
SV Package and Separate
Compilation Support

David Smith – Synopsys, Inc.

Agenda
• Requirements
• Packages
• Compilation Unit
• $root

Requirements
• Provide globally available named scopes

containing declarations
• Support separate compilation of Verilog

source
• Simplify (eliminate?) $root

Packages
• Support for sharing:

– nets
– variables, types, package imports
– tasks, functions, dpi_import_export
– classes, extern constraints, extern methods
– parameters, local parameters, spec params
– properties, sequences
– anonymous program

• Can contain timeunit and timeprecision
• Cannot contain hierarchical references

Package Declaration
package ComplexPkg;

typedef struct {
float i, r;

} Complex;

function Complex add(Complex a, b)
add.r = a.r + b.r;
add.i = a.i + b.i;

endfunction

function Complex mul(Complex a, b)
mul.r = (a.r * b.r) + (a.i * b.i);
mul.i = (a.r * b.i) + (a.i * b.r);

endfunction
endpackage : ComplexPkg

Using Packages
• Scope resolution operator ::

ComplexPkg::Complex cout = ComplexPkg::mul(a, b);

• Explicit import
import ComplexPkg::Complex;
import ComplexPkg::add;

• Wildcard import
import ComplexPkg::*;

Package import
• Import

– provides direct visibility to identifiers within the
package

– does not inline declarations
– hierarchical references to imported identifiers

are allowed as if they are defined in the
importing scope

• Explicit import
– like a local declaration
– multiple identical allowed

Wildcard import
• Identifier in package a candidate for import
• Imported if neither declared nor explicitely

imported
• Overridden by subsequent declaration

within scope
• Same identifier from two wildcard imported

packages shall have the identifier
undefined and generate an error

Search Order Examples
package p;

typedef enum { FALSE, TRUE }
BOOL;
const BOOL c = FALSE;

endpackage;

package q;
const int c = 0;

endpackage;

Red – Error
Green - OK

import p::*;

import q::*;

y = c;

import p::*;

import q::*;

int c = 1;

y = c;

import p::c;

int c = 1;

y = c;

import p::c;

import q::c;

y = c;

import p::*;

wire a = c;

import q::c;

import p::*;

import q::c;

wire a = c;

Compilation Unit Definitions
• Verilog compiles files
• Compilation unit: a collection of one or

more files compiled together
• Compilation-unit scope: scope local to the

compilation unit. Contains declarations
outside of any other scope.

• $unit: name used to explicitly access
identifiers in compilation-unit scope

Compilation Unit
• Definition mechanism for mapping files to

compilation units is tool specific
• Compliant tool shall provide a mechanism
• Two extremes

– All files in design compiled as a single compilation
unit

– Each file in design compiled as a compilation unit
• Compiler directives do not cross compilation

units
• Top-level of compilation unit can contain:

– modules, macromodules, primitives, programs,
interfaces, packages, bind, and compilation-unit
scope items

Compilation-unit Scope
• Can contain any item that can be defined in a

package (including import)
• Scope is local to compilation unit (cannot be

referenced from outside compilation unit)
• Useful for:

– simple declarations (when package is too much)
– items private to compilation unit scope
– importing declarations for use in port and parameter

declarations on modules, programs, interfaces.

Name search rules
• First: the nested scope is searched (1364-

2001 12.6)
• Next: the compilation-unit scope is

searched
• Finally: the instance hierarchy is searched

(1364-2001 12.5)

$unit
• Name used in explicit scope resolution of

compilation-unit scope
• Unambiguous reference to declarations in

compilation-unit scope

bit b;
task foo;
int b;
b = 5 + $unit::b; // $unit::b is the
one outside.
endtask

$root simplification
• $root declaration, instance, and statement

support are removed
• $root is the name to unambiguously refer

to the top-level instance (root of
instantiation tree)

$root.A.B // item B within top instance A
$root.A.B.C // item C within instance B within instance A

Name spaces
• Reworked name space to be

– 2 global (definitions and package)
– 2 compilation unit (compilation-unit scope and

text macro)
– 4 local (module, block, port, and attribute)

• Updated definitions to include programs,
interfaces, and packages

	SV Package and Separate Compilation Support
	Agenda
	Requirements
	Packages
	Package Declaration
	Using Packages
	Package import
	Wildcard import
	Search Order Examples
	Compilation Unit Definitions
	Compilation Unit
	Compilation-unit Scope
	Name search rules
	$unit
	$root simplification
	Name spaces

