
IEEE SV-CC
Proposed changes to IEEE DRAFT STANDARD P1800/D2, March 16, 2007

Copyright 2005 IEEE. All rights reserved. 1

INSERT:

36.1.1 VPI Incompatibilities With Other Standard Versions

The following table summarizes the VPI incompatibilities with prior IEEE standard versions:

Table Key:

Y = Behavior, function or object present in that version

D = Behavior, function or object deprecated (present but use discouraged) in that version

N = Behavior, function of object no longer present in that version

Incompatibility Details:

1) vpiMemory exists as an object:

Unpacked unidimensional reg arrays were exclusively characterized as vpiMemory objects in 1364-1995, and

later deprecated in 1364-2001. This object type was replaced by vpiRegArray by 1364-2005, leaving

vpiMemory only allowed as a one-to-many transition for 1364-2005 and 1800-2005 (see section 36.16). Note

that 1364-2001 allowed either vpiMemory or vpiRegArray types to represent unpacked unidimensional

arrays of vpiReg objects.

2) vpiMemoryWord exists as an object:

Elements of unpacked unidimensional reg arrays were exclusively characterized as vpiMemoryWord objects

in 1364-1995, and later deprecated in 1364-2001. This object type was replaced by vpiReg in 1364-2005, leav-

ing only the vpiMemoryWord transition allowed for 1364-2005 and 1800-2005 (see section 36.16). Note that

1364-2001 allowed either vpiMemoryWord or vpiReg types to represent elements of unpacked unidimen-

sional arrays of vpiReg objects.

3) vpiIntegerVar and vpiTimeVar can be arrays

vpiIntegerVar and vpiTimeVar objects could represent unpacked arrays instead of simple variables in all

Table 1-1: Summary of VPI Incompatibilities Across Standard Versions

Incompatibility 1364 1800

See detailed descriptions below 1995 2001 2005 2005

1) vpiMemory exists as an object Y D N N

2) vpiMemoryWord exists as an object Y D N N

3) vpiIntegerVar and vpiTimeVar can be arrays Y Y Y N

4) vpiRealVar can be an array N Y Y N

5) vpiVariables iterations include vpiReg and vpiRegArray objects N N N Y

6) vpiReg iterations on vpiRegArray can result in non-vpiReg objects N N N Y

7) vpiNet iterations on scopes and modules include vpiNetArray objects N N N Y

8) vpiNet iterations on vpiNetArray can result in non-vpiNet objects N N N Y

9) vpiMultiArray property available N Y D N

IEEE SV-CC
IEEE Std 1800-2005 Proposed changes

2 Copyright 2005 IEEE. All rights reserved.

1364 standards. In 1800-2005 these array types are always represented as vpiRegArray objects, and vpiInte-
gerVar and vpiTimeVar objects are always scalar fixed-width variables (see section 36.14).

4) vpiRealVar can be an array

This object type was allowed to represent an unpacked array of such variables in 1364-2001 and 1364-2005

standards (vpiRealVar arrays were not yet allowed in 1364-1995). In 1800-2005, these are now exclusively

represented as vpiRegArray objects (see section 36.14).

5) vpiVariables iterations include vpiReg and vpiRegArray objects

In all 1364 standards, vpiReg and vpiRegArray objects were excluded from vpiVariables iterations, and only

accessed instead by iterations on vpiReg (from a scope or vpiRegArray) or vpiRegArray (from a scope). In

1800-2005, they are included in vpiVariables iterations (see section 36.14).

6) vpiReg iterations on vpiRegArray can result in non-vpiReg objects

This is a consequence of vpiRegArray objects being used to represent unpacked arrays of non-vpiReg ele-

ments in 1800-2005 (see section 36.14). vpiReg iterations on these array objects can retrieve array elements

that are of type vpiIntegerVar or vpiTimeVar for example, which is not expected in standards 1364-2001 and

1364-2005.

7) vpiNet iterations on scopes and modules include vpiNetArray objects

In all 1364 standards, vpiNetArray objects were excluded from vpiNet iterations on scopes and modules, and

only were only accessed instead by iterations on vpiNetArray (from a scope). In 1800-2005, they are included

in vpiNet iterations (see section 36.13).

8) vpiNet iterations on vpiNetArray can result in non-vpiNet objects

This is a consequence of vpiNetArray objects being used to represent net arrays of non-vpiNet elements in

1800-2005 (see section 36.13). vpiNet iterations on these net array objects can retrieve net elements of type

vpiIntegerNet or vpiTimeNet for example, which is not expected in standards 1364-2001 and 1364-2005.

9) vpiMultiArray property available

This is a deprecated property introduced in 1364-2001 that is not referenced in any other standard. For vpiIn-
tegerVar, vpiTimeVar, vpiRealVar, and vpiRegArray its value being TRUE meant that these objects repre-

sented multidimensional unpacked arrays.

36.1.2 VPI Mechanism to Deal With Incompatibilities

Capability shall be provided to emulate the incompatible VPI behaviors where they conflict with the current
standard. This allows older VPI applications dependent on this behavior to be run unmodified, as long as they
are applied to designs they are compatible with.

This mechanism is based on defining a compiler symbol that binds a particular application to a particular back-
wards compatibility mode. To invoke such a mode, one of the following compiler symbols must be defined
prior to compilation of any of the standard VPI include files in the application source code (either using a
“#define” in the source code itself, or defined on the compile command-line):

VPI_COMPATIBILITY_VERSION_1364v1995

VPI_COMPATIBILITY_VERSION_1364v2001

VPI_COMPATIBILITY_VERSION_1364v2005

VPI_COMPATIBILITY_VERSION_1800v2005

IEEE SV-CC
Proposed changes to IEEE DRAFT STANDARD P1800/D2, March 16, 2007

Copyright 2005 IEEE. All rights reserved. 3

Only one of these symbols shall be defined for a given application, and it must be consistently defined for all of
its source code that can access any portion of VPI, including callback functions. It shall be a compile-time
error to define more than one of the above symbols for compiling any VPI application source code.

It is left up to the discretion of the VPI provider to check for consistency between the VPI compatibility level
selected and the design the application is applied to. It is assumed that VPI applications that need such back-
wards compatibility have already been proven in their original VPI environment, and thus do not require rigor-
ous levels of checking.

