
IEEE SV-CC
Proposed changes to IEEE DRAFT STANDARD P1800/D3, May 6, 2007

Copyright 2007 IEEE. All rights reserved. 1

INSERT:

35.12 VPI Backwards-Compatibility Features and Limitations

The VPI data model has evolved over many previous versions in order to keep up with corresponding features of the Ver-

ilog HDL. Substantial efforts have been made to maintain backwards-compatibility with prior versions whenever possible.

However, some critical incompatible changes were needed that could not be avoided. This section identifies those incom-

patibilities and provides a way for older affected applications to continue to run in newer VPI environments, with some

important restrictions.

35.12.1 VPI Incompatibilities With Other Standard Versions

The following table summarizes the VPI incompatibilities with prior IEEE standard versions.

Table Key:

Y = Behavior, function or object present in that version

D = Behavior, function or object deprecated (present but use discouraged) in that version

N = Behavior, function or object not applicable or no longer present in that version

For the above table and details below, the types vpiReg and vpiRegArray are the same as vpiLogicVar and

vpiArrayVar, respectively, as shown in the 1800 VPI data model (see 36.16 detail 19).

Incompatibility Details:

1) vpiMemory exists as an object:

Unpacked unidimensional reg arrays were exclusively characterized as vpiMemory objects in 1364-1995, and

later deprecated in 1364-2001. This object type was replaced by vpiRegArray in1364-2005, leaving vpiMem-
ory allowed as only a one-to-many transition for 1364-2005 and 1800 standard versions (see section 36.18).

Note that 1364-2001 allowed either vpiMemory or vpiRegArray types to represent unpacked unidimensional

arrays of vpiReg objects.

2) vpiMemoryWord exists as an object:

Elements of unpacked unidimensional reg arrays were exclusively characterized as vpiMemoryWord objects

in 1364-1995, and later deprecated in 1364-2001. This object type was replaced by vpiReg in 1364-2005, leav-

ing vpiMemoryWord allowed only as an iterator for 1364-2005 and 1800 standard versions (see section

36.18). Note that 1364-2001 allowed either vpiMemoryWord or vpiReg types to represent elements of

Table 1-1: Summary of VPI Incompatibilities Across Standard Versions

Incompatibility 1364 1800

See detailed descriptions below 1995 2001 2005 2005 2008

1) vpiMemory exists as an object Y D N N N

2) vpiMemoryWord exists as an object Y D N N N

3) vpiIntegerVar and vpiTimeVar can be arrays Y Y Y N N

4) vpiRealVar can be an array N Y Y N N

5) vpiVariables iterations include vpiReg and vpiRegArray N N N Y Y

6) vpiReg iterations on vpiRegArray include other objects N N N Y Y

7) vpiRegArray iterations include variable arrays N N N Y Y

IEEE SV-CC
Proposed changes to IEEE DRAFT STANDARD P1800/D3, May 6, 2007

2 Copyright 2007 IEEE. All rights reserved.

unpacked unidimensional arrays of vpiReg objects.

3) vpiIntegerVar and vpiTimeVar can be arrays

vpiIntegerVar and vpiTimeVar objects could represent unpacked arrays instead of simple variables in all

1364 standards. In 1800 standard versions, these array types are always represented as vpiRegArray objects,

and vpiIntegerVar and vpiTimeVar objects are always non-array variables (see section 36.16).

4) vpiRealVar can be an array

This object type was allowed to represent an unpacked array of such variables in 1364-2001 and 1364-2005

standards (vpiRealVar arrays were not yet allowed in 1364-1995). In 1800 standard versions, these are now

exclusively represented as vpiRegArray objects (see section 36.16).

5) vpiVariables iterations include vpiReg and vpiRegArray

In all 1364 standards, vpiReg and vpiRegArray objects were excluded from vpiVariables iterations, and only

accessed instead by iterations on vpiReg (from a scope or vpiRegArray), or vpiRegArray (from a scope),

respectively. In 1800 standards, they are both included in vpiVariables iterations (see section 36.16).

6) vpiReg iterations on vpiRegArray include other objects

This is a consequence of vpiRegArray objects being used to represent unpacked arrays of non-vpiReg ele-

ments in 1800 standards (see section 36.16). vpiReg iterations on these array objects can retrieve array ele-

ments that are of type vpiIntegerVar or vpiTimeVar for example, which is not expected in standards 1364-

2001 and 1364-2005.

7) vpiRegArray iterations include variable array objects

This is another consequence of vpiRegArray objects being used to represent unpacked arrays of non-vpiReg
elements in 1800 standards (see section 36.16). In 1364-2001 and 1364-2005 standards vpiRegArray itera-

tions only included arrays of vpiReg objects, but in 1800 standards this iteration includes arrays of vpiInte-
gerVar, vpiTimeVar, and vpiRealVar.

35.12.2 VPI Mechanisms to Deal With Incompatibilities

In order to ease the transition to the latest VPI standard for older applications, capability shall be provided to
emulate the incompatible VPI behaviors where they conflict with the current standard. This allows older VPI
applications dependent on these behaviors to be run unmodified, as long as they are applied only to designs (or
portions of designs) with which they are compatible. This capability is intended only as an interim measure to
allow extra time for applications to be upgraded; it does not provide general emulation of older behaviors for
newer design constructs. For example, it does not allow 1364 applications to run on portions of designs requir-
ing 1800-level simulation capability.

As described in sections 35.12.2.1 and 35.12.2.2 below, two mechanisms to support this shall be provided,
which can be used in combination.

35.12.2.1 Mechanism 1: Compile-based Binding to a Compatibility Mode

This mechanism requires recompilation of the VPI application source code, and is based on defining a com-
piler symbol that binds a particular application to a particular compatibility mode. To use this scheme, one of
the following compiler symbols must be defined prior to compilation of any of the standard VPI include files in
the application source code- either using a “#define” in the source code itself (setting it to the numeric constant
“1”), or defined on the C-compiler command-line:

VPI_COMPATIBILITY_VERSION_1364v1995
VPI_COMPATIBILITY_VERSION_1364v2001
VPI_COMPATIBILITY_VERSION_1364v2005
VPI_COMPATIBILITY_VERSION_1800v2005
VPI_COMPATIBILITY_VERSION_1800v2008

IEEE SV-CC
Proposed changes to IEEE DRAFT STANDARD P1800/D3, May 6, 2007

Copyright 2007 IEEE. All rights reserved. 3

No more than one of these symbols shall be defined for a given application, and it must be consistently defined
for all of its source code that can access any portion of VPI, including callback functions. This ensures that all
design information is handled in the same way for a given mode across the entire application. A compilation
error will occur during the processsing of vpi_user.h if more than one of the above symbols is defined.

Example:

VPI source code file with a compatibility mode selected:

/* VPI application mytask */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define VPI_COMPATIBILITY_VERSION_1364v2001 1
#include “vpi_user.h”
#include “sv_vpi_user.h”

#include “my_appl_header.h”
......
......

Alternatively, the same mode selection could be performed by defining the following option on the C-compiler
command line:

-DVPI_COMPATIBILITY_VERSION_1364v2001

When a mode is selected by one of the means above, C-preprocessor constructs in “vpi_user.h” cause the fol-
lowing VPI functions to be redefined to mode-specific versions:

vpi_compare_objects
vpi_control
vpi_get
vpi_get_str
vpi_get_value
vpi_handle
vpi_handle_by_index
vpi_handle_by_multi_index
vpi_handle_by_name
vpi_handle_multi
vpi_iterate
vpi_put_value
vpi_register_cb
vpi_scan

For example, defining the mode symbol ‘VPI_COMPATIBILITY_VERSION_1364v2001’ as shown above will
cause ‘vpi_handle’ to be redefined as:

vpi_handle_1364v2001

This retargets all calls to ‘vpi_handle’ in the recompiled application to this mode-specific variant, achieving
mode-compatible behavior. See “vpi_user.h” (1364-2005 Annex G) for the complete set of definitions.

35.12.2.1 Mechanism 2: Selection of Default VPI Compatibility Mode Run by the Host Simulator

A means to set the default VPI compatibility mode shall be made available by the simulation provider. This
shall determine the compatibility mode VPI behavior for all applications not using the compile-based scheme
detailed in mechanism #1. Although VPI applications choosing this mechanism can be run without modifica-
tion or recompilation, only one such default mode shall be selectable for a given simulation run. Additional
applications requiring different modes in the same run-time simulation environment must use the compile-
based mechanism to do so.

IEEE SV-CC
Proposed changes to IEEE DRAFT STANDARD P1800/D3, May 6, 2007

4 Copyright 2007 IEEE. All rights reserved.

35.12.3 Limitations of VPI Compatibility Mechanisms

When a VPI application uses the compatibility mode mechanism, the application user and application provider
should ensure that the design or design partition the application is applied to is consistent with the mode, and
does not include constructs that are only supported in other modes. If the design contains unsupported con-
structs, the behavior of the VPI implementation is undefined. The extent of checking for consistency between
constructs and mode is left to the discretion of the VPI implementation.

In general, VPI users and application developers are strongly encouraged to update their applications to the lat-
est VPI version as soon as possible. The compatibility mode feature should be used only as a temporary solu-
tion until such upgrades can be completed or become available. It should be expected that older modes will be
phased out as new versions of the standard become available.

IEEE SV-CC
Proposed changes to IEEE DRAFT STANDARD P1800/D3, May 6, 2007

Copyright 2007 IEEE. All rights reserved. 5

Annex L

(normative)

vpi_user.h (1364-2005 Annex G)

INSERT after “/******************* FUNCTION DECLARATIONS ******************/” comment:

/* Compatibility-mode variants of functions */

#if VPI_COMPATIBILITY_VERSION_1364v1995
#if VPI_COMPATIBILITY_VERSION_1364v2001 || VPI_COMPATIBILITY_VERSION_1364v2005

|| VPI_COMPATIBILITY_VERSION_1800v2005 || VPI_COMPATIBILITY_VERSION_1800v2008
#error “Only one VPI_COMPATIBILITY_VERSION symbol definition is allowed.”
#endif
#define vpi_compare_objects vpi_compare_objects_1364v1995
#define vpi_control vpi_control_1364v1995
#define vpi_get vpi_get_1364v1995
#define vpi_get_str vpi_get_str_1364v1995
#define vpi_get_value vpi_get_value_1364v1995
#define vpi_handle vpi_handle_1364v1995
#define vpi_handle_by_index vpi_handle_by_index_1364v1995
#define vpi_handle_by_multi_index vpi_handle_by_multi_index_1364v1995
#define vpi_handle_by_name vpi_handle_by_name_1364v1995
#define vpi_handle_multi vpi_handle_multi_1364v1995
#define vpi_iterate vpi_iterate_1364v1995
#define vpi_put_value vpi_put_value_1364v1995
#define vpi_register_cb vpi_register_cb_1364v1995
#define vpi_scan vpi_scan_1364v1995
#elif VPI_COMPATIBILITY_VERSION_1364v2001
#if VPI_COMPATIBILITY_VERSION_1364v1995 || VPI_COMPATIBILITY_VERSION_1364v2005

|| VPI_COMPATIBILITY_VERSION_1800v2005 || VPI_COMPATIBILITY_VERSION_1800v2008
#error “Only one VPI_COMPATIBILITY_VERSION symbol definition is allowed.”
#endif
#define vpi_compare_objects vpi_compare_objects_1364v2001
#define vpi_control vpi_control_1364v2001
#define vpi_get vpi_get_1364v2001
#define vpi_get_str vpi_get_str_1364v2001
#define vpi_get_value vpi_get_value_1364v2001
#define vpi_handle vpi_handle_1364v2001
#define vpi_handle_by_index vpi_handle_by_index_1364v2001
#define vpi_handle_by_multi_index vpi_handle_by_multi_index_1364v2001
#define vpi_handle_by_name vpi_handle_by_name_1364v2001
#define vpi_handle_multi vpi_handle_multi_1364v2001
#define vpi_iterate vpi_iterate_1364v2001
#define vpi_put_value vpi_put_value_1364v2001
#define vpi_register_cb vpi_register_cb_1364v2001
#define vpi_scan vpi_scan_1364v2001
#elif VPI_COMPATIBILITY_VERSION_1364v2005
#if VPI_COMPATIBILITY_VERSION_1364v1995 || VPI_COMPATIBILITY_VERSION_1364v2001

|| VPI_COMPATIBILITY_VERSION_1800v2005 || VPI_COMPATIBILITY_VERSION_1800v2008
#error “Only one VPI_COMPATIBILITY_VERSION symbol definition is allowed.”
#endif
#define vpi_compare_objects vpi_compare_objects_1364v2005
#define vpi_control vpi_control_1364v2005
#define vpi_get vpi_get_1364v2005

IEEE SV-CC
Proposed changes to IEEE DRAFT STANDARD P1800/D3, May 6, 2007

6 Copyright 2007 IEEE. All rights reserved.

#define vpi_get_str vpi_get_str_1364v2005
#define vpi_get_value vpi_get_value_1364v2005
#define vpi_handle vpi_handle_1364v2005
#define vpi_handle_by_index vpi_handle_by_index_1364v2005
#define vpi_handle_by_multi_index vpi_handle_by_multi_index_1364v2005
#define vpi_handle_by_name vpi_handle_by_name_1364v2005
#define vpi_handle_multi vpi_handle_multi_1364v2005
#define vpi_iterate vpi_iterate_1364v2005
#define vpi_put_value vpi_put_value_1364v2005
#define vpi_register_cb vpi_register_cb_1364v2005
#define vpi_scan vpi_scan_1364v2005
#elif VPI_COMPATIBILITY_VERSION_1800v2005
#if VPI_COMPATIBILITY_VERSION_1364v1995 || VPI_COMPATIBILITY_VERSION_1364v2001

|| VPI_COMPATIBILITY_VERSION_1364v2005 || VPI_COMPATIBILITY_VERSION_1800v2008
#error “Only one VPI_COMPATIBILITY_VERSION symbol definition is allowed.”
#endif
#define vpi_compare_objects vpi_compare_objects_1800v2005
#define vpi_control vpi_control_1800v2005
#define vpi_get vpi_get_1800v2005
#define vpi_get_str vpi_get_str_1800v2005
#define vpi_get_value vpi_get_value_1800v2005
#define vpi_handle vpi_handle_1800v2005
#define vpi_handle_by_index vpi_handle_by_index_1800v2005
#define vpi_handle_by_multi_index vpi_handle_by_multi_index_1800v2005
#define vpi_handle_by_name vpi_handle_by_name_1800v2005
#define vpi_handle_multi vpi_handle_multi_1800v2005
#define vpi_iterate vpi_iterate_1800v2005
#define vpi_put_value vpi_put_value_1800v2005
#define vpi_register_cb vpi_register_cb_1800v2005
#define vpi_scan vpi_scan_1800v2005
#elif VPI_COMPATIBILITY_VERSION_1800v2008
#if VPI_COMPATIBILITY_VERSION_1364v1995 || VPI_COMPATIBILITY_VERSION_1364v2001

|| VPI_COMPATIBILITY_VERSION_1364v2005 || VPI_COMPATIBILITY_VERSION_1800v2005
#error “Only one VPI_COMPATIBILITY_VERSION symbol definition is allowed.”
#endif
#define vpi_compare_objects vpi_compare_objects_1800v2008
#define vpi_control vpi_control_1800v2008
#define vpi_get vpi_get_1800v2008
#define vpi_get_str vpi_get_str_1800v2008
#define vpi_get_value vpi_get_value_1800v2008
#define vpi_handle vpi_handle_1800v2008
#define vpi_handle_by_index vpi_handle_by_index_1800v2008
#define vpi_handle_by_multi_index vpi_handle_by_multi_index_1800v2008
#define vpi_handle_by_name vpi_handle_by_name_1800v2008
#define vpi_handle_multi vpi_handle_multi_1800v2008
#define vpi_iterate vpi_iterate_1800v2008
#define vpi_put_value vpi_put_value_1800v2008
#define vpi_register_cb vpi_register_cb_1800v2008
#define vpi_scan vpi_scan_1800v2008
#endif

IEEE SV-CC
Proposed changes to IEEE DRAFT STANDARD P1800/D3, May 6, 2007

Copyright 2007 IEEE. All rights reserved. 7

Annex M

(normative)

sv_vpi_user.h (1800-2005 Annex I)

INSERT (after “#define vpiGeneric 653”):

/* Compatibility-mode property and values (object argument == NULL) */
#define vpiCompatibilityMode 654
#define vpiMode1364v1995 1
#define vpiMode1364v2001 2
#define vpiMode1364v2005 3
#define vpiMode1800v2005 4
#define vpiMode1800v2008 5

