
Purpose: The purpose is to fix issues with assertion VPI diagrams.

1. Clarify that vpiIdentifier iterator in the property and sequence declaration shall
return the list of arguments in the declaration.

2. Add vpiArgument as an iterator to properties similar to sequences.
3. vpiArgument should be a property_expr for property instances and a

sequence_expr for sequence instances (missed in Mantis 1730)
4. In several diagrams vpiDefLineNo is a “str”. This should be an “int”. It affect

36.44, 36.45, 36.46, 36.48.
5. There is overlap in the definition of vpiDefLineNo and vpiDef. Add a note that

they are the same for property and sequence declarations.
6. 'block identifier' makes no sense for sequence and property declarations. These

are not 'labeled statements'. In diagram 36.43 and 36.46, 'block identifier' should
be replaced with 'name'.

7. vpiArgument should only come out of the sequence and property instance where
they are defined (definitions are bold), so they should not be shown in the
declaration diagrams.

8. It was clarified that you can only control verification statements, which then
enables the instances within them. Clarifications were also stated w.r.t.
interpretation of start times, pass, and fail of a sequence or property.

9. It was clarified what callbacks apply to sequence and property instances. The
callbacks on the property and sequence instances are cbAssertionStart,
cbAssertionSuccess and cbAssertionFailure only.

10. bool: vpiIsCoverSequence was added under cover on diagram 36.43 for
distinguishing cover property and cover sequence (missed in Mantis 1768)

11. Added a note to the editor to make the Immediate assertion a section of its own
instead of being included with the sequence_expr diagrams in 36.47.

12. Added vpiClockedProp to the header file and placed it under vpiClockedSeq .
Also deleted vpiActualArgExpr that is defined in the header file, but is not an
object in any of the diagrams so should be removed

13. Added vpiClockedSeq diagram to 36.48
After review:
14. [DK] Updated the text in 38.3.2 to reflect Mantis1729 as a basis. Also added a

space after immediate and made the second word lower case in the text from
1729. Also lower cased the word instance” in “Property instance” and “Sequence
instance”

15. Added clarification to cbAssertionStart that A property or sequence instance that is not
instantiated in a verification statement will never start.

16. [DK] New diagram on page 5: sequence expr (bottom right) should not have an
underscore

17. [DK] * 38.4.2, Page 8.

It is written:
- cbAssertionSuccess. An assertion attempt reaches a success state. For
property or sequence instances, success is a match.
- cbAssertionFailure. An assertion attempt fails to reach a success
state. For property or sequence instances, failure is no match.

The second sentence is ambiguous: does cbAssertionFailure relate to each
time point where the sequence does not match or to the time point where
it is detected that the sequence cannot be matched? I think that the
latter is correct. Also it is better to talk about the success state of
a property instead of the match.

I would formulate it as:
- cbAssertionSuccess. An assertion attempt or a property instance
reaches a success state. For sequence instances, success is a match.
- cbAssertionFailure. An assertion attempt or a property fails to reach
a success state, or sequence instance fails to match.

18. [DK] Updated 36.47 to remove the top sequence expr and re-position sequence
declaration so the diagram looks like property inst.

SV-CC Review comments incorporated

SV-CC review comments:
1. [JV] Per Jim’s discussion, the notes for each callback were replaced with a

paragraph at the end that states what is possible.
2. variables was moved from property spec to property declaration, which is

consistent with the BNF and examples in the text.
3. vpiDefFile and vpiDefLineNo were deleted from property declaration and sequence declaration

and the note added: vpiDefFile and vpiDefLineNo are deprecated because they are the same as
vpiLineNo and vpiFile

REPLACE in 36.43 Concurrent Assertions (note to editor: only the part that
changes is shown)

WITH

concurrent assertions

assert

assume

cover

-> definition location
 str: vpiDefFile
 int: vpiDefLineNo
-> block identifier
 str: vpiName
 str: vpiFullName
-> is clock inferred
 bool:vpiIsClockInferred

concurrent assertions

assert

assume

cover

-> is cover sequence
bool: IsCoverSequence

-> definition location
 str: vpiDefFile
 int: vpiDefLineNo
-> block identifier name
 str: vpiName
 str: vpiFullName
-> is clock inferred
 bool:vpiIsClockInferred

IN 36.44 Property Declaration REPLACE

WITH

Details:.
1) The vpiIdentifier iterator shall return the property declaration arguments in the order that the formals for the
property are declared.
2) vpiDefFile and vpiDefLineNo are deprecated because they are the same as vpiLineNo and vpiFile.

property inst

identifier

-> name
 str: vpiName
 str: vpiFullName
-> definition location
 str: vpiDefFile
 str: vpiDefLineNo

property decl

property spec

variables

property inst

identifier

-> name
 str: vpiName
 str: vpiFullName
-> definition location
 str: vpiDefFile
 str: vpiDefLineNo

property decl property spec

REPLACE in 36.45 Property specification

WITH

expr

expr

variables

property spec

-> definition location
str: vpiDefFile
str: vpiDefLineNo
int: vpiDefLineNo

vpiClockingEvent

vpiDisableCondition

property expr

expr

expr

variables

property spec

-> definition location
str: vpiDefFile
str: vpiDefLineNo

vpiClockingEvent

vpiDisableCondition

property expr

IN 36.46 Sequence declaration REPLACE

Details:
1) The vpiArgument iterator shall return the sequence instance arguments in the order that the formals for the
sequence are declared, so that the correspondence between each argument and its respective formal can be made. If
a formal has a default value, that value shall appear as the argument should the instantiation not provide a value for
that argument.

WITH

1) The vpiArgument iterator shall return the sequence instance arguments in the order that the formals for the
sequence are declared, so that the correspondence between each argument and its respective formal can be made. If
a formal has a default value, that value shall appear as the argument should the instantiation not provide a value for
that argument.
1) The vpiIdentifier iterator shall return the sequence declaration arguments in the order that the formals for the
sequence are declared.
2) vpiDefFile and vpiDefLineNo are deprecated because they are the same as vpiLineNo and vpiFile.

expr

sequence inst

identifier

variables

-> name
 str: vpiName

vpiArgument

sequence decl

sequence expr

 multiclock
sequence expr

vpiExpr -> name
 str: vpiName
 str: vpiFullName
-> definition location
 str: vpiDefFile
 str: vpiDefLineNo
-> block identifier
 str: vpiName
 str: vpiFullName

expr

sequence inst

identifier

variables

-> definition location
 str: vpiDefFile
 str: vpiDefLineNo
-> block identifier
 str: vpiName
 str: vpiFullName

-> name
 str: vpiName

vpiArgument

sequence decl

sequence expr

 multiclock
sequence expr

vpiExpr

REPLACE in 36.47 Sequence Expression (only affected parts of the diagram are
shown)

WITH

Details:
1) The vpiArgument iterator shall return the sequence instance arguments in the order that the formals for the
sequence are declared, so that the correspondence between each argument and its respective formal can be made. If
a formal has a default value, that value shall appear as the argument should the instantiation not provide a value for
that argument.

Move from “36.47 Sequence expression” the immediate assert definition to
a new section titled “Immediate Assertions” that follows 36.48. The notes in
36.47 still remain only in 36.47 – they do not get copied. Note that immediate
assume and immediate cover from Mantis 1729 will also reside in this new
section. Re-number subsequent sections accordingly.

sequence decl

sequence inst

-> definition location
str: vpiDefFile
int: vpiDefLineNo

sequence expr
vpiArgument

sequence decl
vpiExpr

sequence expr

sequence decl sequence inst

 vpiArgument

vpiExpr
sequence expr

expr

REPLACE from 36.48 Multiclock sequence expression (only the parts that change are
shown)

WITH

Details:
1) The vpiArgument iterator shall return the property instance arguments in the order that the formals for the
property are declared, so that the correspondence between each argument and its respective formal can be made. If
a formal has a default value, that value shall appear as the argument should the instantiation not provide a value for
that argument.

expr

arguments
property expr property inst

property decl

-> definition location
str: vpiDefFile
str: vpiDefLineNo
int: vpiDefLineNo

vpiDisableCondition

vpiArgument

clocked seq

vpiClockingEvent
 expr

sequence expr

expr

arguments property inst

property decl

-> definition location
str: vpiDefFile
str: vpiDefLineNo

vpiDisableCondition

REPLACE

38.3.2 Obtaining static assertion information
The following information about an assertion is considered to be static:
 — Assertion name
 — Instance in which the assertion occurs
 — Module definition containing the assertion
 — Assertion type

— Sequence
— Assert
— Assume
— Cover
— Property
— ImmediateAssert
— ImmediateAssume
— ImmediateCover

WITH

38.3.2 Obtaining static assertion information
The following information about an assertion is considered to be static:
 — Assertion name
 — Instance in which the assertion occurs
 — Module definition containing the assertion
 — Assertion type

— Sequence instance
— Assert
— Assume
— Cover
— Property instance
— ImmediateAssert assert
— ImmediateAssume assume
— ImmediateCover cover

In 38.4.2 REPLACE

where reason is any of the following.
— cbAssertionStart. An assertion attempt has started. For most assertions, one attempt starts each and
every clock tick.
— cbAssertionSuccess. An assertion attempt reaches a success state.
— cbAssertionFailure. An assertion attempt fails to reach a success state.
— cbAssertionStepSuccess. Progress one step an attempt. By default, step callbacks are not enabled
on any assertions; they are enabled on a per-assertion/per-attempt basis (see 38.5.2), rather than on a
per-assertion basis.
— cbAssertionStepFailure. Fail to progress by one step along an attempt. By default, step callbacks
are not enabled on any assertions; they are enabled on a per-assertion/per-attempt basis (see 38.5.2),
rather than on a per-assertion basis.
— cbAssertionDisable. The assertion is disabled (e.g., as a result of a control action).
— cbAssertionEnable. The assertion is enabled.
— cbAssertionReset. The assertion is reset.
— cbAssertionKill. An attempt is killed (e.g., as a result of a control action).
— cbAssertionDisablePassAction. The pass action is disabled for vacuous and nonvacuous success
for the assertion (e.g., as a result of control action).

— cbAssertionEnablePassAction. The pass action is enabled for vacuous and nonvacuous success for
the assertion (e.g., as a result of control action).
— cbAssertionDisableFailAction. The fail action is disabled for the assertion (e.g., as a result of control
action).
— cbAssertionDisableVacuousAction. The pass action is disabled for vacuous success of the assertion
(e.g., as a result of control action).
— cbAssertionEnableNonvacuousAction. The pass action is enabled for nonvacuous success of the
assertion (e.g., as a result of control action).
These callbacks are specific to a given assertion; placing such a callback on one assertion does not cause
the
callback to trigger on an event occurring on a different assertion. If the callback is successfully placed, a
handle to the callback is returned. This handle can be used to remove the callback via vpi_remove_cb(). If
there were errors on placing the callback, a NULL handle is returned. As with all other calls, invoking this
function with invalid arguments has unpredictable effects.

WITH

— cbAssertionStart. An assertion attempt has started. For most assertions, one attempt starts each and
every clock tick. For property and sequence instances the start is the start of evaluation of the property or
sequence instance. A property or sequence instance that is not instantiated in a verification statement will
never start.
— cbAssertionSuccess. An assertion attempt or property instance reaches a success state. For sequence
instances, success is a match.
— cbAssertionFailure. An assertion attempt or a property fails to reach a success state or a sequence
instance fails to match.
— cbAssertionStepSuccess. Progress one step along an attempt. A step is defined as progress along the
flattened assertion (e.g. rewriting algorithm defined in [Note to Editor --- insert reference to the
new section in F.3.1 titled ‘‘Rewriting sequence and property instances’’]). By default, step callbacks are
not enabled on any assertions; they are enabled on a per-assertion/per-attempt basis (see 38.5.2), rather than
on a per-assertion basis.
— cbAssertionStepFailure. Fail to progress by one step along an attempt. A step is defined as progress
along the flattened assertion (e.g. rewriting algorithm defined in [Note to Editor --- insert reference to the
new section in F.3.1 titled ‘‘Rewriting sequence and property instances’’. By default, step callbacks are not
enabled on any assertions; they are enabled on a per-assertion/per-attempt basis (see 38.5.2), rather than on
a per-assertion basis.
— cbAssertionDisable. The assertion is disabled (e.g., as a result of a control action).
— cbAssertionEnable. The assertion is enabled.
— cbAssertionReset. The assertion is reset.
— cbAssertionKill. An attempt is killed (e.g., as a result of a control action).
— cbAssertionDisablePassAction. The pass action is disabled for vacuous and nonvacuous success
for the assertion (e.g., as a result of control action).
— cbAssertionEnablePassAction. The pass action is enabled for vacuous and nonvacuous success for
the assertion (e.g., as a result of control action).
— cbAssertionDisableFailAction. The fail action is disabled for the assertion (e.g., as a result of control
action).
— cbAssertionDisableVacuousAction. The pass action is disabled for vacuous success of the assertion
(e.g., as a result of control action).
— cbAssertionEnableNonvacuousAction. The pass action is enabled for nonvacuous success of the
assertion (e.g., as a result of control action).

Each of these callbacks may be registered on any concurrent or immediate assertion. The cbAssertionStart,
cbAssertionSuccess, and cbAssertionFailure callbacks may also be registered on a sequence instance or a
property instance.

These callbacks are specific to a given assertion; placing such a callback on one assertion does not cause
the callback to trigger on an event occurring on a different assertion. If the callback is successfully placed,

a handle to the callback is returned. This handle can be used to remove the callback via vpi_remove_cb().
If there were errors on placing the callback, a NULL handle is returned. As with all other calls, invoking
this function with invalid arguments has unpredictable effects.

REPLACE

38.5.2 Assertion control
To obtain assertion control information, use vpi_control() with one of the operators in this subclause.

WITH:

38.5.2 Assertion control
To obtain assertion control information for verification statements (e.g. assume, assert, cover) , use
vpi_control() with one of the operators in this subclause. Only verification statement handles are valid
here, not sequence or property instances.

REPLACE On page 1126 of N.2 Source code (for sv_vpi_user.h)
…
#define vpiMethod 645
#define vpiIsClockInferred 649
…

WITH
…
#define vpiMethod 645
#define vpiIsClockInferred 649
#define vpiIsCoverSequence [Editor to fill in]
…

Also REPLACE On page 1124 of Annex N.2 Source code for object types(for sv_vpi_user.h)
…
#define vpiMulticlockSequenceExpr 658
#define vpiClockedSeq 659
#define vpiPropertyInst 660
#define vpiSequenceDecl 661
#define vpiActualArgExpr 663
#define vpiSequenceInst 664
…

WITH
…
#define vpiMulticlockSequenceExpr 658
#define vpiClockedSeq 659
#define vpiClockedProp [Editor to fill in]
#define vpiPropertyInst 660
#define vpiSequenceDecl 661
#define vpiActualArgExpr 663
#define vpiSequenceInst 664

