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Accellera Proposal: Assumptions 11.14.2003 (2)

Property  Assumptions

assume property ( property_spec ) ;

• Allow properties to be considered as assumptions for 
formal and dynamic simulation

• Tools must constrain the environment such that a 
property holds

• No obligation for tools to prove the property

• Assumptions may be used as embedded or as 
declarative



Accellera Proposal: Assumptions 11.14.2003 (3)

Request - acknowledge protocol

• When reset asserted, keep req de-asserted

• req can be raised at any other time

• req once raised, stays asserted until ack is 
asserted

• In the next clock cycle both req and ack must 
be de-asserted



Accellera Proposal: Assumptions 11.14.2003 (4)

Assumptions governing req

property pr1;
@(posedge clk) !reset_n |-> !req; 
// when reset_n is asserted (0),keep req 0

endproperty

property pr2;
@(posedge clk) ack |=> !req; 
// one cycle after ack, req must be deasserted

endproperty

property pr3;
@(posedge clk) req |-> req[*1:$] ##0 ack; 

// hold req asserted until and including ack asserted
endproperty



Accellera Proposal: Assumptions 11.14.2003 (5)

Assertions governing ack

property pa1;
@(posedge clk) !reset_n || !req |-> !ack;

endproperty

property pa2;
@(posedge clk) ack |=> !ack;

endproperty



Accellera Proposal: Assumptions 11.14.2003 (6)

Assume req - Assert ack

a1: assume property (pr1);
a2: assume property (pr2);
a3: assume property (pr3);

s1: assert property (pa1)
else $display("\n ack asserted while req is still 

deassrted");
s2: assert property (pa2)

else $display("\n ack is extended over more than 
one cycle");



Accellera Proposal: Assumptions 11.14.2003 (7)

Assumptions with biasing

assertion_expression ::= expression |
expression dist { dist_list }

• Needed for driving random simulation

• Biasing provides a weighted choice to select the 
value for free variables

• Alignment with constraint block syntax

• For assertions and formal, dist converted to inside

• Properties must hold with or without biasing



Accellera Proposal: Assumptions 11.14.2003 (8)

Assume req - Assert ack with biasing

a0: assume property @(posedge clk) req dist {0:=40, 1:=60} ;
a1: assume property (pr1);
a2: assume property (pr2);
a3: assume property (pr3);

s0: assert property @(posedge clk) req inside {0, 1} ;
s1: assert property (pa1)

else $display("\n ack asserted while req is still 
deassrted");

s2: assert property (pa2)
else $display("\n ack is extended over more than 

one cycle");



Accellera Proposal: Assumptions 11.14.2003 (9)

Sequential constraints in constraint 
block

constriant_block ::= property_instance ; |
…..

• Extend constraint block to allow property instances

• Properties become assumptions, and automatically 
create boolean constraints

• Boolean constraints from properties solved with 
other boolean constraints, whenever randomize 
function called

• Procedural control over randomization as before



Accellera Proposal: Assumptions 11.14.2003
(10)

Example: constraints using properties

• When signal X is set to 1, then on the next 
cycle X must be reset to 0, and remains stable 
for four cycles, at the end of which signal Z 
must be set to 0 for at least one cycle

• When signal Y is set to 1, then on the next 
cycle it is reset to 0, and remains stable for 
two cycles at which point signal Z must be 
set to 1 for at least one cycle.



Accellera Proposal: Assumptions 11.14.2003
(11)

Code using sequential constraints

property pA;
@(posedge clk) X |=> (!X)[*4] ##0 !Z;

endproperty
property pB;

@(posedge clk) Y |=> (!Y)[*2] ##0 Z;
endproperty

class drive_XYZ_class;
rand bit X;
rand bit Y;
rand bit Z;
constraint pAB_Z {pA; pB;}

endclass



Accellera Proposal: Assumptions 11.14.2003
(12)

Randomizing sequential constraints

program P(input bit clk, output bit x_port, y_port, z_port);
drive_XYZ_class XYZ_driver = new();
initial

forever begin
@(negedge clk) void’XYZ_driver.randomize();
x_port = X;
y_port = Y;
z_port = Z;

end
…

endprogram



Accellera Proposal: Assumptions 11.14.2003
(13)

Code using combinational constraints

class drive_XYZ_class;
bit [2:0] A_state; bit [1:0] B_state;
rand bit X,Y,Z;
constraint AB_Z {

(( |A_state[1:0]) == 1’b1 ) => (X == 1’b0);
(A_state == 3’b100) => (Z == 1’b0) && (X == 1’b0);
(B_state == 2’b01) => (Z == 1’b1);
(B_state == 2’b10) => (Z == 1’b1) && (Y == 1’b0);

}
// functions on the next slide

endclass



Accellera Proposal: Assumptions 11.14.2003
(14)

Functions for combinational 
constraints

function void new(); // initialize state variables
A_state = 3’b0; B_state = 2’b0;

endfunction
function void post_randomize(); // advances state machine

case (A_state)
3’b000 : if (X == 1’b1) A_state = 3’b001;
3’b001, 3’b010, 3’b011 : A_state = A_state + 3’b001;
3’b100 : A_state = 3’b000;
default : $display(“bad A_state”);
endcase
case (B_state)
2’b00 : if (Y == 1) B_state = 2’b01;
2’b01 : B_state = 2’b10;
2’b10 : B_state = 2’b00;
default : $display(“bad B_state”);
endcase

endfunction
endclass



Accellera Proposal: Assumptions 11.14.2003
(15)

Randomizing combinational 
constraints

program P(input bit clk, output bit x_port, y_port, z_port);
drive_XYZ_class XYZ_driver = new();
initial

forever begin
@(negedge clk) void’XYZ_driver.randomize();
x_port = X;
y_port = Y;
z_port = Z;

end
…

endprogram



Accellera Proposal: Assumptions 11.14.2003
(16)

Path to dead end state

• In either implementation, the constraint solver can 
legitimately set X to 1 in a cycle, then two cycles 
later, set Y to 1.

• After two cycles the solver is unable to solve for Z, 
i.e., the system of constraints is inconsistent at that 
point

• The problem is due to under-constraining (an 
incomplete set of constraints)

• Adding an additional constraint, dead end state can 
be eliminated



Accellera Proposal: Assumptions 11.14.2003
(17)

Eliminating dead end state

• In either implementation, adding an additional 
constraint, dead end state can be eliminated

property pC;
@(posedge clk) X |-> ##2 !Y;

endproperty



Accellera Proposal: Assumptions 11.14.2003
(18)

Summary

• Simple syntactic extensions

• assume construct provides assumptions for formal 
analysis

• assume construct with biasing provides automatic 
random simulation

• Properties as sequential constraints simplify coding 
for randomizing complex sequences

• Difficulties and issues of dead end state exists for 
both combinational and sequential constraints
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