>Tagged Unions and

Pattern Matching
~(a proposed System Verilog extension)

Rishiyur S. Nikhil, CTO
Bluespec, Inc.

September 18, 2003

N

My plan

N

Bluespec, Inc. (who?)
Context of proposal
#® The proposal

1 sli
3 sli
8 sli

e
[e

[e

eSs
es

Bluespec, Inc.: who?

Research at MIT on high-level synthesis (Prof. Arvind)

Technology
Sandburst Corp, 10Gb/s core router ASICs
(Bluespec: internal tool)
Technology,
VC funding 3 founders
Bluespec, Inc.
High-level synth. tool
Shiv Tasker, CEO
VC funding
~1996 2000 2003

N

Context of proposal

#® Bluespec, a technique for high-level synthesis,
has been developed for > 3 years.

#® In an apples-to-apples comparison with a
product ASIC (180nM, 200 MHz, 1.5Mgates)

originally coded in Verilog, we've
demonstrated:

s 5Xx-13x reduction in source code (66K Lines of
Verilog)

m 66% reduction in verification bugs
= Matched performance (clock speed, area)

= Enabled major design space explorations within time
budgets

N

Context of proposal
(contd.)

We want to align with System Verilog

We'd like to contribute Bluespec
language ideas to System Verilog

@ Current proposal (Tagged Unions and
Pattern Matching) is the first
contribution

#® We have more potential contributions

Why System Verilog?

SystemC and SW languages System Verilog w. Bluespec

I tJU
E [8\ ,—¢4 =
ACQ_/ N\
E = Zn
=)
@ [] =
5[\5) /
Sequential threads < emantic . cooperating FSMs
with stack frames gap
and dynamic objects for Hardware

synthesis L @_DU

synthesis quality

Proposal: background

" #&structs and unions are often nested.
Example:

N

A 32b instruction is

either an Add instruction
with two sources regl & reg2 }struct

and a destination regd

or a Jump instruction, which is

union either an Unconditional jump
with an immediate addr } scalar
nested union or a Conditional jump

with a condition-code cc Fret
and offset addr Striic

7

N

tags

typedef taggedunion {

Using tagged unions

struct {
bit [4:0] regl, reg2, regd;
A

taggedunion {

bit [9:0] JU; <+

struct {
bit [1:0] cc; bit [4:0] addr;

1 IC; «—

NG
/

7,

} Instr;

tags

N

Pattern matching

#® Example usage:

case (instr)
A{r1,r2,rd}: rf [rd] = rf [r1] + rf [r2];
I{j%: case (j)

Ju{a}: pc+= a;

JC{cc,ra}: if (cf [cc]) pc = rf [ra];
endcase

or (nested patterns)

case (instr)

A{rl,r2,rd}: rf[rd] = rf[r1] + rf [r2];
J{Ju{a}}: pc+= a;

J{JC{cc,ra}}: if (cf [cc]) pc = rf [ra];
endcase

N

Other aspects of the proposal
(details in the document)

Tagged union expressions: to directly
construct a tagged union value
= IN any expression context
= ook just like patterns

Pattern matching in if statements

Canonical bit representations

= zero implementation overhead (compared
to coding with unions and structs)

Arbitrary bit representations, with
automated packing/unpacking

10

Compare w. unions/structs

N

typedef struct {
Opcode op; // A or]
union {
struct {
bit [4:0] regl, reg2, reqgd;
» A_operands;

struct {
JumpOpcode jop; // JC or JU
union {
bit [9:0] JU_operand;
struct {

bit [1:0] cc; bit [4:0] addr;
} JC_operands;
}» J_suboperands;
» J_operands;
} operands;

¥ Instr;
11

N

Using unions/structs

Example usage:

case (instr.op)

A: rf [instr.operands.A_operands.regd] =
rf [instr.operands.A_operands.regl] +
rf [instr.operands.A_operands.reg2];

J: case (instr.operands.]J_operands.jop)
JU: pc+= instr.operands.]_operands.]_suboperands.JU_operand;
JC: if (cf [instr.operands.]_operands.]_suboperands.]JC_operands.cc])
pc = rf [instr.operands.]_operands.]_suboperands.JC_operands.addr;
endcase

Note: such deep “dot-selections” are often encapsulated
in macros (define/#define)

12

unions/structs: issues

N

#Not type-safe

= SO0, adds a verification obligation

*e.g., prove that the regd field is never
accessed in a Jump instruction

#Not concise
» t00 many intermediate names

#Not too readable
= deeply nested dot-selections

13

N

Tagged unions and
Pattern matching: Bottom line

#® Type-safe (improves verification)
Concise

Read
Sma

able (patterns)
| extension to BNF

#® Synt
® Zero
#® Lang

nesizable
implementation overhead
uage concepts well tested for ~3 decades

#® Synthesis well tested for ~ 3 years

We have more potential contributions

s parametric polymorphism, higher-order
functions, atomic state transitions, ...

14

	My plan
	Bluespec, Inc.: who?
	Context of proposal
	Context of proposal (contd.)
	Why System Verilog?
	Proposal: background
	Using tagged unions
	Pattern matching
	Other aspects of the proposal(details in the document)
	Compare w. unions/structs
	Using unions/structs
	unions/structs: issues
	Tagged unions andPattern matching: Bottom line

