
Functional Coverage
Arturo Salz

Page 2Functional Coverage - 11/14/2003

Agenda
• Definitions and features
• Coverage definition

– Coverage group
– Coverage point

• Values and Transitions
• User defined bins

– Cross coverage
• Cross product selection and exclusion

• Coverage options
• Procedural control and access to coverage

Page 3Functional Coverage - 11/14/2003

What is Functional coverage
• Measure of how much of the design

specification has been exercised
– % test plan features

• User-specified
– Not automatically inferred from the design

• Based on design specification
– Captures intent
– Independent of design code or structure

Page 4Functional Coverage - 11/14/2003

Functional coverage features
• Coverage of variables and expressions

– Cross coverage
• Automatic and user-defined coverage bins

– Values, transitions, or cross products
• Filtering conditions at multiple levels
• Flexible coverage sampling

– Events, Sequences, Procedural
• Directives to control and query coverage

Page 5Functional Coverage - 11/14/2003

Coverage model : covergroup
New container covergroup : coverage model
• Coverage points

– variables
– expressions
– transitions

• Cross coverage
• Sampling expression : clocking event
• Filtering expressions
• Specify once (like class), use many times

– Cumulative or per-instance coverage

Page 6Functional Coverage - 11/14/2003

Declaration of a covergroup

covergroup identifier [(argument_list)]
[clocking_event] ;

{ coverage_spec_or_option ; }
endgroup [: identifier]

enum { red, green, blue } color;
bit [3:0] pixel;
covergroup g1 @(posedge clk);

coverpoint color;
coverpoint pixel;
AxC: cross color, pixel;

endgroup

3 bins for color

sampling event

48 cross products

16 bins for pixel

Page 7Functional Coverage - 11/14/2003

Coverage sampling event
Sampling can be
• Any event expression - edge, variable
• End-point of a sequence
• Event can be omitted

– Procedural sampling under user control

covergroup cg1 @(posedge clk);...endgroup
sequence s @(posedge clk)req ##[1:$] grant;endsequence
covergroup cg21 @(s);...
endgroup

sampling event

sampling sequence

Page 8Functional Coverage - 11/14/2003

Defining Coverage Points
[label :] coverpoint expression [iff (expression)]

{ bins_or_options }

Specifies expression (or variable) to sample
• Expression is sampled and accounted in bin(s)
• Number of values/bins can be controlled

– bins specification
• Optionally filtering expression - iff
• Bins can be grouped using bins specification
enum { red, green, blue } color;
covergroup cg @(posedge clk);

coverpoint color iff(! reset);
endgroup

filter condition

Page 9Functional Coverage - 11/14/2003

Defining Bins for Coverage Points
• If no state or transition bins explicitly defined, then bins

are automatically created
– Easy-to-use, no effort in defining bins

• Or, user can define state and/or transition bins for each
coverage point.
– Too many values
– Not all values are interesting or relevant

• Each bin groups a set of values or a set of value
transitions associated with a sampled variable or
expression
– Group equivalent values
– Cover bins, not values

Page 10Functional Coverage - 11/14/2003

Defining coverage-point bins
bins name [[]] = { value_set } [iff (expression)]
bins name [[]] = (transitions) [iff (expression)]
bins name [[]] = default [sequence] iff (expression)]

• Group specific cover-points under a name
– Set of values
– Set of transitions

• default catches undefined values / transitions
• [] specifies creation of multiple bins per value
• iff specifies conditional coverage

{ 1, 5, [7:14], 25 }

(4->5, 6->7, 10->1)

Page 11Functional Coverage - 11/14/2003

Defining value coverage bins
bit [7:0] v_a, v_b;
covergroup cg @ev1;
coverpoint v_a + v_b
{
bins a = { [64:127],200 }; // user-defined bins
bins b[] = { 0,10,100,220 } iff(!reset);
bins bad = default; // all other values

}
endgroup

• a creates one bin, covered if in the range
• b creates one bin per value: b[0], b[10], b[100], b[220]

– only covered when reset == 0
• bad catches all other (in one bin)

– [1:9], [11:63], [128:199], [201:219], [221:255]

Page 12Functional Coverage - 11/14/2003

Transition coverage bins
trans_range_list-> trans_range_list {-> tras_range_list}
trans_range_list ::=

trans_item
| trans_item [* repeat_range] // consecutive
| trans_item [*-> repeat_range] // goto-repetition
| trans_item [*= repeat_range] // nonconsecutive rept

Subset of property syntax
• {1:8} -> 2 expands to 1->2, 2->2, 3->2,… 8->2
• 3->5->{1:2} expands to 3->5->1 , 3->5->2
• 2->3[*2:3] expands to 2->3, 2->3->3, 2->3->3->3
• 2->3[*->2] expands to 2->3->…->3->…->3
• 2->4[*=2] expands to 2->4->…->4->…->4 (excluded)

Page 13Functional Coverage - 11/14/2003

Defining transition bins

• t creates one bin per transition: 4 bins
– 1->2 1->3 2->2 2->3

• s creates one bin for all 7 transitions
• bad catches all undefined values

– [0:9], [101:199], [201:255]

bit [7:0] v_a;
covergroup cg @ev1;
coverpoint v_a{
bins v = { [10:100],200 };
bins t[] = {1:2}->{2:3}
bins s = (4 -> 5 -> 6, {[7:8],9}->{1,2});
bins bad = default;}

endgroup

1->2, 1->3, 2->2, 2->3

4->5->6
7->1, 8->1, 9->1
7->2, 8->2, 9->2

Page 14Functional Coverage - 11/14/2003

Wildcard bins specification
• The wildcard specification treats ?, X, Z as a wildcard

for 0 or 1
bit [3:0] data;
covergroup cg @(negedge clk);
coverpoint data{
wildcard bins p = { 4’b11?? };
wildcard bins s[] = (4’b000? -> 4’b001?}

}
endgroup

1100 1101 1110 1111

• p creates one bin for the 4 values
– 12 , 13 , 14 , 15

• s creates one bin for each of the transitions
– 0->2 , 0->3 , 1->2 , 1->3

00->10 00->11
01->10 01->11

Page 15Functional Coverage - 11/14/2003

Automatic bin creation
• If omitted, N bins are automatically created
• N is determined:

– For an enum : N is the cardinality of the enum
– All others: N is min(2M , auto_bin_max)

• M => # bits needed to represent the cover-point
• If N < 2M

– Values are uniformly distributed into the N bins
– Every bin will include 2M /N values
– Last bin accommodates any slack

• Automatic bins exclude X and Z (2-state only)
• Coverage space is tractable

Page 16Functional Coverage - 11/14/2003

Excluding values or transitions
• Any set of values or transitions can be

explicitly excluded from coverage
– the ignore_bins specification

covergroup g1 @(posedge clk);
coverpoint a
{ ...

ignore_bins ivals = {7,8};
ignore_bins itrans = (1->3->5);

}
endgroup
• ivals excludes values 7 and 8
• itrans excludes the transition 1->3->5

Page 17Functional Coverage - 11/14/2003

Illegal values or transitions
• Any set of values or transitions can be

marked illegal using illegal_bins
covergroup g1 @(posedge clk);

coverpoint a
{ ...

illegal_bins evals = {1,2,3};
illegal_bins etrans = (4->3->2, 5->2);

}
endgroup

• An Illegal bin hit triggers a run-time error
– Even if it is part of another bin

Page 18Functional Coverage - 11/14/2003

Defining cross coverage
[label :] cross coverpoint_list [iff (expression)]

{ select_bins_or_options }
• Covers two or more coverage points simultaneously

– Coverage of all combinations of all bins associated with the
specified cover-points

– The Cartesian product of all the sets of coverage-point bins
enum { red, green, blue } color;
bit [3:0] pixel;
covergroup g1 @(posedge clk);

coverpoint color;
coverpoint pixel;
AxC: cross color, pixel;

endgroup

3 bins for color

48 cross products

16 bins for pixel

Page 19Functional Coverage - 11/14/2003

Defining cross coverage bins
• A cross coverage bin associates a name and a count

with a set of cross products
• Cross bins group together sets of cross products

bins_selection ::= bins name = select_expression
select_expression ::=

select_condition
| ! select_condition
| select_expression && select_expression
| select_expression || select_expression
| (select_expression)

select_condition ::=
binsof (bins) [intersect open_range_list]

Page 20Functional Coverage - 11/14/2003

Cross coverage bins
bit [7:0] v_a, v_b;
covergroup cg @clk;
a: coverpoint v_a {

bins a1 = { [0:63] };
bins a2 = { [64:127] };
bins a3 = { [128:191] };
bins a4 = { [192:255] };}

b: coverpoint v_b {
bins b1 = {0};
bins b2 = { [1:84] };
bins b3 = { [85:169] };
bins b4 = { [170:255] };}

c : cross v_a, v_b ;

endgroup

16 cross products:
<a1,b1>...<a1,b4>
<a4,b1>…<a4,b4>

Page 21Functional Coverage - 11/14/2003

Cross coverage bins
bit [7:0] v_a, v_b;
covergroup cg @clk;
a: coverpoint v_a {

bins a1 = { [0:63] };
bins a2 = { [64:127] };
bins a3 = { [128:191] };
bins a4 = { [192:255] };}

b: coverpoint v_b {
bins b1 = {0};
bins b2 = { [1:84] };
bins b3 = { [85:169] };
bins b4 = { [170:255] };}

c : cross v_a, v_b {
bins c1 = ! binsof(a) intersect {[100:200]};
bins c2 = binsof(a.a2) || binsof(b.b2);
bins c3 = binsof(a.a1) && binsof(b.b4);}

endgroup

4 cross products:
<a1,b1>,<a1,b2>
<a1,b2>,<a1,b4>

7 cross products:
<a2,b1>...<a2,b4>
<a1,b2>…<a4,b2>

1 cross product:
<a1,b4>

Page 22Functional Coverage - 11/14/2003

Exclusion cross products

covergroup yy;
cross a, b
{

ignore_bins x = binsof(a) intersect {5,[1:3]};
illegal_bins x = binsof(a) intersect {[25:$]};

}
endgroup

• Illegal bins take precedence over all others
• Excluded bins are never included

bins to be excluded

illegal bins

• Select expressions can be used to exclude or specify
cross products as illegal

Page 23Functional Coverage - 11/14/2003

Generic Coverage groups
• Generic coverage groups can be written by passing

their traits as arguments to the constructor.
covergroup rg (ref int ra, int low, int high) @(clk);

coverpoint ra // sample variable passed by reference
{
bins good = { [low : high] };
bins bad[] = default;

}
endgroup
• good creates one bin, for the range [low : high]
• bad creates one bin per value outside that range
int A, B;
rg c1 = new(A, 0, 50); // cover A in range 0 to 50
rg c2 = new(B, 120, 600); // cover B in range 120 to 600

Page 24Functional Coverage - 11/14/2003

Coverage Group in classes
• Coverage groups may be embedded in class

– Integrated with object oriented paradigm
– Intuitive and simple to cover data members

• Including private data members
– Other class members can be seamlessly used in

coverage specification

Page 25Functional Coverage - 11/14/2003

Embedded Coverage Group

class xyz;
bit [3:0] m_x;
int m_y;
bit m_z;
covergroup cov1 @m_z; // embedded covergroup

coverpoint m_x;
coverpoint m_y;

endgroup
function new(); cov1 = new; endfunction

endclass

Page 26Functional Coverage - 11/14/2003

Coverage Options
covergroup g1 (int w, string iComment) @(posedge clk) ;
// track coverage information for each instance of g1
option.per_instance = 1;
option.comment = iComment; // comment for each

// instance of g1
a : coverpoint a_var
{
option.auto_bin_max = 128;

}
b : coverpoint b_var;
{

// contributes w times more than a and c1
option.weight = w;

}
c1 : cross a_var, b_var ;

endgroup

creates 128 bins max

contributes w times more

Page 27Functional Coverage - 11/14/2003

Options for control
• weight

– for computing weighted mean
• goal

– target goal for group/point/cross
• name

– name for the covergroup instance
• at_least

– minimum number of hits for a bin
• per_instance

– keep per instance data in addition to the
cumulative coverage

Page 28Functional Coverage - 11/14/2003

Coverage Control
• Covergroup and covergroup instance

methods allow control and access to the
coverage data

• void sample()
– Procedurally control sampling

• real get_coverage()
– obtains cumulative coverage

• real get_inst_coverage()
– obtains instance coverage

Page 29Functional Coverage - 11/14/2003

Procedural sampling
enum { red, green, blue } color;
bit [3:0] pixel_adr,
covergroup g1;

c: coverpoint color;
a: coverpoint pixel_adr iff (xfer > n);

endgroup;
g1 tc1 = new;
task transaction();

...
tc1.sample();
...

endtask

Sample for coverage at this point

Page 30Functional Coverage - 11/14/2003

Coverage Control
• Methods to start and stop collection

– start()
– stop()

• System function to retrieve overall
coverage
– $get_coverage()

• System tasks to name, load and save
coverage database
– $set_coverage_db_name()
– $load_coverage_db()

Page 31Functional Coverage - 11/14/2003

Thank you

	Functional CoverageArturo Salz
	Agenda
	What is Functional coverage
	Functional coverage features
	Coverage model : covergroup
	Declaration of a covergroup
	Coverage sampling event
	Defining Coverage Points
	Defining Bins for Coverage Points
	Defining coverage-point bins
	Defining value coverage bins
	Transition coverage bins
	Defining transition bins
	Wildcard bins specification
	Automatic bin creation
	Excluding values or transitions
	Illegal values or transitions
	Defining cross coverage
	Defining cross coverage bins
	Cross coverage bins
	Cross coverage bins
	Exclusion cross products
	Generic Coverage groups
	Coverage Group in classes
	Embedded Coverage Group
	Coverage Options
	Options for control
	Coverage Control
	Procedural sampling
	Coverage Control

