
SV3.1a Assertions Donations

Surrendra Dudani
Sept. 18, 2003

Synopsys, Inc.

Accellera Submission 9.18.2003 (2)

Assertions Submissions (SV-AC)
• NBA assignments for assertions
• Property assumptions
• Property assumptions with biasing
• Sequential constraints
• Access to sampled values
• Access to gated registers
• Parameterizing unbounded range
• Improved messaging

Accellera Submission 9.18.2003 (3)

NBA Assignment For Assertions

variable_lvalue <= expression

• Needed to allow clock based assignments using
temporal functions

• Assignment can only appear inside a clocking
domain

• Variable declared outside the clocking domain

• Assignment evaluated only at clock ticks, and
updated after the observe region

• Expression can include temporal functions such
$past, $rose, ended, etc.

Accellera Submission 9.18.2003 (4)

Property Assumptions

assume property (property_spec) ;

• Allow properties to be considered as assumptions for
formal and dynamic simulation

• Tools must constrain the environment such that a
property holds

• No obligation for tools to prove the property

• Assumptions may be used as embedded or as
declarative

Accellera Submission 9.18.2003 (5)

Property Assumptions with biasing

assertion_expression ::= expression |
expression dist { dist_list }

• Needed for driving random simulation

• Biasing provides a weighted choice to select the
value for free variables

• Alignment with constraint block syntax

• For assertions and formal, dist converted to inside

• Properties must hold with or without biasing

Accellera Submission 9.18.2003 (6)

Sequential Constraints in Constraint
Block

constriant_block ::= property_instance ; |
…..

• Extend constraint block to allow property instances

• Properties become assumptions, and automatically
create boolean constraints

• Boolean constraints from properties solved with
other boolean constraints, whenever randomize
function called

• Procedural control over randomization as before

Accellera Submission 9.18.2003 (7)

Access To Sampled Values

$sampled (expression [, event_expression])

• Needed for debugging and reporting

• Can be used anywhere, the most recent sampled
value returned

• event_expression can be omitted if used in action
blocks or under a default clock

• event_expression takes prcedence, if specified

Accellera Submission 9.18.2003 (8)

Access To Gated Register Values

$past (expression1 [, no_of_clocks] [, expression2])

• Requires complicated modeling when some registers
are gated, while assertion clock is not gated

• Extend $past definition to allow gating expression

• If expression2 specified, returns the value on a clock
tick that satisfies expression2

• If expression2 not specified, semantics are same as
before

Accellera Submission 9.18.2003 (9)

Passing unbounded range as a
parameter

• $ used as a symbol for unbounded range [const:$]

• Re-use of assertion difficult, as duplicate assertions
required for same behavior

• Proposal to allow $ as a System Verilog parameter
value of integer type

• Allow $ as an actual argument to properties and
sequences

• System function $isunbounded(const_expr), return if
the argument is $

Accellera Submission 9.18.2003 (10)

Improved messaging

$error (), $info(), $warning(), $fatal()

• Needed for debugging and reporting

• Functions that return true
Can be included inside any property expression

• Allow error message to be bound to a
property

	SV3.1a Assertions Donations
	Assertions Submissions (SV-AC)
	NBA Assignment For Assertions
	Property Assumptions
	Property Assumptions with biasing
	Sequential Constraints in Constraint Block
	Access To Sampled Values
	Access To Gated Register Values
	Passing unbounded range as a parameter
	Improved messaging

