
IEEE SV-CC
Proposed changes to IEEE 1800 Std 2009

Copyright 2007 IEEE. All rights reserved. 1

Proposal for Mantis Item #1477

37.12 Scope

REPLACE

WITH

REPLACE

5) A task func can have zero or more statements (see 13.3 and 13.4). If the number of statements is greater

than 1, the vpiStmt relation shall return an unnamed begin that contains the statements of the task or

function. If the number of statements is zero, the vpiStmt relation shall return NULL.

WITH

5) A task func can have zero or more statements (see 13.3 and 13.4). If the number of statements is greater

than 1, the vpiStmt relation shall return an unnamed begin that contains the statements of the task or

function. If the number of statements is zero, the vpiStmt relation shall return NULL.

6) The vpiVirtualInterfaceVar iteration is supported only within elaborated contexts, and is not supported

within lexical contexts such as class defns (<ref. to>37.27). If the scope declares an array of virtual

interfaces, the vpiVirtualInterfaceVar iteration shall return each element of the array separately.

However, the vpiVariables iteration shall return the array declaration as a single vpiArrayVar.

variables

vpiReg
logic var

variables

vpiReg
logic var

virtual interface var

IEEE SV-CC
IEEE 1800 Std 2009 Proposed changes

2 Copyright 2007 IEEE. All rights reserved.

37.13 IO Declaration

REPLACE

2) A ref obj type handle may be returned for the vpiExpr of an io decl if it is passed by reference or if the io

decl is an interface or a modport.

3) If the vpiExpr of an io decl is a ref obj and if the vpiActual of the ref obj is an interface or modport

declaration,then the vpiDirection of the io decl shall be undefined.

WITH

2) A ref obj type handle may shall be returned for the vpiExpr of an io decl if it is passed by reference or if

the io decl is an interface or a modport. If the io decl is a virtual interface, vpiExpr shall return a

vpiVirtualInterfaceVar.

3) If the vpiExpr of an io decl is a ref obj and if the vpiActual of the ref obj is an interface or modport

declaration, then the vpiDirection of the io decl shall be undefined. The vpiDirection shall also be

undefined if the vpiExpr is a virtual interface var.

37.15 Reference Objects

REPLACE

WITH

ref obj

-> name
str: vpiName
str: vpiFullName

-> virtual
bool: vpiVirtual

-> generic
bool: vpiGeneric

-> definition name
str: vpiDefName

ref obj

-> name
str: vpiName
str: vpiFullName

-> virtual
bool: vpiVirtual

-> generic
bool: vpiGeneric

-> definition name
str: vpiDefName

IEEE SV-CC
Proposed changes to IEEE 1800 Std 2009

Copyright 2007 IEEE. All rights reserved. 3

REPLACE

1) A ref obj represents a declared object or sub-element of that object that is a reference to an actual

instantiated object. A ref obj exists for ports with ref direction, for an interface port, a modport port, or for

formal task function ref arguments. The specific cases for a ref obj are:

— A variable, named event, named event array that is the lowconn of a ref port

— Any subelement expression of the above

— A local declaration of an interface or modport passed through a port or any net, variable, named event,

named event array of those

— A virtual interface declaration in a class definition

— A ref formal argument of a task or function, or sub-element expression of it

2) A ref obj may be obtained when walking port connections (lowConn, highConn), when traversing an

expression that is a use of such ref obj, when accessing the virtual interface of a class, or when accessing

the io decl of an instance or task or function.

WITH

1) A ref obj represents a declared object or sub-element of that object that is a reference to an actual

instantiated object. A ref obj exists for ports with ref direction, for an interface port, a modport port, or for

formal task function ref arguments. The specific cases for a ref obj are:

— A variable, named event, named event array that is the lowconn of a ref port

— Any subelement expression of the above

— A local declaration of an interface or modport passed through a port or any net, variable, named event,

named event array of those

— A virtual interface declaration in a class definition

— A ref formal argument of a task or function, or sub-element expression of it

2) A ref obj may be obtained when walking port connections (lowConn, highConn), when traversing an

expression that is a use of such ref obj, when accessing the virtual interface of a class, or when accessing

the io decl of an instance or task or function.

IEEE SV-CC
IEEE 1800 Std 2009 Proposed changes

4 Copyright 2007 IEEE. All rights reserved.

REPLACE
endmodule

5) The vpiVirtual property shall return TRUE if the ref obj is a reference to a virtual interface and FALSE if

the ref obj is a reference to an interface that is not a virtual interface. The vpiVirtual property shall return

vpiUndefined for all other kinds of ref obj.

6) The vpiGeneric property shall return TRUE if the ref obj is a reference to a generic interface and FALSE

if the ref obj is a reference to an interface that is not a generic interface. The vpiGeneric property shall

return vpiUndefined for all other kinds of ref obj.

WITH
endmodule

5) The vpiVirtual property shall return TRUE if the ref obj is a reference to a virtual interface and FALSE if

the ref obj is a reference to an interface that is not a virtual interface. The vpiVirtual property shall return

vpiUndefined for all other kinds of ref obj.

6) The vpiGeneric property shall return TRUE if the ref obj is a reference to a generic interface and FALSE

if the ref obj is a reference to an interface that is not a generic interface. The vpiGeneric property shall

return vpiUndefined for all other kinds of ref obj.

REPLACE

11) Variables of type vpiArrayVar or vpiClassVar do not have a value property. Struct var and union var

variables for which the vpiVector property is FALSE do not have a value property.

WITH

11) Variables of type vpiArrayVar or vpiArrayVar, vpiClassVar, or vpiVirtualInterfaceVar do not have a

value property. Struct var and union var variables for which the vpiVector property is FALSE do not have

a value property.

IEEE SV-CC
Proposed changes to IEEE 1800 Std 2009

Copyright 2007 IEEE. All rights reserved. 5

DELETE

Example 2: virtual interface declaration in a class definition:

interface SBus; // A Simple bus interface
logic req, grant;
logic [7:0] addr, data;

endinterface

class SBusTransactor; // SBus transactor class
virtual SBus bus; // virtual interface of type SBus
function new(virtual SBus s);

bus = s; // initialize the virtual interface
endfunction
task request(); // request the bus

bus.req <= 1’b1;
endtask
task wait_for_bus(); // wait for the bus to be granted

@(posedge bus.grant);
endtask

endclass

module devA(Sbus s); ... endmodule // devices that use SBus

module devB(Sbus s); ... endmodule

module top;
SBus s[1:4] (); // instantiate 4 interfaces
devA a1(s[1]); // instantiate 4 devices
devB b1(s[2]);
devA a2(s[3]);
devB b2(s[4]);
initial begin

SbusTransactor t[1:4]; // create 4 bus-transactors and bind
t[1] = new(s[1]);
t[2] = new(s[2]);
t[3] = new(s[3]);
t[4] = new(s[4]);

end
endmodule

A ref obj is returned for the left hand side expression of the statement “bus = s” in the constructor of the

class definition SBustransactor. The vpiName of that ref obj is “bus” and its vpiDefName is the

name of the interface“SBus”. The vpiActual relationship returns the interface instance associated with

that particular call to new after the assignment has executed. For example if it was “new (s[1])”,

vpiActual would return the interface s[1]. If vpiActual is queried before the assignment is executed, the

method may return NULL if the virtual “bus” interface is uninitialized. The right-hand side expression

also returns a ref obj which vpiActual is the interface instance passed to the call to new.

IEEE SV-CC
IEEE 1800 Std 2009 Proposed changes

6 Copyright 2007 IEEE. All rights reserved.

37.17 Variables

REPLACE

WITH

class var

var bit

variables

.

.

.

class var

var bit

variables

.

.

.

virtual interface var

IEEE SV-CC
Proposed changes to IEEE 1800 Std 2009

Copyright 2007 IEEE. All rights reserved. 7

37.23 Typespec

REPLACE

WITH

event typespec

type parameter

typespec

.

.

.

event typespec

type parameter

typespec

.

.

.

interface typespec

IEEE SV-CC
IEEE 1800 Std 2009 Proposed changes

8 Copyright 2007 IEEE. All rights reserved.

ADD (after 37.26)

37.27 Virtual interface (NEW section- renumber sections following)

Details:

1) The vpiExpr relation shall return the interface instance assigned to the virtual interface in its declaration,

if any; otherwise, vpiExpr shall return NULL.

2) A ref obj may be an interface expr only if it is a local declaration of an interface or modport passed through

a port. A constant may be an interface expr only if it has a vpiConstType of vpiNullConst.

Example 1:

interface SBus #(parameter WIDTH=8);
logic req, grant;
logic [WIDTH-1:0] addr, data;
modport phy(input addr, inout data);

endinterface

module top;

parameter SIZE = 4;

virtual SBus#(16) V16;
virtual SBus#(32).phy V32_Array [1:SIZE];
....

endmodule

In this example, V16 is a virtual interface, while V32_Array is an array var. The vpiVariables iteration

from module top includes both V16 and V32_Array, while the vpiVirtualInterfaceVar iteration returns

constant

virtual interface var

interface

modport

virtual interface var interface typespec

-> name
str: vpiName
str: vpiFullName

-> is modport
bool: vpiIsModPort

vpiExpr

vpiActual

interface

modport

ref obj

interface expr

vpiTypespec

IEEE SV-CC
Proposed changes to IEEE 1800 Std 2009

Copyright 2007 IEEE. All rights reserved. 9

V16 together with the individual elements of V32_Array, that is, V32_Array[1] through

V32_Array[4].

Example 2: Virtual interface declaration in a class definition:

interface SBus; // A Simple bus interface
logic req, grant;
logic [7:0] addr, data;

endinterface

class SBusTransactor; // SBus transactor class
virtual SBus bus; // virtual interface of type SBus
function new(virtual SBus s);
bus = s; // initialize the virtual interface

endfunction
task request(); // request the bus

bus.req <= 1’b1;
endtask
task wait_for_bus(); // wait for the bus to be granted

@(posedge bus.grant);
endtask

endclass

module devA(SBus s); ... endmodule // devices that use SBus

module devB(SBus s); ... endmodule

module top;
SBus s[1:4] (); // instantiate 4 interfaces
devA a1(s[1]); // instantiate 4 devices
devB b1(s[2]);
devA a2(s[3]);
devB b2(s[4]);
initial begin

SbusTransactor t[1:4]; // create 4 bus-transactors and bind
t[1] = new(s[1]);
t[2] = new(s[2]);
t[3] = new(s[3]);
t[4] = new(s[4]);

end
endmodule

A virtual interface var is returned for the left hand side expression of the statement “bus = s” in the

constructor of the class definition SBusTransactor. The vpiName of the virtual interface var is “bus”,

and it has a vpiInterfaceTypespec for which the vpiDefName is “SBus”. The vpiActual relationship

returns the interface instance associated with that particular call to new after the assignment has executed.

For example if it was “new(s[1])”, vpiActual would return the interface s[1]. If vpiActual is queried

before the assignment is executed, the method shall return NULL if the virtual interface is uninitialized. In

addition, the right-hand side expression of “bus = s” returns a virtual interface var for which vpiActual is

the interface instance passed to the call to new.

IEEE SV-CC
IEEE 1800 Std 2009 Proposed changes

10 Copyright 2007 IEEE. All rights reserved.

ADD (after 37.26 and new Virtual Interface section)

37.28 Interface typespec (NEW section- renumber following sections)

Details:

1) The vpiDefName of an interface typespec that represents a modport shall be the mod port identifier. The

vpiDefName of an interface typespec that represents an interface shall be the identifier of the interface

declaration.

2) For an interface typespec that represents a modport, vpiParent shall return an interface typespec of the

corresponding interface. For an interface typespec that represents an interface, vpiParent shall return

NULL.

3) In the example below, the first typedef defines an interface typespec corresponding to “virtual

SBus#(16)” whose vpiName is SB16. The vpiDefname of this typespec shall be SBus, and the assigned

parameter value of 16 shall be derived by iterating on vpiParamAssign. The typedef SBphy, however, is

an array typespec for which the vpiElemTypespec returns an interface typespec corresponding to

“virtual SBus#(32).phy”.

The vpiTypedef iteration from the module top returns handles to both SB16 and SBphy interface

typespecs.

interface SBus #(parameter WIDTH=8);
logic req, grant;
logic [WIDTH-1:0] addr, data;
modport phy(input addr, inout data);

endinterface

module top;

parameter SIZE = 4;

typedef virtual SBus#(16) SB16;
typedef virtual SBus#(32).phy SBphy [1:SIZE];
....

endmodule

interface typespec

interface typespec

-> name
str: vpiName

-> def name
str: vpiDefName

-> is modport
bool: vpiIsModPort

vpiParent

param assign

IEEE SV-CC
Proposed changes to IEEE 1800 Std 2009

Copyright 2007 IEEE. All rights reserved. 11

37.27 Class definition (section # reflects original numbering)

REPLACE

WITH

REPLACE

6) The relation to vpiExtends exists whenever one class is derived from another class (refer to 8.12). The

relation from extends to class typespec provides the base class. The vpiArgument iterator from extends

shall provide the arguments used in constructor chaining (refer to 8.16).

7) The vpiInterfaceDecl iteration returns the virtual interface declarations in the class definition.

WITH

6) The relation to vpiExtends exists whenever one class is derived from another class (refer to 8.12). The

relation from extends to class typespec provides the base class. The vpiArgument iterator from extends

shall provide the arguments used in constructor chaining (refer to 8.16).

7) The vpiInterfaceDecl iteration returns the virtual interface declarations in the class definition.

parameters

named event

ref obj
vpiInterfaceDecl

vpiParameter

parameters

named event

vpiParameter

IEEE SV-CC
IEEE 1800 Std 2009 Proposed changes

12 Copyright 2007 IEEE. All rights reserved.

37.28 Class typespec (section # reflects original numbering)

REPLACE

WITH

REPLACE

2) For a class typespec that represents only a lexical construct, the one-to-many relations vpiVariables,
vpiMethods, vpiConstraint, vpiInterfaceDecl, vpiNamedEvent, vpiNamedEventArray, vpiTypedef,
and vpiInternalScope are not supported.

WITH

2) For a class typespec that represents only a lexical construct, the one-to-many relations vpiVariables,
vpiMethods, vpiConstraint, vpiInterfaceDecl, vpiNamedEvent, vpiNamedEventArray, vpiTypedef,
and vpiInternalScope are not supported.

parameters

named event

ref obj
vpiInterfaceDecl

vpiParameter

parameters

named event

virtual interface var

vpiParameter

vpiInterfaceDecl

IEEE SV-CC
Proposed changes to IEEE 1800 Std 2009

Copyright 2007 IEEE. All rights reserved. 13

REPLACE

10) The vpiClassTypespec iteration from a class defn shall return the class specializations derived directly

(and not by inheritance) from that class defn.

11) The vpiInterfaceDecl iteration shall return the virtual interface declarations in the class specialization.

WITH

10) The vpiClassTypespec iteration from a class defn shall return the class specializations derived directly

(and not by inheritance) from that class defn.

11) The vpiInterfaceDecl iteration shall return the virtual interface declarations in the class specialization.The

vpiVirtualInterfaceVar iteration (formerly vpiInterfaceDecl- now deprecated in this standard) shall

return the virtual interface var declarations in the class specialization (see 37.12 detail 6 (new)). If an array

of virtual interfaces is declared, the vpiVirtualInterfaceVar iteration shall return each element of the

array separately. However, the vpiVariables iteration shall return the array declaration as a single

vpiArrayVar.

IEEE SV-CC
IEEE 1800 Std 2009 Proposed changes

14 Copyright 2007 IEEE. All rights reserved.

37.29 Class variables and class objects (section # reflects original
numbering)

REPLACE

WITH

REPLACE

6) From a class obj, the iterations over vpiVariables, vpiMethods, vpiNamedEvent, and

vpiNamedEventArray shall return both static and automatic properties or methods. However, the

iteration over vpiMethods shall not include built-in methods for which there is no explicit declaration.

7) The vpiInterfaceDecl iteration returns the virtual interfaces of the class object.

WITH

6) From a class obj, the iterations over vpiVariables, vpiMethods, vpiNamedEvent, and

vpiNamedEventArray shall return both static and automatic properties or methods. However, the

iteration over vpiMethods shall not include built-in methods for which there is no explicit declaration.

7) The vpiInterfaceDecl iteration returns the virtual interfaces of the class object. The

vpiVirtualInterfaceVar iteration (formerly vpiInterfaceDecl- now deprecated in this standard) shall

return the virtual interface var declarations in the class object. If an array of virtual interfaces is declared,

the vpiVirtualInterfaceVar iteration shall return each element of the array separately. However, the

vpiVariables iteration shall return the array declaration as a single vpiArrayVar.

parameters

named event

ref obj
vpiInterfaceDecl

vpiParameter

parameters

named event

virtual interface var
vpiInterfaceDecl

vpiParameter

IEEE SV-CC
Proposed changes to IEEE 1800 Std 2009

Copyright 2007 IEEE. All rights reserved. 15

37.38 Task and function call

REPLACE

WITH

named event

expr

named event array

scope

primitive

vpiArgument

named event

expr

named event array

scope

primitive

vpiArgument

interface expr

IEEE SV-CC
IEEE 1800 Std 2009 Proposed changes

16 Copyright 2007 IEEE. All rights reserved.

37.44 Clocking block

REPLACE

WITH

clocking block instance

clocking io decl

property decl

sequence decl

clocking block instance

clocking io decl

property decl

sequence decl

clocking block

virtual interface var
vpiPrefix

vpiActual

IEEE SV-CC
Proposed changes to IEEE 1800 Std 2009

Copyright 2007 IEEE. All rights reserved. 17

REPLACE

Details:

1) The methods, vpiInputSkew and vpiOutputSkew, and properties vpiInputEdge and vpiOutputEdge, on

the clocking block apply to the default constructs. The same methods and properties on the clocking io

decl apply to the clocking io decl itself.

2) vpiExpr shall return the expression or ref obj referenced by the clocking io decl. Consider input enable
= top.mem1.enable. Here, “enable” is represented by a clocking io decl, and the vpiExpr relation

returns a handle to “top.mem1.enable”.

WITH

Details:

1) The methods, vpiInputSkew and vpiOutputSkew, and properties vpiInputEdge and vpiOutputEdge, on

the clocking block apply to the default constructs. The same methods and properties on the clocking io

decl apply to the clocking io decl itself.

2) The vpiPrefix relation shall be non-NULL when the clocking block represents an expression in the

SystemVerilog source code immediately prefixed by a virtual interface.

3) If a prefix of a clocking block is a virtual interface that has no value at the current simulation time, the

vpiActual relation shall return NULL.

4) vpiExpr shall return the expression or ref obj referenced by the clocking io decl. Consider input enable

= top.mem1.enable. Here, “enable” is represented by a clocking io decl, and the vpiExpr relation

returns a handle to “top.mem1.enable”.

IEEE SV-CC
IEEE 1800 Std 2009 Proposed changes

18 Copyright 2007 IEEE. All rights reserved.

37.55 Expressions

REPLACE

WITH

vpiOperand

-> operation type
int: vpiOpType

operation
expr

pattern

sequence inst

range

property inst

vpiOperand

-> operation type
int: vpiOpType

operation
expr

pattern

sequence inst

range

property inst

interface expr

IEEE SV-CC
Proposed changes to IEEE 1800 Std 2009

Copyright 2007 IEEE. All rights reserved. 19

ADD (after 37.56)

37.57 Dynamic prefixing (NEW section)

Details:

1) The vpiPrefix relation shall be non-NULL when the object represents an expression or task call in the

SystemVerilog source code prefixed by a virtual interface or a clocking block, or when the object is all or

part of a non-static class property prefixed by a class var.

2) The memory allocation scheme value for an object for which a class var or virtual interface var vpiPrefix
is non-NULL shall be the same as for the prefix.

3) The property vpiHasActual shall return TRUE

— whenever the prefix object has a corresponding actual at the current simulation time.

— if the object is all or part of a statically declared object in an elaborated context.

— if the object is part or all of an automatically allocated variable obtained from a frame (<ref. to>37.39).

The propertly vpiHasActual shall return FALSE

— whenever the prefix object has no corresponding actual at the current simulation time.

— if the object is obtained from a lexical context, such as from a class defn (<ref. to>37.27).

— if the object is part or all of a nonstatic class property variable referenced relative to its class

typespec(<ref. to>37.28).

— if the object is part or all of a automatically allocated variable obtained from a task or function declara-

tion (<ref. to>37.37).

simple expr

virtual interface var

class var

clocking block

vpiPrefix

-> has actual
bool: vpiHasActual

part select

indexed part select

named event

named event array

tf call

IEEE SV-CC
IEEE 1800 Std 2009 Proposed changes

20 Copyright 2007 IEEE. All rights reserved.

37.59 Assignment

REPLACE

WITH

assignment

vpiLhs
expr

expr
vpiRhs

assignment

vpiLhs
expr

expr vpiRhs

interface expr

IEEE SV-CC
Proposed changes to IEEE 1800 Std 2009

Copyright 2007 IEEE. All rights reserved. 21

C.4 Constructs identified for deprecation

ADD

C.4.3 VPI definitions

Certain object, relationship, and property definitions have been deprecated to implement corrections and

improvements to VPI. Some have been inherited from IEEE Std 1364 (see 36.12.1) and some have been

changed or removed to maintain consistency with related improvements, as follows:

1) vpiMemory (as an object type)

The vpiArrayVar (vpiRegArray) object type has been generalized to include vpiMemory and all other

arrays of variables. vpiMemory therefore no longer represents a VPI object type, except under certain back-

wards compatibility modes (see 36.12.1). However, it is still in use as a transition (see 37.20 diagram and detail

1).

2) vpiMemoryWord (as an object type)

This was exclusively used to represent elements of vpiMemory objects in IEEE Std 1364. Since vpiArrayVar
(vpiRegArray) has replaced the definition of vpiMemory, and variable object types now represent their ele-

ments, this is represented by vpiLogicVar (vpiReg) types. Therefore, it no longer represents a VPI object

type, except under certain backwards compatibility modes (see 36.12.1). It is still in use as a transition, how-

ever(see 37.20 diagram and detail 1).

3) vpiArray property

In IEEE Std 1364, variable types vpiIntegerVar, vpiTimeVar, and vpiRealVar could represent single vari-

able objects or arrays of those objects. The vpiArray property was required to distinguish those cases (the

property returned TRUE when they were arrays). Also, the property indicated when vpiReg types represented

elements of vpiRegArrays. These two uses became conflicting and unnecessary when vpiRegArrays and

arrays of integer, time, and real variables were generalized as vpiArrayVar (vpiRegArray) objects. To distin-

guish when any variable is an element of an array, the vpiArrayMember property is now used, thus replacing

the original use of vpiArray for reg types. The vpiArray property now has only limited use in IEEE 1364

backwards compatibility modes when vpiIntegerVar, vpiTimeVar, and vpiRealVar could represent arrays

(see 36.12.1).

4) vpiValid property

Significant revisions to VPI have rendered the original vpiValid property inconsistent with its original pur-

pose, which was to determine the extent to which a transient object represented by a VPI handle was active or

“alive” (see 37.2.4 and 37.3.7). Since the VPI object model no longer supports maintaining handles to objects

whose lifetimes have ended, such “validity” is implicit in their existence, and their status must be determined

by other means (see 38.36.1).

5) vpiInterfaceDecl one-to-many relationship

This relationship was used to return vpiRefObj objects representing virtual interface variables from any scope.

Its definition has been made equivalent to vpiVirtualInterfaceVar, which instead returns vpiVirtualInter-
faceVar object types. This was done to correctly reflect the true variable-like characteristics of these objects

(see 37.28 (adjust to new section #) detail 11).

IEEE SV-CC
IEEE 1800 Std 2009 Proposed changes

22 Copyright 2007 IEEE. All rights reserved.

M.2 Source code [appendix M, sv_vpi_user.h]

REPLACE:

#define vpiPackedArrayVar 623

WITH:

#define vpiPackedArrayVar 623
#define vpiVirtualInterfaceVar 728

...

REPLACE:

#define vpiInterfaceDecl 728

WITH:

#define vpiInterfaceDecl vpiVirtualInterfaceVar /* interface decl deprecated */

...

REPLACE:

#define vpiVirtual 635

WITH:

#define vpiVirtual 635
#define vpiHasActual 636

...

REPLACE:

/*********************** task/function properties ***********************/
#define vpiOtherFunc 6 /* returns other types; for property vpiFuncType */
/* vpiValid,vpiValidTrue,vpiValidFalse are deprecated in 1800-2009 */

/*********************** value for vpiValid *****************************/
#define vpiValidUnknown 2 /* Validity of variable is unknown */

WITH:

/*********************** task/function properties ***********************/
#define vpiOtherFunc 6 /* returns other types; for property vpiFuncType */

/* vpiValid and vpiValidUnknown are deprecated in 1800-2009 */
/*********************** value for vpiValid *****************************/
#define vpiValidUnknown 2 /* Validity of variable is unknown */

