
IEEE
P1800/D3, May 3, 2007 DRAFT STANDARD FOR SYSTEMVERILOG:

Copyright © 2007 IEEE. All rights reserved. 778
This is an unapproved IEEE Standards Draft, subject to change.

34. Direct programming interface (DPI) (1800-2005 12.5, 26)

This clause describes:
— DPI tasks and functions
— DPI layers
— Importing and exporting functions
— Importing and exporting tasks
— Disabling DPI tasks and functions

34.1 Overview

This clause highlights the DPI and provides a detailed description of the SystemVerilog layer of the inter-
face. The C layer is defined in Annex I.

DPI is an interface between SystemVerilog and a foreign programming language. It consists of two separate
layers: the SystemVerilog layer and a foreign language layer. Both sides of DPI are fully isolated. Which
programming language is actually used as the foreign language is transparent and irrelevant for the System-
Verilog side of this interface. Neither the SystemVerilog compiler nor the foreign language compiler is
required to analyze the source code in the other’s language. Different programming languages can be used
and supported with the same intact SystemVerilog layer. For now, however, SystemVerilog defines a for-
eign language layer only for the C programming language. See Annex I for more details.

The motivation for this interface is two-fold. The methodological requirement is that the interface should
allow a heterogeneous system to be built (a design or a testbench) in which some components can be written
in a language (or more languages) other than SystemVerilog, hereinafter called the foreign language. On the
other hand, there is also a practical need for an easy and efficient way to connect existing code, usually writ-
ten in C or C++, without the knowledge and the overhead of PLI or VPI.

DPI follows the principle of a black box: the specification and the implementation of a component are
clearly separated, and the actual implementation is transparent to the rest of the system. Therefore, the actual
programming language of the implementation is also transparent, although this standard defines only C link-
age semantics. The separation between SystemVerilog code and the foreign language is based on using
functions as the natural encapsulation unit in SystemVerilog. By and large, any function can be treated as a
black box and implemented either in SystemVerilog or in the foreign language in a transparent way, without
changing its calls.

34.1.1 Tasks and functions

DPI allows direct inter-language function calls between the languages on either side of the interface. Specif-
ically, functions implemented in a foreign language can be called from SystemVerilog; such functions are
referred to as imported functions. SystemVerilog functions that are to be called from a foreign code shall be
specified in export declarations (see 34.6 for more details). DPI allows for passing SystemVerilog data
between the two domains through function arguments and results. There is no intrinsic overhead in this
interface.

MINOR CHANGES: This clause comes entirely from 1800-2005 with no text from 1364-2005. Text added by editor
as a result of the merge is in blue. Deleted text is in red strike-through with change bars. Mantis item changes made in
this draft version are in purple with change bars.

subclause from
1800-2005 26.1

IEEE
UNIFIED HARDWARE DESIGN, SPECIFICATION, AND VERIFICATION LANGUAGE P1800/D3, May 3, 2007

779 Copyright © 2007 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

It is also possible to perform task enables across the language boundary. Foreign code can call
SystemVerilog tasks, and native Verilog code can call imported tasks. An imported task has the same
semantics as a native Verilog task: it never returns a value, and it can consume simulation time.

All functions used in DPI are assumed to complete their execution instantly and consume zero simulation
time, just as normal SystemVerilog functions. DPI provides no means of synchronization other than by data
exchange and explicit transfer of control.

Every imported task and function needs to be declared. A declaration of an imported task or function is
referred to as an import declaration. Import declarations are very similar to SystemVerilog task and function
declarations. Import declarations can occur anywhere where SystemVerilog task and function definitions are
permitted. An import declaration is considered to be a definition of a SystemVerilog task or function with a
foreign language implementation. The same foreign task or function can be used to implement multiple
SystemVerilog tasks and functions (this can be a useful way of providing differing default argument values
for the same basic task or function), but a given SystemVerilog name can only be defined once per scope.
Imported task and functions can have zero or more formal input, output, and inout arguments. Imported
tasks always return a void value and thus can only be used in statement context. Imported functions can
return a result or be defined as void functions.

DPI is based entirely upon SystemVerilog constructs. The usage of imported functions is identical to the
usage of native SystemVerilog functions. With few exceptions, imported functions and native functions are
mutually exchangeable. Calls of imported functions are indistinguishable from calls of SystemVerilog func-
tions. This facilitates ease of use and minimizes the learning curve. Similar interchangeable semantics exist
between native SystemVerilog tasks and imported tasks.

34.1.2 Data types

SystemVerilog data types are the sole data types that can cross the boundary between SystemVerilog and a
foreign language in either direction (i.e., when an imported function is called from SystemVerilog code or
an exported SystemVerilog function is called from a foreign code). It is not possible to import the data types
or directly use the type syntax from another language. A rich subset of SystemVerilog data types is allowed
for formal arguments of import and export functions, although with some restrictions and with some nota-
tional extensions. Function result types are restricted to small values, however (see 34.4.5).

Formal arguments of an imported function can be declared as open arrays as specified in 34.4.6.1.

34.1.2.1 Data representation

DPI does not add any constraints on how SystemVerilog-specific data types are actually implemented. Opti-
mal representation can be platform dependent. The layout of 2- or 4-state packed structures and arrays is
implementation and platform dependent.

The implementation (representation and layout) of 4-state values, structures, and arrays is irrelevant for
SystemVerilog semantics and can only impact the foreign side of the interface.

34.2 Two layers of the DPI

DPI consists of two separate layers: the SystemVerilog layer and a foreign language layer. The
SystemVerilog layer does not depend on which programming language is actually used as the foreign lan-
guage. Although different programming languages can be supported and used with the intact SystemVerilog
layer, SystemVerilog defines a foreign language layer only for the C programming language. Nevertheless,
SystemVerilog code shall look identical and its semantics shall be unchanged for any foreign language
layer. Different foreign languages can require that the SystemVerilog implementation shall use the appropri-

Mantis 1307

IEEE
P1800/D3, May 3, 2007 DRAFT STANDARD FOR SYSTEMVERILOG:

Copyright © 2007 IEEE. All rights reserved. 780
This is an unapproved IEEE Standards Draft, subject to change.

ate function call protocol and argument passing and linking mechanisms. This shall be, however, transparent
to SystemVerilog users. SystemVerilog requires only that its implementation shall support C protocols and
linkage.

34.2.1 DPI SystemVerilog layer

The SystemVerilog side of DPI does not depend on the foreign programming language. In particular, the
actual function call protocol and argument passing mechanisms used in the foreign language are transparent
and irrelevant to SystemVerilog. SystemVerilog code shall look identical regardless of what code the
foreign side of the interface is using. The semantics of the SystemVerilog side of the interface is indepen-
dent from the foreign side of the interface.

This clause does not constitute a complete interface specification. It only describes the functionality, seman-
tics, and syntax of the SystemVerilog layer of the interface. The other half of the interface, the foreign
language layer, defines the actual argument passing mechanism and the methods to access (read/write)
formal arguments from the foreign code. See Annex I for more details.

34.2.2 DPI foreign language layer

The foreign language layer of the interface (which is transparent to SystemVerilog) shall specify how actual
arguments are passed, how they can be accessed from the foreign code, how SystemVerilog-specific data
types (such as logic and packed) are represented, and how they are translated to and from some pre-
defined C-like types.

The data types allowed for formal arguments and results of imported functions or exported functions are
generally SystemVerilog types (with some restrictions and with notational extensions for open arrays).
Users are responsible for specifying in their foreign code the native types equivalent to the SystemVerilog
types used in imported declarations or export declarations. Software tools, like a SystemVerilog compiler,
can facilitate the mapping of SystemVerilog types onto foreign native types by generating the appropriate
function headers.

The SystemVerilog compiler or simulator shall generate and/or use the function call protocol and argument
passing mechanisms required for the intended foreign language layer. The same SystemVerilog code (com-
piled accordingly) shall be usable with different foreign language layers, regardless of the data access
method assumed in a specific layer. Annex J defines the DPI foreign language layer for the C programming
language.

34.3 Global name space of imported and exported functions

Every task or function imported to SystemVerilog must eventually resolve to a global symbol. Similarly,
every task or function exported from SystemVerilog defines a global symbol. Thus the tasks and functions
imported to and exported from SystemVerilog have their own global name space of linkage names, different
from compilation-unit scope name space. Global names of imported and exported tasks and functions must
be unique (no overloading is allowed) and shall follow C conventions for naming; specifically, such names
must start with a letter or underscore, and they can be followed by alphanumeric characters or underscores.
Exported and imported tasks and functions, however, can be declared with local SystemVerilog names.
Import and export declarations allow users to specify a global name for a function in addition to its declared
name. Should a global name clash with a SystemVerilog keyword or a reserved name, it shall take the form
of an escaped identifier. The leading backslash (\) character and the trailing white space shall be stripped
off by the SystemVerilog tool to create the linkage identifier. After this stripping, the linkage identifier so
formed must comply with the normal rules for C identifier construction. If a global name is not explicitly
given, it shall be the same as the SystemVerilog task or function name. For example:

IEEE
UNIFIED HARDWARE DESIGN, SPECIFICATION, AND VERIFICATION LANGUAGE P1800/D3, May 3, 2007

781 Copyright © 2007 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

export "DPI-C" foo_plus = function \foo+ ; // "foo+" exported as "foo_plus"
export "DPI-C" function foo; // "foo" exported under its own name
import "DPI-C" init_1 = function void \init[1] (); // "init_1" is a linkage name
import "DPI-C" \begin = function void \init[2] (); // "begin" is a linkage name

The same global task or function can be referred to in multiple import declarations in different scopes or/and
with different SystemVerilog names (see 34.4.4).

Multiple export declarations are allowed with the same c_identifier, explicit or implicit, as long as they are
in different scopes and have the equivalent type signature (as defined in 34.4.4 for imported tasks and func-
tions). Multiple export declarations with the same c_identifier in the same scope are forbidden.

It is possible to use the deprecated "DPI" version string syntax in an import or export declaration. This syn-
tax indicates that the SystemVerilog 2-state and 4-state packed array argument passing convention is to be
used (see I.12). In such cases, all declarations using the same c_identifier shall be declared with the same
DPI version string syntax.

34.4 Imported tasks and functions

The usage of imported functions is similar as for native SystemVerilog functions.

34.4.1 Required properties of imported tasks and functions—semantic constraints

This subclause defines the semantic constraints imposed on imported tasks or functions. Some semantic
restrictions are shared by all imported tasks or functions. Other restrictions depend on whether the special
properties pure (see 34.4.2) or context (see 34.4.3) are specified for an imported task or function. A
SystemVerilog compiler is not able to verify that those restrictions are observed; and if those restrictions are
not satisfied, the effects of such imported task or function calls can be unpredictable.

34.4.1.1 Instant completion of imported functions

Imported functions shall complete their execution instantly and consume zero simulation time, similarly to
native functions.

NOTE—Imported tasks can consume time, similar to native SystemVerilog tasks.

34.4.1.2 input, output, and inout arguments

Imported functions can have input, output, and inout arguments. The formal input arguments shall not
be modified. If such arguments are changed within a function, the changes shall not be visible outside the
function; the actual arguments shall not be changed.

The imported function shall not assume anything about the initial values of formal output arguments. The
initial values of output arguments are undetermined and implementation dependent.

The imported function can access the initial value of a formal inout argument. Changes that the imported
function makes to a formal inout argument shall be visible outside the function.

34.4.1.3 Special properties pure and context

Special properties can be specified for an imported task or function as pure or as context (see also 34.4.2
or 34.4.3).

Mantis 758

IEEE
P1800/D3, May 3, 2007 DRAFT STANDARD FOR SYSTEMVERILOG:

Copyright © 2007 IEEE. All rights reserved. 782
This is an unapproved IEEE Standards Draft, subject to change.

A function whose result depends solely on the values of its input arguments and with no side effects can be
specified as pure. This can usually allow for more optimizations and thus can result in improved simulation
performance. Subclause 34.4.2 details the rules that must be obeyed by pure functions. An imported task can
never be declared pure.

An imported task or function that is intended to call exported tasks or functions or to access SystemVerilog
data objects other than its actual arguments (e.g., via VPI or PLI calls) must be specified as context. Calls
of context tasks and functions are specially instrumented and can impair SystemVerilog compiler optimiza-
tions; therefore, simulation performance can decrease if the context property is specified when not
necessary. A task or function not specified as context shall not read or write any data objects from System-
Verilog other then its actual arguments. For tasks or functions not specified as context, the effects of call-
ing PLI, VPI, or exported SystemVerilog tasks or functions can be unpredictable and can lead to unexpected
behavior; such calls can even crash. Subclause 34.4.3 details the restrictions that must be obeyed by noncon-
text tasks or functions.

If neither the pure nor the context attribute is used on an imported task or function, the task or function shall
not access SystemVerilog data objects; however, it can perform side effects such as writing to a file or
manipulating a global variable.

34.4.1.4 Memory management

The memory spaces owned and allocated by the foreign code and SystemVerilog code are disjoined. Each
side is responsible for its own allocated memory. Specifically, an imported function shall not free the mem-
ory allocated by SystemVerilog code (or the SystemVerilog compiler) nor expect SystemVerilog code to
free the memory allocated by the foreign code (or the foreign compiler). This does not exclude scenarios
where foreign code allocates a block of memory and then passes a handle (i.e., a pointer) to that block to
SystemVerilog code, which in turn calls an imported function (e.g., C standard function free) that directly
or indirectly frees that block.

NOTE—In this last scenario, a block of memory is allocated and freed in the foreign code, even when the standard func-
tions malloc and free are called directly from SystemVerilog code.

34.4.1.5 Reentrancy of imported tasks

A call to an imported task can result in the suspension of the currently executing thread. This occurs when an
imported task calls an exported task, and the exported task executes a delay control, event control, or wait
statement. Thus it is possible for an imported task’s C code to be simultaneously active in multiple execution
threads. Standard reentrancy considerations must be made by the C programmer. Some examples of such
considerations include safely using static variables and ensuring that only thread-safe C standard library
calls (MT safe) are used.

34.4.1.6 C++ exceptions

It is possible to implement DPI imported tasks and functions using C++, as long as C linkage conventions
are observed at the language boundary. If C++ is used, exceptions must not propagate out of any imported
task or function. Undefined behavior will result if an exception crosses the language boundary from C++
into SystemVerilog.

34.4.2 Pure functions

A pure function call can be safely eliminated if its result is not needed or if the previous result for the same
values of input arguments is available somehow and can be reused without needing to recalculate. Only non-
void functions with no output or inout arguments can be specified as pure. Functions specified as pure
shall have no side effects whatsoever; their results need to depend solely on the values of their input argu-

IEEE
UNIFIED HARDWARE DESIGN, SPECIFICATION, AND VERIFICATION LANGUAGE P1800/D3, May 3, 2007

783 Copyright © 2007 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

ments. Calls to such functions can be removed by SystemVerilog compiler optimizations or replaced with
the values previously computed for the same values of the input arguments.

Specifically, a pure function is assumed not to directly or indirectly (i.e., by calling other functions) perform
the following:

— Perform any file operations.
— Read or write anything in the broadest possible meaning, including input/output, environment vari-

ables, objects from the operating system or from the program or other processes, shared memory,
sockets, etc.

— Access any persistent data, like global or static variables.

If a pure function does not obey the above restrictions, SystemVerilog compiler optimizations can lead to
unexpected behavior, due to eliminated calls or incorrect results being used.

34.4.3 Context tasks and functions

Some DPI imported tasks or functions require that the context of their call be known. It takes special instru-
mentation of their call instances to provide such context; for example, an internal variable referring to the
“current instance” might need to be set. To avoid any unnecessary overhead, imported task or function calls
in SystemVerilog code are not instrumented unless the imported task or function is specified as context.

The SystemVerilog context of DPI export tasks and functions must be known when they are called, includ-
ing when they are called by imports. When an import invokes the svSetScope utility prior to calling the
export, it sets the context explicitly. Otherwise, the context will be the context of the instantiated scope
where the import declaration is located. Because imports with diverse instantiated scopes can export the
same task or function, multiple instances of such an export can exist after elaboration. Prior to any invoca-
tions of svSetScope, these export instances would have different contexts, which would reflect their
imported caller’s instantiated scope.

The concept of call chains is useful for understanding how context works as control weaves in and out of
SystemVerilog and another language through a DPI interface. A DPI import call chain is a series of task or
function invocations that begin with a call from SystemVerilog into a task or function that is defined in a
DPI-supported language and is declared in a DPI import declaration. The import call chain consists of suc-
cessive calls to routines in the imported language. One of those routines becomes the last routine in the
import call chain when it calls a SystemVerilog exported task or function. The import call chain can also end
by simply unwinding without calling any SystemVerilog export. Once entered, an exported SystemVerilog
task or function can transfer control to new import chains by invoking imports and, when exiting, can return
control to its caller in the original import call chain.

The following behavior characterizes context mechanics for imported call chains:
— The actions below determine an import call chain’s context value:

— When a SystemVerilog task or function calls a DPI context import, a context for the import
call chain is created that is equal to the instantiated scope of the import declaration.

— When a routine in an import call chain invokes svSetScope with a legal argument, the call
chain’s context is set to the indicated scope.

— When a call from an import call chain to an exported SystemVerilog task or function finishes
and returns to the chain, the call chain’s context is set equal to its value when the call to the
export was made.

— Detecting when control moves across the language boundary between SystemVerilog and an
imported language is critical for simulators managing DPI context. Therefore, if user code circum-
vents unwinding an export call chain back to its import chain caller (e.g., by using C setjmp/
longjmp constructs) the results are undefined.

Mantis 1488

IEEE
P1800/D3, May 3, 2007 DRAFT STANDARD FOR SYSTEMVERILOG:

Copyright © 2007 IEEE. All rights reserved. 784
This is an unapproved IEEE Standards Draft, subject to change.

— Whether a DPI import call-chain is a context chain or not is determined by whether the chain's first
task or function was declared with the context keyword in the import declaration that governs its
invocation; when an import declared with the context keyword appears in a call chain position other
than the first position it has no effect on whether the chain has the context characteristic or not.

— Whether a DPI import call chain has the context characteristic or not cannot be dynamically changed
after the initial call into the chain is made.

— The context characteristic adheres to the calling-chain, not to an individual imported task or func-
tion; thus, the same imported task or function can appear in both context and non-context call
chains.

For the sake of simulation performance, an imported task or function call shall not block SystemVerilog
compiler optimizations. An imported task or function not specified as context shall not access any data
objects from SystemVerilog other than its actual arguments. Only the actual arguments can be affected (read
or written) by its call. Therefore, a call of a noncontext task or function is not a barrier for optimizations. A
context imported task or function, however, can access (read or write) any SystemVerilog data objects by
calling PLI/VPI or by calling an export task or function. Therefore, a call to a context task or function is a
barrier for SystemVerilog compiler optimizations.

Only calls of context imported tasks or functions are properly instrumented and cause conservative optimi-
zations; therefore, only those tasks or functions can safely call all tasks or functions from other APIs,
including PLI and VPI functions or exported SystemVerilog tasks or functions. For imported tasks or
functions not specified as context, the effects of calling PLI or VPI functions or SystemVerilog tasks or
functions can be unpredictable; and such calls can crash if the callee requires a context that has not been
properly set. However, declaring an import context task or function does not automatically make any other
simulator interface automatically available. For VPI access (or any other interface access) to be possible, the
appropriate implementation-defined mechanism must still be used to enable these interface(s). Realize also
that DPI calls do not automatically create or provide any handles or any special environment that can be
needed by those other interfaces. It is the user’s responsibility to create, manage, or otherwise manipulate
the required handles or environment(s) needed by the other interfaces.

Context imported tasks or functions are always implicitly supplied a scope representing the fully qualified
instance name within which the import declaration was present. This scope defines which exported System-
Verilog tasks or functions can be called directly from the imported task or function; only tasks or functions
defined and exported from the same scope as the import can be called directly. To call any other exported
SystemVerilog tasks or functions, the imported task or function shall first have to modify its current scope,
in essence performing the foreign language equivalent of a SystemVerilog hierarchical task or function call.

Special DPI utility functions exist that allow imported task or functions to retrieve and operate on their
scope. See Annex I for more details.

34.4.4 Import declarations

Each imported task or function shall be declared. Such declaration are referred to as import declarations.
The syntax of an import declaration is similar to the syntax of SystemVerilog task or function prototypes
(see 13.5).

Imported tasks or functions are similar to SystemVerilog tasks or functions. Imported tasks or functions can
have zero or more formal input, output, and inout arguments. Imported functions can return a result or
be defined as void functions. Imported tasks always return an int result as part of the DPI disable protocol
and, thus, are declared in foreign code as int functions (see 34.7 and 34.8).

dpi_import_export ::= // from A.2.6

IEEE
UNIFIED HARDWARE DESIGN, SPECIFICATION, AND VERIFICATION LANGUAGE P1800/D3, May 3, 2007

785 Copyright © 2007 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

import dpi_spec_string [dpi_function_import_property] [c_identifier =] dpi_function_proto ;
| import dpi_spec_string [dpi_task_import_property] [c_identifier =] dpi_task_proto ;
| export dpi_spec_string [c_identifier =] function function_identifier ;
| export dpi_spec_string [c_identifier =] task task_identifier ;

dpi_spec_string ::= "DPI-C" | "DPI"
dpi_function_import_property ::= context | pure
dpi_task_import_property ::= context

dpi_function_proto8,9 ::= function_prototype

dpi_task_proto9 ::= task_prototype
function_prototype ::= function function_data_type function_identifier ([tf_port_list])
task_prototype ::= task task_identifier ([tf_port_list]) // from A.2.7

8) dpi_function_proto return types are restricted to small values, per 34.4.5.

9) Formals of dpi_function_proto and dpi_task_proto cannot use pass by reference mode and class types cannot be
passed at all; for the complete set of restrictions see 34.4.6.

Syntax 34-1—DPI import declaration syntax (excerpt from Annex A)

An import declaration specifies the task or function name, function result type, and types and directions of
formal arguments. It can also provide optional default values for formal arguments. Formal argument names
are optional unless argument binding by name is needed. An import declaration can also specify an optional
task or function property. Imported functions can have the properties context or pure; imported tasks can
have the property context.

Because an import declaration is equivalent to defining a task or function of that name in the SystemVerilog
scope in which the import declaration occurs, and thus multiple imports of the same task or function name
into the same scope are forbidden.

NOTE—This declaration scope is particularly important in the case of imported context tasks or functions (see 34.4.3);
for noncontext imported tasks or functions the declaration scope has no other implications other than defining the visibil-
ity of the task or function.

The dpi_spec_string can take values "DPI-C" and "DPI". "DPI" is used to indicate that the deprecated
SystemVerilog packed array argument passing semantics is to be used. In this semantics, arguments are
passed in actual simulator representation format rather than in canonical format, as is the case with
"DPI-C".

Use of the string "DPI" shall generate a compile-time error. The error message shall contain the following
information:

— "DPI" is deprecated and should be replaced with "DPI-C".
— Use of the "DPI-C" string may require changes in the DPI application’s C code.

For more information on using deprecated "DPI" access to packed data, see I.12.

The c_identifier provides the linkage name for this task or function in the foreign language. If not provided,
this defaults to the same identifier as the SystemVerilog task or function name. In either case, this linkage
name must conform to C identifier syntax. An error shall occur if the c_identifier, either directly or indi-
rectly, does not conform to these rules.

For any given c_identifier (whether explicitly defined with c_identifier= or automatically determined from
the task or function name), all declarations, regardless of scope, must have exactly the same type signature.

IEEE
P1800/D3, May 3, 2007 DRAFT STANDARD FOR SYSTEMVERILOG:

Copyright © 2007 IEEE. All rights reserved. 786
This is an unapproved IEEE Standards Draft, subject to change.

The signature includes the return type and the number, order, direction, and types of each and every argu-
ment. The type includes dimensions and bounds of any arrays or array dimensions. The signature also
includes the pure/context qualifiers that can be associated with an import definition, and it includes the
value of the dpi_spec_string.

It is permitted to have multiple declarations of the same imported or exported task or function in different
scopes; therefore, argument names and default values can vary, provided the type compatibility constraints
are met.

A formal argument name is required to separate the packed and the unpacked dimensions of an array.

The qualifier ref cannot be used in import declarations. The actual implementation of argument passing
depends solely on the foreign language layer and its implementation and shall be transparent to the System-
Verilog side of the interface.

The following are examples of external declarations.

import "DPI-C" function void myInit();

// from standard math library
import "DPI-C" pure function real sin(real);

// from standard C library: memory management
import "DPI-C" function chandle malloc(int size); // standard C function
import "DPI-C" function void free(chandle ptr); // standard C function

// abstract data structure: queue
import "DPI-C" function chandle newQueue(input string name_of_queue);

// Note the following import uses the same foreign function for
// implementation as the prior import, but has different SystemVerilog name
// and provides a default value for the argument.
import "DPI-C" newQueue=function chandle newAnonQueue(input string s=null);
import "DPI-C" function chandle newElem(bit [15:0]);
import "DPI-C" function void enqueue(chandle queue, chandle elem);
import "DPI-C" function chandle dequeue(chandle queue);

// miscellanea
import "DPI-C" function bit [15:0] getStimulus();
import "DPI-C” context function void processTransaction(chandle elem,

output logic [64:1] arr [0:63]);
import "DPI-C" task checkResults(input string s, bit [511:0] packet);

34.4.5 Function result

An imported function declaration must explicitly specify a data type or void for the type of the function’s
return result. Function result types are restricted to small values. The following SystemVerilog data types
are allowed for imported function results:

— void, byte, shortint, int, longint, real, shortreal, chandle, and string
— Scalar values of type bit and logic

The same restrictions apply for the result types of exported functions.

Mantis 924

Mantis 758

IEEE
UNIFIED HARDWARE DESIGN, SPECIFICATION, AND VERIFICATION LANGUAGE P1800/D3, May 3, 2007

787 Copyright © 2007 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

34.4.6 Types of formal arguments

A rich subset of SystemVerilog data types is allowed for formal arguments of import and export tasks or
functions. Generally, C-compatible types, packed types, and user-defined types built of types from these two
categories can be used for formal arguments of DPI tasks or functions. The set of permitted types is defined
inductively.

The following SystemVerilog types are the only permitted types for formal arguments of import and export
tasks or functions:

— void, byte, shortint, int, longint, real, shortreal, chandle, and string
— Scalar values of type bit and logic
— Packed arrays, structs, and unions composed of types bit and logic. Every packed type is eventu-

ally equivalent to a packed one-dimensional array. On the foreign language side of the DPI, all
packed types are perceived as packed one-dimensional arrays regardless of their declaration in the
SystemVerilog code.

— Enumeration types interpreted as the type associated with that enumeration
— Types constructed from the supported types with the help of the constructs:

— struct
— union (packed forms only)
— Unpacked array
— typedef

The following caveats apply for the types permitted in DPI:
— Enumerated data types are not supported directly. Instead, an enumerated data type is interpreted as

the type associated with that enumerated type.
— SystemVerilog does not specify the actual memory representation of packed structures or any

arrays, packed or unpacked. Unpacked structures have an implementation-dependent packing, nor-
mally matching the C compiler.

— In exported DPI tasks or functions, it is erroneous to declare formal arguments of dynamic array
types.

— The actual memory representation of SystemVerilog data types is transparent for SystemVerilog
semantics and irrelevant for SystemVerilog code. It can be relevant for the foreign language code on
the other side of the interface, however; a particular representation of the SystemVerilog data types
can be assumed. This shall not restrict the types of formal arguments of imported tasks or functions,
with the exception of unpacked arrays. SystemVerilog implementation can restrict which System-
Verilog unpacked arrays are passed as actual arguments for a formal argument that is a sized array,
although they can be always passed for an unsized (i.e., open) array. Therefore, the correctness of an
actual argument might be implementation dependent. Nevertheless, an open array provides an
implementation-independent solution.

34.4.6.1 Open arrays

The size of the packed dimension, the unpacked dimension, or both dimensions can remain unspecified;
such cases are referred to as open arrays (or unsized arrays). Open arrays allow the use of generic code to
handle different sizes.

Formal arguments of imported functions can be specified as open arrays. (Exported SystemVerilog func-
tions cannot have formal arguments specified as open arrays.) A formal argument is an open array when a
range of one or more of its dimensions is unspecified (denoted by using square brackets, []). This is solely a
relaxation of the argument-matching rules. An actual argument shall match the formal one regardless of the

Mantis 1322

IEEE
P1800/D3, May 3, 2007 DRAFT STANDARD FOR SYSTEMVERILOG:

Copyright © 2007 IEEE. All rights reserved. 788
This is an unapproved IEEE Standards Draft, subject to change.

range(s) for its corresponding dimension(s), which facilitates writing generalized code that can handle
SystemVerilog arrays of different sizes.

Although the packed part of an array can have an arbitrary number of sized dimensions, an unsized dimen-
sion must be the sole packed dimension of a formal argument. This is not very restrictive, because any
packed type is essentially equivalent to a one-dimensional packed array. The number of unpacked dimen-
sions is not restricted.

If a formal argument has an unsized, packed dimension, it will match any collection of actual argument
packed dimensions. Formal argument unpacked dimensions are matched on a dimension by dimension basis
(see 7.5) with each unsized formal dimension matching a corresponding actual dimension of any size.

Examples of types of formal arguments (empty square brackets [] denote open array):

logic
bit [8:1]
bit[]
bit [7:0] array8x10 [1:10] // array8x10 is a formal arg name
logic [31:0] array32xN [] // array32xN is a formal arg name
logic [] arrayNx3 [3:1] // arrayNx3 is a formal arg name
bit [] arrayNxN [] // arrayNxN is a formal arg name

Example of complete import declarations:

import "DPI-C" function void foo(input logic [127:0]);
import "DPI-C" function void boo(logic [127:0] i []); //open array of 128-bit

Example of the use of open arrays for different sizes of actual arguments:

typedef struct {int i; ... } MyType;

import "DPI-C" function void foo(input MyType i [][]);
/* 2-dimensional unsized unpacked array of MyType */

MyType a_10x5 [11:20][6:2];
MyType a_64x8 [64:1][-1:-8];

foo(a_10x5);
foo(a_64x8);

34.5 Calling imported functions

The usage of imported functions is identical to the usage of native SystemVerilog functions. Hence the
usage and syntax for calling imported functions is identical to the usage and syntax of native SystemVerilog
functions. Specifically, arguments with default values can be omitted from the call; arguments can be bound
by name if all formal arguments are named.

34.5.1 Argument passing

Argument passing for imported functions is ruled by the WYSIWYG principle: What You Specify Is What
You Get (see 34.5.1.1). The evaluation order of formal arguments follows general SystemVerilog rules.

Argument compatibility and coercion rules are the same as for native SystemVerilog functions. If a coercion
is needed, a temporary variable is created and passed as the actual argument. For input and inout argu-
ments, the temporary variable is initialized with the value of the actual argument with the appropriate coer-

Mantis 1395

Mantis 758

IEEE
UNIFIED HARDWARE DESIGN, SPECIFICATION, AND VERIFICATION LANGUAGE P1800/D3, May 3, 2007

789 Copyright © 2007 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

cion. For output or inout arguments, the value of the temporary variable is assigned to the actual
argument with the appropriate conversion. The assignments between a temporary and the actual argument
follow general SystemVerilog rules for assignments and automatic coercion.

On the SystemVerilog side of the interface, the values of actual arguments for formal input arguments of
imported functions shall not be affected by the callee. The initial values of formal output arguments of
imported functions are unspecified (and can be implementation dependent), and the necessary coercions, if
any, are applied as for assignments. Imported functions shall not modify the values of their input arguments.

For the SystemVerilog side of the interface, the semantics of arguments passing is as if input arguments are
passed by copy-in, output arguments are passed by copy-out, and inout arguments were passed by copy-
in, copy-out. The terms copy-in and copy-out do not impose the actual implementation; they refer only to
“hypothetical assignment”.

The actual implementation of argument passing is transparent to the SystemVerilog side of the interface. In
particular, it is transparent to SystemVerilog whether an argument is actually passed by value or by refer-
ence. The actual argument passing mechanism is defined in the foreign language layer. See Annex I for
more details.

34.5.1.1 WYSIWYG principle

The WYSIWYG principle guarantees the types of formal arguments of imported functions: an actual argu-
ment is guaranteed to be of the type specified for the formal argument, with the exception of open arrays (for
which unspecified ranges are statically unknown). Formal arguments, other than open arrays, are fully
defined by import declaration; they shall have ranges of packed or unpacked arrays exactly as specified in
the import declaration. Only the declaration site of the imported function is relevant for such formal
arguments.

Another way to state this is that no compiler (either C or SystemVerilog) can make argument coercions
between a caller’s declared formal and the callee’s declared formals. This is because the callee’s formal
arguments are declared in a different language from the caller’s formal arguments; hence there is no visible
relationship between the two sets of formals. Users are expected to understand all argument relationships
and provide properly matched types on both sides of the interface.

The unsized dimensions of open array formal arguments have the size of the corresponding actual argument
dimensions. A formal’s unsized, unpacked dimensions take on the ranges of the corresponding actual
dimension. A solitary, unsized, packed dimension assumes the linearized, normalized range of the actual’s
packed dimensions (see I.6.6). The unsized ranges of open arrays are determined at a call site; the rest of the
type information is specified at the import declaration.

Therefore, if a formal argument is declared as bit [15:8] b [], then the import declaration specifies that
the formal argument is an unpacked array of packed bit array with bounds 15 to 8, while the actual argument
used at a particular call site defines the bounds for the unpacked part for that call.

It is sometimes permissible to pass a dynamic array as an actual argument to an imported DPI task or func-
tion. The rules for passing dynamic array actual arguments to imported DPI tasks and functions are identical
to the rules for native SystemVerilog tasks and functions. Refer to 7.5 for details on such use of dynamic
arrays.

34.5.2 Value changes for output and inout arguments

The SystemVerilog simulator is responsible for handling value changes for output and inout arguments.
Such changes shall be detected and handled after control returns from imported functions to SystemVerilog
code.

Mantis 1393

IEEE
P1800/D3, May 3, 2007 DRAFT STANDARD FOR SYSTEMVERILOG:

Copyright © 2007 IEEE. All rights reserved. 790
This is an unapproved IEEE Standards Draft, subject to change.

For output and inout arguments, the value propagation (i.e., value change events) happens as if an actual
argument was assigned a formal argument immediately after control returns from imported functions. If
there is more than one argument, the order of such assignments and the related value change propagation
follows general SystemVerilog rules.

34.6 Exported functions

DPI allows calling SystemVerilog functions from another language. However, such functions must adhere
to the same restrictions on argument types and results as imposed on imported functions. It is an error to
export a function that does not satisfy such constraints.

SystemVerilog functions that can be called from foreign code need to be specified in export declarations.
Export declarations are allowed to occur only in the scope in which the function being exported is defined.
Only one export declaration per function is allowed in a given scope.

One important restriction exists. Class member functions cannot be exported, but all other SystemVerilog
functions can be exported.

Similar to import declarations, export declarations can define an optional c_identifier to be used in the for-
eign language when calling an exported function.

dpi_import_export ::= // from A.2.6
| export dpi_spec_string [c_identifier =] function function_identifier ;

dpi_spec_string ::= "DPI-C" | "DPI"

Syntax 34-2—DPI export declaration syntax (excerpt from Annex A)

The c_identifier is optional here. It defaults to function_identifier. For rules describing c_identifier, see 34.3.
No two functions in the same SystemVerilog scope can be exported with the same explicit or implicit
c_identifier. The export declaration and the definition of the corresponding SystemVerilog function can
occur in any order. Only one export declaration is permitted per SystemVerilog function, and all export
functions are always context functions.

34.7 Exported tasks

SystemVerilog allows tasks to be called from a foreign language, similar to functions. Such tasks are termed
exported tasks.

All aspects of exported functions described above in 34.6 apply to exported tasks. This includes legal decla-
ration scopes as well as usage of the optional c_identifier.

It is never legal to call an exported task from within an imported function. This semantics is identical to
native SystemVerilog semantics, in which it is illegal for a function to perform a task enable.

It is legal for an imported task to call an exported task only if the imported task is declared with the context
property. See 34.4.3 for more details.

One difference between exported tasks and exported functions is that SystemVerilog tasks do not have
return value types. The return value of an exported task is an int value that indicates if a disable is active or
not on the current execution thread.

IEEE
UNIFIED HARDWARE DESIGN, SPECIFICATION, AND VERIFICATION LANGUAGE P1800/D3, May 3, 2007

791 Copyright © 2007 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Similarly, imported tasks return an int value that is used to indicate that the imported task has acknowl-
edged a disable. See 34.8 for more detail on disables in DPI.

34.8 Disabling DPI tasks and functions

It is possible for a disable statement to disable a block that is currently executing a mixed language call
chain. When a DPI import task or function is disabled, the C code is required to follow a simple disable pro-
tocol. The protocol gives the C code the opportunity to perform any necessary resource cleanup, such as
closing open file handles, closing open VPI handles, or freeing heap memory.

An imported task or function is said to be in the disabled state when a disable statement somewhere in the
design targets either it or a parent for disabling. An imported task or function can only enter the disabled
state immediately after the return of a call to an exported task or function. An important aspect of the proto-
col is that disabled import tasks and functions must programmatically acknowledge that they have been
disabled. A task or function can determine that it is in the disabled state by calling the API function
svIsDisabledState().

The protocol is composed of the following items:
a) When an exported task returns due to a disable, it must return a value of 1. Otherwise, it must

return 0.
b) When an imported task returns due to a disable, it must return a value of 1. Otherwise, it must

return 0.
c) Before an imported function returns due to a disable, it must call the API function

svAckDisabledState().
d) Once an imported task or function enters the disabled state, it is illegal for the current function invo-

cation to make any further calls to exported tasks or functions.

Item b, item c, and item d are mandatory behavior for imported DPI tasks and functions. It is the responsibil-
ity of the DPI programmer to correctly implement the behavior.

Item a is guaranteed by SystemVerilog simulators. In addition, simulators must implement checks to ensure
that item b, item c, and item d are correctly followed by imported tasks and functions. If any protocol item is
not correctly followed, a fatal simulation error is issued.

If an exported task itself is the target of a disable, its parent imported task is not considered to be in the dis-
abled state when the exported task returns. In such cases, the exported task shall return value 0, and calls to
svIsDisabledState() shall return 0 as well.

When a DPI imported task or function returns due to a disable, the values of its output and inout parame-
ters are undefined. Similarly, function return values are undefined when an imported function returns due to
a disable. C programmers can return values from disabled functions, and C programmers can write values
into the locations of output and inout parameters of imported tasks or functions. However,
SystemVerilog simulators are not obligated to propagate any such values to the calling SystemVerilog code
if a disable is in effect.

IEEE
P1800/D3, May 3, 2007 DRAFT STANDARD FOR SYSTEMVERILOG:

Copyright © 2007 IEEE. All rights reserved. 792
This is an unapproved IEEE Standards Draft, subject to change.

34.9 Import and export functions

The syntax for the import and export of functions is as follows:

dpi_import_export ::= // from A.2.6
import dpi_spec_string [dpi_function_import_property] [c_identifier =] dpi_function_proto ;

| import dpi_spec_string [dpi_task_import_property] [c_identifier =] dpi_task_proto ;
| export dpi_spec_string [c_identifier =] function function_identifier ;
| export dpi_spec_string [c_identifier =] task task_identifier ;

dpi_spec_string ::= "DPI-C" | "DPI"
dpi_function_import_property ::= context | pure

dpi_function_proto8,9 ::= function_prototype
function_prototype ::= function function_data_type function_identifier ([tf_port_list])

8) dpi_function_proto return types are restricted to small values, per 34.4.5.

9) Formals of dpi_function_proto and dpi_task_proto cannot use pass by reference mode and class types cannot be
passed at all; for the complete set of restrictions see 34.4.6.

Syntax 34-3—Import and export syntax (excerpt from Annex A)

In both import and export, c_identifier is the name of the foreign function (import/export), and
function_identifier is the SystemVerilog name for the same function. If c_identifier is not explicitly given, it
shall be the same as the SystemVerilog function function_identifier. An error shall be generated if, and only
if, the c_identifier has characters that are not valid in a C function identifier.

Several SystemVerilog functions can be mapped to the same foreign function by supplying the same
c_identifier for several fnames. The corresponding SystemVerilog functions must have identical argument
types, as defined in the next paragraph.

For any given c_identifier, all declarations, regardless of scope, must have exactly the same function signa-
ture. The function signature includes the return type and the number, order, direction, and types of each and
every argument. Each type includes dimensions and bounds of any arrays/array dimensions. For import
declarations, arguments can be open arrays. Open arrays are defined in 34.4.6.1. The signature also includes
the pure/context qualifiers that can be associated with an import definition.

Only one import or export declaration of a given function_identifier shall be permitted in any given
scope. More specifically, for an import, the import must be the sole declaration of function_identifier in the
given scope. For an export, the function must be declared in the scope where the export occurs, and there
must be only one export of that function_identifier in that scope.

For exported functions, the exported function must be declared in the same scope that contains the export
"DPI" declaration. Only SystemVerilog functions can be exported (specifically, this excludes exporting a
class method).

All import "DPI" functions declared this way can be invoked by hierarchical reference the same as any
normal SystemVerilog function. Declaring a SystemVerilog function to be exported does not change the
semantics or behavior of this function from the SystemVerilog perspective (i.e., there is no effect in System-
Verilog usage other than making this exported function also accessible to C callers).

Only nonvoid functions with no output or inout arguments can be specified as pure. Functions specified
as pure in their corresponding SystemVerilog external declarations shall have no side effects; their results

subclause from
1800-2005 12.5

QUESTION:
This subclause
seems to be
mostly, if not
entirely, redun-
dant with the rest
of this Clause.
Can this sub-
clause be
deleted? If not,
can the redundant
text be replaced
with cross refer-
ences?

QUESTION:
Should this be
“DPI-C”?

QUESTION:
Should this be
“DPI-C”?

IEEE
UNIFIED HARDWARE DESIGN, SPECIFICATION, AND VERIFICATION LANGUAGE P1800/D3, May 3, 2007

793 Copyright © 2007 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

need to depend solely on the values of their input arguments. Calls to such functions can be removed by
SystemVerilog compiler optimizations or replaced with the values previously computed for the same values
of the input arguments.

Specifically, a pure function is assumed to not directly or indirectly (i.e., by calling other functions) perform
the following:

— Perform any file operations
— Read or write anything in the broadest possible meaning, including input/output, environment vari-

ables, objects from the operating system, or from the program or other processes, shared memory,
sockets, etc.

— Access any persistent data, like global or static variables

If a pure function does not obey the above restrictions, SystemVerilog compiler optimizations can lead to
unexpected behavior, due to eliminated calls or incorrect results being used.

An unqualified imported function can have side effects, but cannot read or modify any SystemVerilog sig-
nals other than those provided through its arguments. Unqualified imports shall not be permitted to invoke
exported SystemVerilog functions.

Imported functions with the context qualifier can invoke exported SystemVerilog functions and can read
or write to SystemVerilog signals other than those passed through their arguments, either through the use of
other interfaces or as a side effect of invoking exported SystemVerilog functions. Context functions shall
always implicitly be supplied a scope representing the fully qualified instance name within which the
import declaration was present (i.e., an import function always runs in the instance in which the import
declaration occurred). This is the same semantics as SystemVerilog functions, which also run in the scope
they are defined, rather than in the scope of the caller.

Import context functions can have side effects and can use other SystemVerilog interfaces (including but not
limited to VPI). However, declaring an import context function does not automatically make any other sim-
ulator interface available. For VPI access (or any other interface access) to be possible, the appropriate
implementation-defined mechanism must still be used to enable these interface(s). Also, SystemVerilog DPI
calls do not automatically create or provide any handles or any special environment that might be needed by
the other interfaces. It shall be the user’s responsibility to create, manage, or otherwise manipulate the
required handles/environment(s) needed by the other interfaces. The svGetScopeName() and related func-
tions exist to provide a name-based linkage from DPI to other interfaces. Exported functions can only be
invoked if the current DPI context refers to an instance in which the named function is defined.

To access functions defined in any other scope, the foreign code shall have to change DPI context appropri-
ately. Attempting to invoke an exported SystemVerilog function from a scope in which it is not directly
visible shall result in a run-time error. How such errors are handled shall be implementation dependent. If an
imported function needs to invoke an exported function that is not visible from the current scope, it needs to
change, via svSetScope, the current scope to a scope that does have visibility to the exported function.
This is conceptually equivalent to making a hierarchically qualified function call in SystemVerilog. The cur-
rent SystemVerilog context shall be preserved across a call to an exported function, even if current context
has been modified by an application. For noncontext imports, the context is not defined, and attempting to
use any functionality depending on context from noncontext imports can lead to unpredictable behavior.

IEEE
P1800/D3, May 3, 2007 DRAFT STANDARD FOR SYSTEMVERILOG:

Copyright © 2007 IEEE. All rights reserved. 794
This is an unapproved IEEE Standards Draft, subject to change.

