
SV3.1a Assumptions

Surrendra Dudani
Nov. 14, 2003

Synopsys, Inc.

Accellera Proposal: Assumptions 11.14.2003 (2)

Property Assumptions

assume property (property_spec) ;

• Allow properties to be considered as assumptions for
formal and dynamic simulation

• Tools must constrain the environment such that a
property holds

• No obligation for tools to prove the property

• Assumptions may be used as embedded or as
declarative

Accellera Proposal: Assumptions 11.14.2003 (3)

Request - acknowledge protocol

• When reset asserted, keep req de-asserted

• req can be raised at any other time

• req once raised, stays asserted until ack is
asserted

• In the next clock cycle both req and ack must
be de-asserted

Accellera Proposal: Assumptions 11.14.2003 (4)

Assumptions governing req

property pr1;
@(posedge clk) !reset_n |-> !req;
// when reset_n is asserted (0),keep req 0

endproperty

property pr2;
@(posedge clk) ack |=> !req;
// one cycle after ack, req must be deasserted

endproperty

property pr3;
@(posedge clk) req |-> req[*1:$] ##0 ack;

// hold req asserted until and including ack asserted
endproperty

Accellera Proposal: Assumptions 11.14.2003 (5)

Assertions governing ack

property pa1;
@(posedge clk) !reset_n || !req |-> !ack;

endproperty

property pa2;
@(posedge clk) ack |=> !ack;

endproperty

Accellera Proposal: Assumptions 11.14.2003 (6)

Assume req - Assert ack

a1: assume property (pr1);
a2: assume property (pr2);
a3: assume property (pr3);

s1: assert property (pa1)
else $display("\n ack asserted while req is still

deassrted");
s2: assert property (pa2)

else $display("\n ack is extended over more than
one cycle");

Accellera Proposal: Assumptions 11.14.2003 (7)

Assumptions with biasing

assertion_expression ::= expression |
expression dist { dist_list }

• Needed for driving random simulation

• Biasing provides a weighted choice to select the
value for free variables

• Alignment with constraint block syntax

• For assertions and formal, dist converted to inside

• Properties must hold with or without biasing

Accellera Proposal: Assumptions 11.14.2003 (8)

Assume req - Assert ack with biasing

a0: assume property @(posedge clk) req dist {0:=40, 1:=60} ;
a1: assume property (pr1);
a2: assume property (pr2);
a3: assume property (pr3);

s0: assert property @(posedge clk) req inside {0, 1} ;
s1: assert property (pa1)

else $display("\n ack asserted while req is still
deassrted");

s2: assert property (pa2)
else $display("\n ack is extended over more than

one cycle");

Accellera Proposal: Assumptions 11.14.2003 (9)

Sequential constraints in constraint
block

constriant_block ::= property_instance ; |
…..

• Extend constraint block to allow property instances

• Properties become assumptions, and automatically
create boolean constraints

• Boolean constraints from properties solved with
other boolean constraints, whenever randomize
function called

• Procedural control over randomization as before

Accellera Proposal: Assumptions 11.14.2003
(10)

Example: constraints using properties

• When signal X is set to 1, then on the next
cycle X must be reset to 0, and remains stable
for four cycles, at the end of which signal Z
must be set to 0 for at least one cycle

• When signal Y is set to 1, then on the next
cycle it is reset to 0, and remains stable for
two cycles at which point signal Z must be
set to 1 for at least one cycle.

Accellera Proposal: Assumptions 11.14.2003
(11)

Code using sequential constraints

property pA;
@(posedge clk) X |=> (!X)[*4] ##0 !Z;

endproperty
property pB;

@(posedge clk) Y |=> (!Y)[*2] ##0 Z;
endproperty

class drive_XYZ_class;
rand bit X;
rand bit Y;
rand bit Z;
constraint pAB_Z {pA; pB;}

endclass

Accellera Proposal: Assumptions 11.14.2003
(12)

Randomizing sequential constraints

program P(input bit clk, output bit x_port, y_port, z_port);
drive_XYZ_class XYZ_driver = new();
initial

forever begin
@(negedge clk) void’XYZ_driver.randomize();
x_port = X;
y_port = Y;
z_port = Z;

end
…

endprogram

Accellera Proposal: Assumptions 11.14.2003
(13)

Code using combinational constraints

class drive_XYZ_class;
bit [2:0] A_state; bit [1:0] B_state;
rand bit X,Y,Z;
constraint AB_Z {

((|A_state[1:0]) == 1’b1) => (X == 1’b0);
(A_state == 3’b100) => (Z == 1’b0) && (X == 1’b0);
(B_state == 2’b01) => (Z == 1’b1);
(B_state == 2’b10) => (Z == 1’b1) && (Y == 1’b0);

}
// functions on the next slide

endclass

Accellera Proposal: Assumptions 11.14.2003
(14)

Functions for combinational
constraints

function void new(); // initialize state variables
A_state = 3’b0; B_state = 2’b0;

endfunction
function void post_randomize(); // advances state machine

case (A_state)
3’b000 : if (X == 1’b1) A_state = 3’b001;
3’b001, 3’b010, 3’b011 : A_state = A_state + 3’b001;
3’b100 : A_state = 3’b000;
default : $display(“bad A_state”);
endcase
case (B_state)
2’b00 : if (Y == 1) B_state = 2’b01;
2’b01 : B_state = 2’b10;
2’b10 : B_state = 2’b00;
default : $display(“bad B_state”);
endcase

endfunction
endclass

Accellera Proposal: Assumptions 11.14.2003
(15)

Randomizing combinational
constraints

program P(input bit clk, output bit x_port, y_port, z_port);
drive_XYZ_class XYZ_driver = new();
initial

forever begin
@(negedge clk) void’XYZ_driver.randomize();
x_port = X;
y_port = Y;
z_port = Z;

end
…

endprogram

Accellera Proposal: Assumptions 11.14.2003
(16)

Path to dead end state

• In either implementation, the constraint solver can
legitimately set X to 1 in a cycle, then two cycles
later, set Y to 1.

• After two cycles the solver is unable to solve for Z,
i.e., the system of constraints is inconsistent at that
point

• The problem is due to under-constraining (an
incomplete set of constraints)

• Adding an additional constraint, dead end state can
be eliminated

Accellera Proposal: Assumptions 11.14.2003
(17)

Eliminating dead end state

• In either implementation, adding an additional
constraint, dead end state can be eliminated

property pC;
@(posedge clk) X |-> ##2 !Y;

endproperty

Accellera Proposal: Assumptions 11.14.2003
(18)

Summary

• Simple syntactic extensions

• assume construct provides assumptions for formal
analysis

• assume construct with biasing provides automatic
random simulation

• Properties as sequential constraints simplify coding
for randomizing complex sequences

• Difficulties and issues of dead end state exists for
both combinational and sequential constraints

	SV3.1a Assumptions
	Property Assumptions
	Request - acknowledge protocol
	Assumptions governing req
	Assertions governing ack
	Assume req - Assert ack
	Assumptions with biasing
	Assume req - Assert ack with biasing
	Sequential constraints in constraint block
	Example: constraints using properties
	Code using sequential constraints
	Randomizing sequential constraints
	Code using combinational constraints
	Functions for combinational constraints
	Randomizing combinational constraints
	Path to dead end state
	Eliminating dead end state
	Summary

