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Agenda
• Definitions and features
• Coverage definition

– Coverage group
– Coverage point

• Values and Transitions
• User defined bins

– Cross coverage
• Cross product selection and exclusion

• Coverage options
• Procedural control and access to coverage
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What is Functional coverage
• Measure of how much of the design 

specification has been exercised
– % test plan features

• User-specified
– Not automatically inferred from the design

• Based on design specification
– Captures intent
– Independent of design code or structure
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Functional coverage features
• Coverage of variables and expressions

– Cross coverage
• Automatic and user-defined coverage bins

– Values, transitions, or cross products
• Filtering conditions at multiple levels
• Flexible coverage sampling

– Events, Sequences, Procedural
• Directives to control and query coverage
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Coverage model : covergroup
New container covergroup : coverage model
• Coverage points

– variables
– expressions
– transitions

• Cross coverage
• Sampling expression : clocking event
• Filtering expressions
• Specify once (like class), use many times

– Cumulative or per-instance coverage
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Declaration of a covergroup

covergroup identifier [ ( argument_list ) ] 
[ clocking_event ] ;

{ coverage_spec_or_option ; }
endgroup [ : identifier ]

enum { red, green, blue } color;
bit [3:0] pixel;
covergroup g1 @(posedge clk);

coverpoint color;
coverpoint pixel;
AxC: cross color, pixel;

endgroup

3 bins for color

sampling event

48 cross products

16 bins for pixel
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Coverage sampling event
Sampling can be
• Any event expression - edge, variable
• End-point of a sequence
• Event can be omitted

– Procedural sampling under user control

covergroup cg1 @(posedge clk);...endgroup
sequence s @(posedge clk)req ##[1:$] grant;endsequence
covergroup cg21 @(s);...
endgroup

sampling event

sampling sequence
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Defining Coverage Points
[label :] coverpoint expression [ iff (expression) ]

{ bins_or_options }

Specifies expression (or variable) to sample
• Expression is sampled and accounted in bin(s)
• Number of values/bins can be controlled

– bins specification
• Optionally filtering expression - iff
• Bins can be grouped using bins specification
enum { red, green, blue } color;
covergroup cg @(posedge clk);

coverpoint color iff(! reset);
endgroup

filter condition
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Defining Bins for Coverage Points
• If no state or transition bins explicitly defined, then bins 

are automatically created
– Easy-to-use, no effort in defining bins

• Or, user can define state and/or transition bins for each 
coverage point.
– Too many values
– Not all values are interesting or relevant

• Each bin groups a set of values or a set of value 
transitions associated with a sampled variable or 
expression
– Group equivalent values
– Cover bins, not values
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Defining coverage-point bins
bins name [ [ ] ] = { value_set } [ iff (expression) ]
bins name [ [ ] ] = ( transitions ) [ iff (expression) ]
bins name [ [ ] ] = default [sequence] iff (expression)]

• Group specific cover-points under a name
– Set of values
– Set of transitions

• default catches undefined values / transitions
• [ ] specifies creation of multiple bins per value
• iff specifies conditional coverage

{ 1, 5, [7:14], 25 }

( 4->5, 6->7, 10->1 )
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Defining value coverage bins
bit [7:0] v_a, v_b;
covergroup cg @ev1;
coverpoint v_a + v_b
{
bins a = { [64:127],200 }; // user-defined bins
bins b[] = { 0,10,100,220 } iff( !reset );
bins bad = default; // all other values

}
endgroup

• a creates one bin, covered if in the range
• b creates one bin per value: b[0], b[10], b[100], b[220]

– only covered when reset == 0
• bad catches all other (in one bin)

– [1:9], [11:63], [128:199], [201:219], [221:255]
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Transition coverage bins
trans_range_list-> trans_range_list {-> tras_range_list}
trans_range_list ::=

trans_item
| trans_item [* repeat_range ]     // consecutive
| trans_item [*-> repeat_range ]  // goto-repetition
| trans_item [*= repeat_range ]   // nonconsecutive rept

Subset of property syntax
• {1:8} -> 2 expands to  1->2, 2->2, 3->2,… 8->2
• 3->5->{1:2}  expands to  3->5->1 , 3->5->2 
• 2->3[*2:3] expands to   2->3, 2->3->3, 2->3->3->3 
• 2->3[*->2] expands to   2->3->…->3->…->3
• 2->4[*=2] expands to   2->4->…->4->…->4 (excluded)
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Defining transition bins

• t creates one bin per transition: 4 bins
– 1->2    1->3    2->2   2->3

• s creates one bin for all 7 transitions
• bad catches all undefined values

– [0:9], [101:199], [201:255]

bit [7:0] v_a;
covergroup cg @ev1;
coverpoint v_a{
bins v = { [10:100],200 };
bins t[] = {1:2}->{2:3}
bins s = (4 -> 5 -> 6, {[7:8],9}->{1,2});
bins bad = default;}

endgroup

1->2, 1->3, 2->2, 2->3

4->5->6
7->1, 8->1, 9->1
7->2, 8->2, 9->2
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Wildcard bins specification
• The wildcard specification treats ?, X, Z as a wildcard  

for 0 or 1
bit [3:0] data;
covergroup cg @(negedge clk);
coverpoint data{
wildcard bins p = { 4’b11?? };
wildcard bins s[] = (4’b000? -> 4’b001?}

}
endgroup

1100 1101 1110 1111

• p creates one bin for the 4 values
– 12 , 13 , 14 , 15

• s creates one bin for each of the transitions
– 0->2 , 0->3 , 1->2 , 1->3

00->10   00->11
01->10   01->11
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Automatic bin creation
• If omitted, N bins are automatically created
• N is determined:

– For an enum : N is the cardinality of the enum
– All others: N is min( 2M , auto_bin_max )

• M => # bits needed to represent the cover-point
• If N < 2M

– Values are uniformly distributed into the N bins
– Every bin will include 2M /N values
– Last bin accommodates any slack

• Automatic bins exclude X and Z (2-state only)
• Coverage space is tractable
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Excluding values or transitions
• Any set of values or transitions can be 

explicitly excluded from coverage
– the ignore_bins specification

covergroup g1 @(posedge clk);
coverpoint a
{ ...

ignore_bins ivals = {7,8};
ignore_bins itrans = (1->3->5);

}
endgroup
• ivals excludes values 7 and 8
• itrans excludes the transition 1->3->5
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Illegal values or transitions
• Any set of values or transitions can be 

marked illegal using illegal_bins
covergroup g1 @(posedge clk);

coverpoint a
{ ...

illegal_bins evals = {1,2,3};
illegal_bins etrans = (4->3->2, 5->2);

}
endgroup

• An Illegal bin hit triggers a run-time error
– Even if it is part of another bin
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Defining cross coverage
[label :] cross coverpoint_list [ iff (expression) ]

{ select_bins_or_options }
• Covers two or more coverage points simultaneously

– Coverage of all combinations of all bins associated with the 
specified cover-points

– The Cartesian product of all the sets of coverage-point bins
enum { red, green, blue } color;
bit [3:0] pixel;
covergroup g1 @(posedge clk);

coverpoint color;
coverpoint pixel;
AxC: cross color, pixel;

endgroup

3 bins for color

48 cross products

16 bins for pixel
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Defining cross coverage bins
• A cross coverage bin associates a name and a count 

with a set of cross products 
• Cross bins group together sets of cross products 

bins_selection ::= bins name = select_expression
select_expression ::=

select_condition
| ! select_condition
| select_expression && select_expression
| select_expression || select_expression
| ( select_expression )

select_condition ::= 
binsof ( bins) [ intersect open_range_list ]
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Cross coverage bins
bit [7:0] v_a, v_b;
covergroup cg @clk;
a: coverpoint v_a {

bins a1 = { [0:63] };
bins a2 = { [64:127] };
bins a3 = { [128:191] };
bins a4 = { [192:255] };}

b: coverpoint v_b {
bins b1 = {0};
bins b2 = { [1:84] };
bins b3 = { [85:169] };
bins b4 = { [170:255] };}

c : cross v_a, v_b ;

endgroup

16 cross products:
<a1,b1>...<a1,b4>
<a4,b1>…<a4,b4>
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Cross coverage bins
bit [7:0] v_a, v_b;
covergroup cg @clk;
a: coverpoint v_a {

bins a1 = { [0:63] };
bins a2 = { [64:127] };
bins a3 = { [128:191] };
bins a4 = { [192:255] };}

b: coverpoint v_b {
bins b1 = {0};
bins b2 = { [1:84] };
bins b3 = { [85:169] };
bins b4 = { [170:255] };}

c : cross v_a, v_b {
bins c1 = ! binsof(a) intersect {[100:200]};
bins c2 = binsof(a.a2) || binsof(b.b2);
bins c3 = binsof(a.a1) && binsof(b.b4);}

endgroup

4 cross products:
<a1,b1>,<a1,b2>
<a1,b2>,<a1,b4>

7 cross products:
<a2,b1>...<a2,b4>
<a1,b2>…<a4,b2>

1 cross product:
<a1,b4>
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Exclusion cross products

covergroup yy;
cross a, b
{ 

ignore_bins x = binsof(a) intersect {5,[1:3]};
illegal_bins x = binsof(a) intersect {[25:$]};

}
endgroup

• Illegal bins take precedence over all others
• Excluded bins are never included

bins to be excluded

illegal bins

• Select expressions can be used to exclude or specify 
cross products as illegal
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Generic Coverage groups
• Generic coverage groups can be written by passing 

their traits as arguments to the constructor.
covergroup rg (ref int ra, int low, int high ) @(clk);

coverpoint ra // sample variable passed by reference
{
bins good = { [low : high] };
bins bad[] = default;

}
endgroup
• good creates one bin, for the range [low : high]
• bad creates one bin per value outside that range
int A, B;
rg c1 = new( A, 0, 50 ); // cover A in range 0 to 50
rg c2 = new( B, 120, 600 ); // cover B in range 120 to 600
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Coverage Group in classes
• Coverage groups may be embedded in class

– Integrated with object oriented paradigm
– Intuitive and simple to cover data members

• Including private data members
– Other class members can be seamlessly used in 

coverage specification



Page 25Functional Coverage  - 11/14/2003

Embedded Coverage Group

class xyz;
bit [3:0] m_x;
int m_y;
bit m_z;
covergroup cov1 @m_z; // embedded covergroup

coverpoint m_x;
coverpoint m_y;

endgroup
function new(); cov1 = new; endfunction

endclass
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Coverage Options
covergroup g1 (int w, string iComment) @(posedge clk) ;
// track coverage information for each instance of g1
option.per_instance = 1;
option.comment = iComment; // comment for each 

// instance of g1
a : coverpoint a_var
{
option.auto_bin_max = 128;

}
b : coverpoint b_var;
{

// contributes w times more than a and c1
option.weight = w;

}
c1 : cross a_var, b_var ;

endgroup

creates 128 bins max

contributes w times more



Page 27Functional Coverage  - 11/14/2003

Options for control
• weight

– for computing weighted mean
• goal

– target goal for group/point/cross
• name

– name for the covergroup instance
• at_least

– minimum number of hits for a bin 
• per_instance

– keep per instance data in addition to the 
cumulative coverage
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Coverage Control
• Covergroup and covergroup instance 

methods allow control and access to the 
coverage data

• void sample()
– Procedurally control sampling

• real get_coverage()
– obtains cumulative coverage

• real get_inst_coverage()
– obtains instance coverage
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Procedural sampling
enum { red, green, blue } color;
bit [3:0] pixel_adr,
covergroup g1;

c: coverpoint color;
a: coverpoint pixel_adr iff (xfer > n);

endgroup;
g1 tc1 = new;
task transaction();

...
tc1.sample();
...

endtask

Sample for coverage at this point
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Coverage Control
• Methods to start and stop collection

– start()
– stop()

• System function to retrieve overall 
coverage
– $get_coverage()

• System tasks to name, load and save 
coverage database
– $set_coverage_db_name()
– $load_coverage_db()
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Thank you
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