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Agenda
• Requirements
• Packages
• Compilation Unit
• $root



Requirements
• Provide globally available named scopes 

containing declarations
• Support separate compilation of Verilog

source
• Simplify (eliminate?) $root



Packages
• Support for sharing:

– nets
– variables, types, package imports
– tasks, functions, dpi_import_export
– classes, extern constraints, extern methods
– parameters, local parameters, spec params
– properties, sequences
– anonymous program

• Can contain timeunit and timeprecision
• Cannot contain hierarchical references



Package Declaration
package ComplexPkg;

typedef struct {
float i, r;

} Complex;

function Complex add(Complex a, b)
add.r = a.r + b.r;
add.i = a.i + b.i;

endfunction

function Complex mul(Complex a, b)
mul.r = (a.r * b.r) + (a.i * b.i);
mul.i = (a.r * b.i) + (a.i * b.r);

endfunction
endpackage : ComplexPkg



Using Packages
• Scope resolution operator ::

ComplexPkg::Complex cout = ComplexPkg::mul(a, b);

• Explicit import
import ComplexPkg::Complex;
import ComplexPkg::add;

• Wildcard import
import ComplexPkg::*;



Package import
• Import

– provides direct visibility to identifiers within the 
package

– does not inline declarations
– hierarchical references to imported identifiers 

are allowed as if they are defined in the 
importing scope

• Explicit import
– like a local declaration
– multiple identical allowed



Wildcard import
• Identifier in package a candidate for import
• Imported if neither declared nor explicitely

imported
• Overridden by subsequent declaration 

within scope
• Same identifier from two wildcard imported 

packages shall have the identifier 
undefined and generate an error



Search Order  Examples
package p;

typedef enum { FALSE, TRUE } 
BOOL;
const BOOL c = FALSE;

endpackage;

package q;
const int c = 0;

endpackage;

Red – Error
Green - OK

import p::*;

import q::*;

y = c;

import p::*;

import q::*;

int c = 1;

y = c;

import p::c;

int c = 1;

y = c;

import p::c;

import q::c;

y = c;

import p::*;

wire a = c;

import q::c;

import p::*;

import q::c;

wire a = c;



Compilation Unit Definitions
• Verilog compiles files
• Compilation unit: a collection of one or 

more files compiled together
• Compilation-unit scope: scope local to the 

compilation unit. Contains declarations 
outside of any other scope.

• $unit: name used to explicitly access 
identifiers in compilation-unit scope



Compilation Unit
• Definition mechanism for mapping files to 

compilation units is tool specific
• Compliant tool shall provide a mechanism
• Two extremes

– All files in design compiled as a single compilation 
unit

– Each file in design compiled as a compilation unit
• Compiler directives do not cross compilation 

units
• Top-level of compilation unit can contain:

– modules, macromodules, primitives, programs, 
interfaces, packages, bind, and compilation-unit 
scope items



Compilation-unit Scope
• Can contain any item that can be defined in a 

package (including import)
• Scope is local to compilation unit (cannot be 

referenced from outside compilation unit)
• Useful for:

– simple declarations (when package is too much)
– items private to compilation unit scope
– importing declarations for use in port and parameter 

declarations on modules, programs, interfaces.



Name search rules
• First: the nested scope is searched (1364-

2001 12.6)
• Next: the compilation-unit scope is 

searched
• Finally: the instance hierarchy is searched 

(1364-2001 12.5)



$unit
• Name used in explicit scope resolution of 

compilation-unit scope
• Unambiguous reference to declarations in 

compilation-unit scope

bit b;
task foo;
int b;
b = 5 + $unit::b; // $unit::b is the 
one outside.
endtask



$root simplification
• $root declaration, instance, and statement 

support are removed
• $root is the name to unambiguously refer 

to the top-level instance (root of 
instantiation tree)

$root.A.B // item B within top instance A
$root.A.B.C // item C within instance B within instance A



Name spaces
• Reworked name space to be

– 2 global (definitions and package)
– 2 compilation unit (compilation-unit scope and 

text macro)
– 4 local (module, block, port, and attribute)

• Updated definitions to include programs, 
interfaces, and packages
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