
Issue 1: Organization of an unpacked array of packed arrays.

Scope
The current definition of organization of unpacked array of packed arrays does not appear
aligned either with the examples given in the standard or the organization of packed
arrays themselves. This section explains the understanding and why this conflict appears.

Explanation

The explanation below builds up from the contents of the standard to converge at a
uniform conclusion. It points a contradiction and tries to arrive at an inference that will
address the conflict identified.

Section F.1
/* common type for ‘bit’ and ‘logic’ scalars */
typedef unsigned char svScalar;

typedef svScalar svBit; /* scalar */
typedef svScalar svLogic; /* scalar */

/* Canonical representation of packed arrays */
/* 2-state and 4-state vectors, modeled upon PLI’s avalue/bvalue */
#define SV_CANONICAL_SIZE(WIDTH) ((WIDTH)+31)>>5)

typedef unsigned int svBitVec32; /* (a chunk of) packed bit array */
typedef struct {unsigned int ; unsigned int d; } svLogicVec32; /* (a chunk of) packed
logic array */

Section E.9.2
Some macros that are allowed to be vendor specific representation are as follows:

#define SV_BIT_PACKED_ARRAY(WIDTH, NAME) …
#define SV_LOGIC_PACKED_ARRAY(WIDTH, NAME) …

A possible definition for this could be
#define SV_LOGIC_PACKED_ARRAY(WIDTH, NAME) \
 svLogicVec32 NAME[SV_CANONICAL_SIZE(WIDTH)]

Section E.9.4 Example 3 – source-level compatible application

System Verilog:
 Typedef struct {int a; bit [6:1][1:8] b [65:2]; int c; } triple;
 // troublesome mix of C types and packed arrays
 import “DPI” function void foo (input triple i);

C:
 typedef struct {
 Int a;
 Sv_BIT_PACKED_ARRAY(6*8, b) [64]; /* implementation specific
 representation */
 int c;
 } triple;

 The definition for b in C will translate into:
 svBitVec32 b(2)(64);

This is an inference from the application of the example macro given above:

Sv_BIT_PACKED_ARRAY(6*8, b)[64] =>
 SvBitVec32 b[SV_CANONICAL_SIZE(48)][64] =>
 SvBitVec32 b[SV_CANONICAL_SIZE(48)][64] =>
 svBitVec32 b[(48+31)>>5][64]
 svBitVec32 b[2][64]

This results in the following data organization for the packed array:

 Col 0 Col 1 Col 2 Col 61 Col 62 Col 63
Row 0
Row 1

In the above figure, Row 0 and Row 1 represent the two words it will take to contain the
48 bits of a 48 bit vector as per the canonical size definition. The columns as per this
definition represent the dimensions of the unpacked array containing the packed arrays.
From this organization, if a user had to pick the packed element indexed at position 32
then the following will have to be done:
 Elem[0] = B[0][31];
 Elem[1] = B[1][31];
A direct indexing into the data structure to access a linearly organized memory will not
be possible.

Going by the above definition as per the macro, we have ended up with a column major
ordering for the unpacked array of 64 packed arrays of forty eight elements each. As per
the above ordering, the unpacked portion of the arrays is changing faster than the packed
portion (Note that 64 coming as a later dimension means each of the two rows contains
an element of the packed array.)

The organization logically should have been of a packed array element of an unpacked
array following the previous packed element. In such a scenario the organization would
appear something as follows:

Sv_BIT_PACKED_ARRAY(6*8, b)[64] =>
 svBitVec32 b[64][SV_CANONICAL_SIZE(48)] =>
 svBitVec32 b[64][(48+31)>>5] =>
 svBitVec32 b[64][2]

This will result in the following data organization for the packed array:

 Col 0 Col 1
Row 0
Row 1
Row 2

Row 61
Row 62
Row 63

In the above organization you have the packed array elements placed consecutively and
can be picked by accessing the index I of the unpacked array portion.

In the above figure, Col 0 and Col 1 represent the two words it will take to contain the 48
bits of a 48 bit vector as per the canonical size definition. The rows as per this definition
represent the dimensions of the unpacked array containing the packed arrays. From this
organization, if a user had to pick the packed element indexed at position 32 then the
following will have to be done:
 Elem = &B[31];
A direct indexing into the data structure to access a linearly organized memory is possible
in this case. This kind of an organization is what appears to be implied in the examples
provided in the standard. But the macros and the definitions are running counter-intuitive
to this organization.

Now I will extending this case further to the example given for the structure definition in
E.9.4. The piece of C code that is being used to access the packed array elements of the
unpacked array in the structure is the following:

Void foo(const triple *i)
{
int j;
/* canonical representation */
svBitVec32 arr[SV_CANONICAL_SIZE(6*8)]; /* 6*8 packed bits */
…

…
for (j=0; j<64;j++) {

svGetBitVec32(arr, (svBitPackedArrRef)&(i->b[j]), 6*8);
…
}

What I understand from the above code is that:

• System Verilog passed memory organization will confirm to the C layout of the
structure

• The C layout expects an array with 64 rows, each containing an element of 48 bits

Now, if we go by the definition of macros as specified currently in the standard, the
layout of the structure as per the definition given in the standard will be:

integer a

Array
B

Col 0 Col 1 Col 61 Col 62 Col 63

Row 0

Row 1

Integer c

This layout certainly does not confirm to what the C example provided above is
expecting.

Case 2 is that of the following data organization:

Integer a

Array b Col 0 Col 1
Row 0
Row 1

Row 61
Row 62
Row 63
Integer c

With this kind of data organization the C code specified above will be able to access each
of the 64 rows containing a packed array each with 48 bits.

Inference on Organization of Unpacked arrays of Packed Arrays
Going with the above example I think that in the C definition of an unpacked array of
packed arrays, the packed dimension should be the rightmost definition of the C data
type. The unpacked dimensions should be the first ones to appear on the C data type
definition. This would mean that the organization will move away from a column major
organization of the data to a row major organization.

This appears to be the understanding of the examples given in the standard and also will
accurately represent the data organization of the packed arrays, as packed dimensions are
the most closely associated in memory layout also.

	Issue 1: Organization of an unpacked array of packed arrays.
	Scope

	Section F.1
	Section E.9.2
	Inference on Organization of Unpacked arrays of Packed Array

