objCollection2, NULL, 0);

/* Demo: Scan the object collection */
itr = reader_pX->vpi_iterate(vpiMember, objCollection1);
while (var_handle = reader_pX->vpi_scan(itr)) {

...

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 22

}
itr = reader_pY->vpi_iterate(vpiMember, objCollection2);
while (var_handle = reader_pY->vpi_scan(itr)) {

...
}

/* Application code here: Access Objects from database1 or database2 */
some_net = ...;
time_p = ...;
some_reg = ...;
....
/* Data querying and processing here */
....

/* free handles*/
reader_pX->vpi_free_object(...);
reader_pY->vpi_free_object(...);

/* close databases */
reader_pX->vpi_close(0, data1);
reader_pY->vpi_close(0, data2);

30.10 VPI routines added in SystemVerilog

This section describes the additional VPI routines in detail.
vpi_load_extension()

Synopsis: Load specified VPI extension. The general form of this function allows for later extensions.
For the reader-specific form, initialize the reader with access mode, and specify the database if used.
Syntax: vpi_load_extension(PLI_BYTE8 *extension_name, ...) in its general form

vpi_load_extension(PLI_BYTE8 *extension_name,
PLI_BYTE8 *name,
vpiType mode, ...) for the reader extension

Returns: PLI_INT32, 1 for success, 0 for fail.
Arguments:

PLI_BYTE8 *extension_name: Extension name of the extension library to be loaded.
In the case of the reader, this is the reader VPI library (with the supported navigation
VPI routines).

...: Contains all the additional arguments. For the reader extension these are:
PLI_BYTE8 *name: Database.
vpiType mode:

vpiAccessLimitedInteractive: Access data in tool memory, with limited
history. The tool shall at least have the current time value, no history is required.
vpiAccessInteractive: Access data interactively. Tool shall keep value history up
to the current time.
vpiAccessPostProcess: Access data stored in specified database.

...: Additional arguments if required by specific reader extensions.
Related routines: None.

30.10.1 VPI reader routines

vpi_close()

Synopsis: Close the database if open.
Syntax: vpi_close(PLI_INT32 tool, vpiType prop, PLI_BYTE8* name)

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

23 Copyright 2003 Accellera. All rights reserved.

Returns: PLI_INT32, 1 for success, 0 for fail.
Arguments:

PLI_INT32 tool: 0 for the reader.
vpiType prop:

vpiAccessPostProcess: Access data stored in specified database.
vpiAccessInteractive: Access data interactively, database is the flush area. Tool shall
keep value history up to the current time.

PLI_BYTE8* name: Name of the database. This can be the logical name of a database or the
actual name of the data file depending on the tool implementation.

Related routines: None.

vpi_load_init()

Synopsis: Initialize the load access to scope and/or collection of objects.
Syntax: vpi_load_init(vpiHandle objCollection, vpiHandle scope,
PLI_INT32 level)
Returns: PLI_INT32, 1 for success, 0 for fail.
Arguments:

vpiHandle objCollection: Object collection of type vpiObjCollection, a collection
of design objects.
vpiHandle scope: Scope of the load.
PLI_INT32 level: If 0 then enables read access to scope and all its subscopes, 1 means just the
scope.

Related routines: None.

vpi_trvs_get_time()

Synopsis: Retrieve the time of the object or collection of objects traverse handle.
Syntax: vpi_trvs_get_time(vpiType prop, vpiHandle obj, p_vpi_time
time_p)
Returns: PLI_INT32, 1 for success, 0 for fail.
Arguments:

vpiType prop:
vpiMinTime: Gets the minimum time of traverse object or traverse collection. Returns
failure if traverse object or collection has no value changes and time_p is not modified.
vpiMaxTime: Gets the maximum time of traverse object or traverse collection. Returns
failure if traverse object or collection has no value changes and time_p is not modified.
vpiTime: Gets the time where traverse handle points. Returns failure if traverse object
or collection has no value changes and time_p is not modified. In the case of a collection, it
returns success (and time_p is updated) only when all the traverse objects in the collection are
pointing to the same time, otherwise returns failure and time_p is not modified.
vpiNextVC: Gets the time where traverse handle points next. Returns failure if traverse
object or collection has no next VC and time_p is not modified. In the case of a collection, it
returns success when any traverse object in the collection has a next VC, time_p is updated
with the smallest next VC time.
vpiPrevVC: Gets the time where traverse handle previously points. Returns failure if
traverse object or collection has no previous VC and time_p is not modified. In the case of a
collection, it returns success when any traverse object in the collection has a previous VC,
time_p is updated with the largest previous VC time.

vpiHandle obj: Handle to a traverse object of type vpiTrvsObj or a traverse collection of
type vpiTrvsCollection.
p_vpi_time time_p: Pointer to a structure containing the returned time information.

Related routines: vpi_get_time(). Difference is that vpi_trvs_get_time() is more general
in that it allows an additional vpiType argument to get the min/max/prev/next current time of handle.
vpi_get_time() can only get the current time of traverse handle.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1

Copyright 2003 Accellera. All rights reserved. 24

vpi_load()

Synopsis: Load the data of the given object into memory for data access and traversal if object is an
object handle; load the whole collection (i.e. set of objects) if passed handle is an object collection of type
vpiObjCollection.
Syntax: vpi_load(vpiHandle h)
Returns: PLI_INT32, 1 for success of loading (all) object(s) (in collection), 0 for fail of loading (any) object (in
collection).
Arguments:

vpiHandle h: Handle to a design object (of any valid type) or object collection of
type vpiObjCollection.

Related routines: None

vpi_unload()

Synopsis: Unload the given object data from (active) memory if object is an object handle, unload the
whole collection if passed object is a collection of type vpiObjCollection. See Section 30.8 for a
description of data unloading.
Syntax: vpi_unload(vpiHandle h)
Returns: PLI_INT32, 1 for success, 0 for fail.
Arguments:

vpiHandle h: Handle to an object or collection (of type vpiObjCollection).
Related routines: None.

vpi_create()

Synopsis: Create or add to an object or traverse collection.
Syntax: vpi_create(vpiType prop, vpiHandle h, vpiHandle obj)
Returns: vpiHandle of type vpiObjCollection for success, NULL for fail.
Arguments:

vpiType prop:
vpiObjCollection: Create (or add to) object (vpiObjCollection) or
traverse (vpiTrvsCollection) collection.

vpiHandle h: Handle to a (object) traverse collection of type (vpiObjCollection)
vpiTrvsCollection, NULL for first call (creation)
vpiHandle obj: Handle of object to add, NULL if for first time creation of collection.

Related routines: None.

vpi_goto()

Synopsis: Try to move to min, max or specified time. A new traverse (collection) handle is returned
pointing to the specified time. If the traverse handle (members of collection) has a VC at that time then
the returned handle (members of returned collection) is updated to point to the specified time, otherwise it
is not updated. If the passed handle has no VC (for collection this means no VC for any object) a fail is
indicated, otherwise a success is indicated. In case of a jump to a specified time, and there is no value
change at the specified time, then the value change traverse index of the returned (new) handle (member
of returned collection) is aligned based on the jump behavior defined in Section 30.7.4.2, and its time will
be updated based on the aligned traverse point. The time argument passed is only relevant in case of a
jump to a time (otherwise ignored). It is updated if there is a VC (for collection this means a VC for any
object) to the new time, otherwise the value is not updated.
Syntax: vpi_goto(vpiType prop, vpiHandle obj, p_vpi_time time_p,
PLI_INT32 *ret_code)
Returns: vpiHandle of type vpitrvsObj (vpiObjCollection).
Arguments:

vpiType prop:
vpiMinTime: Goto the minimum time of traverse collection handle.
vpiMaxTime: Goto the maximum time of traverse collection handle.
vpiTime: Jump to the time specified in time_p.

Accellera
SystemVerilog 3.1 Extensions to Verilog-2001

25 Copyright 2003 Accellera. All rights reserved.

vpiHandle obj: Handle to a traverse object (collection) of type vpitrvsObj
(vpitrvsCollection)
p_vpi_time time_p: Pointer to a structure containing time information. Used only if prop is
of type vpiTime, otherwise it is ignored.
PLI_INT32 *ret_code:Pointer to a return code indicator. It is 1 for success and 0 for fail.

Related routines: None.

vpi_filter()

Synopsis: Filter a general collection, a traversable object collection, or traverse collection according to a
specific criterion. Return a collection of the handles that meet the criterion. Original collection is not
changed.
Syntax: vpi_filter(vpiHandle h, PLI_INT32 ft, PLI_INT32 flag)
Returns: vpiHandle of type vpiObjCollection for success, NULL for fail.
Arguments:

vpiHandle h: Handle to a collection of type vpiCollection, vpiObjCollection or
vpiTrvsCollection

PLI_INT32 ft: Filter criterion, any vpiType or a VPI Boolean property.
PLI_INT32 flag: Flag to indicate whether to match criterion (if set to TRUE), or not (if set to

FALSE).
Related routines: None.

