
IEEE
UNIFIED HARDWARE DESIGN, SPECIFICATION, AND VERIFICATION LANGUAGE P1800/D5, June 3, 2008
All text in the baseline P1800/D5 is unmodified in color choices. It contains editor’s changes in dark green.
All changes are dark blue. My editorial comments are in gold.

35. Programming language interface (PLI/SVPI) overview

35.1 General

This clause describes:
— The definition and history of PLI and SVPI
— User-defined system tasks and functions
— SVPI sizetf, compiletf and calltf routines
— The PLI mechanism
— Access to SystemVerilog and simulation objects
— List of SVPI routines by functional category

35.2 PLI purpose and history

The Programming Language Interface (PLI) is a procedural interface that allows foreign language functions
to access the internal data structures of a SystemVerilog simulation. The SystemVerilog Procedural Inter-
face (VPISVPI) is part of the PLI. SVPI provides a library of C-language functions and a mechanism for
associating foreign language functions with SystemVerilog user-defined system task and function names.

The PLI provides a means for SystemVerilog users to dynamically access and modify data in an instantiated
SystemVerilog data structure. An instantiated SystemVerilog data structure is the result of compiling and
elaborating SystemVerilog source descriptions and generating the hierarchy modeled by module instances,
primitive instances, and other SystemVerilog constructs that represent scope. The PLI procedural interface
provides a library of C language functions that can directly access data within an instantiated SystemVerilog
data structure.

A few of the many possible applications for the PLI procedural interface are as follows:
— C language delay calculators for SystemVerilog model libraries that can dynamically scan the data

structure of a SystemVerilog tool and then dynamically modify the delays of each instance of mod-
els from the library

— C language applications that dynamically read test vectors or other data from a file and pass the data
into a SystemVerilog tool

— Custom graphical waveform and debugging environments for SystemVerilog software products
— Source code decompilers that can generate SystemVerilog source code from the compiled data

structure of a SystemVerilog tool
— Simulation models written in the C language and dynamically linked into SystemVerilog simula-

tions
— Interfaces to actual hardware, such as a hardware modeler, that dynamically interact with simula-

tions

There are threefour primary generations of the SystemVerilog PLI:
a) Task/function routines, called TF routines, made up the first generation of the PLI. These routines,

most of which started with the characters tf_, were primarily used for operations involving user-
defined system task/function arguments, along with utility functions, such as setting up call-back
mechanisms and writing data to output devices. The TF routines were sometimes referred to as
utility routines
771 Copyright © 2007 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
P1800/D5, June 3, 2008 DRAFT STANDARD FOR SYSTEMVERILOG:
b) Access routines, called ACC routines, formed the second generation of the PLI. These routines,
which all started with the characters acc_, provided an object-oriented access directly into a System-
Verilog structural description. ACC routines were used to access and modify information, such as
delay values and logic values, on a wide variety of objects that exist in a SystemVerilog description.
There was some overlap in functionality between ACC routines and TF routines.

c) Verilog procedural interface routines, called VPI routines, are the third generation of the PLI. These
routines, most of which start with the characters vpi_, provide an object-oriented access for both
SystemVerilog structural and behavioral objects. The VPI routines are a superset of the functionality
of the TF routines and ACC routines.

d) SystemVerilog procedural interface routines, called SVPI routines, are the fourth generation of the
PLI. These routines and the information model behind them are an extension of the VPI routines and
information model to encompass the core SystemVerilog language, assertions, and coverage. For
backward compatibility, these routines retain the prefix vpi in the data model and in the names of the
constants and functions that make up the procedural interface. The acronym VPI has been depre-
cated.

NOTE—IEEE Std 1364-2005 deprecated the task/function (TF) and access (ACC) routines These deprecated routines
are not included in this standard. See Clause 21 through Clause 25, Annex E, and Annex F of IEEE Std 1364-2001 for
the deprecated text.

This clause, along with Clause 37, Annex L and Annex N, describe the VPISVPI procedural interface stan-
dard and interface mechanisms.

AUTHOR’S NOTE there are necessary changes to the rest of this clause, pending approval of the approach
to changing terminology --John Shields

35.3 User-defined system task/function names

A user-defined system task/function name is the name that will be used within a SystemVerilog source file
to invoke specific PLI applications. The name shall adhere to the following rules:

— The first character of the name shall be the dollar sign ($).
— The remaining characters shall be letters, digits, the underscore character (_), or the dollar sign ($).
— Uppercase and lowercase letters shall be considered to be unique—the name is case sensitive.
— The name can be any size, and all characters are significant.

35.3.1 Defining system task/function names

User-defined system task/function names are defined using a system task/function callback registry, which
is part of the PLI mechanism. Registering system tasks and functions is described in 35.9.1.

35.3.2 Overriding built-in system task/function names

Clause 19 and Clause 20 define a number of built-in system tasks and functions that are part of the System-
Verilog language. In addition, SystemVerilog tools can include other built-in system tasks and functions
specific to the tool. These built-in system task/function names begin with the dollar sign ($) just as user-
defined system task/function names.

If a user-provided PLI application is associated with the same name as a built-in system task/function (using
the PLI mechanism), the user-provided C application shall override the built-in system task/function, replac-
ing its functionality with that of the user-provided C application. For example, a user could write a random
number generator as a PLI application and then associate the application with the name $random, thereby
overriding the built-in $random function with the user’s application.
Copyright © 2007 IEEE. All rights reserved. 772
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
UNIFIED HARDWARE DESIGN, SPECIFICATION, AND VERIFICATION LANGUAGE P1800/D5, June 3, 2008
SystemVerilog timing checks, such as $setup, are not system tasks and cannot be overridden.

The built-in system functions $signed and $unsigned can be overridden. These system functions are
unique in the SystemVerilog in that the return width is based on the width of their argument. If overridden,
the PLI version shall have the same return width for all instances of the system function. The PLI return
width is defined by the PLI sizetf routine.

35.4 User-defined system task/function arguments

When a user-defined system task/function is used in a SystemVerilog source file, it can have arguments that
can be used by the PLI applications associated with the system task/function. In the following example, the
user-defined system task $get_vector has two arguments:

$get_vector("test_vector.pat", input_bus);

The arguments to a system task/function are referred to as task/function arguments (often abbreviated as
tfargs). These arguments are not the same as C language arguments. When the PLI applications associated
with a user-defined system task/function are called, the task/function arguments are not passed to the PLI
application. Instead, a number of PLI routines are provided that allow the PLI applications to read and write
to the task/function arguments. See Clause 37 for information on specific routines that work with task/func-
tion arguments.

35.5 User-defined system task/function types

The type of a user-defined system task/function determines how a PLI application is called from the System-
Verilog source code. The types are as follows:

— A user task can be used in the same places a SystemVerilog task can be used (see 13.3). A user-
defined system task can read and modify the arguments of the task, but does not return any value.

— A user function can be used in the same places a SystemVerilog function can be used (see 13.5). A
user-defined system function can read and modify the arguments of the function, and it returns a
value. The bit width of a vector shall be determined by a user-supplied sizetf application (see
35.8.1).

35.6 User-supplied PLI applications

User-supplied PLI applications are C language functions that utilize the library of PLI C functions to access
and interact dynamically with SystemVerilog software implementations as the SystemVerilog source code is
executed.

These PLI applications are not independent C programs. They are C functions that are linked into a tool and
become part of the tool. This allows the PLI application to be called when the user-defined system task/func-
tion $ name is compiled or executed in the SystemVerilog source code (see 35.8).

35.7 PLI include files

The libraries of PLI functions are defined in C include files, which is a normative part of this standard. This
file also defines constants, structures, and other data used by the library of PLI routines and the interface
mechanisms. The file is vpi_user.h (listed in Annex L) and sv_vpi_user.h (listed in Annex N). PLI
applications that use the VPI routines shall include these files.
773 Copyright © 2007 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
P1800/D5, June 3, 2008 DRAFT STANDARD FOR SYSTEMVERILOG:
35.8 VPI sizetf, compiletf and calltf routines

VPI-based system tasks have sizetf, compiletf, and calltf routines, which perform specific actions for the
task/function. The sizetf, compiletf, and calltf routines are called during specific periods during processing.
The purpose of each of these routines is explained in 35.8.1 through 35.8.4.

35.8.1 sizetf VPI application routine

A sizetf VPI application routine can be used in conjunction with user-defined system functions. A function
shall return a value, and tools that execute the system function need to determine how many bits wide that
return value shall be. When sizetf shall be called is described in 35.10.2 and 37.35.1. Each sizetf routine shall
be called at most once. It shall be called if its associated system function appears in the design. The value
returned by the sizetf routine shall be the number of bits that the calltf routine shall provide as the return
value for the system function. If no sizetf routine is specified, a user-defined system function shall return 32
bits. The sizetf routine shall not be called for user-defined system tasks or for functions whose sysfunctype is
set to vpiRealFunc.

35.8.2 compiletf VPI application routine

A compiletf VPI application routine shall be called when the user-defined system task/function name is
encountered during parsing or compiling the SystemVerilog source code. This routine is typically used to
check the correctness of any arguments passed to the user-defined system task/function in the SystemVer-
ilog source code. The compiletf routine shall be called one time for each instance of a system task/function
in the source description. Providing a compiletf routine is optional, but it is recommended that any argu-
ments used with the system task/function be checked for correctness to avoid problems when the calltf or
other PLI routines read and perform operations on the arguments. When the compiletf is called is described
in 35.10.2 and 37.35.1.

35.8.3 calltf VPI application routine

A calltf VPI application routine shall be called each time the associated user-defined system task/function is
executed within the SystemVerilog source code. For example, the following SystemVerilog loop would call
the calltf routine that is associated with the $get_vector user-defined system task name 1024 times:

for (i = 1; i <= 1024; i = i + 1)
@(posedge clk) $get_vector("test_vector.pat", input_bus);

In this example, the calltf might read a test vector from a file called test_vector.pat (the first task/func-
tion argument), perhaps manipulate the vector to put it in a proper format for SystemVerilog, and then assign
the vector value to the second task/function argument called input_bus.

35.8.4 Arguments to sizetf, compiletf, and calltf application routines

The sizetf, compiletf, and calltf routines all take one argument. When the tool calls these routines, it will pass
to them the value supplied in the s_vpi_systf_data structure’s user_data field when the user-defined
system task/function was registered. See 37.35.

35.9 PLI mechanism

The PLI mechanism provides a means to have PLI applications called for various reasons when the associ-
ated system task/function $ name is encountered in the SystemVerilog source description. For example,
when a SystemVerilog simulator first compiles the SystemVerilog source description, a specific compiletf
PLI routine can be called that performs syntax checking to ensure the user-defined system task/function is
Copyright © 2007 IEEE. All rights reserved. 774
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
UNIFIED HARDWARE DESIGN, SPECIFICATION, AND VERIFICATION LANGUAGE P1800/D5, June 3, 2008
being used correctly. Then, as simulation is executing, a specific calltf PLI routine can be called to perform
the operations required by the PLI application. User-defined system tasks and functions, and their associated
routines and data, are defined by registering system task/function callbacks (see 35.9.1).

The PLI mechanism also enables having specific PLI applications automatically called by the simulator for
miscellaneous reasons, such as the end of a simulation time step or a logic value change on a specific signal.
This dynamic interaction with simulation is accomplished by registering simulation callbacks (see 35.9.2).

35.9.1 Registering user-defined system tasks and functions

User-defined system tasks and functions are created using the routine vpi_register_systf() (see 37.35). The
registration of system tasks must shall occur prior to elaboration or the resolution of references.

The intended use model would be to place a reference to a routine within the vlog_startup_routines[]
array. This routine would register all user-defined system tasks and functions when it is called.

Through the VPI, an application can perform the following:
— Specify a user-defined system task/function name that can be included in SystemVerilog source

descriptions; the user-defined system task/function name shall begin with a dollar sign ($), such as
$get_vector.

— Provide one or more PLI C applications to be called by a tool (such as a logic simulator).
— Define which PLI C applications are to be called—and when the applications should be called—

when the user-defined system task/function name is encountered in the SystemVerilog source
description.

— Define whether the PLI applications should be treated as functions (which return a value) or tasks
(analogous to subroutines in other programming languages).

— Define a data argument to be passed to the PLI applications each time they are called.

35.9.2 Registering simulation callbacks

Dynamic tool interaction shall be accomplished with a registered callback mechanism. VPI callbacks allow
an application to request that a SystemVerilog tool, such as a logic simulator, call a user-defined application
when a specific activity occurs. For example, the application can request that the application routine
my_monitor() be called when a particular net changes value or that my_cleanup() be called when the
tool execution has completed.

The VPI simulation callback facility shall provide the application with the means to interact dynamically
with a tool, detecting the occurrence of value changes, advancement of time, end of simulation, etc. This
feature allows integration with other simulation systems, specialized timing checks, complex debugging fea-
tures, etc.

The reasons for which callbacks shall be provided can be separated into four categories:
— Simulation event (e.g., a value change on a net or a behavioral statement execution)
— Simulation time (e.g., the end of a time queue or after certain amount of time)
— Simulator action or feature (e.g., the end of compile, end of simulation, restart, or enter interactive

mode)
— User-defined system task/function execution

VPI simulation callbacks shall be registered by the application with the function vpi_register_cb() (see
37.34). This routine indicates the specific reason for the callback, the application routine to be called, and
what system and user_data shall be passed to the callback application when the callback occurs. A facility is
775 Copyright © 2007 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
P1800/D5, June 3, 2008 DRAFT STANDARD FOR SYSTEMVERILOG:
also provided to call the callback functions when a SystemVerilog tool is first invoked. A primary use of this
facility shall be for registration of user-defined system tasks and functions.

35.10 VPI access to SystemVerilog objects and simulation objects

Accessible SystemVerilog objects and simulation objects and their relationships and properties are
described using data model diagrams. These diagrams are presented in Clause 36. The data model diagrams
indicate the routines and constants that are required to access and manipulate objects within an application
environment. An associated set of routines to access these objects is defined in Clause 37.

VPI also includes a set of utility routines for functions such as handle comparison, file handling, and redi-
rected printing, which are described in Table 35-9 (in 35.11).

VPI routines provide access to objects in an instantiated SystemVerilog design. An instantiated design is
one where each instance of an object is uniquely accessible. For instance, if a module m contains wire w and
is instantiated twice as m1 and m2, then m1.w and m2.w are two distinct objects, each with its own set of
related objects and properties.

VPI is designed as a simulation interface, with access to both SystemVerilog objects and specific simulation
objects. This simulation interface is different from a hierarchical language interface, which would provide
access to source code information, but would not provide information about simulation objects.

35.10.1 Error handling

To determine whether an error occurred, the routine vpi_chk_error() (see 37.2) shall be provided. The
vpi_chk_ error() routine shall return a nonzero value if an error occurred in the previously called VPI rou-
tine. Callbacks can be set up for when an error occurs as well. The vpi_chk_error() routine can provide
detailed information about the error.

35.10.2 Function availability

Certain features of VPI must shall occur early in the execution of a tool. In order to allow this process to
occur in an orderly manner, some functionality must shall be restricted in these early stages. Specifically,
when the routines within the vlog_startup_routines[] array are executed, there is very little function-
ality available. Only two routines can be called at this time:

— vpi_register_systf() (see 37.35)
— vpi_register_cb() (see 37.34)

In addition, the vpi_register_cb() routine can only be called for the following reasons:
— cbEndOfCompile
— cbStartOfSimulation
— cbEndOfSimulation
— cbUnresolvedSystf
— cbError
— cbPLIError

See 37.35 for a further explanation of the use of the vlog_startup_routines[] array.

The next earliest phase is when the sizetf routines are called for the user-defined system functions. At this
phase, no additional access is permitted. After the sizetf routines are called, the routines registered for reason
Copyright © 2007 IEEE. All rights reserved. 776
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
UNIFIED HARDWARE DESIGN, SPECIFICATION, AND VERIFICATION LANGUAGE P1800/D5, June 3, 2008
cbEndOfCompile are called. At this point, and continuing until the tool has finished execution, all func-
tionality is available.

35.10.3 Traversing expressions

The VPI routines provide access to any expression that can be written in the source code. Dealing with these
expressions can be complex because very complex expressions can be written in the source code. Expres-
sions with multiple operands will result in a handle of type vpiOperation. To determine how many oper-
ands, access the property vpiOpType. This operation will be evaluated after its subexpressions. Therefore, it
has the least precedence in the expression.

An example of a routine that traverses an entire complex expression is listed below:

void traverseExpr(vpiHandle expr)
{

vpiHandle subExprI, subExprH;

switch (vpi_get(vpiExpr,expr))
{

case vpiOperation:
subExprI = vpi_iterate(vpiOperand, expr);
if (subExprI)

while (subExprH = vpi_scan(subExprI))
traverseExpr(subExprH);

/* else it is of op type vpiNullOp */
break;

default:
/* Do whatever to the leaf object. */
break;

}
}

35.11 List of VPI routines by functional category

The VPI routines can be divided into groups based on primary functionality:
— Simulation-related callbacks
— System task/function callbacks
— Traversing SystemVerilog hierarchy
— Accessing properties of objects
— Accessing objects from properties
— Delay processing
— Logic and strength value processing
— Simulation time processing
— Miscellaneous utilities
777 Copyright © 2007 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
P1800/D5, June 3, 2008 DRAFT STANDARD FOR SYSTEMVERILOG:

uestion: These
ables were not
pdated as part of
he merge. Are
here additional
outines to add?

ould a better
lace for these
ables be the
eginning of
lause 37?
Table 35-1 through Table 35-9 list the VPI routines by major category. Clause 37 defines each of the VPI
routines, listed in alphabetical order.

Table 35-1—VPI routines for simulation-related callbacks

To Use

Register a simulation-related callback vpi_register_cb()

Remove a simulation-related callback vpi_remove_cb()

Get information about a simulation-related callback vpi_get_cb_info()

Table 35-2—VPI routines for system task/function callbacks

To Use

Register a system task/function callback vpi_register_systf()

Get information about a system task/function callback vpi_get_systf_info()

Table 35-3—VPI routines for traversing SystemVerilog hierarchy

To Use

Obtain a handle for an object with a one-to-one relationship vpi_handle()

Obtain handles for objects in a one-to-many relationship vpi_iterate()
vpi_scan()

Obtain a handle for an object in a many-to-one relationship vpi_handle_multi()

Table 35-4—VPI routines for accessing properties of objects

To Use

Get the value of objects with types of int or bool vpi_get()

Get the value of objects with types of string vpi_get_str()

Table 35-5—VPI routines for accessing objects from properties

To Use

Obtain a handle for a named object vpi_handle_by_name()

Obtain a handle for an indexed object vpi_handle_by_index()

Obtain a handle to a word or bit in an array vpi_handle_by_multi_index()

Table 35-6—VPI routines for delay processing

To Use

Retrieve delays or timing limits of an object vpi_get_delays()

Write delays or timing limits to an object vpi_put_delays()

Q
t
u
t
t
r
W
p
t
b
c

Copyright © 2007 IEEE. All rights reserved. 778
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
UNIFIED HARDWARE DESIGN, SPECIFICATION, AND VERIFICATION LANGUAGE P1800/D5, June 3, 2008

antis 1385
entire sub-
lause)
35.12 VPI backwards compatibility features and limitations

The VPI data model has evolved over many previous versions in order to keep up with corresponding fea-
tures of the Verilog language. Substantial efforts have been made to maintain backwards-compatibility with

Table 35-7—VPI routines for logic and strength value processing

To Use

Retrieve logic value or strength value of an object vpi_get_value()

Write logic value or strength value to an object vpi_put_value()

Table 35-8—VPI routines for simulation time processing

To Use

Find the current simulation time or the scheduled time of future events vpi_get_time()

Table 35-9—VPI routines for miscellaneous utilities

To Use

Write to the output channel of the tool that invoked the PLI application
and the current log file

vpi_printf()

Write to the output channel of the tool that invoked the PLI application
and the current log file using varargs

vpi_vprintf()

Flush data from the current simulator output buffers vpi_flush()

Open a file for writing vpi_mcd_open()

Close one or more files vpi_mcd_close()

Write to one or more files vpi_mcd_printf()

Write to one or more open files using varargs vpi_mcd_vprintf()

Flush data from a given mcd output buffer vpi_mcd_flush()

Retrieve the name of an open file vpi_mcd_name()

Retrieve data about tool invocation options vpi_get_vlog_info()

See whether two handles refer to the same object vpi_compare_objects()

Obtain error status and error information about the previous call to a
VPI routine

vpi_chk_error()

Free memory allocated by VPI routines vpi_free_object()

Add application-allocated storage to application saved data vpi_put_data()

Retrieve application-allocated storage from application saved data vpi_get_data()

Store user data in VPI work area vpi_put_userdata()

Retrieve user data from VPI work area vpi_get_userdata()

Control simulation execution (e.g., stop, finish) vpi_sim_control()

M
(
c

779 Copyright © 2007 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
P1800/D5, June 3, 2008 DRAFT STANDARD FOR SYSTEMVERILOG:
prior versions whenever possible. However, some critical incompatible changes were needed that could not
be avoided. This section subclause identifies those incompatibilities and provides a way for older affected
applications to continue to run in newer VPI environments, with some important restrictions.

35.12.1 VPI Incompatibilities with other standard versions

The following table summarizes the VPI incompatibilities with prior IEEE standard versions.

Table Key:
— Y = Behavior, function or object present in that version
— D = Behavior, function or object deprecated (present, but use discouraged) in that version
— N = Behavior, function or object not applicable or no longer present in that version

For the above table and details below, the types vpiReg and vpiRegArray are the same as vpiLogicVar and
vpiArrayVar, respectively, as shown in the 1800 VPI data model (see 36.16 detail 19 36.16, detail 19).

Incompatibility Details:

1) vpiMemory exists as an object:

Unpacked unidimensional reg arrays were exclusively characterized as vpiMemory objects in 1364-1995,
and later deprecated in 1364-2001. This object type was replaced by vpiRegArray in1364-2005, leaving
vpiMemory allowed as only a one-to-many transition for 1364-2005 and 1800 standard versions (see
36.18). 1364-2001 allowed either vpiMemory or vpiRegArray types to represent unpacked unidimensional
arrays of vpiReg objects.

2) vpiMemoryWord exists as an object:

Elements of unpacked unidimensional reg arrays were exclusively characterized as vpiMemoryWord
objects in 1364-1995, and later deprecated in 1364-2001. This object type was replaced by vpiReg in 1364-
2005, leaving vpiMemoryWord allowed only as an iterator for 1364-2005 and 1800 standard versions (see
36.18). 1364-2001 allowed either vpiMemoryWord or vpiReg types to represent elements of unpacked
unidimensional arrays of vpiReg objects.

3) vpiIntegerVar and vpiTimeVar can be arrays

Table 35-10—Summary of VPI incompatibilities across standard versions

Incompatibility 1364 1800

See detailed descriptions below 1995 2001 2005 2005 2008

1) vpiMemory exists as an object Y D N N N

2) vpiMemoryWord exists as an object Y D N N N

3) vpiIntegerVar and vpiTimeVar can be arrays Y Y Y N N

4) vpiRealVar can be an array N Y Y N N

5) vpiVariables iterations include vpiReg and vpiRegArray N N N Y Y

6) vpiReg iterations on vpiRegArray include other objects N N N Y Y

7) vpiRegArray iterations include variable arrays N N N Y Y
Copyright © 2007 IEEE. All rights reserved. 780
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
UNIFIED HARDWARE DESIGN, SPECIFICATION, AND VERIFICATION LANGUAGE P1800/D5, June 3, 2008
vpiIntegerVar and vpiTimeVar objects could represent unpacked arrays instead of simple variables in all
1364 standards. In 1800 standard versions, these array types are always represented as vpiRegArray
objects, and vpiIntegerVar and vpiTimeVar objects are always non-array variables (see 36.16).

4) vpiRealVar can be an array

This object type was allowed to represent an unpacked array of such variables in 1364-2001 and 1364-2005
standards (vpiRealVar arrays were not yet allowed in 1364-1995). In 1800 standard versions, these are now
exclusively represented as vpiRegArray objects (see 36.16).

5) vpiVariables iterations include vpiReg and vpiRegArray

In all 1364 standards, vpiReg and vpiRegArray objects were excluded from vpiVariables iterations, and
only accessed instead by iterations on vpiReg (from a scope or vpiRegArray), or vpiRegArray (from a
scope), respectively. In 1800 standards, they are both included in vpiVariables iterations (see 36.16).

6) vpiReg iterations on vpiRegArray include other objects

This is a consequence of vpiRegArray objects being used to represent unpacked arrays of non-vpiReg ele-
ments in 1800 standards (see 36.16). vpiReg iterations on these array objects can retrieve array elements that
are of type vpiIntegerVar or vpiTimeVar for example, which is not expected in standards 1364- 2001 and
1364-2005.

7) vpiRegArray iterations include variable array objects

This is another consequence of vpiRegArray objects being used to represent unpacked arrays of non-
vpiReg elements in 1800 standards (see 36.16). In 1364-2001 and 1364-2005 standards, vpiRegArray iter-
ations only included arrays of vpiReg objects, but, in 1800 standards, this iteration includes arrays of vpiIn-
tegerVar, vpiTimeVar, and vpiRealVar.

35.12.2 VPI Mechanisms to deal with incompatibilities

In order to ease the transition to the latest VPI standard for older applications, capability shall be provided to
emulate the incompatible VPI behaviors where they conflict with the current standard. This allows older
VPI applications dependent on these behaviors to be run unmodified, as long as they are applied only to
designs (or portions of designs) with which they are compatible. This capability is intended only as an
interim measure to allow extra time for applications to be upgraded; it does not provide general emulation of
older behaviors for newer design constructs. For example, it does not allow 1364 applications to run on por-
tions of designs requiring 1800-level simulation capability.

As described in 35.12.2.1 and 35.12.2.2 below, two mechanisms to support this shall be provided, which can
be used in combination.

35.12.2.1 Mechanism 1: Compile-based binding to a compatibility mode

This mechanism requires recompilation of the VPI application source code, and is based on defining a com-
piler symbol that binds a particular application to a particular compatibility mode. To use this scheme, one
of the following compiler symbols must shall be defined prior to compilation of any of the standard VPI
include files in the application source code- either using a “#define” in the source code itself (setting it to the
numeric constant “1”), or defined on the C-compiler command-line:

VPI_COMPATIBILITY_VERSION_1364v1995
VPI_COMPATIBILITY_VERSION_1364v2001
VPI_COMPATIBILITY_VERSION_1364v2005
781 Copyright © 2007 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
P1800/D5, June 3, 2008 DRAFT STANDARD FOR SYSTEMVERILOG:
VPI_COMPATIBILITY_VERSION_1800v2005
VPI_COMPATIBILITY_VERSION_1800v2008

No more than one of these symbols shall be defined for a given application, and it must shall be consistently
defined for all of its source code that can access any portion of VPI, including callback functions. This
ensures that all design information is handled in the same way for a given mode across the entire application.
A compilation error will occur during the processsing of vpi_user.h if more than one of the above symbols is
defined.

Example:

VPI source code file with a compatibility mode selected:

/* VPI application mytask */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define VPI_COMPATIBILITY_VERSION_1364v2001 1
#include “vpi_user.h”
#include “sv_vpi_user.h”
#include “my_appl_header.h”
...
...

Alternatively, the same mode selection could be performed by defining the following option on the C-com-
piler command line:

-DVPI_COMPATIBILITY_VERSION_1364v2001

When a mode is selected by one of the means above, C-preprocessor constructs in “vpi_user.h” cause the
following VPI functions to be redefined to mode-specific versions:

vpi_compare_objects
vpi_control
vpi_get
vpi_get_str
vpi_get_value
vpi_handle
vpi_handle_by_index
vpi_handle_by_multi_index
vpi_handle_by_name
vpi_handle_multi
vpi_iterate
vpi_put_value
vpi_register_cb
vpi_scan

For example, defining the mode symbol ‘VPI_COMPATIBILITY_VERSION_1364v2001’ as shown above
will cause ‘vpi_handle’ to be redefined as:

vpi_handle_1364v2001

This retargets all calls to ‘vpi_handle’ in the recompiled application to this mode-specific variant, achieving
mode-compatible behavior. See “vpi_compatibility.h” (Annex A) for the complete set of definitions.
Copyright © 2007 IEEE. All rights reserved. 782
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
UNIFIED HARDWARE DESIGN, SPECIFICATION, AND VERIFICATION LANGUAGE P1800/D5, June 3, 2008
35.12.2.2 Mechanism 2: Selection of default VPI compatibility mode run by host simulator

A means to set the default VPI compatibility mode shall be made available by the simulation provider. This
shall determine the compatibility mode VPI behavior for all applications not using the compile-based
scheme detailed in mechanism #1. Although VPI applications choosing this mechanism can be run without
modification or recompilation, only one such default mode shall be selectable for a given simulation run.
Additional applications requiring different modes in the same run-time simulation environment must shall
use the compile-based mechanism to do so.

35.12.3 Limitations of VPI compatibility mechanisms

When a VPI application uses the compatibility mode mechanism, the application user and application pro-
vider should ensure that the design or design partition to which the application is applied is consistent with
the mode, and does not include constructs that are only supported in other modes. If the design contains
unsupported constructs, the behavior of the VPI implementation is undefined. The extent of checking for
consistency between constructs and mode is left to the discretion of the VPI implementation.

In general, VPI users and application developers are strongly encouraged to update their applications to the
latest VPI version as soon as possible. The compatibility mode feature should be used only as a temporary
solution until such upgrades can be completed or become available. It should be expected that older modes
will be phased out as new versions of the standard become available.
783 Copyright © 2007 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
P1800/D5, June 3, 2008 DRAFT STANDARD FOR SYSTEMVERILOG:
Copyright © 2007 IEEE. All rights reserved. 784
This is an unapproved IEEE Standards Draft, subject to change.

	35. Programming language interface (PLI/SVPI) overview
	35.1 General
	35.2 PLI purpose and history
	35.3 User-defined system task/function names
	35.3.1 Defining system task/function names
	35.3.2 Overriding built-in system task/function names

	35.4 User-defined system task/function arguments
	35.5 User-defined system task/function types
	35.6 User-supplied PLI applications
	35.7 PLI include files
	35.8 VPI sizetf, compiletf and calltf routines
	35.8.1 sizetf VPI application routine
	35.8.2 compiletf VPI application routine
	35.8.3 calltf VPI application routine
	35.8.4 Arguments to sizetf, compiletf, and calltf application routines

	35.9 PLI mechanism
	35.9.1 Registering user-defined system tasks and functions
	35.9.2 Registering simulation callbacks

	35.10 VPI access to SystemVerilog objects and simulation objects
	35.10.1 Error handling
	35.10.2 Function availability
	35.10.3 Traversing expressions

	35.11 List of VPI routines by functional category
	35.12 VPI backwards compatibility features and limitations
	35.12.1 VPI Incompatibilities with other standard versions
	35.12.2 VPI Mechanisms to deal with incompatibilities
	35.12.2.1 Mechanism 1: Compile-based binding to a compatibility mode
	35.12.2.2 Mechanism 2: Selection of default VPI compatibility mode run by host simulator

	35.12.3 Limitations of VPI compatibility mechanisms

