SystemVeriQ
_—’/

SystemVerilog 3.1a draft 1
Language Reference Manual

Accellera’s Extensions to Verilog®

Abstract: a set of extensions to the IEEE 1364-2001 Verilog Hardware Description Language to aid
in the creation and verification of abstract architectural level models

| SystemVerilog 3.1a/draft 1 (10/29/03)

Editor’s note:
Draft 1 reflects changes made to the released SystemVerilog 3.1 LRM.

Legend:
: indicates text to be deleted from the previous draft of the 3.1aLRM.
— blue text with change bars indicates text that has been added to the previous draft of the SV 3.1aLRM.
—red text in boxes indicates editor notes that need to be resolved, or that the editor needs to implement in a future draft.

e

SystemVerﬂc?
-——/

| SystemVerilog 3.1a draft 1
Language Reference Manual

Accellera’s Extensions to Verilog®

Abstract: a set of extensions to the IEEE 1364-2001 Verilog Hardware Description Language to aid
in the creation and verification of abstract architectural level models

Thisis a preliminary draft for review and development purposes within Accellera only. Information
within this document has not been approved by Accellera, and is subject to change.

accellera

Copyright © 2002, 2003 by Accellera Organization, Inc.
1370 Trancas Street #163

Napa, CA 94558

Phone: (707) 251-9977

Fax: (707) 251-9877

All rights reserved. No part of this document may be reproduced or distributed in any medium what-
soever to any third parties without prior written consent of Accellera Organization, Inc.

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Verilog isaregistered trademark of Cadence Design Systems, San Jose, CA

ii Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Acknowledgements

This SystemVerilog L anguage Reference Manual was developed by experts from many different fields, includ-
ing design and verification engineers, Electronic Design Automation (EDA) companies, EDA vendors, and
members of the IEEE 1364 Verilog standard working group.

The SystemVerilog Language Reference Manua (LRM) was specified by the Accellera SystemVerilog com-
mittee. Four subcommittees worked on various aspects of the SystemVerilog 3.1 specification:

— The Basic Committee (SV-BC) worked on errata and clarification of the SystemVerilog 3.0 LRM.
— The Enhancement Committee (SV-EC) investigated and specified new modeling and testbench features.
— The Assertions Committee (SV-AC) specified the assertions constructs for SystemVerilog 3.1.

— The C Application Programming Interface (API) Committee (SV-CC) developed and specified the Direct
Programming Interface (DPI), the assertions API and the coverage API for SystemVerilog.

The committee chairs were:

Vassilios Gerousis, SystemVerilog 3.0 and 3.1 Committee General Chair

Dave Kelf, SystemVerilog 3.0 Committee Co-Chair

Johny Srouji, SystemVerilog 3.1 Basic Committee Chair; Karen Pieper, Co-Chair

David Smith, SystemVerilog 3.1 Enhancement Committee Chair; Stefen Boyd, Co-Chair
Faisal Hague, SystemVerilog 3.1 Assertions Committee Chair; Steve Meier, Co-Chair
Swapnajit Mittra, SystemVerilog 3.1 C API Committee Chair; Ghassan Khoory, Co-Chair
Stuart Sutherland, SystemVerilog 3.0 and 3.1 Language Reference Manual Editor

Stefen Boyd, SystemVerilog 3.0 and 3.1 BNF Annex. Editor

Committee members included (listed alphabetically by last name):

. SystemVerilog 3.1 SystemVerilog 3.1 SystemVerilog 3.1 SystemVerilog 3.1
Systg)nn:/r;e]riltltc;ge&o Basi_c Enhancgment Asserti_ons CAPI

Committee Committee Committee Committee

Stefen Boyd* Kevin Cameron Stefen Boyd* Roy Armoni John Amouroux

Dennis Brophy Cliff Cummings* Dennis Brophy Surrendra Dudani Kevin Cameron

Kevin Cameron Dan Jacobi Michael Burns Cindy Eisner Jodo Geada

Cliff Cummings* Jay Lawrence Kevin Cameron Harry Foster Ghassan Khoory

Simon Davidmann Matt Maidment Cliff Cummings* Faisa Haque Andrze Litwiniuk

Tom Fitzpatrick* Francoise Martinolle* | Peter Flake John Havlicek Francoise Martinole*

Peter Flake Karen Pieper* Jeff Freedman Richard Ho Swapngjit Mittra

Harry Foster Brad Pierce Neil Korpusik Adam Krolnik* Michael Rohleder

Vassilios Gerousis David Rich Jay Lawrence David Lacey John Stickley

Paul Graham Steven Sharp* Francoise Martinolle* | Joseph Lu Stuart Swan

Dave Kdf Johny Srouji Don Mills Erich Marschner Bassam Tabbara

David Knapp* Gord Vreugdenhil* Mehdi Mohtashemi Steve Meier Kurt Takara

Adam Krolnik* Phil Moorby Prakash Narain Doug Warmke

Mike McNamara* Karen Pieper* Andrew Seawright

Phil Moorby Brad Pierce Bassam Tabbara

Prakash Narian Arturo Salz

Anders Nordstrom* David Smith

Rajeev Ranjan Stuart Sutherland*

John Sanguinetti

David Smith

Alec Stanculescu*

Stuart Sutherland*

Bassam Tabbara

Andy Tsay

* indicates this person was also an active member of the |EEE 1364 Verilog Standard Working Group.

Copyright 2003 Accellera. All rights reserved.

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

iv Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Table of Contents

o g L0 1T =0 o T = S ii
QL= 01 L= Oa 1 (=] £SO %
Section 1 INtroduction t0 SYStEMVEN 1100cciiiierirecie et a et e e e sse e e e nneas 1
SECHON 2 LILEIal VAIUBS....c.ceeieee ettt ettt bbb b s et s b e b e b e see e e b e e et ene e e saeenea 3
225 R 1 g oo (0ot o g (110 1 7= /=) [3
2.2 Literal VBIUE SYNEBX.....ceeueeeeeeesiesiesiesiesieeseeees e tessessestesteseesee e naeseeseesesseenestesteseeseenseseenssneessnneenensensenes 3
P2 T 1411= 0 (= =010l Voo o 11 1= = K 3
24 REA NITEIAIS .ottt et e bbbttt b e 4
2.5 TIMEIIEIAIS .t bbb bbbttt et et 4
B SIS {1 To 1= =T 4
A A N 1 - YA 11 = - T 5
2.8 SHUCUIE [ITEIAlS. ... ettt bbbttt sttt et et 5
S oo g I B T 1= 1Y/ 1= TSP 6
150 R g oo (0ot o (110 1 7= V7<) O 6
I B T = N 1Y = RS 7
TG T 101150 (= 0 v 11 0T 7
3.4 Real and ShOrtreal datatyPESccuereeerreeisesie s e e see st e e e se e ere s e sre s stesreseesseseeseeseeneeneeesresrenseseens 8
KIS T Voo [7= 4] TS 8
I ST =0 | =0 = = 4 o1 8
IS {1 gTo o= 2= 1 3 o= TSRS 9
TR T V7= o 0 T = Y 0= T 13
e T S o =] 0c I Y 01T 14
TN 0 000 = (o SO 15
311 SHIUCLUIES @NA UNIONS......eevereeieieesieeeseeseesesseesessesseseessetessessessesseseessesesseeseasessessessessessessensensensensmsenses 19
TN B O 3SR 21
TN G S T 11 =g £ o= TSR 22
TN O @ 1] oo TSRS 22
3.15 $CASt AYNAMIC CASIINGvevreereeeeeeie s teeerereseetee e ee s s tesese et sesesesesseeeneseseeseseneseseeseeesesnsenenesenes 23
= ot o] I N g = YT TSP 25
4.1 INtroduction (INFOMMBEEIVE)ceiiririiiriiire ettt st sb e see e 25
4.2 Packed and UNPECKE BITAYS......c.civeirieirieirieieeeie ettt sttt st st b s st st 25
4.3 MUIIPIE AIMENSIONSoouitietieee bbbt s be e st sbene st 26
4.4 Indexing and SliCING Of @ITAYS.coiuirririeere ettt b 27
45 Array qUENYING FUNCLIONS........couiiiiriieier ettt ettt et 28
4.6 DYNAIMIC BITAYS ..eevererterertereeteseetesee e seesesee st see st st et te st s be et eseabe st be st ebe s e ke s e ek e s eebenbeneseenesee e seenesteneeeenees 28
A N A= S 1010101 oL OSSPSR 29
4.8 ATTAYS AS BIGUIMEIIES. ... veereteeeateuseseeseesesie et ar st see bt esaeseess e b se e s es e e e ebeeseeb e s st abeeb et e sre s e s be e e s esn e e nne e 30
4.9 ASSOCIALIVE @ITAYS...ecueeeueeetirietereetereete sttt sttt sbetesbe st s be st s be e be e et et b et s be e e bene e b et e bt st ebe st ebe st beneebensebeneens 31
4,10 ASSOCiatiVe array MELNOGS.cciiriiirieirre ettt b st 34
411 ASSOCIAiVE ArTaY @SSIGNMENT....c..eirieiirieieiteie ettt sttt ettt b ettt st st e st st esbe e ebe e ebenens 36
4,12 ASSOCIatiVE ATaY @IGUIMIENES........ciuirertiirtirieiesietesteesteeseesebesesbe e sbe e s e e s senessasesseseebesessesbeaesbenesbenessens 36
4.13 ASSOCIAtIVE ATAY [HTEIAIS....ceeiieieeec et bt 36
Section 5 Data DECIAr GtIONScouiiuiieieieeieee ettt sb e bbb e et et e be et ne e 38
5.1 Introduction (iNfFOMMBLIVE)coeuirireiriieriet sttt 38
5.2 Data deClaralion SYNEAX........ceoueueerieieieietieeteresie sttt sttt sttt b e b s b ne s e s s 38

Copyright 2003 Accellera. All rights reserved. %

Accellera

SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001
5.3 CONSIANES. ...ttt b a e s e R R R R R e e e e e R n e ene s 39
B VAADIES ...ttt bbbt en 39
LTS wa o LC= oo) = 1] = R 40
Lo ST N\ = FN (=0 TSN 1o I o o3 41
L A o 1= = =" oo S 42
SECLION B ALLTTDULES.....eiieiceeeet bbbt bbbt b et et s et e s be e bentenen 45
(S35 R g oo (0ot o T (110 10T /=) T 45
(S < = WA=] oL 1= Y o= T 45
Section 7 OperatorS and EXPrESSIONS.........cerieuirieiereeereetereeteneetesesteses e sesieseebeseeseseebeseesesesseseesesesseseesesessesens 46
4% R g oo (8ot o T (10 10 /=) T 46
A O 1= - 0] =Y] - GO 46
TN = To 101 001= 00 0L - (] £ T 46
7.4 Operations on 10giC aNd DIt tYPES ...ccueiueierieeeieierere sttt st sb et a e e e e e eae s 47
7.5 Wild equality and Wild iINEOUALTEYceiuiiiiieee et e 47
FA T =l 0] 1< = (o= TSR 48
O S = TSRO 48
8= TS o o ST 48
7.9 Operator precedence and aSSOCIALIVITYooeeiurerieririre et s sae s 48
7.20 BUITt-INMEINOUS ...ttt ettt b b et eb e b et e b e e e e e e e e eneenes 49
8 N R O g o= (= (o o TSRO PRS 50
712 SEBEIC PrEfIXES ...ttt ettt s b e bt e e e et e e et e b e ebeeneebesbesaeseenne e 51
7.13 UNPacked array EXPrESSIONScoueeereeeeerieaestestersessasteseessesesssseeaseessessessessesesssessensessensessansensmsennes 52
S (0o N = 0= 0] T TSRS 52
7.15 AQQrEgate EXPIESSIONSccuertertireeteeeseeseeerseasessessesseasessesaessessasseseansesesssaneasessessessessessessensessensensmsennes 54
A8 (SR ol g o] 1ol o= ol o = = o] ST 54
A S = 00= 001 0= T o OSSR 55
Section 8 Procedural Statementsand Control FIOWoccviireireeneseesee e 56
8.1 INtroduction (INFOFMELIVE)cceitiiierieieireeert ettt et sb bbb sa e bt e e e e e e eneenes 56
8.2 SHBLEIMIENES.ee ettt ettt ettt b et e e b et e e he e s e ebe e ee s ae e seesaeeabe s ae e b e eb e e b e ebeeee e eaeeabeeeesneannesaennnens 56
8.3 Blocking and nonblocking aSSIgNMENTSc.couiirieiereeie et 58
8.4 SElECHION SEALEMENTS.eueeeieeeiietererie ettt b e b e e se e b e e et et e beebe s et eb et e tesbens e e eneeneenennes 59
8.5 L OOP SEALEIMEIES......cuieueiiteeteeteereerieetesite et e ke sae e bt sasereeeeesaeeseesaeeaeesaeeabeebeenbeebeeaneeaeeseaaeesreannesaeennens 60
8.6 JUMP SLALEIMENS. ...ttt ettt ettt ettt ettt e ae st e re e s ae e b e st et e eb e e ebeeaseeeeemeesse e e e sreannesaeennens 61
S A T 0 o o [0 T PR 61
8.8 Named blocks and statement [aDEIS.o s 62
SRS I 1= o] = ST 63
8.10 BEVENE CONLIOL ...ttt ettt bbb ettt et eb e b e s ae et e b et e s b ene e e e e et eneenes 64
8.11 Procedural assign and deassign FEMOVEcoeriririerierieeee ettt ebe s 65
SECHION O PrOCESSES. . ecuteueeueereetistirtestestesteseesteseestaseeseaseasesseasesseseesseseesseaeenteseaseeseaseesessessestenseseensensenennsenennesneens 66
9.1 INtroduction (INFOFMELIVE)cceiueiierieieireeiet ettt st sb b e sb e st e e b e e e e e eneenes 66
(S P2 @] aq1 o1 g (04T I Vo [oSSR 66
LS S T I o 07= o I o o | o3 OSSR 67
S S o 1= 0| ! [o o [T o OO 67
9.5 CONtINUOUS BSSIGNIMIENLScvetieesteueereeeeeerieesestesiessestesbesaeseesbese st ensese e e anesseebesaeebesbessesbanseseensensesennes 68
LS K ST o] O o 1 o ST 68
9.7 Process eXeCULiON thrEaOS...........oiiiiiie bbb st 69
SRS T o (0Tor =S o{e 11 (o ISP 69
9.9 FiNE-grain PrOCESS COMIOleciiiiuieieiiietieteesteete e e et e e seesae e seesaeeseesae e b e sbe e besseessesseesesnnesseennesaeennens 70
Section 10 TaskSaNd FUNCLIONS.cccviieiiree et ese sttt st se e e ese e e eseesessessesaeseeneesteneenseneenesneens 73
Vi Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1
10.1 Introduction (INfOMMBEIVE)cveieieireeiereeeeeeeeee s ste st es e s e s s e e sesresbesaeseeseeneeseensenaeneennenens 73
O 1= S SR PSP 74
0T T U To (o TSP 76
10.4 Task and function scope and lIfEMEccevieeieeercr e e enens 78
10.5 Task and fuNCtion arguMENT PASSINGeeeeerrererererrereesseeeseeseesesseesessessessessessessesseseesseseessesessessessens 78
10.6 Import and EXPOrt FUNCLIONS........cceieeieeeceeceee e et sresee st se e ee e e e ennenens 81

SECLION L1 ClASSES. ... vvuiuererrereierese et st r et r e b s s e ee s e E st e R Rt ne R R e e s rer e e ren e e nren 83
I g o [N i o I g 0 0 (=) R 83
Y | 83
T1.3 OVEIVIBW ..ottt e et e et e E et e et R R Rt st e R e bt e n s r e e e ren s 84
11.4 ODJECES (ClaSSINSLANCE) .. .cuveueereeeestesteseseestetesteeetereseste st tesrestesteseeseeseesesseesessesaeseeseenseseensenannnnsennens 84
I @ o 1= ot A oo o= 1= SRR 85
T IO o 1= ot 1 =1 o LRSS 86
D07 CONSIIUCTONS.....eeeeeieeeutesiee e st e te st e st aeebe et e saeeaeesaesaeesbe e e e b e e beebeeaseeasenb e eae e beeaeeeaeeasenbesmeebe e e e sbennnanes 86
10,8 SEBLIC PIOPEITIES ...ttt sttt sttt e et b e bbb e b et e s bese e b e st e se e st e neebeeaesbesbesbeseeseseeneeneaneas 87
10,9 SEBEHC MEINOMS. ... cceeeeete ettt ettt s b e be bt s be b e seesa et essebesaesbesbeseeseennenas 87
00 0 I I 1 =TSPTSRO 87
11.11 Assignment, re-Naming aNd COPYING -....ceveuerueruerirereriestesieseeseaseeseesesseesessessessesaesaeseeseeseessesessssnesnens 88
12.12 INNeritanCe aNA SUDCIBSSES.......coueiuireiie ettt ettt sttt e e e e st b e s e sbesbesbeseesese e e eneenen 89
1213 OVErTiddEN MEMDENS..... .ottt et se e et b et sbesbesbesee e e se e e eneanea 90
L1 A SUPEY ettt ettt e e bbb e b e ee b e b e R £ 4 e £ b e Rt Rt SR A SR eE A e b e R e e A b ek et e R b eb e e bbb ene e es 90
Y @ = 1o o (TSSOSO PPV PR 91
12.16 ChaiNiNG CONSIIUCLOISc.viitetireeseeseeseereereeueeieeieeseebesaessesbebeseessesbeseebeseeseene et ese et ebesbesaeseeseseenseneanens 91
11.17 Data hiding and eNCAPSUIBLIONcouiieeieieeeeeieieeerie sttt b e sbe b b seesbese e e eneenea 92
12.18 CONSLANE PIOPEITIES. ... ccuiteeeiiterie sttt sttt ettt b e sb bbb e b e e be e se et et ebe et sbesbesaesee e e nee e eneenea 92
11.19 Abstract classes and Virtual MEhOOS............oouiiriiir e e 93
11.20 Polymorphism: dynamic Method TOOKUPccoiiriiiriinieie et e 93
11.21 Class SCOPE FESOIULION OPEFBEONouviieeeeeeeeeie et sttt eese et se e se e et eaesbe e b sbesbeseesbese e e eneaneas 94
11.22 Out Of DIOCK ECIAratiONS.......c.eeueeieeiieeett ettt bttt st eb e aesae b e saeneas 95
11.23ParameteriZe0 CIASSESc.ccoiriiriiierie ettt ettt st et sttt e b e et bt sbesbese e e e e e e eneaneas 96
L1024 TYPEAES ClBSS ...ttt ettt e e b e bbbt et e s e e e bt e st eb e e et sbe st e nbese e s e se e e eneaneas 97
11.25 Classes, StrUCLUFES, @N0 UNIOMNSooceueierieueeteriestestesteseesteseeseeeees e e sessesessessesbesaeseessaseeseessesesnsenesnens 97
11.26 MEMOIY MANAGEIMIENTeteite ettt et ettt ebe e st s st e seesse et e e s be b e eseeebeeaseeae e s e saeesaesaeensesasesbeeeensensnenes 97

Section 12 RANAOM CONSEIAINTSecviieieieisieiesieeereeeeesreee e see e seeseese e eese s e eseesessessessessenesseeneenseneenseneenesseens 99
12.1 Introduction (INfOMMBLIVE)coeiuireeie ettt et b e et b e e e et e e e e e e eneeneas 99
02,2 OVEIVIBIW ...ttt ettt sttt et a et h e e a e e b e s ae s et eben b e £Eeas e b e me et eh e e me e Rt eaeeb e e aeseesbebeseenseneeneeneaneas 99
12.3 RANAOM VAITADIES ...ttt ettt bbb bbb se e b e ne e e e seeseebeenennens 101
12,4 CONSLFAINE DIOCKS ...ttt ettt sttt b e b e e e 103
12.5 Randomization MELNOAScocoiiriiiiieiieee e et b s b e e b e 111
12.6 In-line constraints — randomiZe() With...........cooiiri e 112
12.7 Disabling random variables with rand_mMOde()ccoceoeerreriririere e 113
12.8 Controlling constraints with coONStraiNt._ MOE()ccveeeererierere e e 114
12.9 Dynamic constraint MOCifiCatiON...........cooeriiiiiriee e s sre e 115
12.10 Random NUMDBEr SYSLEM FUNCLIONS.........coiiiiiiiiiie et s 116
12,11 RANAOM SEBIITITY ...ttt ettt ebe et be et et e b e saeebesbennen 117
12.12 Manually Seeding randOmMiZe..........c.coeeiruirieiiriiiere ettt st sb e e st se e e eebesnenneas 119
12.13Random weighted Case — FANACESEcceeveiieeieiri ettt st sre e e e neeneas 119

Section 13 Inter-Process Synchronization and COMMUNICALIONcccoeiriininneneienrecre e 121
13.1 Introduction (INfOMMELIVE)coeiereiieiee et et be et eb e b b e seenbe e 121
132 SEMBPNOTES..... ettt ettt sttt e e et e st ebeeae bt eh e be s heea e e be b e see s e be e et eheene s st ebeebesbesbesbesbeerens 121
13.3 IMAIHTDOXES. ...ttt ettt h et h bt bbbt h e b et et n e et et ebeebe bt erenresaennen 122

Copyright 2003 Accellera. All rights reserved. Vii

Accellera

SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001
13.4 Parameterized MailDOXESoveirireireriirese e 125
G ST Y= o PP TP PP SRN 126
13.6 Event sequencing: Wait_Order()eeveererrerierirreesieeeseseeesieseseeseseeseessessesesseeseesessessessessessessessensens 127
13.7 EVENE VAMTADIES......cviicrieieeeires et er et n e nn s 128

Section 14 SChedUIING SEMANTICS.ciiiirereiresere e er e 131
14.1 Execution of a hardware model and its verification environmentccovvrevrerreseerereserenenens 131
14.2 EVENE SIMUIBLION ...c.vvreiisieieerene sttt r s e n s e renen e e nene s 131
14.3 The stratified event SChEAUIES ... s 131
14.4 The PLI callback CONIOl POINES......ccivierriieriireeeeereseeeressesee e see s e seesee e eseeesseesesseseeseeseessensens 135

SeCtion 15 ClOCKING DOMAINS......cccuireirereireresreeese e s s ner e nen e 136
15.1 Introduction (INfOrMBEIVE)eceieereeeseerece et e e e s e e s e erestestesreseenrennens 136
15.2 Clocking dOmain deClarationccuerureeeereeerieseseeses e se s e e s e e e e sresresresresaesaeseeneeseesesnensens 136
15.3 INPUL @NA OULPUL SKEWScuiitiieiieeeite ettt ste e saebe st saesbebesee s e be e et ese e e s e ebesbesbesaeseesaensans 138
15.4 HierarchiCal EXPIESSIONS.......ccuereiirtirteriertiteteeeeeseesessessesbessesaesteseeseessesbeseaeeseenesseebesbesbesaeseessessans 139
15.5 Signalsin multiple clocking OMAINS........ccoiiriiiieiereeree et e ebe e s sbesaeneen 139
15.6 Clocking domain scope and HFELIMEcoiiuiriiiieie e e 139
15.7 Multiple clocking dOmMaiNs EXaMPIE........ccuiueririiririe ettt st e sa e e e s sbe e e 139
15.8 Interfaces and cloCKing dOMEINS..........cccooiiiriiinire ettt e ne s 140
15.9 ClOCKING JOMEBIN EVENES.....ccuiitiiteiiieeiite ettt s e bbbt et e see e e e e et eaeeaesbeebesbesbesbeseesaensans 142
15. 10 CYClEAEIAY: FHE ...ttt eb et bt bbb bt e bt et ae et e b b e b sbenbe b nnen 142
15.11 DEfAUIt CIOCKINGttt et ettt eb e bt esaesbesae e 142
15.22 INPUE SAMPIING -ttt ettt b et she b bt a e be b e se e e e b e e et eae e e s aeebesbesbesbesbesbesnens 143
15.13 SYNCHIONOUS EVENESviiiie ittt sttt ettt sttt st she e bt e e be st e se e e e b e ae et eae et s aesbesbesbesaesbesbessens 144
15.14 SYNCHIONOUS GFTVES.eiiiiteeieeeie ettt ettt ettt s h et b e e b see e e be e et eae et e neebesaesbesaesbesaesnens 144

SeCtion 16 Program BIOCK ..o en e 147
16.1 INntroduction (INfOMMELIVE)coeiuireiieiee ettt et sae et st esbe b seesbenen 147
16.2 THE PrOgram CONSIIUCTeiuiitirteriereeteseereeeeetete e e ete s e b b be st seesbesbesbebesbe e e e enee e e e ebesaesbesbeseasbesans 147
16.3 MUILIDIE PrOGIAIMS. ..vetiiee ettt et ettt see bt s ee e et e e e b e ae et s st eaesbeeaesbesbesbe st e nbenseseeneeneebeeneaneas 149
16.4 Eliminating tEStDENCN FACEScoiiiiiiee ettt e e b e s see b e 149
16.5 Blocking tasks in CyCle/eVvent MOE...........cou i e s 150
16.6 Program CONLIOI TASKScoueriiterieitiseee sttt s he et se et e e e e e et sae e e aeebesbesbesreseesbennens 150

SECLION 17 ASSEITIONSciceciiiesrerete sttt r e b s e e n e rer e 151
17.1 Introduction (INfOMMELIVE)coeiuiieiieree et et be e sb st be b seesbennen 151
17.2 IMMEIGLE @SSEITIONS.......ciueeititirteiie ettt ettt sh et st e et besee e e be e et ebe et s aeebesbesbesaesbesbeneens 151
17.3 CONCUITENE BSSEItiONS OVEIVIEW ...ttt et sttt see st e e et se et ebe e e s seebesbesbeseeseasbeneens 153
17.4 BOOIEAN EXPIESSIONScueueeuiatertesteeeesteseesseseeseeseeseesessessessesbesaessesbanseseeneansese et aaesaesbessesbeseeseessessessans 154
D75 SEOUENCES. ... oottt sttt ettt b st ae et eae et s he e se e s a e e at e s et e s b e eb e e b e ebe e ebeeae e bt et e sbeeneesaeennesaeennesneas 156
17.6 DECIANNG SEOUENCESuerueruiaterierteetiateseeseeseeteseesebes e sessesbe s st saesbesbeseensesbene et esee e aseebesbeebeseeseeseensans 159
17.7 SEOUENCE OPEIALTONScueveiuiiteite it st tesee et estete et ebe s e beshebe s bt seesbeseeseeneebe e et eaeeaesaeebesbesbesaeseesbensens 161
17.8 Manipulating datain @ SEOUENCE........coueeririererie sttt ettt bbb se e besee e e e eseebesnennens 177
17.9 SYSEEM FUNCLIONS. ...ttt ettt bbb e et e ae et ebesbesbesreseesbennens 180
17.10The property defiNItIONooi ittt be bt sre e b e 181
17. 11 MUILIPIE ClOCK SUPPONT ...ttt ettt s e sb et ae e et et st et ebesseebeseeseesbennens 183
17.12 CONCUITENE GSSEITIONS.eteeereireetesee e ree e eteeatete et ebe s e aesbebe s bt saesbebeseeseesbe e e st ensene e e ebeesesbeseesbesaessens 185
A T @ oo 1 1=] U 11 To o FO SRR 190
17.14Binding properties tO SCOPES OF INSLANCES........c.eeererieruerteriesieseesteseeseesseseeseeseeseeseseesessessesseseesaensans 193

= o Lo I R T 1= o o 0 196
18.1 Introduction (INfOMMELIVE)coeiuireeieieeeeceeei ettt et e et eae et eb st st saeseesbe e 196
18.2 ThE $rO0L tOP IEVEL ...ttt b bbbt b bbb b bt 196

viii Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1
18.3 MOUUIE UECIArAHIONS.cuereiireree sttt en s 198
18.4 INESLEA MOUUIES.......cvereieeriereeeires sttt r st rer et ner e e e enen s 199
18.5 POIt AECIAIAIONSevieeercieirise ettt r e ener et rer e e en s 201
18.6 LiSt Of POIt EXPIrESSIONScuvveuiieiieieiietee ettt ettt sttt et et e s s et e e st e e st st st sbenesbenens 202
18.7 Time UNit @Nd PrECISION ..c.ecuviverieiieees e sie st e e e et s te s aestestesae e ste e e e eseeneeneesessensesreseensensens 203
18.8 MOUUIEINSIBINCEScvveaeiereiiires sttt r e er e ner e e erene s 204
18.9 POt CONNECHION FUIES ...ttt er et nn s 207
L8. 1O NGIMIE SPACESvveueeieeenerieeeesteestesseeseessaeseeeesseeseessesseeseeaseaseeasesseeseessenssesseensenseensessennsessesnsssnensessens 209
18. 11 HIerarChiCal NBIMEScccoviieieirire et ene s 209

SECLION 19 I NEEITACES.......eeieireeiire ettt n et r e rer e ens 210
19.1 Introduction (INfOMMBEIVE)eceiireeereerece et st e e e eseene s e erestestesrenrenrennens 210
RS A | 01 (= 4 =0 1Y - SRS 211
19.3 POIS IN INEEITACES. ... ceceiereerciecrire et r e er et ner e nenene s 215
RS 1Y oo oo 1 £SO PRRPRIN 216
19.5 Interfaces and SPECITY DIOCKSooiiiiiieece e 220
19.6 Tasksand fUNCLIONS N INEEITACES.coi i s 220
19.7 Parameterized INTEITACESoouiiie ettt b e st s see b e 227
19.8 ACCESS WITNOUL POITS......eeiiiieiteite ettt ettt sttt besae et e saesbesae e 228

SECLION 20 PArBIMELENSeeiveeiieersreee et e st se e s bR e r e e s e nen e e e rer e nnas 230
20.1 Introduction (INfOFMELIVE)ceiueieereeeeireeerie ettt et re e et ebe bt e sae e e sbe st seeneas 230
20.2 Parameter deClaration SYMEBXccoceoureriiruereriesiesie e e s eee e e sse e saesaesbesbeseesbeneesee e enbene e e snesnesnes 230

Section 21 Configuration Librari€S. ... oot 232
21.1 Introduction (INfOFMELIVE)cceiuereereeieiree ettt sttt st eb st ebe b besaeseesbesbesaeneas 232
DA I 1o =T TR 232
21.3 Library mMap filES.ottt et b et bt a e ae b b e e 232

Section 22 System Tasks and SysStem FUNCLIONS ... 233
22.1 Introduction (INfOFMELIVE)c.eiueeeieieeieeeeree ettt e e b st ebe bt e saesnesbeseesreneas 233
22.2 EXpression Size SyStem fUNCHIONc.eoiiiiiirieie ettt e 233
22.3 ShOIreal CONVEISIONS.......ccueiueitirtinteie ettt eae bt ee bt e e e e e e e e se e e eb e st ebeebesbesaesbesbeseesbeneas 233
224 Array querying System fUNCHIONS........ccotriiiririenicrie et 234
22.5 ASSErtion SEVEritY SYSEEM TASKS ...cc.eiuiiiiierieiee ettt st et b e bt e 235
22.6 ASSErtion CONrol SYSLEIM tASKS.cuiiue ittt ettt st e 236
22.7 ASSEtion SYSEM FUNCHIONS ..ottt ettt b e sb et e 236
22.8 Random number SyStem fUNCLIONS..........coiiiiiriiniiie et bbbt 237
e I o (oo =10 ol 011 £ PSRRI 237
22.10 Coverage SYSLEM FUNCLIONS.........coiiiiriee et e sttt sb bbbt e e 237
22.11 Enhancements to Veril0g-2001 SYSLEM tASKScoeieriererierieie et e 237
22.12 $readmemb and SreadmMEMN ..ot e 238

S o Lo a2 T O I I I T | - U 239

SeCtion 24 COMPIIEr DIl ECLIVES......coeiuiitiie ettt ettt b e bbb e et e e e besbe b e s e b e sbesbeseeneas 240
24.1 Introduction (INFOMMBLIVE)eocivirireireeteseet ettt ens 240
B o = T g TC o o (0 240
G T 1o 1o = 241

Section 25 Featuresunder consideration for removal from SystemVerilogccceovveveneneieincnenn, 242
25.1 Introduction (INFOMMBLIVE)eiciuiririerieierieee ettt 242
25.2 DEfParam SEALEMENES.c.coirieuireetirieieriite sttt b et se bt se bbb e b s e b s e b e ne b e enis 242
25.3 Procedural assign and deassign StALEMENES..........oierireineeeeee e 242

Copyright 2003 Accellera. All rights reserved. iX

Accellera

SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001
Section 26 Direct Programming INterface (DPI)cocvoviieiirere et 244
26.1 OVEIVIBW...eieiiiiteieet ettt ettt eb e eb et e et et E s h s b £ s e bt es e s e st e e b e e e e s e b st b e s e e b ene e bt ne bt e enn 244
26.2 TWO [YerS Of TNE DPI ..ottt et st b et b e sb bbb bbb e 245
26.3 Global name space of imported and exported fUNCLIONS............covererereneeieee e 246
26.4 IMPOITE FUNCLIONS......c.uiiii ittt ettt b e et e e e e st e bt et e besaesbeeae b e sbestesbeneas 246
26.5 Calling impPOrted FUNCLIONSoiuerieieeiese ettt bbb bt e 251
26.6 EXPOITE FUNCLIONS......ceiiiiieiiteteeeiee ettt sttt st eb e e bt ea e b sae b e sbe e sbeneas 252
Section 27 SystemVerilog ASSErtiON AP ... e 254
271 REQUITEIMENTS ...ttt sttt sttt e et st s b e st bt sbesbese e beseeseeseembabe e e ereeaeraesaesbesbenbesbantas 254
27.2 EXtenSioNSt0 VPl ENUMEIELIONS......c.coiiiuiieiirieiesieesie st 254
27.3 StatiCINFOMMIBLION ...oveviietireeeist ettt b e b e bt et n et s e nn e en s 255
274 DYNaMIiC INFOMMEBLIONcc.iitiitiitiitieteie ettt sttt b e e e st e e eb et ebeeaenbesaesbesbeseesaeneas 258
27.5 CONLIOl FUNCLIONSeueitiuietireetire ettt er ettt er bbb st ne bt ne bbbt b b e b eae bt et e ens 260
Section 28 SystemVerilog COVErage AP ... et st s 263
28.1 REQUITEIMENTS ...ttt sttt e ae b e et saesb e s bese e b e s eeseeseembabe e e ebeeaesaeaaesbesbeneesbeneas 263
28.2 SystemVerilog real-time COVEragE BCCESSueouerireeerierertestesteseeseeseeseesesseseseesessessesaessessesseseeneas 264
b2 TC R S Y I = oo L (o o TSRS 269
28.4 VPl COVEIAgE EXIENSIONS. .. .ccuiiuieiteteseeeeieeesteieeeraeaaesbesaeseesbesbeseasseseaseeseenseseeaeesesaesbesaesbesbenseseaneas 271
ANNEX A FOMMAI SYNTAX ...ttt sttt et a e bt s he b e s aesee b es b see e e mtese e e saeebesbesaesbeseesen 275
ANNEX B K BYWOT TSttt sttt sttt b st be s b e ebeshe st e s b e e e e b en s e seeneemeebeeaeseeebesbeeaesbeseeen 311
ANNEX C LINKEA LiSES.. .ttt b e b bt eb st n et en e en s 313
F N L B I B T O - = SO 319
ANNEX E INCIUAE FITES .ttt bbbt 344
Annex F Inclusion of Foreign Language COUE..........ccoaeriririinienie it 349
Annex G SystemVerilog Concurrent ASSErtions SEMANTICScovierereriereiee et e 353
F N Lo o I] [0S Y SRR 363
LN L= B =11 o] [To o [=T o] o)V SRS SRR 365
0o 1= TSSOSO PSSO SRRSO PP 367

X Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Section 1
Introduction to SystemVerilog

This document specifies the Accellera extensions for a higher level of abstraction for modeling and verifica-
tion with the Verilog Hardware Description Language. These additions extend Verilog into the systems space
and the verification space and was built on top of the work of the IEEE Verilog 2001 committee.

Throughout this document:

— “Verilog” or “Verilog-2001" refers to the IEEE Std. 1364-2001 standard for the Verilog Hardware Descrip-
tion Language

— “SystemVerilog” refersto the Accellera extensions to the Verilog-2001 standard.

This document numbers the generations of Verilog as follows:
— “Verilog 1.0" isthe IEEE Std. 1364-1995 Verilog standard, which is also called Verilog-1995

— “Verilog 2.0 is the IEEE Std. 1364-2001 Verilog standard, commonly called Verilog-2001; this genera-
tion of Verilog contains the first significant enhancements to Verilog since its release to the public in 1990

— “SystemVerilog 3.x" is Verilog-2001 plus an extensive set of high-level abstraction extensions, as defined
in this document

— SystemVerilog 3.0, approved as an Accellera standard in June 2002, includes enhancements primarily
directed at high-level architectural modeling

— SystemVerilog 3.1, approved as an Accellera standard in May, 2003, includes enhancements primarily
directed at advanced verification and C language integration

— SystemVerilog 3.1a, approved as an Accellera standard in add final date , includes corrections and
clarifications to the SystemVerilog 3.1 manual, as well as some additional enhancements to Verilog
such as VCD and PLI specifications for SystemVerilog constructs.

The Accellerainitiative to extend Verilog is an ongoing effort under the direction of the AccelleraHDL + Tech-
nical Subcommittee. This committee will continue to define additional enhancements to Verilog beyond Sys-
temVerilog 3.1.

SystemVerilog is built on top of Verilog 2001. SystemVerilog improves the productivity, readability, and reus-
ability of Verilog based code. The language enhancements in SystemVerilog provide more concise hardware
descriptions, while still providing an easy route with existing tools into current hardware implementation
flows.

SystemVerilog 3.0 adds several new constructs to Verilog-2001, including:
— C datatypesto provide better encapsulation and compactness of code
— int, typedef, struct, union, enum
— Enhancements to existing Verilog constructs, to provide tighter specifications
— Extensions to aways blocks to include linting type features
— Logic (0, 1, X, Z) and bit (0, 1) data types
— Automatic/static specification on a per variable instance basis
— Procedura break, continue, return
— Interfaces to encapsulate communication and facilitate “ Communication Oriented” design
— Dynamic processes for modeling pipelines

— A $root top level hierarchy which can have global definitions

Copyright 2003 Accellera. All rights reserved. 1

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001
SystemVerilog 3.1 adds verification enhancements in the following important areas.
— Verification Functionaity: Reusable, reactive testbench data-types and functions.
— Built-in types: string, associative array, and dynamic array
— Pass by reference subroutine arguments

— Synchronization: Mechanisms for dynamic process creation, process control, and inter-process communi-
cation:

— Enhancements to existing Verilog events
— Built-in synchronization primitives: Semaphore, Mailbox
— Classes: Object-Oriented mechanism that provides abstraction, encapsulation, and safe pointer capabilities

— Dynamic Memory: Automatic memory management in a re-entrant environment that frees users from
explicit de-allocation

— Cycle-Based Functionality: Clocking domains and cycle-based attributes that help reduce devel opment,
ease maintainability, and promote reusability:

— Cycle-based signal drives and samples
— Synchronous samples

— Race-free program context

Assertion mechanism for verifying design intent and functional coverage intent.
— Property and sequence declarations

— Assertions and Coverage statements with action blocks

2 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Section 2
Literal Values

2.1 Introduction (informative)

The lexical conventions for SystemVerilog literal values are extensions of those for Verilog. SystemVerilog

adds literal time values, literal array values, literal structures and enhancementsto literal strings.

2.2 Literal value syntax

time literal” ::= // from Annex A.8.4
unsigned_number time_unit
| fixed_point_number time_unit
time_unit ::=s|ms|us|ns|ps|fs|step
number ::= I/ from Annex A.8.7
decimal_number
| octal_number
| binary_number
| hex_number
| real_number

decimal_number ::=
unsigned_number
| [size] decimal_base unsigned_number
| [size] decimal_base x_digit{ }
| [size] decimal_base z digit{ }
binary_number ::=[size] binary_base binary value
octal_number ::=[size] octal_base octal_value
hex_number ::=[size] hex_base hex_value
sign:=+|-
size::=non_zero_unsigned number
non_zero_unsigned_number! ::= non_zero_decimal_digit{ _|decimal_digit}
real_numberl =
fixed_point_number
| unsigned_number [. unsigned_number] exp [sign] unsigned_number
fixed_point_number? ::= unsigned_number . unsigned_number
exp:=e|E
unsigned_number? ::= decimal_digit{ | decimal_digit }
string_literal ::=" { Any_ASCI|_Characters} " // from Annex A.8.8

Syntax 2-1—Literal values (excerpt from Annex A)

2.3 Integer and logic literals

Literal integer and logic values can be sized or unsized, and follow the same rules for signedness, truncation

and left-extending as Verilog-2001.

Copyright 2003 Accellera. All rights reserved.

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

SystemVerilog adds the ability to specify unsized literal single bit values with a preceding apostrophe (*), but
without the base specifier. All bits of the unsized value are set to the value of the specified bit. In a self-deter-
mined context these literals have awidth of 1 bit, and the value is treated as unsigned.

0, "1, 'X, 'x, 'Z ‘'z /!l sets all bits to this value

2.4 Real literals

The default typeisr eal for fixed point format (e.g. 1. 2), and exponent format (e.g. 2. 0e10).

A cast can be used to convert literal r eal valuestotheshortreal type(eg., shortreal ' (1.2)). Casting
is described in Section 3.14.

2.5 Time literals

Time is written in integer or fixed point format, followed without a space by a time unit (fs ps ns us ns s
st ep). For example:

0. 1ns
40ps

The time literal isinterpreted asar eal ti me value scaled to the current time unit and rounded to the current
time precision. Note that if atime literal is used as an actual parameter to a module or interface instance, the
current time unit and precision are those of the module or interface instance.

2.6 String literals

A string literal is enclosed in quotes and has its own data type. Non-printing and other special characters are
preceded with a backslash. SystemVerilog adds the following special string characters:

\v vertical tab

\f form feed

\a bell

\x02 hex number

A string literal must be contained in a single line unless the new line is immediately preceded by a\ (back
slash). In this case, the back dlash and the new line are ignored. There is no predefined limit to the length of a
string literal.

A string literal can be assigned to a character, or a packed array, asin Verilog-2001. If the size differs, it isright
justified.

byte c1 = "A" ; bit [7:0] d = "\n"
bit [0:11] [7:0] c2 = "hello world\n" ;

A string literal can be assigned to an unpacked array of characters, and a zero termination isadded likein C. If
the size differs, it isleft justified.

byte ¢3 [0:12] = "hello world\n" ;

Packed and unpacked arrays are discussed in Section 4. The difference between string literals and array literals
is discussed in Section 2.7, which follows.

String literals can also be cast to a packed or unpacked array, which shall follow the same rules as assigning a
literal string to a packed or unpacked array. Casting is discussed in Section 3.14.

SystemVerilog 3.1 also includes ast ri ng datatype to which a string literal can be assigned. Variables of type

4 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

string have arbitrary length; they are dynamically resized to hold any string. String literals are packed arrays
(of awidth that is a multiple of 8 bits), and they are implicitly converted to the string type when assigned to a
string type or used in an expression involving string type operands (see Section 3.7).

2.7 Array literals

Array literals are syntactically similar to Cinitializers, but with the replicate operator ({{}}) allowed.
int n[1:2][21:3] = {{0,1,2},{3{4}}};

The nesting of braces must follow the number of dimensions, unlike in C. However, replicate operators can be
nested.

int n[1:2][1:3] = {2{{3{4}}}};
If the typeis not given by the context, it must be specified with a cast.
typedef int [1:3] triple; // 3 integers packed together

b =triple{0,1,2};

2.8 Structure literals

Structure literals are syntactically similar to C initializers. Structure literals must have a type, either from con-
text or a cast.

typedef struct {int a; shortreal b;} ab
ab c;
c = {0, 0.0}; // structure literal type determined fromthe |eft hand context

(c)
Nested braces should reflect the structure. For example:
ab abarr[1:0] = {{1, 1.0}, {2, 2.0}};
Note that the C alternative{1, 1.0, 2, 2.0} isnotalowed.

Structure literals can also use member name and value, or data type and default value (see Section 7.14):

c ={a:0, b:0.0}; /1 menber nane and val ue for that nenber
c = {default:0}; /1 all elements of structure c are set to O
d = ab'{int:1, shortreal:1.0}; /1 data type and default value for all menbers

/'l of that type

When an array of structures is initialized, the nested braces should reflect the array and the structure. For
example:

ab abarr[1:0] = {{1, 1.0}, {2, 2.0}};

Copyright 2003 Accellera. All rights reserved. 5

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Section 3
Data Types

3.1 Introduction (informative)

To provide for clear trandation to and from C, SystemVerilog supports the C built-in types, with the meaning
given by the implementation C compiler. However, to avoid the duplication of i nt and | ong without causing
confusion, in SystemVerilog, i nt is32bitsand | ongi nt is64 bits. TheCf | oat typeiscaledshortreal in
SystemVerilog, so that it is not be confused with the Verilog-2001 r eal type.

Verilog-2001 has net data types, which can have O, 1, X or Z, plus 7 strengths, giving 120 values. It also has
variable data types such asr eg, which have 4 values 0, 1, X, Z. These are not just different data types, they are
used differently. SystemVerilog adds another 4-value data type, caled | ogi ¢ (see Sections 3.3.2 and 5.6).

SystemVerilog 3.1 adds string, chandl e and cl ass data types, and enhances the Verilog event and System-
Verilog 3.0 enumdata types. SystemVerilog 3.1 also extends the user defined types by providing support for
object-oriented class.

Verilog-2001 provides arbitrary fixed length arithmetic using r eg data types. Ther eg type can have bits at X
or Z, however, and so are less efficient than an array of bits, because the operator evaluation must check for X
and Z, and twice as much data must be stored. SystemVerilog adds abi t type which can only have bitswith 0
or 1 values. See Section 3.3.2 on 2-state data types.

Automatic type conversions from asmaller number of bitsto alarger number of bitsinvolve zero extensions if
unsigned or sign extensions if signed, and do not cause warning messages. Automatic truncation from a larger
number of bitsto asmaller number does cause awarning message. Automatic conversions between | ogi ¢ and
bi t do not cause warning messages. To convert alogic value to a bit, 1 convertsto 1, anything else to 0.

User defined types are introduced by t ypedef and must be defined before they are used. Data types can aso
be parameters to modules or interfaces, making them like class templates in object-oriented programming. One
routine can be written to reverse the order of elementsin any array, which isimpossiblein C and in Verilog.

Structures and unions are complicated in C, because the tags have a separate name space. SystemVerilog fol-
lows the C syntax, but without the optional structure tags.

See also Section 4 on arrays.

6 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

3.2 Data type syntax

data type::= /I from Annex A.2.2.1
integer_vector_type[signing] { packed_dimension} [range]
| integer_atom_type[signing]
| type_declaration_identifier { packed_dimension }
| non_integer_type
| struct packed [signing] { { struct_union_member } } { packed_dimension }
| union packed [signing] { { struct_union_member } } { packed _dimension}
| struct [signing] { { struct_union_member } }
| union [signing] { { struct_union_member } }
| enum [integer_type[signing] { packed dimension}]
{ enum_identifier [= constant_expression] { , enum_identifier [= constant_expression] } }
| string
| event
| chandle
| class_scope type identifier
class scope type identifier::=
class identifier :: { class identifier :: } type declaration_identifier
| class identifier :: { class identifier :: } class identifier
integer_type ::=integer_vector_type | integer_atom_type
integer_atom_type ::= byte | shortint | int | longint | integer
integer_vector_type ::= bit | logic | reg
non_integer_type ::=time|shortreal | real | realtime
net_type ::=supplyO | supplyl | tri|triand | trior | triO|tril|wire|wand | wor
signing ::=signed | unsigned
simple_type ::= integer_type | non_integer_type | type_identifier
struct_union_member ::= { attribute instance} data—type-Hst—ef—variable—tdentifiers—er—assignments

variable declaration ;

variable decl_assignment ::= // from Annex A.2.4
variable_identifier [variable_dimension] [= constant_expression]

| variable identifier [] = new [constant_expression] [(variable identifier)]

Syntax 3-1—data types (excerpt from Annex A)

3.3 Integer data types

SystemVerilog offers several integer data types, representing a hybrid of both Verilog and C data types:

Table 3-1: Integer data types

shortint 2-state SystemVerilog data type, 16 bit signed integer

i nt 2-state SystemVerilog data type, 32 bit signed integer

| ongi nt 2-state SystemVerilog data type, 64 bit signed integer

byte 2-state SystemVerilog data type, 8 bit signed integer or ASCII character
bit 2-state SystemVerilog data type, user-defined vector size

Copyright 2003 Accellera. All rights reserved. 7

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Table 3-1: Integer data types

3.3.1 Integral types

The term integral is used throughout this document to refer to the data types that can represent a single basic
integer datatype, packed array, packed struct, packed uni on,enumorti me.

3.3.2 2-state (two-value) and 4-state (four-value) data types

Types that can have unknown and high-impedance values are called 4-state types. These are | ogi c, r eg,
i nt eger andt i me. The other types do not have unknown values and are called 2-state types, for example bi t
andi nt.

The difference betweeni nt andi nt eger isthati nt is2-statelogic andi nt eger is4-statelogic. 4-state val-
ues have additional bitsthat encode the X and Z states. 2-state data types can simulate faster, take less memory,
and are preferred in some design styles.

3.3.3 Signed and unsigned data types

Integer types use integer arithmetic and can be signed or unsigned. This affects the meaning of certain opera-
torssuch as‘<', etc.

i nt unsigned ui;
int signed si;

The data types byt e, shortint,int,integer and| ongi nt default to si gned. The data typesbi t, reg
and | ogi ¢ default to unsi gned, as do arrays of these types.

Note that the si gned keyword is part of Verilog-2001. The unsi gned keyword is areserved keyword in Ver-
ilog-2001, but is not utilized.

See also Section 7, on operators and expressions.

3.4 Real and shortreal data types

Ther eal ! datatypeis from Verilog-2001, and isthe same asaC doubl e. Theshor t r eal datatypeisaSys-
temVerilog datatype, and isthe sameasaCf | oat .

3.5 Void data type

The voi d data type represents non-existent data. This type can be specified as the return type of functions,
indicating no return value.

3.6 chandle data type

The chandl e data type represents storage for pointers passed using the DPI Direct Programming Interface

1 Thereal and shortreal types are represented as described by |EEE 734-1985, an | EEE standard for floating point numbers.

8 Copyright 2003 Accellera. All rights reserved.

| ogi ¢ 4-state SystemVerilog data type, user-defined vector size with-ditferent tse rutes from-reg ’W‘
reg 4-state Verilog-2001 data type, user-defined vector size

i nt eger 4-state Verilog-2001 datartype, at least 32 bit signed integer

time 4-state Verilog-2001 data type, 64-bit integer

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

(see Section 26). The size of thistypeis platform dependent, but shall be at least large enough to hold a pointer
on the machine in which the toal is running.

The syntax to declare a handle is as follows:
chandl e vari abl e_nane ;

where variable nameisavalid identifier. Chandles shall always be initialized to the value nul | , which hasa
value of 0 on the C side. Chandles are very restricted in their usage, with the only legal uses being as follows:

— Only the following operators are valid on chandl e variables:
— Equality (==), inequality (! =) with another chandl e or with nul |

— Case equality (===), caseinequality (! ==) with another chandl e or withnul | (same semantics as==
and! =)

— Can be tested for aboolean value that shall be O if thechandl e isnul | and 1 otherwise
— Only the following assignments can be madeto achandl e

— Assignment from another chandl e

— Assignment to nul |

— Chandles can be inserted into associative arrays (refer to Section 4.9), but the relative ordering of any two
entries in such an associative array can vary, even between successive runs of the same tool.

— Chandles can be used within a class
— Chandles can be passed as arguments to functions or tasks

— Chandles can be returned from functions

The use of chandles is restricted as follows:
— Ports shall not have the chandl e datatype
— Chandles shall not be assigned to variables of any other type
— Chandles shall not be used:
— Inany expression other than as permitted above
— Asports
— Insengitivity lists or event expressions
— In continuous assignments
— Inunions

— In packed types

3.7 String data type

SystemVerilog includes a st ri ng data type, which is a variable size, dynamically allocated array of charac-
ters. SystemVerilog also includes a number of special methods to work with strings.

Verilog supports string literals, but only at the lexical level. In Verilog, string literals behave like packed arrays
of awidth that isamultiple of 8 hits. A string literal assigned to a packed array is truncated to the size of the

array

In SystemVerilog string literals behave exactly the same as in Verilog However, SystemVerilog also supports

Copyright 2003 Accellera. All rights reserved. 9

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

the st ri ng datatype to which a string literal can be assigned. When using the st r i ng datatype instead of a
packed array, strings can be of arbitrary length and no truncation occurs. Literal strings are implicitly con-
verted to the st ri ng type when assigned to a st ri ng type or used in an expression involving st ri ng type
operands.

Variables of typest ri ng can beindexed from 0 to N-1 (the last element of the array), and they can take on the
special value“”, which is the empty string.

The syntax to declareast ri ng is:
string variable_name [= initial _value];

where variable nameis a valid identifier and the optional initial_value can be a string literal or the value “”
for an empty string. For example:

string nyName = "John Snith";
If aninitial valueis not specified in the declaration, the variable isinitialized to “ ", the empty string.

SystemVerilog provides a set of operators that can be used to manipulate combinations of string variables and
string literals. The basic operators defined on the string data type are listed in Table 3-2, which follows.

A string literal can be assigned to a st ri ng, a character, or a packed array. If their size differs the literal is
right justified and zero filled on the left. For example:

byte ¢ = "A"; /] assign to c "A"
bit [10:0] a = "\x41"; /1 assigns to a ‘b000_0100_0001
bit [1:4][7:0] h = "hello" ; [/ assigns to h "ello"

A string, string literal, or packed array can be assigned to a stri ng variable. The st ri ng variable shall
grow to accommodate the packed array. If the size (in bits) of the packed array is not a multiple of 8, then the
packed array is zero filled on the | eft.

For example:
string s1 = "hello"; // sets sl1 to "hello"
bit [11:0] b = 12’ ha4l,
string s2 = b; /1 sets s2 to 'hOa4l

As asecond example:

reg [15:0] r;

integer i = 1;

string b = "";

string a = {"H ", b};

r = a; [l K

b =r; /1 OK (inplicit cast, inplenmentations can i ssue a warni ng)
b ="H", Il K

b = {5{"H "}}; Il K

a = {i{"H"}}; /1 OK (non constant replication)

r = {i{"H"}}; /1 invalid (non constant replication)
a = {i{b}}; Il K

a = {a, b}; Il K

a={"H",b}; Il K

a[0] = "h"; /l OK same as a[0] = "hi")

10 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Table 3-2: String operators

Operator Semantics

Strl == Str2 Equality. Checks if the two strings are equal. Result is 1 if they are equal and O if
they are not. Both strings can be of type st r i ng. Or one of them can be a string lit-
eral. If both operands are string literals, the expression is the same Verilog equality
operator for integer types. The special value" " isallowed.

Strl I= Str2 Inequality. Logical Negation of ==

Strl < Str2 Comparison. Relational operators return 1 if the corresponding condition is true
Strl <= Str2 using the lexicographical ordering of the two strings St r 1 and St r 2. The compari-
Strl > Str2 son behaves like the ANSI C st r cnp function (or the compare string method).
Strl >= Str2 Both operands can be of type st r i ng, or one of them can be astring literal.
{strl,Str2,...,Strn} Concatenation. Each operand can be of type st ri ng or astring literal (it shall be

implicitly converted to type st ri ng). If at least one operand is of typest ri ng,
then the expression evaluates to the concatenated string and is of type st ri ng. If
all the operands are string literals, then the expression behaves like a Verilog concat-
enation of integral types; if the result is then used in an expression involving

stri ng types, itisimplicitly convertedto thest r i ng type.

{multiplier{Str}} Replication. St r can be of type st ri ng or astring literal. Multiplier must be of
integral type and can be non-constant. If multiplier is non-constant or St r is of type
stri ng, theresult isastring containing N concatenated copies of St r, where Nis
specified by the multiplier. If St r isaliteral and the multiplier is constant, the
expression behaves like numeric replication in Verilog (if the result isused in
another expression involving string types, it isimplicitly converted to the string
type).

Str.nmethod(...) Thedot (.) operator is used to invoke a specified method on strings.

SystemVerilog also includes a number of special methods to work with strings. These methods use the built-in
method notation. These methods are described in the following subsections.

3.7.1len()

function int |en()

— str. |l en() returnsthe length of the string, i.e., the number of characters in the string (excluding any ter-
minating character).

— Ifstr is"", thenstr. | en() returnsO.

3.7.2 putc()
task putc(int i, string s)
task putc(int i, byte c)

— str.putc(i, c) replacestheith character in str with the given integral value.
— str.putc(i, s) replacestheith character in str with the first character ins.
— s can be any expression that can be assigned to a string.

— put c doesnot changethesizeof str: Ifi <Qori >=str.|en(),thenstr isunchanged.

Note: str. putc(j, x) isidenticaltostr[j] = X.

Copyright 2003 Accellera. All rights reserved. 11

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001
3.7.3 getc()
function int getc(int i)
— str.getc(i) returnsthe ASCII code of thei th character instr.

— Ifi <Qori >=str.len(),thenstr.getc(i) returnsO.
Note:x = str.getc(j) isidenticatox = str[j].

3.7.4 toupper()
function string toupper()
— str. toupper () returnsastring with charactersinst r converted to uppercase.

— str isunchanged.

3.7.5 tolower()
function string tol ower()
— str.tol ower () returnsastring with charactersinst r converted to lowercase.

— st r isunchanged.

3.7.6 compare()

function int conpare(string s)
— str.conpare(s) compares str and s, asin the ANSI C strcnp function, with a compatible return
value.

Seetherelational string operatorsin Section 3.7, Table 3-2.

3.7.7 icompare()
function int iconpare(string s)

— str.iconpare(s) compares str and s, like the ANSI C strcnp function, with a compatible return
value, but the comparison is case insensitive.

3.7.8 substr()
function string substr(int i, int j)

— str.substr(i, j) returnsanew string that isa sub-string formed by charactersin positioni through j
of str.

— Ifi <0,j <i,orj >=str.len(),substr() returns" " (the empty string).

3.7.9 atoi(), atohex(), atooct(), atobin()

function integer atoi()

function integer atohex()
function integer atooct()
function integer atobin()

— str.atoi () returnstheinteger corresponding to the ASCII decimal representationin st r. For example:

str = "123";
int i =str.atoi(); // assigns 123 to i.

The string is converted until the first non-digit is encountered.

12 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

— at ohex interprets the string as hexadecimal.
— at ooct interpretsthe string as octal.

— at obi n interprets the string as binary.

3.7.10 atoreal()
function real atoreal ()
— str.atoreal () returnsthereal number corresponding to the ASCII decimal representationinstr.
3.7.11 itoa()
task itoa(integer i)
— str.itoa(i) storesthe ASCII decimal representation of i intostr (inverseof at oi).
3.7.12 hextoa()

task hextoa(integer i)

— str. hextoa(i) storesthe ASCII hexadecimal representation of i intostr (inverse of at ohex).

3.7.13 octtoa()

task octtoa(integer i)

— str.octtoa(i) storesthe ASCII octal representation of i intost r (inverse of at ooct).

3.7.14 bintoa()

task bintoa(integer i)

— str.bintoa(i) storesthe ASCII binary representation of i intostr (inverse of at obi n).

3.7.15 realtoa()

task realtoa(real r)

— str.real toa(r) storesthe ASCII rea representation of i intostr (inverseof at or eal).

3.8 Event data type

Theevent datatypeisan enhancement over Verilog named events. SystemVerilog events provide a handle to
asynchronization object. Like Verilog, event variables can be explicitly triggered and waited for. Furthermore,
SystemVerilog events have a persistent triggered state that lasts for the duration of the entire time step. In addi-
tion, an event variable can be assigned another event variable or the specia value nul | . When assigned
another event variable, both event variables refer to the same synchronization object. When assigned nul | , the
association between the synchronization object and the event variable is broken. Events can be passed as argu-
ments to tasks.

The syntax to declare an event is:
event variable_nanme [= initial_value];

Where variable name is a valid identifier and the optional initial_value can be another event variable or the
special valuenul | .

If aninitial valueis not specified then the variable isinitialized to a new synchronization object.

Copyright 2003 Accellera. All rights reserved. 13

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

If the event isassigned nul | , the event becomes nonblocking, as if it were permanently triggered.

Examples:
event done; /] declare a new event call ed done
event done_too = done; /1 declare done_too as alias to done
event enpty = null; /1 event variable with no synchronization object

Event operations and semantics are discussed in detail in Section 13.5.

3.9 User-defined types

type _declaration ::= // from Annex A.2.1.3
typedef [data _type] type declaration_identifier ;
| typedef hierarchical _identifier . type identifier type declaration_identifier ;
| typedef [class] class _identifier ;
| typedef class identifier [parameter_value assignment | type declaration_identifier ;

Syntax 3-2—user-defined types (excerpt from Annex A)

The user can define anew type using t ypedef , asin C.
typedef int intP;
This can then be instantiated as:
intP a, b;
A type can be used before it is defined, provided it isfirst identified as atype by an empty t ypedef :
typedef foo;
foo f = 1;
typedef int foo;
Note that this does not apply to enumeration values, which must be defined before they are used.
If the type is defined within an interface, it must be re-defined locally before being used.
interface it;
typedef int intP;

endi nterface

it itl ();
typedef itl.intP intP;

User-defined type names must be used for complex data types in casting (see Section 3.14, below), and as
parameters.

Sometimes a user defined type needs to be declared before the contents of the type has been defined. Thisis of
use with user defined types derived from enum struct, union, and cl ass. For an example, see
Section 11.24. Support for thisis provided by the following forms for t ypedef :

typedef enum type_decl aration_identifier;
typedef struct type_declaration_identifier;
typedef union type_declaration_identifier;
typedef class type_declaration_identifier;

14 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

typedef type_declaration_identifier;
Notethat, whilethisis useful for coupled definitions of classes as shown in Section 11.24, it cannot be used for
coupled definitions of structures, since structures are statically declared and there is no support for pointers to
structures.

The last form shows that the type of the user defined type does not have to be defined in the forward declara-
tion.

A typedef inside agener at e shall not define the actual type of aforward definition that exists outside the
scope of the forward definition.

3.10 Enumerations

data type::= // from Annex A.2.2.1

| enum [integer_type[signing] { packed dimension}]
{ enum_identifier [= constant_expression] { , enum_identifier [= constant_expression] } }

Syntax 3-3—enumerated types (excerpt from Annex A)

An enumerated type declares a set of integral named constants. Enumerated data types provide the capability
to abstractly declare strongly typed variables without either a data type or data value(s) and later add the
required data type and value(s) for designs that require more definition. Enumerated data types also can be eas-
ily referenced or displayed using the enumerated names as opposed to the enumerated val ues.

In the absence of a data type declaration, the default data type shall bei nt . Any other data type used with enu-
merated types shall require an explicit data type declaration.

An enumerated type defines a set of named values. In the following example, | i ght 1 and | i ght 2 are defined
to be variables of the anonymous (unnamed) enumerated int type that includes the three members: r ed, yel -
| owand gr een.

enum {red, yellow, green} lightl, light2; // anonynous int type

An enumerated name with x or z assignments assigned to an enumwith no explicit data type or an explicit 2-
state declaration shall be a syntax error.

/1 Syntax error: |DLE=2'b00, XX=2'bx <ERROR>, S1=2'b01?7?, S2=2'bl0??
enum {1 DLE, XX="x, S1=2'b01, S2=2'bl0} state, next;

An enumdeclaration of a4-state type, such asinteger, that includes one or more names with x or z assignments
shall be permitted.

/l Correct: |DLE=2'b00, XX=2'bx, S1=2'b01, S2=2'bl0
enum i nteger {IDLE, XX='x, S1=2'b01, S2=2'b1l0} state, next;

An unassigned enumerated name that follows an enum name with x or z assignments shall be a syntax error.

/1l Syntax error: |DLE=2'b00, XX=2'bx, S1=??, S2=?7?
enum i nteger {IDLE, XX='x, Sl, S2} state, next;

The values can be cast to integer types, and increment from an initial value of 0. This can be overridden.

enum {bronze=3, silver, gold} nedal; // silver=4, gold=5

Copyright 2003 Accellera. All rights reserved. 15

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

The values can be set for some of the names and not set for other names. A name without a value is automati-
cally assigned an increment of the val ue of the previous name.

/1 ¢ is automatically assigned the increnent-value of 8
enum {a=3, b=7, c} al phabet;

If an automatically incremented value is assigned elsewhere in the same enumeration, this shall be a syntax
error.

/1 Syntax error: ¢ and d are both assigned 8
enum {a=0, b=7, c, d=8} al phabet;

If the first nameis not assigned avalue, it is given the initial value of 0.

/1l a=0, b=7, c=8
enum {a, b=7, c} al phabet;

A sized constant can be used to set the size of the type. All sizes must be the same.

/1 silver=4"h4, gold=4"h5 (all are 4 bits wi de)
enum {bronze=4' h3, silver, gold} nedal 4,

/1 Syntax error: the width of the enum has been exceeded
/1 in both of these exanples
enum {a=1'b0, b, c} al phabet;
enum [0: 0] {a, b,c} al phabet;
Any enumeration encoding value that is outside the representable range of the enumshall be an error.

Adding a constant range to the enum declaration can be used to set the size of the type. If any of the enum
members are defined with a different sized constant, this shall be a syntax error.

/1 Error in the bronze and gold nmenber decl arations
enum bit [3:0] {bronze=5"h13, silver, gold=3"h5} nedal 4;

/1 Correct declaration - bronze and gold sizes are redundant
enum bit [3:0] {bronze=4'h13, silver, gold=4’h5} nedal 4;

Type checking of enumerated types used in assignments, as arguments and with operators is covered in
Section 3.10.3. Like C, there is no overloading of literals, so medal and medal4 cannot be defined in the same
scope, since they contain the same names.

3.10.1 Defining new data types as enumerated types

A type name can be given so that the same type can be used in many places.

typedef enum {NO, YES} bool ean;
bool ean nyvar; // naned type

3.10.2 Enumerated type ranges
A range of enumeration elements can be specified automatically, viathe following syntax:

Table 3-3: Enumeration element ranges

nanme Associates the next consecutive number with name.

nane = N Assignsthe constant N to name

16 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Table 3-3: Enumeration element ranges

nane[N| Generates N hames in the sequence: name0, namel, ..., nameN-1N must be an integral con-
stant

nane[N. M Creates a sequence of names starting with nameN and incrementing or decrementing until
reaching name nameM .

For example:
enum { add=10, sub[5], jnp[6:8] } ;

This example assigns the number 10 to the enumerated type add. It also creates the enumerated types
sub0,subl,sub2,sub3,and sub4, and assigns them the values 11..15, respectively. Finally, the example cre-
ates the enumerated typesj np6,j mp7, and j np8, and assigns them the values 16-18, respectively.

3.10.3 Type checking

SystemVerilog enumerated types are strongly typed, thus, a variable of type enumcannot be directly assigned

a value that lies outside the enumeration set unless an explicit cast is used, or unless the enum variable is a

member of aunion. Thisis a powerful type-checking aid that prevents users from accidentally assigning non- LRM 25
existent valuesto variables of an enumerate type. This restriction only applies to an enumeration that is explic-

itly declared as atype. The enumeration values can still be used as constants in expressions, and the results can

be assigned to any variable of a compatible integral type.

Both the enumeration names and their integer values must be unique. The values can be set to any integral con-
stant value, or auto-incremented from an initial value of 0. It isan error to set two values to the same name, or
to set avalue to the same auto-incremented value.
Enumerated variables are type-checked in assignments, arguments, and relational operators. Enumerated vari-
ables are auto-cast into integral values, but, assignment of arbitrary expressions to an enumerated variable
reguires an explicit cast.
For example:

typedef enum{ red, green, blue, yellow, white, black } Colors;

This operation assigns a unique number to each of the color identifiers, and creates the new data type Colors.
This type can then be used to create variables of that type.

Col ors c;

c = green;

c = 1; /1 Invalid assignment

if (1==c) /1 OK c is auto-cast to integer

In the example above, the value gr een isassigned to the variable c of type Col or s. The second assignment is
invalid because of the strict typing rules enforced by enumerated types.

Casting can be used to perform an assignment of a different data type, or an out of range value, to an enumer-
ated type. Casting is discussed in Sections 3.10.5, 3.14 and 3.15.

3.10.4 Enumerated types in comparison expressions LRM 25

The result of any operation on an enumeration variable after the variable has been assigned an out of range
value shall be undefined.

3.10.5 Enumerated types in numerical expressions

Elements of enumerated type variables can be used in numerical expressions. The value used in the expression

Copyright 2003 Accellera. All rights reserved. 17

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

is the numerical value associated with the enumerated value. For example:
typedef enum{ red, green, blue, yellow, white, black } Colors;

Col ors col;
integer a, b;

a = blue * 3;
col = yellow,
b = col + green;

From the previous declaration, bl ue has the numerical value 2. This example assigns a the value of 6 (2*3).
Next, it assignsb avalue of 4 (3+1).

An enum variable or identifier used as part of an expression is automatically cast to the base type of the enum
declaration (either explicitly or using int as the default). An assignment to an enum variable from an expres-
sion other than an enum variable or identifier of the same type shall require a cast. Casting to an enumtype
shall cause a conversion of the expression to its base type without checking the validity of the value (unless a
dynamic cast is used as described in Section 3.15).

typedef enum {Red, Green, Blue} Colors;
typedef enum {Mb, Tu, W\, Th, Fr, Sa, Su} Wek;

Col ors C

Week W

int I;

C = Colors’ (C+l); /1l Cis converted to an integer, then added to
/1 one, then converted back to a Colors type

C=C+1; Ct+; C+=2; C=1; [/ Illegal because they would all be
/1 assignments of expressions wi thout a cast

C = Colors’ (Su); /1 Legal; puts an out of range value into C

| =C+ W /1 Legal; C and Ware automatically cast to int

SystemVerilog includes a set of specialized methods to enable iterating over the values of enumerated types.
3.10.5.1 first()

The prototype for thef i r st () methodis:
function enumfirst();

Thefirst () method returnsthe value of the first member of the enumeration enum

3.10.5.2 last()
The prototype for thel ast () methodis:
function enumlast();

Thel ast () method returns the value of the last member of the enumeration enum

3.10.5.3 next()
The prototype for the next () methodis:

function enumnext(int unsigned N=1);

18 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

The next () method returns the Nth next enumeration value (default is the next one) starting from the current
value of the given variable. A wrap to the start of the enumeration occurs when the end of the enumeration is
reached. If the given value is not amember of the enumeration, the next () method returns the first member.

3.10.5.4 prev()
The prototype for the pr ev() methodis:
function enumprev(int unsigned N=1);
Theprev() method returns the Nth previous enumeration value (default is the previous one) starting from the
current value of the given variable. A wrap to the end of the enumeration occurs when the start of the enumer-

ation is reached. If the given value is not a member of the enumeration, the prev() method returns the last
member.

3.10.5.5 num()
The prototype for the nun{) methodis:
function int num();
Thenun() method returns the number of elementsin the given enumeration.
3.10.5.6 name()
The prototype for the name() method is:
function string nane();

The nane() method returns the string representation of the given enumeration value. If the given value is not
amember of the enumeration, the name() method returns the empty string.

3.10.5.7 Using enumerated type methods
The following code fragment shows how to display the name and value of all the members of an enumeration.

typedef enum{ red, green, blue, yellow} Colors;
Colors ¢ = c.first;
forever begin
$display("% : %\n", c.name, c);
if(¢ == c.last) break;
C = c.next;
end

3.11 Structures and unions

data type::= // from Annex A.2.2.1

| struct packed [signing] { { struct_union_member } } { packed_dimension }
| union packed [signing] { { struct_union_member } } { packed dimension}
| struct [signing] { { struct_union_member } }
| union [signing] { { struct_union_member } }

struct_union_member ::= { attribute _instance} data—type-tist—of—variable-identifiers—or—assignments LRM 35

variable declaration ;

Copyright 2003 Accellera. All rights reserved. 19

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Syntax 3-4—Structures and unions (excerpt from Annex A)

Structure and union declarations follow the C syntax, but without the optional structure tags beforethe ‘{".

struct { bit [7:0] opcode; bit [23:0] addr; }IR// anonynous structure
/1 defines variable IR
IR opcode = 1; // set fieldin IR

Some additional examples of declaring structure and unions are:

typedef struct {

bit [7:0] opcode;

bit [23:0] addr;
} instruction; // named structure type
instruction IR // define variable

typedef union { int i; shortreal f; } num // naned union type
num n;
n.f =0.0; // set nin floating point format

typedef struct {

bit isfloat;

union { int i; shortreal f; } n; // anonynous type
} tagged; // naned structure

tagged a[9:0]; // array of structures
A structure can be assigned as a whole, and passed to or from a function or task as awhole.
Section 2.8 discusses assigning initial values to a structure.

A packed structure consists of bit fields, which are packed together in memory without gaps. This means that
they are easily converted to and from bit vectors. An unpacked structure has an implementation-dependent
packing, normally matching the C compiler.

Like a packed array, a packed structure can be used as a whole with arithmetic and logical operators. The first
member specified is the most significant and subsegquent members follow in decreasing significance. The
structures are declared using the packed keyword, which can be followed by the si gned or unsi gned key-
words, according to the desired arithmetic behavior. The default is unsigned:

struct packed signed {
int a;
shortint b;
byte c;
bit [7:0] d;
} packl; // signed, 2-state

struct packed unsi gned {
tine a;
i nteger b;
logic [31:0] c;
} pack2; // unsigned, 4-state

If any data type within a packed structure is 4-state, the whole structure is treated as 4-state. Any 2-state mem-
bers are converted asiif cast. One or more elements of the packed array can be selected, assuming an [n- 1: 0]
numbering:

packl [15:8] // ¢

20 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Non-integer datatypes, such asreal andshortreal , are not alowed in packed structures or unions. Nor are
unpacked arrays.

A packed structure can be used with at ypedef .

typedef struct packed { // default unsigned
bit [3:0] G-C
bit [7:0] VPI;
bit [11:0] Vvd;
bit CLP;
bit [3:0] PT;
bit [7:0] HEC
bit [47:0] [7:0] Payl oad;
bit [2:0] filler;
} s_atncel l;

A packed union shall contain members that must be packed structures, or packed arrays or integer data types
all of the same size (in contrast to an unpacked union, where the members can be different sizes). This ensures
that you can read back a union member that was written as another member. A packed union can also be used
as awhole with arithmetic and logical operators, and its behavior is determined by the signed or unsigned key-
word, the latter being the default. If a packed union contains a 2-state member and a 4-state member, the entire
union is4 state. Thereisan implicit conversion from 4-state to 2-state when reading and from 2-state to 4-state
when writing the 2-state bit member.

For example, aunion can be accessible with different access widths:

typedef union packed { // default unsigned
s_atnctell acell;
bit [423:0] bit_slice;
bit [52:0][7:0] byte_slice;

} u_atncel l;

u_atncel | ul;

byte b; bit [3:0] nib;

b = ul.bit_slice[415:408]; // sane as b = ul.byte_slice[51];
nib = ul.bit_slice [423:420]; // sane as nib = ul. acell.G-C

Note that writing one member and reading another is independent of the byte ordering of the machine, unlike a
normal union of normal structures, which are C-compatible and have members in ascending address order.

3.12 Class

A classisacollection of dataand aset of subroutinesthat operate on that data. The datain aclassis referred to
as properties, and its subroutines are called methods. The properties and methods, taken together, define the
contents and capabilities of a class instance or object.

class declaration ::= [/l from Annex A.1.3
{ attribute_instance } [virtual] class| lifetime] class_identifier [parameter_port_list]

[extends class identifier [parameter_value assignment]] ; Himeunits—declaration] {

class item}

Syntax 3-5—Classes (excerpt from Annex A)

The object-oriented class extension allows objects to be created and destroyed dynamically. Class instances, or
objects, can be passed around via object handles, which add a safe-pointer capability to the language. An
object can be declared as an argument of typei nput, out put, i nout, or, ref . In each case, the argument

Copyright 2003 Accellera. All rights reserved. 21

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

copied is the object handle, not the contents of the object.
A Classisdeclared using the cl ass...endcl ass keywords. For example:
cl ass Packet
i nt address; /1 Properties are address, data, and crc
bit [63:0] data;
shortint crc;
Packet next; /1 Handl e to another Packet
function new(); !/ Methods are send and new
function bit send();
endcl ass : Packet

Any data type can be declared as a class member. Classes are discussed in more detail in Section 11.

3.13 Singular type

A singular type includes packed arrays (and structures) and al other data types except unpacked structures,
unpacked arrays, and chandles.

3.14 Casting

constant_primary ::= [/ from Annex A.8.4

| casting_type’ (constant_expression)
| casting_type’ constant_concatenation
| casting_type’ constant_ multiple_concatenation

primary ::=

| casting_type’ (expression)

| void’ (function_call)

| casting_type’ concatenation

| casting_type’ multiple_concatenation
casting_type ::= simple_type | number | signing I/ fromAnnex A.2.2.1
simple_type ::=integer_type | non_integer_type | type identifier

Syntax 3-6—casting (excerpt from Annex A)

A data type can be changed by using a cast (*) operation. The expression to be cast must be enclosed in
parenthesis or within concatenation or replication braces.

int’ (2.0 * 3.0)
shortint’ {8 hFA, 8 hCE}

A decimal number as a data type means a number of bits.
17 (x - 2)
The signedness can a so be changed.

si gned’ (x)

22 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

A user-defined type can be used.

nytype’ (foo)

When casting to a predefined type, the prefix of the cast must be the predefined type keyword. When casting to
a user-defined type, the prefix of the cast must be the user-defined type identifier.

Whenashortreal isconvertedtoani nt orto 32 bits, its valueisrounded, asin Verilog. Therefore, the con-
version can lose information. To convert a short real to its underlying bit representation without a loss of
information, use $shortreal t obi t s as defined in Section 22.3. To convert from the bit representation of a
shortreal valueinto ashortreal , use $bi t st oshortreal asdefinedin Section 22.3.
Structures can be converted to bits preserving the bit pattern, which means they can be converted back to the
same value without any loss of information. The following example demonstrates this conversion. In the
example, the $bi t s attribute gives the size of a structure in bits (the $bits system function is discussed in
Section 22.2:
typedef struct {
bit isfloat;
union { int i; shortreal f; } n; // anonynous type
} tagged; // naned structure
typedef bit [$bits(tagged) - 1 : 0] tagbits; // tagged defined above
tagged a [7:0]; // unpacked array of structures

taghits t = tagbits’'(a[3]); // convert structure to array of bhits
a[4] = tagged’' (t); // convert array of bits back to structure

Notethat the bi t datatypeloses X values. If these areto be preserved, the| ogi ¢ type should be used instead.
The size of aunionin bitsisthe size of itslargest member. The size of al ogi ¢ in bitsis 1.

For compatibility, the Verilog functions $itor, $rtoi, $bitstoreal, $realtobits, $signed,
$unsi gned can also be used.

3.15 $cast dynamic casting

SystemVerilog provides the $cast system task to assign values to variables that might not ordinarily be valid
because of differing data type. $cast can be called as either atask or afunction.

The syntax for $cast is:
function int $cast(singular dest_var, singular source_exp);
or
task $cast(singular dest_var, singular source_exp);
The dest_var isthe variable to which the assignment is made.
The source_exp isthe expression that is to be assigned to the destination variable.
Use of $cast aseither atask or afunction determines how invalid assignments are handled.

When called asatask, $cast atemptsto assign the source expression to the destination variable. If the assign-
ment isinvalid, aruntime error occurs and the destination variable is left unchanged.

When called as a function, $cast attempts to assign the source expression to the destination variable, and

Copyright 2003 Accellera. All rights reserved. 23

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

returns 1 if the cast is legal. If the cast fails, the function does not make the assignment and returns 0. When
called as afunction, no runtime error occurs, and the destination variable is left unchanged.

It'simportant to note that $cast performs arun-time check. No type checking is done by the compiler, except
to check that the destination variable and source expression are singulars.

For example:

typedef enum{ red, green, blue, yellow, white, black } Colors;
Col ors col
$cast(col, 2 + 3);

This example assigns the expression (5 => bl ack) to the enumerated type. Without $cast , or the static
compile-time cast described below, this type of assignment isillegal.

The following example shows how to use the $cast to check if an assignment will succeed:

if (! $cast(col, 2 +8)) /1 10: invalid cast
$di splay("Error in cast");

Alternatively, the preceding examples can be cast using a static SystemVerilog cast operation: For example:
col = Colors’' (2 + 3);

However, thisis a compile-time cast, i.e, a coercion that always succeeds at run-time, and does not provide for
error checking or warn if the expression lies outside the enumeration values.

Allowing both types of casts gives full control to the user. If users know that it is safe to assign certain expres-
sions to an enumerated variable, the faster static compile-time cast can be used. If users need to check if the
expression lies within the enumeration values, it is not necessary to write alengthy switch statement manually,
the compiler automatically providesthat functionality viathe $cast function. By alowing both types of casts,
users can control the time/safety trade-offs.

Note: $cast is similar to the dynami ¢_cast function available in C++, but, $cast alows users to check if
the operation will succeed, whereas dynani c_cast alwaysraises a C++ exception.

24 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Section 4
Arrays

4.1 Introduction (informative)

An array isacollection of variables, all of the same type, and accessed using the same name plus one or more
indices.

In C, arrays are indexed from 0 by integers, or converted to pointers. Although the whole array can be initial-
ized, each element must be read or written separately in procedural statements.

In Verilog-2001, arrays are indexed from left-bound to right-bound. If they are vectors, they can be assigned as
asingle unit, but not if they are arrays. Verilog-2001 allows multiple dimensions.

In Verilog-2001, all datatypes can be declared asarrays. Ther eg, wi r e and al other net types can also have a
vector width declared. A dimension declared before the object nameis referred to as the “ vector width” dimen-
sion. The dimensions declared after the object name are referred to as the “array” dimensions.

reg [7:0] rl1 [1:256]; [l [7:0] is the vector width, [1:256] is the array size

SystemVerilog enhances array declarations in several ways. SystemVerilog supports fixed-size arrays,
dynamic arrays, and associative arrays. Fixed-size arrays can be multi-dimensional and have fixed storage
alocated for all the elements of the array. Dynamic arrays also allocate storage for all the elements of the array,
but the array size can be changed dynamically. Dynamic and associative arrays are one-dimensional. Fixed-
size and dynamic arrays are indexed using integer expressions, while associative arrays can be indexed using
arbitrary datatypes. Associative arrays do not have any storage allocated until it is needed, which makes them
ideal for dealing with sparse data.

4.2 Packed and unpacked arrays

SystemVerilog uses the term “packed array” to refer to the dimensions declared before the object name (what
Verilog-2001 refers to as the vector width). The term “unpacked array” is used to refer to the dimensions
declared after the object name.

bit [7:0] c1; /| packed array
real u [7:0]; /'l unpacked array

A packed array is a mechanism for subdividing a vector into subfields which can be conveniently accessed as
array elements. Consequently, a packed array is guaranteed to be represented as a contiguous set of bits. An
unpacked array may or may not be so represented. A packed array differs from an unpacked array in that, when
apacked array appears as aprimary, it istreated as a single vector.

If apacked array is declared as signed, then the array viewed as asingle vector shall be signed. A part-select of
apacked array shall be unsigned.

Packed arrays allow arbitrary length integer types, so a 48 bit integer can be made up of 48 bits. These integers
can then be used for 48 bit arithmetic. The maximum size of a packed array can be limited, but shall be at least
65536 (216) bits.

Packed arrays can only be made of the single bit types (bi t, | ogi c, r eg, wi r e, and the other net types) and
recursively other packed arrays and packed structures.

Integer types with predefined widths cannot have packed array dimensions declared. These types are: byt e,
shortint,int,longint,andinteger.An integer type with a predefined width can be treated as a single
dimension packed array. The packed dimensions of these integer types shall be numbered down to O, such that
the right-most index is 0.

Copyright 2003 Accellera. All rights reserved. 25

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

byte c2; /1 same as bit [7:0] c2
integer il; // same as logic signed [31:0] i1;

Unpacked arrays can be made of any type. SystemVerilog enhances fixed-size unpacked arrays in that in addi-
tion to all other variable types, unpacked arrays can also be made of object handles (see Section 11.4) and
events (see Section 13.5).

SystemVerilog accepts a single number, as an alternative to a range, to specify the size of an unpacked array,

likeC. Thatis, [si ze] becomesthe same asfsize-1:-06}{ 0: si ze- 1] . For example: LRM 4
int Array[8][32]; isthesameas.int Array[7:-0}{31:0}[0:7][0:31];

The following operations can be performed on al arrays, packed or unpacked. The examples provided with
these rules assume that A and B are arrays of the same shape and type.

— Reading and writing the array, eg., A = B

— Reading and writing aslice of thearray, eg., A[i:j] = B[i:]j]

— Reading and writing a variable slice of the array, e.g., Al x+: ¢c] = B[y+: c]

— Reading and writing an element of the array, e.g., Ali] = B[i]

— Equality operations on the array or dlice of the array, e.g. A==B, Ali:j] != B[i:]j]

The following operations can be performed on packed arrays, but not on unpacked arrays. The examples pro-
vided with these rules assume that A isan array.

— Assignment from aninteger, eg., A = 8 b11111111;

— Treatment as an integer in an expression, e.g., (A + 3)

When assigning to an unpacked array, the source and target must be arrays with the same number of unpacked
dimensions, and the length of each dimension must be the same. Assignment to an unpacked array is done by
assigning each element of the source unpacked array to the corresponding element of the target unpacked
array. Note that an element of an unpacked array can be a packed array.

For the purposes of assignment, a packed array is treated as a vector. Any vector expression can be assigned to

any packed array. The packed array bounds of the target packed array do not affect the assignment. A packed
array cannot be assigned to an unpacked array.

4.3 Multiple dimensions

Like Verilog memories, the dimensions following the type set the packed size. The dimensions following the
instance set the unpacked size.

bit [3:0] [7:0] joe [1:10]; // 10 entries of 4 bytes (packed into 32 bits)
can be used asfollows:

joe[9] =joe[8] + 1; /! 4 byte add
joe[7][3:2] = joe[6][1:0]; // 2 byte copy

Note that the dimensions declared following the type and before the name ([3: 0] [7: 0] in the preceding dec-
laration) vary more rapidly than the dimensions following the name ([1: 10] in the preceding declaration).
When used, the first dimensions ([3: 0]) follow the second dimensions ([1: 107).

In alist of dimensions, the right-most one varies most rapidly, as in C. However a packed dimension varies
more rapidly than an unpacked one.

bit [1:10] fool [1:5]; // 1 to 10 varies nost rapidly; conpatible with
Veril og-2001 arrays

26 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

bit foo2 [1:5] [1:10]; // 1 to 10 varies nost rapidly, conpatible with C
bit [1:5] [1:10] foo3; // 1 to 10 varies nost rapidly

bit [1:5] [1:6] food [1:7] [1:8]; /1 1 to 6 varies nost rapidly, followed by
1to5, then 1to 8 and then 1 to 7

Multiple packed dimensions can a so be defined in stages with t ypedef .

typedef bit [1:5] bsix;
bsix [1:10] foo5; // 1 to 5 varies nost rapidly

Multiple unpacked dimensions can also be defined in stages with t ypedef .

typedef bsix memtype [0:3]; // array of four 'bsix’ elenents
mem type bar [0:7]; /1 array of eight 'nemtype’ elements

When the array is used with a smaller number of dimensions, these have to be the slowest varying ones.

bit [9:0] foo6;
foo5 = fool[2]; // a 10 bit quantity.

Asin Verilog-2001, a comma-separated list of array declarations can be made. All arraysin the list shall have
the same data type and the same packed array dimensions.

bit [7:0] [31:0] foo7 [1:5] [1:10], foo8 [0:255]; // two arrays decl ared

If an index expression is of a 4-state type, and the array is of a 4-state type, an X or Z in the index expression
shall cause aread to return X, and a write to issue a run-time warning. If an index expression is of a 4-state
type, but the array is of a 2-state type, an X or Z in the index expression shall generate a run-time warning and
be treated as 0. If an index expression is out of bounds, a run-time warning can be generated.

Out of range index values shall beillegal for both reading from and writing to an array of 2-state variables,

such asi nt . Theresult of an out of range index valueis indeterminate. Implementations shall generate awarn-
ing if an out of range index occurs for aread or write operation.

4.4 Indexing and slicing of arrays

An expression can select part of a packed array, or any integer type, which is assumed to be numbered down to
0.

SystemVerilog uses the term “part select” to refer to a selection of one or more contiguous bits of a single
dimension packed array. Thisis consistent with the usage of the term “part select” in Verilog.

reg [63:0] data;
reg [7:0] byte2;
byte2 = data[23:16]; // an 8-bit part select fromdata

SystemVerilog uses the term “dlice” to refer to a selection of one or more contiguous el ements of an array. Ver-
ilog only permits a single element of an array to be selected, and does not have aterm for this selection.

An single element of a packed or unpacked array can be selected using an indexed name.

bit [3:0] [7:0] j; [// j is a packed array
byte k;
k =j[2]; /] select a single 8-bit elenent fromj

One or more contiguous elements can be selected using a slice name. A dice name of a packed array is a
packed array. A slice name of an unpacked array is an unpacked array.

Copyright 2003 Accellera. All rights reserved. 27

Accellera

SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001
bit busA [7:0] [31:0] ; /1 unpacked array of 8 32-bit vectors
int busB [1:0]; /1 unpacked array of 2 integers
busB = busA[7: 6] ; /1 select a slice frombusA

The size of the part select or slice must be constant, but the position can be variable. The syntax of Verilog-
2001 is used.

int i = bitvec[] + Kk]; /1 k must be constant.
int a[x:y], b[y:z], e;
a = {b[c -: d], e}; /1 d must be constant

Slices of an array can only apply to one dimension, but other dimensions can have single index valuesin an
expression.

4.5 Array querying functions

SystemVerilog provides new system functions to return information about an array. These are: $l eft,
$right, $l ow, $hi gh, $increnent, $l ength, and $di mensi ons. These functions are described in
Section 22.4.

4.6 Dynamic arrays

Dynamic arrays are one-dimensional arrays whose size can be set or changed at runtime. The space for a
dynamic array doesn’t exist until the array is explicitly created at runtime.

The syntax to declare adynamic array is:
data_type array_nane [];

where dat a_t ype isthe data type of the array elements. Dynamic arrays support the same types as fixed-size
arrays.

For example:
bit [3:0] nibble[]; /1l Dynamic array of 4-bit vectors
integer meni]; /1 Dynamic array of integers

Thenew|] operator isused to set or change the size of the array.

Thesi ze() built-in method returns the current size of the array.

Thedel et e() built-in method clears all the elements yielding an empty array (zero size).
4.6.1 new[]

The built-in function new allocates the storage and initializes the newly allocated array elements either to their
default initial value or to the values provided by the optional argument.

The prototype of the newfunction is:
array_identifier = newsize] [(src_array)];

si ze:

The number of elementsin the array. Must be a non-negative integral expression.

src_array:

28 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Optional. The name of an array with which to initialize the new array. If src_array is not specified, the
elements of array_nane are initialized to their default value. src_array must be a dynamic array of
the same data type as ar r ay_namne, but it need not have the same size. If thesize of src_array isless
than si ze, the extra elements of array_nane shal be initialized to their default value. If the size of
src_array isgreater thansi ze, the additional elements of src_ar r ay shall beignored.

This argument is useful when growing or shrinking an existing array. In this situation, src_array is

array_nane, so the previous values of the array elements are preserved. For example:

integer addr[]; /| Declare the dynam c array.
addr = new[100]; // Create a 100-el enent array.

/1 Double the array size, preserving previous val ues.
addr = new{ 200] (addr);

The new operator follows the SystemVerilog precedence rules. Since both the square brackets [] and the
parenthesis () have the same precedence, the arguments to this operator are evaluated left to right: si ze firdt,

and src_array second.
4.6.2 size()
The prototype for thesi ze() methodis:
function int size();
Thesi ze() method returns the current size of adynamic array, or zero if the array has not been created.

int j = addr.size;
addr = new addr.size() * 4] (addr); // quadruple addr array

Note: Thesi ze method isequivalent to $l engt h(addr, 1).
4.6.3 delete()
The prototype for the del et e() method is:

function void delete();

Thedel et e() method empties the array, resulting in a zero-sized array.

int ab [] = neW{ NJ; /] create a tenporary array of size N
/1 use ab

ab. del et e; /1 delete the array contents

$di splay("9%@", ab.size); Il prints O

4.7 Array assighment

Assigning to a fixed-size unpacked array requires that the source and the target both be arrays with the same
number of unpacked dimensions, and the length of each dimension be the same. Assignment is done by assign-
ing each element of the source array to the corresponding element of the target array, which requires that the
source and target arrays be of compatible types. Compatible types are types that are assignment compati-

ble.Assigning fixed-size unpacked arrays of unequal size to one another shall result in atype check error.

int A10:1]; /1 fixed-size array of 10 el enents
int B[0:9]; /1 fixed-size array of 10 el enents
int d24:1]; /1 fixed-size array of 24 elenents
A = B; /1 ok. Compatible type and sane size

Copyright 2003 Accellera. All rights reserved.

29

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

A =C /1 type check error: different sizes

An array of wires can be assigned to an array of variables having the same number of unpacked dimensions
and the same length for each of those dimensions, and vice-versa.

wire [31:0] W[9:0];
assign W= A
initial #10 B = W

A dynamic array can be assigned to a one-dimensional fixed-size array of a compatible type, if the size of the
dynamic array is the same as the length of the fixed-size array dimension. Unlike assigning with a fixed-size
array, this operation requires a run-time check that can result in an error.

int A100:1]; /1 fixed-size array of 100 el enents
int B[] = new 100]; /'l dynamic array of 100 el enents

int] = new 8]; /1 dynamic array of 8 elenents

A = B; /1l OK Conpatible type and sanme size
A =C Il type check error: different sizes

A dynamic array or a one-dimensional fixed-size array can be assigned to a dynamic array of a compatible
type. In this case, the assignment creates a new dynamic array with a size equal to the length of the fixed-size
array. For example:

int A 100:1]; /1 fixed-size array of 100 el enents
int B[]; /1l enpty dynamic array

int] = new 8]; /1 dynamic array of size 8

B = A // ok. B has 100 el enents

B = C /1 ok. B has 8 elenents

The last statement above is equivalent to:
B=new Csize] (O;

Similarly, the source of an assignment can be a complex expression involving array slices or concatenations.
For example:

string d[1:5] ={ "a", "b", "c", "d", "e" },
string p[];
p={d13], "hello", d[4:5] },

The preceding exampl e creates the dynamic array p with contents: “a”, “b”, “c”, “hel | 0”, “d", “e”.

4.8 Arrays as arguments

Arrays can be passed as arguments to tasks or functions. The rulesthat govern array argument passing by value
are the same as for array assignment (see Section 10.5) are the same as for array assignment. When an array
argument is passed by value, a copy of the array is passed to the called task or function. This is true for all
array types:. fixed-size, dynamic, or associative.

Passing fixed-size arrays as arguments to subroutines requires that the actual argument and the formal argu-

ment in the function declaration be of the compatible types and that all sized dimensions be of the same size.
Note that unsized dimensions may occur in dynamic arrays and in formal arguments of import DPI functions.

If one of dimensions of a formal is unsized, then any size of the corresponding dimension of an actual is

accepted.

For example, the declaration:

30 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

task fun(int a[3:1][3:1]);
declarestask f un that takes one argument, atwo dimensional array with each dimension of size three. A call to
f un must pass a two dimensional array and with the same dimension size 3 for all the dimensions. For exam-
ple, given the above description for f un, consider the following actuals:

int b[3:1][3:1]; //OK sane type, dinension, and size

int b[1:3][0:2]; //OK sane type, dinension, & size (different ranges)

reg b[3:1][3:1]; //error: incompatible type

int b[3:1]; /lerror: inconpatible nunber of dinensions

int b[3:1][4:1]; //lerror: inconpatible size (3 vs. 4)

A subroutine that accepts a one-dimensional fixed-size array can also be passed a dynamic array of a compati-
ble type of the same size.

For example, the declaration:
task bar(string arr[4:1]);

declares atask that accepts one argument, an array of 4 strings. This task can accept the following actual argu-
ments:

string b[4:1]; /1 OK: sane type and size
string b[5:2]; /1 OK: same type and size (different range)
string b[] = new4]; //OK sane type and size, requires run-tine check

A subroutine that accepts a dynamic array can be passed a dynamic array of a compatible type or a one-dimen-
sional fixed-size array of a compatible type

For example, the declaration:
task foo(string arr[]);

declares a task that accepts one argument, a dynamic array of 4 strings. This task can accept any one-dimen-
sional array of strings or any dynamic array of strings.

An import DPI function that accepts a one-dimensional array can be passed a dynamic array of a compatible
type and of any sizeif formal isunsized, and of the same sizeif formal is sized.

4.9 Associative arrays

Dynamic arrays are useful for dealing with contiguous collections of variables whose number changes dynam-
ically. When the size of the collection is unknown or the data space is sparse, an associative array is a better
option. Associative arrays do not have any storage alocated until it is used, and the index expression is not
restricted to integral expressions, but can be of any type.

An associative array implements alookup table of the elements of its declared type. The datatypeto be used as
an index serves as the lookup key, and imposes an ordering.

The syntax to declare an associative array is.
data_type array_id [index_type];

where:

Copyright 2003 Accellera. All rights reserved. 31

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001
— data_type isthe data type of the array elements. Can be any type allowed for fixed-size arrays.
— array_id isthe name of the array being declared.

— index_type is the data-type to be used as an index, or *. If * is specified, then the array is indexed by any
integral expression of arbitrary size. Anindex type restricts the indexing expressions to a particular type.

Examples of associative array declarations are:

integer i_array[*]; /1 associative array of integer (unspecified
/1 1ndex)

bit [20:0] array_b[string]; /| associative array of 21-bit vector, indexed
/1 by string

event ev_array[nyd ass]; /| associative array of event indexed by class
/1 myd ass

Array elements in associative arrays are allocated dynamically; an entry is created the first time it is written.
The associative array maintains the entries that have been assigned values and their relative order according to
the index datatype.

4.9.1 Wildcard index type
Example: int array_nane [*];

Associative arrays that specify awildcard index type have the following properties:

— The array can be indexed by any integral data type. Since the indices can be of different sizes, the same
numerical value can have multiple representations, each of a different size. SystemVerilog resolves this
ambiguity by detecting the number of leading zeros and computing a unique length and representation for
every value.

— Non-integral index types areillegal and result in atype check error.

— A 4-state Index containing X or Z isinvalid.

— Indices are unsigned.

— Indexing expressions are self-determined; signed indices are not sign extended.
— A string literal index is auto-cast to a bit-vector of equivalent size.

— Theordering is numerical (smallest to largest).
4.9.2 String index
Example: int array_name [string];

Associative arrays that specify a string index have the following properties:

— Indices can be strings or string literals of any length. Other types areillegal and shall result in atype check
error.

— Anempty string“” index isvalid.

— Theordering is lexicographical (lesser to greater).
4.9.3 Class index
Example: int array_nanme [sone_Cl ass];

Associative arrays that specify aclass index have the following properties:

32 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

— Indices can be objects of that particular type or derived from that type. Any other typeisillegal and shall
result in atype check error.
— Anull index isinvalid.

— Theordering is deterministic but arbitrary.

4.9.4 Integer (or int) index
Example: int array_nane [integer];
Associative arrays that specify an integer index have the following properties:
— Indices can be any integral expression.
— Indices are signed.
— A 4-state index containing X or Z isinvalid.
— Indices smaller than integer are sign extended to 32 bits.
— Indices larger than integer are truncated to 32 bits.

— Theordering is signed numerical.

4.9.5 Signed packed array

Example:t ypedef bit signed [4:1] Ni bble;

int array_name [N bble];

Associative arrays that specify a signed packed array index have the following properties:
— Indices can be any integral expression.
— Indices are signed.
— Indices smaller than the size of the index type are sign extended.
— Indices larger than the size of the index type are truncated to the size of the index type.

— Theordering is signed numerical.

4.9.6 Unsigned packed array or packed struct

Example:t ypedef bit [4:1] Ni bble;

int array_name [N bble];

Associative arrays that specify an unsigned packed array index have the following properties:
— Indices can be any integral expression.
— Indices are unsigned.
— A 4-state Index containing X or Z isinvalid.
— Indices smaller than the size of the index type are zero filled.
— Indices larger than the size of the index type are truncated to the size of the index type.

— Theordering is numerical.
If an invalid index (i.e., 4-state expression has X's) is used during a read operation or an attempt is made to

read a non-existent entry then awarning isissued and the default initial value for the array typeis returned, as
shown in the table below:

Copyright 2003 Accellera. All rights reserved. 33

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Table 4-1: Value read from a nonexistent associative array entry

Typeof Array Value Read
4-state integral type 'X
2-state integral type '0
enumeration first element in the enumeration
string
class null
event null

If aninvalid index is used during a write operation, the writeisignored and awarning is issued.

4.10 Associative array methods

In addition to the indexing operators, several built-in methods are provided that allow users to analyze and
manipulate associative arrays, as well asiterate over itsindices or keys.

4.10.1 num()
The syntax for the nun() method is:
function int num();

Thenunm() method returns the number of entriesin the associative array. If the array is empty, it returns 0.

int inmenf*];

imenf 2°b3] = 1;

imen] 16" hffff] = 2;

imen| 4b’ 1000] = 3;

$di splay("9%d entries\n", inemnum); // prints "3 entries"

4.10.2 delete()
The syntax for thedel et e() method is:
function void delete([input index]);
Where index is an optional index of the appropriate type for the array in question.

If theindex is specified, then the del et e() method removes the entry at the specified index. If the entry to be
deleted does not exist, the method issues no warning.

If the index is not specified, then the del et e() method removes all the elementsin the array.

int map[string];

map["hello"] = 1,

map[“"sad"] = 2;

map["world"] = 3;

map. del ete("sad"); /1 renpbve entry whose index is "sad" from "map"

map. del et e; /'l remove all entries fromthe associative array "map"

34 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

4.10.3 exists()
The syntax for theexi st s() methodis:
function int exists(input index);
Where index is an index of the appropriate type for the array in question.

Theexi st s() function checksif an element exists at the specified index within the given array. It returns 1 if
the element exists, otherwise it returns 0.

if (map.exists("hello"))
map["hello"] += 1;
el se
map["hello"] = 0;
4.10.4 first()
The syntax for thefi rst () method is:
function int first(ref index);

Where index is an index of the appropriate type for the array in question.

Thefirst () method assigns to the given index variable the value of the first (smallest) index in the associa-
tive array. It returns O if the array is empty, and 1 otherwise.

string s;
if (mp.first(s))
$display("First entry is : map[%] = %Od\n", s, map[s]);
4.10.5 last()
The syntax for thel ast () method is:
function int last(ref index);

Where index is an index of the appropriate type for the array in question.

Thel ast () method assigns to the given index variable the value of the last (largest) index in the associative
array. It returns O if the array is empty, and 1 otherwise.

string s;
if (map.last(s))
$di splay("Last entry is : map[%] = ¥®d\n", s, nmap[s]);

4.10.6 next()
The syntax for the next () methodis:

function int next(ref index);
Where index is an index of the appropriate type for the array in question.
The next () method finds the entry whose index is greater than the given index. If there is a next entry, the
index variable is assigned the index of the next entry, and the function returns 1. Otherwise, index is

unchanged, and the function returns 0.

string s;

Copyright 2003 Accellera. All rights reserved. 35

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

if (mp.first(s))
do
$display("% : %\n", s, map[s]);
while (map.next(s));

4.10.7 prev()
The syntax for the pr ev() method is:
function int prev(ref index);
Where index is an index of the appropriate type for the array in question.

Theprev() function finds the entry whose index is smaller than the given index. If there is a previous entry,
the index variable is assigned the index of the previous entry, and the function returns 1. Otherwise, the index
is unchanged, and the function returns 0.

string s;
if (mp.last(s))
do
$display("% : %\n", s, map[s]);
while (map.prev(s));

If the argument passed to any of the four associative array traversal methodsfirst, | ast, next,and prev is
smaller than the size of the corresponding index, then the function returns—1 and shall copy only as much data
as can fit into the argument. For example:

string aa[*];
byt e i X;
int st at us;
aa[1000] = "a";
status = aa.first(ix);
/] status is -1
[l ix is 232 (least significant 8 bits of 1000)

4.11 Associative array assignment

Associative arrays can be assigned only to another associative array of a compatible type and with the same
index type. Other types of arrays cannot be assigned to an associative array, nor can associative arrays be
assigned to other types of arrays, whether fixed-size or dynamic.

Assigning an associative array to another associative array causes the target array to be cleared of any existing
entries, and then each entry in the source array is copied into the target array.

4.12 Associative array arguments

Associative arrays can be passed as arguments only to associative arrays of a compatible type and with the
same index type. Other types of arrays, whether fixed-size or dynamic, cannot be passed to subroutines that
accept an associative array as an argument. Likewise, associative arrays cannot be passed to subroutines that
accept other types of arrays.

Passing an associative array by value causes alocal copy of the associétive array to be created.

4.13 Associative array literals

Associative array literalsusethe { i ndex: val ue} syntax with an optional default index. Like all other arrays,

36 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

an associative array can be written one entry at a time, or the whole array contents can be replaced using an
array literal.

constant_primary ::= // from Annex A.8.1

concatenation ::=

| { array_member_label : expression { , array_member_label : expression} }
array_member_label ::=
default
| type identifier
| constant_expression

Syntax 4-7—Associative array literal syntax (excerpt from Annex A)

For example:

/1 an associative array of strings indexed by 2-state integers,
/1 default is "foo".
string words [int] = {default: "foo"};

/1 an associative array of 4-state integers indexed by strings, default is —1.
integer table [string] = {"Peter":20, "Paul":22, "Mary":23, default:-1 };

If adefault value is specified, then reading a non-existent element shall yield the specified default value. Oth-
erwise, the default initial valueis as described in Table 4-1 shall be returned.

Copyright 2003 Accellera. All rights reserved. 37

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Section 5
Data Declarations

5.1 Introduction (informative)

There are several forms of data in SystemVerilog: literals (see Section 2), parameters (see Section 20), con-
stants, variables, nets, and attributes (see Section 6)

Verilog 2001 constants are literals, genvars, parameters, localparams and specparams. Verilog 2001 also has
variables and nets. Variables must be written by procedural statements, and nets must be written by continuous
assignments or ports.

SystemVerilog extends the functionality of variables by allowing them to either be written by procedural state-
ments or driven by a single continuous assignment, similar to a wi r e. Since the keyword r eg no longer
describes the users intent in many cases, the keyword | ogi ¢ is added as a more accurate description that is
equivalent to r eg. Verilog-2001 has already deprecated the use of the term register in favor of variable.

SystemVerilog follows Verilog by requiring data to be declared before it is used, apart from implicit nets. The
rules for implicit nets are the same as in Verilog-2001.

A variable can be static (storage allocated on instantiation and never de-allocated) or automatic (stack storage
allocated on entry to atask, function or named block and de-allocated on exit). C has the keywords st ati ¢
and aut 0. SystemVerilog follows Verilog in respect of the static default storage class, with automatic tasks and
functions, but allows st at i ¢ to override a default of aut omat i ¢ for a particular variable in such tasks and
functions.

EDITOR’'SNOTE: Should thelist of automatic variable itemsin thefirst sentence include variables declared
within afor-loop initialization?

5.2 Data declaration syntax

data_declaration ::= // from Annex A.2.1.3
[lifetime] variable_declaration
| constant_declaration
| type_declaration
variable declaration ::=
[Hifetime] data type lst-of variable-identifiers-or—assignments
list of variable decl assignments;
lifetime ::= static | automatic

Syntax 5-1—Data declaration syntax (excerpt from Annex A)

38 Copyright 2003 Accellera. All rights reserved.

LRM 22
LRM 35

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

5.3 Constants

Constants are named data items which never change. There are three kinds of constants, declared with the key-
words| ocal par am specpar amand const , respectively. All three can beinitialized with aliteral.

| ocal param byte colonl = ":" ;
specparamint delay = 10 ; // specparans are used for specify bl ocks
const logic flag = 1 ;

A parameter or local parameter can only be set to an expression of literals, parameters or local parameters,
genvars, or a constant function of these. Hierarchical names are not allowed.

A specparam can also be set to an expression containing one or more specparams.
A constant declared with the const keyword, can only be set to an expression of literals, parameters, local
parameters, genvars, a constant function of these, or other constants. The parameters, local parameters or con-
stant functions can have hierarchical names. This is because the static constants are calculated after elabora-
tion.

const logic option = a.b.c ;
A constant expression contains literals and other named constants.
An instance of aclass (an object handle) can aso be declared with the const keyword.

const class_nanme object = new(5, 3);

This means that the object acts like a variable that cannot be written. The arguments to the new method must
be constant expressions.

SystemVerilog enhancements to par anet er constant declarations are presented in Section 20. SystemVerilog
does not change | ocal par amand specpar amconstants declarations. A const form of constant differs from
al ocal paramconstant in that the | ocal par ammust be set during elaboration, whereas a const can be set
during simulation, such as in an automatic task.

5.4 Variables

A variable declaration consists of a datatype followed by one or more instances.

shortint sl1, s2[0:9];

A variable can be declared with an initializer, which-must-be-a-constant-expression for example: LRM 28
int i =0;

In Verilog-2001, an initialization value specified as part of the declaration is executed as if the assignment
were made from aninitial block, after simulation has started. Therefore, the initialization can cause an event on
that variable at simulation time zero.

In SystemVerilog, setting the initial value of a static variable as part of the variable declaration (including static
class members) shall occur before any i nitial or al ways blocks are started, and so does not generate an
event. If an event isneeded, ani ni ti al block should be used to assign the initial values.

Initial valuesin SystemVerilog are not constrained to simple constants; they can include run-time expressions,
including dynamic memory alocation. For example, a static class handle or a mailbox can be created and ini-
tialized by calling its new method (see Annex 11.4), or static variables can be initialized to random values by
calling the $ur andomsystem task. This requires a special pre-initial pass at run-time.

Copyright 2003 Accellera. All rights reserved. 39

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

The following table contains the default values for SystemVerilog variables.

Table 5-1: Default values

Type Default Initial value
4 dtate integral ‘X
2 state integral ‘0
real, shortrea 0.0
Enumeration First value in the enumeration
string "" (empty string)
event New event
cl ass nul |
chandl e (Opaque handle) nul |

5.5 Scope and lifetime

Any data declared outside amodule, interface, task, or function, is global in scope (can be used anywhere after
its declaration) and has a static lifetime (exists for the whole elaboration and simulation time).

SystemVerilog data declared inside a module or interface but outside a task, process or function is local in
scope and static in lifetime (exists for the lifetime of the module or interface). Thisis roughly equivalent to C
static data declared outside a function, which islocal to afile.

Data declared in an automatic task, function or block has the lifetime of the call or activation and alocal scope.
Thisis roughly equivalent to a C automatic variable.

Note that in SystemVerilog, data can be declared in unnamed blocks as well as in named blocks. This datais
visible to the unnamed block and any nested blocks below it. Hierarchical references cannot be used to access
this data by name.

Verilog-2001 allows tasks and functions to be declared as aut omat i ¢, making al storage within the task or
function automatic. SystemVerilog allows specific datawithin astatic task or function to be explicitly declared
asaut omat i c. Data declared as automatic has the lifetime of the call or block, and isinitialized on each entry
to the call or block.

SystemVerilog also allows data to be explicitly declared as st at i c. Data declared to be st at i ¢ in an auto-
matic task, function or in a process has a static lifetime and a scope local to the block. Thisislike C static data
declared within afunction.

modul e nsl ;
int stO; // static
initial begin
int stl;, //static
static int st2; //static
automatic int autol; //automatic
end
task automatic t1();
int auto2; //automatic

40 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

static int st3; //static
automatic int auto3; //automatic
endt ask
endnodul e

Note that automatic or dynamic variables cannot be used-te-triggeran-event-expression-er-be written with a

nonblocking or continuous assignments. Automatic variables and dynamic constructs—objects handles,
dynamic arrays, associative arrays, strings, and event variables—are limited to the procedural context.

See a so Section 10 on tasks and functions.

5.6 Nets, regs, and logic

Verilog-2001 states that a net can be written by one or more continuous assignments, primitive outputs or
through module ports. The resultant value of multiple driversis determined by the resolution function of the
net type. A net cannot be procedurally assigned. If a net on one side of a port is driven by a variable on the
other side, a continuous assignment is implied. A force statement can override the value of a net. When
released, it returns to resolved value.

Verilog-2001 also states that one or more procedural statements can write to variables, including procedural
continuous assignments. The last write determines the value. A variable cannot be continuously assigned. The
force statement overrides the procedural assign statement, which in turn overrides the normal assignments. A
variable cannot be written through a port; it must go through an implicit continuous assignment to a net.

In SystemVerilog, all variables can now be written either by one continuous assignment, or by one or more
procedural statements, including procedural continuous assignments. It shall be an error to have multiple con-
tinuous assignments or a mixture of procedural and continuous assignments writing to the-same-variable an
term in the expansion of awritten longest static prefix of alogic variable (See Section 9.2.1 for the definition
of the expansion of alongest static prefix) . All datatypes can write through a port.

SystemVerilog variables can be packed or unpacked aggregates of other types. Multiple assignments made to
independent elements of a variable are examined individually. An assignment where the |eft-hand-side con-
tainsadliceistreated as asingle assignment to the entire slice. It shall be an error to have a packed structure or
array type written with a mixture of procedural and continuous assignments. Thus, an unpacked structure or
array can have one element assigned procedurally, and another element assigned continuously. And, each ele-
ment of a packed structure or array can each have a single continuous assignment. For example, assume the
following structure declaration:

struct {
bit [7:0] A
bit [7:0] B;
byte C

} abc;

The following statements are legal assignmentsto struct abc:
assign abc.C = sel ? 8 hBE : 8’ hEF;
not (abc. Al 0], abc. B[0]),
(abc. Al 1], abc. B[1]),
(abc. Al 2], abc. B[2]),
(abc. Al 3], abc. B[3]);
al ways @ posedge cl k) abc.B <= abc.B + 1;
The following additional statements areillegal assignmentsto struct abc:

/1 Miltiple continuous assignments to abc.C

Copyright 2003 Accellera. All rights reserved. 41

) (e |

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

assign abc.C = sel ? 8 hDE : 8 hED;

/1 M xing continuous and procedural assignments to abc. A
al ways @ posedge cl k) abc. A{ 7: 4] <= !abc. B[7:4];

For the purposes of the preceding rule, a declared variable initialization or aprocedural continuous assignment
is considered a procedural assignment. A f or ce statement is neither a continuous or procedural assignment. A
rel ease statement shall not change the variable until there is another procedural assignment, or shall sched-
ule are-evaluation of the continuous assignment driving it. A singlef or ce or r el ease statement shall not be
applied to a whole or part of a variable that is being assigned by a mixture of continuous and procedural
assignments.

A continuous assignment is implied when a variable is connected to an input port declaration. This makes
assignmentsto a variable declared as an input port illegal. A continuous assignment isimplied when avariable
is connected to the output port of an instance. This makes procedural or continuous assignments to a variable
connected to the output port of an instanceillegal.

SystemVerilog variables cannot be connected to either side of aninout port. SystemVerilog introduces the con-
cept of shared variables across ports with the ref port type. See Section 18.9 (port connections) for more infor-
mation about ports and port connection rules.

The compiler can issue awarning if a continuous assignment could drive strengths other then St 0, St 1, St X,
or Hi Z to avariable. In any case, SystemVerilog applies automatic type conversion to the assignment, and the
strength islost.

Note that a SystemVerilog variable cannot have an implicit continuous assignment as part of its declaration,
the way a net can. An assignment as part of the logic declaration is a variable initialization, not a continuous
assignment. For example:

wire w = vara & varb; /1 continuous assi gnnment

logic v = consta & constb; /1 initial procedural assignment

logic vw, // no initial assignnment

assign vw = vara & varb; /1 continuous assignnment to a logic
real circ;
assign circ = 2.0 * Pl * R; /1 continuous assignment to a real

5.7 Signal aliasing

The Verilog assi gn statement is aunidirectional assignment and can incorporate a delay and strength change.
To model a bidirectional short-circuit connection it is necessary to use the al i as statement. The members of
an dias list are signal's whose bits share the same physical nets. The example below implements a byte order
swapping between bus A and bus B.

modul e byte_swap (inout wire [31:0] A inout wire [31:0] B);
alias {A[7:0], Al 15: 8], Al 23: 16], A[31: 24]} = B;

endnodul e

This example strips out the least and most significant bytes from afour byte bus:

modul e byte_rip (inout wire [31:0] W inout wire [7:0] LSB, MSB);
alias W7:0] = LSB;
alias W31:24] = MSB;

endnodul e

The bit overlay rules are the same as those for a packed union with the same member types: each member shall

42 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

be the same size, and connectivity is independent of the simulation host. The nets connected with an aias
statement must be type compatible, that is, they have to be of the same net type. For example, it isillegal to
connect awand net to awor net with an al i as statement. Thisis a stricter rule than applied to nets joining at
ports because the scope of an alias is limited and such connections are more likely to be a design error. Vari-
ables and hierarchical references cannot be used in al i as statements. Any violation of these rules shall be
considered afatal error.

The same nets can appear in multiple alias statements. The effects are cumulative. The following two exam-
ples are equivalent. In either case, | owl2[11: 4] and hi gh12[7: 0] share the same wires.

nmodul e overl ap(inout wire [15:0] busl1l6, inout wire [11:0] |owl2, highl2);
al i as bus16[11: 0] | owl2;
al i as bus16[15: 4] hi gh12

endnodul e

nodul e overl ap(inout wire [15:0] busl1l6, inout wire [11:0] |owl2, highl2);
alias busl16 = {highl2, |owl2[3:0]};
alias highl2[7:0] = |lowl2[11:4];

endnodul e

To avoid errors in specification, it is not allowed to specify an alias from an individual signal to itself, or to
specify a given alias more than once. The following version of the code above would be illegal since the top
four and bottom four bits are the same in both statements:

alias bus16
alias bus16

{high12[11:8], |owl2};
{highl2, lowl2[3:0]};

This alternative is also illegal because the bits of bus 16 are being aliased to itself:

alias busl6 = {highl2, bus16[3:0]} = {bus16[15:12], |owl2};
Alias statements can appear anywhere modul e instance statements can appear. If an identifier that has not been
declared as a data type appearsin an alias statement, then an implicit net is assumed, following the same rules
as implicit nets for a module instance. The following example uses al i as along with the automatic name
binding to connect pins on cells from different libraries to create a standard macro:

nmodul e |ibl dff (Reset, Ak, Data, Q QBar);

endnodul e

nmodul e |ib2_dff(reset, clock, data, a, qgbar);

endnodul e

modul e 1ib3_dff (RST, CLK, D, Q Q);

endnodul e

macronodul e nmy_dff(rst, clk, d, q, q_bar); // wapper cell

i nput rst, clk, d;

out put g, g_bar;
alias rst = Reset = reset = RST;

alias clk = dk = clock = CLK;

alias d = data = D

alias g = Q

alias Q = g_bar = QBar = gbar;

“LIB_DFF nmy_dff (.*); // LIB_DFF is any of libl dff, lib2_dff or |ib3_dff
endnodul e

Copyright 2003 Accellera. All rights reserved. 43

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Using a net in an alias statement does not modify its syntactic behavior in other statements. Aliasing is per-
formed at elaboration time and cannot be undone.

44 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Section 6
Attributes

6.1 Introduction (informative)

With Verilog-2001, users can add named attributes (properties) to Verilog objects, such as modules, instances,
wires, etc. Attributes can aso be specified on the extended SystemVerilog constructs and are included as part
of the BNF (see Annex A). SystemVerilog also defines a default data type for attributes.

6.2 Default attribute type

The default type of an attribute with no value is bi t , with avalue of 1. Otherwise, the attribute takes the type
of the expression.

Copyright 2003 Accellera. All rights reserved. 45

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Section 7
Operators and Expressions

7.1 Introduction (informative)

The SystemVerilog operators are a combination of Verilog and C operators. In both languages, the type and
size of the operandsis fixed, and hence the operator is of afixed type and size. The fixed type and size of oper-
atorsis preserved in SystemVerilog. This alows efficient code generation.

Verilog does not have assignment operators or increment and decrement operators. SystemVerilog includes the
C assignment operators, such as +=, and the C increment and decrement operators, ++ and - - .

Verilog-2001 added signed nets and reg variables, and signed based literals. There is a difference in the rules
for combining signed and unsigned integers between Verilog and C. SystemVerilog uses the Verilog-2001
rules.

7.2 Operator syntax

assignment_operator ::= // from Annex A.6.2
=|+=|-=|* == %= | &= | |= | = | <<= | >>= | <<= | >>>=
conditional_expression ::= // from Annex A.8.3
expressionl ? { attribute instance} expression2 : expression3
unary_operator ::= // from Annex A.8.6
o el L Bl K3 e e R Bl
binary_operator ::=
H-17 1% |==|1= | === |1== | =2= | 17= | && | ||| **
| <I<=|>|>=|& ||| |~]| |>>|<<|>>>]<<<
inc_or_dec_operator ::= ++ | --
unary_module path_operator ::=
ol K 2 e B R el Ry
binary_module path_operator ::=
=== && & N A~

Syntax 7-1—Operator syntax (excerpt from Annex A)

7.3 Assignment operators

In addition to the simple assignment operator, =, SystemVerilog includes the C assignment operators and spe-
cial bitwise assignment operators: +=, - =, *=,/ =, %, &=, | =, *=, <<=, >>=, <<<=, and >>>=, An assignment
operator is semantically equivalent to a blocking assignment, with the exception that any left hand side index
expression is only evaluated once. For example:

a[i]+=2; /| same as a[i] = a[i] +2;
In SystemVerilog, an expression can include a blocking assignment, provided it does not have atiming control.
Note that such an assignment must be enclosed in parentheses to avoid common mistakes such as using a=b
for a==b, or a| =b for a! =b.

if ((a=b)) b = (a+=1);

46 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

a=(b=(c=5));

The semantics of such an assignment expression are those of a function which evaluates the right hand side,
casts the right hand side to the left hand data type, stacks it, updates the left hand side and returns the stacked
value. The type returned is the type of the left hand side data type. If the left hand side is a concatenation, the
type returned shall be an unsigned integral value whose bit length is the sum of the length of its operands.

It shall beillegal to include an assignment operator in an event expression, in an expression within a proce-
dural continuous assignment, or in an expression that is not within a procedural statement.

SystemVerilog includes the C increment and decrement assignment operators ++i , --i, i ++ andi - -. These
do not need parentheses when used in expressions. These increment and decrement assignment operators
behave as blocking assignments.

The ordering of assignment operations relative to any other operation within an expression is undefined. An
implementation can warn whenever a variable is both written and read-or-written within an integral expression
or in other contexts where an implementation cannot guarantee order of evaluation. In the following example:

[
j

10;
i++ + (i =i - 1);

After execution, the value of j can be 18, 19, or 20 depending upon the relative ordering of the increment and
the assignment statements.

7.4 Operations on logic and bit types

When a binary operator has one operand of type bi t and another of typel ogi c, theresult is of typel ogi c. If
one operand is of typei nt and the other of typei nt eger, theresult is of typei nt eger.

The operators ! = and == return an X if either operand contains an X or a Z, asin Verilog-2001. Thisis con-
verted to a0 if theresult is converted to type bi t , e.g.inani f statement.

The unary reduction operators (& ~& | ~| ~ ~*) can be applied to any integer expression (including packed
arrays). The operators shall return a single value of type ogi c if the packed type isfour valued, and of type
bi t if the packed typeistwo valued.

int i;

bit b = &;

integer j;

logic c = & ;

7.5 Wild equality and wild inequality

SystemVerilog 3.1 introduces the wild-card comparison operators, as described below.

Table 7-1: Wild equality and wild inequality operators

Operator Usage Description
== a=?=b aequalsb, X and Z values act aswild cards
17= al?>=b anot equal b, X and Z values act aswild cards

Thewild equality operator (=?=) and inequality operator (! ?=) treat X and Z valuesin agiven bit position asa
wildcard. A wildcard bit matches any bit value (0, 1,Z, or X) in the value of the expression being compared

Copyright 2003 Accellera. All rights reserved. 47

Accellera

SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

against it.
These operators compare operands bit for bit, and return a 1-bit self-determined result. If the operands to the
wild-card equality/inequality are of unequal bit length, the operands are extended in the same manner asfor the

case equality/ineguality operators. If the relation istrue, the operator yieldsa 1. If the relation isfalse, it yields
ao.

Thethree types of equality (and inequality) operators in SystemVerilog behave differently when their operands
contain unknown values (X or Z). The==and! = operatorsresult in X if any of their operands containsan X or
Z. The === and ! == check the 4-state explicitly, therefore, X and Z values shall either match or mismatch,

never resulting in X. The=?=and ! ?= operatorstreat X or Z aswild cards that match any value, thus, they too
never result in X.

7.6 Real operators

Operands of typeshort r eal have the same operation restrictions as Verilog r eal operands. The unary oper-
ators ++ and -- can have operands of typer eal and shortreal (theincrement or decrement isby 1.0). The
assignment operators +=, - =, * =, / = can also have operands of typer eal andshortreal .

If any operand isr eal , the result isr eal , except before the ? in the ternary operator. If no operand isr eal
and any operand isshortreal , theresultisshortreal .

Real operands can also be used in the following expressions:

str.realval // structure or union nenber
realarray[intval] // array el ement

7.7 Size

The number of bits of an expression is determined by the operands and the context, following the samerules as
Verilog. In SystemVerilog, casting can be used to set the size context of an intermediate value.

With Verilog, tools can issue a warning when the left and right hand sides of an assignment are different sizes.
Using the SystemVerilog size casting, these warnings can be prevented.

7.8 Sign

Thefollowing unary operators give the signedness of the operand: ~ ++ -- + -. All other operators shall fol-
low the same rules as Verilog for performing signed and unsigned operations.

7.9 Operator precedence and associativity

Operator precedence and associativity islisted in Table 7-2, below. The highest precedenceis listed first.

Table 7-2: Operator precedence and associativity

0 [l left
+ - !~ & ~& | ~ N~ ~N ~~ ++ -- (unary) right
** left
*] % left
+ - (binary) left

48

Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Table 7-2: Operator precedence and associativity (continued)

<< S>> << >>> |eft
< <= > >= inside dist left
== = === l== =?= 19= left
& (binary) |eft
AN ~N A~ (binary) left
| (binary) left
&& left
[left
?: (conditional operator) right
= right
= 4= -= *= [= O &= A~= <<= >>= <<<= >>>= /<= | none
{+ {{} concatenation

7.10 Built-in methods

SystemVerilog introduces classes and the method calling syntax, in which atask or function is called using the
dot notation (.):

obj ect.task_or_function()

The object uniquely identifies the data on which the task or function operates. Hence, the method concept is
naturally extended to built-in typesin order to add functionality that traditionally was done via system tasks or
functions. Unlike system tasks, built-in methods are not prefixed with a$ since they require no special prefix
to avoid collisions with user-defined identifiers. Thus, the method syntax allows extending the language with-
out the addition of new keywords or cluttering the global name space with system tasks.

Built-in methods, unlike system tasks, can not be redefined by users via PLI tasks. Thus, only functions that
users should not be allowed to redefine are good candidates for built-in method calls.

In general, abuilt-in method is preferred over a system task when a particular functionality applies to al data
types, or it applies to a specific data type. For example:

dynam c_array. si ze, associative_array.num and string.len
These are all similar concepts, but they represent different things. A dynamic array has a size, an associative

array contains a given number of items, and a string has a given length. Using the same system task, such as
$length, for all of them would be less clear and intuitive.

A built-in method can only be associated with a particular data type. Therefore, if some functionality isasim-
ple side effect (i.e., $st op or $reset) or it operates on no specific data (i.e., $r andon) then a system task
must be used.

When afunction or task built-in method call specifies no arguments, the empty parenthesis, () , following the
task/function name is optional. This is also true for tasks or functions that require arguments, when all argu-
ments have defaults specified. For a method, this rule allows simple calls to appear as properties of the object
or built-in type. Similar rules are defined for functions and tasks in Section 10.5.5.

Copyright 2003 Accellera. All rights reserved. 49

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

7.10.1 Built-in namespace LRM 23

SystemVerilog provides a built-in namespace that contains types (e.g., classes), tasks and functions. The built-
in namespace resides at the top of the hierarchy. Users may not insert additional declarations into the built-in
namespace. The declarations in the built-in namespace are directly available in any other scope, like system
tasks and functions, and can be redefined by user code in any other scope. However, unlike system tasks and
functions, the tasks and functions in the built-in namespace may not be redefined by PLI functions.

built_in_data type::=[::] data type identifier // not in Annex A
built_in function_call ::=[::] built_in_identifier /I not in Annex A

The scope resolution operator : : with no identifier on the left can be used to unambiguously access namesin
the built-in namespace. For example:

c:sys_task(); /1 unanbi guously call the system provided sys_task

Unlike system tasks and functions, tasks and functions in the built-in namespace need not be prefixed with a $
to avoid collisions with user-defined identifiers. This mechanism allows functional extensions to the language
in a backward compatible manner, without the addition of new keywords or polluting local name spaces.

7.11 Concatenation

Braces ({ }) are used to show concatenation, asin Verilog. The concatenation is treated as a packed vector of
bits. It can be used on the |eft hand side of an assignment or in an expression.

logic logl, |og2, |o0gs3;
{logl, log2, 10g3} = 3 blll,
{logl, log2, 1og3} = {1'bl, 1’'bl, 1'bl}; // same effect as 3 blll

Software tools can generate awarning if the concatenation width on one side of an assignment is different than
the expression on the other side. The following examples can give warning of size mismatch:

bit [1:0] packedbits = {32"bl,32"bl1}; // right hand side is 64 bits
int i ={1'bl, 1’'bl}; //right hand side is 2 bits

Note that braces are also used for initializers of structures or unpacked arrays. Unlike in C, the expressions
must match element for element and the braces must match the structures and array dimensions. Each element
must match the type being initialized, so the following do not give size warnings:

bit unpackedbits [1:0]

={1,1}; // no size warning, bit can be set to 1
int unpackedints [1:0] = {1

"bl,1' bl}; //no size warning, int can be set to 1'bl

A concatenation of unsized values shall beillegal, asin Verilog. However, an array initializer can use unsized
values within the braces, such as{1,1}.

The replication operator (also called a multiple concatenation) form of braces can also be used for initializers .
For example, {3{1}} representstheinitializer {1, 1, 1}.

Refer to Sections 2.7 and 2.8 for more information on initializing arrays and structures .

SystemVerilog enhances the concatenation operation to allow concatenation of variables of type string. In gen-
eral, if any of the operandsis of type st ri ng, the concatenation is treated as a string, and all other arguments
areimplicitly converted to the st ri ng type (as described in Section 3.7). String concatenation is not allowed
on the left hand side of an assignment, only as an expression.

string hello = "hello";

50 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1
string s;
s ={ hello, " ", "world" };
$di splay("%\n", s); /1 displays "hello world’
s ={ s, " and goodbye" };
$di splay("%\n", s); /1 displays '"hello world and goodbye’

The replication operator (also called a multiple concatenation) form of braces can also be used with variables
of typest ri ng. In the case of string replication, a non-constant multiplier is allowed.

int n=3;
string s = {n { "boo " }};
$display("%\n", s); [/ displays 'boo boo boo’

Note that unlike bit concatenation, the result of a string concatenation or replication is not truncated. Instead,
the destination variable (of type st ri ng) isresized to accommodate the resulting string.

7.12 Static Prefixes LRM 11

Informally, the “longest static prefix” of a select isthe longest part of the select for which an analysis tool has
known values following elaboration. This concept is used when describing implicit sensitivity lists (see Sec-
tion 9.2) and when describing error conditions for drivers of logic ports (see Section 5.6). The remainder of
this section defines what constitutes the “longest static prefix” of a select.

A field select is defined as a hierarchical name where the RHS of the last “. ” hierarchy separator identifies a
field of a variable whose type isa st ruct or uni on declaration. The field select prefix is defined to be the
LHS of final “. ” hierarchy separator in afield select.

An indexing select is a single indexing operation. The indexing select prefix is either an identifier or, in the
case of a multidimensional select, another indexing select. Array selects, bit selects, part selects, and indexed
part selects are examples of indexing selects.

The definition of a static prefix isrecursive and is defined as follows:

1) anidentifier isastatic prefix

2) afield sdlectisastatic prefix if the field select prefix is a static prefix

3) anindexing select isastatic prefix if the indexing select prefix isastatic prefix and the select expressionis
a constant expression.

The definition of the longest static prefix is defined as follows:
1) anidentifier that isnot thefield select prefix or indexing select prefix of an expression that isastatic prefix

2) afield select that is not the field select prefix or indexing select prefix of an expression that is a static
prefix

3) anindexing select that is not the field select prefix or indexing select prefix of an expression that isa static
prefix.

Examples:

| ocal paramp = 7;
reg [7:0] m[5:1][5:1];

integer i;
n1][1] /'l longest static prefix is nf1]
n p] [1] /1 longest static prefix is nip][1]

Copyright 2003 Accellera. All rights reserved. 51

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

nfi][1] /1 longest static prefix is m

7.13 Unpacked array expressions

Braces are also used for expressions to assign to unpacked arrays. Unlike in C, the expressions must match ele-
ment for element, and the braces must match the array dimensions. The type of each element is matched
against the type of the expression according to the same rules as for a scalar. This means that the following
examples do not give size warnings, unlike the similar assignments above:

bit unpackedbits [1:0] = {1,1}; // no size warning as bit can be set to 1
int unpackedints [1:0] = {1'bl, 1'bl}; // no size warning as int can be
Il set to 1'bl

The syntax of multiple concatenations can be used for unpacked array expressions aswell.
unpackedbits = {2 {y}} ; // same as {y, vy}

SystemVerilog determines the context of the braces by looking at the left hand side of an assignment. If the | ft
hand side is an unpacked array, the braces represent an unpacked array literal or expression. Outside the con-
text of an assignment on the right hand side, an explicit cast must be used with the braces to distinguish it from
a concatenation.

It can sometimes be useful to set array elementsto avalue without having to keep track of how many members
there are. This can be done with the def aul t keyword:

initial unpackedints = {default:2}; // sets elements to 2

For more arrays of structures, it is useful to specify one or more matching types, as illustrated under structure
expressions, below.

struct {int a; time b;} abkey[1:0];
abkey = {{a:1, b:2ns}, {int:5, tinme:$tinme}};

The rules for unpacked array matching are as follows:

— For type: val ue, if the element or sub array type of the unpacked array exactly matches this type, then
each element or sub array shall be set to the value. The value must be castable to the array element or sub
array type. Otherwise, if the unpacked array is multidimensional, then there is arecursive descent into each
sub array of the array using the rules in this section and the type and default specifiers. Otherwise, if the
unpacked array isan array of structures, thereis arecursive descent into each el ement of the array using the
rules for structure expressions and the type and default specifiers.

— For def aul t : val ue, this specifies the default value to use for each element of an unpacked array that has
not been covered by the earlier rulesin this section. The value must be castable to the array element type.

7.14 Structure expressions

A structure expression (packed or unpacked) can be built from member expressions using braces and commas,
with the membersin declaration order. It can also be built with the names of the members

nodul e nodi;
typedef struct {
int Xx;

int vy;
} st

52 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1
st s1;
int kK = 1;

initial begin
#1 s1 = {1, 2+k}; /1 by position
#1 $display(sl.x, sl.y)
#1 sl = {x:2, y:3+k); /1 by nane
#1 $display(si1);
#1 $finish;

end

endnodul e

It can sometimes be useful to set structure members to a value without having to keep track of how many
members there are, or what the names are. This can be done with the def aul t keyword:

initial s1 = {default:2}; // sets x and y to 2
The{nmenber: val ue} or {data_type: default_val ue} syntax can also be used:
ab abkey[1:0] = {{a:1, b:1.0}, {int:2, shortreal:2.0}};

Note that the def aul t keyword applies to members in nested structures or elements in unpacked arrays in
structures. In fact, it descends the nesting to a built-in type or a packed array of them.

struct {

int A

struct {

int B, C

} BCl, B2
}
ABC = {A'1, BCL:{B:2, C:3}, BC2:{B:4,C 5}};
DEF = {default: 10};
To deal with the problem of members of different types, a type can be used as the key. This overrides the
default for members of that type:

typedef struct {
logic [7:0] a

bit b;
bit [31:0] c;
string s;

} sa;

sa s2

initial s2 = {bit[31:0]:1, default:0, string:""}; // set all to O except the
/1 array of bits to 1 and
[/l string to ""

Similarly, an individual member can be set to override the general default and the type default:

initial #10 s1 = {default:’1, s = ""}; /] set all to 1 except s to ""
SystemVerilog determines the context of the braces by looking at the left hand side of an assignment. If the | eft
hand sideis an unpacked structure, the braces represent an unpacked structure literal or expression. Outside the

context of an assignment on the right hand side, an explicit cast must be used with the braces to distinguish it
from a concatenation.

Copyright 2003 Accellera. All rights reserved. 53

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

The matching rules are as follows:

— A menber : val ue: specifies an explicit value for a named member of the structure. The named member
must be at the top level of the structure—a member with the same name in some level of substructure shall
not be set. The value must be castable to the member type, otherwise an error is generated.

— Thetype: val ue specifiesan explicit value for afield in the structure which exactly matches the type and
has not been set by afield name specifier above. If the same key type is mentioned more than once, the last
valueis used.

— Thedef aul t : val ue appliesto members that are not matched by either member name or type and are not
either structures or unpacked arrays. The value must be castable to the member type, otherwise an error is
generated. For unmatched structure members, the type and default specifiers are applied recursively
according to the rules in this section to each member of the substructure. For unmatched unpacked array
members, the type and default specifiers are applied to the array according to the rules for unpacked arrays.

Every member must be covered by one of these rules.

7.15 Aggregate expressions

Unpacked structure and array variables, literals, and expressions can all be used as aggregate expressions. A
multi-element slice of an unpacked array can also be used as an aggregate expression.

Aggregate expressions can be copied in an assignment, through a port, or as an argument to atask or function.
Aggregate expressions can also be compared with equality or inequality operators. To be copied or compared,
the type of an aggregate expression must be equivalent.

Unpacked structures types are equivalent by the hierarchica name of its type alone. This means in order to
have two equivalent unpacked structuresin two different scopes, the type must be defined in one of the follow-

ing ways:
— Defined in ahigher-level scope common to both expressions.
— Passed through type parameter.

— Imported by hierarchical reference.

Unpacked arrays types are equivalent by having equivalent element types and identical shape. Shapeis defined
as the number of dimensions and the number of elementsin each dimension, not the actual range of the dimen-
sion.

7.16 Conditional operator

condi ti onal _expression ::= (From Annex A 8.3)
expressionl ? { attribute_instance } expression2 : expression3

Asdefined in Verilog, if expressionl istrue, the operator returns expression?2, if false, it returns expression3. If
expressionl eval uates to an ambiguous val ue (x or z), then both expression2 and expression3 shall be evaluated
and their results shall be combined, bit by bit.

SystemVerilog extends the conditional operator to non bit-level types and aggregate expressions using the fol-
lowing rules:

— If both expression2 and expression3 are bit-level types, or a packed aggregate of bit type, the operation
proceeds as defined.

— If expression2 or expression3 is a bit-level type and the opposing expression can be implicitly cast to a bit-
level type, the cast is made and proceeds as defined.

— For all other cases, the type of expression2 and expression3 must be equivalent.

54 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

If expressionl evaluates to an ambiguous value, then both expression2 and expression3 shall be evaluated and
their results shall be combined, element-by-element. If the elements match, the element is returned. If they do
not match, then the default-uninitialized value for that element’s type shall be returned.

7.17 Set membership

SystemVerilog supports integer val ue sets and set membership operators.

The syntax to define a set expression is:

inside_expression ::= expression inside range_list_or_array /l from Annex A.8.3
range list_or_array ::=
variable identifier
| { value range{ , value range} }
value_range ::=
expression
| [expression : expression |

Syntax 7-2—inside expression syntax (excerpt from Annex A)

expression is any integral SystemVerilog expression.
range list_or_array isacomma-separated list of integral expressions and ranges. Value ranges are specified in
ascending order with alow and high bound, enclosed by square braces|[], and separated by acolon (:), as
in[| ow_bound: hi gh_bound] . Ranges include all of the integer elements between the bounds. If the bound
to the left of the colon is greater than the bound to the right the range is empty and contains no values.
Thei nsi de operator evaluates to true if the expression is contained in the set; otherwise it evaluatesto false.
For example:

if (ainside { [16:23], [32:47] })

if (ainside {b, c})

Set values and ranges can be any integral expression. Values can be repeated, so values and value ranges can
overlap.

Copyright 2003 Accellera. All rights reserved. 55

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Section 8
Procedural Statements and Control Flow

8.1 Introduction (informative)

Procedural statements are introduced by the following:
initial //enablethisstatement at the beginning of simulation and execute it only once
final // do this statement once at the end of simulation
al ways, al ways_conb, al ways_| atch, al ways_ff //loop forever (see Section 9 on processes)
t ask // do these statements whenever the task is called

functi on // do these statements whenever the function is called and return avalue

SystemVerilog has the following types of control flow within a process
— Selection, loops and jumps

— Task and function calls

— Sequential and parallel blocks

— Timing control

Verilog procedural statements are ininitial or al ways blocks, tasks or functions. SystemVerilog adds a
final block that executes at the end of simulation.

Verilog includes most of the statement types of C, except for do...whi | e, br eak, cont i nue and got o. Ver-
ilog hasther epeat statement which C does not, and the di sabl e. The use of the Verilog di sabl e to carry
out the functionality of break and continue requires the user to invent block names, and introduces the opportu-
nity for error.

SystemVerilog adds C-like br eak, cont i nue and r et ur n functionality, which do not require the use of block
names.

Loops with a test at the end are sometimes useful to save duplication of the loop body. SystemVerilog adds a
C-likedo...whi | e loop for this capahility.

Verilog provides two overlapping methods for procedurally adding and removing drivers for variables: the
f or celr el ease statements and the assi gn/deassi gn statements. Thef or ce/r el ease Statements can also
be used to add or remove drivers for nets in addition to variables. A force statement targeting a variable that is
currently the target of an assign shall override that assign; however, once the force is released, the assign’s
effect again shall be visible.

The keyword assi gn is much more commonly used for the somewhat similar, yet quite different purpose of
defining permanent drivers of valuesto nets.

SystemVerilog fi nal blocks execute in an arbitrary but deterministic sequentia order. This is possible
because f i nal blocks are limited to the legal set of statements allowed for functions. SystemVerilog does not
specify the ordering, but implementations should define rules that preserve the ordering between runs. This
helps keep the output log file stable since f i nal blocks are mainly used for displaying statistics.

8.2 Statements

The syntax for procedural statementsis:

56 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1
statement_or_null ::= [l from Annex A.6.4
statement

| { attribute_instance} ;
statement ::= [block_identifier :] statement_item
statement_item ::=

{ attribute_instance } blocking_assignment ;

| { attribute_instance } nonblocking_assignment ;

| { attribute_instance } procedural_continuous _assignments ;

| { attribute instance} case statement

| { attribute_instance } conditional _statement

| { attribute_instance} inc_or_dec expression ;

| { attribute_instance} function call ;

| { attribute instance} disable statement

| { attribute_instance } event_trigger

| { attribute instance} loop_statement

| { attribute_instance} jump_statement

| { attribute_instance} par_block

| { attribute_instance } procedural_timing_control _statement

| { attribute_instance} seq block

| { attribute_instance } system task_enable

| { attribute_instance} task _enable

| { attribute instance } wait_statement

| { attribute_instance} procedural _assertion_item
function_statement ::= [block_identifier :] function_statement_item
function_statement_item ::=

{ attribute_instance } function_blocking_assignment ;

| { attribute_instance} function case statement

| { attribute_instance} function_conditional_statement

| { attribute_instance} inc_or_dec expression ;

| { attribute instance} function call ;

| { attribute instance} function loop_statement

| { attribute instance} jump_statement

| { attribute_instance} function_seq block

| { attribute instance} disable statement

| { attribute instance} system task_enable

Syntax 8-1—Procedural statement syntax (excerpt from Annex A)

Copyright 2003 Accellera. All rights reserved.

57

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

8.3 Blocking and nonblocking assignments

blocking_assignment ::= [/l from Annex A.6.4
variable_Ivalue = delay or_event_control expression
| hierarchical_variable identifier = new [constant_expression | [(variable_identifier)]
| class identifier [parameter_value assignment] = new [(list_of arguments)]
| class identifier . randomize[()] with constraint_block ;
| operator_assignment
operator_assignment ::= variable |value assignment_operator expression
assignment_operator ::=
=42 -2 1= |12 |%= | &= | |5 | "= | <<= | >>= | <<<= | >>>=
nonblocking_assignment ::= variable Ivalue <=[delay_or_event_control] expression

Syntax 8-2—blocking and nonblocking assignment syntax (excerpt from Annex A)

The following assignments are allowed in both Verilog-2001 and SystemVerilog:

#1 r = a;
r = #1 a;
r <= #1 a;
r <= a,

@ r = a;
r =@ a
r <= @ a;

SystemVerilog also allows atime unit to specified in the assignment statement, as follows:
#lns r = a;
r = #1ns a;
r <= #lns a;

It shall beillegal to make nonblocking assignments to automatic variables.

The size of the left-hand side of an assignment forms the context for the right hand side expression. If the | eft-
hand side is smaller than the right hand side, information can be lost, and a warning can be given.

58 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

8.4 Selection statements

conditional_statement ::= I/ from Annex A.6.6
[unique_priority] if (expression) statement_or_null [else statement_or_null]
| if_else if statement
if else if statement ::=
[unique_priority] if (expression) statement_or_null
{ else[unique_priority] if (expression) statement_or_null }
[else statement_or_null]
unique_priority ::= unique | priority

case_statement ::= // from Annex A.6.7
[unique_priority] case (expression) case_item{ case item} endcase
| [unique_priority] casez (expression) case item{ case item} endcase
| [unique_priority] casex (expression) case_item { case item} endcase
case item::=
expression{ , expression} : statement_or_null
| default [:] statement_or_null

Syntax 8-3—Selection statement syntax (excerpt from Annex A)

In Verilog, ani f (expression) is evaluated as a boolean, so that if the result of the expressionis 0 or X, the
test is considered false.

SystemVerilog adds the keywords uni que and pri ori ty, which can be used before ani f . If either keyword
isused, it shall be arun-time error for no condition to match unlessthereis an explicit el se. For example:

unique if ((a==0) || (a==1)) $display("0 or 1");
else if (a == 2) $display("2");
else if (a == 4) $display("4"); // values 3,5,6,7 cause an error

priority if (a[2:1]==0) $display("0 or 1");
else if (a[2] == 0) $display("2 or 3");
el se $display("4 to 7"); //covers all other possible values, so no error

A uni que i f indicates that there should not be any overlap in aseriesof i f ...el se...i f conditions, allowing
the expressions to be evaluated in parallel. A software tool shall issue an error if it determines that thereis a
potential overlap in the conditions.

Apriority if indicatesthat aseriesofif...el se...i f conditions shall be evaluated in the order listed. In
the preceding example, if the variable a had avalue of 0, it would satisfy both the first and second conditions,
requiring priority logic.

Theuni que and pri ori ty keywords apply to the entire seriesof i f ...el se...i f conditions. In the preceding
examples it would have been illegal to insert either keyword after any of the occurrences of el se.

In Verilog, there are three types of case statements, introduced by case, casez and casex. With SystemVer-
ilog, each of these can be qualified by pri ority oruni que. A priority case shal act on the first match
only. A uni que case shall guarantee no overlapping case values, allowing the case items to be evaluated in
paralel. If the caseis qualified as priority or uni que, the smulator shall issue an error message if an
unexpected case valueis found.

Note: by specifying uni que or pri ori ty, it isnot necessary to code adef aul t case to trap unexpected case
values. For example:

Copyright 2003 Accellera. All rights reserved. 59

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

bit [2:0] a;

uni que case(a) // values 3,5,6,7 cause a run-tinme error
0,1: $display("0 or 1");
2: $display("2");
4: $display("4");

endcase

priority casez(a)
2’ b00?: $display("0 or 1");
2’ b0??: $display("2 or 3");
default: $display("4 to 7");
endcase

Theuni que and pri ori ty keywords shall determine the simulation behavior. It is recommended that synthe-
sisfollow simulation behavior where possible. Attributes can also be used to determine synthesis behavior.

8.5 Loop statements

loop_statement ::= // from Annex A.6.8
forever statement_or_null
| repeat (expression) statement_or_null
| while (' expression) statement_or_null
| riable—decl—or—ass - expression-+ variable 2 a
| for (variable_decl_or_assignment { , variable _decl_or_assignment } ; expression ;
variable_assignment { , variable_assignment }) statement_or_null
| do statement_or_null while (expression) ;

variable_decl_or_assignment ::=

data—type Hst—ef—variable—tdentifiers—er—assignments variable_declaration

| variabl e _assignment

Syntax 8-4—Loop statement syntax (excerpt from Annex A)

Verilog providesf or, whi | e, repeat andf or ever loops. SystemVerilog enhances the Verilog f or loop, and
addsado...whi | e loop.

8.5.1 The do...while loop

do statenment while(condition) // as C

The condition can be any expression which can be treated as a boolean. It is evaluated after the statement.

8.5.2 Enhanced for loop

In Verilog, the variable used to control af or loop must be declared prior to the loop. If loops in two or more
parallel procedures use the same loop control variable, there is a potential of one loop modifying the variable
while other loops are still using it.

SystemVerilog adds the ability to declare the f or loop control variable within the f or loop. This creates a
local variable within the loop. Other parallel loops cannot inadvertently affect the loop control variable. For
example:

modul e foo;

initial begin

60 Copyright 2003 Accellera. All rights reserved.

[z]

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

for (int i =0; i <= 255; i++)
end
initial begin
loop2: for (int i =15; i >=0; i--)

end
endnodul e

The local variable declared within af or loop is equivaent to declaring an automatic variable in an unnamed
block.

Verilog only permits a singleinitial statement and a single step assignment within af or loop. SystemVerilog
allowsthe initial declaration or assignment statement to be one or more comma-separated statements. The step
assignment can also be one or more comma-separated assignment statements.

for (int count = 0; count < 3; count++)
val ue = value +((a[count]) * (count+1));

for (int count =0, done =0, int j =0; j * count < 125; j++)
$di splay("Value j = %d\n", |);

8.6 Jump statements

jump_statement ::= // from Annex A.6.5
return [expression] ;
| break ;
| continue;

Syntax 8-5—Jump statement syntax (excerpt from Annex A)

SystemVerilog adds the C jump statements br eak, cont i nue andr et ur n.

br eak /1 out of loop as C
continue // skip to end of |oop as C
return expression /1 exit froma function

return // exit froma task or void function
The cont i nue and br eak statements can only be used in aloop. The cont i nue statement jumps to the end
of the loop and executes the loop control if present. The br eak statement jumps out of the loop. The con-

ti nue and break statements cannot be used inside a f ork...j oi n block to control a loop outside the
fork...j oi n block.

Ther et ur n statement can only be used in atask or function. In a function returning a value, the return must
have an expression of the correct type.

Note that SystemVerilog does not include the C got o statement.
8.7 Final blocks

Thefinal blockislikeani nitial block, defining a procedural block of statements, except that it occurs at
the end of simulation time and executes without delays. A fi nal block istypically used to display statistical
information about the simulation.

Copyright 2003 Accellera. All rights reserved. 61

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

final_construct ::= final function_statement [l from Annex A.6.2

Syntax 8-6—Final block syntax (excerpt from Annex A)

The only statementsallowed inside af i nal block are those permitted inside a function declaration. This guar-
antees that they execute within asingle simulation cycle. Unlikeani ni ti al block, thefi nal block does not
execute as a separate process, instead, it executesin zero time, the same as a function call.

After one of the following conditions occur, all spawned processes are terminated, all pending PLI callbacks
are canceled, and then the final block executes.

— The event queue is empty
— Execution of $fi ni sh
— Termination of all program blocks, which executes an implicit $f i ni sh

— PLI execution of t f _dof i ni sh() orvpi _control (vpi Finish,...)

final
begin
$di spl ay(" Nunber of cycles executed %", $ti me/ period);
$di spl ay("Final PC = %", PC);
end

Execution of $fi ni sh, tf_dofinish(), or vpi _control (vpi Fi nish,...) from within a final block
shall cause the simulation to end immediately. Final blocks can only trigger once in a simulation.

Final blocks shall execute before any PLI callbacks that indicate the end of simulation.

8.8 Named blocks and statement labels

seq_block ::= // from Annex A.6.3
begin [: block_identifier] { block_item_declaration } { statement_or_null }
end [: block_identifier]
par_block ::=
fork [: block_identifier] { block item declaration} { statement_or_null }
join_keyword|[: block_identifier]
join_keyword ::=join |join_any |join_none

Syntax 8-7—Blocks and labels syntax (excerpt from Annex A)

Verilog alows a begi n...end, f ork...j oi n, fork...j oi n_any or f ork...j oi n_none statement block to be
named. A named block is used to identify the entire statement block. A named block creates a new hierarchy
scope. The block name is specified after the begi n or f or k keyword, preceded by a colon. For example:

begi n : bl ockA /1 Verilog-2001 naned bl ock

end
SystemVerilog alows a matching block name to be specified after the block end, j oi n, j oi n_any or
j oi n_none keyword, preceded by a colon. This can help document which end or j oi n, j oi n_any or

j oi n_none is associated with which begi n or f or k when there are nested blocks. A name at the end of the
block is not required. It shall be an error if the name at the end is different than the block name at the begin-

62 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

ning.
begi n: bl ockB /1 block nane after the begin or fork
end: bl ockB

SystemVerilog allows alabel to be specified before any statement, asin C. A statement label is used to identify
asingle statement. The label name is specified before the statement, followed by a colon.

| abel A st at enent

A begin...end, fork..join, fork...j oi n_any or fork...j oi n_none block is considered a statement, and
can have a statement label before the block.

|l abel B: fork // label before the begin or fork

join : labelB
It shall beillegal to have both alabel before abegi n or f or k and a block name after the begi n or for k. A
label cannot appear before the end, j oi n, j 0i n_any or j oi n_none, as these keywords do not form a state-

ment.

A statement with a label can be disabled using a di sabl e statement. Disabling a statement shall have the
same behavior as disabling a named block.

See Section 9.6 for additional discussiononf ork...j oi n, f ork...j oi n_any or f ork...j oi n_none.

8.9 Disable

SystemVerilog has br eak and cont i nue to break out of or continue the execution of loops. The Verilog-2001
disable can aso be used to break out of or continue a loop, but is more awkward than using br eak or con-
ti nue. The di sabl e is also allowed to disable a named block, which does not contain the di sabl e state-
ment. If the block is currently executing, this causes control to jump to the statement immediately after the
block. If the block isaloop body, it actslike acont i nue. If the block is not currently executing, thedi sabl e
has no effect.

SystemVerilog hasr et ur n from atask, but di sabl e isalso supported. If di sabl e isapplied to anamed task,
all current executions of the task are disabled.

nodul e ...
al ways al waysl: begin ... tl: taskl(); ... end

endnodul e
al ways begin

di sable ul.alwaysl.t1; // exit taskl, which was called fromal waysl (static)
end

Copyright 2003 Accellera. All rights reserved. 63

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

8.10 Event control

delay_or_event_control ::= // from Annex A.6.5
delay control
| event_control
| repeat (expression) event_control
delay contral ::=
#delay value
| # (mintypmax_expression)
event_control ::=
@ event—identifier hierarchical_event identifier
| @ (event_expression)
| @
| @(*)
event_expression ::=
[edge identifier] expression [iff expression]
| event_expression or event_expression
| event_expression , event_expression

edge identifier ::= posedge | negedge [l from Annex A.7.4

Syntax 8-8—Delay and event control syntax (excerpt from Annex A)

Any changein avariable or net can be detected using the @ event control, asin Verilog. If the expression eval-
uates to aresult of more than one bit, a change on any of the bits of the result (including an x to z change) shall
trigger the event control.

SystemVerilog addsani f f qualifier to the @event control.

nmodul e latch (output logic [31:0] y, input [31:0] a, input enable);

always @a iff enable == 1)
y <= a; //latch is in transparent node
endnodul e

The event expression only triggers if the expression after thei f f istrue, in this case when enabl e isequal to
1. Note that such an expression is evaluated when a changes, and not when enabl e changes. Also note that
i ff has precedence over or. This can be made clearer by the use of parentheses.

If avariableis not of a 4-state type, then posedge and negedge refer to transitions from 0 and to 0, respec-
tively.

If the expression denotes a clocking-domaini nput or i nout (see Section 15), the event control operator uses
the synchronous values, that is, the values sampled by the clocking event. The expression can also denote a
clocking-domain name (with no edge qualifier) to be triggered by the clocking event.

A variable used with the event control can be any one of the integral data types (see Section 3.3.1) or string.
Thevariable can be either asimplevariable or ar ef argument (variable passed by reference); it can be amem-
ber of an array, associative-array, or object (class instance) of the aforementioned types. Objects (handles) and
aggregate types are not allowed.

Event control variables can include object data members, in which case the object handle is evaluated only
once when the event control statement is executed. Likewise, an object data member in an event control shall
block until that particular data member changes value, not when the handle to the object is modified. For
example:

64 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1
Packer p = new, // Packet 1
Packet q = new, // Packet 2
fork

@p.status); // Wait for status in Packet 1 to change
p =9q; // Has no effect on the wait in Process 1
j oi n_none
/'l @p.status) continues to wait for status of Packet 1 to change

8.11 Procedural assign and deassign removal

SystemVerilog currently supports the procedural assi gn and deassi gn statements. However, these state-
ments may be removed from future versions of the language. See Section 25.3.

Copyright 2003 Accellera. All rights reserved. 65

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Section 9
Processes

9.1 Introduction (informative)

Verilog-2001 has al ways andi ni ti al blocks which define static processes.

In an al ways block which is used to model combinational logic, forgetting an el se leads to an unintended
latch. To avoid this mistake, SystemVerilog adds specialized al ways_conb and al ways_| at ch blocks,
which indicate design intent to simulation, synthesis and formal verification tools. SystemVerilog also adds an
al ways_ff block to indicate sequential logic.

In systems modeling, one of the key limitations of Verilog is the inability to create processes dynamically, as
happensin an operating system. Verilog hasthef or k...j oi n construct, but this still imposes a static limit.

SystemVerilog has both static processes, introduced by al ways, i nitial or f or k, and dynamic processes,
introduced by built-in f or k...j oi n_any and f or k...j oi n_none.

SystemVerilog creates athread of execution for eachi ni ti al or al ways block, for each parallel statement in
afork..join block and for each dynamic process. Each continuous assignment can also be considered its
own thread.

SystemVerilog 3.1 adds dynamic processes by enhancing the f or k...j oi n construct in away that is more nat-
ural to Verilog users. SystemVerilog 3.1 also introduces dynamic process control constructs that can terminate
or wait for processes using their dynamic, parent-child relationship. These arewai t f or k and di sabl e f or k.

9.2 Combinational logic

SystemVerilog provides a specia al ways_conb procedure for modeling combinational logic behavior. For
example:

al ways_conb
a=>b&c;

al ways_conb
d <= #lns b & c

Theal ways_conb procedure provides functionality that is different than a normal always procedure:

— There is an inferred sensitivity list that includes every—variable+ead-by-theprocedure the expressions _LRM 11
defined in Section 9.2.1. -

— The variables written on the |eft-hand side of assignments shall not be written to by any other process.

— The procedure is automatically triggered once at time zero, after all i niti al and al ways blocks have
been started, so that the outputs of the procedure are consistent with the inputs.

The SystemVerilog al ways_conb procedure differs from the Verilog-2001 al ways @ in the following ways:

— al ways_conb automatically executes once at time zero, whereas al ways @ waits until a change occurs
on asignal in theinferred sensitivity list.

— al ways_conb is sensitive to changes within the contents of a function, whereas al ways @ is only sensi-
tive to changes to the arguments of afunction.

— Variables on the left-hand side of assignments within an al ways_conb procedure shall not be written to
by any other processes, whereas al ways @ permits multiple processes to write to the same variable.

66 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Software tools can perform additional checksto warn if the behavior within an al ways_conb procedure does
not represent combinational logic, such asif latched behavior can be inferred.

9.2.1 Implicit always_comb sensitivities LRM 11

The expansion of longest static prefix “P” is defined to be:
a) Pitsef if the Pisnot amemory or indexing select or if Pisalega word or bit select.

b) if Pisamemory or indexing select, the expansion is every possible legal memory word select with a
static prefix that matches P.

EDITOR’'S NOTE: | hope the wording of this new paragraph makes sense to someone. The first sentence
along with items @) and b) do not make any sense the editor, from a Verilog user’s point of view.

The implicit sensitivity list of an al ways_conb includes the expansions of the longest static prefix of each
variable or select expression that is read within the block or within any function called within the block with
the following exceptions:

1) any expansion of avariable declared within the block or within any function called within the block.

2) any expression that is also written within the block or within any function called within the block.

EDITOR’S NOTE: Does the reference to “written” in rule 2 apply to both blocking and nonblocking assign-
ments? | believe it should only apply to blocking assignments, and that variables written to with nonblocking
assignments should be in the inferred sensitivity list.

9.3 Latched logic

SystemVerilog also provides a specia al ways_| at ch procedure for modeling latched logic behavior. For
example:

al ways_| atch
if(ck) g <= d;

Theal ways_|I at ch procedure determines its sensitivity and executes identically to theal ways_conb proce-

dure. Software tools can perform additional checks to warn if the behavior within an al ways_| at ch proce-
dure does not represent latched logic.

9.4 Sequential logic

The SystemVerilog al ways_f f procedure can be used to model synthesizable sequential logic behavior. For
example:

al ways_ff @posedge clock iff reset == 0 or posedge reset) begin
ri <=reset 20 : r2 + 1,

end
The al ways_ff block imposes the restriction that only one event control is allowed. Software tools can per-

form additional checksto warn if the behavior within an al ways_f f procedure does not represent sequential
logic.

Copyright 2003 Accellera. All rights reserved. 67

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

9.5 Continuous assignments

In Verilog, continuous assignments can only drive nets, and not variables.

SystemVerilog removes this restriction, and permits continuous assignments to drive nets any type of variable.
Nets can be driven by multiple continuous assignments, or a mixture of primitives and continuous assign-
ments. Variables can only be driven by one continuous assignment or one primitive output. It shall be an error

for avariable driven by a continuous assignment or primitive output to have an initializer in the declaration or
any procedural assignment. See also Section 5.6.

9.6 fork...join

Thef ork...j oi n construct enables the creation of concurrent processes from each of its parallel statements.

The syntax to declare af or k...j oi n block is:

par_block ::= // from Annex A.6.3
fork [: block_identifier] { block_item_ declaration } { statement_or_null }
join_keyword|[: block_identifier]

join_keyword ::=join |join_any |join_none

Syntax 9-1—Fork...join block syntax (excerpt from Annex A)
One or more statements can be specified, each statement shall execute as a concurrent process.
A Verilog f or k...j oi n block always causes the process executing the fork statement to block until the termi-

nation of all forked processes. With the addition of thej oi n_any and j oi n_none keywords, SystemVerilog
provides three choices for specifying when the parent (forking) process resumes execution.

Table 9-1: fork...join control options

Option Description
join The parent process blocks until al the processes spawned by this fork complete. .
j oi n_any The parent process blocks until any one of the processes spawned by this fork complete.

j oi n_none | The parent process continues to execute concurrently with all the processes spawned by the
fork. The spawned processes do not start executing until the parent thread executes a blocking
Statement.

When defining a f or k...j oi n block, encapsulating the entire fork within a begi n...end block causes the
entire block to execute as a single process, with each statement executing sequentially.

fork
begin
st at ement 1; /'l one process with 2 statenents
st at ement 2;
end
join
In the following example, two processes are forked, the first one waits for 20ns and the second waits for the

named event event A to be triggered. Because the j oi n keyword is specified, the parent process shall block
until the two processes complete; That is, until 20ns have elapsed and event A has been triggered.

68 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

fork
begin
$di splay("First Block\n");
20ns;
end
begin
$di spl ay("Second Bl ock\n");
@vent A;
end
join

A r et ur n statement within the context of af or k...j oi n statement isillegal and shall result in a compilation
error. For example:

task wait_20;
fork
20;
return ; /1 Illegal: cannot return; task lives in another process
j oi n_none
endt ask

Note: SystemVerilog 3.0 provided a pr ocess statement, which gave the same functionality asthef or k...j oi n_none
construct. SystemVerilog 3.1 deprecates the pr ocess statement, in favor of f or k...j 0i n_none.

9.7 Process execution threads

SystemVerilog creates athread of execution for:

— Eachinitial block

— Each al ways block

— Each parallel statementin af or k...j oi n (orj oi n_any orj oi n_none) statement group

— Each dynamic process

Each continuous assignment can also be considered its own thread.

9.8 Process control

SystemVerilog provides constructs that allow one process to terminate or wait for the completion of other pro-
cesses. Thewai t for k construct waits for the completion of processes. The di sabl e f or k construct stops
the execution of processes.

9.8.1 Wait fork

Thewai t fork statement is used to ensure that all child processes (processes created by the calling process)
have completed their execution.

The syntax for wai t fork is:
wait fork ; // from Annex A 6.5
Specifying wai t f or k causes the calling process to block until al its sub-processes have completed.
Verilog terminates a simulation run when there is no further activity of any kind. SystemVerilog adds the abil-
ity to automatically terminate the simulation when all its program blocks finish executing (i.e, they reach the

end of their execute block), regardless of the status of any child processes (see Section 16.6). Thewai t f or k
statement allows a program block to wait for the completion of all its concurrent threads before exiting.

Copyright 2003 Accellera. All rights reserved. 69

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

In the following example, in the task do_test, the first two processes are spawned and the task blocks until one
of the two processes completes (either exec1, or exec?2). Next, two more processes are spawned in the back-
ground. Thewai t f or k statement shall ensure that the task do_t est waits for all four spawned processes to
complete before returning to its caller.

task do_test;
fork
execl();
exec2();
j oi n_any
fork
exec3();
exec4();
j oi n_none
wait fork; /1 block until execl ... exec4 conplete
endt ask

9.8.2 Disable fork
Thedi sabl e f or k statement terminates all active descendants (sub-processes) of the calling process.
The syntax for di sabl e fork is:

di sable fork ; // from Annex A. 6.5

The di sabl e f or k statement terminates all descendants of the calling process, as well as the descendants of
the process’ descendants, that is, if any of the child processes have descendants of their own, the di sabl e
f or k statement shall terminate them as well.

In the example below, thetask get _fi r st spawnsthree versions of atask that wait for a particular device (1,
7, or 13). The task wai t _devi ce waits for a particular device to become ready and then returns the device's
address. When the first device becomes available, the get _fi rst task shall resume execution and proceed to
kill the outstanding wai t _devi ce processes.

task get _first(output int adr);
fork
wai t _device(1, adr);
wai t _device(7, adr);
wai t _device(13, adr);

j oi n_any
di sabl e fork
endt ask

Verilog supports the di sabl e construct, which terminate a process when applied to the named block being
executed by the process. The di sabl e f or k statement differsfrom di sabl e inthat di sabl e f or k considers
the dynamic parent-child relationship of the processes, whereas di sabl e uses the static, syntactical informa-
tion of the disabled block. Thus, di sabl e shall end al processes executing a particular block, whether the
processes were forked by the calling thread or not, while di sabl e f or k shall end only those processes that
were spawned by the calling thread.

9.9 Fine-grain process control LRM 24

A process is a built-in class that allows one process to access and control another process once it has started.
Users can declare variables of type process and safely pass them through tasks or incorporate them into other
objects. The prototype for the process classis:

70 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

cl ass process;
enum state { FI NI SHED, RUNNI NG WAITI NG, SUSPENDED, KILLED };

static function process self();
function state status();
task kill();
task await();
task suspend();
task resunme()
endcl ass

Objects of type process are created internally when processes are spawned. Users may not create objects of
type process; attempts to call new shall not create a new process, and instead result in an error. The process
class cannot be extended. Attempts to extend it shall result in a compilation error. Objects of type process are
unique; they become available for reuse once the underlying process terminates and all references to the object
are discarded.

Thesel f () function returns a handle to the current process, that is, a handle to the process making the call.

Thest at us() function returns the process status, as defined by the state enumeration:
— FI NI SHED Process terminated normally.

— RUNNI NG Processis currently running (not in a blocking statement).

— WAI TI NG Process is waiting in a blocking statement.

— SUSPENDED Process is stopped awaiting a resume.

— KI LLED Process was forcibly killed (viakill or disable).

Theki | | () task terminates the given process and all its sub-processes, that is, processes spawned using f or k
statements by the process being killed. If the process to be terminated is not blocked waiting on some other
condition, such as an event, wai t expression, or a delay then the process shall be terminated at some unspeci-
fied time in the current time step.

Theawai t () task allows one process to wait for the completion of another process. It shall be an error to call
thistask on the current process, i.e., a process may not wait for its own completion.

The suspend() task allows a process to suspend either its own execution or that of another process. If the
process to be suspended is not blocked waiting on some other condition, such as an event, wai t expression, or
a delay then the process shall be suspended at some unspecified time in the current time step. Calling this
method more than once, on the same (suspended) process, has no effect.

Theresunme() task restarts a previously suspended process. Calling resume on a process that was suspended
while blocked on another condition shall re-sensitize the process to the event expression, or wait for the wait
condition to become true, or for the delay to expire. If the wait condition is now true or the origina delay has
transpired, the process is scheduled onto the Active or Reactive region, so as to continue its execution in the
current time step. Calling resume on a process that suspends itself causes the process to continue to execute at
the statement following the call to suspend.

The example below starts an arbitrary number of processes, as specified by the task argument N. Next, the task
waits for the last process to start executing, and then waits for the first process to terminate. At that point the
parent process forcibly terminates all forked processes that have not completed yet.

task do_n_way(int N);
process job[1:N;

for (int j =1; j <= N j++)

fork
begin job[j] = process::self(); ... ; end

Copyright 2003 Accellera. All rights reserved. 71

Accellera

SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001
j oi n_none
wait (job[N != null); /1 wait for last process to start
job[1].await(); /1 wait for first process to finish

72

for (int k =1; k <= N k++) begin
if (job[k].status != process::FI N SHED)
job[k].kill();
end
endt ask

Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Section 10
Tasks and Functions

10.1 Introduction (informative)

Verilog-2001 has static and automatic tasks and functions. Static tasks and functions share the same storage
space for al calls to the tasks or function within a module instance. Automatic tasks and function allocate
unique, stacked storage for each instance.

SystemVerilog adds the ability to declare automatic variables within static tasks and functions, and static vari-
ables within automatic tasks and functions.

SystemVerilog also adds:

— More capabilities for declaring task and function ports

— Function output and inout ports

— Void functions

— Multiple statementsin atask or function without requiring abegi n...end or f or k...j oi n block
— Returning from atask or function before reaching the end of the task or function

— Passing arguments by reference instead of by value

— Passing argument values by name instead of by position

— Default argument values

— Importing and exporting functions through the Direct Programming Interface (DPI)

Copyright 2003 Accellera. All rights reserved. 73

Accellera

SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001
10.2 Tasks
task_body declaration ::= // from Annex A.2.7

[interface identifier .] task_identifier ;
{ task_item_declaration }
{ statement_or_null }
endtask [: task_identifier]
| [interface identifier .] task_identifier (task port_list) ;
{ block_item_declaration }
{ statement_or_null }
endtask [: task_identifier]
task_declaration ::=task [lifetime] task_body_declaration
task_item_declaration ::=
block_item_declaration
| { attribute instance} tf_input_declaration ;
| { attribute instance} tf_output_declaration ;
| { attribute instance} tf_inout_declaration ;
| { attribute instance} tf_ref declaration ;
task_port_list ::=task_port_item { , task_port_item }
| list_of port_identifiers{ , task_port_item}
task_port_item ::=
{ attribute_instance} tf_input_declaration
| { attribute instance} tf_output_declaration
| { attribute instance} tf_inout_declaration
| { attribute instance} tf_ref declaration ;
| { attribute instance} port_typelist_of tf port identifiers
| { attribute instance} tf_data typelist of tf variable identifiers
tf_input_declaration ::=
input [signing] { packed dimension} list_of tf port_identifiers
| input tf_data typelist_of tf_variable identifiers
tf_output_declaration ::=
output [signing] { packed dimension} list_of tf port identifiers
| output tf_data typelist of tf variable identifiers
tf_inout_declaration ::=
inout [signing] { packed_dimension} list_of tf port_identifiers
| inout tf_data typelist_of tf variable identifiers
tf_ref declaration ::=
[const] ref tf_data typelist_of tf variable identifiers

tf_data type::=
data _type
| chandle
lifetime ::= static | automatic // from Annex A.2.1
signing ::=signed | unsigned /I fromAnnex A.2.2.1

Syntax 10-1—Task syntax (excerpt from Annex A)

A Verilog task declaration either has the formal argumentsin parentheses (like ANSI C) or in declarations and
directions.

task mytaskl (output int x, input logic y);

74 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

endiégk
task mytaskz;
out put Xx;
i nput vy;
int x;
| ogic vy;
endlt ;allsk
Each forma argument has one of the following directions:
i nput // copy valuein at beginning
out put // copy value out at end
i nout /[copy in at beginning and out at end
r ef /I pass reference (see Section 10.5.2)
With SystemVerilog, there is a default direction of i nput if no direction has been specified. Once a direction

is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs.

task mytask3(a, b, output logic [15:0] u, Vv);

endiégk
Each formal argument also has a data type which can be explicitly declared or can inherit a default type. The
task argument default type in SystemVerilog is! ogi c.

SystemVerilog allows an array to be specified as a formal argument to atask. For example:

/1 the resultant declaration of b is input [3:0][7:0] b[3:0]
task mytask4(input [3:0][7:0] a, b[3:0], output [3:0][7:0] y[1:0]);

endiégk
Verilog-2001 allows tasks to be declared as aut omat i ¢, so that all formal arguments and local variables are
stored on the stack. SystemVerilog extends this capability by alowing specific formal arguments and local

variablesto be declared as aut omat i ¢ within astatic task, or by declaring specific formal arguments and local
variablesas st at i ¢ within an automatic task.

With SystemVerilog, multiple statements can be written between the task declaration and endt ask, which
means that the begi n end can be omitted. If begi n end is omitted, statements are executed sequen-
tially, the same asiif they were enclosed in abegi n end group. It shall also be legal to have no statements at
all.

In Verilog, atask exits when the endtask is reached. With SystemVerilog, ther et ur n statement can be used to
exit the task before the endt ask keyword.

Copyright 2003 Accellera. All rights reserved. 75

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

10.3 Functions

function_data type®::= [/ from Annex A.2.6
integer_vector_type{ packed _dimension} [range]
| integer_atom_type
| type_declaration_identifier { packed_dimension }
| non_integer_type
| struct [packed] {{ struct_union_member } } { packed _dimension}
| union [packed] { { struct_union_member } } { packed _dimension}
| enum [integer_type { packed_dimension}]
{ enum_identifier [= constant_expression] { , enum_identifier [= constant_expression] } }
| string
| chandle
| void
function_body_declaration ::=
[signing] [range or_type]
[interface identifier .] function_identifier ;
{ function_item_declaration }
{ function_statement_or_null }
endfunction [: function_identifier]
| [signing] [range _or_type]
[interface identifier .] function_identifier (function_port_list) ;
{ block_item_declaration }
{ function_statement_or_null }
endfunction [: function_identifier]
function_declaration ::=
function [lifetime] function_body_declaration
function_item_declaration ::=
block item declaration
| { attribute instance} tf_input_declaration ;
| { attribute instance} tf_output_declaration ;
| { attribute instance} tf_inout_declaration ;
| { attribute instance} tf_ref declaration ;
function_port_item ::=
{ attribute_instance} tf_input_declaration
| { attribute_instance} tf_output_declaration
| { attribute_instance} tf_inout_declaration
| { attribute _instance} tf_ref declaration
| { attribute _instance} port_typelist_of tf port_identifiers
| { attribute_instance} tf_data typelist_of tf variable identifiers
function_port_list ::=function_port_item { , function_port_item}
range or_type::=
{ packed_dimension} range
| function_data_type

lifetime ::= static | automatic // from Annex A.2.1

signing ::=signed | unsigned /I fromAnnex A.2.2.1

Syntax 10-2—Function syntax (excerpt from Annex A)

76 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

A Verilog function declaration either has the formal argumentsin parentheses (like ANSI C) or in declarations
and directions:

function logic [15:0] nyfuncl(int x, int y);
endf uncti on

function logic [15:0] nyfunc2
i nput int x;
i nput int y;

endf unction

SystemVerilog extends Verilog functions to alow the same formal arguments as tasks. Function argument
directions are:

i nput // copy valuein at beginning

out put // copy value out at end

i nout // copy in at beginning and out at end

r ef /I pass reference (see Section 10.5.2)
Function declarations default to the formal directioni nput if no direction has been specified. Once adirection

is given, subsequent formals default to the same direction. In the following example, the formal arguments a
and b default to inputs, and u and v are both outputs:

function logic [15:0] nyfunc3(int a, int b, output logic [15:0] u, Vv);
endfuncti on

Each forma argument has a data type which can be explicitly declared or can inherit a default type. The
default type in SystemVerilog is | ogi ¢, which is compatible with Verilog. SystemVerilog alows an array to
be specified as aformal argument to a function, for example:

function [3:0][7:0] myfunc4(input [3:0][7:0] a, b[3:0]);
endf uncti on

It shall beillegal to call afunction with out put , i nout or r ef argumentsin an event expression, in an expres-
sion within a procedural continuous assignment, or in an expression that is not within a procedural statement.
However, aconst ref function argument shall be legal in this context (see section 10.5.2).

SystemVerilog alows multiple statements to be written between the function header and endf uncti on,
which means that the begi n...end can be omitted. If the begi n...end is omitted, statements are executed
sequentialy, as if they were enclosed in a begi n...end group. It is also legal to have no statements at all, in
which case the function returns the current value of the implicit variable that has the same name as the func-
tion.

10.3.1 Void functions

In Verilog, functions must return values. The return value is specified by assigning a value to the name of the
function.

function [15:0] myfuncl (input foo);
nmyfuncl = 16" hbeef; //return value is assigned to function nane
endfuncti on

SystemVerilog allows functions to be declared as type voi d, which do not have a return value. For non-void
functions, avalue can be returned by assigning the function nameto avalue, asin Verilog, or by usingr et urn

Copyright 2003 Accellera. All rights reserved. 77

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

with avalue. Ther et ur n statement shall override any value assigned to the function name. When the return
statement is used, non-void functions must specify an expression with the return.

function [15:0] nmyfunc2 (input foo);
return 16’ hbeef; //return value is specified using return statenent

endf uncti on
In SystemVerilog, afunction return can be a structure or union. In this case, ahierarchical name used inside the
function and beginning with the function name is interpreted as a member of the return value. If the function
name is used outside the function, the name indicates the scope of the whole function. If the function nameis
used within a hierarchical name, it also indicates the scope of the whole function.
Function calls are expressions unless of typevoi d, which are statements:

a = b + nyfuncl(c, d); //call myfuncl (defined above) as an expression

myprint(a); //call myprint (defined below) as a statenent

function void nyprint (int a);

endf uncti on

10.3.2 Discarding function return values

In Verilog-2001, values returned by functions must be assigned or used in an expression. Calling afunction as
if it has no return value can result in awarning message. SystemVerilog allows using thevoi d datatypetodis-
card a function’s return value, which is done by casting the function to the voi d type:

voi d’ (sone_function());

10.4 Task and function scope and lifetime

In Verilog-2001, the default lifetime for tasks and functions is static. Automatic tasks and functions must be
explicitly declared, using the automatic keyword.

SystemVerilog adds an optional qualifier to specify the default lifetime of al tasks and functions declared
within a module, interface or program (see Section 16). The lifetime qualifier isaut omati c or static. The
default lifetimeisst ati c.

program autonmatic test ;
task foo(int a); /1 argunments and variables in foo are autonmatic

endt ask
endnodul e

Class methods are by default aut onat i ¢, regardless of the lifetime attribute of the scope in which they are
declared. Classes are discussed in Section 11.

10.5 Task and function argument passing

SystemVerilog provides two means for passing arguments to functions and tasks: by value and by reference.
Arguments can also be passed by name as well as by position. Task and function arguments can also be given
default values, allowing the call to the task or function to not pass arguments.

10.5.1 Pass by value

Pass by value is the default mechanism for passing arguments to subroutines, it is also the only one provided

78 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

by Verilog-2001. This argument passing mechanism works by copying each argument into the subroutine area.
If the subroutine is automatic, then the subroutine retains alocal copy of the argumentsin its stack. If the argu-
ments are changed within the subroutine, the changes are not visible outside the subroutine. When the argu-
ments are large, it can be undesirable to copy the arguments. Also, programs sometimes need to share a
common piece of data that is not declared global.

For example, calling the function bellow copies 1000 bytes each time the call is made.

function int crc(byte packet [1000:1]);
for(int j=0 1; j <= 1000; j++) begin
crc = packet[j];
end
endf uncti on

10.5.2 Pass by reference

Arguments passed by reference are not copied into the subroutine area, rather, a reference to the original argu-
ment is passed to the subroutine. The subroutine can then access the argument data via the reference. To indi-
cate argument passing by reference, the argument declaration is preceded by the r ef keyword. The genera
syntax is.

subroutine(ref type argunment);
For example, the example above can be written as:

function int crc(ref byte packet [1000:1]);
for(int j=1; j <= 1000; j++) begin
crc = packet[j];
end
endf uncti on

Note that in the example, no change other than addition of the r ef keyword is needed. The compiler knows
that packet isnow addressed via areference, but users do not need to make these references explicit either in
the callee or at the point of the call. That is, the call to either version of the cr ¢ function remains the same:

byt e packet 1[1000: 1] ;
int k = crc(packetl); // pass by value or by reference: call is the same

When the argument is passed by reference, both the caller and the subroutine share the same representation of
the argument, so any changes made to the argument either within the caller or the subroutine shall be visible to
each other. The semantics of assignments to variables passed by reference is that changes are seen outside the
subroutine immediately (before the subroutine returns). Only variables, not nets, can be passed by reference.

Arguments passed by reference must match exactly, no promotion, conversion, or auto-casting is possible
when passing arguments by reference. In particular, array arguments must match their type and all dimensions
exactly. Fixed-size arrays cannot be mixed with dynamic arrays and vice-versa.

Passing an argument by reference is a unique argument passing qualifier, different from i nput , out put, or
i nout . Combining r ef with any other qualifier isillegal. For example, the following declaration resultsin a
compiler error:

task incr(ref input int a); // incorrect: ref cannot be qualified

A ref argument is similar to an i nout argument except that ani nout argument is copied twice: once from
the actual into the argument when the subroutine is called and once from the argument into the actual when the
subroutine returns. Passing object handles are no exception and have similar semantics when passed asr ef or
i nout arguments, thus, ar ef of an object handle allows changes to the object handle (for example assigning
anew object) in addition to modification of the contents of the object.

Copyright 2003 Accellera. All rights reserved. 79

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

To protect arguments passed by reference from being modified by a subroutine, the const qualifier can be used
together withr ef toindicate that the argument, although passed by reference, is aread-only variable.

task show (const ref byte [] data);
for (int j =0; j < data.size ; j++)
$di splay(data[j]); // data can be read but not witten
endt ask

When the formal argument is declared asaconst r ef , the subroutine cannot alter the variable, and an attempt
to do so shall generate compiler error.

10.5.3 Default argument values

To handle common cases or allow for unused arguments, SystemVerilog allows a subroutine declaration to
specify adefault value for each singular argument.

The syntax to declare a default argument in a subroutine is:
subroutine(type argument = default_val ue);

The def aul t _val ue isany expression that is visible at the current scope. It can include any combination of
constants or variables visible at the scope of both the caller and the subroutine.

When the subroutine is called, arguments with default values can be omitted from the call and the compiler
shall insert their corresponding values. Unspecified (or empty) arguments can be used as placeholders for
default arguments, allowing the use of non-consecutive default arguments. If an unspecified argument is used
for an argument that does not have a default value, a compiler error shall be issued.

task read(int j =0, int k, int data =1);

éﬁat ask;
This example declares atask r ead() with two default arguments, j and dat a. The task can then be called
using various default arguments:

read(, 5); /1 is equivalent to read(0, 5, 1);
read(2, 5); /1l is equivalent to read(2, 5, 1);
read(, 5,); /1 is equivalent to read(0, 5, 1);
read(, 5, 7); /1 is equivalent to read(0, 5, 7);
read(1, 5, 2); /1 is equivalent to read(1, 5, 2);
read(); /1 error; k has no default value

10.5.4 Argument passing by name
SystemVerilog allows arguments to tasks and functions to be passed by name as well as by position. This
allows specifying non-consecutive default arguments and easily specifying the argument to be passed at the
call. For example:

function int fun(int j =1, string s = "no");

endf unction

The fun function can be called as follows:

fun(.j(2), .s("yes")); /1 fun(2, "yes");
fun(.s("yes")); [l fun(1, "yes");
fun(, "yes"); [l fun(1, "yes");
fun(.j(2)); [l fun(2, "no");
fun(2); [l fun(2, "no")

80 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

fun(); [/ fun(1, "no");

If the arguments have default values, they are treated like parameters to module instances. If the arguments do
not have a default, then they must be given or the compiler shall issue an error.

If both positional and named arguments are specified in a single subroutine call, then al the positional argu-
ments must come before the named arguments. Then, using the same example as above:

fun(.s("yes"), 2); /1 illegal
fun(2, .s("yes")); Il K

10.5.5 Optional argument list

When atask or function specifies no arguments, the empty parenthesis, () , following the task/function name
shall be optional. This is also true for tasks or functions that require arguments, when all arguments have
defaults specified.

10.6 Import and export functions

The syntax for the import and export of functionsis:

dpi_import_export ::= I/ from Annex A.2.6
import "DPI" [dpi_import_property] [¢_identifier =] dpi_function_proto ;
| export " DPI" [c_identifier =] function function_identifier ;
dpi_import_property ::= context | pure

dpi_function_proto™+12 ::= function named_function_proto

Syntax 10-3—Import and export syntax (excerpt from Annex A)

In both inmport and export, c identifier is the name of the foreign function (import/export),
function_identifier is the SystemVerilog name for the same function. If c_identifier is not explicitly given, it
shall be the same as the SystemVerilog function function_identifier. An error shall be generated if and only if
the c_identifier has characters that are not valid in a C function identifier.

Several SystemVerilog functions can be mapped to the same foreign function by supplying the same
c_identifier for several fnames. Note that all these SystemVerilog functions must have identical argument
types, as defined in the next paragraph.

For any given c_identifier, al declarations, regardless of scope, must have exactly the same function signature.
The function signature includes the return type, the number, order, direction and types of each and every argu-
ment. Each type includes dimensions and bounds of any arrays/array dimensions. For i nport declarations,
arguments can be open arrays. Open arrays are defined in Section 26.4.6.1. The signature also includes the
pur e/cont ext qualifiersthat can be associated with an import definition.

Only onei nport or export declaration of a given function_identifier shall be permitted in any given scope.
More specifically, for an i nport, the import must be the sole declaration of function_identifier in the given
scope. For an expor t , the function must be declared in the scope where the export occurs and there must be
only one export of that function_identifier in that scope.

Copyright 2003 Accellera. All rights reserved. 8l

LRM 5

LRM 17

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

For exported functions, the exported function must be declared in the same scope that contains the expor t
"DPI " declaration. Only SystemVerilog functions can be exported (specifically, this excludes exporting aclass
method)

Notethat i nport "DPI " functions declared thisway can be invoked by hierarchical reference the same as any
normal SystemVerilog function. Declaring a SystemVerilog function to be exported does not change the
semantics or behavior of this function from the SystemVerilog perspective (i.e. thereis no effect in SystemVer-
ilog usage other than making this exported function also accessible to C callers).

Only non-void functions with no out put or i nout arguments can be specified as pur e. Functions specified
as pure in their corresponding SystemVerilog external declarations shall have no side effects; their results need
to depend solely on the values of their input arguments. Calls to such functions can be removed by SystemVer-
ilog compiler optimizations or replaced with the values previously computed for the same values of the input
arguments.

Specifically, a pure function is assumed to not directly or indirectly (i.e., by calling other functions):
— Perform any file operations

— Read or write anything in the broadest possible meaning, including I/O, environment variables, objects
from the operating system, or from the program or other processes, shared memory, sockets, etc.

— Access any persistent data, like global or static variables.

If a pure function does not obey the above restrictions, SystemVerilog compiler optimizations can lead to
unexpected behavior, due to eliminated calls or incorrect results being used.

An unqualified imported function can have side effects but cannot read or modify any SystemVerilog signals
other than those provided through its arguments. Unqualified imports shall not be permitted to invoke exported
SystemVerilog functions.

Imported functions with the cont ext qualifier can invoke exported SystemVerilog functions, can read or
write to SystemVerilog signals other than those passed through their arguments, either through the use of other
interfaces or as a side effect of invoking exported SystemVerilog functions. Context functions shall always
implicitly be supplied a scope representing the fully qualified instance name within which the import declara-
tion was present (i.e. an import function always runs in the instance in which the import declaration occurred).
This is the same semantics as SystemVerilog functions, which also run in the scope they are defined, rather
than in the scope of the caller.

Import context functions can have side effects and can use other SystemVerilog interfaces (including but not
limited to VPI). However, note that declaring an import context function does not automatically make any
other smulator interface available. For VPI access (or any other interface access) to be possible, the appropri-
ate implementation-defined mechanism must still be used to enable these interface(s). Note also that DPI calls
do not automatically create or provide any handles or any special environment that might be needed by those
other interfaces. It shall be the user’s responsibility to create, manage or otherwise manipulate the required
handles/environment(s) needed by the other interfaces. The svGet ScopeNanme() and related functions exist
to provide a name based linkage from DPI to other interfaces. Exported functions can only be invoked if the
current DPI context refers to an instance in which the named function is defined.

To access functions defined in any other scope, including $r oot , the foreign code shall have to change DPI
context appropriately. Attempting to invoke an exported SystemVerilog function from a scope in which it is
not directly visible shall result in aruntime error. How such errors are handled shall be implementation depen-
dent. If an imported function needs to invoke an exported function that is not visible from the current scope, it
needs to change, via svSetScope, the current scope to a scope that does have visibility to the exported function.
This is conceptually equivalent to making a hierarchically qualified function call in SystemVerilog. The cur-
rent SystemVerilog context shall be preserved across a call to an exported function, even if current context has
been modified by an application. Note that context is not defined for non-context imports and attempting to
use any functionality depending on context from non-context imports can lead to unpredictable behavior.

82 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Section 11
Classes

11.1 Introduction (informative)

SystemVerilog introduces an object-oriented cl ass data abstraction. Classes alow objects to be dynamically
created, deleted, assigned, and accessed via object handles. Object handles provide a safe pointer-like mecha-
nism to the language. Classes offer inheritance and abstract type modeling, which brings the advantages of C
function pointers with none of the type-safety problems, thus, bringing true polymorphism into Verilog.

11.2 Syntax

class declaration ::= [/l from Annex A.1.3
{ attribute_instance} [virtual] class[lifetime] class identifier [parameter_port_list]
[extendsclass identifier [parameter_value assignment |] ; fimeunits—dectaration {
class item}
endclass| : class_identifier]

class item::= /l from Annex A.1.8
{ attribute_instance} class property
| { attribute _instance} class method
| { attribute _instance} class _constraint
class property ::=
{ property_qualifier } data declaration
| const { class item_qualifier } data type const_identifier [= constant_expression] ;
class method ::=
{ method_qualifier } task_declaration
| { method_qualifier } function_declaration
| extern { method_qualifier } method_prototype

class congtraint ::=
constraint_prototype
| constraint_declaration

class item_qualifierl® ::=
static
| protected
| local

property_qualifi erl0:=
rand
| randc
| class_item_qualifier

method_qualifierl® ::=
virtual
| class item_qualifier
method_prototype ::=
task named_task_proto ;
| function named_function_proto ;

extern_method_declaration ::=
function [lifetime] class_identifier :: function_body declaration
| task [lifetime] class identifier :: task_body_declaration

Copyright 2003 Accellera. All rights reserved. 83

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Syntax 11-1—Class syntax (excerpt from Annex A)

11.3 Overview

A class is a type that includes data and subroutines (functions and tasks) that operate on that data. A class's
data is referred to as properties, and its subroutines are called methods, both are members of the class. The
properties and methods, taken together, define the contents and capabilities of some kind of object.

For example, a packet might be an object. It might have a command field, an address, a sequence number, a
time stamp, and a packet payload. In addition, there are various things than can be done with a packet: initial-
ize the packet, set the command, read the packet’s status, or check the sequence number. Each Packet is differ-
ent, but as a class, packets have certain intrinsic properties that can be captured in a definition.

cl ass Packet
//data or class properties
bit [3:0] command;
bit [40:0] address;
bit [4:0] master_id;
i nteger tine_requested,;
i nteger tine_issued;
i nteger status;

/1l initialization
function new();
conmand = | DLE;
address = 41’ bO;
master_id = 5 bx;
endf uncti on

/1 met hods
/1 public access entry points
task clean();
command = 0; address = 0; nmaster_id = 5" bx;
endt ask

task issue_request(int delay);
/'l send request to bus
endt ask

function integer current_status();
current_status = status;
endf uncti on
endcl ass

A common convention isto capitalize the first |etter of the class name, so that it is easy to recognize class dec-
larations.

11.4 Objects (class instance)

A class defines a data type. An object isan instance of that class. An object is used by first declaring avariable
of that class type (that holds an object handl€) and then creating an object of that class (using the new function)
and assigning it to the variable.

Packet p; // declare a variable of class Packet
p =new // initialize variable to a new all ocated object of the class Packet

The variable p is said to hold an object handle to an object of class Packet .

84 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

SystemVerilog 3.1a/draft 1

Uninitialized object handles are set by default to the specia value nul | . An uninitialized object can be

detected by comparing its handle with nul | .

For example: Thetask t ask1 below checksif the object isinitialized. If it isnot, it creates a new object viathe

new command.
cl ass obj _exanpl e;
endcl als.sl
task taskl1(integer a,

if (myexanple == null) nyexanpl e
endt ask

obj _exanpl e nmyexanpl e);
new;

Accessing non-static members (Section 11.8) or virtual methods (Section 11.19) viaanul | object handle is
illegal. Theresult of anillegal accessviaanull object isindeterminate, and implementations can issue an error.

SystemVerilog objects are referenced using an object handle. There are some differences between a C pointer
and a SystemVerilog object handle. C pointers give programmers alot of latitude in how a pointer can be used.
The rules governing the usage of SystemVerilog object handles are much more restrictive. A C pointer can be
incremented for example, but a SystemVerilog object handle cannot. In addition to object handles, Section 3.6

introduces the chandl e datatype for use with the DPI Direct Programming Interface (see Section 26).

Table 11-1: Comparison of pointer and handle types

SV object

Operation C pointer handle SV chandle
Arithmetic operations (such as incrementing) Allowed Not allowed | Not alowed
For arbitrary data types Allowed Not allowed | Not allowed
Dereference when null Error Not allowed | Not alowed
Casting Allowed Limited Not allowed
Assignment to an address of a datatype Allowed Not allowed | Not allowed
Unreferenced objects are garbage collected No Yes ¥es No
Default value Undefined nul | nul |
For classes (C++) Allowed Not allowed

11.5 Object properties

The data fields of an object can be used by qualifying property names with an instance name. Using the earlier
example, the commands for the Packet object p can be used as follows:

Packet p = new,

p.conmmand = INIT;

p. address = $random

packet _time = p.tine_requested;

Any data-type can be declared as a class property, except for net types since they are incompatible with

dynamically allocated data.

Copyright 2003 Accellera. All rights reserved.

85

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

11.6 Object methods

An object’s methods can be accessed using the same syntax used to access properties:

new,

Packet p = A
= p.current_status();

status
Note that the assignment to st at us is hot:
status = current_status(p);

The focus in object-oriented programming is the object, in this case the packet, not the function call. Also,
objects are self-contained, with their own methods for manipulating their own properties. So the object doesn’t
have to be passed asan argument to current _stat us() . A class properties are freely and broadly available
to the methods of the class, but each method only accesses the properties associated with its object, i.e., its
instance.

11.7 Constructors

SystemVerilog does not require the complex memory allocation and deallocation of C++. Construction of an
object is straightforward and garbage collection, asin Java, isimplicit and automatic. There can be no memory
leaks or other subtle behavior that is so often the bane of C++ programmers.

SystemVerilog provides a mechanism for initializing an instance at the time the object is created. When an
object is created, for example

Packet p = new,
The system executes the new function associated with the class:

cl ass Packet;
i nt eger command,;

function new();
command = | DLE;
endf unction
endcl ass

Note that newis now being used in two very different contexts with very different semantics. The variable dec-
laration creates an object of class Packet . In the course of creating this instance, the newfunction is invoked,
in which any specialized initialization required can be done. The newfunction isalso called the class construc-
tor.

The new operation is defined as a function with no return type, and like any other function, it must be non-
blocking. Even though new does not specify areturn type, the left-hand side of the assignment determines the
return type.

Every class has a default (built-in) new method. The default constructor first calls its parent class constructor

(super.new() as described in Section 11.14) and then proceeds to initialize each member of the current object

to its default (or uninitialized value).

It isalso possible to pass arguments to the constructor, which allows run-time customization of an object:
Packet p = new(STARTUP, $random $tine);

where the new initialization task in Packet might now look like:

function new(int cnd = IDLE, bit[12:0] adrs = 0, int cnd_tinme);

86 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

command = cnd;

address = adrs;

time_requested = cnd_ti ne;
endf uncti on

The conventions for arguments are the same as for any other procedural subroutine cals, such as the use of
default arguments.

11.8 Static properties

The previous examples have only declared instance properties. Each instance of the class (i.e., each object of
type Packet), has its own copy of each of its six variables. Sometimes only one version of a variable is
reguired to be shared by all instances. These class properties are created using the keyword st at i c. Thus, for
example, in a case where all instances of a class need access to a common file descriptor:

cl ass Packet ;
static integer fileld = $fopen("data", "r");

Now, fi | el Dshall be created and initialized once. Thereafter, every Packet object can access the file descrip-
tor in the usual way:

Packet p;
c = $fgetc(p.filelD);

11.9 Static methods

Methods can be declared as st at i c. A static method is subject to al the class scoping and access rules, but
behaves like a regular subroutine that can be called outside the class, even with no class instantiation. A static
method has no access to non-static members (properties or methods), but it can directly access static class
properties or call static methods of the same class. Access to non-static members or to the specia this handle
within the body of a static method isillegal and resultsin a compiler error. Static methods cannot be virtual.

class id;
static int current = 0;
static function int next_id();
next _id = ++current; // OK to access static class property
endf unction
endcl ass

A static method is different from a method with static lifetime. The former refers to the lifetime of the method
within the class, while the latter refersto the lifetime of the arguments and variables within the task.

cl ass TwoTasks;
static task foo(); ... endtask // static class nmethod with
/] autonmatic variable lifetine
task static bar(); ... endtask // non-static class nmethod with
/] static variable lifetine
endcl ass

By default, class methods have automatic lifetime for their arguments and variables.

11.10 This

Thet hi s keyword is used to unambiguously refer to properties or methods of the current instance. Thet hi s
keyword denotes a predefined object handle that refers to the object that was used to invoke the subroutine that

Copyright 2003 Accellera. All rights reserved. 87

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

t hi s isused within. Thet hi s keyword shall only be used within non-static class methods, otherwise an error
shall be issued. For example, the following declaration is a common way to write an initialization task:

cl ass Denvo ;
i nteger Xx;

function new (integer x)
this.x = x;
endf unction
endcl ass

The x isnow both a property of the class and an argument to the function new. In the function new, an unqual-
ified reference to x shall be resolved by looking at the innermost scope, in this case the subroutine argument
declaration. To access the instance property, it is qualified with the t hi s keyword, to refer to the current
instance.

Note that in writing methods, members can be qualified with t hi s to refer to the current instance, but it is usu-
aly unnecessary.

11.11 Assignment, re-naming and copying

Declaring aclass variable only creates the name by which the object is known. Thus:

Packet pl;
creates avariable, p1, that can hold the handle of an object of class Packet , but theinitial valueof p1isnul | .
The object does not exist, and p1 does not contain an actual handle, until an instance of type Packet is cre-
ated:

pl = new,

Thus, if another variableis declared and assigned the old handle, p1, to thenewone, asin:

Packet p2;
p2 = pil;

then thereis till only one object, which can be referred to with either the name p1 or p2. Note, new was exe-
cuted only once, so only one object has been created.

If, however, the example above is re-written as shown below, a copy of p1 shall be made:

Packet pl;
Packet p2;
pl new,

p2 new pl;

Thelast statement has new executing a second time, thus creating anew object p2, whose properties are copied
from pl. Thisisknown as a shallow copy. All of the variables are copied across: integers, strings, instance han-
dles, etc. Objects, however, are not copied, only their handles; as before, two names for the same object have
been created. Thisistrue even if the class declaration includes the instantiation operator new:

class A ;
integer j = 5;

endcl ass

class B ;
integer i = 1;
A a = new,

88 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

endcl ass

function integer test;

B bl = new, [/l Create an object of class B

B b2 = new bil; /1 Create an object that is a copy of bl
b2.i = 10; /1 1 is changed in b2, but not in bl
b2.a.j = 50; /1 change a.j, shared by both bl and b2
test = bl.i; /] test is set to 1 (bl.i has not changed)
test = bl.a.j; /1 test is set to 50 (a.j has changed)

endf uncti on

Several things are noteworthy. First, properties and instantiated objects can be initialized directly in a class
declaration. Second, the shallow copy does not copy objects. Third, instance qualifications can be chained as
needed to reach into objects or to reach through objects:

bl. a.j /'l reaches into a, which is a property of bl
p. next . next . next. val /1 chain through a sequence of handles to get to va

To do a full (deep) copy, where everything (including nested objects) are copied, custom code is typically
needed. For example:

Packet pl = new,
Packet p2 = new,

p2. copy(pl);

where copy(Packet p) is a custom method written to copy the object specified as its argument into its
instance.

11.12 Inheritance and subclasses

The previous sections defined a class called Packet . This class can be extended so that the packets can be
chained together into alist. One solution would be to create anew class called Li nkedPacket that contains a
variable of type Packet called packet _c.

To refer to a property of Packet , the variable packet _c needsto be referenced.

cl ass Li nkedPacket ;
Packet packet_c;
Li nkedPacket next;

function Li nkedPacket get_next();
get _next = next;
endf unction
endcl ass

Since Li nkedPacket is a speciaization of Packet , a more elegant solution is to extend the class creating a
new subclass that inherits the members of the parent class. Thus, for example:

cl ass Li nkedPacket extends Packet;
Li nkedPacket next;

function LinkedPacket get_next();
get _next = next;
endf unction
endcl ass

Now, all of the methods and properties of Packet are part of Li nkedPacket —as if they were defined in
Li nkedPacket —and Li nkedPacket hasadditional properties and methods.

Copyright 2003 Accellera. All rights reserved. 89

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

The parent’s methods can also be overridden, changing their definitions.
The mechanism provided by SystemVerilog is called Sngle-Inheritance, that is, each class is derived from a
single parent class.

11.13 Overridden members

Subclass objects are also legal representative objects of their parent classes. For example, every Li nked-
Packet object isaperfectly legal Packet object.

The handle of aLi nkedPacket object can be assigned to aPacket variable:

Li nkedPacket | p = new,
Packet p = Ip;

In this case, references to p access the methods and properties of the Packet class. So, for example, if proper-
ties and methods in Li nkedPacket are overridden, these overridden members referred to through p get the
origina members in the Packet class. From p, new and all overridden membersin Li nkedPacket are now

hidden.

cl ass Packet ;

integer i = 1;
function integer get();
get =i;
endf uncti on
endcl ass

cl ass Li nkedPacket extends Packet;

integer i = 2;
function integer get();
get = -i;
endf unction
endcl ass

Li nkedPacket | p = new,

Packet p = I p;

j =p.i; i
/i

= 1, not 2
j = p-get(); /

1, not -1 or -2

To call the overridden method via a parent class object (p in the example), the method needs to be declared
vi rtual (see Section 11.19).

11.14 Super

The super keyword is used from within aderived classto refer to members of the parent class. It is necessary
to use super to access members of a parent class when those members are overridden by the derived class.

cl ass Packet; [l parent class
i nteger val ue;
function integer delay();
delay = value * val ue;
endf uncti on
endcl ass

cl ass Li nkedPacket extends Packet; //derived class
i nteger val ue;

90 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

function integer delay();
del ay = super.delay()+ value * super.val ue
endf unction
endcl ass

The member can be a member declared alevel up or be inherited by the class one level up. Thereis no way to
reach higher (for example, super . super. count isnot allowed).

Subclasses (or derived classes) are classes that are extensions of the current class. Whereas superclasses (par-
ent classes or base classes) are classes that the current class is extended from, beginning with the original base
class.

Note: When using the super within new, super . new must be the first executable statement in the constructor. Thisis

because the superclass must be initialized before the current class and if the user code doesn’t provide an initialization, the
compiler shall insert acall to super . newautomatically.

11.15 Casting

It is always legal to assign a subclass variable to a variable of a class higher in the inheritance tree. It is never
legal to directly assign a superclass variable to avariable of one of its subclasses. However, it islegal to assign
asuperclass handle to a subclass variable if the superclass handle refers to an object of the given subclass.
To check if the assignment is legal, the dynamic cast function $cast () isused (see Section 3.15).
The syntax for $cast () is:
task $cast(singular dest_handl e, singular source_handle);
or
function int $cast(singular dest_handl e, singular source_handle);
When used with object handles, $cast () checks the hierarchy tree (super and subclasses) of the

sour ce_expr to seeif it contains the class of dest_handle. If it does, $cast () does the assignment. Other-
wise the error handling is as described in Section 3.15.

11.16 Chaining constructors

When a subclass is instantiated, the class method new() isinvoked. The first action new() takes, before any
code defined in the function is evaluated, is to invoke the new() method of its superclass, and so on up the
inheritance hierarchy. Thus, al the constructors are caled, in the proper order, beginning with the root base
class and ending with the current class.
If the initialization method of the superclass requires arguments, there are two choices. To aways supply the
same arguments, or to use the super keyword. If the arguments are always the same, then they can be speci-
fied at the time the class is extended:

cl ass EtherPacket extends Packet(5);
This passes 5 to the new routine associated with Packet .
A more general approach isto usethe super keyword, to call the superclass constructor:

function new();

super. new(5) ;
endfuncti on

To use this approach, super . new(..) must be the first executable statement in the function new.

Copyright 2003 Accellera. All rights reserved. 91

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

11.17 Data hiding and encapsulation

So far, al class properties and methods have been made available to the outside world without restriction.
Often, it is desirable to restrict access to properties and methods from outside the class by hiding their names.
This keeps other programmers from relying on a specific implementation, and it also protects against acciden-
tal modifications to properties that are internal to the class. When all data becomes hidden—being accessed
only by public methods—testing and maintenance of the code becomes much easier.

In SystemVerilog, unqualified properties and methods are public, available to anyone who has access to the
object’s name.

A member identified as| ocal isavailable only to methods inside the class. Further, these local members are
not visible within subclasses. Of course, non-local methods that access local properties or methods can be
inherited, and work properly as methods of the subclass.

A prot ect ed property or method has all of the characteristics of al ocal member, except that it can be inher-
ited; it is visible to subclasses.

Note that within the class, alocal method or property of the class can be referenced, evenif it isin a different
instance. For example:

cl ass Packet;
| ocal integer i;
function integer conpare (Packet other);
conpare = (this.i == other.i);
endf unction
endcl ass

A strict interpretation of encapsulation might say that ot her . i should not be visible inside of this packet,
since it is alocal property being referenced from outside its instance. Within the same class, however, these
references are allowed. In thiscase, t hi s. i shall be compared to ot her. i and the result of the logical com-
parison returned.

Class members can be identified as either | ocal or pr ot ect ed; properties can be further defined as const ,
and methods can be defined asvi r t ual . Thereis no predefined ordering for specifying these modifiers; how-
ever, they can only appear once per member. It shall be an error to define members to be both | ocal and
pr ot ect ed, or to duplicate any of the other modifiers.

11.18 Constant Properties

Class properties can be made read-only by aconst declaration like any other SystemVerilog variable. How-
ever, because class objects are dynamic objects, class properties allow two forms of read-only variables: global
constants and instance constants.

Global constant properties are those that include an initial value as part of their declaration. They are similar to
other const variablesin that they cannot be assigned a val ue anywhere other than in the declaration.

cl ass Junbo_Packet ;
const int max_size = 9 * 1024; // global constant
byte payload [];
function new(int size);
payl oad = new size > nax_size ? nax_size : size];
endf unction
endcl ass

I nstance constants do not include an initial value in their declaration, only the const qualifier. Thistype of con-

stant can be assigned a value at run-time, but the assignment can only be done once in the corresponding class
constructor.

92 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

cl ass Bi g_Packet;
const int size; // instance constant
byte payload [];
function new();
size = $random % 4096; //one assignment in new -> ok
payl oad = new size]
endf uncti on
endcl ass

Typically, global constants are also declared st ati ¢ since they are the same for al instances of the class.
However, an instance constant cannot be declared st at i ¢, since that would disallow all assignments in the
constructor.

11.19 Abstract classes and virtual methods

A set of classes can be created that can be viewed as all being derived from a common base class. For example,
acommon base class of type BasePacket that sets out the structure of packets but isincomplete would never
be instantiated. From this base class, though, a number of useful subclasses could be derived, such as Ethernet
packets, token ring packets, GPSS packets, satellite packets. Each of these packets might look very similar, all
needing the same set of methods, but they could vary significantly in terms of their internal details.

A base class sets out the prototype for the subclasses. Since the base class is not intended to be instantiated, it
can be made abstract by specifying the classto bevi rt ual :

virtual cl ass BasePacket;

Abstract classes can aso have virtual methods. Virtual methods provide prototypes for subroutines, all of the
information generally found on the first line of a method declaration: the encapsulation criteria, the type and
number of arguments, and the return typeif it is needed. Later, when subclasses override virtual methods, they
must follow the prototype exactly. Thus, all versions of the virtual method look identical in all subclasses:

virtual cl ass BasePacket;
virtual protected function integer send(bit[31:0] data);
endf unction

endcl ass

cl ass Et her Packet extends BasePacket ;
protected function integer send(bit[31:0] data)
/1 body of the function

endf unction
endcl ass

EtherPacket is now a class that can be instantiated. In general, if an abstract class has any virtual methods, all
of the methods must be overridden (and provided with a method body) for the subclass to be instantiated. If
any virtual methods have no implementation, the subclass needs to be abstract.

An abstract class can contain methods for which there is only a prototype and no implementation (i.e., an
incomplete class). An abstract class cannot be instantiated, it can only be derived. Methods of normal classes

can also be declared virtual. In this case, the method must have a body. If the method does have a body, then
the class can be instantiated, as can its subclasses.

11.20 Polymorphism: dynamic method lookup

Polymorphism allows the use of a variable in the superclass to hold subclass objects, and to reference the
methods of those subclasses directly from the superclass variable. As an example, assume the base class for the

Copyright 2003 Accellera. All rights reserved. 93

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Packet objects, BasePacket defines, as virtual functions, al of the public methods that are to be generally
used by its subclasses, methods such as send, receive, print, etc. Even though BasePacket is abstract, it can
still be used to declare avariable:

BasePacket packets[100];

Now, instances of various packet objects can be created, and put into the array:

Et her Packet ep = new; /| extends BasePacket
TokenPacket tp = new; /| extends BasePacket
GPSSPacket gp = new; /| extends EtherPacket
packets[0] = ep;
packets[1] =tp
packets[2] = gp;

If the datatypes were, for example, integers, bits and strings, all of these types could not be stored into asingle
array, but with polymorphism, it can be done. In this example, since the methods were declared asvi rt ual ,
the appropriate subclass methods can be accessed from the superclass variable, even though the compiler
didn’t know—at compile time—what was going to be loaded into it.

For example, packet s[1] :
packet s[1] . send();

shall invoke the send method associated with the TokenPacket class. At run-time, the system correctly binds
the method from the appropriate class.

Thisisatypica example of polymorphism at work, providing capabilitiesthat are far more powerful than what
is found in a non-object-oriented framework.

11.21 Class scope resolution operator ::

The class scope operator : : is used to specify an identifier defined within the scope of a class. It has the fol-
lowing form:

class_identifier :: { class_identifier :: } identifier
Identifiers on the | eft side of the scope-resolution operator (: :) can be only class names.

Because classes and other scopes can have the same identifiers, the scope resolution operator uniquely identi-
fies amember of a particular class. In addition, to disambiguating class scope identifiers, the : : operator also
allows access to static members (properties and methods) from outside the class, as well as access to public or
protected elements of a super-classes from within the derived classes.

cl ass Base;

typedef enum {bin, oct, dec, hex} radi x;

static task print(radix r, integer n); ... endtask
endcl ass

Base b = new,

int bin = 123;

b.print(Base::bin, bin); /1 Base::bin and bin are different
Base: : print(Base::hex, 66);

In SystemVerilog, the class scope operator appliesto all static elements of a class: static class properties, static
methods, typedefs, enumerations, structures, unions, and nested class declarations. Class-scope resolved
expressions can be read (in expressions), written (in assignments or subroutines calls) or triggered off (in event
expressions). They can also be used as the name of atype or amethod call.

94 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Like modules, classes are scopes and can nest. Nesting alows hiding of local names and local allocation of
resources. Thisis often desirable when anew typeis needed as part of the implementation of a class. Declaring
types within a class helps prevent name collisions, and cluttering the outer scope with symbols that are used
only by that class. Type declarations nested inside a class scope are public and can be accessed outside the
class.

class StringlList;
class Node; // Nested class for a node in a linked |ist.
string nane;
Node |i nk
endcl ass
endcl ass

class StringTree;
class Node; // Nested class for a node in a binary tree.
string nane;
Node left, right;
endcl ass
endcl ass
/1 StringList::Node is different from StringTree:: Node

The scope resol ution operator enables:
— Access to static public members (methods and properties) from outside the class hierarchy.
— Accessto public or protected class members of a super-class from within the derived classes.

— Access to type declarations and enumeration labels declared inside the class from outside the class hierar-
chy or from within derived classes.

11.22 Out of block declarations

It is convenient to be able to move method definitions out of the body of the class declaration. Thisisdonein
two steps. Declare, within the class body, the method prototypes—whether it is a function or task, any qualifi-
ers (I ocal , protected or virtual), and the full argument specification plus the ext er n qualifier. The
ext er n qualifier indicates that the body of the method (its implementation) is to be found outside the declara-
tion. Then, outside the class declaration, declare the full method—Ilike the prototype but without the qualifi-
ers—and, to tie the method back to its class, qualify the method name with the class name and a pair of colons:

cl ass Packet ;
Packet next;
function Packet get_next();// single line
get _next = next;
endfunction

/1 out-of-body (extern) declaration

extern protected virtual function int send(int value);
endcl ass
function int Packet::send(int value);

/1 dropped protected virtual, added Packet:

/1 body of method

endf uncti on

The out of block method declaration must match the prototype declaration exactly; the only syntactical differ-
ence is that the method name is preceded by the class name and scope operator (: :).

Copyright 2003 Accellera. All rights reserved. 95

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

11.23 Parameterized classes

It is often useful to define a generic class whose objects can be instantiated to have different array sizes or data
types. This avoids writing similar code for each size or type, and allows a single specification to be used for
objects that are fundamentally different, and (like atemplated classin C++) not interchangeable.

The normal Verilog parameter mechanism is used to parameterize a class:
class vector #(paraneter int size = 1;);
bit [size-1:0] a;
endcl ass
Instances of this class can then be instantiated like modules or interfaces:
vector #(10) vten; /1 object with vector of size 10
vector #(.size(2)) vtwo, /1 object with vector of size 2

typedef vector#(4) Vfour; [// Cass with vector of size 4

Thisfeature is particularly useful when using types as parameters:

class stack #(paraneter type T = int;);
local T itens[];
task push(T a); ... endtask
task pop(ref T a); ... endtask
endcl ass

The above class defines a generic stack class that can be instantiated with any arbitrary type:

stack is; /] default: a stack of int’'s
stack#(bit[1:10]) bs; /1 a stack of 10-bit vector
stack#(real) rs; /1 a stack of real nunbers

Any type can be supplied as a parameter, including a user-defined type such asacl ass or struct .

The combination of a generic class and the actual parameter values is called a specialization (or variant). Each
specialization of a class has a separate set of st at i ¢ member variables (thisis consistent with C++ templated
classes). To share static member variables among several class specializations, they must be placed in a non-
parameterized base class.

class vector #(paraneter int size = 1;);
bit [size-1:0] a;
static int count = O;
function void disp_count();
$di spl ay("count: %l of size %", count, size);
endf uncti on
endcl ass

The variable count in the example above can only be accessed by the corresponding di sp_count method.
Each specialization of the class vector hasits own unique copy of count .

To avoid having to repeat the specialization either in the declaration or to create parameters of that type, a
t ypedef should be used:

typedef vector#(4) Vfour;

typedef stack#(Vfour) Stack4;
Stack4 s1, s2; /1 declare objects of type Stack4

96 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

11.24 Typedef class

Sometimes a class variable needs to be declared before the class itself has been declared. For example, if two
classes each need a handle to the other. When, in the course of processing the declaration for the first class, the
compiler encounters the reference to the second class, that reference is undefined and the compiler flagsiit as
an error.

Thisisresolved using t ypedef to provide aforward declaration for the second class:

typedef class C2; /1l C2 is declared to be of type class
class Cl
C2 c;
endcl ass
class C2
Cl c;
endcl ass

In thisexample, C2 isdeclared to be of typecl ass, afact that is re-enforced later in the source code. Note that
the cl ass construct always creates a type, and does not require at ypedef declaration for that purpose (asin
typedef cl ass ...). Thisisconsistent with common C++ use.

Note that the cl ass keyword in the statement t ypedef cl ass C2; ishot necessary, and is used only for
documentation purposes. The statement t ypedef C2; isequivalent and shall work the same way.

11.25 Classes, structures, and unions

SystemVerilog adds the object-oriented cl ass construct. On the surface, it might appear that cl ass and
st ruct provide equivalent functionality, and only one of them is needed. However, that is not true; cl ass dif-
fersfrom st ruct in four fundamental ways:

1) SystemVerilog struct are strictly static objects; they are created either in a static memory location
(global or module scope) or on the stack of an automatic task. Conversely, SystemVerilog objects (i.e.,
classinstances) are exclusively dynamic, their declaration doesn't create the object; that is done by calling
new.

2) SystemVerilog structs are type compatible so long as their bit sizes are the same, thus copying structs of
different composition but equal sizes is allowed. In contrast, SystemVerilog objects are strictly strongly-
typed. Copying an object of one type onto an object of another is not allowed.

3) SystemVerilog objects are implemented using handles, thereby providing C-like pointer functionality. But,
SystemVerilog disallows casting handles onto other data types, thus, unlike C, SystemVerilog handles are
guaranteed to be safe.

4) SystemVerilog objects form the basis of an Object-Oriented data abstraction that provides true
polymorphism. Class inheritance, abstract classes, and dynamic casting are powerful mechanisms that go
way beyond the mere encapsul ation mechanism provided by structs.

11.26 Memory management

Memory for objects, strings, and dynamic and associative arrays is alocated dynamically. When objects are
created, SystemVerilog allocates more memory. When an object is no longer needed, SystemVerilog automati-
cally reclaims the memory, making it available for re-use. The automatic memory management system is an
integral part of SystemVerilog. Without automatic memory management, SystemVerilog's multi-threaded, re-
entrant environment creates many opportunities for users to run into problems. A manua memory manage-
ment system, such as the one provided by C'smal | oc and f r ee, would not be sufficient.

For example, consider the following example:

Copyright 2003 Accellera. All rights reserved. 97

Accellera

SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001
myCd ass obj = new,
fork
taskl(obj);
task2(obj);
j oi n_none

In this example, the main process (the one that forks off the two tasks) does not know when the two processes
might be done using the object obj . Similarly, neither t ask1 nort ask2 knowswhen any of the other two pro-
cesses will no longer be using the object obj . It is evident from this simple example that no single process has
enough information to determine when it is safe to free the object. The only two options available to the user
are (1) play it safe and never reclaim the object, or (2) add some form of reference count that can be used to
determine when it might be safe to reclaim the object. Adopting the first option can cause the system to
quickly run out of memory. The second option places a large burden on users, who, in addition to managing
their testbench, must also manage the memory using less than ideal schemes. To avoid these shortcomings,
SystemVerilog manages all dynamic memory automatically. Users do not need to worry about dangling refer-
ences, premature deallocation, or memory leaks. The system shall automatically reclaim any object that is no
longer being used. In the example above, all that users do is assign nul | to the handle obj when they no
longer need it. Similarly, when an object goes out of scope the system implicitly assignsnul | to the object.

98 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Section 12
Random Constraints

12.1 Introduction (informative)

Constraint-driven test generation allows users to automatically generate tests for functional verification. Ran-
dom testing can be more effective than a traditional, directed testing approach. By specifying constraints, one
can eadlly create tests that can find hard-to-reach corner cases. SystemVerilog alows users to specify con-
straints in a compact, declarative way. The constraints are then processed by a solver that generates random
values that meet the constraints.

The random constraints are built on top of an object oriented data abstraction.that models the data to be ran-
domized as objects that contain random variables and user-defined constraints. The constraints determine the
legal valuesthat can be assigned to the random variables. Objects areideal for representing complex aggregate
data types and protocols such as Ethernet packets.

Section 12.2 provides an overview of object-based randomization and constraint programming. The rest of this

section provides detailed information on random variables, constraint blocks, and the mechanisms used to
manipul ate them.

12.2 Overview

This section introduces the basic concepts and uses for generating random stimulus within objects. SystemVer-
ilog uses an object-oriented method for assigning random val ues to the member variables of an object, subject
to user-defined constraints. For example:

cl ass Bus;
rand bit[15:0] addr
rand bit[31:0] data

constraint word_align {addr[1:0] == 2'b0;}
endcl ass

The Bus class models a simplified bus with two random variables: addr and dat a, representing the address
and data values on abus. Thewor d_al i gn constraint declares that the random values for addr must be such
that addr isword-aligned (the low-order 2 bits are 0).

The random ze() method iscalled to generate new random values for a bus object:

Bus bus = new,

repeat (50) begin

if (bus.random ze() == 1)
$di splay ("addr = %46h data = %\ n", bus.addr, bus.data);
el se

$di spl ay ("Randomi zation failed.\n");
end

Calling r andoni ze() causes new values to be selected for all of the random variables in an object such that
all of the constraints are true (satisfied). In the program test above, abus object is created and then randomized
50 times. The result of each randomization is checked for success. If the randomization succeeds, the new ran-
dom values for addr and dat a are printed; if the randomization fails, an error message is printed. In this
example, only the addr value is constrained, while the dat a value is unconstrained. Unconstrained variables
are assigned any value in their declared range.

Constraint programming is a powerful method that lets users build generic, reusable objects that can later be

Copyright 2003 Accellera. All rights reserved. 99

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

extended or constrained to perform specific functions. The approach differs from both traditional procedural
and object-oriented programming, as illustrated in this example that extends the Bus class:

typedef enum {low, nid, high} AddrType;
cl ass MyBus ext ends Bus;

rand Addr Type atype;
constrai nt addr_range

{
(atype == low) => addr inside { [0 : 15] };
(atype == md) => addr inside { [16 : 127]};
(atype == high) => addr inside {[128 : 255]};
}
endcl ass

The MyBus class inherits al of the random variables and constraints of the Bus class, and adds a random vari-
able called at ype that is used to control the address range using another constraint. The addr _r ange con-
straint uses implication to select one of three range constraints depending on the random value of at ype.
When aMyBus object israndomized, values for addr, dat a, and at ype are computed such that all of the con-
straints are satisfied. Using inheritance to build layered constraint systems enables the development of general-
purpose models that can be constrained to perform application-specific functions.

Objects can be further constrained using the r andoni ze() wi t h construct, which declares additional con-
straintsin-line with the call tor andom ze() :

task exercise_bus (M/Bus bus);
int res;

/1 EXAMPLE 1: restrict to small addresses
res = bus.randomi ze() with {atype == small;};

/| EXAMPLE 2: restrict to address between 10 and 20
res = bus.randonmi ze() with {10 <= addr && addr <= 20;};

/1 EXAMPLE 3: restrict data val ues to powers-of-two
res = bus.random ze() with {data & (data - 1) == 0;};
endt ask

This exampleillustrates several important properties of constraints:

— Constraints can be any SystemVerilog expression with variables and constants of integral type (bi t, r eg,
| ogi c,i nteger, enum packed struct, €tc.).

— The constraint solver must be able to handle a wide spectrum of equations, such as algebraic factoring,
complex boolean expressions, and mixed integer and bit expressions. In the example above, the power-of-
two constraint was expressed arithmetically. It could have also been defined with expressions using a shift
operator. For example, 1 << n, wheren isa5-bit random variable.

— If asolution exists, the constraint solver must find it. The solver can fail only when the problem is over-
constrained and there is no combination of random values that satisfy the constraints.

— Constraintsinteract bidirectionally. In this example, the value chosen for addr dependson at ype and how
it is constrained, and the value chosen for at ype depends on addr and how it is constrained. All expres-
sion operators are treated bidirectionally, including the implication operator (=>).

Sometimes it is desirable to disable constraints on random variables. For example, to deliberately generate an
illegal address (non-word aligned):

task exercise_illegal (MBus bus, int cycles);
int res;

100 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

/1 Disable word alignment constraint.
bus.word_al i gn. constrai nt _node(0);

repeat (cycles) begin

/1 CASE 1: restrict to small addresses.
res = bus.randonize() with {addr[0] || addr[1];};

end

/'l Re-enable word alignnent constraint
bus.word_al i gn. constrai nt _node(1);
endt ask

Theconst rai nt_node() method can be used to enable or disable any named constraint block in an object.
In this example, the word-alignment constraint is disabled, and the object is then randomized with additional
constraints forcing the low-order address bits to be non-zero (and thus unaligned).

The ability to enable or disable constraints allows users to design constraint hierarchies. In these hierarchies,
the lowest level constraints can represent physical limits grouped by common properties into named constraint
blocks, which can be independently enabled or disabled.

Similarly, the r and_node() method can be used to enable or disable any random variable. When a random
variableis disabled, it behavesin exactly the same way as other nonrandom variables.

Occasionally, it is desirable to perform operations immediately before or after randomization. That is accom-
plished via two built-in methods, pre_randoni ze() and post _randoni ze(), which are automatically
called before and after randomization. These methods can be overloaded with the desired functionality:

cl ass XYPair;
rand integer x, VY;
endcl ass

cl ass MyYXPair extends XYPair
function void pre_random ze();
super . pre_randomi ze();
$di spl ay("Bef ore random ze x=99d, y=%9d", x, y);
endf uncti on

function void post_randoni ze();
super . post _randomi ze();
$di spl ay("After random ze x=90d, y=%d", x, y);
endf uncti on
endcl ass

By default, pre_randoni ze() and post _randoni ze() call their overloaded parent class methods. When
pre_randoni ze() or post_random ze() are overloaded, care must be taken to invoke the parent class
methods, unless the class is a base class (has no parent class), otherwise the base class methods shall not be
caled.

The random stimulus generation capabilities and the object-oriented constraint-based verification methodol-
ogy enable usersto quickly develop teststhat cover complex functionality and better assure design correctness.

12.3 Random variables

Class variables can be declared random using the r and and r andc type-modifier keywords.

Copyright 2003 Accellera. All rights reserved. 101

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

The syntax to declare arandom variablein aclassis:

class _property ::= // from Annex A.1.8
{ property_qualifier } data_declaration

property_qualifier® ::=
rand
| randc

Syntax 12-1—Random variable declaration syntax (excerpt from Annex A)

— The solver can randomize singular variables of any integral type.

— Arrays can be declared r and or r andc, in which case all of their member elements are treated asr and or
randc.

— Dynamic and associative arrays can be declared r and or r andc. All of the elements in the array are ran-
domized, overwriting any previous data. If the array elements are object handles, all of the array elements
must be non-null. Individual array elements can be constrained, in which case the index expression must be
aliteral constant.

— Thesize of adynamic array declared asr and or r andc can also be constrained. In that case, the array shall
be resized according to the size constraint, and then all the array elements shall be randomized. The array
size constraint is declared using the si ze method. For example,

rand bit [7:0] len;
rand i nteger data[];
constraint db { data.size == len; }

Thevariablel en isdeclared to be 8 bits wide. The randomizer computes arandom value for thel en vari-
ablein the 8-bit range of 0 to 255, and then randomizes thefirst | en elements of the data array.

If adynamic array’s sizeis not constrained then r andoni ze() randomizes all the elementsin the array.

— An object handle can be declared r and in which case all of that object’s variables and constraints are
solved concurrently with the variables and constraints of the object that contains the handle. Objects cannot
be declared r andc.

12.3.1 rand modifier

Variables declared with the r and keyword are standard random variables. Their values are uniformly distrib-
uted over their range. For example:

rand bit [7:0] v;
Thisis an 8-bit unsigned integer with arange of 0 to 255. If unconstrained, this variable shall be assigned any

value in the range 0 to 255 with equal probability. In this example, the probability of the same value repeating
on successive calsto randomizeis 1/256.

12.3.2 randc modifier

Variables declared with the r andc keyword are random-cyclic variables that cycle through all the valuesin a
random permutation of their declared range. Random-cyclic variables can only be of type bi t or enumerated
types, and can be limited to a maximum size.

To understand r andc, consider a 2-bit random variable y:

randc bit [1:0] vy;

102 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Thevariabley cantake onthevaluesO, 1, 2, and 3 (range 0 to 3). Randomize computes an initial random per-
mutation of the range values of y, and then returns those values in order on successive calls. After it returnsthe
last element of a permutation, it repeats the process by computing a new random permutation.

The basic idea is that r andc randomly iterates over all the values in the range and that no value is repeated
within an iteration. When the iteration finishes, a new iteration automatically starts.

initial permutation: 0 -3 -5 2 51—
next pernutati on: 52 51 5 3 50—
next pernutation: -2 50 51 5 3...

The permutation segquence for any given r andc variable is recomputed whenever the constraints change on
that variable, or when none of the remaining values in the permutation can satisfy the constraints.

To reduce memory requirements, implementations can impose a limit on the maximum size of ar andc vari-
able, but it should be no less than 8 hits.

The semantics of random-cyclical variables require that they be solved before other random variables. A set of

constraints that includes both r and and r andc variables shall be solved such that the r andc variables are
solved first, and this can sometimes cause r andoni ze() to fail.

12.4 Constraint blocks

The values of random variables are determined using constraint expressions that are declared using constraint
blocks. Constraint blocks are class members, like tasks, functions, and variables. Constraint block names must
be unique within a class.

The syntax to declare a constraint block is:

Copyright 2003 Accellera. All rights reserved. 103

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

constraint_declaration ::= [/l from Annex A.1.9
[static] constraint constraint_identifier { { constraint_block } }

constraint_block ::=
solve identifier_list beforeidentifier list ;
| expression dist { dist_list} ;
| constraint_expression
constraint_expression ::=
expression ;
| expression => constraint_set
| if (expression) constraint_set [else constraint_set |
constraint_set ::=
congtraint_expression
| { { constraint_expression} }
dist_list ::=dist_item{ , dist_item}
dist_item ::=
value_range := expression
| value_range :/ expression
constraint_prototype ::=[static] constraint constraint_identifier

extern_constraint_declaration ::=
[static] constraint class_identifier :: constraint_identifier { { constraint_block } }

identifier_list ;= identifier { , identifier }

Syntax 12-2—Constraint syntax (excerpt from Annex A)

congtraint_identifier is the name of the constraint block. This name can be used to enable or disable a con-
straint using the const r ai nt _node() method (see Section 12.8).

congtraint_block is a list of expression statements that restrict the range of a variable or define relations
between variables. A constraint_expression is any SystemVerilog expression, or one of the constraint-specific
operators. =>;+nsi-de and di st (see Sections12.4-3-and 12.4.4 and 12.4.5).

The declarative nature of constraints imposes the following restrictions on constraint expressions:

— Calling tasks or functionsis not allowed.

— Operators with side effects, such as++ and - - are not allowed.

— randc variables cannot be specified in ordering constraints (see sol ve...bef or e in Section 12.4.8).

— di st expressions cannot appear in other expressions (unlike i nsi de); they can only be top-level expres-
sions.

12.4.1 External constraint blocks
Constraint block bodies can be declared outside a class declaration, just like external task and function bodies:

/1 class declaration
cl ass XYPair;
rand integer x, V;
constraint c;
endcl ass

/1 external constraint body declaration
constraint XyPair::c { x <vy; }

104 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

12.4.2 Inheritance

Constraints follow the same general rules for inheritance as class variables, tasks, and functions:

— A constraint in a derived class that uses the same name as a constraint in its parent classes overrides the
base class constraints. For example:

class A
rand integer x;
constraint ¢ { x <O0; }
endcl ass

class B extends A
constraint ¢ { x > 0; }
endcl ass

An instance of class A constrains x to be less than zero whereas an instance of class B constrains x to be
greater than zero. The extended class B overrides the definition of constraint c. In this sense, constraints
are treated the same as virtual functions, so casting an instance of B to an A does not change the constraint
Set.

— Therandoni ze() task isvirtua. Accordingly, it treats the class constraints in a virtual manner. When a
named constraint is overloaded, the previous definition is overridden.

12.4.3 Set membership

Constraints support integer value sets and set membership operators (as defined in Section 7.17). LRM 16

Absent any other constraints, all values (either single values or value ranges), have an equal probability of
being chosen by thei nsi de operator.

The negated form denotes that expression lies outside the set: ! (expressi on inside { set }).

For example:

Copyright 2003 Accellera. All rights reserved. 105

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

rand i nteger x, y, z;
constraint cl {x inside {3, 5, [9:15], [24:32], [y:2*y], z};}

rand i nteger a, b, c;
constraint ¢c2 {a inside {b, c};}

integer fives[0:3] ={ 5, 10, 15, 20 };
rand i nteger v;
constraint ¢3 { v inside fives; }

everlae It is |mportant to note that the| nsi de operator is b|d| rectlonal thus, the second example above is
equivalenttoa == b || a ==

12.4.4 Distribution

In addition to set membership, constraints support sets of weighted values called distributions. Distributions
have two properties: they are a relational test for set membership, and they specify a statistical distribution
function for the results.

The syntax to define a distribution expression is:

constraint_block ::= // from Annex A.1.9

| expression dist { dist_list} ;
dist_list ::=dist_item{ , dist_item}
dist_item::=
value_range := expression
| value range :/ expression

Syntax 12-4—Constraint distribution syntax (excerpt from Annex A)

expression can be any integral SystemVerilog expression.

The distribution operator di st evaluatesto true if the value of the expression is contained in the set; otherwise
it evaluatesto false.

Absent any other constraints, the probability that the expression matches any valuein thelist is proportional to
its specified weight.

The distribution set is a comma-separated list of integral expressions and ranges. Optionally, each term in the
list can have a weight, which is specified using the : = or : / operators. If no weight is specified, the default
weight is 1. The weight can be any integral SystemVerilog expression.

The: = operator assigns the specified weight to the item, or if the item is arange, to every value in the range.

The:/ operator assigns the specified weight to the item, or if the item is a range, to the range as a whole. If
there are n values in the range, the weight of each valueisr ange_wei ght / n.

For example:
x dist {100 := 1, 200 := 2, 300 := 5}

means x isequal to 100, 200, or 300 with weighted ratio of 1-2-5. If an additional constraint isadded that spec-
ifiesthat x cannot be 200:

x !'= 200

106 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

x dist {100 := 1, 200 := 2, 300 := 5}
then x is equal to 100 or 300 with weighted ratio of 1-5.

It is easier to think about mixing ratios, such as 1-2-5, than the actual probabilities because mixing ratios do
not have to be normalized to 100%. Converting probabilities to mixing ratiosis straightforward.

When weights are applied to ranges, they can be applied to each value in the range, or they can be applied to
the range as awhole. For example,

x dist { [100:102] := 1, 200 := 2, 300 := 5}
means x isequal to 100, 101, 102, 200, or 300 with aweighted ratio of 1-1-1-2-5.
x dist { [100:102] :/ 1, 200 := 2, 300 := 5}
means x isequal to one of 100, 101, 102, 200, or 300 with aweighted ratio of 1/3-1/3-1/3-2-5.

In general, distributions guarantee two properties: set membership and monotonic weighting, which means
that increasing aweight shall increase the likelihood of choosing those values.

Limitations:

— A di st operation shall not be applied to r andc variables.

— A di st expression requires that expression contain at least oner and variable.

— A di st expression can only be atop-level constraint (not a predicated constraint).

12.4.5 Implication

Constraints provide two constructs for declaring conditional (predicated) relations: implication andi f ..el se.
The implication operator (=>) can be used to declare an expression that implies a constraint.

The syntax to define an implication constraint is:

constraint_expression ::= // from Annex A.1.9

| expression => constraint_set

Syntax 12-5—Constraint implication syntax (excerpt from Annex A)

The expression can be any integral SystemVerilog expression.

The boolean equivalent of the implication operatora => bis(!a || b). Thisstatesthat if the expressionis
true, then random numbers generated are constrained by the constraint (or constraint block). Otherwise the
random numbers generated are unconstrained.

The constraint_set represents any valid constraint or an unnamed constraint block. If the expression istrue, all
of the constraintsin the constraint block must also be satisfied.

For example:
mode == small => len < 10;
node == large => len > 100;

In this example, the value of node implies that the value of | en shall be constrained to less than 10 (node ==
smal |), greater than 100 (node == | ar ge), or unconstrained (mode ! = smal | and node ! = | ar ge).

Copyright 2003 Accellera. All rights reserved. 107

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

In the following example:

bit [3:0] a, b;
constraint ¢ { (a==10) => (b == 1); }

Both a and b are 4 hits, so there are 256 combinations of a and b. Constraint ¢ saysthat a == 0 impliesthat b
== 1, thereby eliminating 15 combinations: { 0,0}, {0,2}, ... {0,15}. Therefore, the probability that a == 0 is
thus 1/(256-15) or 1/241.

12.4.6 if..else constraints

i f...el se style constraints are also supported.

The syntax to define anii f ...el se constraint is:

constraint_expression ::= [/ from Annex A.1.9

| if (expression) constraint_set [else constraint_set |

Syntax 12-6—If...else constraint syntax (excerpt from Annex A)

expression can be any integral SystemVerilog expression.

constraint_set represents any valid constraint or an unnamed constraint block. If the expression is true, al of
the constraintsin the first constraint or constraint block must be satisfied, otherwise al of the constraintsin the
optional el se constraint or constraint-block must be satisfied. Constraint blocks can be used to group multiple
congtraints.

If..else style constraint declarations are equivalent to implications:

if (mode == small)
|l en < 10;

else if (npbde == large)
len > 100;

isequivalent to

mode == small => len < 10 ;
node == large => len > 100 ;

In this example, the value of node implies that the value of | en is less than 10, greater than 100, or uncon-
strained.

Just like implication, i f ...el se style constraints are bidirectional. In the declaration above, the value of node

eenstraints constrains the value of | en, and the value of | en constrains the value of node. LRM 2

Becausetheel se part of ani f ...el se style constraint declaration is optional, there can be confusion when an
el se isomitted from anested i f sequence. Thisis resolved by always associating the el se with the closest
previousi f that lacks an el se. In the example below, the el se goes with theinner i f , as shown by indenta-
tion:

if (nmode !'= large)
if (mode == small)
len < 10;
else // the else applies to preceding if
I en > 100;

108 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

12.4.7 Global constraints

When an object member of aclassisdeclared r and, all of its constraints and random variables are randomized
simultaneously along with the other class variables and constraints. Constraint expressions involving random
variables from other objects are called global constraints.

class A /1 |eaf node
rand bit [7:0] v; e

endcl ass

class B extends A; // heap node JEﬁt//// \\\ﬁTGht
rand A left;
rand A right; @ @

constraint heapcond {left.v <= v; right.v <= v;}
endcl ass

This example uses global constraints to define the legal values of an ordered binary tree. Class A represents a
leaf node with an 8-bit value x. Class B extends class A and represents a heap-node with value v, aleft subtree,
and aright subtree. Both subtrees are declared asr and in order to randomize them at the same time as other
class variables. The constraint block named heapcond has two global constraints relating the left and right
subtree values to the heap-node value. When an instance of class B is randomized, the solver simultaneously
solvesfor B and its |eft and right children, which in turn can be leaf nodes or more heap-nodes.

The following rules determine which objects, variables, and constraints are to be randomized:

1) First, determine the set of objects that are to be randomized as a whole. Starting with the object that
invoked ther andoni ze() method, add all objectsthat are contained within it, are declared r and, and are
active (seer and_node in Section 12.7). The definition is recursive and includes all of the active random
objects that can be reached from the starting object. The objects selected in this step are referred to as the
active random objects.

2) Next, select al of the active constraints from the set of active random objects. These are the constraints
that are applied to the problem.

3) Finaly, select all of the active random variables from the set of active random objects. These are the
variables that are to be randomized. All other variable references are treated as state variables, whose
current value is used as a constant.

12.4.8 Variable ordering

The solver must assure that the random values are selected to give a uniform value distribution over legal value
combinations (that is, all combinations of legal values have the same probability of being the solution). This
important property guarantees that al legal value combinations are equally probable, which allows randomiza-
tion to better explore the whole design space.

Sometimes, however, it is desirable to force certain combinations to occur more frequently. Consider the case
where a 1-bit control variable s constrains a 32-bit datavalue d:

class B;
rand bit s;
rand bit [31:0] d;

constraint ¢ { s =>d == 0; }
endcl ass

The constraint ¢ says “s implies d equals zero”. Although this reads as if s determinesd, in fact s and d are
determined together. There are 232 yalid combinations of { s, d} , but s is only truefor { 1, 0} . Thus, the prob-

Copyright 2003 Accellera. All rights reserved. 109

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

ability that s istrueis 1/2%2, which is practically zero.

The constraints provide a mechanism for ordering variables so that s can be chosen independently of d. This
mechanism defines a partial ordering on the evaluation of variables, and is specified using the solve keyword.

class B
rand bit s;
rand bit [31:0] d;

constraint ¢ { s =>d == 0; }
constraint order { solve s before d; }
endcl ass

In this case, the order constraint instructs the solver to solve for s before solving for d. The effect isthat s is
now chosen true with 50% probability, and then d is chosen subject to the value of s. Accordingly, d == 0
shall occur 50% of thetime, andd ! = 0 shall occur for the other 50%.

Variable ordering can be used to force selected corner cases to occur more frequently than they would other-
wise.

The syntax to define variable order in a constraint block is:

constraint_block ::= // from Annex A.1.9
solve identifier_list beforeidentifier list ;

Syntax 12-7—Solve...before constraint ordering syntax (excerpt from Annex A)

sol ve and bef or e each take a comma-separated list of integral variables or array elements.

The following restrictions apply to variable ordering:

— Only random variables are allowed, that is, they must ber and.

— randc variables are not allowed. r andc variables are always solved before any other.
— Thevariables must be integral values.

— A congtraint block can contain both regular value constraints and ordering constraints.

— There must be no circular dependencies in the ordering, such as “solve a before b” combined with “solve b
before d’.

— Variables that are not explicitly ordered shall be solved with the last set of ordered variables. These values
are deferred until as late as possible to assure agood distribution of values.

— Variables can be solved in an order that is not consistent with the ordering constraints, provided that the
outcome is the same. An example situation where this might occur is:

X ==

X < y,
solve y before x;

In this case, since x has only one possible assignment (0), x can be solved for before y. The constraint
solver can use thisflexibility to speed up the solving process.

12.4.9 Static constraint blocks
A constraint block can be defined as static by including the st at i ¢ keyword in its definition.

The syntax to declare a static constraint block is:

110 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

static constraint constraint_identifier { contraint_expressions }

If aconstraint block isdeclared asst at i ¢, then callsto const rai nt _node() shall affect al instances of the
specified constraint in all objects. Thus, if a static constraint is set to OFF, it is off for all instances of that par-
ticular class.

12.5 Randomization methods

12.5.1 randomize()

Variables in an object are randomized using the r andoni ze() class method. Every class has a built-in r an-
domi ze() virtual method, declared as;

virtual function int random ze();

Ther andoni ze() method is a virtual function that generates random values for all the active random vari-
ablesin the object, subject to the active constraints.

Ther andoni ze() method returns 1 if it successfully sets all the random variables and objects to valid values,
otherwise it returns 0.

Example:

cl ass Sinpl eSum
rand bit [7:0] x, vy, z;
constraint ¢ {z == x +vy;}
endcl ass

This class definition declares three random variables, x, y, and z. Calling ther andoni ze() method shall ran-
domize an instance of class Si npl eSum

Si npl eSum p = new,
int success = p.random ze();
if (success == 1)

Checking the return status can be necessary because the actual value of state variables or addition of con-
straintsin derived classes can render seemingly simple constraints unsatisfiable.

12.5.2 pre_randomize() and post_randomize()

Every class contains built-in pre_r andoni ze() and post _randoni ze() functions, that are automatically
called by r andoni ze() before and after computing new random values.

The built-in definition for pre_r andomi ze() is:

function void pre_random ze;
if (super) super.pre_randomn ze(); /'l test super to see if the
/1 object handle exists
/1 Optional programm ng before random zati on goes here
endfuncti on

The built-in definition for post _r andomi ze() is:

function void post_random ze;
if (super) super.post_randonize(); // test super to see if the
/1 object handle exists
/1 Optional programmng after random zati on goes here
endf uncti on

Copyright 2003 Accellera. All rights reserved. 111

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

When obj . randoni ze() isinvoked, it first invokes pre_randoni ze() on obj and also al of its random
object members that are enabled. pre_r andoni ze() then calls super. pre_random ze() . After the new
random values are computed and assigned, r andoni ze() invokes post _randoni ze() onobj and also all
of its random object membersthat are enabled. post _r andoni ze() then callssuper. post _randoni ze() .

Users can overload the pr e_r andoni ze() in any classto perform initialization and set pre-conditions before
the object is randomized.

Users can overload the post _r andoni ze() in any class to perform cleanup, print diagnostics, and check
post-conditions after the object is randomized.

If these methods are overloaded, they must call their associated parent class methods, otherwise their pre- and
post-randomization processing steps shall be skipped.

The pre_randoni ze() and post _r andoni ze() methods are not virtual. However, because they are auto-
matically called by ther andoni ze() method, which isvirtual, they appear to behave as virtual methods.

12.5.3 Randomization methods notes

— Random variables declared as static are shared by al instances of the class in which they are declared.
Each time ther andoni ze() method is called, the variable is changed in every class instance.

— If randoni ze() fails, the constraints are infeasible and the random variables retain their previous values.
— If randoni ze() fails, post _randoni ze() isnot called.
— Therandoni ze() method shall not be overloaded.

— Therandoni ze() method implements object random stability. An object can be seeded by the
$srandon() system call (see Section 12.10.3), specifying the object in the second argument.

— The built-in methods pr e_r andoni ze() and post _randoni ze() are functionsand cannot block.

12.6 In-line constraints — randomize() with

By using ther andomi ze() ...wi t h construct, users can declare in-line constraints at the point wherether an-
domi ze() method is called. These additional constraints are applied along with the object constraints.

The syntax for r andoni ze() ..wi this:

blocking_assignment ::= // from Annex A.6.2

| class identifier . randomize|[()] with constraint_block ;

Syntax 12-8—In-line constraint syntax (excerpt from Annex A)

class _identifier is the name of an instantiated object.

The unnamed constraint_block contains additional in-line constraints to be applied aong with the object con-
straints declared in the class.

For example:
cl ass Sinpl eSum
rand bit [7:0] x, vy, z;

constraint ¢ {z == x +vy;}
endcl ass

112 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

task I nlineConstraintDeno(Si nmpl eSum p);

i nt success;

success = p.random ze() with {x <vy;};
endt ask

This is the same example used before, however, r andoni ze() ..wi t h is used to introduce an additional con-
straintthat x < vy.

Ther andom ze() ..wi t h construct can be used anywhere an expression can appear. The constraint block fol-
lowing wi t h can define all of the same constraint types and forms as would otherwise be declared in a class.

Ther andonmi ze() ..wi t h constraint block can also reference local variables and task and function arguments,
eliminating the need for mirroring alocal state as member variables in the object class. The scope for variable
names in a constraint block, from inner to outer, is: r andomni ze() ..wi t h object class, automatic and local
variables, task and function arguments, class variables, variables in the enclosing scope. The random

i ze()..w t h classis brought into scope at the innermost nesting level.

In the example below, ther andoni ze() ...wi t h classis Foo.
cl ass Foo;
rand integer x;
endcl ass
cl ass Bar;
i nteger Xx;

i nteger vy;

task doit(Foo f, integer x, integer z);

int result;
result = f.random ze() with {x <y + z;};
endt ask
endcl ass

Inthef. randomi ze() wi t h constraint block, x isamember of class Foo, and hidesthex inclassBar . It also
hides the x argument in the doi t () task.y isamember of Bar. z isalocal argument.

12.7 Disabling random variables with rand_mode()

Ther and_node() method can be used to control whether arandom variable is active or inactive. When aran-
dom variableisinactive, it is treated the same asiif it had not been declared r and or r andc. Inactive variables
are not randomized by ther andoni ze() method, and their values are treated as state variables by the solver.
All random variables areinitially active.
The syntax for ther and_node() method is:

task object[.randomvariable]::rand_node(bit on_off);
or

function int object.randomvari abl e::rand_node();

object is any expression that yields the object handle in which the random variable is defined.

random variable is the name of the random variable to which the operation is applied. If it is not specified
(only allowed when called as atask), the action is applied to al random variables within the specified object.

When called as atask, the argument to ther and_node method determines the operation to be performed:

Copyright 2003 Accellera. All rights reserved. 113

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Table 12-1: rand_mode argument

Value Meaning Description

0 OFF Sets the specified variables to inactive so that they are not ran-
domized on subsequent callsto ther andomi ze() method.

1 ON Sets the specified variables to active so that they are randomized
on subsequent callsto ther andonmi ze() method.

For array variables, r andom var i abl e can specify individual elements using the corresponding index. Omit-
ting the index resultsin all the elements of the array being affected by the call.

If the random variable is an object handle, only the mode of the variable is changed, not the mode of random
variables within that object (see global constraintsin Section 12.4.7).

A compiler error shall be issued if the specified variable does not exist within the class hierarchy or it exists
but is not declared asr and or r andc.

When called as a function, r and_node() returns the current active state of the specified random variable. It
returns 1 if the variable is active (ON), and O if the variable isinactive (OFF).

The function form of rand_node() only accepts singular variables, thus, if the specified variable is an
unpacked array, a single element must be selected viaits index.

Example:

cl ass Packet;

rand integer source_val ue, dest_val ue;
ot her decl arati ons

endcl ass

int ret;

Packet packet_a = new,

/1 Turn off all variables in object

packet _a. rand_node(0);

/1 ... other code

/1 Enabl e source_val ue

packet _a. source_val ue. rand_node(1);

ret = packet_a. dest_val ue. rand_node();
This example first disables all random variables in the object packet _a, and then enables only the
sour ce_val ue variable. Finaly, it setsther et variableto the active status of variable dest _val ue.

Ther and_node() method is built-in and cannot be overridden.

12.8 Controlling constraints with constraint_mode()

Theconstrai nt_node() method can be used to control whether a constraint is active or inactive. When a
congtraint isinactive, it is not considered by ther andoni ze() method. All constraints areinitially active.

The syntax for the const r ai nt _node() method is:

114 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

task object[.constraint_identifier]::constraint_node(bit on_off);
or

function int object.constraint_identifier::constraint_node();
object is any expression that yields the object handle in which the constraint is defined.
congtraint_identifier isthe name of the constraint block to which the operation is applied. The constraint name
can be the name of any constraint block in the class hierarchy. If no constraint name is specified (only allowed
when called as atask), the operation is applied to all constraints within the specified object.
When called as a task, the argument to the const r ai nt _node task method determines the operation to be
performed:

Table 12-2: constraint_mode argument

Value Meaning Description

0 OFF Setsthe specified constraint block to active so that it is considered
by subsequent callsto ther andoni ze() method.

1 ON Sets the specified constraint block to inactive so that it is not
enforced on subsequent callstother andom ze() method.

A compiler error shall beissued if the specified constraint block does not exist within the class hierarchy.

When called as a function, const rai nt _nmode() returns the current active state of the specified constraint
block. It returns 1 if the constraint is active (ON), and O if the constraint is inactive (OFF).

Example:

cl ass Packet ;

rand integer source_val ue;

constraint filterl { source_value > 2 * m }
endcl ass

function integer toggle_rand(Packet p);
if (p.filterl.constraint_node())
p.filterl. constraint_node(0);
el se
p.filterl. constraint_node(l);

toggl e_rand = p.randoni ze();
endf uncti on

In this example, thet oggl e_r and function first checks the current active state of the constraint filterl in the
specified Packet object p. If the constraint is active, then the function shall deactivate it; if it is inactive, the
function shall activate it. Finally, the function calls the randomize method to generate a new random value for
variable sour ce_val ue.

Theconst rai nt _node() method is built-in and cannot be overridden.

12.9 Dynamic constraint modification

There are several ways to dynamically modify randomization constraints;
— Implicationandi f ...el se style constraints allow declaration of predicated constraints.

Copyright 2003 Accellera. All rights reserved. 115

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

— Constraint blocks can be made active or inactive using the constrai nt _node() built-in method. Ini-
tialy, all constraint blocks are active. Inactive constraints are ignored by ther andoni ze() function.

— Random variables can be made active or inactive using the r and_node() built-in method. Initialy, all
rand and r andc variables are active. Inactive variables are ignored by the r andoni ze() function.

— Theweightsinadi st constraint can be changed, affecting the probability that particular valuesin the set
are chosen.

12.10 Random number system functions

12.10.1 $urandom

The system function $ur andom provides a mechanism for generating pseudorandom numbers. The function
returns a new 32-bit random number each timeit is called. The number shall be unsigned.

The syntax for $ur andomis:

function int unsigned $urandom|[(int seed)] ;
Theseed is an optional argument that determines the sequence of random numbers generated. The seed can be
any integral expression. The random number generator shall generate the same sequence of random numbers
every time the same seed is used.
The random number generator is deterministic. Each time the program executes, it cycles through the same
random sequence. This sequence can be made nondeterministic by seeding the $ur andomfunction with an
extrinsic random variable, such asthe time of day.

For example:

bit [64:1] addr;

$urandom(254); /1 Initialize the generator
addr = {$urandom S$urandom}; // 64-bit random nunber
nunber = $urandom & 15; /1 4-bit random nunber

The $ur andomfunction is similar to the $r andomsystem function, with two exceptions. $ur andomreturns
unsigned numbers and is automatically thread stable (see Section 12.11.2).

12.10.2 $urandom_range()
The $ur andom r ange() function returns an unsigned integer within a specified range.
The syntax for $ur andom r ange() is.

function int unsigned $urandomrange(int unsigned nexval,
int unsigned mnval = 0);

The function shall return an unsigned integer in the range mraxval .. m nval .
Example: val = $urandom range(7, 0);

If m nval isomitted, the function shall return avalue in the range maxval .. 0.
Example: val = $urandom range(7);

If maxval islessthan i nval , the arguments are automatically reversed so that the first argument is larger
than the second argument.

Example: val = $urandom range(0, 7);

116 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

All of the three previous examples produce a value in the range of 0 to 7, inclusive.

$urandom r ange() isautomatically thread stable (see Section 12.11.2).
12.10.3 $srandom()

The system function $sr andon() alows manually seeding the Random Number Generator (RNG) of objects
or threads.

The syntax for the $sr andon() system task is:
task $srandom(int seed, [class_identifier obj]);

The $srandon() system task initializes the local random number generator using the value of the given seed.
The optional object argument is used to seed an object instead of the current process (thread). The top level
randomizer of each program isinitialized with $sr andom(1) prior to any randomization calls.

12.11 Random stability

The Random Number Generator (RNG) is localized to threads and objects. Because the sequence of random
values returned by a thread or object is independent of the RNG in other threads or objects, this property is
called random stability. Random stability applies to:

— The system randomization calls, $ur andom $ur andom r ange() , and $sr andont() .
— The object randomization method, r andoni ze() .
Testbenches with this feature exhibit more stable RNG behavior in the face of small changes to the user code.

Additionally, it enables more precise control over the generation of random values by manually seeding
threads and objects.

12.11.1 Random stability properties

Random stability encompasses the following properties:
— Thread stability

Each thread has an independent RNG for all randomization system calls invoked from that thread. When
anew thread is created, its RNG is seeded with the next random value from its parent thread. This prop-
erty is called hierarchical seeding.

Program and thread stability is guaranteed as long as thread creation and random number generation is
done in the same order as before. When adding new threads to an existing test, they can be added at the
end of acode block in order to maintain random number stability of previously created work.

— Object stability

Each classinstance (object) has an independent RNG for all randomization methods in the class. When an
object is created using new; its RNG is seeded with the next random value from the thread that creates the
object.

Object stahility is guaranteed as long as object and thread creation, as well as random number generation,
are done in the same order as before. In order to maintain random number stability, new objects, threads
and random numbers can be created after existing objects are created.

— Manual seeding

All RNG's can be manually seeded. Combined with hierarchical seeding, this facility allows users to
define the operation of a subsystem (hierarchy subtree) completely with asingle seed at the root thread of
the system.

Copyright 2003 Accellera. All rights reserved. 117

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

12.11.2 Thread stability

Random values returned from the $ur andomsystem call are independent of thread execution order. For exam-
ple:

integer x, vy, z;
fork //set a seed at the start of a thread
begi n $srandon(100); x = $urandom end
//set a seed during a thread
begin y = $urandom $srandon(200); end
[/l draw 2 values fromthe thread RNG
begin z = $urandom + $urandom ; end
join

The above program fragment illustrates several properties:

— Thread locality. The values returned for x, y and z are independent of the order of thread execution. Thisis
an important property because it allows devel opment of subsystems that are independent, controllable, and
predictable.

— Hierarchical seeding. When athread is created, its random state is initialized using the next random value
from the parent thread as a seed. The three forked threads are all seeded from the parent thread.

Each thread is seeded with a unique value, determined solely by its parent. The root of athread execution sub-
tree determines the random seeding of its children. This allows entire subtrees to be moved, and preserves their
behavior by manually seeding their root thread.

12.11.3 Object stability

The r andomni ze() method built into every class exhibits object stability. This is the property that cals to
randomni ze() in one instance are independent of callsto r andoni ze() in other instances, and independent
of callsto other randomize functions.

For example:

cl ass Foo;
rand integer x;
endcl ass

cl ass Bar;
rand integer vy;
endcl ass

initial begin

Foo foo = new);

Bar bar = new();

i nteger z;

voi d’ f oo. randomi ze();

Il z = $random

voi d’ bar. random ze();
end

— Thevaluesreturned for f oo. x and bar . y are independent of each other.

— Thecallstorandoni ze() areindependent of the $r andomsystem call. If one uncommentsthelinez =
$r andomabove, there is no change in the values assigned to f oo. x and bar . y.

— Eachinstance has a unique source of random values that can be seeded independently. That random seed is
taken from the parent thread when the instance is created.

118 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

— Objects can be seeded at any time using the $sr andon() system task with an optional object argument.

cl ass Foo;
function new (integer seed);
//set a new seed for this instance
$srandon(seed, this);
endf unction
endcl ass

Once an object is created there is no guarantee that the creating thread can change the object’s random state
before another thread accesses the object. Therefore, it is best that objects self-seed within their new method
rather than externally.

An object’s seed can be set from any thread. However, athread's seed can only be set from within the thread
itsalf.

12.12 Manually seeding randomize

Each object maintains its own internal random number generator, which is used exclusively by itsr andom
i ze() method. This allows objects to be randomized independent of each other and of calls to other system
randomization functions. When an object is created, its random number generator (RNG) is seeded using the
next value from the RNG of the thread that creates the object. This processis called hierarchical object seed-

ing.

Sometimes it is desirable to manually seed an object’s RNG using the $sr andon() system call. This can be
done either in a class method, or external to the class definition:

An example of seeding the RNG internally, as a class method is:

cl ass Packet;
rand bit[15:0] header;

function new (int seed);
$srandon(seed, this);

endf unction
endcl ass

An example of seeding the RNG externdly is:

Packet p = new(200); // Create p with seed 200.
$srandom(300, p); /'l Re-seed p with seed 300.

Calling $srandon() inan object’'snew() function, assures the object’'s RNG is set with the new seed before
any class member values are randomized.

12.13 Random weighted case — randcase

statement_item ::= [l from Annex ??7?
{ attribute_instance } randcase randcase_item { randcase_item } endcase

randcase_item ::= expression : statement_or_null

Syntax 12-9—randcase syntax (excerpt from Annex A)

Copyright 2003 Accellera. All rights reserved. 119

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

| EDITOR’'S NOTE: randcase needs to be added to the BNF in Annex A. Where should it be added?

The keyword r andcase introduces a case statement that randomly selects one of its branches. The randcase
item expressions are non-negative integral values that constitute the branch weights. An item’s weight divided
by the sum of all weights gives the probability of taking that branch. For example:

randcase
3: x =1;
1: x =2;
4 : x = 3;
endcase

The sum of all weightsis 8, so the probability of taking the first branch is 0.375, the probability of taking the
second is 0.125, and the probability of taking the third is 0.5.

If abranch specifies a zero weight then that branch is not taken. If all randcase items specify zero weights then
no branch is taken and a warning may be issued.

The randcase weights can be arbitrary expressions, not just constants. For example:

byte a, b;
randcase
a+b: x =1,
a-b: x =2

a”™~b: x =3
12’ b800 : x = 4;
endcase

The precision of each weight expression is self-determined. The sum of the weights is computed using stan-
dard addition semantics (maximum precision of all weights), where each summand is unsigned. Each weight
expression is evaluated at most once (implementations may cache identical expressions) in an unspecified
order. In the example above, the first three weight expressions are computed using 8-bit precision, the fourth
expression is computed using 12-bit precision; the resulting weights are added as unsigned values using 12-bit
precision. The weight selection then uses unsigned 12-bit comparison.

Each call tor andcase retrieves one random number in the range zero to the sum of the weights. The weights
are then selected in declaration order: smaller random numbers correspond to the first (top) weight statements.

Randcase statements exhibit thread stability. The random numbers are obtained from $urandom_range, thus,
random values drawn are independent of thread execution order.

120 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Section 13
Inter-Process Synchronization and Communication

13.1 Introduction (informative)

High-level and easy-to-use synchronization and communication mechanism are essential to control the kinds
of interactions that occur between dynamic processes used to model a complex system or a highly reactive
testbench. Verilog provides basic synchronization mechanisms (i.e., - > and @, but they are al limited to
static objects and are adequate for synchronization at the hardware level, but fall short of the needs of a highly
dynamic, reactive testbench. At the system level, an essentia limitation of Verilog is its inability to create
dynamic events and communication channels, which match the capability to create dynamic processes.

SystemVerilog adds a powerful and easy-to-use set of synchronization and communication mechanisms, all of
which can be created and reclaimed dynamically. SystemVerilog adds a semaphore built-in class, which can
be used for synchronization and mutual exclusion to shared resources, and a mailbox built-in class that can be
used as a communication channel between processes. SystemVerilog also enhances Verilog's named event
data type to satisfy many of the system-level synchronization requirements.

Semaphores and mailboxes are built-in types, nonetheless, they are classes, and can be used as base classes for

deriving additional higher level classes. Built-in classes reside in the built-in namespace (see Section 7.10.1),
thus, they may be re-defined by user code in any other scope.

13.2 Semaphores

Conceptually, a semaphore is a bucket. When a semaphore is allocated, a bucket that contains a fixed number
of keysis created. Processes using semaphores must first procure a key from the bucket before they can con-
tinue to execute. If a specific process requires akey, only afixed number of occurrences of that process can be
in progress simultaneously. All others must wait until a sufficient number of keys is returned to the bucket.
Semaphores are typically used for mutual exclusion, access control to shared resources, and for basic synchro-
nization.

An example of creating a semaphoreis:
semaphore snirx;

Semaphore is abuilt-in class that provides the following methods:
— Create a semaphore with a specified number of keys: new()
— Obtain one or more keys from the bucket: get ()
— Return one or more keys into the bucket: put ()
— Try to obtain one or more keys without blocking: t ry_get ()
13.2.1 new()
Semaphores are created with the new() method.
The prototype for semaphore new() is:
function new(int keyCount = 0);
The KeyCount specifies the number of keysinitialy allocated to the semaphore bucket. The number of keysin
the bucket can increase beyond KeyCount when more keys are put into the semaphore than are removed. The

default value for KeyCount is 0.

Thenew() function returns the semaphore handle, or nul | if the semaphore cannot be created.

Copyright 2003 Accellera. All rights reserved. 121

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

13.2.2 put()
The semaphore put () method is used to return keys to a semaphore.
The prototype for put () is:
task put(int keyCount = 1);
keyCount specifies the number of keys being returned to the semaphore. The default is 1.

When the senmaphor e. put () task iscalled, the specified number of keys are returned to the semaphore. If a
process has been suspended waiting for a key, that process shall execute if enough keys have been returned.

13.2.3 get()
The semaphore get () method is used to procure a specified number of keys from a semaphore.
The prototype for get () is:
task get(int keyCount = 1);
keyCount specifies the required number of keys to obtain from the semaphore. The default is 1.

If the specified number of keys are available, the method returns and execution continues. If the specified
number of key are not available, the process blocks until the keys become available.

The semaphore waiting queue is First-In First-Out (FIFO). This does not guarantee the order in which pro-
cesses arrive at the queue, only that their arrival order shall be preserved by the semaphore.

13.2.4 try_get()

The semaphoret ry_get () method isused to procure a specified number of keys from a semaphore, but with-
out blocking.

The prototypefortry_get () is:
function int try_get(int keyCount = 1);
keyCount specifies the required number of keys to obtain from the semaphore. The default is 1.

If the specified number of keys are available, the method returns 1 and execution continues. If the specified
number of key are not available, the method returns 0.

13.3 Mailboxes

A mailbox is a communication mechanism that all ows messages to be exchanged between processes. Data can
be sent to a mailbox by one process and retrieved by ancther.

Conceptually, mailboxes behave like real mailboxes. When a letter is delivered and put into the mailbox, one
can retrieve the letter (and any data stored within). However, if the letter has not been delivered when one
checks the mailbox, one must choose whether to wait for the letter or retrieve the letter on subsequent trips to
the mailbox. Similarly, SystemVerilog's mailboxes provide processes to transfer and retrieve data in a con-
trolled manner. Mailboxes are created as having either a bounded or unbounded queue size. A bounded mail-
box becomes full when it contains the bounded number of messages. A process that attempts to place a
message into a full mailbox shall be suspended until enough room becomes available in the mailbox queue.
Unbounded mailboxes never suspend athread in a send operation.

An example of creating amailbox is:

122 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

mai | box nmbxRcv;

Mailbox is abuilt-in class that provides the following methods:
— Create amailbox: new()
— Place amessage in amailbox: put ()
— Try to place amessage in a mailbox without blocking: t ry_put ()
— Retrieve amessage from amailbox: get () or peek()
— Try to retrieve a message from a mailbox without blocking: try_get () ortry_peek()
— Retrieve the number of messagesin the mailbox: nuny()
13.3.1 new()
Mailboxes are created with the new() method.
The prototype for mailbox new() is:
function new(int bound = 0);
The new() function returns the mailbox handle, or nul | if the mailboxes cannot be created. If the bound
argument is zero then the mailbox is unbounded (the default) and a put () operation shall never block. If

bound isnon-zero, it represents the size of the mailbox queue.

The bound must be positive. Negative bounds are illegal and can result in indeterminate behavior, but imple-
mentations can issue awarning.

13.3.2 num()
The number of messages in a mailbox can be obtained viathe nun() method.
The prototype for nun() is:
function int num();
The nun() method returns the number of messages currently in the mailbox.
The returned value should be used with care, since it is valid only until the next get () or put () is executed
on the mailbox. These mailbox operations can be from different processes than the one executing the nuny()
][?r?itgsd. Therefore, the validity of the returned value shall depend on the time that the other methods start and
13.3.3 put()
The put () method places a message in a mailbox.
The prototype for put () is:
task put(singular nessage);
The message isany singular expression, including object handles.

The put () method stores a message in the mailbox in strict FIFO order. If the mailbox was created with a
bounded queue the process shall be suspended until there is enough room in the queue.

Copyright 2003 Accellera. All rights reserved. 123

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

13.3.4 try_put()
Thetry_put () method attempts to place a message in a mailbox.
The prototypefortry_put () is:
function int try_put(singular nmessage);
The message isany singular expression, including object handles.
Thetry_put () method stores a message in the mailbox in strict FIFO order. This method is meaningful only

for bounded mailboxes. If the mailbox is not full then the specified message is placed in the mailbox and the
function returns 1. If the mailbox is full, the method returns O.

13.3.5 get()
Theget () method retrieves a message from a mailbox.
The prototype for get () is:

task get(ref singular message);
The message can be any singular expression, and it must be avalid left-hand side expression.
The get () method retrieves one message from the mailbox, that is, removes one message from the mailbox
queue. If the mailbox isempty then the current process blocks until amessageis placed in the mailbox. If there
is atype mismatch between the message variable and the message in the mailbox, aruntime error is generated.
Non-parameterized mailboxes are type-less, that is, a single mailbox can send and receive different types of
data. Thus, in addition to the data being sent (i.e., the message queue), a mailbox implementation must main-

tain the message data type placed by put () . Thisisrequired in order to enable the runtime type checking.

The mailbox waiting queue is FIFO. This does not guarantee the order in which processes arrive at the queue,
only that their arrival order shall be preserved by the mailbox.

13.3.6 try_get()
Thetry_get () method attempts to retrieves a message from a mailbox without blocking.
The prototypefortry_get () is:
function int try_get(ref singular message);
The message can be any singular expression, and it must be avalid | eft-hand side expression.
Thetry_get () method tries to retrieve one message from the mailbox. If the mailbox is empty, then the
method returns 0. If there is a type mismatch between the message variable and the message in the mailbox,

the method returns —1. If a message is available and the message type matches the type of the message vari-
able, the messageis retrieved and the method returns 1.

13.3.7 peek()
The peek() method copies a message from a mailbox without removing the message from the queue.
The prototype for peek() is:

task peek(ref singular nmessage);

The message can be any singular expression, and it must be avalid | eft-hand side expression.

124 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

The peek() method copies one message from the mailbox without removing the message from the mailbox
gueue. If the mailbox is empty then the current process blocks until a messageis placed in the mailbox. If there
is atype mismatch between the message variable and the message in the mailbox, aruntime error is generated.
Note that calling peek() can cause one message to unblock more than one process. As long as a message

remains in the mailbox queue, any process blocked in either a peek() or get () operation shall become
unblocked.

13.3.8 try_peek()
Thetry_peek() method attempts to copy a message from amailbox without blocking.
The prototypefortry_peek() is:

function int try_peek(ref singular nessage);
The message can be any singular expression, and it must be avalid left-hand side expression.
Thetry_peek() method triesto copy one message from the mailbox without removing the message from the
mailbox queue. If the mailbox is empty, then the method returns O. If there is a type mismatch between the

message variable and the message in the mailbox, the method returns—1. If amessage is available and the mes-
sage type matches, the type of the message variable, the message is copied and the method returns 1.

13.4 Parameterized mailboxes

The default mailbox is type-less, that is, a single mailbox can send and receive any type of data. Thisisavery
powerful mechanism that, unfortunately, can also result in run-time errors due to type mismatches between a
message and the type of the variable used to retrieve the message. Frequently, a mailbox is used to transfer a
particular message type, and, in that case, it is useful to detect type mismatches at compiletime.

Parameterized mailboxes use the same parameter mechanism as parameterized classes (see Section 11.23),
modules, and interfaces:

mai | box #(type = dynam c_type)
Where dynani c_t ype represents a special type that enables run-time type-checking (the default).
A parameterized mailbox of a specific type is declared by specifying the type:

typedef mail box #(string) s_nbox;

S _mbox sm = new,
string s;

smput("hello");
smget(s); /1 s <- "hello"

Parameterized mailboxes provide al the same standard methods as dynamic mailboxes: nun(), new(),
get (), peek(),put(),try_get(),try_peek(),try_put().

The only difference between a generic (dynamic) mailbox and a parameterized mailbox is that for a parameter-

ized mailbox, the compiler ensuresthat aH theput , try_put, peek,try_peek,and get andtry_get meth- | LRM 37
ods are compatible with the mailbox type, so that all type mismatches are caught by the compiler and not at
run-time.

Copyright 2003 Accellera. All rights reserved. 125

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

13.5 Event

In Verilog, named events are static objects that can be triggered via the - > operator, and processes can wait for
an event to be triggered via the @operator. SystemVerilog events support the same basic operations, but
enhance Verilog events in several ways. The most salient enhancement is that the triggered state of Verilog
named events has no duration, whereas in SystemVerilog this state persists throughout the time-step in which
the event triggered. Also, SystemVerilog events act as handles to synchronization queues, thus, they can be
passed as arguments to tasks, and they can be assigned to one another or compared.

Existing Verilog event operations (@and - >) are backward compatible and continue to work the same way
when used in the static Verilog context. The additional functionality described below works with al eventsin
either the static or dynamic context.

A SystemVerilog event provides a handle to an underlying synchronization object. When a process waits for an
event to be triggered, the process is put on a queue maintained within the synchronization object. Processes
can wait for a SystemVerilog event to be triggered either via the @operator, or by using thewai t () construct
to examine their triggered state. Events are triggered using the - > or the - >> operator.

event_trigger ::= // from Annex A.6.5
-> hierarchical_event_identifier ;
|->>[delay_or_event_control | hierarchical_event_identifier ;

Syntax 13-1—Event trigger syntax (excerpt from Annex A)
The syntax to declare named events is discussed in Section 3.8.
13.5.1 Triggering an event
Named events are triggered via the - > operator.
Triggering an event unblocks all processes currently waiting on that event. When triggered, named events
behave like aone-shot, that is, the trigger state itself is not observable, only its effect. Thisis similar to the way
in which an edge can trigger a flip-flop but the state of the edge can not be ascertained, i.e., i f (posedge
cl ock) isillegal.
13.5.2 Nonblocking event trigger
Nonblocking events are triggered using the - >> operator.
The effect of the - >> operator is that the statement executes without blocking and it creates a nonblocking
assign update event in the time in which the delay control expires, or the event-control occurs. The effect of

this update event shall be to trigger the referenced event in the nonblocking assignment region of the smula-
tion cycle.

13.5.3 Waiting for an event

The basic mechanism to wait for an event to be triggered is via the event control operator, @

@ event—i-dentifier hierarchical _event _identifier;
The @operator blocks the calling process until the given event istriggered.
For atrigger to unblock a process waiting on an event, the waiting process must execute the @statement before

the triggering process executes the trigger operator, - >. If the trigger executes first, then the waiting process
remains blocked.

126 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

13.5.4 Persistent trigger: triggered property

SystemVerilog can distinguish the event trigger itself, which is instantaneous, from the event’s triggered state,
which persists throughout the time-step (i.e., until simulation time advances). Thet ri gger ed event property
allows users to examine this state.

Thetri gger ed property isinvoked using a method-like syntax:

eventidentifiertriggered hi er ar chi cal _event _i dentifier.triggered LRM 18

Thetri gger ed event property evaluates to true if the given event has been triggered in the current time-step
and false otherwise. If event _i denti fi er isnul I, then the triggered event property evaluates to false.

Thetri gger ed event property is most useful when used in the context of awai t construct:

wait (event—identifiertriggered hierarchical _event_identifier.triggered)

Using this mechanism, an event trigger shall unblock the waiting process whether the wai t executes before or
at the same simulation time as the trigger operation. Thet ri gger ed event property, thus, helps eliminate a
common race condition that occurs when both the trigger and thewai t happen at the sametime. A process that
blocks waiting for an event might or might not unblock, depending on the execution order of the waiting and
triggering processes. However, a process that waits on the triggered state always unblocks, regardliess of the
order of execution of the wait and trigger operations.

Example:
event done, bl ast; // declare two new events
event done_too = done; /1 declare done_too as alias to done

task trigger(event ev);

-> ev;
endt ask
fork
@ done_t o0; /1 wait for done through done_too
#1 trigger(done); /1 trigger done through task trigger
join
fork
-> bl ast;
wait (blast.triggered);
join

Thefirst fork in the exampl e shows how two event identifiers, done and done_t oo, refer to the same synchro-
nization object, and also how an event can be passed to a generic task that triggers the event. In the example,
one process waits for the event viadone_t oo, while the actual triggering isdoneviathet ri gger task that is
passed done as an argument.

In the second fork, one process can trigger the event bl ast before the other process (if the processes in the
fork...j oi n executein source order) has a chance to execute, and wait for the event. Nonethel ess, the second
process unblocks and the fork terminates. This is because the process waits for the event’s triggered state,
which remainsin its triggered state for the duration of the time-step.

13.6 Event sequencing: wait_order()

The wai t _or der construct suspends the calling process until all of the specified events are triggered in the

Copyright 2003 Accellera. All rights reserved. 127

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

given order (left to right) or any of the un-triggered events are triggered out of order and thus causes the oper-
ation to fail.

The syntax for thewai t _or der construct is:

wait_statement ::= // from Annex A.6.5

| wait_order (hierarchical_identifier [, hierarchical_identifier]) action_block

action_block ::=
statement _or_null
| [statement] else statement

Syntax 13-2—wait_order event sequencing syntax (excerpt from Annex A)

For wai t _or der to succeed, at any point in the sequence, the subsequent events—which must all be un-trig-
gered at this point, or the sequence would have already failed—must be triggered in the prescribed order. Pre-
ceding events are not limited to occur only once. That is, once an event occursin the prescribed order, it can be
triggered again without causing the construct to fail.

Only thefirst event in the list can wait for the persistent t ri gger ed property.

The action taken when the construct fails depends on whether or not the optional phrase el se statement (the
fail statement) is specified. If it is specified, then the given statement is executed upon failure of the construct.
If the fail statement is not specified, afailure generates a run-time error.

For example:

wait_order(a, b, c);

suspends the current process until eventsa, b, and c trigger intheordera —> b —> c. If the eventstrigger out
of order, arun-time error is generated.

Example:
wait_order(a, b, ¢) else $display("Error: events out of order");

In this example, the fail statement specifies that upon failure of the construct, a user message be displayed, but
without an error being generated.

Example:

bit success;
wait_order(a, b, ¢) success = 1; el se success = 0;

In this example, the completion statusis stored in the variabl e success, without an error being generated.

13.7 Event variables

An event is a unique data type with several important properties. Unlike Verilog, SystemVerilog events can be
assigned to one another. When one event is assigned to another the synchronization queue of the source event
is shared by both the source and the destination event. In this sense, events act as full fledged variables and not
merely as labels.

13.7.1 Merging events

When one event variable is assigned to another, the two become merged. Thus, executing - > on either event

128 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

variable affects processes waiting on either event variable.
For example:

event a, b, c;

a = b;

-> ¢

-> a; /1 also triggers b

-> b; /1 also triggers a

a = c;

b = a;

-> a; /1 also triggers b and c
-> b; /1 also triggers a and c
> C;

/1 also triggers a and b

When events are merged, the assignment only affects the execution of subsequent event control or wait opera-
tions. If a process is blocked waiting for event 1 when another event is assigned to event 1, the currently
waiting process shall never unblock. For example:

fork
T1: while(l) @E2;
T2: while(l) @ EZ1;

T3: begin
E2 = EI;
while(1l) -> E2;
end
join

This example forks off three concurrent processes. Each process starts at the same time. Thus, at the sametime
that process T1 and T2 are blocked, process T3 assigns event E1 to E2. This means that process T1 shall never
unblock, because the event E2 is now E1. To unblock both threads T1 and T2, the merger of E2 and E1 must
take place before the fork.

13.7.2 Reclaiming events

When an event variable is assigned the special nul | value, the association between the event variable and the
underlying synchronization queue is broken. When no event variable is associated with an underlying synchro-
nization queue, the resources of the queue itself become available for re-use.

Triggering a nul | event shall have no effect. The outcome of waiting on a nul | event is undefined, and
implementations can issue a run-time warning.

For example:

event E1 = null;

@ E1; /1 undefined: mght block forever or not at all
wait(El.triggered); /1 undefined
-> E1; /'l no effect

13.7.3 Events comparison

Event variables can be compared against other event variables or the special value nul | . Only the following
operators are allowed for comparing event variables:

— Equality (==) with another event or with nul | .
— Inequality (! =) with another event or withnul I .

— Case equality (===) with another event or with nul | (same semantics as==).

Copyright 2003 Accellera. All rights reserved. 129

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

— Caseinequality (! ==) with another event or with nul | (same semanticsas! =).

— Test for aboolean value that shall be 0 if theeventisnul | and 1 otherwise.

Example:

event E1, E2;
if (E1l) [l same as if (El I= null)
El = E2;
if (El == E2)
$di splay("El1 and E2 are the same event");

130 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Section 14
Scheduling Semantics

14.1 Execution of a hardware model and its verification environment

The balance of the sections of this standard describes the behavior of each of the elements of the language.
This section gives an overview of the interactions between these elements, especially with respect to the sched-
uling and execution of events. Although SystemVerilog is not limited to simulation, the semantics of the lan-
guage are defined for event directed ssimulation, and other uses of the hardware description language are
abstracted from this base definition.

14.2 Event simulation

The SystemVerilog language is defined in terms of a discrete event execution model. The discrete event simu-
lation is described in more detail in this section to provide a context to describe the meaning and valid interpre-
tation of SystemVerilog constructs. These resulting definitions provide the standard SystemVerilog reference
algorithm for simulation, which all compliant simulators shall implement. Note that there is a great deal of
choice in the definitions that follow, and differences in some details of execution are to be expected between
different simulators. In addition, SystemVerilog simulators are free to use different algorithms than those
described in this section, provided the user-visible effect is consistent with the reference algorithm.

A SystemVerilog description consists of connected threads of execution or processes. Processes are objects
that can be evaluated, that can have state, and that can respond to changes on their inputs to produce outputs.
Processes are concurrently scheduled elements, such asi ni ti al blocks. Example of processes include, but
are not limited to, primitives, i ni ti al andal ways procedural blocks, continuous assignments, asynchronous
tasks, and procedural assignment statements.

Every change in state of a net or variable in the system description being simulated is considered an update
event.

Processes are sensitive to update events. When an update event is executed, all the processes that are sensitive
to that event are considered for evaluation in an arbitrary order. The evaluation of a processis also an event,
known as an evaluation event.

Evaluation events also include PLI callbacks, which are points in the execution model where user-defined
external routines can be called from the simulation kernel.

In addition to events, another key aspect of asimulator istime. The term simulation time is used to refer to the
time value maintained by the simulator to model the actual time it would take for the system description being
simulated. The term time is used interchangeably with simulation time in this section.

To fully support clear and predictable interactions, a single time slot is divided into multiple regions where
events can be scheduled that provide for an ordering of particular types of execution. This alows properties
and checkers to sample data when the design under test isin a stable state. Property expressions can be safely
evaluated, and testbenches can react to both properties and checkers with zero delay, all in a predictable man-
ner. This same mechanism also allows for non-zero delays in the design, clock propagation, and/or stimulus
and response code to be mixed freely and consistently with cycle accurate descriptions.

14.3 The stratified event scheduler

A compliant SystemVerilog simulator must maintain some form of data structure that alows events to be
dynamically scheduled, executed and removed as the simulator advances through time. The data structure is
normally implemented as atime ordered set of linked lists, which are divided and sub-divided in awell defined
manner.

The first division is by time. Every event has one and only one simulation execution time, which at any given

Copyright 2003 Accellera. All rights reserved. 131

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

point during simulation can be the current time or some future time. All scheduled events at a specific time
define a time dot. Simulation proceeds by executing and removing all events in the current simulation time
slot before moving on to the next non-empty time dot, in time order. This procedure guarantees that the simu-
lator never goes backwardsin time.

A time slot isdivided into a set of ordered regions:
1) Preponed

2) Pre-active
3) Active

4) Inactive

5) PreNBA

6) NBA

7) Post-NBA
8) Observed

9) Post-observed
10) Reactive

11) Postponed

The purpose of dividing a time slot into these ordered regions is to provide predictable interactions between
the design and testbench code.

Except for the Observed and Reactive regions and the Post-observed PLI region, these regions essentially
encompass the Verilog 1364-2001 standard reference model for simulation, with exactly the same level of
determinism. This means that legacy Verilog code shall continue to run correctly without modification within
the new mechanism. The Postponed region is where the monitoring of signals, and other similar events, takes
place. No new value changes are allowed to happen in the time slot once the Postponed region is reached.

The Observed and Reactive regions are new in the SystemVerilog 3.1 standard, and events are only scheduled
into these new regions from new language constructs.

The Observed region is for the evaluation of the property expressions when they are triggered. It is essential
that the signals feeding and producing al the clocks to the property expressions have stabilized, so that the
next state of the property expressions can be calculated deterministically. A criterion for this determinism is
that the property evaluations must only occur once in any clock triggering time slot. During the property eval-
uation, pass/fail code shall be scheduled to be executed in the Reactive region of the current time slot.

The sampling time of sampled data for property expressionsis controlled in the clock domain block. The new
#1st ep sampling delay provides the ability to sample data immediately before entering the current time slot,
and is a preferred construct over other equivalent constructs because it allows the 1st ep time delay to be
parameterized. This #1st ep construct is a conceptual mechanism that provides a method for defining when
sampling takes place, and does not require that an event be created in this previoustime slot. Conceptually this
#1st ep sampling isidentical to taking the data samples in the Preponed region of the current time slot.

Code specified in the program block, and pass/fail code from property expressions, are scheduled to occur in
the Reactive region.

The Pre-active, Pre-NBA, and Post-NBA are new in the SystemVerilog 3.1 standard but support existing PLI

callbacks. The Post-observed region is new in the SystemVerilog 3.1 standard and has been added for PLI sup-
port.

132 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

SystemVerilog 3.1a/draft 1

The Pre-active region is specifically for aPLI callback control point that allows for user code to read and write
values and create events before eventsin the Active region are evaluated (see Section 14.4).

The Pre-NBA region is specifically for aPLI callback control point that allows for user code to read and write
values and create events before the eventsin the NBA region are evaluated (see Section 14.4).

The Post-NBA region is specifically for aPLI callback control point that allows for user code to read and write
values and create events after the eventsin the NBA region are evaluated (see Section 14.4).

The Post-observed region is specifically for a PLI callback control point that allows for user code to read val-
ues after properties are evaluated (in Observed or earlier region).

The flow of execution of the event regionsis specified in Figure 14-1.

from previous
time slot

¢—— timeslot — P

Legend:

PLI Region

» preponed
v

pre-active
<
<

A 4

)

active

4
inactive

(o

post-NBA

observed

post-observed

A\ 4
reactive [—»
A

4

to next
time slot

postponed —

»
»

Figure 14-1 — The SystemVerilog flow of time slots and event regions

The Active, Inactive, Pre-NBA, NBA, Post-NBA, Observed, Post-observed and Reactive regions are known as

the iterative regions.

Copyright 2003 Accellera. All rights reserved.

133

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

The Preponed region is specifically for aPLI callback control point that allows for user code to access data at
the current time slot before any net or variable has changed state.

The Active region holds current events being evaluated and can be processed in any order.
The Inactive region holds the events to be evaluated after all the active events are processed.

An explicit zero delay (#0) requires that the process be suspended and an event scheduled into the Inactive
region of the current time slot so that the process can be resumed in the next inactive to active iteration.

A nonblocking assignment creates an event in the NBA region, scheduled for current or a later simulation
time.

The Postponed region is specifically for aPLI callback control point that allows for user code to be suspended
until after al the Active, Inactive and NBA regions have completed. Within this region, it isillegal to write
values to any net or variable, or to schedule an event in any previous region within the current time slot.

14.3.1 The SystemVerilog simulation reference algorithm

execut e_sinul ation {
T =0;
initialize the values of all nets and vari abl es;
schedule all initialization events into tine O slot;
while (some tine slot is non-enpty) {
nmove to the next future non-enpty tine slot and set T,
execute_tinme_slot (T);

}

execute_time_slot {
execut e_regi on (preponed);
while (sonme iterative region is non-enpty) {
execute_region (active);
scan iterative regions in order {
if (region is non-enpty) {
nmove events in region to the active region
break from scan | oop

}
}

execut e_regi on (postponed);

}

execute_region {
while (region is non-empty) {
E = any event fromregion;
renove E fromthe region;
if (Eis an update event) {
updat e the nodified object;
eval uate processes sensitive to the object and possibly schedul e
further events for execution;
} else { /* Eis an evaluation event */
eval uate the process associated with the event and possibly
schedul e further events for execution;

}
The lIterative regions and their order are: Active, Inactive, Pre-NBA, NBA, Post-NBA, Observed, Post-

134 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

observed and Reactive.

14.4 The PLI callback control points

There are two kinds of PLI callbacks, those that are executed immediately when some specific activity occurs,
and those that are explicitly registered as a one-shot evaluation event.

It is possible to explicitly schedule a PLI callback event in any region. Thus, an explicit PLI callback registra-
tionisidentified by atuple: (time, region).

The following list provides the mapping from the various current PLI callbacks

Table 14-3: PLI Callbacks

Callback I dentification
tf_synchroni ze (time, Pre-NBA)
tf_isynchronize (time, Pre-NBA)
tf_rosynchroni ze (time, Postponed)
tf_irosynchronize (time, Postponed)
cbReadW it eSynch (time, Post-NBA)

cbAt Start O Si nili ne (time, Pre-active)

cbReadOnl ySynch (time, Postponed)
cbNBASynch (time, Pre-NBA)
cbAt EndOf Si nili e (time, Postponed)
cbNext Si nili me (time, Pre-active)
cbAf t er Del ay (time, Pre-active)

Copyright 2003 Accellera. All rights reserved. 135

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Section 15
Clocking Domains

15.1 Introduction (informative)

In Verilog, the communication between blocks is specified using module ports. SystemVerilog adds the inter-
face, a key construct that encapsulates the communication between blocks, thereby enabling users to easily
change the level of abstraction at which the inter-module communication is to be modeled.

An interface can specify the signals or nets through which a testbench communicates with a device under test.
However, an interface does not explicitly specify any timing disciplines, synchronization requirements, or
clocking paradigms.

SystemVerilog addsthecl ocki ng construct that identifies clock signal's, and captures the timing and synchro-
ni zation requirements of the blocks being modeled. A clocking domain assembles signals that are synchronous
to a particular clock, and makes their timing explicit. The clocking domain is a key element in a cycle-based
methodol ogy, which enables usersto write testbenches at a higher level of abstraction. Rather than focusing on
signals and transitions in time, the test can be defined in terms of cycles and transactions. Depending on the
environment, a testbench can contain one or more clocking domains, each containing its own clock plus an
arbitrary number of signals.

The clocking domain separates the timing and synchronization details from the structural, functional, and pro-
cedural elements of atestbench. Thus, the timing for sampling and driving clocking domain signalsisimplicit
and relative to the clocking-domain’s clock. This enables a set of key operations to be written very succinctly,
without explicitly using clocks or specifying timing. These operations are:

— Synchronous events
— Input sampling
— Synchronous drives

15.2 Clocking domain declaration

The syntax for thecl ocki ng construct is:

136 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

clocking_decl ::=[default] clocking [clocking_identifier] clocking_event ; /[from Annex A.6.11
{ clocking_item}
endclocking
clocking_event ::=
@ identifier
| @ (event_expression)
clocking_item ;=
default default_skew ;
| clocking direction list_of clocking decl_assign ;
| { attribute instance} concurrent_assertion_item_declaration
default_skew ::=
input clocking_skew
| output clocking_skew
| input clocking_skew output clocking_skew
clocking_direction ::=
input [clocking_skew]
| output [clocking_skew]
| input [clocking_skew] output [clocking_skew]
| inout
list_of clocking_decl_assign ::= clocking_decl_assign{ , clocking_decl_assign}
clocking_decl_assign ::= signal_identifier [= hierarchical_identifier]
clocking_skew ::=
edge identifier [delay_control]

| delay_control
edge identifier ::= posedge | negedge /I from Annex A.7.4
delay control ::= [/ from Annex A.6.5
delay_value

| # (mintypmax_expression)

Syntax 15-1—Class syntax (excerpt from Annex A)

The delay_control must be either a time literal or a constant expression that evaluates to a positive integer
value.

The clocking_identifier specifies the name of the clocking domain being declared.

The signal_identfier identifies a signal in the scope enclosing the clocking domain declaration, and declares
the name of asignal in the clocking domain. Unless a hi er ar chi cal _expr essi on is used, both the signal
and thecl ocki ng_i t emnames shall be the same.

The clocking_event designates a particular event to act as the clock for the clocking domain. Typically, this
expression is either the posedge or negedge of aclocking signal. The timing of all the other signals specified
in a given clocking domain are governed by the clocking event. All i nput or i nout signals specified in the
clocking domain are sampled when the corresponding clock event occurs. Likewise, al out put or i nout sig-
nals in the clocking domain are driven when the corresponding clock event occurs. Bidirectional signals
(i nout) are sampled as well as driven.

The clocking_skew determines how many time units away from the clock event a signal is to be sampled or
driven. Input skews are implicitly negative, that is, they always refer to atime before the clock, whereas output
skews always refer to a time after the clock (see Section 15.3). When the clocking event specifies a simple
edge, instead of a number, the skew can be specified as the opposite edge of the signal. A single skew can be
specified for the entire domain by using adef aul t clocking item.

Copyright 2003 Accellera. All rights reserved. 137

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

The hierarchical_identifier specifies that, instead of alocal port, the signal to be associated with the clocking
domain is specified by its hierarchical name (cross-module reference).

Example:

cl ocki ng bus @ posedge cl ockl);
default input #10ns output #2ns;
i nput data, ready, enable = top.nenl. enabl e;
out put negedge ack;
i nput #lstep addr;
endcl ocki ng

In the above example, the first line declares a clocking domain called bus that is to be clocked on the positive
edge of the signal cl ock1. The second line specifies that by default all signalsin the domain shall usea10ns
input skew and a 2ns output skew. The next line adds three input signals to the domain: dat a, r eady, and
enabl e; the last signal refers to the hierarchical signal t op. nemil. enabl e. The fourth line adds the signal
ack to the domain, and overrides the default output skew so that ack is driven on the negative edge of the
clock. Thelast line addsthe signal addr and overrides the default input skew so that addr is sampled one step
before the positive edge of the clock.

Unless otherwise specified, the default i nput skew is 1st ep and the default out put skew is0. A step isa
special time unit whose value is defined in Section 18.7. A 1st ep input skew alows input signals to sample
their steady-state values in the time step immediately before the clock event (i.e., in the preceding Postponed
region). Unlike other time units, which represent physical units, a step cannot be used to set or modify either
the precision or the timeunit.

15.3 Input and output skews

Input (or inout) signals are sampled at the designated clock event. If an input skew is specified then the signal
issampled at skew time units before the clock event. Similarly, output (or inout) signals are driven skew simu-
lation time units after the corresponding clock event. Figure 15-1 shows the basic sample/drive timing for a
positive edge clock.

signal sampled here signal driven here
2 S 4
| | |
| | |
| T
| |
clock | |
|
TR
input skew \b output skew

Figure 15-1 — Sample and drive times including skew
with respect to the positive edge of the clock.

A skew must be a constant expression, and can be specified as a parameter. If the skew does not specify atime
unit, the current time unit isused. If anumber is used, the skew isinterpreted using the timescale of the current
scope.

cl ocking dram @cl k) ;

i nput #lps address;
i nput #5 output #6 data;

138 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

endcl ocki ng

An input skew of 1st ep indicates that the signal isto be sampled at the end of the previoustime step. That is,
the value sampled is aways the signal’s last value immediately before the corresponding clock edge.

An input skew of #0 forces a skew of zero. Inputs with zero skew are sampled at the same time as their corre-
sponding clocking event, but to avoid races, they are sampled in the Observed region. Likewise, outputs with
zero skew are driven at the same time as their specified clocking event, as nonblocking assignments (in the
NBA region).

Skews are declarative constructs, thus, they are semantically very different from the syntactically similar pro-

cedural delay statement. In particular, a #0 skew, does not suspend any process nor does it execute or sample
valuesin the Inactive region.

15.4 Hierarchical expressions

Any signal in a clocking domain can be associated with an arbitrary hierarchical expression. As described in
Section 15.2, ahierarchical expression isintroduced by appending an equal sign (=) followed by the hierarchi-
cal expression:

cl ocking cdl @ posedge phil);
i nput #lstep state = top.cpu.state;
endcl ocki ng

However, hierarchical expressions are not limited to simple names or signalsin other scopes. They can be used
to declare slices and concatenations (or combinations thereof) of signalsin other scopes or in the current scope.

cl ocki ng mem @ cl ock);

i nput instruction = { opcode, regA, regB[3:1] };
endcl ocki ng

15.5 Signals in multiple clocking domains

The same signals—clock, inputs, inouts, or outputs—can appear in more than one clocking domain. Clocking
domains that use the same clock (or clocking expression) shall share the same synchronization event, in the
same manner as several latches can be controlled by the same clock. Input semantics are described in
Section 15.12, and output semantics are described in Section 15.14.

15.6 Clocking domain scope and lifetime

A cl ocki ng construct is both a declaration and an instance of that declaration. A separate instantiation step is
not necessary. Instead, one copy is created for each instance of the block containing the declaration (like an
always block). Once declared, the clocking signals are available via the clock-domain name and the dot (.)
operator:

domsig // signal sig in clocking dom

Clocking domains cannot be nested. They cannot be declared inside functions or tasks, or at the global
($r oot) level. Clocking domains can only be declared inside a module, interface or program (see Section 16).

Clocking domains have static lifetime and scope local to their enclosing module, interface or program.

15.7 Multiple clocking domains example

In this example, a simple test program includes two clocking domains. The program construct used in this

Copyright 2003 Accellera. All rights reserved. 139

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

exampleis discussed in Section 16.

programtest(input phil, input [15:0] data, output logic wite,
i nput phi 2, inout [8:1] cnd, input enable
)
reg [8:1] cnd_reg

cl ocki ng cdl @ posedge phi1);

i nput data;

output wite;

i nput state = top.cpu.state;
endcl ocki ng

cl ocki ng cd2 @ posedge phi 2);
i nput #2 out put #4ps cnd;
i nput enabl e;

endcl ocki ng

initial begin
/'l program begi ns here

/'l user can access cdl.data , cd2.cnmd , etc...
end
assign cmd = enable ? cnd_reg: 'X;
endpr ogram

The test program can be instantiated and connected to a device under test (cpu and men).

nmodul e top;
| ogi ¢ phi 1, phiZ2;
wire [8:1] cnd; // cannot be logic (two bidirectional drivers)
| ogic [15:0] data;

test main(phil, data, wite, phi2, cnd, enable);
cpu cpul(phil, data, wite);
mem menl(phi2, cnd, enable);

endnodul e

15.8 Interfaces and clocking domains

A cl ocki ng encapsulates a set of signals that share a common clock, therefore, specifying a clocking domain
using a SystemVerilog i nt er f ace can significantly reduce the amount of code needed to connect the test-
bench. Furthermore, since the signal directions in the clocking domain within the testbench are with respect to
the testbench, and not the design under test, anodpor t declaration can appropriately describe either direction.
A testbench program can be contained within a program and its ports can be interfaces that correspond to the
signals declared in each clocking domain. The interface’s wires shall have the same direction as specified in
the clocking domain when viewed from the testbench side (i.e., modport test), and reversed when viewed
from the device under test (i.e., nodport dut).

For example, the previous example could be re-written using interfaces as follows:

interface bus_A (input clKk);
| ogic [15:0] data;
logic wite;
nodport test (input data, output wite);
nmodport dut (output data, input wite);
endi nterface

140 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

interface bus_B (input clKk);
logic [8:1] cnd;
| ogi ¢ enabl e;
nodport test (input enable);
nodport dut (output enable);
endi nterface

programtest(bus_A test a, bus_B.test b);

cl ocking cdl @ posedge a.clKk);
i nput a. dat a;
out put a.write;
i nout state = top.cpu.state;
endcl ocki ng

cl ocking cd2 @ posedge b.clk);
i nput #2 output #4ps b. cnd;
i nput b. enabl e;

endcl ocki ng

initial begin
/'l program begi ns here

// user can access cdl.a.data , cd2.b.cnd , etc...
end
endpr ogram

The test module can be instantiated and connected as before:

nmodul e top;
| ogi ¢ phil, phiZ2;

bus_A a(phil);
bus_B b(phi 2);

test min(a, b);

cpu cpul(a);

mem nmenil(b);
endnodul e

Alternatively, in the program test above, the clocking domain can be written using both interfaces and hierar-
chical expressionsas:

cl ocking cdl @ posedge a.clKk);
i nput data = a.dat a;
output wite = a.wite;
i nout state = top.cpu.state;
endcl ocki ng

cl ocking cd2 @ posedge b.clKk);
i nput #2 out put #4ps cmd = b. cnd;
i nput enabl e = b. enabl e;

endcl ocki ng

This would allow using the shorter names (cd1. dat a, cd2. cnd, ...) instead of the longer interface syntax
(cdl. a.data,cd2. b. cnd,...).

Copyright 2003 Accellera. All rights reserved. 141

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

15.9 Clocking domain events

The clocking event of a clocking domain is available directly by using the clocking domain name, regardless
of the actual clocking event used to declare the clocking domain.

For example.
cl ocki ng dram @ posedge phi 1);
i nout data
out put negedge #1 address;
endcl ocki ng
The clocking event of the dr amdomain can be used to wait for that particular event:

@ dram);

The above statement is equivalent to @ posedge phi 1) .

15.10 Cycle delay: ##

The ## operator can be used to delay execution by a specified number of clocking events, or clock cycles.

The syntax for the cycle delay statement is:

cycle delay range::= // from Annex A.2.10
constant_expression
| ##[cycle _delay const_range expression]
cycle delay const_range expression ::=
constant_expression : constant_expression
| constant_expression : $

Syntax 15-2—Cycle delay syntax (excerpt from Annex A)

The constant_expression can be any SystemVerilog expression that evaluates to a positive integer value.

What constitutes acycle is determined by the default clocking in effect (see Section 15.11). If no default clock-
ing has been specified for the current module, interface, or program then the compiler shall issue an error.

Example:
5; /1 wait 5 cycles (clocking events) using the default clocking
] + 1; /1 wait j+1 cycles (clocking events) using the default cl ocking

15.11 Default clocking

Onecl ocki ng can be specified as the default for all cycle delay operations within a given nodul e, i nt er -
face, or program

The syntax for the default cycle specification statement is:

142 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

module_or_generate item_declaration ::= [l from Annex A.1.5

| default clocking clocking_identifier ;
clocking_decl ::=[default] clocking [clocking_identifier] clocking_event ; [l from Annex A.6.11
{ clocking_item}
endclocking

Syntax 15-3—Default clocking syntax (excerpt from Annex A)

The clocking_identifier must be the name of a clocking domain.

Only one default clocking can be specified in a program, module, or interface. Specifying a default clocking
more than once in the same program or module shall result in a compiler error.

A default clocking is valid only within the scope containing the default clocking specification. This scope
includes the module, interface, or program that contains the declaration as well as any nested modules or inter-
faces. It does not include instantiated modules or interfaces.

Example 1. Declaring a clocking as the default:
programtest(input bit clk, input reg [15:0] data)
default cl ocking bus @ posedge clk);
i nout data;

endcl ocki ng

initial begin

5;
if (bus.data == 10)
1;
el se
end

endpr ogram

Example 2. Assigning an existing clocking to be the default:

nodul e processor ...

cl ocki ng busA @ posedge cl kl); ... endcl ocking
cl ocki ng busB @ negedge cl k2); ... endcl ocking
nmodul e cpu(interface y)

default cl ocking busA

initial begin

5; |/ use busA => (posedge clkl)
end

endnodul e
endnodul e

15.12 Input sampling

All clocking domain inputs (input or inout) are sampled at the corresponding clocking event. If the input skew
is non-zero, then the value sampled corresponds to the signal value at the Postponed region of the time step
skew time-units prior to the clocking event (see Figure 15-1 in Section 15.3). If the input skew is zero, then the
value sampled corresponds to the signal valuein the Observed region.

Copyright 2003 Accellera. All rights reserved. 143

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Samples happen immediately (the calling process does not block). When asignal appearsin an expression, itis
replaced by the signal’s sampled value, that is, the value that was sampled at the last sampling point.

When the same signal is an input to multiple clocking domains, the semantics are straightforward; each clock-
ing domain samples the corresponding signal with its own clocking event.

15.13 Synchronous events

Explicit synchronization is done viathe event control operator, @ which allows a process to wait for a particu-
lar signal value change, or a clocking event (see Section 15.9).

The syntax for the synchronization operator is given in Section 8.10.

The expression used with the event control can denote clocking-domain input (i nput or i nout), or aslice
thereof. Slices can include dynamic indices, which are evaluated once, when the @expression executes.

These are some example synchronization statements:

— Wait for the next change of signal ack_1 of clock-domain r am bus

@ram bus. ack_l);

— Wait for the next clocking event in clock-domain r am bus

@ ram bus);

— Wait for the positive edge of the signal r am bus. enabl e

@ posedge ram bus. enabl e);

— Wait for the falling edge of the specified 1-bit slice dom si gn[a] . Note that the index a is evaluated at
runtime.

@ negedge domsign[a]);

— Wait for either the next positive edge of dom si g1 or the next change of dom si g2, whichever happens
first.

@ posedge dom si gl or dom sig2);

— Wait for the either the negative edge of dom si g1 or the positive edge of dom si g2, whichever happens
first.

@ negedge dom si gl or posedge dom sig2);

The values used by the synchronization event control are the synchronous values, that is, the values sasmpled at
the corresponding clocking event.

15.14 Synchronous drives

Clocking domain outputs (out put or i nout) are used to drive values onto their corresponding signals, but at
aspecified time. That is, the corresponding signal changes value at the indicated clocking event as modified by
the output skew.

144 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

The syntax to specify a synchronous driveis similar to an assignment:

statement ::= [block_identifier : | statement_item [/ from Annex A.6.4
statement_item ::=

| { attribute instance} clocking drive
clocking_drive ::= [l from Annex A.6.11
clockvar_expression <= [cycle delay | expression
| cycle delay clockvar_expression <= expression
cycle delay ::= ## expression
clockvar ::= clocking_identifier . identifier
clockvar_expression ::=
clockvar range
| clockvar [range_expression |

Syntax 15-4—Default clocking syntax (excerpt from Annex A)

The clockvar_expression is either a bit-select, dlice, or the entire clocking domain output whose corresponding
signal isto be driven (concatenation is not alowed):

dom sig /'l entire clockvar
dom si g[2] /1 bit-select
dom si g[8: 2] Il slice

The expression can be any valid expression that is assignment compatible with the type of the corresponding
signal.

The event_count is an integral expression that optionally specifies the number of clocking events (i.e. cycles)
that must pass before the statement executes. Specifying a non-zero event _count blocks the current process
until the specified number of clocking events have elapsed, otherwise the statement executes at the current
time. Theevent _count uses syntax similar to the cycle-delay operator (see Section 15.10), however, the syn-
chronous drive uses the clocking domain of the signal being driven and not the default clocking.
The second form of the synchronous drive uses the intra-assignment syntax. An intra-assignment
event _count specification also delays execution of the assignment. In this case the process does not block
and the right-hand side expression is evaluated when the statement executes.
Examples:

bus.data[3:0] <= 4"h5; [// drive data in current cycle

##1 bus.data <= 8’ hz; /1l wait 1 (bus) cycle and then drive data

##2; bus.data <= 2; /1 wait 2 default clocking cycles, then drive data

bus. data <= ##2 r; /'l remenber the value of r and then drive
/1 data 2 (bus) cycles later

Regardless of when the drive statement executes (due to event_count delays), the driven value is assigned to
the corresponding signal only at the time specified by the output skew.

Copyright 2003 Accellera. All rights reserved. 145

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

15.14.1 Drives and nonblocking assignments
Synchronous signal drives are processed as nonblocking assignments.

A key feature of i nout clocking domain variables and synchronous drives is that a drive does not change the
clock domain input. Thisis because reading the input always yields the last sampled value, and not the driven
value.

15.14.2 Drive value resolution

When more than one synchronous drive is applied to the same clocking domain output (or inout) at the same
simulation time, the driven values are checked for conflicts. When conflicting drives are detected a runtime
error isissued, and each conflicting bit is drivento X (or O for a 2-state port).

For example:

cl ocki ng pe @ posedge clk);
out put ni bbl e; /1 four bit output
endcl ocki ng

pe. ni bbl e <= 4’ b0101;
pe. ni bbl e <= 4’ b0011;

The driven value of ni bbl e is4’ bOxx1, regardless of whether ni bbl e isareg or awi re.

When the same variable is an output from multiple clocking domains, the last drive determines the value of the
variable. This alows a single module to model multi-rate devices, such as a DDR memory, using a different
clocking domain to model each active edge. For example:

reg j,

cl ocki ng pe @ posedge clk);
out put j;
endcl ocki ng

cl ocki ng ne @negedge clk);
out put j;
endcl ocki ng

Thevariablej isan output to two clocking domains using different clocking events (posedge vs. negedge).
When driven, the variablej shall take on the value most recently assigned by either clocking domain.

Clock-domain outputs driving a net (i.e. through different ports) cause the net to be driven to its resolved sig-
nal value. When a clock-domain output correspondsto awire, adriver for that wireis created that is updated as
if by a continuous assignment from a register inside the clock-domain that is updated as a nonblocking assign-
ment.

146 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Section 16
Program Block

16.1 Introduction (informative)

The module is the basic building block in Verilog. Modules can contain hierarchies of other modules, wires,
task and function declarations, and procedural statements within always and initial blocks. This construct
works extremely well for the description of hardware. However, for the testbench, the emphasis is not in the
hardware-level details such as wires, structura hierarchy, and interconnects, but in modeling the complete
environment in which a design is verified. A lot of effort is spent getting the environment properly initialized
and synchronized, avoiding races between the design and the testbench, automating the generation of input
stimuli, and reusing existing models and other infrastructure.

The program block serves three basic purposes:
1) It provides an entry point to the execution of testbenches.
2) It creates a scope that encapsulates program-wide data.

3) It provides a syntactic context that specifies execution in the Reactive region.

The program construct serves as a clear separator between design and testbench, and, more importantly, it
specifies specialized execution semantics in the Reactive region for al elements declared within the program.
Together with clocking domains, the program construct provides for race-free interaction between the design
and the testbench, and enables cycle and transaction level abstractions.

The abstraction and modeling constructs of SystemVerilog simplify the creation and maintenance of test-
benches. The ability to instantiate and individually connect each program instance enables their use as general-
ized models.

16.2 The program construct

A typical program contains type and data declarations, subroutines, connections to the design, and one or more
procedural code streams. The connection between design and testbench uses the same interconnect mechanism
as used by SystemVerilog to specify port connections, including interfaces. The syntax for the program block
is:

Copyright 2003 Accellera. All rights reserved. 147

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

program_nonansi_header ::= [/ from Annex A.1.3
{ attribute_instance } program [lifetime] program_identifier
[parameter_port_list] list_of_ports;
program_ansi_header ::=
{attribute_instance} program [lifetime] program_identifier
[parameter_port_list] [list_of_port_declarations] ;
program_declaration ::=
program_nonansi_header [timeunits_declaration] { program_item }
endprogram [: program_identifier]
| program_ansi_header [timeunits_declaration] { non_port_program item}
endprogram [: program_identifier]
| { attribute_instance} program program _identifier (.*) ;
[timeunits_declaration] { program_item}
endprogram [: program_identifier]
| extern program_nonansi_header
| extern program_ansi_header
program_item ::= [/l from Annex A.1.7
port_declaration ;
| non_port_program_item
non_port_program_item ::=
{ attribute_instance } continuous_assign
| { attribute_instance} module_or_generate item_declaration
| { attribute_instance } specparam_declaration
| { attribute_instance } local_parameter declaration
| { attribute_instance } parameter_declaration ;
| { attribute_instance} initial_construct
| { attribute_instance} concurrent_assertion_item
| class_declaration

lifetime ::= static | automatic /I from Annex A.2.1.3

Syntax 16-1—Program declaration syntax (excerpt from Annex A)
For example:
programtest (input clk, input [16:1] addr, inout [7:0] data);
initial
endpr ogram
or
programtest (interface device_ifc);
initial
endpr ogram
A more complete exampleisincluded in Sections 15.7 and 15.8.
Although the pr ogr amconstruct is new to SystemVerilog, its inclusion is a natural extension. The pr ogr am
construct can be considered a leaf module with special execution semantics. Once declared, a program block
can be instantiated in the required hierarchical location (typicaly at the top level) and its ports can be con-
nected in the same manner as any other module.

Program blocks can be nested within modules or interfaces. This allows multiple cooperating programs to

148 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

share variables local to the scope. Nested programs with no ports or top-level programs that are not explicitly
instantiated are implicitly instantiated once. Implicitly instantiated programs have the same instance and decla-
ration name. For example:

nmodul e test(...)
int shared; // variable shared by prograns pl and pl

program pl,

endlp.rlogram

program p2,

end.p.r;)gram// pl and p2 are inplicitly instantiated once in nodul e test
endnodul e

A program block can contain one or morei ni ti al blocks. It can not contain al ways blocks, UDPs, modules,
interfaces, or other programs.

Type and data declarations within the program are local to the program scope and have static lifetime. Program
variables can only be assigned using blocking assignments. Non-program variables can only be assigned using
nonblocking assignments. Using nonblocking assignments with program variables or blocking assignments
with design (non-program) variables shall be an error.

16.3 Multiple programs

It isallowed to have any arbitrary number of program definitions or instances. The programs can be fully inde-
pendent (without inter-program communication), or cooperative. The degree of communication can be con-
trolled by choosing to share data using nested blocks or hierarchical references (including $r oot), or making
the data private by declaring it inside the corresponding program block.

16.4 Eliminating testbench races

There are two major sources of non-determinism in Verilog. The first oneisthat active events are processed in
an arbitrary order. The second one is that statements without time-control constructs in behavioral blocks do
not execute as one event. However, from the testbench perspective, these effects are all unimportant details.
The primary task of atestbench isto generate valid input stimulus for the design under test, and to verify that
the device operates correctly. Furthermore, testbenches that use cycle abstractions are only concerned with the
stable or steady state of the system for both checking the current outputs and for computing stimuli for the next
cycle. Formal tools aso work in this fashion.

To avoid the races inherent in the Verilog event scheduler, program statements are scheduled to execute in the
Reactive region, after all clocks in the design have triggered and the design has settled to its steady state. In
addition, design signals driven from within the program must be assigned using nonblocking assignments.
Thus, even signal s driven with no delay are propagated into the design as one event. With this behavior, correct
cycle semantics can be modeled without races; thereby making program-based testbenches compatible with
clocked assertions and formal tools.

Since the program executes in the Reactive region, the clocking domain construct is very useful to automati-
cally sample the steady-state values of previous time steps or clock cycles. Programs that read design values
exclusively through clocking domains with non-zero input skews are insensitive to read-write races. It is
important to note that simply sampling input signals (or setting non-zero skews on clock domain inputs) does
not eliminate the potential for races. Proper input sampling only addresses a single clocking domain. With
multiple clocks, the arbitrary order in which overlapping or simultaneous clocks are processed is still a poten-
tial source for races. The program construct addresses this issue by scheduling its execution in the Reactive
region, after all design events have been processed, including clocks driven by nonblocking assignments.

Copyright 2003 Accellera. All rights reserved. 149

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

16.4.1 Zero-skew clocking domain races

When a clocking domain sets both input and output skewsto #0 (see Section 15.3) then itsinputs are sampled
at the same time as its outputs are driven. This type of zero-delay processing is acommon source of non-deter-
minism that can result in races. Nonetheless, even in this case, the program minimizes races by means of two
mechanisms. First, by constraining program statements to execute in the Reactive region, after all zero-delay
transitions have propagated through the design and the system has reached a quasi steady state. Second, by
requiring design variables or nets to be modified only via nonblocking assignments. These two mechanisms
reduce the likelihood of arace; nonetheless, arace is still possible when skews are set to zero.

16.5 Blocking tasks in cycle/event mode

Calling program tasks or functions from within design modules isillegal and shall result in an error. Thisis
because the design must not be aware of the testbench. Programs are allowed to call tasks or functionsin other
programs or within design modules. Functions within design modules can be called from a program, and
reguire no special handling. However, blocking tasks within design modulesthat are called from a program do
reguire explicit synchronization upon return from the task. That is, when blocking tasks return to the program
code, the program block execution is automatically postponed until the Reactive region. The copy out of the
parameters happens when the task returns.

Calling blocking tasks in design modules from within programs requires careful consideration. Expressions
evaluated by the task before blocking on the first timing control shall use the values after they have been
updated by nonblocking assignments. In contrast, if thetask is called from amodule at the start of the time step
(before nonblocking assignments are processed) then those same expressions shall use the values before they
have been updated by nonblocking assignments.

modul e ...
task T;
S1: a = b; /1 mght execute before or after the Cbserve region
#5;
S2: b <= 1'bl; // always executes before the Cbserve region
endt ask
endnodul e

If task T, above, is called from within a module, then the statement S1 can execute immediately when the
Activeregion is processed, before variable b is updated by a nonblocking assignment. If the sasmetask is called
from within a program, then the statement S1 shall execute when the Reactive region is processed, after vari-
able b might have been updated by nonblocking assignments. Statement S2 always executes immediately after

the delay expires; it does not wait for the Reactive region even though it was originally called from the pro-
gram block.

16.6 Program control tasks

In addition to the normal simulation control tasks ($st op and $f i ni sh), a program can use the $exi t control
task.

16.6.1 $exit()

Each program can be finished by calling the $exi t system task. When al programs exit, the simulation fin-
ishes.

The syntax for the $exi t systemtask is:
task $exit();

When all i nitial blocksin aprogram finish (i.e., they execute their last statement), the program implicitly
calssexi t. Calling $exi t causesall processes spawned by the current program to be terminated.

150 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Section 17
Assertions

17.1 Introduction (informative)

SystemVerilog adds features to specify assertions of a system. An assertion specifies a behavior of the system.
Assertions are primarily used to validate the behavior of a design. In addition, assertions can be used to pro-
vide functional coverage and generate input stimulus for validation.

There are two kinds of assertions: concurrent and immediate.

— Immediate assertions follow simulation event semantics for their execution and are executed like a state-
ment in a procedural block. Immediate assertions are primarily intended to be used with simulation.

— Concurrent assertions are based on clock semantics and use sampled values of variables. One of the goals
of SystemVerilog assertions is to provide a common semantic meaning for assertions so that they can be
used to drive various design and verification tools. Many tools, such as formal verification tools, evaluate
circuit descriptions using a cycle-based semantic, which typically relies on a clock signal or signals to
drive the evaluation of the circuit. Any timing or event behavior between clock edges is abstracted away.
Concurrent assertions incorporate this clock semantic. While this approach generally simplifies the evalua-
tion of acircuit description, there are a number of scenarios under which this cycle-based evaluation pro-
vides different behavior from the standard event-based evaluation of SystemVerilog.

This section describes both types of assertions.

17.2 Immediate assertions

The immediate assertion statement is a test of an expression performed when the statement is executed in the
procedural code. The expression is non-temporal and treated asaconditionasinani f statement. The immedi-
ateassert statement isastatement_item and can be specified anywhere a procedural statement is specified.

procedural_assertion _item ::= // from Annex A.6.10

| immediate assert_statement
immediate assert_statement ::=
assert (expression) action_block
action block ::= // from Annex A.6.3

statement _or_null
| [statement] el se statement

Syntax 17-1—Immediate assertion syntax (excerpt from Annex A)

The action_block specifies what actions are taken upon success or failure of the assertion. The statement asso-
ciated with the success of the assert statement is the first statement. It is called the pass statement and is exe-
cuted if the expression evaluates to true. The evaluation of the expression follows the same semantic as that of
the conditional context of thei f statement. Aswiththei f statement, if the conditional expression evaluatesto
X, Z or 0, then the assertion fails. The pass statement can, for example, record the number of successes for a
coverage log, but can be omitted altogether. If the pass statement is omitted, then no user-specified action is
taken when the assert expression is true. The statement associated with el se is called afail statement and is
executed if the assertion fails. That is, the expression does not evaluate to a known, non-zero value. The el se
statement can aso be omitted. The action block is executed immediately after the evaluation of the assert
expression.

Copyright 2003 Accellera. All rights reserved. 151

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

The optional statement label (identifier and colon) creates a named block around the assertion statement (or
any other SystemVerilog statement) and can be displayed using the %nformat specification.

assert_foo : assert(foo) $display("%n passed"); else $display("%nfailed");
Note: The assertion control system tasks are described in Section 22.6.

Since the assertion is a statement that something must be true, the failure of an assertion shall have a severity
associated with it. By default, the severity of an assertion failureis error. Other severity levels can be specified
by including one of the following severity system tasksin the fail statement:

— $fatal isarun-time fatal, which shall terminate the simulation with an error code. The first argument
passed to $f at al shall be consistent with the argument to $f i ni sh.

— $error isarun-time error.
— $war ni ng isarun-time warning, which can be suppressed in a tool-specific manner.

— $i nf o indicates that the assertion failure carries no specific severity.
The syntax for these system tasks is shown in Section 22.5.

If an assertion fails and no el se clause is specified, the tool shall, by default, call $er r or, unless a tool-spe-
cific option, such as a command-line option, is enabled to suppress the failure.

All of these severity system tasks shall print a tool-specific message indicating the severity of the failure, and
specific information about the specific failure, which shall include the following information:

— Thefile name and line number of the assertion statement.

— Thehierarchical name of the assertion, if it is labeled, or the scope of the assertion if it is not labeled.

For simulation tools, these tasks shall also include the simulation run-time at which the severity system task is
called.

Each system task can also include additional user-specified information using the same format as the Verilog
$di spl ay.

If more than one of these system tasksisincluded in the el se clause, then each shall be executed as specified.

If the severity system task is executed at atime other than when the assertion fails, the actual failure time of the
assertion can be recorded and displayed programmatically. For example:

time t;

al ways @ posedge cl k)
if (state == REQ

assert (reql || reqg2)
el se begin

t = $tine;

#5 $error("assert failed at time %t",t);
end

If the assertion fails at time 10, the error message shall be printed at time 15, but the user-defined string printed
shall be “assert failed at time 10”.

The display of messages of warning and info types can be controlled by a tool-specific option, such as a com-
mand-line option.

Since the fail statement, like the pass statement, isany legal SystemVerilog procedural statement, it can also be
used to signal afailure to another part of the testbench.

152 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

assert (nyfunc(a,b)) countl count + 1; else ->eventl,

assert (y == 0) else flag 1;

17.3 Concurrent assertions overview

Concurrent assertions describe behavior that spans over time. Unlike immediate assertions, the evaluation
model is based on a clock such that a concurrent assertion is evaluated only at the occurrence of a clock tick.
The values of variables used in the evaluation are the sampled values. This way, a predictable result can be
obtained from the evaluation, regardless of the simulator’s internal mechanism of ordering events and eval uat-
ing events. Thismodel of execution also corresponds to the synthesis model of hardware interpretation from an
RTL description.

The values of variables used in assertions are sampled in the Preponed region of atime slot and the assertions
are evaluated during the Observe region. Thisis explained in Section 14, Scheduling Semantics.

The timing model employed in a concurrent assertion specification is based on clock ticks and uses a general-
ized notion of clock cycles. The definition of aclock is explicitly specified by the user and can vary from one
expression to another.

A clock tick is an atomic moment in time and implies that there is no duration of time in aclock tick. Itisaso
given that a clock shall tick only once at any simulation time, and the sampled values for that simulation time
are used for evaluation. In an assertion, the sampled value is the only valid value of avariable at a clock tick.
Figure 17-1 shows the values of a variable as the clock progresses. The value of signal r eq islow at clock
ticks 1 and 2. At clock tick 3, the value is sampled as high and remains high until clock tick 6. The sampled
value of variabler eq at clock tick 6 islow and remains low until clock tick 10. Notice that, at clock tick 9, the
simulation value transitions to high. However, the sampled valueis low.

e TR TEPET PR TP PR FEPETTTERT A
ticks I
1 2 13 4 5 ,6 7 8 19 10 11 12 13 14

clock ticks
|
1 |

II
req | I '

Figure 17-1 — Sampling a variable on simulation ticks

An expression used in an assertion is alwaystied to a clock definition. The sampled values are used to evaluate
value change expressions or boolean sub-expressions that are required to determine a match with respect to a
seguence expression.

Note:

— Itisimportant to ensure that the defined clock behavior is glitch free. Otherwise, wrong values can be sam-
pled.

— If avariable that appearsin the expression for clock also appearsin an expression for the assertion, the val-
ues of the two usages of the variable can be different. The value of the variable used in the clock expression
is the current value, while for the assertion the sampled value of the variableis used.

The clock expression that controls evaluation of a sequence can be more complex than just a single signa
name. An expressionsuchas(cl k && gating_signal) and (clk iff gating_signal) couldbeused
to represent gated clocks. Other more complex expressions are possible. In order to ensure proper behavior of
the system and conform as closely as possible to truly cycle-based semantics, the signalsin a clock expression
must be glitch-free and should only transition once at any simulation time.

An example of a concurrent assertion is:

Copyright 2003 Accellera. All rights reserved. 153

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

base_rul el: assert property (cont_prop(rst,inl,in2)) pass_stat else fail_stat;
The keyword pr oper t y distinguishes a concurrent assertion from an immediate assertion. The syntax of con-
current assertionsis discussed in 17.12.

17.4 Boolean expressions

The expressions used in sequences are evaluated over sampled values of the variables that appear in the
expression. The outcome of the evaluation of an expressions is boolean and is interpreted the same way as an
expression isinterpreted in the condition of aprocedural i f statement. That is, if the expression evaluatesto X,
Z, or 0, thenitisinterpreted as being false. Otherwise, itistrue.

There are certain restrictions on the expressions that can appear in concurrent assertions. The restrictions on
operand types, variables, and operators are specified in the following sections.

17.4.1 Operand types

The following types are not allowed:

— non-integer types (t i me, shortreal ,real andreal ti ne)
— string

— event

— chandl e

— cl ass

— associative arrays

— dynamic arrays

Fixed size arrays, packed or unpacked, can be used as a whole or as part selects or as indexed bit or part
selects. The indices can be constants, parameters, or variables.

The following exampl e shows some possible forms of comparison of over members of structures and unions:
typedef int [4] array;
typedef struct { int a, b, c,d } record;
union { record r; array a; } p, q;
The following comparisons are legal in expressions:
p.a == g.a
and
p.r == q.r
The following example provides further illustration of the use of arraysin expressions.
logic [7:0] arrayA [0:15], arrayB[O0: 15];

The following comparisons are legal:

arrayA == arrayB;

arrayA ! = arrayB;

arrayAli] >= arrayB[j];
arrayB[i][j+:2] == arrayA[k][m:2];

(arrayAli] & (~arrayB[j])) == 0;

154 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

17.4.2 Variables

The variables that can appear in expressions must be static design variables or function calls returning values
of types described in Section 17.4.1. The functions should be automatic (or preserve no state information) and
pure (no output arguments, no side effects). Static variables declared in programs, interfaces or clocking
domains can also be accessed. If areferenceisto astatic variable declared in atask, that variable is sampled as
any other variable, independent of callsto the task.

17.4.3 Operators
All operators that are valid for the types described in Section 17.4.1 are allowed with the exception of assign-
ment operators or increment and decrement operators. SystemVerilog includes the C assignment operators,

such as +=, and the C increment and decrement operators, ++ and --. These operators cannot be used in expres-
sions that appear in assertions. This restriction prevents side effects.

Copyright 2003 Accellera. All rights reserved. 155

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

17.5 Sequences

sequence_expr ;= [l from Annex A.2.10
cycle delay_range sequence_expr { cycle delay range sequence_expr }
| sequence_expr cycle delay range sequence_expr { cycle delay range sequence_expr }
| expression { , function_blocking_assignment } [boolean_abbrev]
| (expression {, function_blocking_assignment }) [boolean_abbrev]
| sequence_instance [sequence_abbrev |
| ('sequence_expr) [sequence_abbrev |
| sequence_expr and sequence_expr
| sequence_expr inter sect sequence_expr
| sequence_expr or sequence_expr
| first_match (sequence_expr)
| expression throughout sequence_expr
| sequence_expr within sequence_expr
cycle delay range::=
constant_expression
| ##[cycle delay const_range expression]
seguence_instance ::=
sequence_identifier [(actual_arg_list)]
formal_list_item ::=
formal_identifier [= actual_arg_expr]
actua_arg_list ::=
(actual_arg_expr { , actual_arg_expr})
| (.formal_identifier (actual_arg expr) { , . formal_identifier (actual_arg expr)})
actual_arg_expr ;=
event_expression
boolean_abbrev ::=
consecutive _repetition
| non_consecutive repetition
| goto_repetition
sequence_abbrev ::= consecutive_repetition
consecutive repetition ::= [* const_or_range_expression |
non_consecutive repetition ::= [*= const_or_range_expression |
goto_repetition ::=[*> const_or_range_expression |
const_or_range_expression ::=
constant_expression
| cycle_delay const_range_expression
cycle delay const_range expression ::=
constant_expression : constant_expression
| constant_expression : $

Syntax 17-2—Sequence syntax (excerpt from Annex A)

Properties are often constructed out of sequential behavior. The sequence feature provides the capability to
build and manipulate sequential behavior. A sequenceisalist of SystemVerilog boolean expressionsin alinear
order of increasing time. The boolean expressions must be true at those specific clock ticks for the sequence to
be true over time. A boolean expression at a point in time is a simple case of a sequence with time length of
one clock cycle. To determine a match of a sequence, the boolean expressions are eval uated at each successive
clock tick in an attempt to satisfy the sequence. If all expressions are true, then a match of the sequence occurs.

156 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

A sequence expression describes one or more sequences by using regular expressions. Such aregular expres-
sion can concisely specify a set of zero, finitely many, or infinitely many sequences that satisfy the sequence
expression.

Sequences and sequence expressions can be composed by concatenation, anal ogous to a concatenation of lists.
The concatenation specifies a delay, using ##, from the end of the first sequence until the beginning of the sec-
ond sequence.

The following is the syntax for sequence concatenation.

sequence_expr ::= [/l from Annex A.2.10
cycle delay range sequence_expr { cycle delay range sequence expr }
| sequence_expr cycle delay range sequence expr { cycle delay range sequence expr }

cycle delay range::=
constant_expression
| ##[cycle delay const_range expression |
cycle delay const_range expression ::=
constant_expression : constant_expression
| constant_expression : $

Syntax 17-3—Sequence concatenation syntax (excerpt from Annex A)

In this syntax:
— constant_expression is computed at compile time and must result in an integer value.
— constant_expression can only be O or greater.

— The $ token is used to indicate the end of simulation. For formal verification tools, $ is used to indicate a
finite, unbounded, range.

— When arangeis specified with two expressions, the second expression must be greater or equal to the first
expression.

The context in which a sequence occurs determines when the sequence is evaluated. The first expression in a
sequence is checked at the first occurrence of the clock tick at or after the expression that triggered evaluation
of the sequence. Each successive element (if any) in the sequenceis checked at the next subsequent occurrence
of the clock.

A ## followed by an optional number or range specifies that the sequence_expr should occur later than the cur-
rent cycle. A number of 1 indicates that the next element should occur a single cycle later than the current
cycle. The number 0 specifies that the next expression should occur in parallel with the current clock tick.

The following are examples of delay expressions. ‘ t r ue is aboolean expression that always evaluatesto true,
and isused for visua clarity. It can be defined as:

‘define true 1

##0 a /1l means a
##1 a /1 means ‘true ##1 a
##2 a /1l means ‘true ##1 ‘true ##1 a

##[0: 3] a /1 means (a) or (‘true ##1 a) or (‘true ##1 ‘true ##1 a) or
(‘true ##1 ‘true ##1 ‘true ##1 a)
a ##2 b /] meansa ##1 ‘true ##1 b

The sequence:

Copyright 2003 Accellera. All rights reserved. 157

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

req ##1 gnt ##1 !req
specifies that r eq be true on the current clock tick, gnt shall be true on the first subsequent tick, and r eq shall
be false on the next clock tick after that. The ##1 operator specifies one clock tick separation. A delay of more
than one clock tick can be specified, asin:

req ##2 gnt

This specifies that r eq shall be true on the current clock tick, and gnt shall be true on the second subsequent
clock tick, as shown in Figure 17-2.

0 sl 2
clk [| | L]
req [|1
gnt [

Figure 17-2 — Concatenation of sequences

The following specifies that signal b shall be true on the Nth clock tick after signal a:
a ##N b /1 check b on the Nth sanple

To specify a concatenation of overlapped sequences, where the end point of one sequence coincides with the
start of the next sequence, avalue of 0 is used, as shown below.

a ##1 b ##1 c // first sequence seql

d ##1 e ##1 f // second sequence seq2

seql ##0 seq2 // overl apped concatenation
In the above example, c isthe endpoint of sequenceseql, and d isthe start of sequence seq2. When concate-
nated with O clock tick delay, ¢ and d must occur at the same time, resulting in a concatenated sequence equiv-
alent to:

a ##1 b ##1 c&&d ##1 e ##1 f

It should be noted that no other form of overlapping between the sequences can be expressed using the concat-
enation operation.

In cases where the delay can be any value in arange, atime window can be specified as follows:
req ##[4:32] gnt

In the above case, signal r eq must be true at the current clock tick, and signal gnt must be true at some clock
tick between 4 and 32 after the current clock tick

The time window can extend to afinite, but unbounded, range by using $ asin the example below.
req ##[4:$] gnt

A sequence can be unconditionally extended by concatenation with “ t r ue.
a ##1 b ##1 c ##3 ‘true

After satisfying signal c, the sequence length is extended by 3 clock ticks. Such adjustments in the length of
seguences can be required when complex sequences are constructed by combining simpler sequences.

158 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

17.6 Declaring sequences

A sequence can bedeclared in
— amodule asamodule_or_generate item
— aninterface asan interface_or_generate item
— aprogram asanon_port_program_item
— aclocking domain as a clocking_item

— $root

Sequences are declared using the following syntax.:

concurrent_assertion_item_declaration ::= [/l from Annex A.2.10

| sequence _declaration
sequence_declaration ::=
sequence sequence_identifier [sequence_formal_list] ;
{ assertion_variable_declaration }
sequence_Sspec ;
endsequence [: sequence_identifier]
sequence formal_list ::=
(formal_list_item{ , formal _list item})
sequence_spec ;=
multi_clock_sequence
| sequence_expr
multi_clock_sequence::=
clocked sequence { ## clocked sequence}
clocked_seguence ::=
clocking_event sequence_expr
seguence_instance ::=
sequence _identifier [(actual_arg list)]
actua_arg list ::=
(actual_arg_expr { , actual_arg_expr})
| (.formal_identifier (actual_arg expr) { , . formal_identifier (actual_arg expr)})
actual_arg_expr ;=
event_expression
assertion_variable declaration ::=
data typelist_of variable identifiers;

Syntax 17-4—Declaring sequence syntax (excerpt from Annex A)

The clocking_event specifies the clock for the sequence.

Formal arguments can be optionally specified. A formal argument is untyped, and is used for syntactic replace-
ment of a name or an expression in the sequence.

An actual argument can replace an:
— identifier

— expression

Copyright 2003 Accellera. All rights reserved. 159

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

— event control expression

Note that variables used in a sequence that are not formal arguments to the sequence are resolved according to
the scoping rules from the scope in which the sequence is declared.

sequence sli,

@ posedge cl k) a ##1 b ##1 c;
endsequence
sequence s2;

@ posedge cl k) d ##1 e ##1 f;
endsequence
sequence s3;

@negedge cl k) g ##1 h ##1 i;
endsequence

In this example, sequences s1 and s2 are evaluated on each successive posedge of cl k. The sequence s3 is
evaluated on the negedge of cl k.

Another example of sequence declaration with arguments is shown below:

sequence s20_1(data, en);
('frame && (data==data_bus)) ##1 (c_be[0:3] == en);
endsequence

Sequence s20_1 does not specify aclock. In this case, a clock would be inherited from some external source,
such asaproperty or anassert statement. A sequence can be referred to by its name. A hierarchical name
can be used, consistent with the SystemVerilog naming conventions. A sequence can be referenced in apr op-

erty,anassert statement, or acover statement.

To use sequence as asub-expression or a part of the expression, simply reference its name. The eval uation of
a sequence expression that references a sequence is performed the same way as if the sequence expression con-
tained in the sequence was a lexical part of the expression, with the formal arguments substituted by the
actual ones and the remaining variables that were not arguments substituted from the scope of declaration. An
example is shown below:

sequence s;
a ##1 b ##1 c;
endsequence
sequence rul e;
@ posedge syscl k)
trans ##1 start_trans ##1 s ##1 end_trans;
endsequence

Sequencer ul e in the preceding exampleis equivalent to:

sequence rul e;

@ posedge syscl k)

trans ##1 start_trans ##1 a ##1 b ##1 c ##1 end_trans ;
endsequence

Any form of syntactic cyclic dependency of the sequence names is disallowed. The example below illustrates
anillegal dependency of s1 ons2 ands2 ons1, because it creates a cyclic dependency.

sequence sli,

@ posedge syscl k) (x ##1 s2);
endsequence
sequence s2;

@ posedge sysclk) (y ##1 sl);
endsequence

160 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

17.7 Sequence operations

17.7.1 Operator precedence

Operator precedence and associativity islisted in Table 17-1, below. The highest precedence islisted first.

Table 17-1: Operator precedence and associativity

SystemVerilog expression operators Associativity
, (for assignment) left
[* [*= [*-> left
and intersect left
or left
t hr oughout left
wi t hin left
#Ht left

17.7.2 Repetition in sequences

Following is the syntax for sequence repetition.

| expression { , function_blocking_assignment } [boolean_abbrev]

| (expression {, function_blocking_assignment }) [boolean_abbrev]
| sequence_instance [sequence_abbrev |

| ('sequence_expr) [sequence_abbrev |

boolean_abbrev ::=
consecutive _repetition
| non_consecutive _repetition
| goto_repetition
sequence_abbrev ::= consecutive_repetition
consecutive _repetition ::= [* const_or_range_expression |
non_consecutive repetition ::= [*= const_or_range_expression |
goto_repetition ::=[*- > const_or_range_expression |
const_or_range_expression ::=
constant_expression
| cycle delay const_range_expression
cycle delay const_range expression ::=
constant_expression : constant_expression
| constant_expression : $

sequence_expr ::= {/ from Annex A.2.10

Syntax 17-5—Sequence repetition syntax (excerpt from Annex A)

Copyright 2003 Accellera. All rights reserved.

161

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

The repetition counts are specified as a range and the minimum and maximum range expressions must be liter-
als or constant expressions.

Three kinds of repetition are provided:

— consecutive repetition ([*), where a sequence is consecutively repeated with one cycle delay between the
repetitions

— goto repetition ([*->) , where a boolean expression is repeated with one or more cycle delays between
the repetitions and the resulting sequence terminates at the last boolean expression

— hon-consecutive repetition ([*=), where a boolean expression is repeated with one or more cycle delays
between the repetitions and the resulting sequence can proceed beyond the last boolean expression, but
before the occurrence of the boolean expression

To specify the consecutive repetition of an expression within a sequence, the expression can simply be
repeated, as:

a ##1 b ##1 b ##1 b ##1 c
Or the number of repetitions can be specified with[*N] , as:

a ##1 b [*3] ##1 c
A consecutive repetition specifies that the item or expression must occur a specified number of times. Each
repeated item is concatenated (with a delay of 1 clock tick) to the next repeated item. A repeat of N specifies
that the sequence must occur N times in succession. For example:

a [*3] neans a ##1 a ##1 a
Using 0 as the repetition number, an empty sequence results, as:

a [*0]
An empty sequence shall beillegal.

The syntax allows combination of a delay and repetition in the same sequence. The following are both
alowed:

‘true ##3 (a [*3]) /1 means ‘true ##1 ‘true ##1 ‘true ##1 a ##1 a ##1 a
(“true ##2 a) [*3] /1 means (‘true ##2 a) ##1 (‘true ##2 a) ##1
[l (“true ##2 a), which in turn neans ‘true ##1 ‘true ##1
Il a ##1 ‘true ##1 '‘true ##1 a ##1 'true ##1 ‘'true ##1 a
A sequence can be repeated as follows:
(a ##2 b) [*5]
Which is the same as:

(a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b)

A repetition with a range of maximum and minimum number of times can be expressed with [* ni n: max] .
As an example, the following two expressions are equivalent.

(a ##2 b)[*1:5]
(a ##2 b)

or (a ##2 b ##1 a ##2 b)
or (a ##2 b ##1 a ##2 b ##1 a ##2 b)

162 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

or (a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b)
or (a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b ##1 a ##2 b)

The following two expressions are also equivalent.
(a[*0: 3] ##1 b ##1 c)
(b ##1 c)
or (a ##1 b ##1 c)
or (a ##1 a ##1 b ##1 c)
or (a ##1 a ##1 a ##1 b ##1lc)
To specify apotentially infinite number of repetitions, the dollar sign ($) is used. The repetition:
a ##1 b [*1:$] ##1 c

means a is true on the current sample, then b shall be true on every subsequent sample until ¢ istrue. On the
sample in which ¢ istrue, b does not have to be true.

The rules for specifying repeat counts are summarized as:

— Each form of repeat count specifies a minimum and maximum number of occurrences
— expression [*n: ni , where n is the minimum, mis the maximum

— expression [*n] isthe same asexpression [* n: n]

— The sequence as a whole cannot be empty

— If n is 0, then there must be either a prefix, or a suffix concatenation term (i.e., not the only term in the
expression) to the repeated sequence

— The match shall not be empty

The[*N] notation indicates consecutive repetition of an expression.

The goto repetition (non-consecutive exact repetition) specifies the repetition of aboolean expression, such as:
a ##1 b [*->m n: max] ##1 c

Thisis equivalent to:
a ##1 (('b [*0:$] ##1 b)) [*min:nmax]) ##1 c

Adding the range specification to this alows the construction of useful sequences containing a boolean expres-
sion that istrue for at most N occurrences.

a ##1 b[*->1: N ##1 c //a followed by at nost N occurrences of b, followed by c

The non-consecutive repetition extends the goto repetition by extra clock ticks where the boolean expressionis
not true.

a ##1 b [*=min:max] ##1 c
Thisisequivalent to:
a ##1 ((!'b [*0:$] ##1 b)) [*min:nmax]) ##1 Ib[*0:$] ##1 c
The above expression would pass the following sequence, assuming that 3 is within the min:max range.

accccbccbcbdddc

Copyright 2003 Accellera. All rights reserved. 163

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

17.7.3 Value change functions
Three functions are provided to detect changes in values between two adjacent clock ticks: $r ose, $f el | and
$st abl e.

$rose (expression)

$fell (expression)

$stabl e (expression)
A value change expression at a clock tick detects the change in value of an expression from the value of that
expression at the previous clock tick. The result of avalue change expression istrue or false and can be used as

a boolean expression. At the first clock tick after the assertion is started, the result of these functions are com-
puted by comparing the current valueto ‘x’.

$r ose returnstrue if the least significant bit of the expression changed to 1. Otherwise, it returns false.
$fel | returnstrueif the least significant bit of the expression changed to 0. Otherwise, it returns fal se.
$st abl e returnstrueif the value of the expression did not change. Otherwise, it returns false.

Figure 17-3 illustrates two examples of value changes:
— Value change expression el is defined as $r ose(r eq)

— Value change expression e2 is defined as $f el | (ack)

i

clock ticks 9 10 11 12 13 14

req

ack

el

e2

Figure 17-3 — Value change expressions

The clock ticks used for sampling the variables are derived from the clock for the property, which is different
from the simulation ticks. Assume, for now, that this clock is defined elsewhere. At clock tick 3, el occurs
because the value of r eq at clock tick 2 was low and at clock tick 3, the value is high. Similarly, e2 occurs at
clock tick 6 because the value of ack was sampled as high at clock tick 5 and sampled as low at clock tick 6.

17.7.4 AND operation

The binary operator and is used when both operand expressions are expected to succeed, but the end times of
the operand expressions can be different.

164 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

sequence_expr ::= /l from Annex A.2.10

| sequence_expr and sequence_expr

Syntax 17-6—and operator syntax (excerpt from Annex A)

The two operands of and are sequence expressions. The requirement for the success of the and operation is
that both the operand expressions must succeed. The operand expressions start at the same time. When one of
the operand expressions succeeds, it waits for the other to succeed. The end time of the composite expression
isthe end time of the operand expression that completes last.

Whent el and t e2 are sequences, then the expression:

tel and te2
— Succeedsift el and t e2 succeed.

— Theend timeisthe end time of either t e1 or t e2, whichever terminates | ast.

The following example is an expression with the and operator, where the two operands are single sequence
evaluations. The operation isillustrated in Figure 17-4.

(tel ##2 te2) and (te3 ##2 ted ##2 teb)
clk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e ||

te2

te3 |

ted

te5

tel ##2 te2

|
(tel ##2 te2) and :
(te3 ##2 ted #1#2 teb) I S B

1
1
i I
te3 #4#2 ted ##2 te5 lg — L - —|-—d_ ,A

Figure 17-4 — ANDing (and) two sequences

Here, The two operand sequences are (tel ##2 te2) and (te3 ##2 ted4 ##2 teb5). Thefirst operand
sequence requires that first t el evaluates to true followed by t e2 two clock ticks later. The second sequence
regquiresthat first t e3 evaluates to true followed by t e4 two clock ticks later, followed by t e5 two clock ticks
later. Figure 17-4 shows the evaluation attempt at clock tick 8.

This attempt results in a match since both operand sequences match. The end times of matches for the individ-
ual sequences are clock ticks 10 and 12. The end time for the entire expression isthe last of the two end times,

Copyright 2003 Accellera. All rights reserved. 165

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

so amatch is recognized for the expression at clock tick 12.
In the following example, an operand sequence is associated with a range of time specification, such as:
(tel ##[1:5] te2) and (te3 ##2 ted ##2 teb)

The first operand sequence consists of an expression with atime range from 1 to 5 and implies that whent el
evaluatesto true, t e2 must follow 1, 2, 3, 4, or 5 clock ticks later. The second operand segquence is the same as
in the previous example. To consider all possibilities of a match, the following steps are taken:

1) Thefirst operand sequence starts five sequences of evaluation.
2) The second operand segquence has only one possibility for a match, so only one sequenceis started.

3) Figure 17-5 shows the attempt to examine at clock tick 8 when both operand sequences start and succeed.
All five sequences for the first operand sequence match, as shown in a time window, at clock ticks 9, 10,
11, 12 and 13 respectively. The second operand sequence matches at clock tick 12.

4) To compute the result for the composite expression, each successful sequence from the first operand
sequence is matched against the second operand sequence according to the rules of the and operation to
determine the end time for each match.

Theresult of this computation is five successes, four of them ending at clock tick 12, and the fifth ends at clock
tick 13. Figure 17-5 shows the two unique successes at clock ticks 12 and 13.

clk 1 2 3 4 5 6 7 8 9 10 1 12 13 14

tel | |

te2

ted

te5

]
]
1
1
te3 | |
]
1
1
]
]
]
1
1

tel ##[1:5] te2 '<+A A A A A:

te3 ##2 ted ##2 teb S e ,A

(tel ##[1:5] te2) and e L[_d_ ,A A
(te3 #42 ted #42 teb) ~

Figure 17-5 — ANDing (and) two sequences, including a time range

Iftel andt e2 are sampled booleans (not sequences), the expression (t el and t e2) succeedsif t el and
t e2 are both evaluated to be true.

An example is illustrated in Figure 17-6, which shows the results for an attempt at every clock tick. The

expression matches at clock tick 1, 3, 8, and 14 because botht el andt e2 are simultaneously true. At all
other clock ticks, the and operation fails because eithert el ort e2 isfalse.

166 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14

|

te2

L L] L[] |
ctaee A Y AYVYVAVYVYVYA

Figure 17-6 — ANDing (and) two boolean expressions

17.7.5 Intersection (AND with length restriction)

The binary operator i nt er sect is used when both operand expressions are expected to succeed, and the end
times of the operand expressions must be the same.

sequence_expr = {/ from Annex A.2.10

| sequence_expr inter sect sequence_expr

Syntax 17-7—intersect operator syntax (excerpt from Annex A)

Thetwo operands of i nt er sect are sequence expressions. The requirements for the success of the
i nt er sect operation are;

— Both the operand expressions must succeed.

— Thelength of the two operand sequences must be the same.

The additional requirement on the length of the sequencesis the basic difference between and and
i ntersect.

For each attempted evaluation of sequence_expr, there could be multiple matches. When there are multiple
matches for each operand sequence expression, the results are computed as follows.

— A match from the first operand is paired with a match from the second operand with the same length.
— If no such pair isfound, the result of i nt er sect isno match.

— If such pairs are found, then the result consists of matched sequences, one for each pair. The end time of
each match is determined by the length of the pair.

Figure 17-7 is similar to Figure 17-5, except that and isreplaced by i nt er sect . Compared with Figure 17-5,
thereis only asingle match in this case.

Copyright 2003 Accellera. All rights reserved. 167

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

clk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e ||

te2

ted4

teb

1
1
1
]
te3 | |
]
]
1
1
1
]
I
1

tel ##[1:5] te2 '*ﬂl'A A A A A:

te3 ##2 ted ##2 teb S R A ,A

1

1

(tel ##{1:5] te2) intersect 'l L1 __1_ ,A
(te3 ##2 ted ##2 te5) ~

Figure 17-7 — Intersecting two sequences

17.7.6 OR operation

The operator or isused when at least one of the two operand sequences is expected to match.

seguence_expr ::= [/l from Annex A.2.10

| sequence _expr or sequence_expr

Syntax 17-8—or operator syntax (excerpt from Annex A)

The two operands of or are sequence expressions.
For the expression:
tel or te2

when operandst el and t e2 are expressions, the sequence matches whenever at least one of two operands
tel andt e2 isevaluated to true.

Figure 17-8 illustrates an or operation usingt el and t e2 as simple values. The expression does not match at

clock ticks 7 and 13 because t el and t e2 are both false at those times. At all other times, the expression
matches, as at |east one of the two operandsis true.

168 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

clock 1 2 3 4 5 6 7 8 9 10 1 12 13 14

tel | |

e | []]] ||
etoez A A A A AAY AAAALAYA

Figure 17-8 — ORing (or) Two Sequences

Whent el andt e2 are sequences, then the expression

tel or te2
matches if at least one of the two operand sequencest el and t e2 match. To evaluate this expression, first, the
successfully matched sequences of each operand are cal culated and assigned to a group. Then, the union of the

two groups is computed. The result of the union provides the result of the expression. The end time of a match
is the end time of any sequence that matched.

The following example shows an expression with or operator, where the two operands are sequences.
Figure 17-9 illustrates this example.

(tel ##2 te2) or (te3 ##2 ted ##2 teb)

clk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

te2

er || |
|
|
1
]

te3

ted

|
|
1
|
|
teb5 1
I
|]
tel ##2 te2 '*""A :
1

te3 ##2 ted ##2 teb e e i e ’A

|

|
(tel ##2 te2) or |

(te3 ##2 ted ##2 teb) '*"‘*""A

Figure 17-9 — ORing (or) two sequences

Here, the two operand sequences are: (tel ##2 te2) and (te3 ##2 ted ##2 teb5). Thefirst sequence
reguiresthat t el first evaluates to true, followed by t e2 two clock ticks later. The second sequence requires
that t e3 evaluates to true, followed by t e4 two clock ticks later, followed by t e5 two clock ticks later. In
Figure 17-9, the evaluation attempt for clock tick 8 is shown. The first sequence matches at clock tick 10 and
the second sequence matches at clock tick 12. So, two matches for the expression are recognized.

Copyright 2003 Accellera. All rights reserved. 169

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

In the next example, an operand sequence is associated with a time range specification, such as:
(tel ##[1:5] te2) or (te3d ##2 ted ##2 teb)

Thefirst operand sequence consists of an expression with atime range from 1 to 5 and specifiesthat whent el
evaluates to true, t e2 must be true 1, 2, 3, 4, or 5 clock ticks later. The sequences from the second operand
require that first t e3 must be true followed by t e4 being true two clock ticks later, followed by t e5 being true
two clock ticks later. At any clock tick if an operand sequence succeeds, then the composite expressions suc-
ceeds. As shown in Figure 17-10, for the attempt at clock tick 8, the first operand sequence matches at clock
ticks 9, 10, 11, 12, and 13, while the second operand matches at clock tick 12. The match of the composite
expression is computed as a union of the matches of the two operand sequences, which results in matches at
clock ticks 9, 10, 11, 12, and 13.

clk 1 2 3 4 5 6 7 8 9 10 1 12 13 14

tel | |

te2

te3 |

ted

te5

tel ##[1:5] te2

te3 ##2 ted ##2 teb S ,A
(tel ##[1:5] te2) or | *A A A A A
(te3 ##2 ted ##2 te5) i :

Figure 17-10 — ORing (or) two sequences, including a time range

17.7.7 first_match operation

The first_match operator matches only the first match of possibly multiple matches for an evaluation
attempt of a sequence expression. This allows all subsequent matches to be discarded from consideration. In
particular, when the sequence expression is a sub-expression of a larger expression, then applying the
first_mat ch operator has significant effect on the evaluation of the embedding expression.

seguence_expr ::= [/l from Annex A.2.10

first_match (sequence_expr)

Syntax 17-9—first_match operator syntax (excerpt from Annex A)

The operand expression can be a sequence expression. sequence_expr is evaluated to determine the match for
the(first_mat ch (sequence_expr)) expression. For agiven evaluation attempt, the composite expression
matches if sequence expr results in at least one match of a sequence and fails to match if none of the
sequences from the expression result in a match. Following the first successful match for the attempt, the
first_mat ch operator stops matching subsequent sequences for sequence_expr. For an attempt, if there are

170 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

multiple matches with the same end time as the first detected match, then all those matches are considered as
the result of the expression.

The example below shows a variable delay specification.

sequence t1
tel ##[2:5]te2;
endsequence
sequence tsl;
first_match(tel ##[2:5]te2);
endsequence

Each attempt of sequencet 1 can result in matches for up to four following sequences:

tel ##2 te2
tel ##3 te2
tel ##4 te2
tel ##5 te2

However, sequence t s1 can result in a match for only one of the above four sequences. Whichever of the
above four sequences matches first becomes the result of sequencet s1.

As another example:

sequence t 2;
(a ##[2:3] b) or (c ##[1:2] d);
endsequence
sequence ts2;
first_match(t2);
endsequence

Each attempt of sequencet 2 can result in matches for up to four following sequences:

a ##2 b
a ##3 b
c ##1 d
c ##2 d

Sequencet s2 resultsin the earliest match. In this casg, it is possible to have two matches ending at the same
time.

a ##2 b
c ##2 d

Inthiscase, fi rst _nat ch results in two sequences.
17.7.8 Conditions over sequences
Sequences often occur under the assumptions of some conditions for correct behavior. A logical condition

must hold true, for instance, while processing a transaction. Also, occurrence of certain values is prohibited
while processing a transaction. Such situations can be expressed directly using the following construct:

sequence_expr ::= // from Annex A.2.10

| expression throughout sequence_expr

Syntax 17-10—throughout construct syntax (excerpt from Annex A)

Copyright 2003 Accellera. All rights reserved. 171

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

expression must evaluate true at every clock tick during the evaluation of sequence _expr. If an evaluation of
sequence_expr startsat timet 1 and endswith amatch at timet 2, then for sequence_expr to match, expression
must hold truefromtimet 1 tot 2.

Thet hr oughout construct is an abbreviation for writing:
(expression) [*0:$] intersect sequence_expr

In the following example, illustrated in Figure 17-11, if a constraint were placed on the expression as shown
below, then the checker bur st _r ul e1 would fail at clock tick 9.

sequence burst_rul el;
@ posedge ntl k)
$fel | (burst_node) ##0
(!'burst_node) throughout (##2 ((trdy==0)&&(irdy==0)) [*7]);
endsequence

mclk 1 2 3 4 5 6 7 8 9 10 1 12 13 14

burst_mode

irdy

trdy

(trdy==0) &&
(irdy==0)

burst_rulel it it i it Aty Al **

Figure 17-11 — Match with throughout restriction fails

6 |7

In the above expression, the value of signal bur st _node is required to be low during the sequence (from
clock tick 2 to 10) and is checked at every clock tick during that period. At clock ticks from 2 to 8, signal
bur st _node remains low and matches the expression at those clock ticks. At clock tick 9, signal
bur st _node becomes high, thereby failing to match the expression for bur st _r ul el.

If signal bur st _node were to be maintained low until clock tick 10, the expression would result in amatch as
shown in Figure 17-12.

mclk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

burst_mode

irdy

trdy

(trdy==0) &&
(irdy==0)

burst_rulel PSR R N [,A

172 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Figure 17-12 — Match with throughout restriction succeeds

17.7.9 Sequence occurrence within another sequence

The containment of a sequence expression within another sequence is expressed as follows:

sequence_expr ::= // from Annex A.2.10

| sequence_expr within sequence_expr

Syntax 17-11—within construct syntax (excerpt from Annex A)

The within construct:
sequence_exprl within sequence_expr2
is an abbreviation for writing:
(1[*0: $] ##1 sequence_exprl ##1 1[*0:$]) intersect sequence_expr?2

The sequence sequence_expr 1 must occur at least once entirely within the sequence sequence_expr 2.
That is, sequence_expr 1 must satisfy the following:

— The start point of sequence_expr 1 must be between the start point and the end point (start and end point
being inclusive) of sequence_expr 2.

— Theend point of sequence_expr 1 must be between the start point and the end point (start and end point
being inclusive) of sequence_expr 2.

For example, the sequence expression
trdy[*7] within (($fell irdy) ##1 irdy[*8])
matches on the trace shown in Figure 17-12.
17.7.10 Detecting and using endpoint of a sequence
There are two ways in which a complex sequence can be decomposed into simpler sub-expressions.

Oneisto reference the name of a sequence, thereby causing it to be started at the point where it is referenced,
as shown below:

sequence s;
a ##1 b ##1 c;
endsequence
sequence rul e;
@ posedge syscl k)
trans ##1 start_trans ##1 s ##1 end_trans);
endsequence

Sequence s is evaluated one cycle after the occurrence of st art _t r ans inthe sequencer ul e.

Another way to use the sequence expression isto detect its end point in another sequence. The end point of a
sequence is reached whenever there is a match on its expression. The occurrence of the end point can be tested
in any sequence expression by using the method ended.

The syntax of the ended method is:

Copyright 2003 Accellera. All rights reserved. 173

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

sequence_i dentifier.ended

ended isamethod on a sequence. The result of its operation istrue or false. When method ended isapplied in
an expression, it tests whether sequence seq_name has reached the end point at that particular point in time.
The result of ended does not depend upon the starting point of seq_name. An example is shown below:

sequence el

@ posedge syscl k) $rose(ready) ##1 procl ##1 proc2 ;
endsequence
sequence rul e;

@ posedge syscl k) reset ##1 inst ##1 el.ended ##1 branch_back;
endsequence

I n this example, sequence expression el must end successfully one clock tick after i nst. If the method
ended is replaced with sequence €1, e1 must start one clock tick after i nst . Notice that method ended only
tests for the end point of e1, and has no bearing on the starting point of e1.

ended can be used directly on sequencesthat do not have formal arguments. To use ended on a sequence with
arguments, first define a sequence without formal arguments that instantiates the sequence with actual argu-
ments. For example,

sequence e2(a, b, c);
@ posedge syscl k) $rose(a) ##1 b ##1 c;
endsequence
sequence e2_instanti at ed;
e2(ready, procl, proc2);
endsequence
sequence rul e2;
@ posedge syscl k) reset ##1 inst ##1 e2_instantiated. ended ##1 branch_back;
endsequence

17.7.11 Implication

Theimplication construct allows a user to monitor sequences based on satisfying some criteria. Most common
uses are to attach a precondition to a sequence, where the evaluation of the sequence is based on the success of
acondition.

property_expr ::= [/l from Annex A.2.10

| sequence_expr |-> [not] sequence_expr
| sequence_expr |=> [not] sequence_expr
multi_clock_property_expr ::=

| multi_clock_sequence |=> [not] multi_clock_sequence

Syntax 17-12—implication syntax (excerpt from Annex A)

This clause is used to precondition monitoring of a sequence expression and is allowed at the property level.
Theresult of theimplication is either true or false. The left-hand side operand sequence_expr is called anteced-
ent, while the right-hand side operand sequence_expr is called consequent.

The following points should be noted for | - > implication:
— antecedent sequence_expr can result in multiple successful sequences.

— If thereis no match of the antecedent sequence_expr, implication succeeds vacuously by returning true.

174 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

— For each successful match of antecedent sequence_expr, conseguent sequence _expr is separately evalu-
ated, beginning at the end point of the match. That is, the end point of matching sequence from antecedent
sequence_expr overlaps with start point of the consequent sequence_expr.

— All matches of antecedent sequence_expr must satisfy conseguent sequence_expr. The satisfaction of the
conseguent sequence_expr means that thereis at least one match of the sequence_expr.

— Nesting of implication is not allowed.

Two forms of implication are provided: overlapped using operator | - >, and non-overlapped using operator
| =>. For overlapped implication, if thereis amatch for the antecedent sequence_expr, then the first element of
the consequent sequence_expr is evaluated on the same clock tick. For non-overlapped implication, the first
element of the consequent sequence_expr is evaluated on the next clock tick. Therefore:

sequence_expr | => [not] sequence_expr
isequivaent to:
sequence_expr ##1 ‘true |-> [not] sequence_expr
If not is used on the consequent, the result of consequent sequence_expr is reversed.
The use of implication when multi-clock sequences are involved is explained in Section 17.11.
The following example illustrates a bus operation for data transfer from a master to a target device. When the
bus enters a data transfer phase, multiple data phases can occur to transfer a block of data. During the data
transfer phase, a data phase completes on any rising clock edge on whichii r dy is asserted and either t r dy or
st op is asserted. Note that an asserted signal here implies a value of low. The end of a data phase can be
expressed as.
property data_end;
@ posedge ntl k)
data_phase [-> ((irdy==0) && ($fell(trdy) || $fell(stop))) ;
endproperty
Each time adata phase istrue, amatch for dat a_phase isrecognized. The attempt at clock tick 6 isillustrated

in Figure 17-13. The values shown for the signals are the sampled values with respect to the clock. At clock
tick 6, dat a_end istrue because st op gets asserted whilei r dy is asserted.

mclk 1 2 3 4 5 6 7 8 9 10 1 12 13 14

data_phase

irdy

trdy (high)

stop

data_end A

Figure 17-13 — Conditional sequence matching

In another example, dat a_end_exp isusedto ensurethat f r anme isde-asserted (value high) within 2 clock
ticks after dat a_end_exp occurs. Further, it isalso required that i r dy is de-asserted (value high) one clock
tick after f r ame is de-asserted.

Copyright 2003 Accellera. All rights reserved. 175

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

A property written to express this condition is shown below.

‘define data_end_exp (data_phase && ((irdy==0)&&($fell (trdy)||$fell(stop))))
property data_end_rul el;

@ posedge ntl k)

‘data_end_exp |-> ##[1:2] $rose(frane) ##1 $rose(irdy);
endproperty

property dat a_end_r ul el first evaluates dat a_end_exp at every clock tick to test if its value is true. If the
valueisfalse, then that particular attempt to evaluate dat a_end_r ul el is considered true. Otherwise, the fol-
lowing sequence expression is evaluated. The sequence expression:

##[1. 2] $rose(franme) ##1 $rose(irdy)

specifies looking for the rising edge of f r ame within two clock ticks in the future. After f r ame toggles high,
i rdy must also toggle high after one clock tick. This is illustrated in Figure 17-14. ‘ dat a_end_exp is
acknowledged at clock tick 6. Next, f r ame toggles high at clock tick 7. Since this falls within the timing con-
straint imposed by [1: 2], it satisfies the sequence and continues to monitor further. At clock tick 8, i rdy is
evaluated. Signal i r dy transitions to high at clock tick 8, satisfying the sequence specification completely for
the attempt that began at clock tick 6.

mclk 1 2 3 4 5 6 7 8 9 10 1 12 13 14

data_phase

1
|
|
. |
irdy i
1
|
|

trdy (high)

stop

frame

‘data_end_exp

.1___>_-__

data_end_rulel

Figure 17-14 — Conditional sequences

Generally, assertions are associated with preconditions so that the checking is performed only under certain
specified conditions. As seen from the previous example, the | - > operator provides this capability to specify
preconditions with sequences that must be satisfied before continuing to match those sequences. The next
example modifies the preceding example to see the effect on the results of the assertion by removing the pre-
condition for the sequence. Thisis shown below, and illustrated in Figure 17-15.

property data_end_rul e2;

@posedge ntlk) ##[1:2] $rose(frame) ##1 $rose(irdy);
endproperty

176 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

mclk 1 2 3 4 5 6 7 8 9 10 11 12 13 14

data_phase

irdy

trdy (high)

stop

frame

A

S rA Y YV YYY

4 - — 2

data_end A
-

data_end rule2 v v v v;[1:2l

Figure 17-15 — Results without the condition

4| ——

rl—1— "

The property is evaluated at every clock tick. For the evaluation at clock tick 1, therising edge of signal f r ane
does not occur at clock tick 1 or 2, so the property fails at clock tick 1. Similarly, thereis afailure at clock ticks
2, 3, and 4. For attempts starting at clock ticks 5 and 6, the rising edge of signal f r ane at clock tick 7 alows
checking further. At clock tick 8, the sequences complete according to the specification, resulting in a match
for attempts starting at 5 and 6. All later attempts to match the sequence fail because $r ose(f r ame) does
not occur again. That also means that there isno match at 5, 6, and 7.

Figure 17-15 shows that removing the precondition of checking ‘ dat a_end_exp from the assertion causes
failures that are not relevant to the verification objective. It is important from the validation standpoint to
determine these preconditions and use them to filter out inappropriate or extraneous situations.

An example of implication where the antecedent is a sequence expression follows:

(a ##1 b ##1 c) |-> (d ##1 e)

If the sequence (a ##1 b ##1 c) matches, then the sequence (d ##1 e) must aso match. On the other
hand, if the sequence (a ##1 b ##1 c) does not match, then the result istrue.

In the next example, all matchesof (a ##[1: 3] b ##1 c) must match (d ##1 e). If there are no matches
of (a ##[1:3] b ##1 c), then thereisavacuous success for the property.

Another example of implication is:
property pl6;
(wite_en & data_valid) ##0
(wite_en & (retire_address[0:4]==addr)) [*2] |->
##[3:8] wite_en & !data_valid &(wite_address[O0: 4] ==addr);
endproperty

Multi-clock sequence implication is explained in Section 17.11.

17.8 Manipulating data in a sequence

The use of static SystemVerilog variables implies that only one copy exists. Therefore, if data values need to

Copyright 2003 Accellera. All rights reserved. 177

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

be checked in pipelined designs, then for each data entering the pipeline, a separate variable can be used to
store the predicted output of the pipeline for later comparison when the result actually exits the pipe. This stor-
age can be built by using an array of variables arranged in a shift register to mimic the data propagating
through a pipeline. However, in more complex situations where the latency of the pipe is variable and out of
order, this construction could become very complex and error prone. In other words, variables are needed that
arelocal to and are used within a particular transaction check that can span an arbitrary interval of time and can
overlap with other transaction checks. Such a variable must thus be dynamically created when needed within
an instance of a sequence and removed when the end of the sequence is reached.

The dynamic creation of a variable and its assignment is achieved by using the local variable declaration in a
sequence or property definition and making an assignment in the sequence.

sequence_expr ::= [l from Annex A.2.10

| (expression{, function_blocking_assignment }) [boolean_abbrev]
| expression { , function_blocking_assignment } [boolean_abbrev]

Syntax 17-13—variable assignment syntax (excerpt from Annex A)

The type of variable is explicitly specified. The variable can be assigned anywhere in the sequence and reas-
signed later in the sequence. For every attempt, a new copy of the variable is created for the sequence. The
variable value can be tested like any other SystemVerilog variable.

Hierarchical referencesto alocal variable are not allowed.

As an example the local variable usage, assume a pipeline that has a fixed latency of 5 clock cycles. The data
enters the pipe on pi pe_i n when val i d_i n istrue, and the value computed by the pipeline appears 5 clock
cycleslater onthe signa pi pe_out 1. The data astransformed by the pipe is predicted by afunction that incre-
ments the data. The following sequence expression verifies this behavior:

property e;

int x;

(valid_in,(x = pipe_in)) |-> ##5 (pipe_outl == (x+1));
endproperty

Property e isevaluated as :

1) Whenval i d_i nistrue, x isassigned to pipe_in. Property eistrueif five cycleslater, x isequal to (x+1) .
Property eisfalseif pi pe_out 1 isnot equal to (x+1) .

2) Whenvalid_inisfalse, property e evaluates to true.
Variables can be used in sequences or properties.

sequence dat a_check;

int x;

a ##1 l'a, x = data_in ##1 !b*[0:$] ##1 b && (data_out == x);
endsequence
property data_check_p

int x;

a ##1 'a, x = data_in |=> !b*[0:$] ##1 b && (data_out == Xx);
endproperty

Local variables can be written on repeated sequences and accomplish accumulation of values.

sequence rep_v;
int x;

178 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

‘“true,x = 0 ##0
('a [* 0:9%] ##1 a, x = x+data)[*4] ##1 b ##1 c && (data_out == x);
endsequence

The local variables declared in one sequence are not visible in the sequence where it gets instantiated. An
example below illustrates an illegal accessto local variable vl of sequencesub_seql in sequenceseql.

sequence sub_seql;

int vl

a ##1 'a, vl = data_in ##1 !b*[0:$] ##1 b && (data_out == vl);
endsequence
sequence seql

c ##1 sub_seql ##1 (dol == vl); // error since vl is not visible
endsequence

To access alocal variable of a sub-sequence, a local variable must be declared and passed to the instantiated
sub-sequence through an argument. An example below illustrates this usage.

sequence sub_seq2(lv);

a ##1 'a, |v = data_in ##1 !b*[0:$] ##1 b && (data_out == |v);
endsequence
sequence seq2

int vl;

c ##1 sub_seq2(vl) ##1 (dol == vl1); // vl is now bound to Iv
endsequence

Note that when alocal variable is aformal argument of a sequence definition, it isillegal to declare the vari-
able, as shown below.

sequence sub_seq3(lVv);

int lv; // illegal since Iv is a formal argunent
a ##1 'a, |v = data_in ##1 !b*[0:$] ##1 b && (data_out == |v);
endsequence

There are special considerations on using local variables in paralel branches using operators or, and, and
i ntersect.

1) Variables assigned on parallel threads cannot be accessed in sibling threads. For example:

sequence s4,

int Xx;

(a ##1 b, (x = data) ##1 c) or (d ##1 (e==x)); // illegal
endsequence

2) In the case of or, it is the intersection of the variables (names) that pass on past or operations. More
precisdly, alocal variable passesthe or if, and only if, it passes through both branches of or operations.

3) All succeeding threads out of or branches continue as separate threads, carrying with them their own latest
samplings of the local variables. These threads do not have to have consistent valuations for the local
variables. For example:

sequence sb5;

int x,vy;

((a ##1 b, x = data, y = datal ##1 c)

or (d ##1 ‘true, x = data ##0 (e==x))) ##1 (y==data2);

/1 illegal since y is not in the intersection
endsequence
seguence s6;

int x,vy;

Copyright 2003 Accellera. All rights reserved. 179

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

((a ##1 b, x = data, y = datal ##1 c)
or (d ##1 ‘true, x = data ##0 (e==x))) ##1 (x==data2);
/1l legal since x is in the intersection
endsequence

4) Inthecaseof and andi nt er sect, the symmetric difference of the local variables that are sampled in the
two joining threads passes on past the join. More precisely, alocal variable that passes through at least one
branch of the join shall be passed on past the join unless it is blocked. A local variable is blocked from
passing on past the join if either:

a) Thelocal variableis sampled in and passes through each branch of thejain. Or,

b) Thelocal variableis blocked from passing through at |east one of the branches of the join.

The value passed on is the latest sampled value. The two joining threads are merged into one thread at the
join.

sequence s7,;
int x,vy;
((a ##1 b, x = data, y = datal ##1 c)
and (d ##1 ‘true, x = data ##0 (e==x))) ##1 (x==data2);
/1 illegal since x is common to both threads
endsequence
sequence s8;
int x,vy;
(a ##1 b, x = data, y = datal ##1 c)
and (d ##1 ‘true, x = data ##0 (e==x))) ##1 (y==data2);
/1 legal since y is in the difference
endsequence

5) Theintersection and difference of the sets of nhames should be computed statically at compile time.

17.9 System functions

Assertions are commonly used to evaluate certain specific characteristics of a design implementation, such as
whether a particular signal is “one-hot”. The following system functions are included to facilitate such com-
mon assertion functionality:

— $onehot (<expressi on>) returnstrueif only one bit of the expression is high.
— $onehot O(<expr essi on>) returnstrueif at most one bit of the expression is high.

— $inset (<expression> <expression> {, <expression> }) returnstrueif thefirst expression
isequal to at least one of the subsequent expression arguments.

— $insetz (<expression>, <expression> {, <expression> }) returnstrueif thefirst expression
isequal to at least other expression argument. The comparison is performed using casez semantics, so ‘'z’
or ‘? hits are treated as don’t-cares.

— $i sunknown (<expressi on>) returnstrueif any bit of the expressionis‘x’. Thisis equivalent to
A<expressi on> === ' bx.

All of the above system functions have a return type of bit. A return value of 1’ b1 indicatestrue, and areturn
value of 1’ b0 indicates false.

In addition to accessing values of signals at the time of evaluation of a boolean expression, the past values can
be accessed with the $past function.

$past (expression [, nunber_of _ticks])

180 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

The optional argument number_of _ticks specifies the number of clock ticks in the past. If humber_of ticksis
not specified, then it defaults to 1. $past returns the sampled vaue of the expression that was present
number_of_ticks prior to the time of evaluation of $past .

If the specified clock tick in the past is before the start of simulation, the returned value from the $past func-
tionisavaue of X.

Another useful function provided for the boolean expression is $count ones, to count the number of 1sin abit
Vector expression.

$count ones (expression)

An x and z value of abit is not counted towards the number of ones.

17.10 The property definition

A property defines a behavior of the design. A property can be used for verification as an assumption, a
checker, or a coverage specification. In order to use the behavior for verification, an assert or cover state-
ment must be used. A property declaration by itself does not produce any result.

A property can be declared in
— amodule asamodule_or_generate item
— aninterface asan interface_or_generate item
— aprogram asanon_port_program_item
— aclocking domain as a clocking_item

— $root

To declare a property, the pr oper t y construct is used as shown below:

Copyright 2003 Accellera. All rights reserved. 181

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

concurrent_assertion_item_declaration ::= // from Annex A.2.10
property_declaration
property_declaration ::=
property property_identifier [property_formal_list] ;
{ assertion_variable _declaration }
property_spec;
endproperty [: property_identifier]
property_formal_list ::=
(formal_list_item{ , formal_list_item})
property_spec ::=
[clocking_event] [disableiff] (expression) [not] property_expr
| [disableiff (expression)] [not] multi_clock_property expr
property_expr ::=
sequence_expr
| sequence_expr |- > [not] sequence_expr
| sequence_expr |=> [not] sequence_expr
| (‘property_expr)
multi_clock_property_expr ::=
multi_clock_sequence
| multi_clock_sequence |=> [not] multi_clock_sequence
| (multi_clock_property expr)
assertion_variable declaration ::=
data typelist_of variable identifiers;

property_instance::= // from Annex A.6.10
property_identifier [(actual_arg_list)]

Syntax 17-14—property construct syntax (excerpt from Annex A)

A property is declared with optional formal arguments, as in a sequence declaration. When a property is
instantiated, actual arguments can be passed to the property. The property gets expanded with the actual argu-
ments by replacing the formal arguments with the actual arguments. The semantic checks are performed to
ensure that the expanded property with the actual argumentsislegal.

The result of property evauation is either true or false. There are two kinds of property: sequence, and
implication. If the property is just a sequence, the result of a sequence for every evaluation attempt is true or
false. This is accomplished by implicitly transforming sequence expr to fi r st _nmat ch(sequence_expr) .
That is, as soon as a match of sequence_expr is determined, the result is considered to be true, and no other
matches are required for that evaluation attempt. However, if the property is an implication, then the semantics
of implication determine whether the property istrue or false.

Thedisable iff clausealows asynchronous resetsto be specified. For a particular attempt, if the expres-
sion of the di sabl e i ff becomes true at any time during the evaluation of the attempt, then the attempt for
the property is considered to be a success. Other attempts are not affected by the evaluation of the expression
for an attempt.

The not clause states that the property_expr associated with the property must never evaluate to true. Effec-
tively, it negates property expr. For each attempt, property_expr results in either true or false, based on
whether there is a match for the sequence. The not clause reverses the result of property_expr. It should be
noted that there is no complementation or any form of negation for the sequence in property_expr.

This allows for the following examples:

182 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

property rul el;
@ posedge clk) a |-> b ##1 c ##1 d;
endproperty
property rul e2;
@cl kev) disable iff (foo) not a |-> b ##1 c ##1 d;
endproperty

Property r ul e2 negates the result of theimplication (a |-> b ##1 c ##1 d) for every attempt. cl kev
specifies the clock for the property.

A property can optionally specify an event control for the clock. The clock derivation and resolution rules are
described in Section 17.13.

A property can be referenced by its name. A hierarchical name can be used, consistent with the SystemVerilog

naming conventions. Like sequence declarations, variables used within a property that are not formal argu-
ments to the property are resolved hierarchically from the scope in which the property is declared.

Properties that use more than one clock are described in Section 17.11

17.11 Multiple clock support

Multiple clock sequences and properties can be specified using the following syntax.

sequence_spec = // from Annex A.2.10
multi_clock_sequence
| sequence_expr
multi_clock_sequence::=
clocked sequence { ## clocked sequence}
clocked sequence::=
clocking_event sequence_expr
multi_clock_property_expr ::=
multi_clock_sequence

| multi_clock _sequence |=> [not] multi_clock_sequence
| (multi_clock_property _expr)

Syntax 17-15—Multiple clock syntax (excerpt from Annex A)

Two cases are allowed:
1) Concatenation of two sequences, where each sequence can have a different clock

2) The antecedent of an implication on one clock, while the consequent is on another clock
The multi-clock concatenation operator ## synchronizes between the two clocks.

@ posedge cl kO) sig0 ## @posedge cl kl) sigl
When signal si g0 matches at clock cl k, ## moves the time to the nearest clock tick of cl k1 after the match.
At the first clock tick of cl k1, it matches si g1. If the two clocks, cl kO and cl k1, are identical, then the
above sequenceis equivalent to:

@ posedge cl kO) sig0 ##1 sigl

For two sequences, such as

Copyright 2003 Accellera. All rights reserved. 183

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

@ posedge cl k0) sO ## @ posedge cl kl) si

For every match of sO at clock cl kO, ## moves the time to the first clock tick of cl k1. From that first tick of
cl k1, s1 ismatched.

Multi-clock implication is only allowed with the non-overlapping implication. The semantics are similar to
the segquence concatenation with ##. Whenever there is a match of the antecedent sequence, time is advanced
to the nearest clock tick of the clock of the consequent sequence. The conseguent is then evaluated for
satisfaction.

The following are examples of multiple-clock specifications:

sequence sli;

@ posedge clkl) a ##1 b; // single clock sequence
endsequence
sequence s2,;

@ posedge cl k2) ¢ ##1 d; // single clock sequence
endsequence

1) multiple-clock sequence

sequence nult_s;
@ posedge cl k) a ## @posedge cl kl) sl ## @posedge cl k2) s2;
endsequence

2) property with amultiple-clock sequence

property mult_pl;
@ posedge cl k) a ## @posedge cl kl) sl ## @posedge cl k2) s2;
endpr operty

3) property with anamed multiple-clock sequence

property mult_p2;
mul t _s;
endpr operty

4) property with multiple-clock implication

property mult_p3;
@ posedge cl k) a ## @posedge cl kl) sl |=> @posedge cl k2) s2;
endpr operty

5) property with named sequences at different clocks. In this case, if s1 contains a clock, then it must be
identical to (posedge cl k1) . Similarly, if s2 containsaclock, it must beidentical to (posedge cl k2).

property mlt_p5
@ posedge cl k1) sl1 |=> @posedge cl k2) s2;
endpr operty

6) property with implication, where antecedent and consequent are named multi-clocked sequences
property mult_p6;

mult_s |=> mult_s;
endpr operty

17.11.1 Detecting and using endpoint of a sequence in multi-clock context
To detect the end point of a sequence when the clock of the source sequence is different than the desalination

sequence, method mat ched on the source sequence is used. The end point of a sequence is reached whenever
there isamatch on its expression. The occurrence of the end point can be tested in any sequence expression by

184 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

using the method ended when the clocks of the source and destination sequences are the same, while method
mat ched is used when the clocks are different.

The syntax of the mat ched method is:
sequence_i dentifier. mtched

mat ched is amethod on a sequence which return true or false. Unlike ended, mat ched uses synchronization
between the two clocks, by storing the result of the source sequence match until the arrival of the first destina-
tion clock tick after the match. When method mat ched is applied, it tests whether the source sequence has
reached the end point at that particular point in time. The result of mat ched does not depend upon the starting
point of the source sequence.

Likeended, mat ched can be used directly on sequences that do not have formal arguments.
An example is shown below:

sequence el;
@ posedge cl k) $rose(ready) ##1 procl ##1 proc2 ;
endsequence
sequence ez,
@ posedge syscl k) reset ##1 inst ##1 el. matched [*->1] ##1 branch_back;
endsequence

In this example, source sequence el is evaluated at clock cl k, while the destination sequence e2 is evaluated
at clock syscl k. In e2, the end point of el istested to occur sometime after the occurrence of i nst . Notice
that method matched only tests for the end point of e1 and has no bearing on the starting point of el.

17.12 Concurrent assertions

A property on its own is never evaluated for checking an expression. It must be used within a verification
statement for this to occur. A verification statement states the verification function to be performed on the
property. The statement can be one of the following:

— assert to specify the property as a checker to ensure that the property holds for the design

— cover to monitor the property evaluation for coverage

A concurrent assertion statement can be specified in:
— anawaysblock or initial block as a statement, wherever these blocks can appear
— amodule asamodule_or_generate item
— aninterface asan interface_or_generate item
— aprogram asanon_port_program item

— $root

Copyright 2003 Accellera. All rights reserved. 185

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

procedural_assertion_item ::= [/l from Annex A.6.10
assert_property_statement
| cover_property statement

concurrent_assertion_item ::= // from Annex A.2.10
concurrent_assert_statement
| concurrent_cover_statement

concurrent_assert_statement ::=
[block_identifier:] assert_property_statement
concurrent_cover_statement ::=
[block identifier:] cover_property statement
assert_property_statement::=
assert property (property_spec) action_block
| assert property (property_instance) action_block
cover_property_statement::=
cover property (property_spec) statement_or_null
| cover property (property_instance) statement_or_null

Syntax 17-16—Concurrent assert construct syntax (excerpt from Annex A)

Theassert statement is used to enforcea property asachecker. When the property for the assert state-
ment is evaluated to be true, the pass statements of the action block are executed. Otherwise, the fail state-
ments of the action_block are executed. For example,

property abc(a, b, c);
disable iff (a==2) not @l k (b ##1 c);
endproperty
env_prop: assert property (abc(rst,inl,in2)) pass_stat else fail_stat;

When no action is needed, a null statement (i.e.;) is specified. If no statement is specified for the el se, then
$error isused as the statement when the assertion fails.

The action_block shall not include any concurrent assert or cover statement. The action_block, however,
can contain immediate assertion statements.

Note: The pass and fail statements are executed in the Reactive region. The regions of execution are explained
in the scheduling semantics section, Section 14.

To monitor sequences and other behavioral aspects of the design for coverage, the same syntax is used with the
cover statement. The tools can gather information about the evaluation and report the results at the end of
simulation. When the property for the cover statement is successful, the pass statements can specify a cover-
age function, such as monitoring all paths for a sequence.

Theassert or cover statements can be referenced by their optional name. A hierarchical name can be used
consistent with the SystemVerilog naming conventions. When a name is not provided, a tool shall assign a
name to the statement for the purpose of reporting.

Assertion control tasks are described in Section 22.6.

Coverage results are divided into two: coverage for properties, coverage for sequences.

For sequence coverage, the statement appears as.

cover property (sequence_spec) statenent_or_null

186 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

The identifier of a particular attempt is called attemptld, and the clock tick of the occurrence of the match is
called clock step.

The results of coverage statement for a property shall contain:
— Number of times attempted

— Number of times succeeded

— Number of times failed

— Number of times succeeded because of vacuity

— Each attempt with an attemptID and time

— Each success/failure with an attemptI D and time
In addition, statement_or_null is executed every time a property succeeds.

Vacuity rules are applied only when implication operator is used. A property succeeds non-vacuously only if
the consequent of the implication contributes to the success.

Results of coverage for a sequence shall include:

— Number of times attempted

— Number of times matched (each attempt can generate multiple matches)
— Each attempt with attemptld and time

— Each match with clock step, attemptlID, and time

In addition, statement_or_null gets executed for every match. If there are multiple matches at the same time,
the statement gets executed multiple times, one for each match.

17.12.1 Using concurrent assertion statements outside of procedural code
A concurrent assertion statement can be used outside of a procedural context. It can be used within amodule as
amodule_common_item, an interface as amodule_common_item, or a program as a non_port_item. A concur-
rent assertion statement is either an assert or acover statement. Such a concurrent assertion statement uses
the al ways semantics.
The following two forms are equivalent;
assert property (property_spec) action_bl ock
al ways assert property (property_spec) action_bl ock
Similarly, the following two forms are equival ent:
cover property (property_spec) statenent_or_nul
al ways cover property (property_spec) statenent_or_null
For example:
modul e top(input bit clk);
| ogic a,b,c;
property rul e3;
@ posedge clk) a |-> b ##1 c;

endpr operty
al: assert property (rule3);

Copyright 2003 Accellera. All rights reserved. 187

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

endnodul e

rul e3 is a property declared in module t op. The assert statement al starts checking the property from the
beginning to the end of simulation. The property is always checked. Similarly,

modul e top(input bit clk);
| ogic a,b,c;
seguence seq3;
@ posedge cl k) b ##1 c;
endsequence
cl: cover property (seq3);

endnodul e
The cover statement c1 starts coverage of the sequence seq3 from beginning to the end of simulation. The
sequence is always monitored for coverage.

17.12.2 Embedding concurrent assertions in procedural code

A concurrent assertion statement can also be embedded in a procedural block as a statement_item. For exam-
ple

property rul e;
a ##1 b ##1 c;
endproperty

al ways @ posedge cl k) begin
<st at ement s>,
assert property (rule);
end

If the statement appears in an al ways block, the property is always monitored. If the statement appears in an
initial block, then the monitoring is performed only on the first clock tick.

Two inferences are made from the procedural context: clock from the event control of an al ways block, and
the enabling conditions.

A clock isinferred if the statement is placed in an al ways ori ni ti al block with an event control abiding by
the following rules:

— Theclock to beinferred must be placed as the first term of the event control as an edge specifier (posedge
expression or negedge expression).

— Thevariablesin expression must not be used anywhere in the al ways ori ni ti al block.

For example:

property r1,
q'!=d;
endproperty
al ways @ posedge ntl k) begin
q <= di;
rl_p: assert property (rl);
end

The above property can be checked by writing statement r 1_p outside the always block, and declaring the
property with the clock as:

property r1,
@ posedge ntlk)q !'= d;

188 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

endproperty

al ways @ posedge ntl k) begin
g <= di;

end

rlp: assert property (rl);

SystemVerilog 3.1a/draft 1

If the clock is explicitly specified with a property, then it must be identical to the inferred clock, as shown

below:

property r2;
@ posedge ntlk)(q !'= d);
endproperty
al ways @ posedge ntl k) begin
g <= di;
r2_p: assert property (r2);
end

In the above example, (posedge ntl k) isthe clock for property r 2.

Another inference made from the context is the enabling condition for a property. Such derivation takes place
when a property is placed inanii f ...el se block or acase block. The enabling condition assumed from the

context is used as the antecedent of the property.

property r3;

@ posedge sclk)(q !'= d);
endproperty
al ways @ posedge ntl k) begin

if (a) begin

g <= di;

r3_p: assert property (r2);
end

end
The above exampleis equivalent to:

property r3;

@ posedge sclk)a |-> (q !'= d);
endproperty
r3_p: assert property (r3);
al ways @ posedge ntl k) begin

if (a) begin

q <= di;

end

end

Similarly, the enabling condition is also inferred from case statements.

property r4;
@ posedge sclk)(q !'= d);
endproperty
al ways @ posedge ntl k) begin
case (a)
1. begin q <= di;
rdp: assert property (r4);
end
default: ql <= di;
endcase
end

Copyright 2003 Accellera. All rights reserved.

189

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

The above exampleis equivalent to:

property r4;
@ posedge sclk)(a==1) |-> (q !'= d);
endproperty
r4_p: assert property (r4);
al ways @ posedge ntl k) begin

case (a)
1. begin gq <= di;
end
default: ql <= di;
endcase
end

The enabling condition isinferred from procedural code inside an al ways ori niti al block, with the follow-
ing restrictions:

1) There must not be a preceding statement with atiming control.
2) A preceding statement shall not invoke atask call which contains atiming control on any statement.

3) The concurrent assertion statement shall not be placed in a looping statement, immediately, or in any
nested scope of the looping statement.

17.13 Clock resolution

There are a number of ways to specify a clock for a property:
— sequence instance with a clock, for example
sequence S2; @(posedge clk) a##2 b; endsequence

property p2; not s2; endproperty
assert property (p2);

— property, for example:

property p3; @posedge cl k) not (a ##2 b); endproperty
assert property (p3);

— contextually inferred clock from a procedural block, for example:

al ways @ posedge cl k) assert property (not (a ##2 b));

— clocking domain, for example:

cl ocking master_cl k @ posedge clk);
property p3; not (a ##2 b); endproperty

endcl ocki ng

assert property (nmaster_cl k. p3);

— default clock, for example:
default clocking master_cl k @ posedge clk);

For a multi-clocked assertion, the clocks are explicitly specified. No default clock or inferred clock is used. In
addition, multi-clocked properties are not allowed to be defined within a clocking domain.

A multi-clocked property assert statement must not be embedded in procedural code where aclock isinferred.
For example, following forms are not all owed.

190 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1
al ways @cl k) assert property (nmult_clock_prop);// illegal
initial @clk) assert property (nmult_clock_prop);// illegal

The rules for an assertion with one clock are discussed in the following paragraphs.

The clock for an assertion statement is determined in the decreasing order of priority:

1) Explicitly specified clock for the assertion.

2) Inferred clock from the context of the code when embedded.

3) Default clock, if specified.

A concurrent assertion statement must resolve to a clock. Otherwise, the statement is considered illegal.

Sequences and properties specified in clocking domains resolve the clock by the following rules:
1) Event control of the clocking domain specifies the clock.
2) No explicit event control isalowed in any property or sequence declaration.

3) If anamed sequence that is defined outside the clocking domain is used , its clock, if specified, must be
identical to the clocking domain’s clock.

4) Multi-clock properties are not allowed.

Resolution of clock for a sequence definition assumes that only one explicit event control can be specified.
Also, the named sequences used in the sequence definition can, but do not need to, contain event control in
their definitions.

sequence s;

/I sequence conposed of two named sub-sequences

@ posedge s_cl k) e ##1 sl ##1 s2 ##1 f;
endsequence
sequence sl;

@ posedge cl k1) a ##1 b; // single clock sequence
endsequence
sequence s2,;

@ posedge cl k2) ¢ ##1 d; // single clock sequence
endsequence

These example sequences are used in Table 17-2 to explain the clock resolution rulesfor a sequence definition.

The clock of any sequence when explicitly specified isindicated by X. The absence of aclock isindicated by a
dash.

Table 17-2: Resolution of clock for a sequence definition

s clk clkl | clk2 | Resolved clock Semantic restriction
- - - unclocked -
X - - s clk -
X X - s clk s_cl k andcl k1 must beidentical
X X X s clk s_clk,cl k1 andcl k2 must be identical
X - X s clk s_cl k and cl k2 must be identical
- X - unclocked -

Copyright 2003 Accellera. All rights reserved. 191

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Table 17-2: Resolution of clock for a sequence definition

s clk clkl | clk2 | Resolved clock Semantic restriction

- X X unclocked cl k1l andcl k2 must beidentica

- - X unclocked -

Once the clock for a sequence definition is determined, the clock of a property definition is resolved similar to
the resolution for a sequence definition. A single clocked property assumes that only one explicit event control
can be specified. Also, the named sequences used in the property definition can contain event control in their
definitions. Table 17-3 specifies the rules for property definition clock resolution. The property has the form:

property p;
@ posedge p_clk) not sl |=> s2;
endproperty
p_cl k isthe property for the clock, cl k1 isthe clock for sequence sl and cl k2 isthe clock for sequence s2.
The same rules apply for operator | - >.

Table 17-3: Resolution of clock for a property definition

p_clk clkl | clk2 | Resolved clock Semantic restriction
- - - unclocked -
X - - p_clk -
X X - p_clk p_cl k and cl k1 must be identical
X X X p_clk p_cl k, cl k1 and cl k2 must be identical
X - X p_clk p_cl k and cl k2 must be identical
- X - unclocked -

- X X unclocked or cl k1 andcl k2 must beidentical. If
multi-clock cl k1 andcl k2 aredifferent for the case
of operator | =>, then it is considered a
multi-clock implication

- - X unclocked -

Resolution of clock for an assert statement is based on the following assumptions:
— assert canappear inanal ways block, i ni tial block or outside procedural context
— clock isinferred from an al ways ori ni ti al block

— default clock can be specified using default clocking domain
Table 17-4 specifies the rules for clock resolution when assert appears in an always or initial block, where

i _cl k istheinferred clock from an al ways ori ni tial block, d_cl k isthe default clock, and p_cl k isthe
property clock.

192 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Table 17-4: Resolution of clock in an always or initial block

i_clk | d_clk | p_clk | Resolved clock Semantic restriction

- - - unclocked Error. An assertion must have a clock
X - - i_clk -

- X - d clk

- - X p_clk

X - X i_clk i _clkandp_cl k must beidentical
X X - i_clk -

- X X p_clk

- - X p_clk -

Whentheassert statement isoutside any procedural block, thereis no inferred clock. The rulesfor clock res-
olution are specified in Table 17-5.

Table 17-5: Resolution of clock outside a procedural block

d_clk | p_clk | Resolved clock Semantic restriction

- - unclocked Error. An assertion must have a clock
X - d ck

- X p_clk

X X p_clk

17.14 Binding properties to scopes or instances

To facilitate verification separate from the design, it is possible to specify properties and bind them to specific
modules or instances. The following are the goals of providing this feature:

— It alows verification engineers to verify with minimum changes to the design codeffiles.

— It alows a convenient mechanism to attach verification |P to a module or an instance.

— No semantic changes to the assertions are introduced due to this feature. It is equivalent to writing proper-
ties external to amodule, using hierarchical path names.

With this feature, a user can bind a module, interface, or program instance to a module or a modul e instance.

The syntax of the bi nd construct is:

Copyright 2003 Accellera. All rights reserved. 193

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

bind directive::= // from Annex A.1.5
bind module identifier bind_instantiation ;
| bind name_of_instance bind_instantiation ;
bind instantiation ::=
program_instantiation
| module_instantiation
| interface_instantiation

Syntax 17-17—bind construct syntax (excerpt from Annex A)

The bi nd directive can be specified in
— amodule asamodule_or_generate item

— $root.

A program block contains non-design code (either testbench or properties) and executesin the Reactive region,
asexplained in Section 16.

Example of binding a program instance to a module:
bi nd cpu fpu_props fpu_rules_1(a,b,c);
Where:
— cpu isthe name of module.
— f pu_pr ops isthe name of the program containing properties.
— f pu_rul es_1 isthe program instance name.
— Ports(a, b, c) getboundtosignals(a, b, ¢c) of modulecpu.

— EBvery instance of cpu gets the properties.
Example of binding a program instance to a specific instance of amodule;
bi nd cpul fpu_props fpu_rules_1(a,b,c);

By binding a program to a module or an instance, the program becomes part of the bound object. The names of
assertion-related declarations can be referenced using the SystemVerilog hierarchical naming conventions.

Binding of a module instance or an interface instance works the same way as described for programs above.

interface range (input clk, enable, input int mnval, expr);
property crange_en;
@ posedge cl k) enable |-> (mnval <= expr);
endpr operty
range_chk: assert property (crange_en);
endi nt ef ace

bind cr_unit range rl(c_clk,c_en,v_low, (inl&& n2));

In this example, interface r ange isinstantiated in the module cr _uni t . Effectively, every instance of module
cr_uni t shall contain theinterface instancer 1.

whor

_ eouList ¢ module] N : ¢ rodulecou.

194 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Copyright 2003 Accellera. All rights reserved. 195

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

196 Copyright 2003 Accellera. All rights reserved.

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Section 18
Hierarchy

18.1 Introduction (informative)

Verilog has a simple organization. All data, functions and tasks are in modules except for system tasks and
functions, which are global, and can be defined in the PLI. A Verilog module can contain instances of other
modules. Any uninstantiated moduleis at the top level. This does not apply to libraries, which therefore have a
different status and a different procedure for analyzing them. A hierarchical name can be used to specify any
named object from anywhere in the instance hierarchy. The module hierarchy is often arbitrary and a lot of
effort is spent in maintaining port lists.

In Verilog, only net, reg, i nt eger andt i me datatypes can be passed through module ports.

SystemVerilog adds many enhancements for representing design hierarchy:

— A global declaration space, visible to all modules at all levels of hierarchy

— Nested module declarations, to aid in representing self-contained models and libraries
— Relaxed rules on port declarations

— Simplified named port connections, using . nane

— Implicit port connections, using .*

— Time unit and time precision specifications bound to modules

— A concept of interfaces to bundle connections between modules (presented in Section 19)

An important enhancement in SystemVerilog is the ability to pass any data type through module ports, includ-
ing nets, and all variable typesincluding reals, arrays, and structures.

18.2 The $root top level

In SystemVerilog thereisatop level called $root, which is the whole source text. This allows declarations out-
side any named modules or interfaces, unlike Verilog.

SystemVerilog requires an elaboration phase. All modules and interfaces must be parsed before elaboration.
The order of elaboration shall be: First, look for explicit instantiations in $root. If none, then look for implicit
instantiations (i.e. uninstantiated modules). Next, traverse non-generate instantiations depth-first, in source
order. Finally, execute generate blocks depth-first, in source order.

The source text can include the declaration and use of modules and interfaces. Modules can include the decla-
ration and use of other modules and interfaces. Interfaces can include the declaration and use of other inter-
faces. A module or interface need not be declared beforeit is used in text order.

A module can be explicitly instantiated in the $root top-level. All uninstantiated modules become implicitly
instantiated within the top level, which is compatible with Verilog.

The following paragraphs compare the $root top level and modules.

The $root top level:

— hasasingle occurrence

— can be distributed across any number of files

— variable and net definitions are in a global name space and can be accessed throughout the hierarchy

— task and function definitions are in a global name space and can be accessed throughout the hierarchy

196 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

— can contain procedural statements, which shall be executed onetime, asif inani ni ti al procedure

— can contain assertion declarations, assertion statements and bind directives

shall not containi ni ti al oral ways procedures

Modules:

can have any number of module definitions

can have any number of module instances, which create new levels of hierarchy
can be distributed across any number of files, and can be defined in any order
variable and net definitions are in the module instance name space and are local to that scope

task and function definitions are in the modul e instance name space and are local to that scope

can contain any humber of i ni ti al and al ways procedures

SystemVerilog 3.1a/draft 1

shall not contain procedural statements that are not within an i ni tial procedure, al ways procedure,

task, or function

When an identifier is referenced within a scope, SystemVerilog follows the Verilog name search rules, and
then searches in the $root global name space. An identifier in the global name space can be explicitly selected
by pre-pending $r oot . to the identifier name. For example, a global variable named syst em r eset can be

explicitly referenced from any level of hierarchy using $r oot . system reset.

The $root space can be used to model abstract functionality without modules. The following example illus-
trates using the $root space with just declarations, statements and functions.

typedef int nyint;

function void main ();

myint i,j,k;

$display ("entering main...");

left (K);

right (i,j,Kk);

$di splay ("ending... i=%d, j=9%9d, k=%®9d", i, j, Kk);

endf uncti on

function void left (output nyint Kk);
k = 34;
$display ("entering left");
endfuncti on

function void right (output myint i, j, input nyint Kk);
$display ("entering right");
i = k/2;
j = k+i;

endf uncti on

mai n();

Copyright 2003 Accellera. All rights reserved.

197

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

18.3 Module declarations

module_declaration ::= // from Annex A.1.3

module_nonansi_header [timeunits_declaration] { module_item }
endmodule[: module identifier]

| module_ansi_header [timeunits_declaration] { non_port_module item}
endmodule[: module identifier]

| { attribute_instance} module_keyword [lifetime] module_identifier (.*) ;
[timeunits_declaration] { module_item } endmodule[: module_identifier]

| extern module_nonansi_header

| extern module ansi_header

module_nonansi_header ::=
{ attribute_instance } module_keyword [lifetime] module_identifier [parameter_port_list]
list_of ports;
module ansi_header ::=
{ attribute_instance } module_keyword [lifetime] module identifier [parameter_port_list]
[list_of port declarations] ;
module_keyword ::= module | macromodule
timeunits_declaration ::=
timeunit time _litera ;
| timeprecision time_literal ;
| timeunit time_literal ;
timeprecision time_literd ;
| timeprecision time_literal ;
timeunit time _literal ;

Syntax 18-1—Module declaration syntax (excerpt from Annex A)

EDITOR’'S NOTE: | added bold-red font to the semicolons following timeunits declarations in the excerpt
above and in the BNF.

In Verilog, a module must be declared apart from other modules, and can only be instantiated within another
module. A module declaration can appear after it isinstantiated in the source text.

SystemVerilog adds the capability to nest module declarations, and to instantiate modules in the $r oot top-
level space, outside of other modules.

module ml(...); ... endnodul e
module n2(...); ... endnodul e
modul e nB(...);
mL il(...); // instantiates the local ml declared bel ow
n2 i4(...); // instantiates n2 - no local declaration
modul e ml(...); ... endnodul e // nested nodul e decl aration,
[/ mL nmodul e nane is in nB8’s name space

endnodul e

mL i2(...); // nodule instance in the $root space,
/] instantiates the nodule mlL that is not nested in another nodul e

198 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

18.4 Nested modules

A module can be declared within another module. The outer name space is visible to the inner module, so that
any name declared there can be used, unless hidden by a local name, provided the module is declared and
instantiated in the same scope.

One purpose of nesting modules is to show the logical partitioning of a module without using ports. Names
that are global are in the outermost scope, and names that are only used locally can be limited to local modules.

/1 This exanple shows a D-type flip-flop nade of NAND gates
nmodul e dff _flat(input d, ck, pr, clr, output g, nq);
wire gql, ngl, g2, ng2

nand glb (ngl, d, clr, ql);
nand gla (ql, ck, ng2, nql);

nand g2b (ng2, ck, clr, q2);
nand g2a (92, ngl, pr, nq2);

nand g3a (g, ng2, clr, nq);
nand g3b (ng, ql, pr, q);
endnodul e

/1 This exanpl e shows how the flip-flop can be structured into 3 RS | atches
modul e dff _nested(input d, ck, pr, clr, output g, nq);
wire g1, ngl, nqg2

nmodul e ff1;
nand glb (nql, d, clr, ql);
nand gla (ql, ck, ng2, nql);
endnodul e
ffli1;

modul e ff2
wire g2; // This wire can be encapsulated in ff2
nand g2b (ng2, ck, clr, q2);
nand g2a (q2, ngl, pr, ng2)

endnodul e
ff2 i2;
nodul e ff3

nand g3a (g, ng2, clr, nq);
nand g3b (ng, ql, pr, Q);
endnodul e
ff31i3;
endnodul e
The nested modul e declarations can also be used to create alibrary of modules that islocal to part of a design.

modul e part1(....);
nodul e and2(input a; input b; output z);

endnodul e
nmodul e or2(i nput a; input b; output z);
endnodul e

éﬁaé ul(....), u2(....), u3(....);

Copyright 2003 Accellera. All rights reserved. 199

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

endnodul e

This alows the same module name, e.g. and2, to occur in different parts of the design and represent different
modules. Note that an alternative way of handling this problem is to use configurations.

To support separate compilation, extern declarations of a module can be used to declare the ports on a module
without defining the module itself. An extern module declaration consists of the keyword ext er n followed by
the module name and the list of ports for the module. Both list of ports syntax (possibly with parameters), and
original Verilog style port declarations can be used. Note that the potential existence of defparams precludes
the checking of the port connection information prior to elaboration time even for list of ports style declara-
tions.

The following example demonstrates the usage of extern module declarations.

extern nmodule m(a,b,c,d);
extern nodul e a #(paraneter size= 8, paraneter type TP = logic [7:0])
(input [size:0] a, output TP b);

nmodul e top ();
wire [8:0] a
logic [7:0] b

mm(.*);
aa(.*%);
endnodul e

Modules mand a are then assumed to be instantiated as:

nmodul e top ();
mm(a,b,c,d);
a a (a,b);

endnodul e

If an ext er n declaration exists for a module, it is possible to use . * as the ports of the module. This usage
shall be equivalent to placing the ports (and possibly parameters) of the ext er n declaration on the module.

For example,
extern nodule m(a,b,c,d);
extern nodul e a #(paranmeter size = 8, paraneter type TP = logic [7:0])
(input [size:0] a, output TP b);
module m (. *);
i nput a, b, c;
out put d;
endnodul e
modul e a (.*);
endnodul e
is equivalent to writing:
modul e m (a, b, c, d)
i nput a, b, c;

out put d;
endnodul e

200 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1
modul e a #(paranmeter size = 8, paraneter type TP = logic [7:0])
(input [size:0] a, output TP b);
endnodul e

Extern module declarations can appear at any level of the instantiation hierarchy, but are visible only within
the level of hierarchy in which they are declared. It shall be an error for the module definition to not exactly
match the extern module declaration.

18.5 Port declarations

inout_declaration ::= // from Annex A.2.1.2
inout [port_type] list_of port_identifiers
| inout data typelist_of variable identifiers
input_declaration ::=
input [port_type] list_of_port_identifiers
| input data typelist_of variable identifiers
output_declaration ::=
output [port_type] list_of port_identifiers
| output data type list_of variable port_identifiers
interface_port_declaration ::=
interface identifier list_of_interface identifiers
| interface_identifier . modport_identifier list_of_interface identifiers
ref_declaration ::=ref data typelist_of port_identifiers
generic_interface port_declaration ::=
interfacelist_of interface identifiers
| interface . modport_identifier list_of interface identifiers
port_type ::= I/ from Annex A.2.2.1
data type
| net_type[signing] { packed_dimension }
| trireg [signing] { packed_dimension }
| [signing] { packed _dimension} range
signing ::= signed | unsigned

Syntax 18-2—Port declaration syntax (excerpt from Annex A)

With SystemVerilog, a port can be a declaration of a net, an interface, an event, or a variable of any type,
including an array, a structure or a union.

typedef struct {

bit isfloat;

union { int i; shortreal f; } n;
} tagged; // naned structure

modul e mhl (input int inl, input shortreal in2, output tagged out);

end.rrﬁ.dul e
For the first port, if neither atype nor adirection is specified, then it shall be assumed to be a member of a port
list, and any port direction or type declarations must be declared after the port list. Thisis compatible with the
Verilog-1995 syntax. If the first port type but no direction is specified, then the port direction shall default to

i nout . If the first port direction but no type is specified, then the port type shall default towi r e. This default
type can be changed using the‘ def aul t _net t ype compiler directive, asin Verilog.

Copyright 2003 Accellera. All rights reserved. 201

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

/1 Any declarations must follow the port list, because first port does not
/1 have either a direction or type specified; Port directions default to inout
modul e mh4(x, y);

wre x;

tri0 vy;

endﬁﬁaule
For subsequent portsin the port ligt, if the type and direction are omitted, then both are inherited from the pre-
vious port. If only the direction is omitted, then it is inherited from the previous port. If only the type is omit-

ted, it shall default to wi re. This default type can be changed using the ‘ def aul t _nett ype compiler
directive, asin Verilog.

/1 second port inherits its direction and type from previous port
nmodul e mh3 (i nput byte a, b);

endﬁﬁaule
Generic interface ports cannot be declared using the Verilog-1995 list of ports style. Generic interface ports
can only be declared by using alist of port declaration style.

nmodul e cpuMbd(interface d, interface j);

endnodul e

18.6 List of port expressions

Verilog 1364-2001 created alist_of_port_declarations alternate style which minimized the duplication of data
used to specify the ports of a module. SystemVerilog adds add an explicitly named port declaration to that
style, allowing elements of arrays and structures, concatenations of elements, or aggregate expressions of ele-
ments declared in amodule, interface or program to be specified on the port list.

Like explicitly named portsin a module port declaration, port identifiers exist in their own namespace for each
port list. When port item isjust asimple port identifier, that identifier is used as both areference to an interface
item and a port identifier. Once a port identifier has been defined, there shall not be another port definition with
this same name.

For example:
nmodul e nynod (

output .P1(r[3:0]),
output .P2(r[7:4]),

ref - Y(X),
input bit R);
logic [7:0] r
int x;
endnodul e

The self-determined type of the port expression becomes the type for the port. If the port expression isto be an
aggregate expression, then a cast must be used since self-determined aggregate expressions are not allowed.
The port_expression must resolve to a legal expression for type of module port (See section 18.9—Port con-
nection rules). The port expression is optional because ports can be defined that do not connect to anything
internal to the port.

202 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

18.7 Time unit and precision

SystemVerilog has atime unit and precision declaration which has the equivalent functionality of the® t i mes-
cal e compiler directivesin Verilog-2001. Use of these declarations removes the file order dependencies prob-
lems with compiler directives. The time unit and precision can be declared by the tinmeunit and
ti mepreci si on keywords, respectively, and set to a time litera which must be a power of 10 units. For
example:

timeunit 100ps;
ti meprecision 10fs;

There shall be at most one time unit and one time precision for any module or interface definition, or in $r oot .
This shall define atime scope. If specified, thet i meuni t andti mepr eci si on declarations shall precede any
other items in the current time scope. The ti meunit and ti mepr eci si on declarations can be repeated as
later items, but must match the previous declaration within the current time scope.

If atimeunit isnot specified in the module or interface definition, then the time unit is shall be determined
using the following rules of precedence:

1) If the module or interface definition is nested, then the time unit is shall be inherited from the enclosing
modul e or interface.

2) Else if a‘tinescal e directive has been previously specified, then the time unit is shall be set to the units
of thelast‘ ti mescal e directive.

3) Else, if the $r oot top level has atime unit, then the time unit is shall be set to the time units of the root
module.

4) Else, the default time unit is shall be used.
The time unit of $r oot shall only be determined by at i meuni t declaration, not a“ ti mescal e directive.

If ati mepreci si on isnot specified in the current time scope, then the time precision is shall be determined
following the same precedence as with time units.

The global time precision is the minimum of al the timeprecision statements and the smallest time precision
argument of all the" ti mescal e compiler directives (known as the precision of the time unit of the simulation
in Section 19.8 of the IEEE 1364-2001 standard) in the design. The st ep time unit is equal to the global time
precision.

Copyright 2003 Accellera. All rights reserved. 203

Accellera

SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

18.8 Module instances

parameter_value assignment ::=# (list_of _parameter_assignments)
list_of parameter_assignments::=
ordered_parameter_assignment { , ordered_parameter_assignment }
| named_parameter_assignment { , named_parameter_assignment }
ordered_parameter_assignment ::= expression | data_type
named_parameter _assignment ::=
. parameter_identifier ([expression])
| . parameter_identifier (data_type)
module _instance ::= name_of instance ([list_of port_connections])
name_of _instance ::= module_instance_identifier { range }
list_of port_connections::=
ordered_port_connection { , ordered port_connection }

| dot_named port_connection { , dot_named port_connection }
| { named_port_connection, } dot_star_port_connection{ , named_port_connection }

ordered_port_connection ::={ attribute_instance } [expression]
named_port_connection ::= { attribute instance} . port_identifier ([expression])

dot_named_port_connection ::=
{ attribute_instance } .port_identifier
| named_port_connection

dot_star_port_connection ::= { attribute instance} .*

module _instantiation ::= // from Annex A.4.1.1
module_identifier [parameter_value_assignment]| module_instance{ , module_instance} ;

Syntax 18-3—Module instance syntax (excerpt from Annex A)

A module can be used (instantiated) in two ways, hierarchical or top level. Hierarchical instantiation allows
more than one instance of the same type. The module name can be a module previously declared or one
declared later. Actual parameters can be named or ordered. Port connections can be named, ordered or implic-
itly connected. They can be nets, variables, or other kinds of interfaces, events, or expressions. See below for

the connection rules.

Consider an ALU accumulator (al u_accum) example module that includes instantiations of an ALU module,
an accumulator register (accum module and a sign-extension (xt end) module. The module headers for the

three instantiated modul es are shown in the following example code.

nmodul e alu (

output reg [7:0] alu_out,

out put reg zero,

input [7:0] ain, bin,

i nput [2: 0] opcode);

/1 RTL code for the alu nodul e
endnodul e

nodul e accum (

output reg [7:0] dataout,

i nput [7:0] datain,

i nput clk, rst_n);

/1l RTL code for the accunmul ator nodul e
endnodul e

204 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

modul e xtend (

output reg [7:0] dout,

i nput din,

i nput clk, rst_n);

/1 RTL code for the sign-extension nodul e
endnodul e

18.8.1 Instantiation using positional port connections

Verilog has always permitted instantiation of modules using positional port connections, as shown in the
al u_accunt module example, below.

modul e al u_accuml (
out put [15:0] dataout,
input [7:0] ain, bin,
i nput [2:0] opcode,
i nput clk, rst_n);
wire [7:0] alu_out;

alu alu (alu_out, , ain, bin, opcode);

accum accum (dataout[7: 0], alu_out, clk, rst_n);

xtend xtend (dataout[15:8], alu_out[7], clk, rst_n);
endnodul e

As long as the connecting variables are ordered correctly and are the same size as the instance-ports that they
are connected to, there shall be no warnings and the simulation shall work as expected.

18.8.2 Instantiation using named port connections

Verilog has always permitted instantiation of modules using named port connections as shown in the
al u_accun? module example.

nmodul e al u_accun? (
out put [15:0] dataout,
input [7:0] ain, bin,
i nput [2: 0] opcode,
i nput clk, rst_n);
wire [7:0] alu_out;

alu alu (.alu_out(alu_out), .zero(),
.ain(ain), .bin(bin), .opcode(opcode));
accum accum (. dat aout (dataout[7:0]), .datain(alu_out),
.clk(clk), .rst_n(rst_n));
xtend xtend (.dout(dataout[15:8]), .din(alu_out[7]),
.clk(clk), .rst_n(rst_n));
endnodul e

Named port connections do not have to be ordered the same as the ports of the instantiated module. The vari-
ables connected to the instance ports must be the same size or a port-size mismatch warning shall be reported.

18.8.3 Instantiation using implicit .name port connections

SystemVerilog adds the capability to implicitly instantiate ports using a .name syntax if the instance-port name
and size match the connecting variable-port name and size. This enhancement eliminates the requirement to
list a port name twice when the port name and signal name are the same, while still listing all of the ports of the
instantiated module for documentation purposes.

In the following al u_accunB example, all of the ports of the instantiated alu module match the names of the

Copyright 2003 Accellera. All rights reserved. 205

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

variables connected to the ports, except for the unconnected zero port, which is listed using a named port con-
nection, showing that the port is unconnected. Implicit .name port connections are made for all name and size
matching connections on the instantiated module.

In the same al u_accunB example, the accummodule has an 8-bit port called dat aout that is connected to a
16-hit bus called dat aout . Because the internal and external sizes of dat aout do not match, the port must be
connected by name, showing which bits of the 16-bit bus are connected to the 8-hit port. The dat ai n port on
the accumis connected to a bus by a different name (al u_out), so this port is a'so connected by name. The
cl k and r st _n ports are connected using implicit .name port connections. Also in the same al u_accun8
example, the xt end module has an 8-bit output port called dout and a 1- bit input port called di n. Since nei-
ther of these port names match the names (or sizes) of the connecting variables, both are connected by name.
Thecl k andr st _n ports are connected using implicit .name port connections.

nmodul e al u_accunB (
out put [15:0] dataout,
input [7:0] ain, bin,
i nput [2: 0] opcode,
i nput clk, rst_n);
wire [7:0] alu_out;

alu alu (.alu_out, .zero(), .ain, .bin, .opcode);

accum accum (. dat aout (dataout[7:0]), .datain(alu_out), .clk, .rst_n);

xtend xtend (.dout(dataout[15:8]), .din(alu_out[7]), .clk, .rst_n);
endnodul e

A .port_identifier port connection is semanticaly equivalent to the named port connection
.port_identifier(name) port connection with the following exceptions:

— Theidentifier referenced by .port_identifier shall not create an implicit wire declaration.

— It shall beillegal for a.port_identifier port connection to create an implicit cast. Thisincludes truncation or
padding.

— A conversion between a 2-state and 4-state type of the same bit length is alegitimate cast.
— A port connection between a net type and a variable type of the same bit length is alegitimate cast.

— It shall be an error if a.port_identifier port connection between two dissimilar net types would generate a
warning message as required by the Verilog-2001 standard.

18.8.4 Instantiation using implicit .* port connections

SystemVerilog adds the capability to implicitly instantiate ports using a . * syntax for al ports where the
instance-port name and size match the connecting variable-port name and size. This enhancement eliminates
the requirement to list any port where the name and size of the connecting variable match the name and size of
the instance port. Thisimplicit port connection styleis used to indicate that all port names and sizes match the
connections where emphasisis placed only on the exception ports. The implicit . * port connection syntax can
greatly facilitate rapid block-level testbench generation where al of the testbench variables are chosen to
match the instantiated module port names and sizes.

In the following al u_accumt example, all of the ports of the instantiated alu module match the names of the
variables connected to the ports, except for the unconnected zero port, which is listed using a named port con-
nection, showing that the port is unconnected. The implicit . * port connection syntax connects al other ports
on the instantiated module.

In the same al u_accumt example, the accummodule has an 8-bit port called dat aout that is connected to a
16-bit bus called dat aout . Because the internal and external sizes of dat aout do not match, the port must be
connected by name, showing which bits of the 16-bit bus are connected to the 8-bit port. The dat ai n port on
the accumis connected to a bus by a different name (al u_out), so this port is a'so connected by name. The
cl k and r st _n ports are connected using implicit . * port connections. Also in the same al u_accunm4 exam-

206 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

ple, the xt end module has an 8-bit output port called dout and a 1- bit input port called di n. Since neither of
these port names match the names (or sizes) of the connecting variables, both are connected by name. Thecl k
and r st _n ports are connected using implicit . * port connections.

nmodul e al u_accumd (
out put [15:0] dataout,
input [7:0] ain, bin,
i nput [2: 0] opcode,
i nput clk, rst_n);
wire [7:0] alu_out;

alu alu (.*, .zero());

accum accum (. *, .dataout(dataout[7:0]), .datain(alu_out));

xtend xtend (.*, .dout(dataout[15:8]), .din(alu_out[7]));
endnodul e

An implicit . * port connection is semantically equivalent to a default .name port connection for every port
declared in the instantiated module. A named port connection can be mixed with a. * connection to override
the port connection to a different expression or to leave the port unconnected.

When the implicit . * port connection is mixed in the same instantiation with named port connections, the
implicit . * port connection token can be placed anywhere in the port list. The . * token can only appear at
most once in the port list.

Modules can be instantiated into the same parent module using any combination of legal positional, named,
implicit .name connected and implicit . * connected instances as shown in al u_accunb example.

nmodul e al u_accunb (
out put [15:0] dataout,
input [7:0] ain, bin,
i nput [2:0] opcode,
i nput clk, rst_n);
wire [7:0] alu_out;

/1 mxture of naned port connections and
/[l inplicit .nane port connections
alu alu (.ain(ain), .bin(bin), .alu_out, .zero(), .opcode);

/1 positional port connections
accum accum (dataout[7: 0], alu_out, clk, rst_n);

/1 mxture of naned port connections and inplicit .* port connections

xtend xtend (.dout(dataout[15:8]), .*, .din(alu_out[7]));
endnodul e

18.9 Port connection rules

SystemVerilog extends Verilog port connections by making all variable data types available to pass through
ports. It does this by allowing both sides of a port connection to have the same compatible data type, and by
allowing continuous assignments to variables. It also creates a new type of port qualifier, r ef , to allow shared
variable behavior across a port by passing a hierarchical reference.

18.9.1 Port connection rules for variables

If aport declaration has a variable data type, then its direction controls how it can be connected when instanti-
ated, asfollows:

Copyright 2003 Accellera. All rights reserved. 207

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

— Ani nput port can be connected to any expression of a compatible data type. A continuous assignment
shall be implied when a variable is connected to an input port declaration. Assignments to variables
declared as an input port shall be illegal. If left unconnected, the port shall have the default initial value
corresponding to the data type.

— Anout put port can be connected to a variable (or a concatenation) of a compatible data type. A continu-
ous assignment shall be implied when a variable is connected the output port of an instance. Procedural or
continuous assignments to a variable connected to the output port of an instance shall beillegal.

— Anout put port can be connected to a net (or a concatenation) of a compatible data type. In this case, mul-
tiple drivers shall be permitted on the net asin Verilog-2001.

— A variable data type is not permitted on either side of ani nout port.

— A ref port shall be connected to an equivalent variable data type. References to the port variable shall be
treated as hierarchal references to the variable it is connected to in its instantiation. This kind of port can
not be left unconnected

18.9.2 Port connection rules for nets
If a port declaration has a wi r e type (which is the default), or any other net type, then its direction controls
how it can be connected as follows:

— Ani nput can be connected to any expression of a compatible data type. If left unconnected, it shall have
the value 'z.

— Anout put can be connected to a net type (or a concatenation of net types) or a compatible variable type
(or a concatenation of variable types).

— Aninout can be connected to a net type (or a concatenation of net types) or left unconnected, but not to a
variable type.

Note that where the data types differ between the port declaration and connection, an initial value change event
can be caused at time zero.

18.9.3 Port connection rules for interfaces

A port declaration can be a generic interface or named interface type. An interface port instance must always
be connected to an interface instance or a higher-level interface port. An interface port cannot be left uncon-
nected.

If a port declaration has a generic interface type, then it can be connected to an interface instance of any type.

If aport declaration has a named interface type, then it must be connected to an interface instance of the iden-
tical type.

18.9.4 Compatible port types
The same rules for assignment compatibility are used for compatible port types for ports declared asani nput

or an out put variable, or for out put ports connected to variables. SystemVerilog does not change any of the
other port connection compatibility rules

18.9.5 Unpacked array ports and arrays of instances

For an unpacked array port, the port and the array connected to the port must have the same number of
unpacked dimensions, and each dimension of the port must have the same size as the corresponding dimension
of the array being connected.

If the size and type of the port connection match the size and type of asingle instance port, the connection shall
be made to each instance in an array of instances.

208 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

If the port connection is an unpacked array, the unpacked array dimensions of each port connection shall be
compared with the dimensions of the instance array. |f they match exactly in size, each element of the port con-
nection shall be matched to the port left index to left index, right index to right index. If they do not match it
shall be considered an error.

If the port connection is a packed array, each instance shall get a part-select of the port connection, starting
with al right-hand indices to match the right most part-select, and iterating through the right most dimension
first. Too many or too few bits to connect all the instances shall be considered an error.

18.10 Name spaces

SystemVerilog has five name spaces for identifiers. Verilog's global definitions name space collapses onto the
module name space and exists as the top-level scope, $r oot . Module, primitive, and interface identifiers are
local to the module name space where there are defined. The five name spaces are described as follows:

1) The text macro name space is global. Since text macro names are introduced and used with a leading
character, they remain unambiguous with any other name space. The text macro names are defined in the
linear order of appearance in the set of input files that make up the description of the design unit.
Subsequent definitions of the same name override the previous definitions for the balance of the input
files.

2) The module name space is introduced by $root and the nodul e, nacronodul e, i nterface, and
primtive constructs. It unifies the definition of functions, tasks, named blocks, instance names,
parameters, named events, net type of declaration, variable type of declaration and user defined types.

3) The block name space is introduced by named or unnamed blocks, the speci fy, functi on, and t ask
congtructs. It unifies the definitions of the named blocks, functions, tasks, parameters, named events,
variable type of declaration and user defined types.

4) The port hame space is introduced by the nodul e, macr onodul e, i nterface, primtive, function,
andt ask constructs. It provides a means of structurally defining connections between two objects that are
in two different name spaces. The connection can be unidirectional (either i nput or out put) or
bidirectional (i nout). The port name space overlaps the module and the block hame spaces. Essentially,
the port name space specifies the type of connection between names in different name spaces. The port
type of declarations includesi nput , out put , and i nout . A port name introduced in the port name space
can be reintroduced in the module name space by declaring a variable or a net with the same name as the
port name.

5) The attribute name space is enclosed by the (* and *) constructs attached to a language element (see
Section 2.8). An attribute name can be defined and used only in the attribute name space. Any other type
of name cannot be defined in this name space.

18.11 Hierarchical names

Hierarchical names are also called nested identifiers. They consist of instance names separated by periods,
where an instance name can be an array element.

$root. mynodul e. ul // absol ute name
ul.structl.fieldl // ul nmust be visible locally or above, including globally
adder 1[5] . sum

Nested identifiers can be read (in expressions), written (in assignments or task/function calls) or triggered off
(in event expressions). They can also be used as type, task or function names.

Copyright 2003 Accellera. All rights reserved. 209

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Section 19
Interfaces

19.1 Introduction (informative)

The communication between blocks of adigital system isacritical areathat can affect everything from ease of
RTL coding, to hardware-software partitioning to performance analysis to bus implementation choices and
protocol checking. The interface construct in SystemVerilog was created specifically to encapsulate the com-
munication between blocks, allowing a smooth migration from abstract system-level design through succes-
sive refinement down to lower-level register-transfer and structural views of the design. By encapsulating the
communication between blocks, the interface construct also facilitates design re-use. Theinclusion of interface
capabilitiesis one of the major advantages of SystemVerilog.

At itslowest level, an interface is a named bundle of nets or variables. The interface isinstantiated in adesign
and can be passed through a port as a single item, and the component nets or variables referenced where
needed. A significant proportion of a Verilog design often consists of port lists and port connection lists, which
are just repetitions of names. The ability to replace a group of names by a single name can significantly reduce
the size of a description and improve its maintainability.

Additional power of the interface comes from its ability to encapsulate functionality as well as connectivity,
making an interface, at its highest level, more like a class template. An interface can have parameters, con-
stants, variables, functions and tasks. The types of elements in an interface can be declared, or the types can be
passed in as parameters. The member variables and functions are referenced relative to the instance name of
the interface as instance.member. Thus, modules that are connected via an interface can simply call the task/
function members of that interface to drive the communication. With the functionality thus encapsulated in the
interface, and isolated from the module, the abstraction level and/or granularity of the communication protocol
can be easily changed by replacing the interface with a different interface containing the same members but
implemented at a different level of abstraction. The modules connected via the interface don’t need to change
atall.

To provide direction information for module ports and to control the use of tasks and functions within particu-
lar modules, the modport construct is provided. Asthe name indicates, the directions are those seen from the
module.

In addition to task/function methods, an interface can also contain processes (i.e. i ni ti al or al ways blocks)
and continuous assignments, which are useful for system-level modeling and testbench applications. This
allows the interface to include, for example, its own protocol checker that automatically verifies that all mod-
ules connected via the interface conform to the specified protocol. Other applications, such as functional cov-
erage recording and reporting, protocol checking and assertions can aso be built into the interface.

The methods can be abstract, i.e. defined in one module and called in another, using the export and import con-
structs. This could be coded using hierarchical path names, but this would impede re-use because the names
would be design-specific. A better way is to declare the task and function names in the interface, and to use
local hierarchical names from the interface instance for both definition and call. Broadcast communication is
modeled by f or kj oi n tasks, which can be defined in more than one module and executed concurrently.

210 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

19.2 Interface syntax

interface declaration ::= // from Annex A.1.3

interface_nonansi_header [timeunits_declaration] { interface item}
endinterface[: interface identifier]

| interface_ansi_header [timeunits_declaration] { non_port_interface item}
endinterface[: interface identifier]

| { attribute_instance} interfaceinterface identifier (.*) ;
[timeunits_declaration] { interface item }
endinterface[: interface identifier]

| extern interface_nonansi_header

| extern interface _ansi_header

interface_nonansi_header ::=
{ attribute_instance } interface[lifetime] interface identifier
[parameter_port_list] list_of ports;
interface_ans_header ::=
{attribute_instance} interface[lifetime] interface_identifier
[parameter_port_list] [list_of_port_declarations] ;
modport_declaration ::= modport modport_item { , modport_item} ; // from Annex A.2.9
modport_item ::= modport_identifier (modport_ports declaration { , modport_ports_declaration })
modport_ports declaration ::=
modport_simple_ports declaration
| modport_hierarchical_ports declaration
| modport_tf ports declaration
modport_simple_ports declaration ::=
input list_of _modport_port_identifiers
| output list_of _modport_port_identifiers
| inout list_of _modport_port_identifiers
| ref [data_type] list_of modport_port_identifiers
modport_hierarchical_ports declaration ::=
interface instance identifier [[constant_expression |] . modport_identifier
modport_tf_ports declaration ::=
import_export modport_tf port
modport_tf_port ::=
task named _task_proto{ , named_task proto }
| function named_function_proto { , named_function proto }
| task_or_function_identifier { , task_or_function_identifier }
import_export ::=import | export
interface_instantiation ::= /l from Annex A.4.1.2
interface identifier [parameter_value _assignment] module_instance{ , module instance} ;

Syntax 19-1—Interface syntax (excerpt from Annex A)

The interface construct provides a new hierarchical structure. It can contain smaller interfaces and can be
passed through ports.

The aim of interfaces is to encapsulate communication. At the lower level, this means bundling variables and
wires in interfaces, and bundling ports with directions in modports. The modules can be made generic so that
the interfaces can be changed. The following examples show these features. At a higher level of abstraction,
communication can be done by tasks and functions. Interfaces can include task and function definitions, or just

Copyright 2003 Accellera. All rights reserved. 211

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

task and function prototypes with the definition in one module (server/slave) and the call in another (client/
master).

A simple interface declaration is as follows (see Syntax 19-1 for the complete syntax):
interface identifier;
i. .nierf ace_itens
endi .nlterface [: identifier]
An interface can be instantiated hierarchically like amodule, with or without ports. For example:
nyi nterface #(100) scalarl, vector[9:0];

Interfaces can be declared and instantiated in modules (either flat or hierarchical) but modules can neither be
declared nor instantiated in interfaces.

The simplest use of an interface is to bundle wires, asisillustrated in the examples bel ow.

19.2.1 Example without using interfaces

This example shows a simple bus implemented without interfaces. Note that the logic type can replace wire
and reg if no resolution of multiple driversis needed.

nmodul e memvbd(i nput bit req,
bit clk,
bit start,
| ogic [1:0] node,
logic [7:0] addr,

i nout wire [7:0] data,
out put bit gnt,
bit rdy);
| ogi c avail;
endnodul e

modul e cpuMd(
i nput bit clk,

bit gnt,

bit rdy,
i nout wire [7:0] data,
out put bit req,

bit start,

logic [7:0] addr,
logic [1:0] node);

endnodul e

nmodul e top;
logic req, gnt, start, rdy; // req is logic not bit here
logic clk = 0;
logic [1:0] node;

logic [7:0] addr;
wire [7:0] data;

memvbd nmem(req, clk, start, node, addr, data, gnt, rdy);
cpuMod cpu(clk, gnt, rdy, data, req, start, addr, nopde);

212 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

endnodul e

19.2.2 Interface example using a named bundle

The simplest form of a SystemVerilog interface is a bundled collection of variables or nets. When an interface
isused as a port, the variables and netsin it are assumed to ber ef and i nout ports, respectively. The follow-
ing interface example shows the basic syntax for defining, instantiating and connecting an interface. Usage of
the SystemVerilog interface capability can significantly reduce the amount of code required to model port con-

nections.

interface sinmple_bus; // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
| ogic [1:0] node;
| ogic start, rdy;
endi nterface: sinple_bus

nmodul e memvbd(si npl e_bus a, // Use the sinple_bus interface
i nput bit clk);
| ogi c avail;
/1l a.req is the req signal in the 'sinple_bus’ interface
al ways @ posedge clk) a.gnt <= a.req & avail;
endnodul e
nmodul e cpuMbd(si npl e_bus b, input bit clk);
endnodul e
nodul e top;
logic clk =0

sinple_bus sb_intf(); // Instantiate the interface

memvbd nenm(sb_intf, clk); // Connect the interface to the

endnodul e

nodul e i nstance
cpuMd cpu(.b(sb_intf), .clk(clk)); // Ether by position or

In the preceding example, if the same identifier, sb_i nt f , had been used to name the si npl e_bus interface
in the memvbd and cpuMbd module headers, then implicit port declarations also could have been used to

instantiate the menvbd and cpuMbd modules into the top module, as shown bel ow.

modul e memvbd (sinple_bus sb_intf, input bit clk);
endlrrﬁldul e
modul e cpuMbd (sinple_bus sb_intf, input bit clk);
endﬁﬁaule
nmodul e top;

logic clk = 0;

sinpl e_bus sb_intf();

memvbd nem (.*); // inplicit port connections
cpuMod cpu (.*); [// inplicit port connections

Copyright 2003 Accellera. All rights reserved.

213

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

endnodul e

19.2.3 Interface example using a generic bundle

A module header can be created with an unspecified interface instantiation as a place-holder for an interface to
be selected when the module itself is instantiated. The unspecified interface is referred to as a“ generic” inter-
face port.

This generic interface port can only be declared by using the list of port declaration style port declaration style.
It shall beillegal to declare such a generic interface port using the old Verilog-1995 list of port style.

The following interface example shows how to specify a generic interface port in a module definition.

/1 memvbd and cpuMbd can use any interface
nmodul e memvbd (interface a, input bit clk);

endnodul e
nmodul e cpuMbd(interface b, input bit clk);
endnodul e
interface sinmple_bus; // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
| ogic [1:0] node;
| ogic start, rdy;

endi nterface: sinple_bus

nmodul e top
logic clk =0

sinmple_bus sb_intf(); // Instantiate the interface
/1 Connect the sb_intf instance of the sinple_bus
/1 interface to the generic interfaces of the

/1 menmvbd and cpuhMbd nodul es

memvbd nmem (. a(sb_intf), .clk(clk));

cpuMod cpu (.b(sb_intf), .clk(clk));

endnodul e

An implicit port cannot be used to connect to a generic interface. A named port must be used to connect to a
generic interface, as shown below.

modul e memvbd (interface a, input bit clk);
endﬁﬁaule
nmodul e cpuMod (interface b, input bit clk);
endﬁﬁaule
nmodul e top

logic clk =0

sinple_bus sb_intf();

menvbd nmem (.*, .a(sb_intf)); // partial inplicit port connections

214 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

cpuMod cpu (.*, .b(sb_intf)); // partial inplicit port connections

endnodul e

19.3 Ports in interfaces

One limitation of simple interfaces is that the nets and variables declared within the interface are only used to
connect to a port with the same nets and variables. To share an external net or variable, one that makes a con-
nection from outside of the interface as well as forming a common connection to all module ports that instanti-
ate the interface, an interface port declaration is required. The difference between nets or variables in the
interface port list and other nets or variables within the interface is that only those in the port list can be con-
nected externally by name or position when the interface is instantiated.

interface i1 (input a, output b, inout c);
wre d;
endi nterface

Thewiresa, b and ¢ can be individually connected to the interface and thus shared with other interfaces.

The following example shows how to specify an interface with inputs, allowing a wire to be shared between
two instances of the interface.

interface sinmple_bus (input bit clk); // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
| ogic [1:0] node;
| ogic start, rdy;
endi nterface: sinple_bus

nmodul e memvbd(si npl e_bus a); // Uses just the interface
| ogi c avail;

al ways @ posedge a.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail; // a.req is in the 'sinple_bus’ interface
endnodul e
nodul e cpuMbd(si npl e_bus b);
endnodul e
nodul e top

logic clk = 0;

sinple_bus sb_intfl(clk); // Instantiate the interface
sinple_bus sb_intf2(clk); // Instantiate the interface

memvbd nentd(.a(sb_intf1l)); // Connect bus 1 to nenory 1
cpuMod cpul(.b(sb_intfl));
memvbd nenR(.a(sb_intf2)); // Connect bus 2 to nenory 2
cpuMod cpu2(.b(sb_intf2));

endnodul e

Note: Because the instantiated interface names do not match the interface names used in the memMod and
cpuMod modules, implicit port connections cannot be used for this example.

Copyright 2003 Accellera. All rights reserved. 215

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

19.4 Modports

To bundle module ports, there are nodpor t lists with directions declared within the interface. The keyword
modport indicates that the directions are declared asif inside the module.

interface i2;
wire a, b, c, d;
nodport master (input a, b, output c, d);
nmodport slave (output a, b, input c, d);
endi nterface

Thenodport list name (master or save) can be specified in the module header, where the modpor t name acts
as adirection and the interface name as a type.

modul e m (i 2. master i);
endﬁﬁaule

nodule s (i2.slave i);
endﬁﬁaule

nodul e top;

i20();

endnodul e

Thenodport list name (master or slave) can also be specified in the port connection with the modul e instance,
where the nodpor t nameis hierarchical from the interface instance.

module m(i2 i);
endnodul e
module s (i2i);
endnodul e
nodul e top;
i2i();
mul(.i(i.master));
s u2(.i(i.slave));

endnodul e

The syntax of i nt er f ace_name. nodport _name i nst ance_nane isrealy ahierarchical type followed by
an instance. Note that this can be generalized to any interface with a given nodpor t name by writing i nt er -
face. nodport _nane instance_nane.

In ahierarchical interface, the directionsin anodport declaration can themselves be nodpor t plus name.

interface i1l;
interface i 3;
wire a, b, c, d;
nodport master (input a, b, output c, d);
nodport slave (output a, b, input c, d);
endi nterface

216 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

i3 chl(), ch2();
nmodport master2 (chl.naster, ch2.master);
endi nterface

All of the namesused in anmodpor t declaration shall be declared by the same interface as is the modport itself.
In particular, the names used shall not be those declared by another enclosing interface, and a modport declara-
tion shall not implicitly declare new ports.

The following interface declarations would beillegal:

interface i
wire x, y;
interface illegal _i;

wire a, b, c, d;

/1 x, y not declared by this interface

nmodport master(input a, b, x, output c, d, y);

nmodport slave(input a, b, x, output c, d, y);
endinterface : illegal _i

illegal _i chl, chz;
nmodport master2 (chl.naster, ch2.master);
endi nterface : i

interface illegal _i;
/1 a, b, c, dnot declared by this interface
nodport master(input a, b, output c, d);
nmodport sl ave(output a, b, output c, d);
endinterface : illegal _i

Note that if no nodport is specified in the module header or in the port connection, then all the nets and vari-
ablesin the interface are accessible with directioni nout or r ef , asin the examples above.

19.4.1 An example of a named port bundle

This interface example shows how to use modports to control signal directions as in port declarations. It uses
the modport name in the module definition.

interface sinmple_bus (input bit clk); // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
| ogic [1:0] node;
| ogic start, rdy;

nodport slave (input req, addr, node, start, clk,
out put gnt, rdy,
ref data);

nodport master (i nput gnt, rdy, clk,
out put req, addr, node, start,
ref data);

endi nterface: sinple_bus

nmodul e memvbd (sinple_bus.slave a); // interface nane and nodport nane
| ogi c avail;

al ways @ posedge a.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface

Copyright 2003 Accellera. All rights reserved. 217

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

endnodul e
nmodul e cpuMbd (sinpl e_bus. master b);
endlrrﬁldul e
nmodul e top
logic clk =0
sinple_bus sb_intf(clk); // Instantiate the interface
initial repeat(10) #10 cl k++
memvod nmen(.a(sb_intf)); // Connect the interface to the nodul e i nstance

cpuMod cpu(.b(sb_intf));
endnodul e

19.4.2 An example of connecting a port bundle

This interface example shows how to use modports to control signal directions. It uses the modport name in
the module instantiation.

interface sinmple_bus (input bit clk); // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
| ogic [1:0] node;
| ogic start, rdy;

nodport slave (input req, addr, node, start, clk,
out put gnt, rdy,
ref data);
nodport master (i nput gnt, rdy, clk
out put req, addr, node, start,
ref data);
endi nterface: sinple_bus

nmodul e memvbd(si npl e_bus a); // Uses just the interface nane
| ogi c avail;

al ways @posedge a.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface

endnodul e
nodul e cpuMbd(si npl e_bus b);
endnodul e
nmodul e top

logic clk =0

sinple_bus sb_intf(clk); // Instantiate the interface

initial repeat(10) #10 cl k++

memvbd nenm(sb_intf.slave); // Connect the nodport to the nodul e i nstance
cpuMod cpu(sb_intf.master);

218 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

endnodul e

19.4.3 An example of connecting a port bundle to a generic interface

This interface example shows how to use modports to control signal directions. It shows the use of the inter-
face keyword in the module definition. The actual interface and modport are specified in the module instantia-
tion.

interface sinmple_bus (input bit clk); // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
| ogic [1:0] node;
| ogic start, rdy;

nmodport sl ave (input req, addr, node, start, clKk,
out put gnt, rdy,
ref data);

nmodport master (i nput gnt, rdy, clk,
out put req, addr, node, start,
ref data);

endi nterface: sinple_bus

modul e memvbd(interface a); // Uses just the interface
| ogi c avail;

al ways @ posedge a.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail; // the gnt and req signal in the interface
endnodul e

nmodul e cpuMbd(i nterface b);
end.ni).dul e
nodul e top;
logic clk = 0;
sinple_bus sb_intf(clk); // Instantiate the interface
memvbd nem(sb_intf.slave); // Connect the nodport to the nodul e i nstance

cpuMod cpu(sb_intf.master);
endnodul e

19.4.4 Modport expressions LRM 32

A modport expression allows elements of arrays and structures, concatenations of elements, aggregate expres-
sions of elements declared in an interface to be included in a modport list. This modport expression is explic-
itly named with a port identifier, visible only through the modport connection.

Like explicitly named portsin a module port declaration, port identifiers exist in their own namespace for each
modport list. When modport item isjust asimple port identifier, that identifier is used as both areferenceto an
interface item and a port identifier. Once a port identifier has been defined, there shall not be another port def-
inition with this same name.

For example:

interface I|;
logic [7:0] r

Copyright 2003 Accellera. All rights reserved. 219

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

const int x=1;

bit R

nodport A (output .P(r[3:0]), input .Qx), R;

nodport B (output .P(r[7:4]), input .Q2), R;
endi nterface

module M (interface i);,
initial i.P=1i.Q
endnodul e

nodul e top;

I i1

Mul (il.A);

Mu2 (il.B);

initial #1 $display("%", il.r); /1 displays 00010010
endnodul e

The self-determined type of the port expression becomes the type for the port. If the port expression isto be an
aggregate expression, then a cast must be used since self-determined aggregate expressions are not allowed.
The port_expression must resolve to a legal expression for type of module port (See section 18.9—Port con-
nection rules). In the example above, the Qport could not be an output or inout because the port expressionisa
constant. The port expression is optional because ports can be defined that do not connect to anything internal
to the port.

19.5 Interfaces and specify blocks

Thespeci fy block isused to describe various paths across a modul e and perform timing checksto ensure that
events occurring at the module inputs satisfy the timing constraints of the device described by the module. The
module paths are from module input ports to output ports and the timing checks are relative to the module
inputs. The specify block refers to these ports as terminal descriptor. Module i nout ports may function as
either an input or output terminal. When one of the port instances is an interface, each signa in the interface
becomes an available terminal, with the default direction as defined for an interface, or as restricted by a mod-
port. A r ef port may not be used as aterminal in a specify block.

The following shows an example of using interfaces together with a specify block:

interface itf;

logic c,q,d;

nmodport flop (input c,d, output Q);
endi nterface

nodul e dtype (itf.flop ch);
al ways_ff @ posedge ch.c) ch.qgq <= ch.d;

specify
(posedge ch.c => (ch.qg+:ch.d)) = (5,6)
$setup(ch.d, posedge ch.c, 1);
endspeci fy
endnodul e

19.6 Tasks and functions in interfaces

Tasks and functions can be defined within an interface, or they can be defined within one or more of the mod-
ules connected. This allows a more abstract level of modeling. For example “read” and “write” can be defined
as tasks, without reference to any wires, and the master module can merely call these tasks. In a nodport
these tasks are declared asi nport tasks.

220 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

If amodule is connected to a modport containing an exported task or function, and the modul e does not define
that task or function, then an elaboration error shall occur. Similarly if the modport contains an exported task
or function prototype, and the task or function defined in the module does not exactly match that prototype,
then an elaboration error shall occur.

If the tasks or functions are defined in a module, using a hierarchical name, they must also be declared as
ext er n intheinterface, or asexport inanodport .

Tasks (not functions) can be defined in a module that is instantiated twice, e.g. two memories driven from the
same CPU. Such multiple task definitions are allowed by af or kj oi n ext er n declaration in the interface.

19.6.1 An example of using tasks in an interface

interface sinmple_bus (input bit clk); // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
| ogic [1:0] node;
| ogic start, rdy;

task masterRead(input logic [7:0] raddr); // nasterRead nethod
I
endt ask: nmasterRead

task slaveRead; // sl aveRead nethod
I
endt ask: sl aveRead

endi nterface: sinple_bus

nmodul e memvbd(interface a); // Uses any interface
| ogi c avail;

al ways @ posedge a.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail // the gnt and req signals in the interface

al ways @a. start)
a. sl aveRead;
endnodul e
nmodul e cpuMbd(i nterface b);
enum {read, wite} instr;
logic [7:0] raddr;
al ways @ posedge b. cl k)
if (instr == read)
b. master Read(raddr); // call the Interface nethod
endnodul e

nodul e top;
logic clk = 0;

sinple_bus sb_intf(clk); // Instantiate the interface
memvbd nmen(sb_intf);
cpuMod cpu(sb_intf);

endnodul e

A function prototype specifies the types and directions of the arguments and the return value of a function

Copyright 2003 Accellera. All rights reserved. 221

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

which is defined elsawhere. Similarly, atask prototype specifies the types and directions of the arguments of a
task which is defined elsewhere. In a modport, the import and export constructs can either use task or function
prototypes or usejust the identifiers. The only exception is when amodport is used to import afunction or task
from another module, in which case afull prototype shall be used.

The argument typesin a prototype must match the argument typesin the function or task declaration. Therules
for matching are like those in C. The types must be exactly the same, or defined as being the same by at ype-
def declaration, or aseriesof t ypedef declarations. Two structure declarations containing the same members
are not considered to be the same type.

19.6.2 An example of using tasks in modports

This interface example shows how to use modports to control signal directions and task access in a full read/
write interface.

interface sinmple_bus (input bit clk); // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
| ogic [1:0] node;
| ogic start, rdy;

nodport slave (input req, addr, node, start, clk,
out put gnt, rdy,
ref data,
i mport task slaveRead(),
task slaveWite());
/1 inport into nodul e that uses the nodport

nodport master (i nput gnt, rdy, clk,
out put req, addr, node, start,
ref data,
i mport mast er Read,
masterWite);
/1 inport into nodul e that uses the nodport

task masterRead(input logic [7:0] raddr); // masterRead nethod
11
endt ask

task slaveRead; // sl aveRead nethod
/1
endt ask

task masterWite(input logic [7:0] waddr);
...

endt ask

task slaveWite;
...

endt ask

endi nterface: sinple_bus

modul e memvbd(interface a); // Uses just the interface
| ogi c avail;

al ways @ posedge a.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail; // the gnt and req signals in the interface

222 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

al ways @a. start)
if (a.nmode[0] == 1’ b0)
a. sl aveRead;
el se
a.slaveWite;
endnodul e

nmodul e cpuMbd(i nterface b);
enum {read, wite} instr = $rand();
logic [7:0] raddr = $rand();

al ways @ posedge b. cl k)
if (instr == read)
b. master Read(raddr); // call the Interface nethod
11
el se
b. masterWite(raddr);
endnodul e

nmodul e omi Mod(i nterface b);
...
endnodul e: ommi Mod

nmodul e top;
logic clk = 0;

sinple_bus sb_intf(clk); // Instantiate the interface

memvbd nenm(sb_intf.slave); // only has access to the slave tasks

cpuMod cpu(sb_intf.master); // only has access to the naster tasks

omi Mod omi (sb_intf); // has access to all master and sl ave tasks
endnodul e

19.6.3 An example of exporting tasks and functions

This interface example shows how to define tasks in one module and call them in another, using modports to
control task access.

interface sinple_bus (input bit clk); // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
| ogic [1:0] node;
| ogic start, rdy;

nmodport sl ave(input req, addr, node, start, clKk,
out put gnt, rdy,
ref data,
export task Read(),
task Wite());
/1 export from nodul e that uses the nodport

nodport nmaster (i nput gnt, rdy, clk,
out put req, addr, node, start,
ref data,
i mport task Read(input logic [7:0] raddr),
task Wite(input logic [7:0] waddr));
/1 inport requires the full task prototype

endi nterface: sinple_bus

Copyright 2003 Accellera. All rights reserved. 223

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

modul e memvbd(interface a); // Uses just the interface keyword
| ogi c avail;

task a.Read; // Read net hod

avail = 0O;
avail =1
endt ask

task a. Wite;

avail = 0O;

avail =1
endt ask
endnodul e

nmodul e cpuMbd(i nterface b);
enum {read, wite} instr;
logic [7:0] raddr;

al ways @ posedge b. cl k)
if (instr == read)
b. Read(raddr); // call the slave method via the interface

el se
b. Wite(raddr);
endnodul e

nmodul e top
logic clk =0

sinple_bus sb_intf(clk); // Instantiate the interface

memvbd nenm(sb_intf.slave); // exports the Read and Wite tasks
cpuMod cpu(sb_intf.master); // inports the Read and Wite tasks
endnodul e

19.6.4 An example of multiple task exports

It is normally an error for more than one module to export the same task name. However, several instances of
the same modport type can be connected to an interface, such as memory modulesin the previous example. So
that these can till export their read and write tasks, the tasks must be declared in the interface using the

ext ern f or kj oi n keywords.

Thecaltoextern forkjoin task countslaves();intheexamplebelow behavesas:

fork
t op. menl. a. count sl aves;
t op. men?. a. count sl aves;
join

For aread task, only one module should actively respond to the task call, e.g. the one containing the appropri-
ate address. The tasks in the other modules should return with no effect. Only then should the active task write

to the result variables.
Note multiple export of functionsis not alowed, because they must always write to the result.

The effect of adi sabl e on an extern forkjoin task is as follows:

224 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

— If thetask is referenced viathe interface instance, all task calls shall be disabled.

— If the task is referenced via the module instance, only the task call to that module instance shall be dis-
abled.

— If an interface contains an extern forkjoin task, and no module connected to that interface defines the task,
then any call to that task shall report a run-time error and return immediately with no effect.

This interface example shows how to define tasks in more than one module and call them in another using
ext er n f or kj oi n. The multiple task export mechanism can also be used to count the instances of a particular
modport that are connected to each interface instance.

interface sinple_bus (input bit clk); // Define the interface
| ogic req, gnt;
logic [7:0] addr, data;
| ogic [1:0] node;
| ogic start, rdy;
int slaves = 0;

/1 tasks executed concurrently as a fork/join block

extern forkjoin task count Sl aves();

extern forkjoin task Read (input logic [7:0] raddr);

extern forkjoin task Wite (input logic [7:0] waddr);

nmodport sl ave (input req,addr, node, start, clk,
out put gnt, rdy,
ref data, slaves,
export Read, Wite, countSlaves);
/1 export from nodul e that uses the nodport

nmodport master (input gnt, rdy, clk,
out put req, addr, node, start,
ref data,
i nport task Read(input logic [7:0] raddr),
task Wite(input logic [7:0] waddr));
/1 inport requires the full task prototype

initial begin

sl aves = 0;

count Sl aves;

$di splay ("nunmber of slaves = %", slaves);
end

endi nterface: sinple_bus

nmodul e memvbd #(paraneter int mnaddr=0, maxaddr=0;) (interface a);
logic avail = 1;
logic [7:0] menf255:0];

task a.count Sl aves();
a. sl aves++;
endt ask

task a.Read(input logic [7:0] raddr); // Read nethod
if (raddr >= minaddr && raddr <= maxaddr) begin
avai |
#10 a.
avai |
end

I

0;
ata = nenfraddr];
1;

Copyright 2003 Accellera. All rights reserved. 225

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

endt ask

task a. Wite(input logic [7:0] waddr); // Wite nethod
if (waddr >= minaddr && waddr <= naxaddr) begin

avail = 0;
#10 nen{waddr] = a.data;
avail = 1;
end
endt ask
endnodul e

nmodul e cpuMbd(i nterface b);
typedef enum {read, wite} instr;
instr inst;
logic [7:0] raddr;
i nteger seed;

al ways @ posedge b. cl k) begin
inst = instr’($dist_uniforn(seed, 0, 1));
raddr = $di st_uniform(seed, 0, 3);
if (inst == read) begin
$di splay("% begin read % @% ", $tinme, b.data, raddr);
callr:b. Read(raddr);
$display("% end read % @% ", $tinme, b.data, raddr);
end
el se begin
$display("% begin wite % @%", $tinme, b.data, raddr);
b. data = raddr;
cal lw b. Wite(raddr);
$display("% end wite % @% ", $tinme, b.data, raddr);
end
end
endnodul e

nodul e top;
logic clk = 0;

function void interrupt();
di sabl e meml. a. Read; // task via nodul e i nstance
disable sb_intf.Wite; // task via interface instance
if (menl.avail == 0) $display ("nmenml was interrupted");
if (nmenR.avail == 0) $display ("men2 was interrupted");
endf uncti on

al ways #5 cl k++;

initial begin
#28 interrupt();
#10 interrupt();
#100 $fini sh;
end

sinpl e_bus sb_intf(clk);
memvbd #(0, 127) meml(sb_intf.slave);
memvbd #(128, 255) menR(sb_intf.slave);

cpuMod cpu(sb_intf.master);
endnodul e

226 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

19.7 Parameterized interfaces

Interface definitions can take advantage of parameters and parameter redefinition, in the same manner as mod-

ule definitions. This example shows how to use parameters in interface definitions.

interface sinmple_bus #(paraneter AWDTH = 8, DWDTH = 8;)
(input bit clk); // Define the interface
| ogic req, gnt;
|l ogic [AWDTH 1: 0] addr;
| ogic [DWDTH 1: 0] dat a;
| ogic [1:0] node;
| ogic start, rdy;

nodport sl ave(input req, addr, node, start, clKk,
out put gnt, rdy,
ref data,
i mport task slaveRead(),
task slaveWite());
/1 inport into nodule that uses the nodport

nmodport master (i nput gnt, rdy, clk,
out put req, addr, node, start,
ref data,
i mport task masterRead(input [ogic [AWDTH 1:0] raddr),
task masterWite(input logic [AWDTH 1: 0] waddr));
/1 inport requires the full task prototype
task masterRead(input logic [AWDTH 1: 0] raddr); // nasterRead nethod
endt ask
task slaveRead; // slaveRead nethod
endt ask
task masterWite(input logic [AWDTH 1: 0] waddr);
endt ask
task slaveWite;
endt ask
endi nterface: sinple_bus

modul e memvbd(interface a); // Uses just the interface keyword
| ogi c avail;

al ways @ posedge b.clk) // the clk signal fromthe interface
a.gnt <= a.req & avail; //the gnt and req signals in the interface

al ways @b. start)
if (a.nmode[0] == 1'b0)
a. sl aveRead;
el se
a.slaveWite;
endnodul e

Copyright 2003 Accellera. All rights reserved.

227

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

nmodul e cpuMbd(i nterface b);
enum {read, wite} instr;
logic [7:0] raddr;

al ways @ posedge b. cl k)
if (instr == read)
b. master Read(raddr); // call the Interface nethod
/1
el se
b. masterWite(raddr);
endnodul e
nmodul e top
logic clk = 0;

sinple_bus sb_intf(clk); // Instantiate default interface
sinpl e_bus #(.DWDTH(16)) wide_intf(clk); // Interface with 16-bit data

initial repeat(10) #10 cl k++

memvbd nen(sb_intf.slave); // only has access to the slaveRead task
cpuMod cpu(sb_intf.master); // only has access to the nasterRead task

memvbd memA(w de_intf.slave); // 16-bit w de menory

cpuMod cpuWwi de_intf.master); // 16-bit w de cpu
endnodul e

19.8 Access without ports

In addition to interfaces being used to connect two or more modules, the interface object/method paradigm
allows for interfaces to be instantiated directly as static data objects within a module. If the methods are used
to accessinternal state information about the interface, then these methods can be called from different points
in the design to share information.
interface intf_nutex;

task lock ();

endt ask

function unl ock();

endf unction
endi nterface

function int f(input int i);
return(i); // just returns arg

endfunction

function int g(input int i);
return(i); // just returns arg

endf uncti on

nmodul e mod1(input int in, output int out);

intf_rmutex mutex();

228 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

al ways begin
#10 nutex. | ock();

@in) out = f(in);

mut ex. unl ock;
end

al ways begin
#10 nutex. | ock();

@in) out = g(in);

nmut ex. unl ock;
end
endnodul e

Copyright 2003 Accellera. All rights reserved.

SystemVerilog 3.1a/draft 1

229

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Section 20
Parameters

20.1 Introduction (informative)

Verilog-2001 provides three constructs for defining compile time constants: the par anet er, | ocal par amand
specpar amstatements.

The language provides four methods for setting the value of parameter constants in a design. Each parameter
must be assigned a default value when declared. The default value of aparameter of an instantiated module can
be overridden in each instance of the module using one of the following:

— Implicit in-line parameter redefinition (e.g. f oo #(val ue, value) ul (...);)
— Explicit in-line parameter redefinition (e.g. f oo #(. nane(val ue), .nanme(value)) ul (...);)
— def par amstatements, using hierarchical path namesto redefine each parameter

20.1.1 Defparam removal

The def par amstatement might be removed from future versions of the language. See Section 25.2.

20.2 Parameter declaration syntax

local_parameter_declaration ::= I/l fromAnnex A.2.1.1
localparam [signing] { packed dimension} [range] list_of param_assignments;
| localparam data type list_of param assignments;

parameter_declaration ::=
parameter [signing] { packed_dimension} [range] list_of _param_assignments
| parameter data type list_of_param_assignments
| parameter type list_of_type assignments

specparam_declaration ::=

specparam [range] list_of specparam_assignments;;
constant_declaration ::= const data_type const_assignment ; [/l from Annex A.2.1.3
list_of param_assignments ::= param_assignment { , param_assignment } // from Annex A.2.3
list_of specparam_assignments ::= specparam_assignment { , specparam_assignment }
list_of type assignments::=type assignment{ , type assignment }
const_assignment ::= const_identifier = constant_expression I/ from Annex A.2.4
param_assignment ::= parameter_identifier = constant_param_expression
specparam_assignment ::=

specparam_identifier = constant_mintypmax_expression

| pulse_control_specparam

type _assignment ::= type_identifier = data_type

Syntax 20-1—Parameter declaration syntax (excerpt from Annex A)
A module or an interface can have parameters, which are set during elaboration and are constant during simu-

lation. They are defined with data types and default values. With SystemVerilog, if no data type is supplied,
parameters default to type ogi ¢ of arbitrary size for Verilog-2001 compatibility and interoperability.

230 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

SystemVerilog adds the ability for a parameter to also specify a data type, allowing modules or instances to
have data whose type is set for each instance.

nmodule ma #(paraneter pl = 1%3 paraneter type p2 = shortint:) LRM 3

(input logic [pl:0] i, output logic [pl:0] 0);
p2 j =0; // type of j is set by a paraneter, (shortint unless redefined)
al ways @i) begin
0 =1i;
j ++;
end
endnodul e

modul e nb;

logic [3:0] i,o0

ma #(.pl(3), .p2(int)) ul(i,o); //redefines p2 to a type of int
endnodul e

Copyright 2003 Accellera. All rights reserved. 231

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Section 21
Configuration Libraries

21.1 Introduction (informative)

Verilog-2001 provides the ability to specify design configurations, which specify the binding information of
module instances to specific Verilog HDL source code. Configurations utilize libraries. A library is a collec-
tion of modules, primitives and other configurations. Separate library map files specify the source code loca-
tion for the cells contained within the libraries. The names of the library map files is typically specified as
invocation options to simulators or other software tools reading in Verilog source code.

SystemVerilog adds support for interfaces to Verilog configurations. SystemVerilog also provides an alternate
method for specifying the names of library map files.

21.2 Libraries

A library is a named collection of cells. A cell is a module, macromodule, primitive, interface, or configura-
tion. A configuration is a specification of which source files bind to each instance in the design.

21.3 Library map files

Verilog 2001 specifies that library declarations, include statements, and config declarations are normally in a
mapping file that is read first by a simulator or other software tool. SystemVerilog does not require a special
library map file. Instead, the mapping information can be specified in the $r oot top levd.

232 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Section 22
System Tasks and System Functions

22.1 Introduction (informative)

SystemVerilog adds several system tasks and system functions as described in the following sections.

In addition, SystemVerilog extends the behavior of the following several Verilog-2001 system tasks, as
described in Section 22.11.

22.2 Expression size system function

size function ::=// notin Annex A
$hits (expression)

Syntax 22-1—Size function syntax (not in Annex A)

The $bi t s system function returns the number of bits required to hold a value. A 4 state value counts as one
bit. Given the declaration:

logic [31:0] foo;
Then $bi t s(f oo) shall return 32, even if a software tool uses more than 32-bits of storage to represent the 4-

state values.

22.3 Shortreal conversions

Verilog 2001 definesar eal datatype, and the system functions $r eal t obi t s and $bi t st or eal to permit
exact bit pattern transfers between ar eal and a 64 bit vector. SystemVerilog addsthe shor t r eal type, andin
a parallel manner, $shortreal tobits and $bitstoshortreal are defined to permit exact bit transfers
between a shortreal and a 32 bit vector.

[31:0] $shortrealtobits(shortreal _val) ;
shortreal $bitstoshortreal (bit_val)

$shortreal t obi ts converts from ashortreal number to the 32-bit representation (vector) of that short-

real number. $bi t st oshortreal isthereverse of $shortreal t obits; it converts from the bit patternto a
shortreal number.

Copyright 2003 Accellera. All rights reserved. 233

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

22.4 Array querying system functions

array_query_functions::=// not in Annex A
array_dimension_function (array_identifier , dimension_expression)
| $dimensions (array_identifier)
array_dimension_function ::=
$left
| $right
| $low
| $high
| $increment
| $length

dimension_expression ::= expression

Syntax 22-2—Array querying function syntax (not in Annex A)

SystemVerilog provides new system functions to return information about an array
— $l ef t shall return the left bound (msb) of the dimension

— $ri ght shall return the right bound (Isb) of the dimension
— $I owshall return the minimum of $I ef t and $ri ght of the dimension
— $hi gh shall return the maximum of $I ef t and $ri ght of the dimension

— $increnment shal return 1 if $l eft is greater than or equal to $ri ght, and -1 if $l eft is less than
$ri ght

— $I engt h shall return the number of elements in the dimension, which is equivalent to $hi gh - $l ow+ 1

— $di mensi ons shall return the number of dimensionsin the array, or O for asingular object
The dimensions of an array shall be numbered as follows: The slowest varying dimension (packed or
unpacked) is dimension 1. Successively faster varying dimensions have sequentially higher dimension num-
bers. For instance:

I Di nensi on nunbers

/1 3 4 1 2

reg [3:0][2:1] n [1:5][2:8];

For an integer or hit type, only dimension 1 is defined. For an integer N declared without a range specifier, its
bounds are assumed to be [$bi t s(N) - 1: 0] .

If an out-of-range dimension is specified, these functions shall return alogic X.

234 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

22.5 Assertion severity system tasks

assert_severity tasks::=//notin Annex A
fatal_message task
| nonfatal_message task
fatal_message task ::=
$fatal ;
| $fatal (finish_number [, message argument { , message_argument] }) ;
nonfatal_message task ::=
severity task ;
| severity task ([message argument { , message argument] }) ;
severity_task ::= $error | $warning | $info
finish_number ::=0| 1|2
message_argument ::= string | expression

Syntax 22-3—Assertion severity system task syntax (not in Annex A)

SystemVerilog assertions have a severity level associated with any assertion failures detected. By default, the
severity of an assertion failureis“error”. The severity levels can be specified by including one of the following
severity system tasksin the assertion fail statement:

— $f at al shall generate arun-time fatal assertion error, which terminates the simulation with an error code.
The first argument passed to $f at al shall be consistent with the corresponding argument to the Verilog
$f i ni sh system task, which setsthe level of diagnostic information reported by the tool.

— $error shal bearun-timeerror.
— $war ni ng shall be arun-time warning, which can be suppressed in a tool-specific manner.

— $i nf o shall indicate that the assertion failure carries no specific severity.

All of these severity system tasks shall print a tool-specific message, indicating the severity of the failure, and
specific information about the failure, which shall include the following information:

— Thefile name and line number of the assertion statement,

— Thehierarchical name of the assertion, if it is labeled, or the scope of the assertion if it is not labeled.

For simulation tools, these tasks shall also report the simulation run-time at which the severity system task is
called.

Each of the severity tasks can include optional user-defined information to be reported. The user-defined mes-

sage shall use the same syntax as the Verilog $di spl ay system task, and can include any number of argu-
ments.

Copyright 2003 Accellera. All rights reserved. 235

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

22.6 Assertion control system tasks

assert_control_tasks::=// notin Annex A
assert_task ;
| assert task (levels|, list_of _modules or assertions]) ;
assert_task ::=
$asserton
| $assertoff
| $assertkill
list_of modules or_assertions::=
module_or_assertion { , module_or_assertion }
module_or_assertion ::=
module_identifier
| assertion_identifier
| hierarchical_identifier

Syntax 22-4—Assertion control syntax (not in Annex A)

SystemVerilog provides three system tasks to control assertions.

— $assertof f shall stop the checking of all specified assertions until a subsequent $assert on. An asser-
tion that is already executing, including execution of the pass or fail statement, is not affected

— $assertkill shal abort execution of any currently executing specified assertions and then stop the
checking of all specified assertions until a subsequent $assert on.

— $assert on shal re-enable the execution of all specified assertions

22.7 Assertion system functions

assert_boolean_functions ::=// not in Annex A
assert_function (expression) ;
| $insetz (expression, expression|[{ , expresson}]);
assert_function ::=
$onehot
| $onehot0
| $inset
| $isunknown

Syntax 22-5—Assertion system function syntax (not in Annex A)

Assertions are commonly used to evaluate certain specific characteristics of a design implementation, such as
whether a particular signal is “one-hot”. The following system functions are included to facilitate such com-
mon assertion functionality:

— $onehot returnstrueif one and only one bit of expression is high.
— $onehot 0 returnstrue if at most one bit of expression is high.
— $i nset returnstrueif the first expression is equal to at least one of the subseguent expression arguments.

— $i nset z returnstrueif the first expression is equal to at least one other expression argument. Comparison
is performed using casez semantics, so Z or ? hits are treated as don't-cares.

236 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

— $i sunknown returns true if any bit of the expression is X. Thisis equivalent to
Aexpression === ' bx.

All of the above system functions shall have areturn type of bi t. A return value of 1’ b1 shall indicate true,
and areturn value of 1’ b0 shall indicate false.

Three functions are provided for assertions to detect changes in values between two adjacent clock ticks.
$rose (expression)
$fell (expression)
$stabl e (expression)
These functions are discussed in Section 17.7.3.
The past values can be accessed with the $past function.
$past (expression [, nunber_of _ticks])
The number of 1sin abit vector expression can be determined with the $count ones function.
$count ones (expression)

$past and $count ones are discussed in Section 17.9.

22.8 Random number system functions

To supplement the Verilog $r andom system function, SystemVerilog provides three special system functions
for generating pseudorandom numbers, $ur andom $ur andom r ange and $srandom These system func-
tions are presented in Section 12.10.

22.9 Program control

In addition to the normal simulation control tasks ($st op and $f i ni sh), aprogram can use the $exi t control
task. When all programs exit, the simulation finishes. The usage of $exi t ispresented in Section 16.6 on pro-
gram blocks.

22.10 Coverage system functions

SystemVerilog has several built-in system functions for obtaining test coverage information:
$coverage_control , $cover age_get _max, $cover age_get , $cover age_ner ge and
$cover age_save. The coverage system functions are described in Section 28.2.

22.11 Enhancements to Verilog-2001 system tasks

SystemVerilog adds system tasks and system functions as described in the following sections. In addition, Sys-
temVerilog extends the behavior of the following:

— % and % format specifiers:

— For packed data, % and %z are defined to operate as though the operation were applied to the equiva-
lent vector.

— For unpacked struct data, %u and %z are defined to apply as though the operation were performed on
each member in declaration order.

Copyright 2003 Accellera. All rights reserved. 237

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

— For unpacked union data, % and % are defined to apply as though the operation were performed on
the first member in declaration order.

— % and % are not defined on unpacked arrays.

— The count of dataitemsread by a%u or % for an aggregate type is always either 1 or O; the individual
members are not counted separately.

— $fread
$f r ead hastwo variants—a register variant and a set of three memory variants.
The register variant,

$fread(nmyreg, fd);
— isdefined to be the one applied for all packed data.

— For unpacked struct data, $f r ead is defined to apply as though the operation were performed on each
member in declaration order.

— For unpacked union data, $f r ead is defined to apply as though the operation were performed on the
first member in declaration order.

— For unpacked arrays, the origina definition applies except that unpacked struct or union elements are
read as described above.

22.12 $readmemb and $readmemh

$readnenb and $readmenh are extended to unpacked arrays of packed data. In such cases, they treat each
packed element as the vector equivalent and perform the normal operation. $r eadmenb and $r eadnenh are
not defined for packed arrays or unpacked arrays of unpacked data.

238 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Section 23
VCD Data

SystemVerilog does not extend the VCD format. Some SystemVerilog types can be dumped into a standard
VCD file by masquerading as a Verilog type. The following table lists the basic SystemVerilog types and their
mapping to a Verilog type for VCD dumping.

Table 23-1: VCD type mapping

SystemVerilog Verilog Size

bi t reg Size of packed dimension
| ogi c reg Size of packed dimension
i nt i nt eger 32

shortint i nt eger 16

| ongi nt i nt eger 64

shortreal real

byte reg 8

enum i nt eger 32

Packed arrays and structures are dumped as a single vector of r eg. Multiple packed array dimensions are col-
lapsed into a single dimension.

If an enumdeclaration specified atype, it is dumped as that type rather than the default shown above.
Unpacked structures appear as named f or k...j oi n blocks, and their member elements of the structure appear
asthe types above. Since named f or k...j oi n blockswith variable declarations are seldom used in testbenches
and hardware models, this makes structures easy to distinguish from variables declared in begi n...end blocks,
which are more frequently used in testbenches and models.

Asin Verilog 2001, unpacked arrays and automatic variables are not dumped.

Note that the current VCD format does not indicate whether a variable has been declared as si gned or
unsi gned.

Copyright 2003 Accellera. All rights reserved. 239

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Section 24
Compiler Directives

24.1 Introduction (informative)

Verilog provides the * def i ne text substitution macro compiler directive. A macro can contain arguments,
whose values can be set for each instance of the macro. For example:

‘define NAND(dval) nand #(dval)
* NANDX 3) il (y, a, b); //*NAND(3) nacro substitutes with: nand #(3)

“ NAND(3: 4: 5) i2 (o, c, d); //"NAND(3:4:5) nacro substitutes with: nand
#(3:4:5)

SystemVerilog enhances the capabilities of the ‘ def i ne compiler directive to support the construction of
string literals and identifiers.

Verilog provides the " i ncl ude file inclusion compiler directive. SystemVerilog enhances the capabilities to

support standard include specification, and enhancesthe " i ncl ude directive to accept afile name constructed
with a macro.

24.2 ‘define macros

In Verilog, the * def i ne macro text can include a backslash (\) at the end of aline to show continuation on
the next line.

In SystemVerilog, the macro text can alsoinclude™",“\ " and " °

An " overridesthe usual lexical meaning of ", and indicates that the expansion should include an actual quo-
tation mark. This allows string literals to be constructed from macro arguments.

A "\ " indicates that the expansion should include the escape sequence\ ", e.g.
“define meg(x,y) ~"x: S\ tyl\ror

This expands:
$di spl ay(" nmsg(l eft side,right side));

to:
$display("left side: \"right side\"");

A " delimitslexical tokens without introducing white space, allowing identifiers to be constructed from argu-
ments, e.g.

“define foo(f) f " _suffix
This expands:

‘ foo(bar)
to:

bar _suffix

240 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

The* i ncl ude directive can be followed by a macro, instead of aliteral string:

‘define hone(filenane) ‘"/hone/fool/ nyfile'"
“include ‘home(nyfile)

24.3 ‘include

The syntax of the * i ncl ude compiler directiveis:

include_conpiler_directive ::=
“include "fil enane"
| “include <fil ename>

SystemVerilog 3.1a/draft 1

When thefi | enarre is an absolute path, only that fi | enane isincluded and only the double quote form of

the* i ncl ude can be used.

When the double quote (" fi | ename") version is used, the behavior of * i ncl ude is unchanged from IEEE

Std. 1364-2001.

When the angle bracket (<f i | enane>) notation is used, then only the vendor defined location containing files
defined by the language standard is searched. Relative path names given inside the < > are interpreted relative

to the vendor-defined location in all cases.

Copyright 2003 Accellera. All rights reserved.

241

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Section 25
Features under consideration for removal from SystemVerilog

25.1 Introduction (informative)

Certain Verilog language features can be simulation inefficient, easily abused, and the source of design prob-
lems. These features are being considered for removal from the SystemVerilog language, if thereis an alternate
method for these features.

The Verilog language features that have been identified in this standard as ones which can be removed from
Verilog are def par amand procedural assi gn/deassi gn.

25.2 Defparam statements

The SystemVerilog committee has determined, based on the solicitation of input from tool implementers and
tools users, that the def par ammethod of specifying the value of a parameter can be a source of design errors,
and can be an impediment to tool implementation. The def par amstatement does not provide a capability that
can not be done by another method, which avoids these problems. Therefore, the committee has placed the
def par amstatement on a deprecation list. This means is that a future revision of the Verilog standard might
not require support for this feature. This current standard still requires tools to support the def par am state-
ment. However, users are strongly encouraged to migrate their code to use one of the alternate methods of
parameter redefinition.

Prior to the acceptance of the Verilog-2001 Standard, it was common practice to change one or more parame-
ters of instantiated modules using a separate defparam statement. Defparam statements can be a source of tool
complexity and design problems.

A def par amstatement can precede the instance to be modified, can follow the instance to be modified, can be
at the end of the file that contains the instance to be modified, can be in a separate file from the instance to be
modified, can modify parameters hierarchically that in turn must again be passed to other def par am state-
ments to modify, and can modify the same parameter from two different def par am statements (with unde-
fined results). Due to the many ways that a def par am can modify parameters, a Verilog compiler cannot
insure the final parameter values for an instance until after all of the design files are compiled.

Prior to Verilog-2001, the only other method available to change the values of parameters on instantiated mod-
uleswasto use implicit in-line parameter redefinition. This method uses #(par anet er _val ue) aspart of the
module instantiation. Implicit in-line parameter redefinition syntax requires that all parameters up to and
including the parameter to be changed must be placed in the correct order, and must be assigned values.

Verilog-2001 introduced explicit in-line parameter redefinition, in the form #(. par amet er _name(val ue)),
as part of the module instantiation. This method gives the capability to pass parameters by name in the instan-
tiation, which supplies all of the necessary parameter information to the model in the instantiation itself.

The practice of using def par amstatements is highly discouraged. Engineers are encouraged to take advantage
of the Verilog-2001 explicit in-line parameter redefinition capability.

See Section 20 for more details on parameters.

25.3 Procedural assigh and deassign statements

The SystemVerilog committee has determined, based on the solicitation of input from tool implementers and
tools users, that the procedural assi gn and deassi gn statements can be a source of design errors, and can be
an impediment to tool implementation. The procedural assi gn/deassi gn statements do not provide a capa-
bility that can not be done by another method, which avoids these problems. Therefore, the committee has
placed the procedural assi gn/deassi gn statements on adeprecation list. This means that a future revision of
the Verilog standard might not require support for theses statements. This current standard still requirestoolsto

242 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

support the procedural assi gn/deassi gn statements. However, users are strongly encouraged to migrate
their code to use one of the alternate methods of procedural or continuous assignments.

Verilog has two forms of the assi gn statement:
— Continuous assignments, placed outside of any procedures

— Procedural continuous assignments, placed within a procedure

Continuous assignment statements are a separate process that are active throughout simulation. The continuous
assignment statement accurately represents combinational logic at an RTL level of modeling, and is frequently
used.

Procedural continuous assignment statements become active when the assi gn statement is executed in the
procedure. The process can be de-activated using a deassi gn statement. The procedural assi gn/deassi gn
statements are seldom needed to model hardware behavior. In the unusual circumstances where the behavior of
procedural continuous assignments are required, the same behavior can be modeled using the procedural force
and rel ease statements.

The fact that the assi gn statement to be used both outside and inside a procedure can cause confusion and
errors in Verilog models. The practice of using the assi gn and deassi gn statements inside of procedural
blocksis highly discouraged.

See Section 8 for more information on procedural assignments.

Copyright 2003 Accellera. All rights reserved. 243

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Section 26
Direct Programming Interface (DPI)

This chapter highlights the Direct Programming Interface and provides a detailed description of the System-
Verilog layer of theinterface. The C layer isdefined in Annex D.

26.1 Overview

Direct Programming Interface (DPI) is an interface between SystemVerilog and a foreign programming lan-
guage. It consists of two separate layers: the SystemVerilog layer and a foreign language layer. Both sides of
DPI are fully isolated. Which programming language is actually used as the foreign language is transparent
and irrelevant for the SystemVerilog side of this interface. Neither the SystemVerilog compiler nor the foreign
language compiler is required to analyze the source code in the other’s language. Different programming lan-
guages can be used and supported with the same intact SystemVerilog layer. For now, however, SystemVerilog
3.1 defines aforeign language layer only for the C programming language. See Annex D for more details.

The motivation for thisinterface istwo-fold. The methodological requirement isthat the interface should allow
a heterogeneous system to be built (a design or a testbench) in which some components can be written in alan-
guage (or more languages) other than SystemVerilog, hereinafter called the foreign language. On the other
hand, there is also a practical need for an easy and efficient way to connect existing code, usually written in C
or C++, without the knowledge and the overhead of PLI or VPI.

DPI follows the principle of a black box: the specification and the implementation of a component is clearly
separated and the actual implementation is transparent to the rest of the system. Therefore, the actual program-
ming language of the implementation is also transparent, though this standard defines only C linkage seman-
tics. The separation between SystemVerilog code and the foreign language is based on using functions as the
natural encapsulation unit in SystemVerilog. By and large, any function can be treated as a black box and
implemented either in SystemVerilog or in the foreign language in a transparent way, without changing its
cals.

26.1.1 Functions

DPI allows direct inter-language function calls between the languages on either side of the interface. Specifi-
cally, functions implemented in a foreign language can be called from SystemVerilog; such functions are
referred to as imported functions. SystemVerilog functions that are to be called from a foreign code shall be
specified in export declarations (see Section 26.6 for more details). DPI alows for passing SystemVerilog data
between the two domains through function arguments and results. There is no intrinsic overhead in this inter-
face.

All functions used in DPI are assumed to complete their execution instantly and consume 0 (zero) simulation
time, just as normal SystemVerilog functions. DPI provides no means of synchronization other than by data
exchange and explicit transfer of control.

Every imported function needs to be declared. A declaration of an imported function isreferred to as an import
declaration. Import declarations are very similar to SystemVerilog function declarations. Import declarations
can occur anywhere where SystemVerilog function definitions are permitted. An import declaration is consid-
ered to be a definition of a SystemVerilog function with aforeign language implementation. The same foreign
function can be used to implement multiple SystemVerilog functions (this can be a useful way of providing
differing default argument values for the same basic function), but a given SystemVerilog name can only be
defined once per scope. Imported functions can have zero or more formal i nput , out put, and i nout argu-
ments, and they can return aresult or be defined as void functions.

DPI isbased entirely upon SystemVerilog constructs. The usage of imported functionsisidentical asfor native
SystemVerilog functions. With few exceptions imported functions and native functions are mutually
exchangeable. Calls of imported functions are indistinguishable from calls of SystemVerilog functions. This
facilitates ease-of -use and minimizes the learning curve.

244 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

26.1.2 Data types

SystemVerilog data types are the sole data types that can cross the boundary between SystemVerilog and afor-
eign language in either direction (i.e., when an imported function is called from SystemVerilog code or an
exported SystemVerilog function is called from a foreign code). It is not possible to import the data types or
directly use the type syntax from another language. A rich subset of SystemVerilog data types is allowed for
formal arguments of import and export functions, although with some restrictions and with some notational
extensions. Function result types are restricted to small values, however (see Section 26.4.5).

Formal arguments of an imported function can be specified as open arrays. A formal argument is an open array
when a range of one or more of its dimensions, packed or unpacked, is unspecified. An open array is like a
multi-dimensional dynamic array formal in both packed and unpacked dimensions, and is thus denoted using
the same syntax as dynamic arrays, using [] to denote an open dimension. This is solely a relaxation of the
argument-matching rules. An actual argument shall match the formal one regardless of the range(s) for its cor-
responding dimension(s), which facilitates writing generalized code that can handle SystemVerilog arrays of
different sizes. See Section 26.4.6.1.

26.1.2.1 Data representation

DPI does not add any constraints on how SystemVerilog-specific datatypes are actually implemented. Optimal
representation can be platform dependent. The layout of 2- or 4-state packed structures and arrays is imple-
mentation- and platform-dependent.

The implementation (representation and layout) of 4-state values, structures, and arrays is irrelevant for Sys-
temVerilog semantics, and can only impact the foreign side of the interface.

26.2 Two layers of the DPI

DPI consists of two separate layers: the SystemVerilog layer and aforeign language layer. The SystemVerilog
layer does not depend on which programming language is actually used as the foreign language. Although dif-
ferent programming languages can be supported and used with the intact SystemVerilog layer, SystemVerilog
3.1 defines aforeign language layer only for the C programming language. Nevertheless, SystemVerilog code
shall look identical and its semantics shall be unchanged for any foreign language layer. Different foreign lan-
guages can require that the SystemVerilog implementation shall use the appropriate function call protocol,
argument passing and linking mechanisms. This shall be, however, transparent to SystemVerilog users. Sys-
temVerilog 3.1 requires only that its implementation shall support C protocols and linkage.

26.2.1 DPI SystemVerilog layer

The SystemVerilog side of DPI does not depend on the foreign programming language. In particular, the actual
function call protocol and argument passing mechanisms used in the foreign language are transparent and irrel-
evant to SystemVerilog. SystemVerilog code shall look identical regardless of what code the foreign side of the
interface is using. The semantics of the SystemVerilog side of the interface is independent from the foreign
side of the interface.

This chapter does not constitute a complete interface specification. It only describes the functionality, seman-
ticsand syntax of the SystemVerilog layer of the interface. The other half of the interface, the foreign language
layer, defines the actual argument passing mechanism and the methods to access (read/write) formal arguments
from the foreign code. See Annex D for more details.

26.2.2 DPI foreign language layer

The foreign language layer of the interface (which is transparent to SystemVerilog) shall specify how actua
arguments are passed, how they can be accessed from the foreign code, how SystemVerilog-specific data types
(such as| ogi c and packed) are represented, and how to translate them to and from some predefined C-like
types.

The data types allowed for formal arguments and results of imported functions or exported functions are gen-

Copyright 2003 Accellera. All rights reserved. 245

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

erally SystemVerilog types (with some restrictions and with notational extensions for open arrays). The user is
responsible for specifying in their foreign code the native types equivalent to the SystemVerilog types used in
imported declarations or export declarations. Software toals, like a SystemVerilog compiler, can facilitate the
mapping of SystemVerilog types onto foreign native types by generating the appropriate function headers.

The SystemVerilog compiler or ssimulator shall generate and/or use the function call protocol and argument
passing mechanisms required for the intended foreign language layer. The same SystemVerilog code (com-
piled accordingly) shall be usable with different foreign language layers, regardless of the data access method
assumed in a specific layer. Annex A defines DPI foreign language layer for the C programming language.

26.3 Global name space of imported and exported functions

Every function imported to SystemVerilog must eventually resolve to aglobal symbol. Similarly, every func-
tion exported from SystemVerilog defines a global symbol. Thus the functions imported to and exported from
SystemVerilog have their own global name space of linkage names, different from $root name space. Global
names of imported and exported functions must be unique (no overloading is allowed) and shall follow C con-
ventions for naming; specifically, such names must start with a letter or underscore, and can be followed by
alphanumeric characters or underscores. Exported and imported functions, however, can be declared with local
SystemVerilog names. Import and export declarations alow users to specify a global name for a function in
addition to its declared name. Should a global name clash with a SystemVerilog keyword or a reserved name,
it shall take the form of an escaped identifier. The leading backslash (\) character and the trailing white space
shall be stripped off by the SystemVerilog tool to create the linkage identifier. Note that after this stripping, the
linkage identifier so formed must comply with the normal rules for C identifier construction. If a global name
is not explicitly given, it shall be the same as the SystemVerilog function name. For example;

export "DPI" foo_plus = function \foo+ ; // "foo+" exported as "foo_plus"
export "DPI" function foo; // "foo" exported under its own nane

import "DPI" init_1 function void \init[1] (); // "init_1" is a |linkage name
import "DPI" \begin function void \init[2] (); // "begin" is a |inkage nane

The same global function can be referred to in multiple import declarationsin different scopes or/and with dif-
ferent SystemVerilog names, see Section 26.4.4.

Multiple export declarations are allowed with the same c_identifier, explicit or implicit, aslong as they arein
different scopes and have the same type signature (as defined in Section 26.4.4 for imported functions). Multi-
ple export declarations with the same c_identifier in the same scope are forbidden.

26.4 Imported functions
The usage of imported functionsis similar as for native SystemVerilog functions.

26.4.1 Required properties of imported functions - semantic constraints

This section defines the semantic constraints imposed on imported functions. Some semantic restrictions are
shared by all imported functions. Other restrictions depend on whether the special properties pure (see
Section 26.4.2) or cont ext (see Section 26.4.3) are specified for an imported function. A SystemVerilog com-
piler is not able to verify that those restrictions are observed and if those restrictions are not satisfied, the
effects of such imported function calls can be unpredictable.

26.4.1.1 Instant completion

Imported functions shall complete their execution instantly and consume zero-simulation time, similarly to
native functions.

26.4.1.2 input and output arguments

Imported functions can have i nput and out put arguments. The formal i nput arguments shall not be modi-

246 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

fied. If such arguments are changed within a function, the changes shall not be visible outside the function; the
actual arguments shall not be changed.

Theimported function shall not assume anything about theinitial values of formal out put arguments. The ini-
tial values of out put arguments are undetermined and implementation-dependent.

26.4.1.3 Special properties pure and context

Special properties can be specified for an imported function: as pur e or ascont ext (see also Section 26.4.2
or 26.4.3).

A function whose result depends solely on the values of its input arguments and with no side effects can be
specified as pur e. This can usually allow for more optimizations and thus can result in improved simulation
performance. Section 26.4.2 details the rules that must be obeyed by pure functions.

An imported function that is intended to call exported functions or to access SystemVerilog data objects other
then its actual arguments (e.g. viaVVPI or PLI calls) must be specified as cont ext . Calls of context functions
are specially instrumented and can impair SystemVerilog compiler optimizations; therefore simulation perfor-
mance can decrease if the cont ext property is specified when not necessary. A function not specified as con-

text shall not read or write any data objects from SystemVerilog other then its actual arguments. For
functions not specified as cont ext , the effects of calling PLI, VPI, or exported SystemVerilog functions can
be unpredictable and can lead to unexpected behavior; such calls can even crash. Section 26.4.3 details the
restrictions that must be obeyed by non-context functions.

26.4.1.4 Memory management

The memory spaces owned and allocated by the foreign code and SystemVerilog code are disjoined. Each side
isresponsible for its own allocated memory. Specifically, an imported function shall not free the memory allo-
cated by SystemVerilog code (or the SystemVerilog compiler) nor expect SystemVerilog code to free the mem-
ory alocated by the foreign code (or the foreign compiler). This does not exclude scenarios where foreign code
allocates ablock of memory, then passes ahandle (i.e., apointer) to that block to SystemVerilog code, which in
turn calls an imported function (e.g. C standard function f r ee) which directly or indirectly frees that block.

NOTE—In this last scenario, a block of memory is alocated and freed in the foreign code, even when the standard func-
tionsmal | oc and f r ee are called directly from SystemVerilog code.

26.4.2 Pure functions

A pur e function call can be safely eliminated if its result is not needed or if the previous result for the same
values of input arguments is available somehow and can be reused without needing to recalculate. Only non-
void functions with no out put or i nout arguments can be specified as pur e. Functions specified as pur e
shall have no side effects whatsoever; their results need to depend solely on the values of their input argu-
ments. Calls to such functions can be removed by SystemVerilog compiler optimizations or replaced with the
values previously computed for the same values of the input arguments.

Specifically, a pure function is assumed not to directly or indirectly (i.e., by calling other functions):
— perform any file operations

— read or write anything in the broadest possible meaning, includes i/o, environment variables, objects from
the operating system or from the program or other processes, shared memory, sockets, etc.

— access any persistent data, like global or static variables.

If a pure function does not obey the above restrictions, SystemVerilog compiler optimizations can lead to
unexpected behavior, due to eliminated calls or incorrect results being used.

26.4.3 Context functions

Some DPI imported functions require that the context of their call is known. It takes special instrumentation of

Copyright 2003 Accellera. All rights reserved. 247

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

their call instances to provide such context; for example, an internal variable referring to the “ current instance”
might need to be set. To avoid any unnecessary overhead, imported function calls in SystemVerilog code are
not instrumented unless the imported function is specified ascont ext .

All DPI exported functions require that the context of their call is known. This occurs since SystemVerilog
function declarations always occur in instantiable scopes, hence allowing a multiplicity of unique function
instances.

For the sake of simulation performance, an imported function call shall not block SystemVerilog compiler
optimizations. An imported function not specified as cont ext shall not access any data objects from System-
Verilog other than its actual arguments. Only the actual arguments can be affected (read or written) by its call.
Therefore, acall of anon-context function is not abarrier for optimizations. A context imported function, how-
ever, can access (read or write) any SystemVerilog data objects by calling PLI/VPI, or by caling an export
function. Therefore, acall to a context function is a barrier for SystemVerilog compiler optimizations.

Only calls of context imported functions are properly instrumented and cause conservative optimizations;
therefore, only those functions can safely call al functions from other APIs, including PLI and VPI functions
or exported SystemVerilog functions. For imported functions not specified as cont ext , the effects of calling
PLI, VPI, or SystemVerilog functions can be unpredictable and such calls can crash if the callee requires acon-
text that has not been properly set. However note that declaring an import context function does not automati-
cally make any other simulator interface automatically available. For VPl access (or any other interface
access) to be possible, the appropriate implementation defined mechanism must till be used to enable these
interface(s). Note also that DPI calls do not automatically create or provide any handles or any special environ-
ment that can be needed by those other interfaces. It isthe user’s responsibility to create, manage or otherwise
mani pulate the required handles/environment(s) needed by the other interfaces.

Context imported functions are always implicitly supplied a scope representing the fully qualified instance
name within which the import declaration was present. This scope defines which exported SystemVerilog
functions can be called directly from the imported function; only functions defined and exported from the
same scope as the import can be called directly. To call any other exported SystemVerilog functions, the
imported function shall first have to modify its current scope, in essence performing the foreign language
equivalent of a SystemVerilog hierarchical function call.

Special DPI utility functions exist that allow imported functions to retrieve and operate on their scope. See Annex D for
more details.

26.4.4 Import declarations

Each imported function shall be declared. Such declaration are referred to as import declarations. The syntax
of ani nport declaration is similar to the syntax of SystemVerilog function prototypes (see Section 10.6).

Imported functions are similar to SystemVerilog functions. Imported functions can have zero or more formal
i nput , out put, andi nout arguments. Imported functions can return a result or be defined as void functions.

dpi_import_export ::= // from Annex A.2.6
import " DPI" [dpi_import_property] [¢_identifier =] dpi_function_proto ;

dpi_import_property ::= context | pure

dpi_function_proto ::= function named_function_proto

248 Copyright 2003 Accellera. All rights reserved.

LRM 5

LRM 17

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Syntax 26-1—DPI import declaration syntax (excerpt from Annex A)

An import declaration specifies the function name, function result type, and types and directions of formal
arguments. It can also provide optional default values for formal arguments. Formal argument names are
optional unless argument passing by name is needed. An import declaration can also specify an optional func-
tion property: cont ext or pure.

Note that an import declaration is equivalent to defining afunction of that name in the SystemVerilog scopein
which the import declaration occurs, and thus multiple imports of the same function name into the same scope
are forbidden. Note that this declaration scope is particularly important in the case of imported context func-
tions, see Section 26.4.3; for non-context imported functions the declaration scope has no other implications
other than defining the visibility of the function.

c_identifier providesthe linkage name for this function in the foreign language. If not provided, this defaults to
the same identifier as the SystemVerilog function name. In either case, this linkage name must conform to C
identifier syntax. An error shall occur if the c_identifier, either directly or indirectly, does not conform to these
rules.

For any given c_identifier (whether explicitly defined with c_identifier=, or automatically determined from the
function name), all declarations, regardless of scope, must have exactly the same type signature. The signature
includes the return type and the number, order, direction and types of each and every argument. Type includes
dimensions and bounds of any arrays or array dimensions. Signature also includes the pur e/cont ext qualifi-
ersthat can be associated with an extern definition.

Note that multiple declarations of the same imported or exported function in different scopes can vary argu-
ment names and default values, provided the type compatibility constraints are met.

A formal argument name is required to separate the packed and the unpacked dimensions of an array.

The qualifier ref cannot be used in import declarations. The actual implementation of argument passing
depends solely on the foreign language layer and its implementation and shall be transparent to the SystemVer-
ilog side of the interface.

The following are examples of external declarations.
import "DPI" function void nylnit();

/1 fromstandard nmath library
import "DPI" pure function real sin(real);

/1 fromstandard C |library: menory managenent
import "DPI" function chandle malloc(int size); // standard C function
import "DPI" function void free(chandle ptr); // standard C function

/1 abstract data structure: queue
import "DPI" function chandl e newQueue(i nput string nane_of _queue);

/1 Note the follow ng inport uses the sane foreign function for

/1 inplenentation as the prior inmport, but has different SystemVeril og name
/1 and prow des a default value for the argunent.

i mport "DPI" newQueue=function chandl e newAnonQueue(i nput string s=null);
import "DPI" function chandl e newEl em(bit [15:0]);

import "DPI"™ function void enqueue(chandl e queue, chandle el enm;

import "DPI" function chandl e dequeue(chandl e queue);

/1 miscellanea

import "DPI" function bit [15:0] getStimulus();

import "DPI” context function void processTransacti on(chandle el em
output logic [64:1] arr [0:63]);

Copyright 2003 Accellera. All rights reserved. 249

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

26.4.5 Function result

Function result types are restricted to small values. The following SystemVerilog data types are alowed for
imported function results:

— void, byte,shortint,int,longint,real,shortreal,chandl e,andstring.

— packed bit arrays up to 32 bitsand all typesthat are eventually equivalent to packed bit arrays up to 32 bits.
The same restrictions apply for the result types of exported functions.
26.4.6 Types of formal arguments

A rich subset of SystemVerilog data types is allowed for forma arguments of import and export functions.
Generally, C compatible types, packed types and user defined types built of types from these two categories
can be used for formal arguments of DPI functions. The set of permitted typesis defined inductively.

The following SystemVerilog types are the only permitted types for formal arguments of import and export
functions:

— voi d, byte,shortint,int,longint,real,shortreal,chandl e,andstring
— scalar values of typebi t and| ogi ¢
— packed one dimensional arrays of type bit and logic

Note however, that every packed type, whatever is its structure, is eventually equivalent to a packed one
dimensional array. Therefore practically all packed types are supported, although their internal structure
(individual fields of structs, multiple dimensions of arrays) shall be transparent and irrel evant.

— enumeration types interpreted as the type associated with that enumeration
— types constructed from the supported types with the help of the constructs:
— struct
— unpacked array
— typedef

The following caveats apply for the types permitted in DPI:

— Enumerated data types are not supported directly. Instead, an enumerated data type is interpreted as the
type associated with that enumerated type.

— SystemVerilog does not specify the actual memory representation of packed structures or any arrays,
packed or unpacked. Unpacked structures have an implementati on-dependent packing, normally matching
the C compiler.

— Theactual memory representation of SystemVerilog data typesis transparent for SystemVerilog semantics
and irrelevant for SystemVerilog code. It can be relevant for the foreign language code on the other side of
the interface, however; a particular representation of the SystemVerilog data types can be assumed. This
shall not restrict the types of formal arguments of imported functions, with the exception of unpacked
arrays. SystemVerilog implementation can restrict which SystemVerilog unpacked arrays are passed as
actual arguments for aformal argument which is a sized array, although they can be always passed for an
unsized (i.e., open) array. Therefore, the correctness of an actual argument might be implementation-
dependent. Nevertheless, an open array provides an implementation-independent solution.

26.4.6.1 Open arrays
The size of the packed dimension, the unpacked dimension, or both dimensions can remain unspecified; such

cases are referred to as open arrays (or unsized arrays). Open arrays allow the use of generic code to handle
different sizes.

250 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Formal arguments of imported functions can be specified as open arrays. (Exported SystemVerilog functions
cannot have formal arguments specified as open arrays.) A formal argument is an open array when arange of
one or more of its dimensions is unspecified (denoted by using square brackets ([])). Thisis solely a relax-
ation of the argument-matching rules. An actual argument shall match the formal one regardless of the range(s)
for its corresponding dimension(s), which facilitates writing generalized code that can handle SystemVerilog
arrays of different sizes.

Although the packed part of an array can have an arbitrary number of dimensions, in the case of open arrays
only asingle dimension is allowed for the packed part. Thisis not very restrictive, however, since any packed
type is eventually equivalent to one-dimensional packed array. The number of unpacked dimensions is not
restricted.

If aformal argument is specified as an open array with a range of its packed or one or more of its unpacked
dimensions unspecified, then the actual argument shall match the formal one—regardiess of its dimensions
and sizes of its linearized packed or unpacked dimensions corresponding to an unspecified range of the formal
argument, respectively.

Here are examples of types of formal arguments (empty square brackets[] denote open array):
|l ogi c
bit [8:1]
bit[]
bit [7:0] array8x10 [1:10] // array8x10 is a formal arg nane
logic [31:0] array32xN[] // array32xNis a formal arg nane
logic [] arrayNx3 [3:1] /1 arrayNx3 is a formal arg nane
bit [] arrayNxN [] /1 arrayNxN is a formal arg nane
Example of complete import declarations:

import "DPI" function void foo(input logic [127:0]);
inport "DPI" function void boo(logic [127:0] i []); // open array of 128-bit

The following exampl e shows the use of open arrays for different sizes of actual arguments:
typedef struct {int i; ... } MType;

import "DPI"™ function void foo(input MyType i [][]);
/* 2-di mensi onal unsized unpacked array of MyType */

MyType a_10x5 [11:20][6:2];
MyType a_64x8 [64:1][-1:-8];

foo(a_10x5);
foo(a_64x8);

26.5 Calling imported functions

The usage of imported functions is identical as for native SystemVerilog functions., hence the usage and syn-
tax for calling imported functions is identical as for native SystemVerilog functions. Specifically, arguments
with default values can be omitted from the call; arguments can be passed by name, if al formal arguments are
named.

26.5.1 Argument passing

Argument passing for imported functions is ruled by the WYSIWYG principle: What You Specify Is What You
Get, see Section 26.5.1.1. The evaluation order of formal arguments follows general SystemVerilog rules.

Argument compatibility and coercion rules are the same as for native SystemVerilog functions. If acoercionis

Copyright 2003 Accellera. All rights reserved. 251

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

needed, atemporary variable is created and passed as the actual argument. For i nput and i nout arguments,
the temporary variable isinitialized with the value of actual argument with the appropriate coercion; for out -

put or i nout arguments, the value of the temporary variable is assigned to the actual argument with the
appropriate conversion. The assignments between atemporary and the actual argument follow general System-
Verilog rules for assignments and automatic coercion.

On the SystemVerilog side of the interface, the values of actual arguments for formal input arguments of
imported functions shall not be affected by the callee; theinitial values of formal output arguments of imported
functions are unspecified (and can be implementation-dependent), and the necessary coercions, if any, are
applied as for assignments. imported functions shall not modify the values of their input arguments.

For the SystemVerilog side of the interface, the semantics of arguments passing is asif i nput arguments are
passed by copy-in, out put arguments are passed by copy-out, and i nout arguments were passed by copy-in,
copy-out. The terms copy-in and copy-out do not impose the actual implementation; they refer only to “hypo-
thetical assignment”.

The actual implementation of argument passing is transparent to the SystemVerilog side of the interface. In
particular, it is transparent to SystemVerilog whether an argument is actually passed by value or by reference.
The actual argument passing mechanism is defined in the foreign language layer. See Annex D for more
details.

26.5.1.1 “What You Specify Is What You Get” principle

The principle “What You Specify Is What You Get” guarantees the types of formal arguments of imported
functions — an actual argument is guaranteed to be of the type specified for the formal argument, with the
exception of open arrays (for which unspecified ranges are statically unknown). Formal arguments, other than
open arrays, are fully defined by import declaration; they shall have ranges of packed or unpacked arrays
exactly as specified in the import declaration. Only the declaration site of the imported function is relevant for
such formal arguments.

Another way to state this is that no compiler (either C or SystemVerilog) can make argument coercions
between a caller’s declared formal and the callee’'s declared formals. this is because the callee's formal argu-
ments are declared in a different language than the caller’s formal arguments; hence hereisno visible relation-
ship between the two sets of formals. Users are expected to understand all argument rel ationships and provide
properly matched types on both sides of the interface.

Formal arguments defined as open arrays have the size and ranges of the corresponding actual arguments, i.e.,
have the ranges of packed or unpacked arrays exactly as that of the actual argument. The unsized ranges of
open arrays are determined at a call site; the rest of type information is specified at the import declaration.

So, if aformal argumentisdeclaredasbit [15:8] b [],thenitistheimport declaration which specifiesthe

formal argument is an unpacked array of packed bit array with bounds 15 to 8, while the actual argument used
at aparticular call site defines the bounds for the unpacked part for that call.

26.5.2 Value changes for output and inout arguments

The SystemVerilog simulator is responsible for handling value changes for out put and i nout arguments.
Such changes shall be detected and handled after control returns from imported functions to SystemVerilog
code.

For out put and i nout arguments, the value propagation (i.e., value change events) happens as if an actual
argument was assigned a formal argument immediately after control returns from imported functions. If there

is more than one argument, the order of such assignments and the related value change propagation follows
general SystemVerilog rules.

26.6 Exported functions

DPI allows calling SystemVerilog functions from another language. However, such functions must adhere to

252 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

the same restrictions on argument types and results as are imposed on imported functions. It is an error to
export a function that does not satisfy such constraints.

SystemVerilog functions that can be called from foreign code need to be specified in export declarations.
Export declarations are alowed to occur only in the scope in which the function being exported is defined.
Only one export declaration per function is allowed in a given scope.

Note that class member functions can not be exported, but all other SystemVerilog functions can be exported.

Similar to import declarations, export declarations can define an optional ¢_identifier to be used in the for-
eign language when calling an exported function.

dpi_import_export ::= I/ from Annex A.2.6
| export " DPI" [c_identifier =] function function_identifier ;

Syntax 26-2—DPI export declaration syntax (excerpt from Annex A)

c_identifier is optional here. It defaults to function_identifier. For rules describing c identifier, see
Section 26.3. Note that all export functions are always context functions. No two functions in the same Sys-
temVerilog scope can be exported with the same explicit or implicit c_identifier. The export declaration and
the definition of the corresponding SystemVerilog function can occur in any order. Only one export declaration
is permitted per SystemVerilog function.

Copyright 2003 Accellera. All rights reserved. 253

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Section 27
SystemVerilog Assertion API

This chapter defines the Assertion Application Programming Interface (API) in SystemVerilog.

27.1 Requirements

SystemVerilog provides assertion capabilities to enable:

— auser’s C code to react to assertion events.
— third-party assertion “waveform” dumping tools to be written.
— third-party assertion coverage tools to be written.

— third-party assertion debug tools to be written.

27.1.1 Naming conventions

All elements added by this interface shall conform to the Verilog Procedural Interface (VPI) interface naming
conventions.

— All names are prefixed by vpi .

— All type names shall start with vpi , followed by initialy capitalized words with no separators, e.g.,
vpi Assert Check.

— All callback names shall start with chb, followed by initialy capitalized words with no separators, e.g.,
cbAssertionStart.

— All function names shall start with vpi _, followed by all lowercase words separated by underscores
(1), eq., vpi _get_assert_info().

27.2 Extensions to VPl enumerations

These extensions shall be appended to the contents of the vpi _user. h file, described in IEEE Std. 1364-
2001, Annex G. The numbersin the range 700 - 799 are reserved for the assertion portion of the VPI.

27.2.1 Object types

This section lists the object type VPI calls. The VPI reserved range for these callsis 700 - 729.
#define vpi Assertion 700 /* assertion */

27.2.2 Object properties

This section lists the object property VPI calls. The VPI reserved range for these callsis 700 - 729.

/* Assertion types */

#defi ne vpi SequenceType 701
#define vpi Assert Type 702
#define vpi Cover Type 703
#define vpi PropertyType 704

#define vpi | nmedi at eAssert Type705
27.2.3 Callbacks

This section lists the system callbacks. The VPI reserved range for these callsis 700 - 719.

254 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001

1) Assertion

#defi ne
#def i ne
#def i ne
#def i ne
#defi ne
#defi ne
#defi ne
#def i ne
#def i ne

cbAssertionStart
cbAssertionSuccess
cbAssertionFail ure
cbAssertionSt epSuccess
cbAssertionStepFailure
cbAssertionDi sabl e
cbAsserti onEnabl e
cbAsserti onReset
cbAssertionKil

2) “Assertion system”

#defi ne
#defi ne
#def i ne
#def i ne
#def i ne

700
701
702
703
704
705
706
707
708

cbAssertionSyslnitialized709

cbAssertionSysStart
cbAsserti onSysSt op
cbAsserti onSysEnd

cbAsserti onSysReset

27.2.4 Control constants

710
711
712
713

SystemVerilog 3.1a/draft 1

This section lists the system control constant callbacks. The VPI reserved range for these callsis 730 - 759.

1) Assertion

#def i ne
#defi ne
#defi ne
#defi ne
#def i ne
#def i ne

vpi Asserti onDi sabl e

vpi Asserti onEnabl e

vpi Asserti onReset

vpi AssertionKil |

vpi Asserti onEnabl eSt ep
vpi Asserti onDi sabl eSt ep

2) Assertion stepping

#defi ne

vpi Asserti onC ockSt eps

3) “Assertion system”

#def i ne
#def i ne
#defi ne
#defi ne

vpi Asserti onSysStart
vpi Asserti onSysSt op
vpi Asserti onSysEnd

vpi Asserti onSysReset

27.3 Static information

730
731
732
733
734
735

736

737
738
739
740

This section defines how to obtain assertion handles and other static assertion information.

27.3.1 Obtaining assertion handles

SystemVerilog extends the VPl module iterator model (i.e., the instance) to encompass assertions, as shown in

Figure 27-1.

The following steps highlight how to obtain the assertion handles for named assertions.

Copyright 2003 Accellera. All rights reserved.

255

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

module assertion

all other module ->> object iterators
from IEEE 1364-2001, section 26.6.1 page 634

Figure 27-1 — Encompassing assertions

Note: Iteration on assertions from interfaces is not shown in Figure 27-1 since the interface object type is not
currently defined in VPI. However the assertion APl permits iteration on assertions from interface instance
handles and obtaining static information on assertions used in interfaces (see Section 27.3.2.1).

1) Iterate al assertionsin the design: use aNULL reference handle (ref) tovpi _i terate(), eg.,

itr = vpi _iterate(vpi Assertion, NULL);
while (assertion = vpi_scan(itr)) {
/* process assertion */

}

2) lterate all assertions in an instance: pass the appropriate instance handle as a reference handle to
vpi _iterate(),eq.,

itr = vpi _iterate(vpi Assertion, instanceHandl e);
while (assertion = vpi_scan(itr)) {
/* process assertion */

}

3) Obtain the assertion by name: extend vpi _handl e_by_nane to also search for assertion names in the
appropriate scope(s), e.d.,
vpi Handl e = vpi _handl e_by_nane(assert Nane, scope)
4) To obtain an assertion of a specific type, e.g. cover assertions, the following approach should be used:
vpi Handl e asserti on;
itr = vpi _iterate(vpi AssertionType, NULL);
while (assertion = vpi_scan(itr)) {
if (vpi_get(vpiAssertionType, assertion) == vpi Cover Type) {
/* process cover type assertion */

}
}

NOTES
1—Aswith all VPI handles, assertion handles are handles to a specific instance of a specific assertion.

2—Unnamed assertions cannot be found by name.

256 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

27.3.2 Obtaining static assertion information

The following information about an assertion is considered to be static.

— Assertion name
— Instance in which the assertion occurs
— Module definition containing the assertion

— Assertion type

1) Sequence
2) Assert

3) Cover

4) Property

5) ImmediateAssert
— Assertion source information: thefile, line, and column where the assertion is defined.

— Assertion clocking domain/expression

27.3.2.1 Using vpi _get _assertion_info

Static information can be obtained directly from an assertion handle by using vpi _get _assertion_i nfo, as
shown below.

typedef struct t_vpi_source_info {
PLI _BYTE* *fil eNane;
PLI I NT32 startLine;
PLI _I NT32 start Col um;
PLI _I NT32 endLi ne;
PLI _I NT32 endCol um;
} s_vpi _source_info, *p_vpi_source_info;
typedef struct t_vpi_assertion_info {
PLI _BYTE8 *nane; /* nanme of assertion */
vpi Handl e i nstance; /* instance containing assertion */
PLI _BYTE8 defnanme; /* nane of nodul e/interface containing assertion
*/
vpi Handl e cl ock; /* cl ocking expression */
PLI _I NT32 assertionType; /* vpi SequenceType, ... */
s_vpi _source_i nfo sourcel nfo;
} s_vpi _assertion_info, *p_vpi _assertion_info;
int vpi_get_assertion_info (assert_handle, p_vpi_assertion_info);

This call obtains all the static information associated with an assertion.

Theinputs are avalid handle to an assertion and a pointer to an existing s_vpi _asserti on_i nf o data struc-
ture. On success, the function returns TRUE and the s_vpi _asserti on_i nf o data structure is filled in as
appropriate. On failure, the function returns FALSE and the contents of the assertion data structure are unpre-
dictable.

Assertions can occur in modules and interfaces: for assertions defined in modules, the instance field in the
s_vpi _assertion_i nf o structure shall contain the handle to the appropriate module or interface instance.
Note that VPl does not currently define the information model for interfaces and therefore the interface
instance handle shall be implementation dependent. The clock field of that structure contains a handle to the
event expression representing the clock for the assertion, as determined by Section 17.13.

NOTE: asingle call returns all the information for efficiency reasons.

Copyright 2003 Accellera. All rights reserved. 257

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

27.3.2.2 Extending vpi _get () and vpi _get _str()
Inadditiontovpi _get _asserti on_i nf o, the following existing VPI functions are also extended:
vpi _get(), vpi_get_str()

vpi _get () can beused to query the following VPI property from a handle to an assertion:

vpi AssertionDirective
returns one of vpi SequenceType, vpi Assert Type, vpi Cover Type, vpi PropertyType, vpi | nme-
di at eAssert Type.

vpi Li neNo
returns the line number where the assertion is declared.

vpi _get _str () can beused to obtain the following VPI properties from an assertion handle;

vpi Fi | eName
returns the filename of the source file where the assertion was declared.

vpi Nanme
returns the name of the assertion.

vpi Ful | Namre
returns the fully qualified name of the assertion.

27.4 Dynamic information

This section defines how to place assertion system and assertion callbacks.
27.4.1 Placing assertion system callbacks

Usevpi _regi ster_cb(), setting the cb_rt n element to the function to be invoked and the reason element
of thes_cb_dat a structure to one of the following values, to place an assertion system callback.

cbAssertionSyslnitialized
occurs after the system has initialized. No assertion-specific actions can be performed until this callback
completes. The assertion system can initialize before cbSt art OF Si mul at i on does or afterwards.

cbAssertionSysStart

the assertion system has become active and starts processing assertion attempts. This always occur after
cbAssertionSyslnitialized. By default, the assertion system is “started” on simulation startup, but
the user can delay this by using assertion system control actions.

cbAsserti onSysSt op

the assertion system has been temporarily suspended. While stopped no assertion attempts are processed
and no assertion-related callbacks occur. The assertion system can be stopped and resumed an arbitrary
number of times during a single simulation run.

cbAsserti onSysEnd

occurs when all assertions have completed and no new attempts shall start. Once this callback occurs no
more assertion-related callbacks shall occur and assertion-related actions shall have no further effect. This
typically occurs after the end of simulation.

cbAsserti onSysReset
occurs when the assertion system is reset, e.g., due to a system control action.

The callback routine invoked follows the normal VPI callback prototype and is passed ans_cb_dat a contain-
ing the callback reason and any user data provided to thevpi _regi st er _cb() call.

258 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

27.4.2 Placing assertions callbacks
Usevpi _register_assertion_cb() toplacean assertion callback; the prototypeis:

vpi Handl e vpi _regi ster_assertion_chb(
vpi Handl e, /* handle to assertion */
PLI I NT32 reason, /* reason for which call backs needed */
PLI _INT32 (*cb_rtn)(/* callback function */
PLI _I NT32 reason,
vpi Handl e assertion,
p_vpi _attenpt_info info,
PLI _BYTE8 *userData),
PLI _BYTE8 *user_data /* user data to be supplied to cb */
)
typedef struct t_vpi_assertion_step_info {
PLI _I NT32 nat ched_expressi on_count;
vpi Handl e *mat ched_exprs; /* array of expressions */
p_vpi _source_i nfo *exprs_source_info; /* array of source info */
PLI _I NT32 stateFrom stateTo;/* identify transition */
} s_vpi_assertion_step_info, *p_vpi_assertion_step_info;
typedef struct t_vpi_attenpt_info {
uni on {
vpi Handl e fai |l Expr;
p_vpi _assertion_step_info step;
} detail;
s_vpi _time attenptTine,
} s_vpi _attenpt _info, *p_vpi_attenpt_info;

where reason is any of the following.

cbAssertionStart
an assertion attempt has started. For most assertions one attempt starts each and every clock tick.

cbAssertionSuccess
when an assertion attempt reaches a success state.

cbAssertionFailure
when an assertion attempt fails to reach a success state.

cbAsserti onSt epSuccess
progress one step an attempt. By default, step callbacks are not enabled on any assertions; they are
enabled on a per-assertion/per-attempt basis (see Section 27.5.2), rather than on a per-assertion basis.

cbAssertionStepFail ure

failure to progress by one step along an attempt. By default, step callbacks are not enabled on any asser-
tions; they are enabled on a per-assertion/per-attempt basis (see Section 27.5.2), rather than on a per-
assertion basis.

cbAssertionDi sabl e
whenever the assertion is disabled (e.g., as aresult of acontrol action).

cbAsserti onEnabl e
whenever the assertion is enabled.

cbAsserti onReset
whenever the assertion is reset.

cbAssertionKill
when an attempt is killed (e.g., asaresult of a control action).

These callbacks are specific to a given assertion; placing such a callback on one assertion does not cause the
callback to trigger on an event occurring on a different assertion. If the callback is successfully placed, a han-

Copyright 2003 Accellera. All rights reserved. 259

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

dleto the callback is returned. This handle can be used to remove the callback viavpi _renove_cb() . If there
were errors on placing the callback, a NULL handle is returned. As with all other calls, invoking this function
with invalid arguments has unpredictable effects.

Once the callback is placed, the user-supplied function shall be called each time the specified event occurs on
the given assertion. The callback shall continue to be called whenever the event occurs until the callback is
removed.

The callback function shall be supplied the following arguments:
1) thereason for the callback

2) thehandle for the assertion

3) apointer to an attempt information structure

4) areference to the user data supplied when the callback was placed.

Theattenpt information structure contains details relevant to the specific event that occurred.

— On disable, enable, reset and kill events, thei nf o field is absent (a NULL pointer is given asthe value
of i nf 0).

— On start and success events, only theat t enpt ti me field isvalid.
— On afailureevent, theattenpt tine anddetail.fail Expr arevalid.

— On astep callback, theat t enpt ti ne and det ai | . st ep elementsare valid.

On a step callback, the det ai | describes the set of expressions matched in satisfying a step along the asser-
tion, along with the corresponding source references. In addition, the st ep also identifies the source and desti-
nation “states’ needed to uniquely identify the path being taken through the assertion. Sate ids are just
integers, with 0 identifying the origin state, 1 identifying an accepting state, and any other number represent-
ing some intermediate point in the assertion. It is possible for the number of expressionsin a step to be 0
(zero), which represents an unconditional transition. In the case of a failing transition, the information pro-
vided isjust asthat for a successful one, but the last expression in the array represents the expression where the
transition failed.

NOTES
1—In afailing transition, there shall always be at least one element in the expression array.

2—Placing a step callback results in the same callback function being invoked for both success and failure steps.

27.5 Control functions

This section defines how to obtain assertion system control and assertion control information.
27.5.1 Assertion system control

Usevpi _control (), with one of the following operators and no other arguments, to obtain assertion system
control information.

Usage example: vpi _control (vpi Asserti onSysReset)

vpi Asserti onSysReset

discards all attemptsin progress for all assertions and restore the entire assertion system to itsinitial state.
Any pre-existing vpi Asserti onSt epSuccess and vpi Asserti onSt epFai | ure callbacks shall be
removed; all other assertion callbacks shall remain.

260 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Usage example: vpi _control (vpi Asserti onSysSt op)

vpi Asserti onSysSt op
considers al attempts in progress as unterminated and disable any further assertions from being started.
This control has no effect on pre-existing assertion callbacks.

Usage example: vpi _control (vpi AssertionSysStart)

vpi Asserti onSysStart
restarts the assertion system after it was stopped (e.g., due to vpi Asserti onSysSt op). Once started,
attempts shall resume on all assertions. This control has no effect on prior assertion callbacks.

Usage example: vpi _control (vpi Asserti onSysEnd)

vpi Asserti onSysEnd

discard all attempts in progress and disables any further assertions from starting. All assertion callbacks
currently installed shall be removed. Note that once this control is issued, no further assertion related
actions shall be permitted.

27.5.2 Assertion control

Usevpi _cont rol (), with one of the following operators, to obtain assertion control information.

— For the following operators, the second argument shall be avalid assertion handle.

Usage example: vpi _control (vpi Asserti onReset, assertionHandl e)

vpi Asserti onReset
discards all current attempts in progress for this assertion and resets this assertion to itsinitia state.

Usage example: vpi _control (vpi AssertionDi sabl e, assertionHandl e)

vpi Asserti onDi sabl e
disables the starting of any new attempts for this assertion. This has no effect on any existing attempts. or
if the assertion already disabled. By default, all assertions are enabled.

Usage example: vpi _control (vpi Asserti onEnabl e, asserti onHandl e)

vpi Asserti onEnabl e
enables starting new attempts for this assertion. This has no effect if assertion already enabled or on any
existing attempts.

— For the following operators, the second argument shall be a valid assertion handle and the third argument
shall be an attempt start-time (as a pointer to acorrectly initialized s_vpi _t i me structure).

Usage example: vpi _control (vpi AssertionKill, assertionHandl e, attenpt)

vpi AssertionKil |
discards the given attempts, but leaves the assertion enabled and does not reset any state used by this
assertion (e.g., past () sampling).

Usage example: vpi _control (vpi AssertionDi sabl eStep, assertionHandl e, attenpt)

vpi Asserti onDi sabl eSt ep
disables step callbacks for this assertion. This has no effect if stepping not enabled or it is aready dis-
abled.

— For the following operator, the second argument shall be a valid assertion handle, the third argument shall
be an attempt start-time (as a pointer to a correctly initialized s_vpi _t i me structure) and the fourth argu-
ment shall be a step control constant.

Usage example: vpi _control (vpi Asserti onEnabl eStep, assertionHandl e, attenpt,

Copyright 2003 Accellera. All rights reserved. 261

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

vpi AssertionC ockSt eps)

vpi Asserti onEnabl eSt ep

enables step callbacks to occur for this assertion attempt. By default, stepping is disabled for all asser-
tions. Thiscall has no effect if stepping is already enabled for this assertion and attempt, other than possi-
bly changing the stepping mode for the attempt if the attempt has not occurred yet. The stepping mode of
any particular attempt cannot be modified after the assertion attempt in question has started.

NOTE—In this release, the only step control constant available is vpi Asserti onCl ockSt eps, indicating callbacks
on a per assertion/clock-tick basis. The assertion clock is the event expression supplied as the clocking expression to the
assertion declaration. The assertion shall “advance” whenever this event occurs and, when stepping is enabled, such events
shall also cause step callbacks to occur.

262 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Section 28
SystemVerilog Coverage API

28.1 Requirements

This chapter defines the Coverage Application Programming Interface (API) in SystemVerilog.
28.1.1 SystemVerilog API

The following criteria are used within this API.

1) This APl shall be similar for all coverages
There are a wide number of coverage types available, with possibly different sets offered by different
vendors. Maintaining a common interface across al the different types enhances portability and ease of
use.

2) At aminimum, the following types of coverage shall be supported:
a) statement coverage
b) toggle coverage
c¢) fsmcoverage
i) fsm states
ii) fsmtransitions
C) assertion coverage

3) Coverage APIsshall be extensible in atransparent manner, i.e., adding a new coverage type shall not break
any existing coverage usage.

4) This APl shall provide means to obtain coverage information from specific sub-hierarchies of the design
without requiring the user to enumerate all instances in those hierarchies.

28.1.2 Naming conventions

All elements added by this interface shall conform to the Verilog Procedural Interface (VPI) interface naming
conventions.

— All names are prefixed by vpi .

— All type names shall start with vpi , followed by initially capitalized words with no separators, e.g.,
vpi Cover ageSt nt .

— All callback names shall start with cb, followed by initially capitalized words with no separators, e.g.,
cbAssertionStart.

— All function names shall start with vpi _, followed by all lowercase words separated by underscores (),
eg., vpi _control ().

28.1.3 Nomenclature

The following terms are used in this standard.

Satement coverage — whether a statement has been executed or not, where statement is anything defined
as a statement in the LRM. Covered means it executed at |east once. Some implementations also permit

Copyright 2003 Accellera. All rights reserved. 263

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

guerying the execution count. The granularity of statement coverage can be per-statement or per-state-
ment block (however defined).

FSM coverage — the number of statesin afinite state machine (FSM) that this simulation reached. This
standard does not require FSM automatic extraction, but a standard mechanism to force specific extrac-
tion isavailable via pragmas.

Toggle coverage — for each bit of every signal (wire and register), whether that bit has both a0 value and
a 1 vaue. Full coverage means both are seen; otherwise, some implementations can query for partial
coverage. Some implementations also permit querying the toggle count of each bit.

Assertion coverage — for each assertion, whether it has had at least one success. | mplementations permit
querying for further details, such as attempt counts, success counts, failure counts and failure coverage.

These terms define the “ primitives” for each coverage type. Over instances or blocks, the coverage number is
merely the sum of all contained primitivesin that instance or block.

28.2 SystemVerilog real-time coverage access

This section describes the mechanisms in SystemVerilog through which SystemVerilog code can query and
control coverage information. Coverage information is provided to SystemVerilog by means of a number of
built-in system functions (described in Section 28.2.2) using a number of predefined constants (described in
Section 28.2.1) to describe the types of coverage and the control actions to be performed.

28.2.1 Predefined coverage constants in SystemVerilog

The following predefined ‘ def i nes represent basic real-time coverage capabilities accessible directly from
SystemVerilog.

— Coverage control

‘define SV_COV_START
‘define SV_COV_STOP

‘define SV_COV_RESET
‘define SV_COV_QUERY

W NPk O

— Scope definition (hierarchy traversal/accumulation type)

‘define SV_COvV_MODULE 10
‘define SV_COV_H ER 11

— Coverage type identification

‘define SV_COV_ASSERTION 20
‘define SV_COV_FSM STATE 21
‘define SV_COV_STATEMENT 22
‘define SV_COV_TOGGLE 23

— Status results

‘ define SV_COV_OVERFLOW -2
‘define SV_COV_ERROR

‘ define SV_COV_NOCOV
‘define SV_COvVv K

‘ define SV_COV_PARTI AL

N~ O

264 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

28.2.2 Built-in coverage access system functions

28.2.2.1 $coverage_control

$coverage_control (control _constant,
cover age_type,
scope_def,
nmodul es_or _i nst ance)

SystemVerilog 3.1a/draft 1

This function enables, disables, resets or queries the availability of coverage information for the specified por-
tion of the hierarchy. The return valueisa* def i ned name, with the value indicating the success of the action.

*SV_COV_OK

the request is successful. When querying, if starting, stopping, or resetting this means the desired effect
occurred, coverageis available. A successful reset clearsall coverage (i.e., usinga...get () == 0 aftera

successful ...reset ()).
“ SV_COV_ERROR

the call failed with no action, typically due to errors in the arguments, such as a hon-existing module or

instance specifications.
“ SV_COV_Nocov

coverage is not available for the requested portion of the hierarchy.

* SV_COV_PARTI AL

coverage isonly partially available in the requested portion of the hierarchy (i.e., some instances have the
requested coverage information, some don't).

Starting, stopping, or resetting coverage multiple times in succession for the same instance(s) has no further
effect if coverage has already been started, stopped, or reset for that/those instance(s).

The hierarchy(ies) being controlled or queried are specified as follows.

‘' SV_MODULE_COV, "uni que nodul e def name”
provides coverage of all instances of the given module (the unique module name is a string), excluding
any child instances in the instances of the given module. The module definition name can use special
notation to describe nested module definitions.

‘*SV_COV_HI ER, "nodul e nane"
provides coverage of all instances of the given module, including all the hierarchy below.

‘' SV_MODULE _COV, instance_nane
provides coverage of the one named instance. The instance is specified as a normal Verilog hierarchical

path.

‘*SV_COV_HI ER, instance_nane
provides coverage of the named instance, plus all the hierarchy below it.

All the permutations are summarized in Table 28-1.

Table 28-1: Instance coverage permutations

Control/query

“ Definition name”

instance.name

* SV_COV_MODULE

The sum of coverage for al
instances of the named module,
excluding any hierarchy below
those instances.

Coverage for just the named
instance, excluding any hierar-
chy in instances bel ow that
instance.

Copyright 2003 Accellera. All rights reserved.

265

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Table 28-1: Instance coverage permutations (continued)

Control/query “ Definition name” instance.name

‘*SV_COV_H ER The sum of coverage for al Coverage for the named instance
instances of the named module, and any hierarchy below it.
including all coverage for all
hierarchy below those instances.

NOTE—Definition names are represented as strings, whereas instance names are referenced by hierarchical paths. A hier-
archical path need not include any . if the path refers to an instance in the current context (i.e., normal Verilog hierarchical
path rules apply).

$root

module TestBench
instance tb

module DUT
instance unitl

module component
instance comp

module control
instance ctrl

module DUT
instance unit2

module component
instance comp

module control
instance ctrl

module BusWatcher
instance watch

Example 28-1 — Hierarchical instance example

If coverageis enabled on all instances shown in Example 28-1 —, then:

$coverage_control (* SV_CO/_CHECK, ‘SV_COV_TOGGE, ‘SV_COV_H ER, $root)
checks all instances to verify they have coverage and, in this case, returns‘ SV_COV_OK.

266 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

$coverage_control (* SV_COV_RESET, ‘SV_COV_TOGGLE, ‘SV_COV_MODULE, "DUT")
resets coverage collection on both instances of the DUT, specificaly, $root.tb.unitl and
$root . t b. uni t 2, but leaves coverage unaffected in all other instances.
$coverage_control (* SV_COV_RESET, ‘SV_COV_TOGGLE, ‘SV_COV_MODULE,
$root.th.unitl)
resets coverage of only the instance $r oot . t b. uni t 1, leaving al other instances unaffected.
$coverage_control (* SV_COV_STOP, ‘SV_COV_TOGGELE, *‘SV_COV_H ER
$root.th.unitl)
resets coverage of the instance $r oot . t b. uni t 1 and also reset coverage for all instances below it, spe-
cifically $root . tb. unit 1. conpand $root.tb. unitl. ctrl.
$coverage_control (* SV_COV_START, ‘SV_COV_TOGGE, ‘SV_COV_H ER, "DUT")
starts coverage on all instances of the module DUT and of all hierarchy(ies) below those instances. In this
design, coverage is started for the instances $root.tb.unitl, $root.tb.unitl.conp,
$root.tb.unitl.ctrl,$root.tb.unit2,$root.th.unit2. conp,and$root.th.unit2.ctrl.

28.2.2.2 $coverage_get_max

$coverage_get _max(coverage_type, scope_def, npdul es_or_instance)

This function obtains the value representing 100% coverage for the specified coverage type over the specified
portion of the hierarchy. This value shall remain constant across the duration of the simulation.

NOTE—This value is proportiona to the design size and structure, so it also needs to be constant through multiple inde-
pendent simulations and compilations of the same design, assuming any compilation options do not modify the coverage
support or design structure.

The return value is an integer, with the following meanings.

-2 (* SV_COV_OVERFLOW
the value exceeds a number that can be represented as an integer.

-1 (*SV_COV_ERROR)
an error occurred (typically dueto using incorrect arguments).

0 (* SV_COV_NOCOV)
no coverage is available for that coverage type on that/those hierarchy(ies).

+pos_num
the maximum coverage number (where pos_num > 0), which is the sum of all coverable items of that
type over the given hierarchy(ies).

The scope of this function is specified as per $cover age_cont r ol (see Section 28.2.2.1).
28.2.2.3 $coverage_get

$cover age_get (coverage_type, scope_def, nodul es_or_instance)

This function obtains the current coverage value for the given coverage type over the given portion of the hier-
archy. This number can be converted to a coverage percentage by use of the equation:

cov erage get()
coverage get max()

cov erage% = *100

Thereturn value follows the same pattern as $cover age_get _max (see Section 28.2.2.2), but with pos_num
representing the current coverage level, i.e., the number of the coverable items that have been covered in thig/
these hierarchy(ies).

Copyright 2003 Accellera. All rights reserved. 267

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

The scope of thisfunction is specified as per $cover age_cont rol (See Section 28.2.2.1).

The return value is an integer, with the following meanings.
-2 (' SV_COV_OVERFLOW
the value exceeds a number that can be represented as an integer.
-1 (* SV_COV_ERROR)
an error occurred (typically dueto using incorrect arguments).
0 (* SV_COV_NOCOV)
no coverage is available for that coverage type on that/those hierarchy(ies).
+pos_num
the maximum coverage number (where pos_num > 0), which is the sum of all coverable items of that
type over the given hierarchy(ies).

28.2.2.4 $coverage_merge
$cover age_nerge(coverage_type, "nane")

This function loads and merges coverage data for the specified coverage into the simulator. narre is an arbi-
trary string used by the tool, in an implementation-specific way, to locate the appropriate coverage database,
i.e., tools are allowed to store coverage files any place they want with any extension they want as long as the
user can retrieve the information by asking for a specific saved name from that coverage database. If name
does not exist or does not correspond to a coverage database from the same design, an error shall occur. If an
error occurs during loading, the coverage numbers generated by this simulation might not be meaningful.

The return values from this function are:

“SV_COV_ K
the coverage data has been found and merged.

“ SV_COV_NOCOV
the coverage data has been found, but did not contain the coverage type requested.

 SV_COV_ERROR
the coverage data was not found or it did not correspond to this design, or another error.
28.2.2.5 $coverage_save

$cover age_save(coverage_type, "nane")

This function saves the current state of coverage to the tool’s coverage database and associates it with the file
named nane. This file name shall not contain any directory specification or extensions. Data saved to the
database shall be retrieved later by using $cover age_ner ge and supplying the same name. Saving coverage
shall not have any effect on the state of coverage in this simulation.

The return values from this function are:
“SV_COV_OK
the coverage data was successfully saved.
“ SV_COV_Nocov
no such coverage is available in this design (nothing was saved).
“ SV_COV_ERROR
some error occurred during the save. If an error occurs, the tool shall automatically remove the coverage

database entry for name to preserve the coverage database integrity. It is not an error to overwrite a previ-
ously existing nane.

NOTES

268 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

1—The coverage database format is implementation-dependent.

2—Mapping of names to actual directories/files is implementation-dependent. There is no requirement that a coverage
name map to any specific set of files or directories.

28.3 FSM recognition

Coverage tools need to have automatic recognition of many of the common FSM coding idioms in Verilog/
SystemVerilog. This standard does not attempt to describe or require any specific automatic FSM recognition
mechanisms. However, the standard does prescribe a means by which non-automatic FSM extraction occurs.
The presence of any of these standard FSM description additions shall override the tool’s default extraction
mechanism.

I dentification of an FSM consists of identifying the following items:

1) the state register (or expression)

2) thenext state register (thisis optional)

3) thelegal states.

28.3.1 Specifying the signal that holds the current state

Use the following pragmato identify the vector signal that holds the current state of the FSM:
/* tool state_vector signal _nane */

wheret ool andstate_vector arerequired keywords. This pragma needsto be specified inside the module
definition where the signal is declared.

Another pragmais also required, to specify an enumeration name for the FSM. This enumeration nameis also
specified for the next state and any possible states, associating them with each other as part of the same FSM.
There are two ways to do this:

— Use the same pragma:

/* tool state_vector signal _nane enum enuneration_nane */

— Use aseparate pragma in the signal’s declaration:

/* tool state_vector signal _nane */
reg [7:0] /* tool enum enuneration_name */ signal _nane;

In either case, enumisarequired keyword; if using a separate pragma, t ool isalso arequired keyword and the
pragma needs to be specified immediately after the bit-range of the signal.

28.3.2 Specifying the part-select that holds the current state

A part-select of a vector signal can be used to hold the current state of the FSM. When cnVi ew displays or
reports FSM coverage data, it names the FSM after the signal that holds the current state. If a part-select holds
the current state in the user’'s FSM, the user needs to also specify a name for the FSM that cnVvi ew can use.
The FSM nameis not the same as the enumeration name.

Specify the part-select by using the following pragma:

/* tool state_vector signal _nane[n:n] FSM nane enum enuneration_nane */

Copyright 2003 Accellera. All rights reserved. 269

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

28.3.3 Specifying the concatenation that holds the current state

Like specifying a part-sel ect, a concatenation of signals can be specified to hold the current state (when includ-
ing an FSM name and an enumeration name):

/* tool state_vector {signal _name , signal _nane, ...} FSM name enum
enuneration_nanme */

The concatenation is composed of all the signals specified. Bit-selects or part-selects of signals cannot be used
in the concatenation.

28.3.4 Specifying the signal that holds the next state

The signal that holds the next state of the FSM can al so be specified with the pragmathat specifies the enumer-
ation name:

reg [7:0] /* tool enum enunmeration_name */
si gnal _nane

This pragma can be omitted if, and only if, the FSM does not have a signal for the next state.
28.3.5 Specifying the current and next state signals in the same declaration

Thetool assumesthe first signal following the pragma holds the current state and the next signal holds the next
state when a pragma.is used for specifying the enumeration name in a declaration of multiple signals, e.g.,

/* tool state_vector cs */
reg [1:0] /* tool enum nyFSM */ c¢s, ns, nonstate,;

In this example, the tool assumes signal cs holds the current state and signal ns holds the next state. It assumes
nothing about signal nonstate.

28.3.6 Specifying the possible states of the FSM
The possible states of the FSM can also be specified with a pragma that includes the enumeration name:

paraneter /* tool enum enuneration_name */

SO = 0,
sl =1,
s2 = 2,
s3 = 3;

Put this pragma immediately after the keyword parameter, unless a bit-width for the parameters is used, in
which case, specify the pragmaimmediately after the bit-width:

paraneter [1:0] /* tool enum enuneration_nane */

S0 = 0,
sl =1,
s2 = 2,
s3 = 3;

28.3.7 Pragmas in one-line comments

These pragmas work in both block comments, between the / * and */ character strings, and one-line com-
ments, following the// character string, e.g.,

paraneter [1:0] // tool enum enuneration_nane

SO0 = 0,
sl =1,

270 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1
s2 = 2,
s3 = 3;

28.3.8 Example

nodul e nB;
Signal ns holdsthe next state

reg[31: 0] cs;

reg[31:0] /* tool enum MY_FSM */ ns;

reg[31: 0] clk;

reg[31:0] rst;

/1 tool state_vector ¢S enum MY_FSM

parameter // tool enum MY_FSM
pl=10,

the FSM
endnodule // nB

Signal cs holdsthe current state

p2=11, _
p3=12: \pl, p2, and p3 are possible states of

Example 28-2 — FSM specified with pragmas

28.4 VPI coverage extensions
28.4.1 VPI entity/relation diagrams related to coverage

28.4.2 Extensions to VPl enumerations

— Coverage control

#defi ne vpi CoverageStart
#define vpi Cover ageSt op
#defi ne vpi Cover ageReset
#defi ne vpi Cover ageCheck
#def i ne vpi Cover ageMer ge
#defi ne vpi Cover ageSave

— VP properties
1) Coverage type properties

#define vpi Assert Cover age
#defi ne vpi Fsntt at eCover age
#defi ne vpi St at ement Cover age
#defi ne vpi Toggl eCover age

2) Coverage status properties

#define vpi Covered
#defi ne vpi Cover Max
#def i ne vpi Cover edCount

3) Assertion-specific coverage status properties

#define vpi Assert Att enpt Cover ed
#define vpi Assert SuccessCover ed

Copyright 2003 Accellera. All rights reserved.

271

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

#define vpi Assert Fai | ureCover ed
4) FSM-specific methods

#define vpi Fsntt at es
#defi ne vpi FsnBt at eExpr essi on

— FSM handle types (vpi types)

#define vpi Fsm
#define vpi FsmHandl e

28.4.3 Obtaining coverage information

To obtain coverage information, the vpi _get () function is extended with additional VPI properties that can
be obtained from existing handles:

vpi _get (<cover ageType>, i nstance_handl e)

Returns the number of covered items of the given coverage type in the given instance. Coverage type is one of
the coverage type properties described in Section 28.4.2. For example, given coverage type vpi St at ement -
Cover age, this call would return the number of covered statements in the instance pointed by
instance_handle.

vpi _get (vpi Covered, assertion_handl e)
vpi _get (vpi Covered, statenent_handl e)
vpi _get (vpi Covered, signal _handl e)
vpi _get (vpi Covered, fsm handle)

vpi _get (vpi Covered, fsmstate_ handl e)

Returns whether the item referenced by the handle has been covered. For handles that can contain multiple
coverable entities, such as statement, fsm and signal handles, the return value indicates how many of the enti-
ties have been covered.

— For assertion handle, the coverable entities are assertions
— For statement handle, the entities are statements
— For signal handle, the entities are individual signal bits

— For fsm handle, the entities are fsm states

vpi _get (vpi Cover edCount, assertion_handl e)
vpi _get (vpi Cover edCount, statenent_handl e)
vpi _get (vpi Cover edCount, signal _handl e)
vpi _get (vpi CoveredCount, fsm handl e)

vpi _get (vpi CoveredCount, fsm state_handl e)

Returns the number of times each coverable entity referred by the handle has been covered. Note that thisis
only easily interpretable when the handle points to a unique coverable item (such as an individual statement);
when handle points to an item containing multiple coverable entities (such as a handle to a block statement
containing a number of statements), the result isthe sum of coverage counts for each of the constituent entities.

vpi _get (vpi Cover edMax, assertion_handl e)
vpi _get (vpi Cover edMax, statenent _handl e)
vpi _get (vpi Cover edMax, si gnal _handl e)
vpi _get (vpi Cover edMax, fsm handl e)

vpi _get (vpi Cover edMax, fsm state_handl e)

Returns the number of coverable entities pointed by the handle. Note that this shall always return 1 (one) when
applied to an assertion or FSM state handle.

272 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

vpi _iterate(vpi Fsm instance-handl e)
Returns an iterator to all FSMsin an instance.
vpi _handl e(vpi Fsntt at eExpr essi on, fsm handl e)
Returns the handle to the signal or expression encoding the FSM state.
vpi _iterate(vpi Fsnttates, fsm handl e)
Returns an iterator to all states of an FSM.
vpi _get _val ue(fsm state_handl e, state-handle)
Returns the value of an FSM state.

28.4.4 Controlling coverage

vpi _control (<coverageControl >, <coverageType>, instance_handl e)
vpi _control (<coverageControl >, <coverageType>, assertion_handle)

Controls the collection of coverage on the given instance or assertion. Note that statement, toggle and FSM
coverage are not individually controllable (i.e., they are controllable only at the instance level and not on a per
statement/signal/FSM basis). The semantics and behavior are as per the $cover age_cont r ol system func-
tion (see Section 28.2.2.1). coverageControl is one vpi Cover ageSt art, vpi Cover ageSt op, vpi Cover -
ageReset or vpi Cover ageCheck, as defined in Section 28.4.2. coverageType is any one of the VPI
coverage type properties (Section 28.4.2)

vpi _control (<coverageControl >, <coverageType>, nane)
This saves or merges coverage into the current simulation. The semantics and behavior are specified as per the
equivalent system functions $coverage_nerge (see Section28.2.2.4) and $coverage_save (see

Section 28.2.2.5). coverageControl is one of vpi Cover ageMerge or vpi Cover ageSave, defined in
Section 28.4.2.

Copyright 2003 Accellera. All rights reserved. 273

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

274 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Annex A
Formal Syntax

(Normative)

The formal syntax of SystemVerilog is described using Backus-Naur Form (BNF). The conventions used are:
— Keywords and punctuation arein bold text.

— Syntactic categories are named in non-bold text.

— A vertical bar (|) separates alternatives.

— Square brackets([]) enclose optional items.

— Braces({ }) encloseitems which can be repeated zero or more times.

The full syntax and semantics of Verilog and SystemVerilog are not described solely using BNF. The norma-
tive text description contained within the chapters of the IEEE 1364-2001 Verilog standard and this System-
Verilog document provide additional details on the syntax and semantics described in this BNF.

A.1 Source text

A.l.1 Library source text

library text ::={ library_descriptions }

library_descriptions ::=
library_declaration

| include_statement
| config_declaration

library_declaration ::=
library library_identifier file_path spec{ , file_path spec}
[-incdir file_path spec{ , file path spec}];
file_path spec ::=file_path
include_statement ::=include <file_path spec>;

A.1.2 Configuration source text

config_declaration ::=
config config_identifier ;
design_statement
{ config_rule_statement }
endconfig
design_statement ::= design { [library_identifier .] cell_identifier} ;
config_rule_statement ::=
default_clauseliblist_clause
| inst_clause liblist_clause
| inst_clause use clause
| cell_clause liblist_clause
| cell_clause use clause

default_clause ::= default

inst_clause ::= instanceinst_name

inst_name ::= topmodule_identifier { . instance identifier }
cell_clause ::=cell [library_identifier .] cell_identifier
liblist_clause ::=liblist {library_identifier}

use clause::=use[library_identifier .] cell_identifier [: config]

Copyright 2003 Accellera. All rights reserved. 275

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

A.1.3 Module and primitive source text
source_text ::=[timeunits_declaration] { description }
description ::=
module_declaration
| udp_declaration
| module root_item
| statement_or_null

module_nonansi_header ::=
{ attribute_instance} module_keyword [lifetime] module_identifier [parameter_port_list]
list_of ports;
module_ansi_header ::=
{ attribute_instance} module_keyword [lifetime] module identifier [parameter_port_list]
[list_of port declarations] ;
module_declaration ::=
module_nonansi_header [timeunits_declaration] { module item}
endmodule[: module identifier |
| module_ansi_header [timeunits_declaration] { non_port_module item}
endmodule[: module identifier |
| { attribute_instance} module_keyword [lifetime] module_identifier (.*) ;
[timeunits_declaration] { module_item } endmodule|[: module_identifier]
| extern module_nonansi_header
| extern module_ansi_header

module_keyword ::= module | macromodule

interface_nonansi_header ::=
{ attribute_instance } interface [lifetime] interface_identifier
[parameter_port_list] list_of_ports;
interface_ansi_header ::=
{attribute_instance} interface[lifetime] interface_identifier
[parameter_port_list] [list_of port_declarations] ;
interface declaration ::=
interface_nonansi_header [timeunits_declaration] { interface item}
endinterface[: interface identifier |
| interface_ansi_header [timeunits declaration] { non_port_interface item}
endinterface[: interface identifier |
| { attribute instance} interface interface identifier (.*) ;
[timeunits_declaration] { interface item}
endinterface[: interface identifier]
| extern interface_nonansi_header
| extern interface ansi_header
program_nonansi_header ::=
{ attribute_instance} program [lifetime] program_identifier
[parameter_port_list] list_of ports;
program_ansi_header ::=
{attribute _instance} program [lifetime] program_identifier
[parameter_port_list] [list_of port declarations] ;
program_declaration ::=
program_nonansi_header [timeunits_declaration] { program_item }
endprogram [: program_identifier]
| program_ansi_header [timeunits_declaration] { non_port_program_item }
endprogram [: program_identifier]
| { attribute_instance} program program_identifier (.*) ;

276 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

[timeunits_declaration] { program_item }
endprogram [: program_identifier]
| extern program_nonansi_header
| extern program_ansi_header
class declaration ::=

{ attribute_instance} [virtual] class| lifetime] class_identifier [parameter_port_list]

[extendsclass_identifier [parameter_value_assignment | | ; FtHmeunits—dectaration] {

class item}
endclass| : class_identifier]
timeunits_declaration ::=
timeunit time_literal ;
| timeprecision time_litera ;
| timeunit time_literal ;
timeprecision time_literd ;
| timeprecision time_literal ;
timeunit time_literal ;

SystemVerilog 3.1a/draft 1

| EDITOR’'SNOTE: | added bold-red font to the semicolons following timeunits declarations.

A.1.4 Module parameters and ports
parameter_port_list ::= # (parameter_declaration { , parameter_declaration})
list_of ports::=(port{,port})
list_ of port declarations::=
(port_declaration { , pert—dectaration ansi_port_declaration})
I O)
non_generic_port_declaration ::=
{ attribute_instance } inout_declaration
| { attribute_instance } input_declaration
| { attribute_instance} output_declaration
| { attribute_instance} ref_declaration
| { attribute_instance} interface port_declaration
port ::=
[port_expression |
| . port_identifier ([port_expression])
port_expression ::=
port_reference
| { port_reference{ , port_reference} }
port_reference ::=
port_identifier [[constant_range _expression]]
port_declaration ::=
non_generic_port_declaration
| { attribute_instance} generic_interface_port_declaration
ansi_port_declaration ::=
port_declaration
| port_typelist_of port identifiers

A.1.5 Module items

module_common_item ::=
{ attribute_instance} module_or_generate_item_declaration
| { attribute_instance} interface instantiation
| { attribute_instance} program_instantiation

Copyright 2003 Accellera. All rights reserved.

277

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

| { attribute_instance} concurrent_assertion_item
| { attribute _instance} bind_directive
module_item ::=
non_generic_port_declaration ;
| non_port_module_item
module _or_generate item ::=
{ attribute_instance} parameter_override
| { attribute _instance} continuous_assign
| { attribute_instance} gate instantiation
| { attribute _instance} udp_instantiation
| { attribute_instance} module_instantiation
| { attribute _instance} initial_construct
| { attribute_instance} always_construct
| { attribute_instance’} combinational _construct
| { attribute_instance} latch_construct
| { attribute_instance} ff_construct
| { attribute_instance} net_alias
| { attribute_instance} final_construct
| module_common_item
| { attribute_instance} ;
module root_item ::=
{ attribute_instance} module_instantiation
| { attribute instance} local _parameter declaration
| interface_declaration
| program_declaration
| class declaration
| module_common_item

module_or_generate item_declaration ::
net_declaration
| data_declaration
| genvar_declaration
| task_declaration
| function_declaration
| dpi_import_export
| extern_constraint_declaration
| extern_method_declaration
| clocking_decl
| default clocking clocking_identifier ;
non_port_module_item ::=
{ attribute_instance} generated_module_instantiation
| { attribute instance} local _parameter declaration
| module or_generate item
| { attribute_instance} parameter_declaration ;
| { attribute instance} specify block
| { attribute instance} specparam_declaration
| program_declaration
| class declaration
| module_declaration

parameter_override ::= defparam list_of_defparam_assignments;;
bind_directive ::=
bind module_identifier bind_instantiation ;
| bind name_of_instance bind_instantiation ;

278 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

bind_instantiation ::=
program_instantiation
| module_instantiation
| interface instantiation

A.1.6 Interface items
interface_or_generate item ::=
{ attribute_instance} continuous_assign
| { attribute_instance} initial_construct
| { attribute_instance} always_construct
| { attribute_instance’} combinational _construct
| { attribute_instance} latch_construct
| { attribute_instance} ff_construct
| { attribute_instance} local_parameter declaration
| { attribute _instance} parameter_declaration ;
| module_common_item
| { attribute_instance } modport_declaration
| { attribute _instance} extern tf declaration
| { attribute instance} fina_construct
| { attribute _instance} ;

extern_tf declaration ::=
extern method_prototype
| extern forkjoin task named_task_proto ;
interface item ::=
non_generic_port_declaration ;
| non_port_interface item
non_port_interface_item ::=
{ attribute_instance} generated_interface instantiation
| { attribute_instance} specparam_declaration
| interface_or_generate_item
| program_declaration
| class_declaration
| interface_declaration

A.1.7 Program items
program_item ::=
port_declaration ;
| non_port_program_item
non_port_program_item ::=
{ attribute_instance} continuous_assign
| { attribute_instance} module_or_generate item_declaration
| { attribute_instance} specparam_declaration
| { attribute_instance} local_parameter declaration
| { attribute_instance} parameter_declaration ;
| { attribute_instance} initial_construct
| { attribute_instance} concurrent_assertion_item
| class_declaration

A.1.8 Class items

class item::=
{ attribute_instance } class property
| { attribute_instance} class method

Copyright 2003 Accellera. All rights reserved.

SystemVerilog 3.1a/draft 1

279

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

| { attribute _instance} class constraint
class property ::=
{ property_qualifier } data declaration
| const { class_item_qualifier } data type const_identifier [= constant_expression] ;
class method ::=
{ method_qualifier } task_declaration
| { method_qualifier } function_declaration
| extern { method_qualifier } method_prototype

class _constraint ::=
constraint_prototype
| constraint_declaration

clas's_item_qualifier10 n=
static
| protected
| local

property_qualifier? ::=
rand
| randc
| class item_qualifier

method_qualifierl®::=
virtual
| class_item_qualifier
method_prototype ::=
task named_task_proto ;
| function named_function_proto ;

extern_method_declaration ::=
function [lifetime] class_identifier :: function_body declaration
| task [lifetime] class _identifier :: task_body_declaration
A.1.9 Constraints
constraint_declaration ::=[static] constraint constraint_identifier { { constraint_block } }
constraint_block ::=
solve identifier_list before identifier_list ;
| expression dist { dist_list} ;
| constraint_expression
constraint_expression ::=
expression ;
| expression => constraint_set
| if (expression) constraint_set [€lse constraint_set |
constraint_set ::=
constraint_expression
| { { constraint_expression} }
dist_list ::=dist_item{ , dist_item}
dist_item::=
value_range := expression
| value range :/ expression
constraint_prototype ::=[static] constraint constraint_identifier
extern_constraint_declaration ::=
[static] constraint class_identifier :: constraint_identifier { { constraint_block } }

280 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

identifier_list ::= identifier { , identifier }
A.2 Declarations

A.2.1 Declaration types

A.2.1.1 Module parameter declarations
local_parameter_declaration ::=

localparam [signing] { packed dimension} [range] list_of param_assignments ;

| localparam data type list of param assignments;
parameter_declaration ::=

parameter [signing] { packed_dimension} [range] list_of param_ assignments

| parameter data type list_of_param_assignments
| parameter type list_of_type assignments
specparam_declaration ::=
specparam [range] list_of specparam_assignments ;

A.2.1.2 Port declarations
inout_declaration ::=
inout [port_type] list_of port_identifiers
¥ oty list_ofvariableidentifi
input_declaration ::=
input [port_type] list_of_port_identifiers
| input data_typelist_of variable identifiers
output_declaration ::=
output [port_type] list_of port_identifiers
| output data type list_of variable port_identifiers
interface _port_declaration ::=
interface identifier list_of_interface identifiers

| interface _identifier . modport_identifier list_of_interface identifiers

ref_declaration ::=ref data_typelist_of port_identifiers
generic_interface port_declaration ::=
interfacelist_of interface identifiers
| interface . modport_identifier list_of interface identifiers

A.2.1.3 Type declarations

 block-variabledeclaration-
| eopsRdeclaration
| Broe—desloraien

constant_declaration ::= const data_type const_assignment ;

data_declaration ::=
[lifetime] variable _declaration
| constant_declaration
| type declaration
genvar_declaration ::= genvar list_of genvar_identifiers;
net_declaration ::=
net_type[signing]
[delay3] list_of net identifiers;
| net_type| drive strength] [signing]
[delay3] list_of net decl assignments;
| net_type| vectored | scalared] [signing]

Copyright 2003 Accellera. All rights reserved.

SystemVerilog 3.1a/draft 1

281

LRM 35

LRM 35

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

{ packed dimension} range[delay3] list_of net_identifiers;
| net_type[drive strength] [vectored | scalared] [signing]
{ packed dimension} range[delay3] list_of net decl assignments;
| trireg [charge _strength] [signing]
[delay3] list_of net identifiers;
| trireg [drive_strength] [signing]
[delay3] list_of net decl assignments;
| trireg [charge strength] [vectored | scalared] [signing]
{ packed dimension} range[delay3] list_of net identifiers;
| trireg [drive_strength] [vectored | scalared] [signing]
{ packed dimension} range[delay3] list_of net decl assignments;
type_declaration ::=
typedef [data_type] type_declaration_identifier ;
| typedef hierarchical_identifier . type_identifier type declaration_identifier ;
| typedef [class] class identifier ;
| typedef class identifier [parameter_value assignment] type_declaration_identifier ;

LRM 22
LRM 35

variable declaration ::=
Hete] data type Hee—verebledentiers—er—ossiansens LRM 35
list_of variable decl_assignments;
lifetime ::= static | automatic

A.2.2 Declaration data types

A.2.2.1 Net and variable types
casting_type ::= simple_type | number | signing
data type::=
integer_vector_type|[signing] { packed_dimension} [range]
| integer_atom type[signing]
| type_declaration_identifier { packed_dimension }
| non_integer_type
| struct packed [signing] { { struct_union_member } } { packed_dimension }
| union packed [signing] { { struct_union_member } } { packed _dimension }
| struct [signing] { { struct_union_member } }
| union [signing] { { struct_union_member } }
| enum [integer_type[signing] { packed _dimension}]
{ enum_identifier [= constant_expression] { , enum_identifier [= constant_expression] } }
| string
| event
| chandle
| class_scope _type identifier
class scope type identifier::=
class identifier :: { class identifier :: } type declaration identifier
| class identifier :: { class identifier :: } class identifier
integer_type ::= integer_vector_type | integer_atom_type
integer_atom_type ::= byte| shortint | int | longint | integer
integer_vector_type::=bit | logic | reg
non_integer_type ::=time|shortreal |real | realtime
net_type ::= supplyO | supplyl | tri | triand | trior |triO|tril|wire|wand | wor

282 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

port_type ::=
data type
| net_type|[signing] { packed dimension}
| trireg[signing] { packed_dimension }
| [signing] { packed dimension} range
signing ::=signed | unsigned
simple_type ::=integer_type | non_integer_type | type identifier
struct_union_member ::= { attribute_instance} data—type-Hst—ef—variadbleidentifiers—or—assignments LRM 35
variable declaration ;
A.2.2.2 Strengths
drive_strength ::=
(' strengthO , strengthl)
| (strengthl, strengthO)
| (strengthO, highz1)
| (strengthl, highzO)
| (highz0, strengthl)
| (highzl, strengthO)

strengthO ::= supplyO | strongO | pullO | weak 0
strengthl ::= supplyl | strongl | pulll | weak 1
charge strength ::= (small) | (medium) | (large)

A.2.2.3 Delays
delay3::=#delay_value|# (mintypmax_expression[, mintypmax_expression [, mintypmax_expression]])
delay? ::=# delay_value | # (mintypmax_expression [, mintypmax_expression])
delay value::=
unsigned_number

| real_number

| identifier
A.2.3 Declaration lists
list_of defparam_assignments ::= defparam_assignment { , defparam_assignment }
list_ of genvar_ identifiers::= genvar_identifier { , genvar_identifier }
list_of interface identifiers::= interface identifier { unpacked dimension}

{ ., interface_identifier { unpacked_dimension} }

list_of modport_port_identifiers ::= port_identifier { , port_identifier }

| . port_identifier ([expression]) { . port_identifier ([expression])}

list_of net decl_assignments::=net_decl_assignment { , net_decl_assignment }
list_ of net identifiers::= net_identifier { unpacked dimension}

{ , net_identifier { unpacked dimension} }
list_of param_assignments ::= param_assignment { , param_assignment }
list_of port_identifiers::= port_identifier { unpacked dimension }

{ , port_identifier { unpacked dimension} }

| . port_identifier ([expression]) { . port_identifier ([expression])}

list_of udp_port_identifiers::= port_identifier { , port_identifier }

list_of specparam_assignments ::= specparam_assignment { , specparam_assignment }

list_of tf port_identifiers::= port_identifier { unpacked_dimension} [= expression]
{ ., port_identifier { unpacked dimension} [= expression] }

list_of tf variable identifiers::= port_identifier variable_dimension [= expression]

Copyright 2003 Accellera. All rights reserved. 283

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

{ , port_identifier variable_dimension [= expression] }
list_of type assignments::=type assignment { , type assignment }
list_of variable decl _assignments::= variable decl _assignment { , variable decl_assignment }
list of variable identifiers::= variable identifier variable dimension

{ , variable_identifier variable_dimension }

list_of variable port_identifiers::= port_identifier variable_dimension [= constant_expression]
{ , port_identifier variable_dimension [= constant_expression] }

A.2.4 Declaration assignments
const_assignment ::= const_identifier = constant_expression
defparam_assignment ::= hierarchical_parameter_identifier = constant_expression
net_decl_assignment ::= net_identifier = expression
param_assignment ::= parameter_identifier = constant_param_expression
specparam_assignment ::=
specparam_identifier = constant_mintypmax_expression
| pulse_control_specparam
type_assignment ::= type_identifier = data_type
pulse_control_specparam ::=
PATHPULSES$ = (reject_limit_vaue[, error_limit_vaue]) ;
| PATHPUL SE$specify_input_terminal_descriptor$specify_output_terminal_descriptor
= (reject_limit_value[, error_limit_value]) ;
error_limit_value ::= limit_value
reject_limit_value ::=limit_value
limit_value ::= constant_mintypmax_expression
variable_decl_assignment ::=
variable_identifier { variable_dimension} [= constant_expression] LRM 35
| variable identifier [] = new [constant_expression] [(variable _identifier)]
| class identifier [parameter_value assignment] = new [(list_of _arguments)]

A.2.5 Declaration ranges
unpacked_dimension ::= [dimension_constant_expression : dimension_constant_expression |
| [dimension_constant_expression |
packed dimensi on’ 1=
[dimension_constant_expression : dimension_constant_expression]
| unsized_dimension (i LRM 17
range ::= [msb_constant_expression : Isb_constant_expression]
associative _dimension ::=
[data_type]
]
variable_dimension
{ sized or_unsized dimension}
funpacked—dimensient-
1 H-
| associative _dimension
dpi_dimension-:= LRM 17

ble_di .

15

LRM 17

284 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

13-

unsized_dimension*::=1] LRM 17

sized or_unsized dimension ::= unpacked_dimension | unsized_dimension
A.2.6 Function declarations

function_data type® ::=
integer_vector_type{ packed dimension} [range]
| integer_atom_type
| type declaration_identifier { packed_dimension }
| non_integer_type
| struct [packed] {{ struct_union_member } } { packed dimension}
| union [packed] { { struct_union_member } } { packed dimension}
| enum [integer_type{ packed dimension}]
{ enum_identifier [= constant_expression] { , enum_identifier [= constant_expression] } }
| string
| chandle
| void
function_body_declaration ::=
[signing] [range_or_type]
[interface identifier .] function_identifier ;
{ function_item_declaration }
{ function_statement_or_null }
endfunction [: function_identifier]
| [signing] [range_or_type]
[interface _identifier .] function_identifier (funetion—perttist tf_port list) ;
{ block_item_declaration }
{ function_statement_or_null }
endfunction [: function_identifier]

function_declaration ::=
function [lifetime] function_body_declaration
function_item_declaration ::=
block _item_declaration
| { attribute_instance} tf_input_declaration ;
| { attribute_instance} tf_output_declaration ;
| { attribute_instance} tf_inout_declaration ;
| { attribute_instance} tf_ref declaration ;
| function—pertitemtf_port_item ::=
{ attribute_instance} tf_input_declaration
| { attribute _instance} tf_output_declaration
| { attribute _instance} tf_inout_declaration
| { attribute instance} tf ref declaration
| { attribute instance} port_typelist of tf port_identifiers
| { attribute _instance} tf_data typelist_of tf variable identifiers
Hstr=funet = fonet = LRM 7
tf_port_list ::=
tf_port_item{ , tf_port_item}
| list_of_port_identifiers{ , tf_port_item }
named_function_proto::=[signing] function_data_typefunction_identifier (list_of function_proto formals)
list_ of function proto formals::=
[{ attribute_instance } function proto formal { , { attribute instance} function_proto formal }]
function_proto_formal ::=

Copyright 2003 Accellera. All rights reserved. 285

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

tf_input_declaration
| tf_output_declaration
| tf_inout_declaration
| tf_ref_declaration
range or_type::=
{ packed_dimension } range
| function_data type
dpi_import_export ::=
import "DPI" [dpi_import_property] [¢_identifier =] dpi_function proto ;
| export " DPI" [c_identifier =] function function_identifier ;
dpi_import_property ::= context | pure

dpi_function J)rotoll'12 :_::function named_function_proto LRM 5

A.2.7 Task declarations
task_body declaration ::=
[interface identifier .] task_identifier ;
{ task_item_declaration }
{ statement_or_null }
endtask [: task_identifier]
| [interface_identifier .] task_identifier (task—perttist tf_port list) ; LRM 7
{ block_item_declaration }
{ statement_or_null }
endtask [: task_identifier]
task_declaration ::=task [lifetime] task_body_declaration
task_item_declaration ::=
block_item_declaration
| { attribute _instance} tf_input_declaration ;
| { attribute _instance} tf_output_declaration ;
| { attribute _instance} tf_inout_declaration ;
| { attribute instance} tf_ref declaration ;

tf_input_declaration ::=
input [signing] { packed _dimension} list_of tf port_identifiers
| input tf_data typelist_of tf variable identifiers

tf_output_declaration ::=
output [signing] { packed dimension} list_of tf port_identifiers
| output tf_data typelist_of tf variable identifiers

286 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

tf_inout_declaration ::=
inout [signing] { packed_dimension} list_of tf port identifiers
| inout tf_data typelist of tf variable identifiers
tf_ref _declaration ::=
[const] ref tf_data typelist_of tf variable identifiers
tf_data type::=
data type
| chandle
named_task_proto ::=task_identifier (task_proto_formal { , task_proto _formal })

task_proto_formal ::=
tf_input_declaration
| tf_output_declaration
| tf_inout_declaration
| tf_ref_declaration

A.2.8 Block item declarations
block_item_declaration ::=

{ attribute_instance } bloek—data—declaration data declaration LRM 35

| { attribute _instance} local _parameter declaration
| { attribute _instance} parameter_declaration ;

A.2.9 Interface declarations
modport_declaration ::= modport modport_item { , modport_item} ;
modport_item ::= modport_identifier (modport_ports declaration { , modport_ports declaration})
modport_ports_declaration ::=
{ attribute_instance } modport_simple_ports declaration LRM 13
| { attribute_instance’} modport_hierarchical_ports_declaration
| { attribute_instance} modport_tf_ports declaration
modport_simple_ports declaration ::=
input list_of modport_port_identifiers
| output list_of modport_port_identifiers
| inout list_of _modport_port_identifiers
| ref [data type] list_of modport_port_identifiers
modport_hierarchical_ports_declaration ::=
interface_instance_identifier [[constant_expression]] . modport_identifier
modport_tf_ports declaration ::=
import_export modport_tf port
modport_tf_port ::=
task named_task_proto { , named_task_proto }
| function named_function_proto { , named_function_proto }
| task_or_function_identifier { , task_or_function_identifier }
import_export ::= import | export

A.2.10 Assertion declarations

concurrent_assertion_item ::=
concurrent_assert_statement
| concurrent_cover_statement
| concurrent_assertion_item_declaration

concurrent_assert_statement ::=
[block identifier:] assert_property statement
concurrent_cover_statement ::=

Copyright 2003 Accellera. All rights reserved. 287

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

[block identifier:] cover_property statement
assert_property_statement::=
assert property (property_spec) action_block
| assert property (property_instance) action_block
cover_property_statement::=
cover property (property_spec) statement_or_null
| cover property (property_instance) statement_or_null
property_instance ::=
property_identifier [(actua_arg_list)]
concurrent_assertion_item_declaration ::=
property _declaration
| sequence_declaration
property_declaration ::=
property property_identifier [property_formal_list] ;
{ assertion_variable declaration }
property_spec
endproperty [: property_identifier]
property_formal_list ::=
(formal_list_item { , formal_list_item})
property _spec ::=
[clocking_event] [disableiff] (expression) [not] property_expr
| [disableiff (expression)] [not] multi_clock_property _expr
property_expr ::=
sequence_expr
| sequence_expr |- > [not] sequence_expr
| sequence_expr |=> [not] sequence_expr
| (property_expr)
multi_clock_property _expr ::=
multi_clock_sequence
| multi_clock_sequence |=> [not] multi_clock_sequence
| (multi_clock property _expr)
sequence_declaration ::=
sequence sequence_identifier [sequence_formal_list] ;
{ assertion_variable declaration }
sequence_spec;
endsequence [: sequence_identifier]
sequence formal_list ::=
(formal_list_item{ , formal_list item})
sequence_spec ::=
multi_clock_sequence
| sequence_expr
multi_clock_sequence::=
clocked sequence { ## clocked sequence}

clocked sequence ::=
clocking_event sequence_expr
sequence_expr ::=
cycle delay_range sequence_expr { cycle delay range sequence_expr }
| sequence_expr cycle delay range sequence_expr { cycle delay range sequence expr }
| expression { , function_blocking_assignment } [boolean_abbrev]
| (expression{, function blocking_assignment }) [boolean_abbrev]

288 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

| sequence _instance [sequence_abbrev |
| ('sequence expr) [sequence abbrev]
| sequence_expr and sequence_expr
| sequence_expr inter sect sequence_expr
| sequence_expr or sequence_expr
| first_match (sequence_expr)
| expression throughout sequence_expr
| sequence_expr within sequence_expr
cycle delay range::=
constant_expression
| ##[cycle_delay const_range_expression |
sequence_instance ::=
sequence _identifier [(actual_arg list)]
formal_list_item ::=
formal_identifier [= actual_arg_expr]
actual_arg_list ::=
(actual_arg_expr{ , actua_arg_expr})
| (.formal_identifier (actual_arg expr) { , . formal_identifier (actual_arg expr)})
actual_arg_expr ::=
event_expression
boolean_abbrev ::=
consecutive_repetition
| non_consecutive_repetition
| goto_repetition
sequence_abbrev ::= consecutive_repetition
consecutive_repetition ::=[* const_or_range_expression |
non_consecutive repetition ::=[*= const_or_range_expression |
goto_repetition ::=[*- > const_or_range_expression |
const_or_range_expression ::=
constant_expression
| cycle delay const range expression
cycle delay const_range expression ::=
constant_expression : constant_expression
| constant_expression : $
assertion_variable declaration ::=
data typelist_of variable identifiers;

A.3 Primitive instances

A.3.1 Primitive instantiation and instances
gate instantiation ::=
cmos_switchtype [delay3] cmos_switch instance { , cmos_switch_instance} ;
| enable gatetype [drive strength] [delay3] enable gate instance{ , enable gate instance} ;
| mos_switchtype [delay3] mos_switch_instance{ , mos_switch instance} ;
| n_input_gatetype [drive_strength] [delay2] n_input_gate instance{ , n_input_gate instance} ;
| n_output_gatetype [drive_strength] [delay2] n_output_gate instance
{ ,n_output_gate instance} ;
| pass_en_switchtype [delay2] pass _enable switch instance{ , pass enable switch_instance} ;
| pass_switchtype pass_switch_instance{ , pass switch instance} ;
| pulldown [pulldown_strength] pull_gate instance{ , pull_gate instance} ;
| pullup [pullup_strength] pull_gate instance{ , pull_gate instance} ;

Copyright 2003 Accellera. All rights reserved. 289

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

cmos_switch_instance ::= [name_of _gate instance] (output_terminal , input_termina ,

ncontrol_terminal , pcontrol_terminal)
enable_gate instance ::=[name_of_gate instance] (output_terminal , input_terminal , enable_terminal)
mos_switch_instance ::= [name_of _gate instance] (output_terminal , input_terminal , enable terminal)
n_input_gate instance ::= [name_of gate instance] (output_terminal , input_terminal { , input_termina })

n_output_gate instance ::=[name_of gate instance] (output_terminal { , output_termina } ,
input_terminal)

pass_switch_instance ::= [name_of gate instance] (inout_terminal , inout_terminal)

pass_enable switch instance ::= [name_of gate instance] (inout_termina , inout_termina ,
enable termina)

pull_gate instance ::= [name_of gate instance] (output_terminal)

name_of gate instance ::= gate instance_identifier { range}

A.3.2 Primitive strengths

pulldown_strength ::=
(‘strengthO, strengthl)
| (strengthl, strengthO)
| (strengthO)

pullup_strength ::=
(strengthO, strengthl)

| (strengthl, strengthO)

| (strengthl)
A.3.3 Primitive terminals
enable terminal ::= expression
inout_terminal ::= net_lvalue
input_terminal ::= expression
ncontrol_terminal ::= expression
output_terminal ::= net_lvalue
pcontrol_terminal ::= expression
A.3.4 Primitive gate and switch types
cmos_switchtype ::= cmos | rcmos
enable gatetype ::= bufifO | bufifl | notifO | notifl
mos_switchtype ::= nmos | pmos | rnmos | rpmos
n_input_gatetype ::= and | nand | or | nor | xor | xnor
n_output_gatetype ::= buf | not
pass_en_switchtype ::=tranifO | tranifl|rtranifl | rtranifO
pass_switchtype::=tran |rtran

A.4 Module, interface and generated instantiation
A.4.1 Instantiation

A.4.1.1 Module instantiation
module_instantiation ::=
module_identifier [parameter_value assignment] module_instance { , module_instance} ;
parameter_value assignment ::=# (list_of _parameter_assignments)
list_of parameter_assignments::=
ordered_parameter_assignment { , ordered_parameter_assignment }

290 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

| named_parameter_assignment { , named_parameter_assignment }
ordered_parameter_assignment ::= expression | data_type
named_parameter_assignment ::=
. parameter_identifier ([expression])
| . parameter_identifier (data type)
module_instance ::= name_of_instance ([list_of port_connections])
name_of instance ::= module_instance_identifier { range}
list_of port_connections::=
ordered_port_connection { , ordered_port_connection }

| dot_named_port_connection { , dot_named_port_connection }
| { named_port_connection, } dot_star_port_connection { , named_port_connection }

ordered_port_connection ::={ attribute_instance} [expression]
named_port_connection ::= { attribute instance} . port_identifier ([expression])
dot_named_port_connection ::=
{ attribute_instance} .port_identifier
| named_port_connection
dot_star_port_connection ::= { attribute instance} .*

A.4.1.2 Interface instantiation
interface instantiation ::=
interface_identifier [parameter_value_assignment | module_instance { , module_instance } ;

A.4.4.1 Program instantiation

program_instantiation ::=
program_identifier [parameter_value _assignment] program_instance { , program_instance} ;
program_instance ::= program_instance_identifier { range} ([list_of_port_connections])

A.4.2 Generated instantiation

A.4.2.1 Generated module instantiation
generated_module_instantiation ::= gener ate { generate_module_item } endgener ate
generate_module_item ::=
generate_module_conditional _statement

| generate_module case statement

| generate_module loop_statement

| [generate block identifier :] generate_module block

| module or_generate item

generate_module_conditional_statement ::=
if (cconstant_expression) generate_module_item [else generate_module_item]
generate_module case statement ::=
case (constant_expression) genvar_module _case item { genvar_module case item }endcase
genvar_module_case item ::=
constant_expression { , constant_expression } : generate_module_item
| default [:] generate_module_item
generate_module loop_statement ::=
for (genvar_decl_assignment ; constant_expression ; genvar_assignment)
generate_module_named_block
genvar_assignment ::=
genvar_identifier assignment_operator constant_expression
| inc_or_dec_operator genvar_identifier

Copyright 2003 Accellera. All rights reserved. 291

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

| genvar_identifier inc_or_dec_operator
genvar_decl_assignment ::=
[genvar] genvar_identifier = constant_expression
generate_module_named block ::=
begin : generate_block identifier { generate_ module item} end [: generate block identifier]
| generate block_identifier : generate_module_block

generate_module_block ::=
begin [: generate block_identifier] { generate_module_item} end [: generate_block_identifier]

A.4.2.2 Generated interface instantiation
generated_interface instantiation ::= generate { generate_interface item} endgenerate
generate interface item ::=
generate interface conditional _statement

| generate interface case statement

| generate interface loop_statement

| [generate _block identifier :] generate interface block

| interface_or_generate item

generate_interface_conditional_statement ::=
if (cconstant_expression) generate interface item [else generate interface_item |
generate interface case statement ::=
case (constant_expression) genvar_interface case item { genvar_interface case item} endcase
genvar_interface case item ::=
constant_expression { , constant_expression } : generate_interface_item
| default [:] generate_interface item
generate interface loop_statement ::=
for (genvar_decl_assignment ; constant_expression ; genvar_assignment)
generate interface_ named block
generate_interface_named_block ::=
begin : generate block_identifier { generate interface item} end [: generate_block_identifier]
| generate block_identifier : generate interface block
generate interface block ::=
begin [: generate block_identifier]
{ generate interface item}
end [: generate_block_identifier]

A.5 UDP declaration and instantiation

A.5.1 UDP declaration
udp_nonansi_declaration ::=

{ attribute_instance} primitive udp_identifier (udp_port_list) ;
udp_ansi_declaration ::=

{ attribute_instance} primitive udp_identifier (udp_declaration port_list) ;

udp_declaration ::=

udp_nonansi_declaration udp_port_declaration { udp_port_declaration }
udp_body

endprimitive[: udp_identifier]

udp_ansi_declaration udp_body endprimitive[: udp_identifier]

extern udp_nonansi_declaration

extern udp_ansi_declaration

{ attribute_instance} primitive udp_identifier (.*) ;
{ udp_port_declaration } udp_body endprimitive[: udp_identifier]

292 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

udp_declaration ::=
{ attribute_instance} primitive udp_identifier (udp_port_list) ;
udp_port_declaration { udp_port_declaration }
udp_body
endprimitive
| { attribute _instance} primitive udp_identifier (udp_declaration port_list) ;
udp_body
endprimitive
A.5.2 UDP ports
udp_port_list ::= output_port_identifier , input_port_identifier { , input_port_identifier }
udp_declaration_port_list ::= udp_output_declaration , udp_input_declaration { , udp_input_declaration }
udp_port_declaration ::=
udp_output_declaration ;
| udp_input_declaration ;
| udp_reg_declaration ;
udp_output_declaration ::=
{ attribute_instance} output port_identifier
| { attribute_instance} output reg port_identifier [= constant_expression]

udp_input_declaration ::= { attribute instance} input list_of _udp_port_identifiers
udp_reg_declaration ::= { attribute instance} reg variable identifier

A.5.3 UDP body

udp_body ::= combinational_body | sequential_body

combinational_body ::=table combinational_entry { combinational_entry } endtable
combinational_entry ::=level_input_list : output_symbol ;

sequential_body ::=[udp_initial_statement] table sequential_entry { sequential_entry } endtable
udp_initial_statement ::= initial output_port_identifier = init_va ;

init_val ::=1'b0 | 1'b1|1'bx | 1'bX | 'BO|1'B1|1'Bx | 1'BX |1]0

sequential_entry ::=seq input_list: current_state : next_state ;

seq_input_list ::=level _input_list | edge_input_list

level input_list ::=level_symbol { level_symbol }

edge input_list ::={ level_symbol } edge_indicator { level_symbol }

edge indicator ::= (level_symbol level symbol) | edge symbol

current_state ::= level_symbol

next_state ::= output_symbol | -

output_symbol ::=0]1]|x|X

level_symbol ::=0|1|x|X|?|b]|B

edge symbol ::=r |[R[f|[F|p|P|n|N|*

A.5.4 UDP instantiation

udp_instantiation ::= udp_identifier [drive_strength] [delay2] udp_instance{ , udp_instance } ;
udp_instance ::= [name_of_udp_instance] { range} (output_terminal , input_terminal { , input_terminal })
name_of udp_instance ::= udp_instance identifier { range }

A.6 Behavioral statements

A.6.1 Continuous assignment and net alias statements
continuous_assign ::=

Copyright 2003 Accellera. All rights reserved. 293

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

assign [drive_strength] [delay3] list_of net_assignments;
| assign [delay_control] list_of variable assignments;
list_of net assignments::=net_assignment { , net_assignment }
list_of variable assignments::= variable assignment { , variable_assignment }
net_aias::= aliasnet_Ivalue = net_Ivalue;
net_assignment ::= net_Ivalue = expression
A.6.2 Procedural blocks and assignments
initial_construct ::= initial statement_or_null
always construct ::= always statement
combinational _construct ::= always comb statement
latch_construct ::= always latch statement
ff_construct ::= always ff statement
final_construct ::= final function_statement
blocking_assignment ::=
variable_Ivalue = delay_or_event_control expression
| hierarchical_variable identifier = new [constant_expression | [(variable _identifier)]
| class identifier [parameter_value assignment] = new [(list_of arguments)]
| class identifier . randomize[()] with constraint_block ;
| operator_assignment
operator_assignment ::= variable |value assignment_operator expression
assignment_operator ::=
= 4= 1= %= /= %= &= | |5 "= | <<= | >>= | <<<= | >>>=
nonblocking_assignment ::= variable Ivalue <=[delay_or_event_control] expression

procedural_continuous_assignments ::=
assign variable_assignment
| deassign variable Ivalue
| force variable _assignment
| force net_assignment
| release variable lvalue
| release net_lvalue

function_blocking_assignment ::= variable lvalue = expression

opster—srtemeae an
— = LRM 18
funetion—statement
| {attribute—nstance)+
variable_assignment ::=
operator_assignment
| inc_or_dec_expression

A.6.3 Parallel and sequential blocks
action_block ::=
statement_or_null
| [statement] else statement_or_null
function_seq_block ::=
begin [: block_identifier { block_item_declaration}] { function_statement_or_null }
end [: block_identifier]
seq_block ::=
begin [: block identifier] { block_item declaration } { statement_or_null }
end [: block_identifier]

294 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

par_block ::=
fork [: block_identifier] { block item declaration } { statement_or_null }
join_keyword [: block_identifier]

join_keyword ::=join |join_any | join_none

A.6.4 Statements
statement_or_null ::=
statement
| { attribute _instance} ;
statement ::= [block_identifier :] statement_item
statement_item ::=
{ attribute_instance} blocking_assignment ;
| { attribute_instance} nonblocking_assignment ;
| { attribute _instance} procedural_continuous_assignments ;
| { attribute_instance} case statement
| { attribute_instance} conditional _statement
| { attribute_instance} inc_or_dec_expression ;
| { attribute_instance} function_call ;
| { attribute_instance} disable statement
| { attribute_instance} event_trigger
| { attribute_instance } loop_statement
| { attribute_instance} jump_statement
| { attribute_instance} par_block
| { attribute_instance} procedural_timing_control _statement
| { attribute_instance} seq block
| { attribute_instance} system task_enable
| { attribute_instance} task_enable
| { attribute_instance} wait_statement
| { attribute_instance} procedural_assertion_item
| { attribute_instance} clocking_drive

function_statement ::= [block_identifier :] function_statement_item

function_statement_or_null ::=
function_statement
| { attribute_instance} ;
function_statement_item ::=
{ attribute_instance } function_blocking_assignment ;
| { attribute _instance} function case statement
| { attribute instance} function_conditional_statement
| { attribute _instance} inc_or_dec_expression ;
| { attribute instance} function call ;
| { attribute _instance} function loop_statement
| { attribute_instance} jump_statement
| { attribute instance} function_seq block
| { attribute instance} disable statement
| { attribute _instance} system task_enable

A.6.5 Timing control statements

procedural _timing_control _statement ::=
procedural_timing_control statement_or_null

delay_or_event_control ::=
delay_control
| event_control

Copyright 2003 Accellera. All rights reserved.

295

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

| repeat (expression) event_control

delay control ::=
#delay value
| # (mintypmax_expression)
event_control ::=

@ event—identifier hierarchical_event_identifier LRM 18

| @ (event_expression)
| @
| @(*)
event_expression ::=
[edge identifier] expression [iff expression]
| event_expression or event_expression
| event_expression , event_expression
procedural _timing_control ::=
delay_control
| event_control
jump_statement ::=
return [expression] ;
| break ;
| continue;
wait_statement ::=
wait (expression) statement_or_null
| wait fork ;
| wait_order (hierarchical_identifier [, hierarchical _identifier]) action_block
event_trigger ::=
-> hierarchical_event_identifier ;
[->>[delay_or_event_control] hierarchical_event_identifier ;
disable statement ::=
disable hierarchical_task_identifier ;
| disable hierarchical_block_identifier ;
| disablefork ;

A.6.6 Conditional statements

conditional_statement ::=
[unique _priority] if (expression) statement_or_null [else statement_or_null]
| if_else if statement
if ese if statement ::=
[unique_priority] if (expression) statement_or_null
{ else[unique _priority] if (expression) statement_or_null }
[else statement_or_null]
function_conditional_statement ::=
[unique priority] if (expression) function_statement_or_null
[else function_statement_or_null]
| function _if else if statement
function_if_else if statement ::=
[unique_priority] if (expression) function_statement_or_null
{ else[unique_priority] if (expression) function_statement_or_null }
[else function_statement_or_null]
unique_priority ::= unique| priority

A.6.7 Case statements

296 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

case_statement ::=
[unique_priority] case (expression) case_item{ case item} endcase
| [unique _priority] casez (expression) case item{ case item} endcase
| [unique_priority] casex (expression) case item{ case item} endcase
case item::=
expression{ , expression} : statement_or_null
| default [:] statement_or_null
function_case statement ::=
[unique_priority] case (expression) function_case item { function case item} endcase

| [unique _priority] casez (expression) function case item { function_case item} endcase
| [unique _priority] casex (expression) function_case item{ function_case item} endcase

function_case item ::=
expression{ , expression} : function_statement_or_null
| default [:] function_statement_or_null

A.6.8 Looping statements

function_loop_statement ::=
forever function_statement_or_null
| repeat (expression) function_statement_or_null
| while (' expression) function_statement_or_null
| for (variable decl_or_assignment { , variable _decl_or_assignment } ; expression ;
variable_assignment { , variable_assignment }) function_statement_or_null
| do function_statement_or_null while (expression) ;

loop_statement ::=
forever statement_or_null
| repeat (expression) statement_or_null
| while (expression) statement_or_null
| riable-clecl—or—ass - expression -variable =
| for (variable decl_or_assignment { , variable _decl_or_assignment } ; expression ;
variable assignment { , variable _assignment }) statement_or_null
| do statement_or_null while (expression) ;

variable decl_or_assignment ::=

data—typetst—of—variable-identifiers—or—assighaments variable_declaration

| variabl e_assignment

A.6.9 Task enable statements
system_task enable ::= system task identifier [([expression] { , [expression]})];
task_enable::= hierarchical_task_identifier [(list_of arguments)];

A.6.10 Assertion statements
procedural_assertion item ::=
assert_property_statement
| cover_property_statement
| immediate assert_statement
immediate assert statement ::=
assert (expression) action_block

A.6.11 Clocking domain
clocking_decl ::=[default] clocking [clocking_identifier] clocking_event ;
{ clocking_item}
endclocking
clocking_event ::=
@ identifier

Copyright 2003 Accellera. All rights reserved.

297

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

| @ (event_expression)
clocking_item :=
default default_skew ;
| clocking_direction list_of _clocking_decl_assign ;
| { attribute_instance} concurrent_assertion_item_declaration
default_skew ::=
input clocking_skew
| output clocking skew
| input clocking_skew output clocking_skew
clocking_direction ::=
input [clocking_skew]
| output [clocking_skew]
| input [clocking_skew] output [clocking_skew]
| inout
list_of clocking_decl_assign ::= clocking_decl_assign{ , clocking_decl_assign}
clocking_decl_assign ::=signal_identifier [= hierarchical_identifier]
clocking_skew ::=
edge identifier [delay_control]
| delay_control
clocking_drive ::=
clockvar_expression <= [cycle delay]| expression
| cycle delay clockvar_expression <= expression
cycle delay ::=## expression
clockvar ::= clocking_identifier . identifier
clockvar_expression ::=
clockvar range
| clockvar [range_expression |

A.7 Specify section

A.7.1 Specify block declaration
specify_block ::= specify { specify_item } endspecify
specify_item ::=
specparam_declaration
| pulsestyle declaration
| showcancelled_declaration
| path_declaration
| system_timing_check
pulsestyle declaration ::=
pulsestyle onevent list_of_path outputs ;
| pulsestyle ondetect list_of path_outputs ;
showcancelled_declaration ::=
showcancelled list_of path_outputs ;
| noshowcancelled list_of path_outputs;

A.7.2 Specify path declarations
path_declaration ::=
simple_path declaration ;
| edge sensitive path declaration ;
| state_dependent_path declaration ;
simple_path declaration ::=

298 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

parallel_path description = path_delay value
| full_path description = path_delay value

parallel_path description ::=

(' specify_input_terminal_descriptor [polarity_operator | => specify_output_terminal_descriptor)
full_path_description ::=

(list_of path inputs[polarity_operator | *>list_of path_outputs)
list_of path_inputs::=

specify_input_terminal_descriptor { , specify_input_terminal_descriptor }
list_ of path_outputs::=

specify_output_terminal_descriptor { , specify _output_terminal_descriptor }
A.7.3 Specify block terminals
specify_input_terminal_descriptor ::=

input_identifier [[constant_range_expression | |
specify_output_terminal_descriptor ::=

output_identifier [[constant_range_expression | |
input_identifier ::= input_port_identifier | inout_port_identifier | interface identifier.port_identifier LRM 6
output_identifier ::= output_port_identifier | inout_port_identifier | interface identifier.port_identifier

A.7.4 Specify path delays
path_delay value::=
list_of path_delay expressions
| (list_of path delay expressions)
list_ of path _delay expressions::=
t_path_delay_expression
| trise_path delay expression, tfall_path delay expression
| trise_path_delay expression, tfall_path_delay expression, tz_path delay expression
| tO1_path delay expression, t10_path_delay_expression , t0z_path delay_expression,
tz1_path_delay_expression, t1z_path delay_expression , tzO_path_delay_expression
| t01_path delay expression, t10_path _delay expression, t0z_path delay expression,
tz1 path delay_expression, t1z path delay expression,tzO path_delay expression,
tOx_path_delay_expression , tx1_path_delay_expression , t1x_path delay_expression ,
tx0_path_delay_expression, txz_path_delay _expression, tzx_path _delay_expression
t path delay expression ::= path_delay_expression
trise_path_delay _expression ::= path_delay_expression
tfall_path delay expression ::= path_delay expression
tz_path_delay_expression ::= path_delay _expression
tO1 path_delay expression ::= path_delay expression
t10_path_delay _expression ::= path_delay expression
t0z_path delay expression ::= path_delay expression
tz1 path delay expression ::= path_delay expression
tlz path delay expression ::= path_delay expression
tz0_path_delay expression ::= path_delay_expression
tOx_path_delay_expression ::= path_delay_expression
tx1 path_delay expression ::= path _delay expression
tix_path_delay_expression ::= path_delay_expression
tx0_path_delay expression ::= path_delay_expression
txz_path_delay expression ::= path_delay_expression

Copyright 2003 Accellera. All rights reserved. 299

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

tzx_path_delay expression ::= path_delay_expression
path_delay_expression ::= constant_mintypmax_expression
edge sensitive path_declaration ::=
parallel_edge sensitive path description = path_delay_value
| full_edge sensitive path description = path_delay value
parallel_edge sensitive path description ::=
([edge_identifier] specify_input_terminal_descriptor =>
(specify_output_terminal_descriptor [polarity_operator] : data_source_expression))
full_edge sensitive path_description ::=
([edge_identifier] list_of path_inputs*>
(list_of path outputs|[polarity_operator] : data source expression)) LRM 18
data_source_expression ::= expression
edge identifier ::= posedge | negedge
state_dependent_path_declaration ::=
if (module path_expression) simple_path _declaration
| if (module path_expression) edge sensitive path_declaration
| ifnone simple_path_declaration
polarity_operator ::= + | -

A.7.5 System timing checks

A.7.5.1 System timing check commands
system_timing_check ::=
$setup_timing_check
| $hold_timing_check
| $setuphold_timing_check
| $recovery_timing_check
| $removal_timing_check
| $recrem_timing_check
| $skew_timing_check
| $timeskew_timing_check
| $fullskew_timing_check
| $period_timing_check
| $width_timing_check
| $nochange_timing_check
$setup_timing_check ::=
$setup (data_event , reference_event , timing_check_limit [, [notify_reg]]) ;
$hold_timing_check ::=
$hold (reference_event , data_event , timing_check limit [, [notify reg]]);
$setuphold_timing_check ::=
$setuphold (reference_event , data_event , timing_check_limit , timing_check_limit
[, [notify reg] [, [stamptime_condition] [, [checktime_condition]
[. [delayed reference] [, [delayed data]]]]]]):
$recovery_timing_check ::=
$recovery (reference event , data event , timing_check_limit [, [notify reg]]) ;
$removal_timing_check ::=
$removal (reference_event , data_event , timing_check_limit [, [notify_reg]]);
$recrem_timing_check ::=
$recrem (reference_event , data_event , timing_check_limit , timing_check_limit
[, [notify reg] [, [stamptime_condition] [, [checktime _condition]
[, [delayed reference] [, [delayed data]]]]]]):

300 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

$skew_timing_check ::=
$skew (reference_event , data_event , timing_check_limit [, [notify_reg]]) ;
$timeskew_timing_check ::=
$timeskew (reference_event , data_event , timing_check _limit
[, [notify_reg] [, [event_based flag] [, [remain_active flag]]]]);

$fullskew_timing_check ::=

$fullskew (reference event , data_event , timing_check limit , timing_check_limit

[, [notify_reg] [, [event_based flag] [, [remain_active flag]]]]);

Pperiod_timing_check ::=

$period (controlled_reference_event , timing_check_limit [, [notify_reg]]);
$width_timing_check ::=

$width (controlled_reference_event , timing_check_limit , threshold [, [notify reg]]) ;
$nochange_timing_check ::=

$nochange (reference_event , data_event , start_edge offset,

end edge offset [, [notify reg]]);

A.7.5.2 System timing check command arguments
checktime_condition ::= mintypmax_expression
controlled _reference_event ::= controlled _timing_check event
data_event ::=timing_check event
delayed data::=

terminal_identifier

| terminal_identifier [constant_mintypmax_expression |

delayed reference ::=

terminal_identifier

| terminal_identifier [constant_mintypmax_expression |

end_edge _offset ::= mintypmax_expression
event_based_flag ::= constant_expression
notify_reg ::= variable_identifier
reference_event ::= timing_check_event
remain_active flag ::= constant_mintypmax_expression
stamptime_condition ::= mintypmax_expression
start_edge offset ::= mintypmax_expression
threshold ::=constant_expression
timing_check_limit ::= expression

A.7.5.3 System timing check event definitions
timing_check_event ::=

[timing_check event_control] specify_terminal_descriptor [& & & timing_check condition]

controlled_timing_check_event ::=

timing_check _event_control specify_terminal_descriptor [& & & timing_check_condition]

timing_check_event_control ::=
posedge
| negedge
| edge_control_specifier
specify_terminal _descriptor ::=
specify_input_terminal _descriptor
| specify_output_terminal_descriptor

Copyright 2003 Accellera. All rights reserved.

301

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

edge control_specifier ::= edge [edge_descriptor { , edge descriptor }]
edge _descriptor! ::=01]10|z_or_x zero_or_one|zero or_one z_or x
zero or_ one::=0|1
zorx:=x|X|z|z
timing_check_condition ::=
scalar_timing_check_condition
| (scalar_timing_check condition)
scalar_timing_check condition ::=
expression
| ~ expression
| expression == scalar_constant
| expression === scalar_constant
| expression != scalar_constant
| expression !== scalar_constant
scalar_constant ::=1'b0 | 1'b1|1'BO|1'B1|'b0|'b1|'BO|'B1]|1|0

A.8 Expressions

A.8.1 Concatenations
concatenation ::=
{ expression{ , expression} }
| { struct_member_label : expression { , struct_ member_label : expression} }
| { array_member_label : expression { , array_member_label : expression} }
constant_concatenation ::=
{ constant_expression { , constant_expression} }
| { struct_member_label : constant_expression{ , struct member_label : constant_expression } }
| { array_member_labdl : constant_expression { , array_member_label : constant_expression } }
struct_member_label ::=
default
| type_identifier
| variable_identifier
array_member_|abel ::=
default
| type identifier
| constant_expression
constant_multiple_concatenation ::= { constant_expression constant_concatenation }
module_path _concatenation ::= { module path_expression { , module path_expression} }
module_path multiple_concatenation ::= { constant_expression module_path_concatenation }
multiple_concatenation ::= { constant_expression concatenation }

A.8.2 Function calls

constant_function_call ::= function_identifier { attribute instance}
[(list_of constant_arguments)]
function_call ::= hierarchical_function_identifier { attribute instance} [(list_of arguments)]
list_of arguments::=
[expression] { , [expression] }
| . identifier ([expression]) { , . identifier ([expression]) }
list_of constant_arguments::=
[constant_expression] { , [constant_expression] }
| . identifier ([constant_expression]) { , . identifier ([constant_expression]) }

302 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

system_function_call ::= system_function_identifier [(expression{ , expression})]

A.8.3 Expressions
base_expression ::= expression
inc_or_dec_expression ::=
inc_or_dec_operator { attribute_instance } variable Ivalue
| variable |value{ attribute instance} inc_or_dec operator
conditional_expression ::= expressionl ? { attribute instance} expression2 : expression3
constant_base _expression ::= constant_expression
constant_expression ::=
constant_primary
| unary_operator { attribute instance} constant_primary
| constant_expression binary_operator { attribute_instance} constant_expression
| constant_expression ? { attribute instance} constant_expression : constant_expression
| string_literal
constant_mintypmax_expression ::=
constant_expression
| constant_expression : constant_expression : constant_expression
constant_param_expression ::=
constant_expression
constant_range_expression ::=
constant_expression
| msb_constant_expression : Isb_constant_expression
| constant_base_expression +: width_constant_expression
| constant_base _expression -: width_constant_expression
dimension_constant_expression :;= constant_expression
expressionl ::= expression
expression2 ::= expression
expression3d ::= expression
expression ::=
primary
| unary_operator { attribute instance} primary
| inc_or_dec expression
| (operator_assignment)
| expression binary_operator { attribute instance} expression
| conditional _expression
| string_literal
| inside_expression
inside_expression ::= expression inside range_list_or_array
range_list_or_array ::=
variable identifier
| { value range{ , value range} }
value range ::=
expression
| [expression : expression |
Isb_constant_expression ::= constant_expression
mintypmax_expression ::=
expression
| expression : expression : expression

Copyright 2003 Accellera. All rights reserved. 303

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

module path _conditional_expression ::= module_path_expression ? { attribute instance }
module path _expression : module_path_expression
module_path _expression ::=
module_path_primary
| unary_module_path operator { attribute_instance } module_path_primary
| module_path_expression binary_module_path operator { attribute instance }
module_path_expression
| module_path_conditional_expression
module_path_mintypmax_expression ::=
module_path_expression
| module_path_expression : module_path_expression : module_path_expression
msb_constant_expression ::= constant_expression
range_expression ::=
expression
| msb_constant_expression : Isb_constant_expression
| base_expression +: width_constant_expression
| base_expression -: width_constant_expression
width_constant_expression ::= constant_expression

A.8.4 Primaries
constant_primary ::=
constant_concatenation
| constant_function_call
| (constant_mintypmax_expression)
| constant._multiple_concatenation
| genvar_identifier
| number
| parameter_identifier
| specparam_identifier
| casting_type’ (constant_expression)
| casting_type’ constant_concatenation
| casting_type’ constant_multiple_concatenation

| time_literal
|opLpz'zx]'x LRM 8
module_path _primary ::=
number
| identifier

| module path_concatenation
| module_path_multiple_concatenation
| function_call
| system_function_call
| constant_function_call
| (module_path_mintypmax_expression)
primary ::=
number
| implicit_class handle hierarchical_identifier { [expression] } [[range_expression|]
[. method_identifier { attribute_instance} [(expression{ , expression})]]
| concatenation
| multiple_concatenation
| function_call
| system_function_call
| constant_function_call

304 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

| class identifier :: { class identifier :: } identifier
| (mintypmax_expression)

| casting_type’ (expression)

| void’ (function_call)

| casting_type’ concatenation

| casting_type’ multiple_concatenation

| time_literal
Inull I'z|"Z|'x] LRM 8
time literal” ::=

unsigned_number time_unit
| fixed_point_number time_unit
time_unit ::=s|ms|us|ns|ps|fs|step
implicit_class handle” ::=[this.] | [super.]
A.8.5 Expression left-side values
net_Ivaue::=
hierarchical_net_identifier { [constant_expression] } [[constant_range expression]]
| { net_lvalue{ , net_lvalue} }
variable Ivalue::=
hierarchical_variable identifier { [expression]} [[range_expression]]
| { variable lvalue{ , variable Ivalue} }
A.8.6 Operators
unary_operator ::=

I & =& T
binary_operator ::=
H-1*11]% | == |1= | === |1== | =2= | 17= | && | ||| **

| <I<=[>[>= & [||" [~ | >> | << | >>> | <<<
inc_or_dec_operator ::= ++ | --
unary_module path_operator ::=
Pl~T& =& [T~ 1 7
binary_module path operator ::=
== [=1&& & [T [~

A.8.7 Numbers
number ::=
decimal_number
| octal_number
| binary_number
| hex_number
| real_number
decimal_number ::=
unsigned_number
| [size] decimal_base unsigned_number
| [size] decimal_base x_digit{ }
| [size] decimal_base z digit{ }
binary_number ::=[size] binary_base binary value
octal_number ::=[size] octal_base octal_value
hex_number ::=[size] hex_base hex_value

Copyright 2003 Accellera. All rights reserved. 305

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

sign:=+|-
size::=non_zero_unsigned_number
non_zero_unsi gned_numberl ::=non_zero_decimal_digit{ _ | decimal_digit}
real_numberl ::=
fixed_point_number

| unsigned_number [. unsigned_number] exp [sign] unsigned_number
fixed_point_number? ::= unsigned_number . unsigned_number
exp:=e|E
unsigned_number’ ::= decimal_digit{ | decimal_digit }
binary val uel ::= bi nary digit{ |binary digit}
octal_value™ ::=octa_digit{ |octa _digit}
hex_value! ::= hex_digit{ _|hex_digit}
decimal_base! ::="[g|S]d | '[|S]D
binary base! ::="[s5]b | '[sS]B
octal_base! ::="[gS]o | '[s|S]O
hex_base! ::="[s5]h | '[s|S]H
non_zero_decimal_digit::=1[2|3]|4]5|6|7]8]9
decimal_digit::=0]1]2|3|4|5|6]7]8]9
binary digit ::=x_digit|z digit|0|1
octal_digit ::= x_digit | z_digit|0|1]2]3]4|5|6|7
hex_digit ::= x_digit | z_digit |0|1|2|3|4|5|6|7|8|9|a|b|c|d|e|f|A|B|C|D|E|F
x_digit :=x | X
z digit::=z|2]?
A.8.8 Strings
string_literal ::=" { Any_ASCII_Characters} "

A.9 General

A.9.1 Attributes
attribute_instance ::= (* attr_spec { , attr_spec} *)
attr_spec ::= attr_name [= constant_expression |
attr—hame=-constapt—expressien-
| attr—Rarme
attr_name ::= identifier
A.9.2 Comments

comment ::=
one_line_comment
| block_comment

one_line_comment ::=// comment_text \n
block_comment ::= /* comment_text */
comment_text ::={ Any_ASCII_character }

A.9.3 Identifiers
block_identifier ::= identifier

306 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

c_identifier’ :=[a-zA-Z_]{ [azA-Z0-9_]}
cell_identifier ::= identifier
class identifier ::= identifier
clocking_identifier ::= identifier
config_identifier ::= identifier
constraint_identifier ::= identifier
const_identifier ::= identifier
enum_identifier ::= identifier
escaped_hierarchical_identifier® ::=

escaped_hierarchical_branch { .simple_hierarchical_branch | .escaped_hierarchical _branch }
escaped_identifier ::=\ {any_ASCII_character_except_white_space} white _space
formal_identifier ::= identifier
function_identifier ::= identifier
gate instance identifier ::= identifier
generate_block_identifier ::= identifier
genvar_identifier ::= identifier
hierarchical_block_identifier ::= hierarchical_identifier
hierarchical_event_identifier ::= hierarchical_identifier
hierarchical_function_identifier ::= hierarchical_identifier
hierarchical_identifier ::=

simple_hierarchical _identifier

| escaped_hierarchical_identifier

hierarchical_parameter_identifier ::= hierarchical_identifier
hierarchical_net_identifier ::= hierarchical_identifier
hierarchical_variable identifier ::= hierarchical_identifier
hierarchical_task identifier ::= hierarchical_identifier
identifier ::=

simple_identifier

| escaped_identifier

interface identifier ::= identifier
interface instance identifier ::= identifier
inout_port_identifier ::= identifier
input_port_identifier ::= identifier
instance_identifier ::= identifier
library identifier ::= identifier
method_identifier ::= identifier
modport_identifier ::= identifier
module_identifier ::= identifier
module_instance_identifier ::= identifier
net_identifier ::= identifier
output_port_identifier ::= identifier
parameter_identifier ::= identifier
port_identifier ::= identifier

Copyright 2003 Accellera. All rights reserved. 307

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

program_identifier ::= identifier
program_instance_identifier ::= identifier
property_identifier ::= identifier
sequence_identifier ::= identifier
signal_identifier ::= identifier
simple_hierarchical_identifier® ::= simple_hierarchical_branch [. escaped_identifier |
simple_identifier? :=[a-zA-Z_]{ [a-zA-Z0-9 $]}
specparam_identifier ;= identifier
system_function_identifier® ::= $[a-zA-20-9 $]{ [a-zA-Z0-9 $]1}
system_task_identifier® ::= $[a-zA-Z0-9 $]{ [a-zA-Z0-9 $]1}
task_or_function_identifier ::= task_identifier | function_identifier
task_identifier ::= identifier
terminal_identifier ::= identifier

¥ ¥ i g ¥ .
topmodule_identifier ::= identifier
type declaration_identifier ::=type identifier { unpacked_dimension }
type_identifier ::= identifier
udp_identifier ::= identifier
udp_instance identifier ::= identifier
variable identifier ::= identifier
A.9.4 Identifier branches

simple_hierarchical_branch® ::=
simple_identifier { [unsigned number]} [{ . smple_identifier { [unsigned number]} }]

escaped_hierarchical_branch® ::=
escaped_identifier { [unsigned_number] } [{ . escaped_identifier { [unsigned_number]} }]

A.9.5 White space
white_space ::= space | tab | newline | eof®

NOTES

1) Embedded spaces areillegdl.

2) A simple identifier, c_identifier, and arrayed reference shall start with an apha or underscore ()
character, shall have at |east one character, and shall not have any spaces.

3) The period (.) in simple_hierarchical _identifier and simple_hierarchical_branch shall not be preceded or
followed by white_space.

4) The period in escaped hierarchica_identifier and escaped hierarchical_branch shall be preceded by
white_space, but shall not be followed by white space.

5) The $ character in a system function_identifier or system_task_identifier shall not be followed by
white_space. A system function_identifier or system_task_identifier shall not be escaped.

6) End of file.

7) The unsigned number or fixed point number in time_literal shall not be followed by awhite space.

308 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

8) void functions, non integer type functions, and functions with a typedef type cannot have a signing
declaration.

9) implicit_class _handle shall only appear within the scope of aclass declaration or
extern_method_declaration.

10) In any one declaration, only one of protected or local is allowed, only one of rand or randc is allowed,
and static and/or virtual can appear only once.

11) dpi_function_proto return types are restricted to small values, as per 26.4.5.

12) Formals of dpi_function_proto cannot use pass by reference mode and class types cannot be passed at all;
for the complete set of restrictions see 26.4.6.

13) The apostrophe (¢) in constant_primary or primary shall not be followed by white_space.
14) unsized_dimension is permitted only in declarations of import DPI functions, see dpi_function_proto.

15) More than one unsized dimension is permitted only in declarations of import DPI functions, see
dpi_function_proto.

EDITOR’'S NOTE: Deleting note 9 renumbers the subsequent notes. All footnote references were originally
hard coded, and therefore references to notes 10 and higher became invalid. | went through the Annex and
changed all references to footnotes to cross-reference links, so that they will update automatically if the foot-
notes change. Footnote referencesin all BNF excerptsin the main sections were also updated to be cross ref-
erences.

Copyright 2003 Accellera. All rights reserved. 309

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

310 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001

Annex B
Keywords

| SystemVerilog reserves the following keywords:

SystemVerilog 3.1a/draft 1

alias* endprimtive nodport ' snal

al ways endprogranf nmodul e sol vet
aImays_coan endproperty;t nand specify
alvxays_ffT endspeci fy negedge specpar am
al ways_| atch’ endsequence* new staticl
and endt abl e nnos stringi
assert’ endt ask nor strong0
assert_strobeT enum’ noshowcancel | ed strongl
assign event not struct’
aut omati c export T notifO0 super *
bef or e* ext ends* notif1 suppl yo
begi n extern' nul | suppl y1
bi nd* final* or tabl e
bit? first_mattch;t out put t ask

br eak’ f or packedT this#
buf force par anet er throughout¢
bufifo forever pnos time
bufifl fork posedge tineprecisionT
byteT forkjoinJr primtive timeunit?
case function priorityT tran
casex generat e progran? tranif0
casez genvar propertyi tranif1l
cel | hi ghz0 pr ot ect ed* tr

chandl e* hi ghz1 pul 1 0 trio

cl ass? i f pul I'1 tril
clocking:c ifff pul I down triand
cnos i fnone pul I up trior
config inportT pul sestyl e_onevent trireg
const T i ncdir pul sestyl e_ondetect type'
constraint¥ i ncl ude pur e¥ typedef T
context ¥ initial rand* uni on
conti nuel i nout randc* uniqueJr
cover?¥ i nput r cnos unsi gned
deassi gn i nsi de* ref* use

def aul t i nstance real var ¥

def param int? realtine vect or ed
desi gn i nt eger reg virtual ¥
di sabl e interfacel rel ease voi df
dist¥ i ntersect?¥ r epeat wai t

do’ join | return return’ wai t _order?*
edge join_anyi r nnos wand

el se j oi n_none r pnos weak0
end | arge rtran weakl
endcase liblist rtrani fO whil e
endcl ass¥ library rtranifl wre
endclocking*t | ocal * scal ared wit h¥
endconfig | ocal par am sequence¥ wi t hi n¥
endf uncti on | ogic' shortint? wor
endgener at e | ongint T shortreal T xnor

endi nterface’ macr onodul e showcancel | ed xor
endnodul e medi um si gned

Copyright 2003 Accellera. All rights reserved.

311

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

T keywords added to the IEEE 1364 Verilog-2001 standard as part of SystemVerilog 3.0
* keywords added to the IEEE 1364 Verilog-2001 standard as part of SystemVerilog 3.1

Note: The keyword var is reserved for future extensions.

312 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Annex C

Linked Lists

(Informative)

The List package implements a classic list data-structure, and is analogous to the STL (Standard Template
Library) List container that is popular with C++ programmers. The container is defined as a parameterized
class, meaning that it can be customized to hold data of any type.

C.1 List definitions

list—A list is a doubly linked list, where every element has a predecessor and successor. A list is a sequence
that supports both forward and backward traversal, aswell as amortized constant time insertion and removal of
elements at the beginning, end, or middle.

container—A container isacollection of data of the same type. Containers are objects that contain and manage
other data. Containers provide an associated iterator that allows access to the contained data.

iterator—Iterators are objects that represent positions of elements in a container. They play arole similar to
that of an array subscript, and allow users to access a particular element, and to traverse through the container.

C.2 List declaration
The List package supports lists of any arbitrary predefined type, such asi nt eger, st ri ng, or class object.

Any iterator that refers to the position of an element that is removed from alist becomes invalid, thus, unable
to iterate over thelist.

To declare a specific list, users must first include the generic List class declaration from the standard include
area and then declare the specialized list type:

‘include <List.vh>

Li st#(type) dl; /1 dl is a List of 'type' elenents

C.2.1 Declaring list variables
List variables are declared by providing a specialization of the generic list class:

Li st#(integer) il; /1 ohject il is alist of integer
typedef List#(Packet) PList; /[l Class Plist is a list of Packet objects

The List specialization declares alist of the indicated type. The type used in the list declaration determines the
type of the data stored in the list elements.

C.2.2 Declaring list iterators
List iterators are declared by providing a specialization of the generic List_Iterator class:

List_lterator#(string) s; /[l hject sis alist-of-string iterator
Li st _Iterator#(Packet) p, q; /[l p and q are iterators to a |ist-of-Packet

C.3 Linked list class prototypes

The following class prototypes describe the generic List and List_lterator classes. Only the public interface is
included here.

C.3.1 List_lterator class prototype

Copyright 2003 Accellera. All rights reserved. 313

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

class List_lterator#(paranmeter type T);
extern function void next();
extern function void prev();
extern function int neq(List_lterator#(T) iter);
extern function int eq(List_lterator#(T) iter);
extern function T data();

endcl ass

C.3.2 List class prototype

class List#(paraneter type T);
extern function new();
extern function int size();
extern function int enpty();
extern function void push_front(T value);
extern function void push_back(T value);
extern function T front();
extern function T back();
extern function void pop_front();
extern function void pop_back();
extern function List_lterator#(T) start();
extern function List_lterator#(T) finish();
extern function void insert(List_lterator#(T) position, T value);
extern function void insert_range(List_lterator#(T) position,

first, last);

extern function void erase(List_lterator#(T) position);
extern function void erase_range(List_lterator#(T) first, last);
extern function void set(List_Iterator#(T) first, last);
extern function void swap(List#(T) Ist);
extern function void clear();
extern function void purge();

endcl ass

C.4 List_lterator methods

The List_Iterator class provides methods to iterate over the elements of lists. These methods are described
below.

C.4.1 next()
function void next();

next changesthe iterator so that it refersto the next element in the list.
C.4.2 prev()

function void prev();

pr ev changes the iterator so that it refersto the previous element in the list.
C.4.3eq()

function int eq(List_Ilterator#(T) iter);
eq compares two iterators, and returns 1 if both iterators refer to the same list element. Otherwise, it returns 0.

if(il.eq(i2)) $display("both iterators refer to the sane el ement");

314 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

C.4.4 neq()
function int neq(List_lterator#(T) iter);

neq isthe negation of eq() ; it compares two iterators, and returns O if both iterators refer to the samelist ele-
ment. Otherwise, it returns 1.

C.4.5 data()

function T data();
dat a returns the data stored in the element at the given iterator location.
C.5 List methods

The List class provides methods to query the size of the list, obtain iterators to the head or tail of the list,
retrieve the data stored in the list, and methods to add, remove, and reorder the elements of the list.

C.5.1size()
function int size();
si ze returns the number of elements stored in the list.
while (listl.size >0) begin // loop while still elements in the |ist

end

C.5.2 empty()
function int enpty();
enpt y returns 1 if the number elements stored in the list is zero, O otherwise.

if (listl.enpty)
$display("list is enmpty");

C.5.3 push_front()
function void push_front(T value);

push_f ront insertsthe specified value at the front of the list.
Li st#(int) nunbers;

nunbers. push_front (10);
nunbers. push_front (5); /1 numbers contains { 5, 10 }

C.5.4 push_back()
function void push_back(T value);
push_back inserts the specified value at the end of thelist.
Li st#(string) nanes;

nanes. push_back(" Donal d");
nanes. push_back("M ckey"); /'l names contains { "Donald", "M ckey" }

Copyright 2003 Accellera. All rights reserved. 315

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

C.5.5 front()
function T front();

front returns the data stored in the first element of thelist (valid only if thelist is not empty).

C.5.6 back()
function T back();
back returnsthe data stored in the last element of thelist (valid only if thelist is not empty).
Li st#(int) nunbers;
nunbers. push_front (3);
nunbers. push_front (2);

nunbers. push_front (1);
$di spl ay(nunbers.front, nunbers.back); // displays 1 3

C.5.7 pop_front()
function void pop_front();

pop_front removesthe first element of thelist. If the list is empty, this method isillegal and can generate an
error.

C.5.8 pop_back()
function void pop_back();

pop_back removes the last element of the list. If the list is empty, this method is illegal and can generate an
error.

while (Ip.size > 1) begin [/ renmove all but the center element from
/1 an odd-sized list Ip

op_front();

Ip.p
| p. pop_back();

end
C.5.9 start()
function List_Iterator#(T) start();

start returnsan iterator to the position of the first element in the list.
C.5.10 finish()

function List_Iterator#(T) finish();

fi ni sh returns an iterator to a position just past the last element in the list. The last element in the last can be
accessed using f i ni sh. prev.

List#(int) Ist; /1 display contents of list Ist in position order
for (List_Ilterator#(int) p = Ist.start; p.neq(lst.finish); p.next)
$di spl ay(p.data);

C.5.11 insert()

function void insert(List_lterator#(T) position, T value);

316 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

i nsert insertsthe given data (val ue) into thelist at the position specified by the iterator (before the ele-
ment, if any, that was previously at the iterator’s position). If the iterator is not avalid position within the list,
then this operation isillegal and can generate an error.

function void add_sort(List#(byte) L, byte value);
for (List_Iterator#(byte) p = L.start; p.neq(L.finish) ; p.next)
if (p.data > value) begin
Ist.insert(p, value); // Add to sorted list (ascending order)
return;
end
endfunction

C.5.12 insert_range()
function void insert_range(List_Iterator#(T) position, first, last);

i nsert _range inserts the elements contained in the list range specified by the iterators first and last at the
specified list position (before the element, if any, that was previoudly at the position iterator). All the elements
from first up to, but not including, last are inserted into the list. If the last iterator refers to an element before
the first iterator, the range wraps around the end of the list. The range iterators can specify arange either in
another list or in the same list as being inserted.

If the position iterator is not avalid position within the list, or if the range iterators are invalid (i.e., they refer
to different lists or to invalid positions), then this operation isillegal and can generate an error.

C.5.13 erase()
function void erase(List_Iterator#(T) position);

er ase removes form the list the element at the specified position. After er ase() returns, the position iterator
becomesinvalid.

listl.erase(listl.start); /1l same as pop_front

If the position iterator is not avalid position within the list, this operation isillegal and can generate an error.

C.5.14 erase_range()

function void erase_range(List_lterator#(T) first, last);
er ase_r ange removes from alist the range of elements specified by the first and last iterators. This operation
removes elements from the first iterator’s position up to, but not including, the last iterator’s position. If the

last iterator refers to an element before the first iterator, the range wraps around the end of the list.

listl.erase_range(listl.start, listl.finish); // Renove all elenents from
/1 listl

If the range iterators are invalid (i.e., they refer to different lists or to invalid positions), then this operation is
illegal and can generate an error.

C.5.15 set()

function void set(List_lterator#(T) first, last);
set assignsto thelist object the elementsthat lie in the range specified by the first and last iterators. After this
method returns, the modified list shall have a size equal to the range specified by first and last. This method
copies the data from the first iterator’s position up to, but not including, the last iterator’s position. If the last
iterator refers to an element before the first iterator, the range wraps around the end of thelist.

list2.set(listl.start, list2.finish); /1 list2 is a copy of listl

Copyright 2003 Accellera. All rights reserved. 317

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

If the range iterators are invalid (i.e., they refer to different lists or to invalid positions), then this operation is
illegal and can generate an error.

C.5.16 swap()
function void swap(List#(T) Ist);
swap exchanges the contents of two equal-size lists.
listl.swap(list2); // swap the contents of listl to list2 and vice-versa

Swapping alist with itself has no effect. If the lists are of different sizes, this method can issue awarning.
C.5.17 clear()

function void clear();
cl ear removes al the elements from alist, but not the list itself (i.e., the list header itself).

listl.clear(); /1 listl becomes enpty
C.5.18 purge()

function void purge();

pur ge removesall thelist elements (asin clear) and thelist itself. This accomplishes the same effect as assign-
ing null to thelist. A purged list must be re-created using new before it can be used again.

listl. purge(); /1 sane as listl = null

318 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Annex D
DPI C-layer

D.1 Overview

The SystemVerilog Direct Programming Interface (DPI) allows direct inter-language function calls between
SystemVerilog and any foreign programming language with a C function call protocol and linking model:

— Functions implemented in C and given import declarations in SystemVerilog can be called from System-
Verilog; such functions are referred to as imported functions.

— Functions implemented in SystemVerilog and specified in export declarations can be called from C; such
functions are referred to as exported functions.

The SystemVerilog DPI supports only SystemVerilog data types, which are the sole data types that can cross
the boundary between SystemVerilog and a foreign language in either direction. On the other hand, the data
types used in C code shall be C types; hence, the duality of types.

A valuethat is passed through the Direct Programming Interface is specified in SystemVerilog code as avalue
of SystemVerilog type, while the same value shall be specified in C code asavalue of C type. Therefore, apair
of matching type definitions is required to pass a value through DPI: the SystemVerilog definition and the C
definition.

It isthe user’s responsibility to provide these matching definitions. A tool (such as a SystemVerilog compiler)
can facilitate this by generating C type definitions for the SystemVerilog definitions used in DPI for imported
and exported functions.

Some SystemVerilog types are directly compatible with C types; defining a matching C type for them is
straightforward. There are, however, SystemVerilog-specific types, namely packed types (arrays, structures,
and unions), 2-state or 4-state, which have no natural correspondencein C. DPI does not require any particular
representation of such types and does not impose any restrictions on SystemVerilog implementations. This
allows implementors to choose the layout and representation of packed types that best suits their simulation
performance.

While not specifying the actual representation of packed types, this C-layer interface defines a canonical repre-
sentation of packed 2-state and 4-state arrays. This canonical representation is actually based on legacy Verilog
Programming Language Interface’s (PLI's) avalue/bvalue representation of 4-state vectors. Library functions
provide the translation between the representation used in a simulator and the canonical representation of
packed arrays. There are also functions for bit selects and limited part selects for packed arrays, which do not
require the use of the canonical representation.

Formal arguments in SystemVerilog can be specified as open arrays solely in import declarations; exported
SystemVerilog functions can not have formal arguments specified as open arrays. A formal argument is an
open array when a range of one or more of its dimensions is unspecified (denoted in SystemVerilog by using
empty square brackets ([])). This corresponds to a relaxation of the DPI argument-matching rules
(Section 26.5.1). An actual argument shall match the corresponding formal argument regardless of the range(s)
for its corresponding dimension(s), which facilitates writing generalized C code that can handle SystemVerilog
arrays of different sizes.

The C-layer of DPI basicaly uses normalized ranges. Normalized ranges mean [n- 1: 0] indexing for the
packed part (packed arrays are restricted to one dimension) and [0: n- 1] indexing for a dimension in the
unpacked part of an array. Normalized ranges are used for the canonical representation of packed arraysin C
and for System Verilog arrays passed as actual argumentsto C, with the exception of actual argumentsfor open
arrays. The elements of an open array can be accessed in C by using the same range of indices as defined in
System Verilog for the actual argument for that open array and the same indexing asin SystemVerilog.

Function arguments are generally passed by some form of reference or by value. All formal arguments, except

open arrays, are passed by direct reference or value, and, therefore, are directly accessible in C code. Only
small values of SystemVerilog input arguments (see Annex D.7.7) are passed by value. Formal arguments

Copyright 2003 Accellera. All rights reserved. 319

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

declared in SystemVerilog as open arrays are passed by ahandle (type svOpenAr r ayHandl e) and are accessi-
ble vialibrary functions. Array-querying functions are provided for open arrays.

Depending on the data types used for imported or exported functions, either binary level or C-source level
compatibility is granted. Binary level is granted for all data types that do not mix SystemVerilog packed and
unpacked types and for open arrays which can have both packed and unpacked parts. If a data type that mixes
SystemVerilog packed and unpacked types is used, then the C code needs to be re-compiled using the imple-
mentation-dependent definitions provided by the vendor.

The C-layer of the Direct Programming Interface provides two include files. The main include file, svdpi . h,
isimplementation-independent and defines the canonical representation, all basic types, and all interface func-
tions. The second include file, svdpi _src. h, defines only the actual representation of packed arrays and,
hence, its contents are implementati on-dependent. A pplications that do not need to include thisfile are binary-
level compatible.

D.2 Naming conventions
All namesintroduced by this interface shall conform to the following conventions.

— All names defined in this interface are prefixed with sv or SV_.

— Function and type names start with sv, followed by initialy capitalized words with no separators, e.g.,
svBi t PackedArr Ref .

— Names of symbolic constants start withsv_, e.g., sv_x.

— Names of macro definitions start with SV_, followed by all upper-case words separated by a underscore
(), 0., SV_CANONI CAL_SI ZE.

D.3 Portability

Depending on the data types used for imported or exported functions, the C code can be binary-level or source-
level compatible. Applications that do not use SystemVerilog packed types are always binary compatible.
Applications that don't mix SystemVerilog packed and unpacked types in the same data type can be written to
guarantee binary compatibility. Open arrays with both packed and unpacked parts are also binary compatible.

The values of SystemVerilog packed types can be accessed via interface functions using the canonical repre-
sentation of 2-state and 4-state packed arrays, or directly through pointers using the implementation represen-
tation. The former mode assures binary level compatibility; the latter one allows for tool-specific,
performance-oriented tuning of an application, though it also requires recompiling with the implementation-
dependent definitions provided by the vendor and shipped with the simulator.

D.3.1 Binary compatibility

Binary compatibility means an application compiled for a given platform shall work with every SystemVerilog
simulator on that platform.

D.3.2 Source-level compatibility

Source-level compatibility means an application needs to be re-compiled for each SystemVerilog simulator and
implementation-specific definitions shall be required for the compilation.

D.4 Include files

The C-layer of the Direct Programming Interface defines two include files corresponding to these two levels of
compatibility: svdpi . h and svdpi _src. h.

Binary compatibility of an application depends on the data types of the values passed through the interface. If
all corresponding type definitions can be written in C without the need to include the svdpi _sr c. h file, then
an application is binary compatible. If the svdpi _src. h file is required, then the application is not binary
compatible and needs to be recompiled for each simulator of choice.

320 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Applications that pass solely C-compatible data types or standalone packed arrays (both 2-state and 4-state)
reguire only the svdpi.h file and, therefore, are binary compatible with all simulators. Applications that use
complex data types which are constructed of both SystemVerilog packed arrays and C-compatible types also
reguire the svdpi _src. h file and, therefore, are not binary compatible with all simulators. They are source-
level compatible, however. If an application is tuned for a particular vendor-specific representation of packed
arrays and therefore needs vendor specific include files, then such an application is not source-level compati-
ble.

D.4.1 svdpi.h include file

Applications which use the Direct Programming I nterface with C code usually need this main include file. The
include file svdpi . h defines the types for canonical representation of 2-state (bi t) and 4-state (1 ogi c) val-
ues and passing references to SystemVerilog data objects. Thefile a so provides function headers and defines a
number of helper macros and constants.

This document fully defines the svdpi . h file. The content of svdpi . h does not depend on any particular
implementation or platform; all simulators shall use the same file. For more details on svdpi . h, see
Annex D.9.1.

Applications which only use svdpi . h shall be binary-compatible with all SystemVerilog simulators.
D.4.2 svdpi _src. h include file

Thisisan auxiliary includefile. svdpi _sr c. h defines data structures for implementation-specific representa-
tion of 2-state and 4-state SystemVerilog packed arrays. The interface specifies the contents of this file, i.e.,
what symbols are defined. The actual definitions of those symbals, however, are implementation-specific and
shall be provided by vendors.

Applications that require the svdpi _sr c. h file are only source-level compatible, i.e., they need to be com-
piled with the version of svdpi _src. h provided for a particular implementation of SystemVerilog. If, how-
ever, an application makes use of the details of the implementation-specific representation of packed arrays
and thusit requires vendor specific include files, then such an application is not source-level compatible.

D.5 Semantic constraints

Note that the constraints expressed here merely restate those expressed in Section 26.4.1.

Formal and actual arguments of both imported functions and exported functions are bound by the principle
“What You Specify Is What You Get.” This principle isbinding both for the caller and for the calleg, in C code
and in SystemVerilog code. For the calleg, it guarantees the actual arguments are as specified for the formal
ones. For the caller, it means the function call arguments shall conform with the types of the formal arguments,
which might require type-coercion on the caller side.

Another way to state this is that no compiler (either C or SystemVerilog) can make argument coercions
between a caller’s declared formals and the callee’s declared the formals. This is because the callee’s formal
arguments are declared in a different language than the caller’s forma arguments; hence there is no visible
relationship between the two sets of formals. Users are expected to understand all argument relationships and
provide properly matched types on both sides of the interface (see Annex D.6.2).

In SystemVerilog code, the compiler can change the formal arguments of a native SystemVerilog function and
modify its code accordingly, because of optimizations, compiler pragmas, or command line switches. The situ-
ation is different for imported functions. A SystemVerilog compiler can not modify the C code, perform any
coercions, or make any changes whatsoever to the formal arguments of an imported function.

A SystemVerilog compiler shall provide any necessary coercions for the actual arguments of every imported
function call. For example, a SystemVerilog compiler might truncate or extend bits of a packed array if the
widths of the actual and formal arguments are different. Similarly, a C compiler can provide coercion for C
types based on the relationship of the arguments in the exported function’s C prototype (formals) and the
exported function’s C call site (actuals). However, a C compiler can not provide such coercion for SystemVer-

ilog types.

Copyright 2003 Accellera. All rights reserved. 321

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Thus, in each case of an inter-language function call, either C to SystemVerilog or SystemVerilog to C, the
compilers expect but cannot enforce that the types on either side are compatible. It is therefore the user’s
responsibility to ensure that the imported/exported function types exactly match the types of the corresponding
functions in the foreign language.

D.5.1 Types of formal arguments

The principle “What You Specify Is What You Get” guarantees the types of formal arguments of imported
functions — an actual argument is guaranteed to be of the type specified for the formal argument, with the
exception of open arrays (for which unspecified ranges are statically unknown). Formal arguments, other than
open arrays, are fully defined by imported declaration; they shall have ranges of packed or unpacked arrays
exactly as specified in the imported declaration. Only the SystemVerilog declaration site of the imported func-
tion isrelevant for such formal arguments.

Formal arguments defined as open arrays have the size and ranges of the actual argument, i.e., have the ranges
of packed or unpacked arrays exactly as that of the actual argument. The unsized ranges of open arrays are
determined at a call site; the rest of the type information is specified at the import declaration. See also
Annex D.6.1.

So, if aformal argumentisdeclaredasbit [15:8] b [],thenitistheimport declaration which specifiesthe
formal argument is an unpacked array of packed bit array with bounds 15 to 8, while the actual argument used
at aparticular call site defines the bounds for the unpacked part for that call.

D.5.2 input arguments

Formal arguments specified in SystemVerilog asi nput must not be modified by the foreign language code.
See also Section 26.4.1.2.

D.5.3 output arguments

Theinitial values of formal arguments specified in SystemVerilog asout put are undetermined and implemen-
tation-dependent. See also Section 26.4.1.2.

D.5.4 Value changes for output and inout arguments

The SystemVerilog simulator is responsible for handling value changes for out put and i nout arguments.
Such changes shall be detected and handled after the control returns from C code to SystemVerilog code.

D.5.5 context and non-context functions
Also refer to Section 26.4.3.

Some DPI imported functions or other interface functions called from them require that the context of their call
be known. It takes special instrumentation of their call instances to provide such context; for example, a vari-
able referring to the “current instance” might need to be set. To avoid any unnecessary overhead, imported
function calls in SystemVerilog code are not instrumented unless the imported function is specified as context
in its SystemVerilog import declaration.

All DPI export functions require that the context of their call is known. This occurs since SystemVerilog func-
tion declarations always occur in instantiable scopes, hence alowing a multiplicity of unique function
instancesin the simulator’s elaborated database. Thus, there is no such thing as a non-context export function.

For the sake of simulation performance, a non-context imported function call shall not block SystemVerilog
compiler optimizations. An imported function not specified as context shall not access any data objects from
SystemVerilog other then its actual arguments. Only the actual arguments can be affected (read or written) by
its call. Therefore, a call of non-context imported function is not a barrier for optimizations. A context
imported function, however, can access (read or write) any SystemVerilog data objects by calling PLI/VPI, nor
by calling an embedded export function. Therefore, a call to a context function is a barrier for SystemVerilog
compiler optimizations.

Only the calls of context imported functions are properly instrumented and cause conservative optimizations;

322 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

therefore, only those functions can safely call al functions from other APIs, including PLI and VPI functions
or exported SystemVerilog functions. For imported functions not specified as context, the effects of calling
PLI, VPI, or SystemVerilog functions can be unpredictable and such calls can crash if the callee requires acon-
text that has not been properly set.

Special DPI utility functions exist that allow imported functions to retrieve and operate on their context. For
example, the C implementation of an imported function can use svGet Scope() to retrieve an svScope corre-
sponding to the instance scope of its corresponding SystemVerilog import declaration. See Annex D.8 for
more details.

D.5.6 pure functions
See also Section 26.4.2.

Only non-void functions with no out put or i nout arguments can be specified as pur e. Functions specified
aspur e in their corresponding SystemVerilog import declarations shall have no side effects; their results need
to depend solely on the values of their input arguments. Calls to such functions can be removed by SystemVer-
ilog compiler optimizations or replaced with the values previously computed for the same values of the input
arguments.

Specifically, apur e function is assumed not to directly or indirectly (i.e., by calling other functions):
— perform any file operations

— read or write anything in the broadest possible meaning, includes i/o, environment variables, objects from
the operating system or from the program or other processes, shared memory, sockets, etc.

— access any persistent data, like global or static variables.

If a pure function does not obey the above restrictions, SystemVerilog compiler optimizations can lead to
unexpected behavior, due to eliminated calls or incorrect results being used.

D.5.7 Memory management
See also Section 26.4.1.4.

The memory spaces owned and allocated by C code and SystemVerilog code are disoined. Each side is
responsible for its own allocated memory. Specifically, C code shall not free the memory allocated by System-
Verilog code (or the SystemVerilog compiler) nor expect SystemVerilog code to free the memory allocated by
C code (or the C compiler). This does not exclude scenariosin which C code allocates a block of memory, then
passes a handle (i.e., a pointer) to that block to SystemVerilog code, which in turn calls a C function that
directly (if it isthe standard function f r ee) or indirectly frees that block.

NOTE—Inthislast scenario, a block of memory is alocated and freed in C code, even when the standard functions
mal | oc and f r ee are called directly from SystemVerilog code.

D.6 Data types

This section defines the data types of the C-layer of the Direct Programming Interface.

D.6.1 Limitations

Packed arrays can have an arbitrary number of dimensions; though they are eventually always equivalent to a
one-dimensional packed array and treated as such. If the packed part of an array in the type of a formal argu-
ment in SystemVerilog is specified as multi-dimensional, the SystemVerilog compiler linearizes it. Although
the original ranges are generally preserved for open arrays, if the actual argument has a multidimensional
packed part of the array, it shall be normalized into an equivalent one-dimensional packed array.

NOTE—The actual argument can have both packed and unpacked parts of an array; either can be multidimensional.

D.6.2 Duality of types: SystemVerilog types vs. C types

Copyright 2003 Accellera. All rights reserved. 323

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

A value that crosses the Direct Programming Interface is specified in SystemVerilog code as a value of Sys-
temVerilog type, while the same value shall be specified in C code as a value of C type. Therefore, each data
type that is passed through the Direct Programming I nterface requires two matching type definitions: the Sys-
temVerilog definition and C definition.

The user needs to provide such matching definitions. Specifically, for each SystemVerilog type used in the
import declarations or export declarations in SystemVerilog code, the user shall provide the equivalent type
definition in C reflecting the argument passing mode for the particular type of SystemVerilog value and the
direction (i nput , out put, or i nout) of the formal SystemVerilog argument. For values passed by reference,
a generic pointer voi d * can be used (conveniently t ypedef ed in svdpi . h or svdpi _src. h) without
knowing the actual representation of the value.

D.6.3 Data representation

DPI imposes the following additional restrictions on the representation of SystemVerilog data types.

— SystemVerilog types that are not packed and that do not contained packed el ements have C compatible rep-
resentation.

— Basicinteger and real data types are represented as defined in Annex D.6.4.

— Enumeration types are represented as the types associated with them. Enumerated names are not available
on C side of interface.

— Representation of packed typesis implementation-dependent.

— Unpacked arrays embedded in a structure have C compatible layout regardless of the type of elements.
Similarly, standalone arrays passed as actuals to a sized formal argument have C compatible representa-
tion.

— Standalone array passed as an actual to an open array formal
— if the element typeis scalar or packed then the representation is implementation dependent

— otherwise the representation is C compatible. Therefore an element of an array shall have the same rep-
resentation as an individual value of the same type. Hence, an array’s elements can be accessed from C
code vianormal C array indexing similarly to doing so for individual values.

— Thenatural order of elements for each dimension in the layout of an unpacked array shall be used, i.e., ele-
ments with lower indices go first. For SystemVerilog range [L:R], the element with SystemVerilog index
m n(L, R) has the C index 0 and the element with SystemVerilog index max(L, R) has the C index
abs(L-R).

NOTE—This does not actually impose any restrictions on how unpacked arrays are implemented; it only says an array that
does not satisfy this condition shall not be passed as an actual argument for aformal argument which isasized array; it can
be passed, however, for a formal argument which is an unsized (i.e., open) array. Therefore, the correctness of an actual
argument might be implementation-dependent. Neverthel ess, an open array provides an implementati on-independent solu-
tion; this seems to be a reasonabl e trade-off.

D.6.4 Basic types

Table D-1 defines the mapping between the basic SystemVerilog data types and the corresponding C types.

Table D-1: Mapping data types

SystemVerilog type C type
byt e char
shortint short int

324 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

Table D-1: Mapping data types (continued)

SystemVerilog type C type
int int

| ongi nt I ong | ong
real doubl e
shortreal f | oat
chandl e voi d*
string char*

SystemVerilog 3.1a/draft 1

The representation of SystemVerilog-specific datatypes like packed bi t and | ogi ¢ arraysisimplementation-
dependent and generally transparent to the user. Nevertheless, for the sake of performance, applications can be
tuned for a specific implementation and make use of the actual representation used by that implementation;
such applications shall not be binary compatible, however.

D.6.5 Normalized ranges

Packed arrays are treated as one-dimensional; the unpacked part of an array can have an arbitrary number of
dimensions. Normalized ranges mean [n- 1: 0] indexing for the packed part and [0: n- 1] indexing for a
dimension of the unpacked part of an array. Normalized ranges are used for accessing all arguments but open
arrays. The canonical representation of packed arrays also uses normalized ranges.

D.6.6 Mapping between SystemVerilog ranges and normalized ranges

The SystemVerilog ranges for a formal argument specified as an open array are those of the actual argument
for aparticular call. Open arrays are accessible, however, by using their original ranges and the same indexing
asin the SystemVerilog code.

For al other types of arguments, i.e., all arguments but open arrays, the SystemVerilog ranges are defined in
the corresponding SystemVerilog import or export declaration. Normalized ranges are used for accessing such
arguments in C code. The mapping between SystemVerilog ranges and normalized ranges is defined as fol-
lows.

1) If apacked part of an array has more than one dimension, it is linearized as specified by the equivalence of
packed types (see Section 4.2).

2) A packed array of range[L: R] isnormalized as[abs(L- R) : 0] ; its most significant bit has a normalized
index abs(L- R) and itsleast significant bit has a normalized index O.

3) The natural order of elements for each dimension in the layout of an unpacked array shall be used, i.e.,
elements with lower indices go first. For SystemVerilog range [L: R] , the element with SystemVerilog
index m n(L, R) hasthe Cindex 0 and the element with SystemVerilog index max (L, R) hasthe C index
abs(L-R).

NOTE—The above range mapping from SystemVerilog to C applies to calls made in both directions, i.e., SystemVerilog-
callsto C and C-calls to SystemVerilog.

For example, if logic [2:3][1:3][2:0] b [1:10] [31:0] isusedin SystemVerilog, it needs to be
defined in C as if it were declared in SystemVerilog in the following normalized form: ogic [17:0] b
[0:9] [0:31].

D.6.7 Canonical representation of packed arrays

The Direct Programming Interface defines the canonical representation of packed 2-state (type svBi t Vec32)
and 4-state arrays (type svLogi cVec32). This canonical representation is derived from on the Verilog legacy

Copyright 2003 Accellera. All rights reserved. 325

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

PLI's avalue/bvalue representation of 4-state vectors. Library functions provide the translation between the
representation used in a simulator and the canonical representation of packed arrays.

A packed array isrepresented as an array of one or more elements (of type svBi t Vec32 for 2-state values and
svLogi cVec32 for 4-state values), each element representing a group of 32 bits.The first element of an array
contains the 32 least-significant bits, next element contains the 32 more-significant bits, and so on. The last
element can contain anumber of unused bits. The contents of these unused bits is undetermined and the user is
responsible for the masking or the sign extension (depending on the sign) for the unused hits.

Table D-2 defines the encoding used for a packed | ogi c array represented assvLogi cVec32.

Table D-2: Encoding of bits in svLogi cVec32

c d Value
0 0 0
0 1 1
1 0 z
1 1 X

D.7 Argument passing modes

This section defines the ways to pass arguments in the C-layer of the Direct Programming Interface.

D.7.1 Overview

Imported and exported function arguments are generally passed by some form of areference, with the excep-
tion of small values of SystemVerilog input arguments (see Annex D.11.7), which are passed by value. Simi-
larly, the function result, which is restricted to small values, is passed by value, i.e., directly returned.

Actual arguments passed by reference typically are passed without changing their representation from the one
used by a simulator. There is no inherent copying of arguments (other than any copying resulting from coerc-

ing).

Access to packed arrays via canonical representation involves copying arguments and does incur some over-
head, however. Alternatively, for the sake of performance the application can be tuned for a particular tool and
access the packed arrays directly through pointers using implementation representation, which could compro-
mise binary and/or source compatibility. Data can be, however, moved around (copied, stored, retrieved) with-
out using canonical representation while preserving binary or source level compatibility at the sametime. This
is possible by using pointers and size of data and when the detailed knowledge of the data representation is not
required.

NOTE—This provides some degree of flexibility and allows the user to control the trade-off of performance vs. portability.

Formal arguments, except open arrays, are passed by direct reference or value, and, therefore, are directly
accessiblein C code. Formal arguments declared in SystemVerilog as open arrays are passed by a handle (type
svOpenAr r ayHandl e) and are accessible vialibrary functions.

D.7.2 Calling SystemVerilog functions from C

Thereis no difference in argument passing between calls from SystemVerilog to C and callsfrom C to System-
Verilog. Functions exported from SystemVerilog can not have open arrays as arguments. Apart from this
restriction, the same types of formal arguments can be declared in SystemVerilog for exported functions and
imported functions. A function exported from SystemVerilog shall have the same function header in C as
would an imported function with the same function result type and same formal argument list. In the case of
arguments passed by reference, an actual argument to SystemVerilog function called from C shall be allocated
using the same layout of data as SystemVerilog uses for that type of argument; the caller is responsible for the

326 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

alocation. It can be done while preserving the binary compatibility, see Annex D.11.5 and Annex D.11.11.
D.7.3 Argument passing by value

Only small values of formal input arguments (see Annex D.11.7) are passed by value. Function results are also
directly passed by value. The user needs to provide the C-type equivalent to the SystemVerilog type of a for-
mal argument if an argument is passed by value.

D.7.4 Argument passing by reference

For arguments passed by reference, their original simulator-defined representation shall be used and a refer-
ence (a pointer) to the actual data object is passed. The actual argument is usually allocated by a caller. The
caller can also pass a reference to an object already allocated somewhere else, for example, its own formal
argument passed by reference.

If an argument of type T is passed by reference, the formal argument shall be of type T*. However, packed
arrays can also be passed using generic pointersvoi d* (t ypedef ed accordingly to svBi t PackedAr r Ref or
svLogi cPackedAr r Ref).

D.7.5 Allocating actual arguments for SystemVerilog-specific types

Thisis relevant only for caling exported SystemVerilog functions from C code. The caller is responsible for
allocating any actual arguments that are passed by reference.

Static allocation requires knowledge of the relevant data type. If such atype involves SystemVerilog packed
arrays, their actual representation needs to be known to C code; thus, the file svdpi _src. h needs to be
included, which makes the C code implementation-dependent and not binary compatible.

Sometimes binary compatibility can be achieved by using dynamic allocation functions. The functions
svSi zeOf Logi cPackedArr () and svSi zeOf Bi t PackedArr () provide the size of the actua representa-
tion of a packed array, which can be used for the dynamic allocation of an actual argument without compro-
mising the portability (see Annex D.11.11). Such a technique does not work if a packed array is a part of
another type.

D.7.6 Argument passing by handle—open arrays

Arguments specified as open (unsized) arrays are always passed by a handle, regardless of direction of the Sys-
temVerilog formal argument, and are accessible vialibrary functions. The actual implementation of ahandleis
simulator-specific and transparent to the user. A handle is represented by the generic pointer voi d * (t ype-
def ed to svOpenAr r ayHand! e). Arguments passed by handle shall always have a const qualifier, because
the user shall not modify the contents of ahandle.

D.7.7 input arguments
i nput arguments of imported functions implemented in C shall always have a const qualifier.

i nput arguments, with the exception of open arrays, are passed by value or by reference, depending on the
size. ‘Small’ values of formal input arguments are passed by value. The following data types are considered
small:

— byte,shortint,int,longint,real,shortreal
— chandl e, string

— bit (i.e, 2-state) packed arrays up to 32 bits (canonical representation shall be used, like for a function
result; thus a small packed bit array shall be represented asconst svBi t Vec32)

i nput arguments of other types are passed by reference.
If ani nput argument isapacked bi t array passed by value, its value shall be represented using the canonical

representation svBi t Vec32. If the size is smaller than 32 bits, the most significant bits are unused and their
contents are undetermined. The user is responsible for the masking or the sign extension, depending on the

Copyright 2003 Accellera. All rights reserved. 327

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

sign, for the unused bits.
D.7.8 inout and output arguments

i nout and out put arguments, with the exception of open arrays, are always passed by reference. Specifically,
packed arrays are passed, accordingly, as svBi t PackedAr r Ref or svLogi cPackedArr Ref . The same rules
about unused bits apply asin Annex D.11.7.

D.7.9 Function result

Types of afunction result are restricted to the following SystemVerilog data types (see Table D-1 for the corre-
sponding C type):

— byte,shortint,int,longint,real,shortreal,chandl e,string

— packed bi t arraysup to 32 bits.

If the function result type is a packed bi t array, the returned value shall be represented using the canonical
representation svBi t Vec32. If apacked bi t array issmaller than 32 hits, the most significant bits are unused
and their contents are undetermined.

D.8 Context functions

Some DPI imported functions require that the context of their call is known. For example, those calls can be
associated with instances of C models that have a one-to-one correspondence with instances of SystemVerilog
modules that are making the calls. Alternatively, a DPI imported function might need to access or modify sim-
ulator data structures using PLI or VPI calls, or by making a call back into SystemVerilog via an export func-
tion. Context knowledge is required for such calls to function properly. It can take special instrumentation of
their call to provide such context.

To avoid any unnecessary overhead, imported function calls in SystemVerilog code are not instrumented
unless theimported function is specified as context in its SystemVerilog import declaration. A small set of DPI
utility functions are available to assist programmers when working with context functions (see Annex D.8.3).
If those utility functions are used with any non-context function, a system error shall result.

D.8.1 Overview of DPIl and VPI context

Both DPI functions and VPI/PLI functions might need to understand their context. However, the meaning of
the term is different for the two categories of functions.

DPI imported functions are essentially proxies for native SystemVerilog functions. Native SystemVerilog
functions always operate in the scope of their declaration site. For example, a native SystemVerilog function
f () canbedeclaredinamodule mwhichisinstantiatedast op.i 1_m Thet op. i 1_minstanceof f () can
be called via hierarchical reference from code in adistant design region. Function f () issaid to executein the
context (aka. instantiated scope) of t op. i 1_m since it has unqualified visibility only for variables local to
that specific instance of m Function f () does not have unqualified visibility for any variables in the calling
code's scope.

DPI imported functions follow the same model as native SystemVerilog functions. They execute in the context
of their surrounding declarative scope, rather than the context of their call sites. This type of context is termed
DPI context.

Thisisin contrast to VPI and PLI functions. Such functions execute in a context associated with their call sites.
The VPI/PLI programming model relies on C code's ahility to retrieve a context handle associated with the
associated system task’s call site, and then work with the context handle to glean information about arguments,
itemsin the call site's surrounding declarative scope, etc. Thistype of context istermed VPI context.

Note that all DPI export functions require that the context of their call is known. This occurs since SystemVer-
ilog function declarations aways occur in instantiable scopes, hence giving rise to a multiplicity of associated
function instances in the simulator’s database. Thus, there is no such thing as a non-context export function.
All export function calls must have their execution scope specified in advance by use of a context-setting AP

328 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

function.

D.8.2 Context of imported and export functions

DPI imported and export functions can be declared anywhere a norma SystemVerilog function can be
declared. Specifically, this means that they can be declared in nodul e, program i nterf ace, or gener at e
declarative scope.

A context imported function executes in the context of the instantiated scope surrounding its declaration. This
means that such functions can see other variables in that scope without qualification. As explained in
Annex D.8.1, this should not be confused with the context of the function’s call site, which can actually be
anywhere in the SystemVerilog design hierarchy. The context of an imported or exported function corresponds
to the fully qualified name of the function, minus the function name itself.

Note that context is transitive through imported and export context functions declared in the same scope. That
is, if an imported function is running in a certain context, and if it in turn calls an exported function that is
available in the same context, the exported function can be called without any use of svSetScope(). For exam-
ple, consider a SystemVerilog call to a native function f (), which in turn calls a native function g(). Now
replace the native function f () with an equivalent imported context C function, f* (). The system shall
behave identically regardlessif f () orf’ () isinthecall chainaboveg().g() hasthe proper execution con-
text in both cases.

D.8.3 Working with DPI context functions in C code

DPI defines a small set of functions to help programmers work with DPI context functions. The term scope is
used in the function names for consistency with other SystemVerilog terminology. The terms scope and context
are equivalent for DPI functions.

There are functions that allow the user to retrieve and manipulate the current operational scope. It isan error to
use these functions with any C code that is not executing under a call to a DPI context imported function.

There are also functions that provide users with the power to set data specific to C models into the SystemVer-
ilog simulator for later retrieval. These are the “put” and “get” user data functions, which are similar to facili-
tiesprovided in VPI and PLI.

The put and get user data functions are flexible and allow for a number of use models. Users might wish to
share user data across multiple context imported functions defined in the same SV scope. Users might wish to
have unique data storage on a per function basis. Shared or unique data storage is controllable by a user-
defined key.

To achieve shared data storage, arelated set of context imported functions should all use the same userKey. To
achieve unique data storage, a context import function should use a unique key. Note that it is arequirement on
the user that such a key be truly unique from all other keys that could possibly be used by C code. This
includes completely unknown C code that could be running in the same simulation. It is suggested that taking
addresses of static C symbols (such as a function pointer, or address of some static C data) always be done for
user key generation. Generating keys based on arbitrary integersis not a safe practice.

Note that it is never possible to share user data storage across different contexts. For example, if a Verilog
module mdeclares a context imported function f , and mis instantiated more than once in the SystemVerilog
design, then f shall execute under different values of svScope. No such executing instances of f can share
user data with each other, at least not using the system-provided user data storage area accessible via svPu-
t User Dat a() .

A user wanting to share a data area across multiple contexts must do so by allocating the common data area,
then storing the pointer to it individually for each of the contextsin question viamultiple callsto svPut User -
Dat a() . Thisis because, although a common user key can be used, the data must be associated with the indi-
vidual scopes (denoted by svScope) of those contexts.

/* Functions for working with DPl context functions */

Copyright 2003 Accellera. All rights reserved. 329

Accellera

SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

330

/* Retrieve the active instance scope currently associated with the executing
* inmported function.

* Unless a prior call to svSetScope has occurred, this is the scope of the

* function’s declaration site, not call site.

* The return value is undefined if this function is invoked froma non-context
* imported function.

*/

svScope svGet Scope();

/* Set context for subsequent export function execution.

* This function nust be called before calling an export function, unless

* the export function is called while executing an extern function. In that
* case the export function shall inherit the scope of the surrounding extern
* function. This is known as the “default scope”.

* The return is the previous active scope (as per svGet Scope)

*/

svScope svSet Scope(const svScope scope);

/* CGets the fully qualified nane of a scope handle */
const char* svGet NameFr onScope(const svScope);

/* Retrieve svScope to instance scope of an arbitrary function declaration.
* (can be either nodule, program interface, or generate scope)

* The return value shall be NULL for unrecognized scope nanes.

*/

svScope svGet ScopeFromNane(const char* scopeNane);

/* Store an arbitrary user data pointer for later retrieval by svGetUserData()
* The userKey is generated by the user. It nmust be guaranteed by the user to
* pe unique fromall other userKey's for all unique data storage requirenents
* It is recomended that the address of static functions or variables in the
* user’s C code be used as the userKey.
* |t isillegal to pass in NULL values for either the scope or userData
* argunents. It is also an error to call svPutUserData() with an invalid
* svScope. This function returns -1 for all error cases, 0 upon success. It is
* suggested that userData values of 0 (NULL) not be used as otherwise it can
* pe inpossible to discern error status returns when calling svGet UserData()
*/

i nt svPut User Dat a(const svScope scope, void *userKey, void* userData);

/* Retrieve an arbitrary user data pointer that was previously

* stored by a call to svPutUserData(). See the conment above

* svPutUserData() for an explanation of userKey, as well as

* restrictions on NULL and illegal svScope and userKey val ues.

* This function returns NULL for all error cases, and a non-Null
* user data pointer upon success.

* This function also returns NULL in the event that a prior call
* to svPut UserData() was never made.

*/

voi d* svGet User Dat a(const svScope scope, voi d* userKey);

/* Returns the file and |ine nunber in the SV code fromwhich the extern call
* was nade. If this information available, returns TRUE and updates fil eNanme
* and |ineNunber to the appropriate values. Behavior is unpredictable if
* fileName or |ineNunmber are not appropriate pointers. If this information is
* not avail able return FALSE and contents of fileNanme and |ineNunber not
* nmodified. Whether this information is available or not is inplenentation
* specific. Note that the string provided (if any) is owned by the SV
* inplenentation and is valid only until the next call to any SV function.

Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

* Applications nust not nmodify this string or free it
*/
int svGetCallerlnfo(char **fileName, int *lineNunber);

D.8.4 Example 1 — Using DPI context functions
SV Si de:

/1 Declare an inported context sensitive C function with cnane “MCFunc”
import “DPl” context MyCFunc = function integer MaplD(int portlD);

C Si de:
/| Define the function and nodel class on the C++ side:
cl ass MyCwvbdel {
private:
int |ocallyMapped(int portlD); // Does something interesting...
public:
/1 Constructor
MyCModel (const char* instancePath) {
svScope svScope = svCet ScopeByNane(i nstancePat h);
/1 Associate “this” with the correspondi ng SystenVeril og scope
/1 for fast retrieval during runtine.
svPut User Dat a(svScope, (void*) MyCFunc, this);
}
friend int MyCFunc(int portlD);
b

/1 1nmplenentation of inported context function callable in SV
int MyCFunc(int portlD {
/1l Retrieve SV instance scope (i.e. this function’s context).
svScope = svCet Scope();

/1l Retrieve and nake use of user data stored in SV scope
MyCMWbdel * me = (MyCMWbdel *) svGet User Dat a(svScope, (void*) MyCFunc);
return me->|l ocal | yMapped(portlD);

D.8.5 Relationship between DPI and VPI/PLI interfaces

DPI alows C code to run in the context of a SystemVerilog simulation, thus it is natural for users to consider
using VPI/PLI C code from within imported functions.

There is no specific relationship defined between DPI and the existing Verilog programming interfaces (VPI
and PLI). Programmers must make no assumptions about how DPI and the other interfaces interact. In particu-
lar, note that a vpi Handl e is not equivalent to an svOpenAr r ayHandl e, and the two must not be inter-
changed and passed between functions defined in two different interface standards.

If auser wantsto call VPI or PLI functions from within an imported function, the imported function must be
flagged with the context qualifier.

Not all VPI or PLI functionality is available from within DPI context imported functions. For example, a Sys-
temVerilog imported function is not a system task, and thus making the following call from within an imported
function would result in an error:

/* Get handle to systemtask call site in preparation for argument scan */
vpi Handl e nmyHandl e = vpi _handl e(vpi SysTfCal |, NULL);

Copyright 2003 Accellera. All rights reserved. 331

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Similarly, receiving m sct f callbacks and other activities associated with system tasks are not supported
inside DPI imported functions. Users should use VPI or PLI if they wish to accomplish such actions.

However, the following kind of code is guaranteed to work from within DPI context imported functions:

/* Prepare to scan all top level nodul es */
vpi Handl e nmyHandl e = vpi _iterate(vpi Mdul e, NULL);

D.9 Include files

The C-layer of the Direct Programming I nterface defines two include files. The main includefile, svdpi . h, is
implementation-independent and defines the canonical representation, all basic types, and all interface func-
tions. The second include file, svdpi _src. h, defines only the actual representation of packed arrays and,
hence, is implementation-dependent. Both files are shown in Annex B.

Applications which do not need to include svdpi _sr c. h are binary-level compatible.

D.9.1 Binary compatibility include file svdpi . h

Applications which use the Direct Programming I nterface with C code usually need this main include file. The
include file svdpi . h defines the types for canonical representation of 2-state (bi t) and 4-state (I ogi c) val-
ues and passing references to SystemVerilog data objects, provides function headers, and defines a number of
helper macros and constants.

This document fully defines the svdpi . h file. The content of svdpi . h does not depend on any particular
implementation or platform; al simulators shall use the same file. The following subsections (and
Annex D.10.3.1) detail the contents of the svdpi . h file.

D.9.1.1 Scalars of type bit and | ogi c
/* canonical representation */

#define sv_0 0
#define sv_1 1
#define sv_z 2 /* representation of 4-st scalar z */
#define sv.x 3 /* representation of 4-st scalar x */

/* comon type for 'bit’ and 'logic’ scalars. */
typedef unsigned char svScal ar;

typedef svScal ar svBit; /* scalar */
typedef svScal ar svlLogic; /* scalar */

D.9.1.2 Canonical representation of packed arrays

/* 2-state and 4-state vectors, nodelled upon PLI's aval ue/ bval ue */
#define SV_CANONI CAL_SI ZE(W DTH) (((W DTH) +31) >>5)

typedef unsigned int
svBitVec32;/* (a chunk of) packed bit array */

typedef struct { unsigned int c; unsigned int d;}
svLogi cVec32; /* (a chunk of) packed logic array */

/* Since the contents of the unused bits is undetermni ned, the follow ng nacros
can be handy */
#define SV_MASK(N) (~(-1<<(N)))

#define SV_GET_UNSI GNED_BI TS(VALUE, N)\
((N)==32?(VALUE) : ((VALUE) &SV_MASK(N)))

332 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

#define SV_GET_SI GNED_BI TS(VALUE, N) \
((N) ==322(VALUE) : \
(((VALUE) & 1<<((N) 1))) 2((VALUE) | ~SV_MASK(N)) : ((VALUE) &SV_MASK(N))))

D.9.1.3 Implementation-dependent representation

/* a handle to a scope (an instance of a nodule or an interface) */
typedef void *svScope;

/* a handle to a generic object (actually, unsized array) */
typedef voi d* svOpenArrayHandl e;

/* reference to a standal one packed array */
typedef voi d* svBitPackedArr Ref;
typedef void* svLogi cPackedArr Ref;

/* total size in bytes of the sinmulator’s representation of a packed array */
/* width in bits */

int svSizeOrBit PackedArr(int wdth);

int svSizeOf Logi cPackedArr (int width);

D.9.1.4 Translation between the actual representation and the canonical representation

/* functions for translation between the representation actually used by
simul ator and the canonical representation */

/* s=source, d=destination, w=width */
/* actual <-- canonical */

voi d svPutBi t Vec32 (svBi t PackedAr r Ref d, const svBitVec32*
voi d svPut Logi cVec32 (svLogi cPackedArrRef d, const svlLogi cVec32*

[72]

int w;
int w;

(7]

/* canoni cal <-- actual */
voi d svCGet Bi t Vec32 (svBit Vec32* d, const svBitPackedArr Ref s, int w;
voi d svGet Logi cVec32 (svLogi cVec32* d, const svLogi cPackedArrRef s, int w;

The above functions copy the whole array in either direction. The user is responsible for providing the correct
width and for allocating an array in the canonical representation. The contents of the unused bits is undeter-
mined.

Although the put/get functionality provided for bit and | ogi ¢ packed arrays is sufficient, yet basic, it
reguires unnecessary copying of the whole packed array when perhaps only some bits are needed. For the sake
of convenience and improved performance, bit selects and limited (up to 32 hits) part selects are also sup-
ported, see Annex D.10.3.1 and Annex D.10.3.2.

D.9.2 Source-level compatibility include file svdpi _src. h

Only two symbols are defined: the macros that allow declaring variables to represent the SystemVerilog
packed arrays of typebi t orl ogi c.

#defi ne SV_BI T_PACKED_ARRAY(W DTH, NAME)
#define SV_LOG C_PACKED ARRAY(W DTH, NAVE)

The actual definitions are implementation-specific. For example, a SystemVerilog simulator might define the
later macro as follows.

#define SV_LOG C_PACKED ARRAY(W DTH, NAME) \
svLogi cVec32 NAME [SV_CANONI CAL_SI ZE(W DTH)]

Copyright 2003 Accellera. All rights reserved. 333

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

D.9.3 Example 2 — binary compatible application
SystemVerilog:

typedef struct {int a; int b;} pair;
import "DPI" function void foo(input int i1, pair i2, output logic [63:0] 03);

export "DPI" function exported_sv_func;
function void exported_sv_func(input int i, output int o [0:7]);

begin ... end
endf uncti on

#i ncl ude "svdpi.h"

typedef struct {int a; int b;} pair;

extern void exported_sv_func(int, int *); /* inported from SystenVerilog */
void foo(const int il, const pair *i2, svLogi cPackedArrRef 03)

{
svLogi cVec32 arr[SV_CANONI CAL_SI ZE(64)]; /* 2 chunks needed */

int tab[8];
printf("%\n", i1);
arr[1].c = i2->a;
arr[1].d = 0;
arr[2].c = 1i2->b;
arr[2].d = 0;

svPut Logi cVec32 (03, arr, 64);

/* call SystenVerilog */
exported_sv_func(il, tab); /* tab passed by reference */

}
D.9.4 Example 3— source-level compatible application
SystemVerilog:
typedef struct {int a; bit [6:1][1:8] b [65:2]; int c;} triple;
/1 troublesone mx of C types and packed arrays
import "DPI" function void foo(input triple i);
export "DPI" function exported_sv_func
function void exported_sv_func(input int i, output logic [63:0] 0);

begin ... end
endf uncti on

#i ncl ude "svdpi.h"
#i ncl ude "svdpi _src.h"

typedef struct {
int a;

334 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

sv_BI T_PACKED ARRAY(6*8, b) [64]; /* inplementation specific
representation */

int c;

} triple;

/* Note that 'b’ is defined as for '"bit [6*8-1:0] b [63:0]" */

extern void exported_sv_func(int, svLogi cPackedArrRef); /* inmported from
SystenVeril og */

voi d foo(const triple *i)

{ . .
int j;
[* canoni cal representation */
svBitVec32 arr[SV_CANONI CAL_SI ZE(6*8)]; /* 6*8 packed bits */
svLogi cVec32 alL[SV_CANONI CAL_SI ZE(64)];

/* inplenentation specific representation */
SV_LOG C_PACKED ARRAY(64, ny_tab);

printf("% %\n", i->a, i->c);
for (j=0; j<64; j++) {
svGet BitVec32(arr, (svBitPackedArrRef)&(i->b[j]), 6*8);

}

/* call SystenWVerilog */
exported_sv_func(2, (svLogi cPackedArrRef)&ny tab); /* by reference */
svGet Logi cVec32(al, (svLogi cPackedArrRef)&ny tab, 64); ... }

NOTE—a, b, and c are directly accessed as fields in a structure. In the case of b, which represents unpacked array of
packed arrays, the individual element is accessed viathe library function svGet Bi t Vec32() , by passing its address to
the function.

D.10 Arrays

Normalized ranges are used for accessing SystemVerilog arrays, with the exception of formal arguments spec-
ified as open arrays.

D.10.1 Multidimensional arrays

Packed arrays shall be one-dimensional. Unpacked arrays can have an arbitrary number of dimensions.

D.10.2 Direct access to unpacked arrays

Unpacked arrays, with the exception of formal arguments specified as open arrays, shall have the same layout
as used by a C compiler; they are accessed using C indexing (see Annex D.6.6).

D.10.3 Access to packed arrays via canonical representation
Packed arrays are accessible via canonical representation; this C-layer interface provides functions for moving
data between implementation representation and canonical representation (any necessary conversion is per-

formed on-the-fly (see Annex D.9.1.3)), and for bit selects and limited (up to 32-bit) part selects. (Bit selects
do not involve any canonical representation.)

D.10.3.1 Bit selects
This subsection defines the bit selects portion of the svdpi . h file (see Annex D.9.1 for more details).

/* Packed arrays are assumed to be indexed n-1:0,

Copyright 2003 Accellera. All rights reserved. 335

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

where 0 is the index of |least significant bit */
/* functions for bit select */

/* s=source, i=bit-index */
svBit svCet Sel ectBit(const svBitPackedArrRef s, int i);
svLogi ¢ svGet Sel ect Logi c(const svLogi cPackedArrRef s, int i);

/* d=destination, i=bit-index, s=scalar */
voi d svPut Sel ect Bit (svBit PackedArrRef d, int i, svBit s);
voi d svPut Sel ect Logi c(svLogi cPackedArrRef d, int i, svlLogic s);

D.10.3.2 Part selects

Limited (up to 32-bit) part selects are supported. A part select is a slice of a packed array of types bit or
| ogi c. Array dlices are not supported for unpacked arrays. Additionally, 64-bit wide part select can be read as
asingle value of typeunsigned | ong | ong.

Functionsfor part selects only allow access (read/write) to a narrow subrange of up to 32 bits. A canonical rep-
resentation shall be used for such narrow vectors. If the specified range of part select is not fully contained
within the normalized range of an array, the behavior is undetermined.

For the convenience, bit type part selects are returned as a function result. In addition to a general function for
narrow part selects (<= 32-hits), there are two specialized functions for 32 and 64 bits.

/*

* functions for part select

*

* a narrow (<=32 bhits) part select is copied between

* the inplenmentation representati on and a single chunk of

* canoni cal representation

* Normalized ranges and indexing [n-1:0] are used for both arrays:
* the array in the inplenentation representation and the canonical array.
*

* s=source, d=destination, i=starting bit index, w=width

* |ike for variable part selects; limtations: w<= 32

*

/

NOTE—TFor the sake of symmetry, a canonical representation (i.e., an array) is used both for bi t and | ogi c, athough a
simpler i nt can be used for bi t -part selects (<= 32-hits):

/* canoni cal <-- actual */
voi d svGetPart Sel ectBit (svBitVec32* d, const svBitPackedArrRef s, int i,
int w;
svBi t Vec32 svGet Bits(const svBitPackedArrRef s, int i, int w;
svBi t Vec32 svGet 32Bits(const svBitPackedArrRef s, int i); // 32-bits
unsi gned | ong | ong svGet 64Bi ts(const svBitPackedArrRef s, int i); // 64-bits
voi d svGet Part Sel ect Logi c(svLogi cVec32* d, const svLogi cPackedArrRef s, int i,

int w;

/* actual <-- canonical */

voi d svPut Part Sel ect Bi t (svBi t PackedArrRef d, const svBitVec32 s, int i,
int w;

voi d svPut Part Sel ect Logi c(svLogi cPackedArr Ref d, const svLogicVec32 s, int i,
int w;

336 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

D.11 Open arrays

Formal arguments specified as open arrays alows passing actual arguments of different sizes (i.e., different
range and/or different number of elements), which facilitates writing more general C code that can handle Sys-
temVerilog arrays of different sizes. The elements of an open array can be accessed in C by using the same
range of indices and the same indexing asin SystemVerilog. Plus, inquiries about the dimensions and the orig-
inal boundaries of SystemVerilog actual arguments are supported for open arrays.

NOTE—Both packed and unpacked array dimensions can be unsized.

All formal arguments declared in SystemVerilog as open arrays are passed by handle (type svOpenAr r ay-
Handl e), regardless of the direction of a SystemVerilog formal argument. Such arguments are accessible via
interface functions.

D.11.1 Actual ranges

The forma arguments defined as open arrays have the size and ranges of the actual argument, as determined
on a per-call basis. The programmer shall aways have a choice whether to specify a formal argument as a
sized array or as an open (unsized) array.

In the former case, all indices are normalized on the C side (i.e., 0 and up) and the programmer needs to know
the size of an array and be capable of determining how the ranges of the actual argument map onto C-style
ranges (see Annex D.6.6).

Tip: programmers can decide to use [n: 0] nane[0: k] style rangesin SystemVerilog.

In the later case, i.e., an open array, individual elements of a packed array are accessible via interface func-
tions, which facilitate the SystemVerilog-style of indexing with the original boundaries of the actual argument.

If aformal argument is specified as a sized array, then it shall be passed by reference, with no overhead, and is
directly accessible as a normalized array. If aformal argument is specified as an open (unsized) array, then it
shall be passed by handle, with some overhead, and is mostly indirectly accessible, again with some overhead,
although it retains the original argument boundaries.

NOTE—This provides some degree of flexibility and allows the programmer to control the trade-off of performance vs.
convenience.

The following example shows the use of sized vs. unsized arraysin SystemVerilog code.
/'l both unpacked arrays are 64 by 8 el enents, packed 16-bit each
logic [15: 0] a_64x8 [63:0][7:0];
logic [31:16] b_64x8 [64:1][-1:-8];

import "DPI" function void foo(input logic [] i [][]);
/1 2-di mensi onal unsized unpacked array of unsized packed | ogic

i mport "DPI" function void boo(input logic [31:16] i [64:1][-1:-8]);
/1 2-dinmensional sized unpacked array of sized packed | ogic

foo(a_64x8);
foo(b_64x8); // C code can use original ranges [31:16][64:1][-1:-8]

boo(b_64x8); // C code nmust use nornalized ranges [15:0][0:63][0: 7]

D.11.2 Array querying functions

These functions are modelled upon the SystemVerilog array querying functions and use the same semantics
(see Section 22.4).

Copyright 2003 Accellera. All rights reserved. 337

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

If the dimension is O, then the query refers to the packed part (which is one-dimensional) of an array, and
dimensions > 0 refer to the unpacked part of an array.

/* h= handl e to open array, d=di nension */

int svLeft(const svQpenArrayHandle h, int d);

int svRi ght (const svOpenArrayHandle h, int d);

int svLowm const svOpenArrayHandle h, int d);

int svH gh(const svQpenArrayHandle h, int d);

int svlincrement (const svOpenArrayHandl e h, int d);
int svLength(const svOpenArrayHandl e h, int d);

i nt svDi nensi ons(const svOpenArrayHandl e h);

D.11.3 Access functions

Similarly to sized arrays, there are functions for copying data between the ssimulator representation and the
canonical representation and to obtain the actual address of SystemVerilog data object or of an individual ele-
ment of an unpacked array. Thisinformation might be useful for simulator-specific tuning of the application.

Depending on the type of an element of an unpacked array, different access methods shall be used when work-
ing with elements.

— Packed arrays (bi t or | ogi ¢) are accessed via copying to or from the canonical representation.
— Scalars (1-bit value of typebi t or | ogi c) are accessed (read or written) directly.

— Other types of values (e.g., structures) are accessed via generic pointers; a library function calculates an
address and the user needs to provide the appropriate casting.

— Scalars and packed arrays are accessible via pointers only if the implementation supports this functionality
(per array), e.g., one array can be represented in aform that allows such access, while another array might
use a compacted representation which renders this functionality unfeasible (both occurring within the same
simulator).

SystemVerilog allows arbitrary dimensions and, hence, an arbitrary number of indices. To facilitate this, vari-
able argument list functions shall be used. For the sake of performance, specialized versions of al indexing
functions are provided for 1, 2, or 3 indices.

D.11.4 Access to the actual representation

The following functions provide an actual address of the whole array or of itsindividual elements. These func-
tions shall be used for accessing elements of arrays of types compatible with C. These functions are also useful
for vendors, because they provide access to the actual representation for all types of arrays.

If the actual layout of the SystemVerilog array passed as an argument for an open unpacked array is different
than the C layout, then it is not possible to access such an array as a whole; therefore, the address and size of
such an array shall be undefined (zero (0), to be exact). Nonetheless, the addresses of individual elements of an
array shall be always supported.

NOTE—No specific representation of an array is assumed here; hence, al functions use a generic pointer voi d *.
/* a pointer to the actual representation of the whole array of any type */
/* NULL if not in Clayout */
voi d *svGet ArrayPtr(const svOpenArrayHandl e);

int svSizeOf Array(const svQpenArrayHandle); /* total size in bytes or 0 if not
in Clayout */

/* Return a pointer to an elenment of the array
or NULL if index outside the range or null pointer */

338 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

void *svGet ArrEl enPtr(const svOpenArrayHandl e, int indxl, ...);

/* specialized versions for 1-, 2- and 3-di nensi onal arrays: */

voi d *svGet ArrEl enPtr1(const svOpenArrayHandl e, int indxl);

voi d *svGet ArrEl enPtr2(const svOpenArrayHandl e, int indx1l, int indx2);

voi d *svGet ArrEl enPt r3(const svOpenArrayHandl e, int indx1, int indx2,
int indx3);

Accessto an individual array element via pointer makes sense only if the representation of such an element is
the same as it would be for an individual value of the same type. Representation of array elements of type
scal ar or packed value isimplementation-dependent; the above functions shall return NULL if the representa-
tion of the array elements differs from the representation of individual values of the same type.

D.11.5 Access to elements via canonical representation
This group of functions is meant for accessing elements which are packed arrays (bi t or | ogi c).

The following functions copy a single vector from a canonical representation to an element of an open array or
other way round. The element of an array is identified by indices, bound by the ranges of the actual argument,
i.e., theorigina SystemVerilog ranges are used for indexing.

/* functions for translation between simulator and canonical representations*/
/* s=source, d=destination */

/* actual <-- canonical */

voi d svPutBitArrEl enVec32 (const svQpenArrayHandl e d, const svBitVec32* s,

int indx1, ...);
voi d svPutBitArrEl enllVec32(const svQpenArrayHandl e d, const svBitVec32* s,
int indxl);

voi d svPutBit Arr El enRVec32(const svOpenArrayHandl e d, const svBitVec32* s,
int indx1, int indx2);

voi d svPutBit Arr El enBVec32(const svQpenArrayHandl e d, const svBitVec32* s,
int indx1, int indx2, int indx3);

voi d svPut Logi cArrEl emec32 (const svOpenArrayHandl e d, const svLogi cVec32* s,

int indx1, ...);
voi d svPut Logi cArrEl emlVec32(const svOpenArrayHandl e d, const svLogi cVec32* s,
int indxl);

voi d svPut Logi cArrEl em2Vec32(const svOpenArrayHandl e d, const svlLogi cVec32* s,
int indx1, int indx2);

voi d svPut Logi cArr El enBVec32(const svOpenArrayHandl e d, const svLogi cVec32* s,
int indx1, int indx2, int indx3);

/* canonical <-- actual */
voi d svGetBitArrEl enVec32 (svBitVec32* d, const svQpenArrayHandl e s,

int indx1, ...);
voi d svGetBitArrEl enlVec32(svBitVec32* d, const svOpenArrayHandle s
int indxl);

voi d svGetBit Arr El enRVec32(svBitVec32* d, const svOpenArrayHandle s
int indx1, int indx2);

voi d svGetBitArrEl enBVec32(svBitVec32* d, const svQpenArrayHandl e s,
int indx1, int indx2, int indx3);

voi d svCGet Logi cArrEl emvec32 (svLogi cVec32* d, const svOpenArrayHandl e s,

int indx1, ...);
voi d svGet Logi cArrEl emlVec32(svLogi cVec32* d, const svQpenArrayHandl e s,
int indxl);

voi d svGet Logi cArr El em2Vec32(svLogi cVec32* d, const svQpenArrayHandl e s,
int indx1, int indx2);

Copyright 2003 Accellera. All rights reserved. 339

Accellera

SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

voi d svCGet Logi cArr El emBVec32(svLogi cVec32* d,
int indx1, int

const svQOpenArrayHandl e s,
i ndx2, int indx3);

The above functions copy the whole packed array in either direction. The user is responsible for alocating an
array in the canonical representation.

D.11.6 Access to scalar elements (bit and logic)

Another group of functions is needed for scalars (i.e., when an element of an array isasimple scaar, bi t, or

| ogi c):

SVBi t svGetBit ArrEl em (const svQpenArrayHandl e s, int indx1, 2

SVBi t svGet Bit Arr El eml(const svOpenArrayHandl e s, int indx1);

SVBi t svGet Bi t Arr El en2(const svOpenArrayHandl e s, int indx1, int indx2);

SsvBi t svGet Bit Arr El enB(const svQpenArrayHandl e s, int indx1l, int indx2,
int indx3);

svLogi ¢ svGetLogi cArrEl em (const svOpenArrayHandl e s, int indxl, 2

svLogi ¢ svGet Logi cArrEl enl(const svOpenArrayHandl e s, int indx1);

svLogi ¢ svGetLogi cArrEl en2(const svOpenArrayHandl e s, int indx1l, int indx2);

svLogi ¢ svGet Logi cArrEl enB(const svOpenArrayHandl e s, int indx1l, int indx2,
int indx3);

voi d svPut Logi cArrEl em (const svQpenArrayHandl e d, svLogic val ue, int indxl,
)

voi d svPut Logi cArrEl eml(const svQOpenArrayHandl e d, svLogic value, int indxl);

voi d svPut Logi cArrEl em2(const svQpenArrayHandl e d, svLogic val ue, int indxl,
int indx2);

voi d svPut Logi cArrEl enB(const svQpenArrayHandl e d, svLogic val ue, int indxl,
int indx2, int indx3);

voi d svPutBi t ArrEl em (const svQpenArrayHandl e d, svBit val ue, int indxl, 2

voi d svPutBit ArrEl enll(const svOpenArrayHandl e d, svBit val ue, int indxl);

voi d svPutBitArrEl en2(const svOpenArrayHandl e d, svBit val ue, int indxl,
int indx2);

voi d svPutBitArrEl enB(const svOpenArrayHandl e d, svBit value, int indxl,
int indx2, int indx3);

D.11.7 Access to array elements of other types

If an array’s elements are of atype compatible with C, thereisno need to use canonical representation. In such
situations, the elements are accessed via pointers, i.e., the actual address of an element shall be computed first
and then used to access the desired element.

D.11.8 Example 4— two-dimensional open array
SystemVerilog:
typedef struct {int i; } MyType;

"DPI" function void foo(input MyType i [][]); /* 2-dinensional unsized

unpacked array of MyType */

i mport
MyType a_10x5 [11:20][6:2];
MyType a_64x8 [64:1][-1:-8];

foo(a_10x5);
foo(a_64x8);

340 Copyright 2003 Accellera. All rights reserved.

Accellera

Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

#i ncl ude "svdpi.h"

typedef struct {int i; ... } MType;
voi d foo(const svQpenArrayHandl e h)
{
M/ Type ny_val ue;
int i, j;
int ol = svLow(h, 1);
int hil = svH gh(h, 1);
int 102 = svLow(h, 2);
int hi2 = svH gh(h, 2);
for (i =101; i <= hil; i++) {
for (j =102, j <=hi2; j++) {
ny_value = *(MyType *)svGetArrEl enPtr2(h, i, j);
*(M/Type *)svGetArrEl enPtr2(h, i, j) = ny_val ue;
}
}
}

D.11.9 Example 5 — open array
SystemVerilog:

typedef struct { ... } MType;

import "DPI" function void foo(input MyType i [], output MyType o []);

MyType source [11:20];
MyType target [11:20];

foo(source, target);

#i ncl ude "svdpi.h"
typedef struct ... } MType;
voi d foo(const svQpenArrayHandl e hin, const svQpenArrayHandl e hout)
{
int count = svLength(hin, 1);
M/Type *s = (MyType *)svGet ArrayPtr (hin);
M/ Type *d = (MyType *)svGet ArrayPtr (hout);
if (s & d) { /* both arrays have C | ayout */
/* an efficient solution using pointer arithnetic */
while (count--)

*d++ = *s++;

/* even nore efficient:

Copyright 2003 Accellera. All rights reserved.

341

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

mencpy(d, s, svSizeO Array(hin));
*/
} else { /* less efficient yet inplenentation independent */

int i = svLowm hin, 1);

int j = svLow hout, 1);

while (i <= svHigh(hin, 1)) {
*(MyType *)svGet ArrEl enPtr1(hout, j++) =
*(MyType *)svGet ArrEl enPtr1(hin, i++);

}
D.11.10 Example 6 — access to packed arrays

SystemVerilog:
import "DPI"™ function void foo(input |ogic [127:0]);

inmport "DPI" function void boo(input logic [127:0] i []1); // open array of
/1 128-bit

#i ncl ude "svdpi.h"

/* one 128-bit packed vector */
voi d foo(const svLogi cPackedArrRef packed_vec_128 bit)

{
svLogi cVec32 arr[SV_CANONI CAL_SI ZE(128)]; /* canonical representation */
svGet Logi cVec32(arr, packed_vec_128 bit, 128);

}

/* open array of 128-bit packed vectors */
voi d boo(const svQpenArrayHandl e h)

{
int i;
svLogi cVec32 arr[SV_CANONI CAL_SI ZE(128)]; /* canonical representation */
for (i = svLlowmh, 1); i <= svH gh(h, 1); i++) {
svLogi cPackedArr Ref ptr = (svLogi cPackedArrRef)svGetArrEl enPtri(h, i);
/* user need not know the vendor representation! */
svCet Logi cVec32(arr, ptr, 128);
}
}

D.11.11 Example 7 — binary compatible calls of exported functions
This example demonstrates the source compatibility include file svdpi _src. h is not needed if a C function

dynamically allocates the data structure for smulator representation of a packed array to be passed to an
exported SystemVerilog function.

342 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

SystemVerilog:
export "DPI" function nyfunc

function void nyfunc (output logic [31:0] r);

#i ncl ude "svdpi.h"
extern void nyfunc (svLogi cPackedArrRef r); /* exported from SV */

/* output |ogic packed 32-bits */

svLogi cVec32 ny_r[SV_CANONI CAL_SI ZE(32)];
/* ny array, canonical representation */

/* allocate nemory for |ogic packed 32-bits in simulator’s representation */
svLogi cPackedArrRef r =
(svLogi cPackedArr Ref) mal | oc(svSi zeOX Logi cPackedArr (32));
myfunc(r);
/* canoni cal <-- actual */
svGet Logi cVec32(ny_r, r, 32);
/* shall use only the canonical representation fromnow on */
free(r); /* don’t need any nore */

Copyright 2003 Accellera. All rights reserved. 343

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Annex E
Include files

This annex shows the contents of the svdpi . h and svdpi _src. h includefiles.
E.1 Binary-level compatibility include file svdpi.h
[* canonical representation */

#define sv.0O O
#define sv_1 1
#define sv_z 2 /* representation of 4-st scalar z */
#define sv_.x 3 /* representation of 4-st scalar x */

/* common type for 'bit' and 'logic’ scalars. */
t ypedef unsigned char svScal ar;

typedef svScal ar svBit; [* scalar */
typedef svScal ar svlLogic; /* scalar */

/* Canonical representation of packed arrays */
/* 2-state and 4-state vectors, nodelled upon PLI's aval ue/ bval ue */
#define SV_CANONI CAL_SI ZE(W DTH) (((W DTH) +31) >>5)

typedef unsigned int
svBitVec32;/* (a chunk of) packed bit array */

typedef struct { unsigned int c; unsigned int d;}
svLogicVec32; /* (a chunk of) packed logic array */

/* Since the contents of the unused bits is undeterm ned, the follow ng nacros can
be handy */
#define SV_MASK(N) (~(-1<<(N)))

#define SV_GET_UNSI GNED_BI TS(VALUE, N)\
((N)==32?(VALUE) : ((VALUE) &SV_MASK(N)))

#def i ne SV_GET_SI GNED_BI TS(VALUE, N) \
((N) ==322(VALUE) : \
(((VALUE) & 1<<((N)1))) 2((VALUE) | ~SV_MASK(N)) : ((VALUE) &SV_MASK(N))))

/* inpl enentation-dependent representation */

/* a handle to a scope (an instance of a nodule or interface) */
t ypedef voi d* svScope;

/* a handle to a generic object (actually, unsized array) */
typedef voi d* svOpenArrayHandl e;

/* reference to a standal one packed array */
t ypedef voi d* svBitPackedArr Ref;
t ypedef voi d* svLogi cPackedArr Ref;

/* total size in bytes of the simulator’s representation of a packed array */
/* width in bits */

int svSizeOfBit PackedArr(int w dth);

int svSi zeOf Logi cPackedArr (i nt width);

344 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

/* Transl ati on between the actual representation and the canonical representation
*/

/* functions for translation between the representation actually used by
simul ator and the canonical representation */

/* s=source, d=destination, w=w dth */

/* actual <-- canonical */

voi d svPut BitVec32 (svBi t PackedAr r Ref d, const svBitVec32* s, int w;
voi d svPut Logi cVec32 (svLogi cPackedArrRef d, const svLogicVec32* s, int w;
/* canoni cal <-- actual */

voi d svGet Bi t Vec32 (svBit Vec32* d, const svBitPackedArr Ref s, int w;
voi d svGet Logi cVec32 (svLogi cVec32* d, const svLogi cPackedArrRef s, int w);

/* Bit selects */

/* Packed arrays are assumed to be indexed n-1:0,
where 0 is the index of l|east significant bit */

/* functions for bit select */

/* s=source, i=bit-index */
svBit svCet Sel ectBit(const svBitPackedArrRef s, int i);
svLogi ¢ svGet Sel ect Logi c(const svLogi cPackedArrRef s, int i);

/* d=destination, i=bit-index, s=scalar */
voi d svPut Sel ect Bi t (svBit PackedArrRef d, int i, svBit s);
voi d svPut Sel ect Logi c(svLogi cPackedArrRef d, int i, svLogic s);

/*

* functions for part select

*

* a narrow (<=32 bits) part select is copied between

* the inplementation representation and a single chunk of

* canoni cal representation

* Nornmalized ranges and indexing [n-1:0] are used for both arrays:
* the array in the inplenentation representation and the canonical array.
*

* s=source, d=destination, i=starting bit index, w=w dth

* like for variable part selects; limtations: w <= 32

*/

/* canonical <-- actual */
voi d svGetPart Sel ect Bit (svBitVec32* d, const svBitPackedArrRef s, int i,
int w;
svBi t Vec32 svGet Bits(const svBitPackedArrRef s, int i, int w;
svBi t Vec32 svGet 32Bi t s(const svBitPackedArrRef s, int i); // 32-bits
unsi gned |l ong | ong svGet 64Bi t s(const svBitPackedArrRef s, int i); // 64-bits
voi d svGet Part Sel ect Logi c(svLogi cVec32* d, const svLogi cPackedArrRef s, int i,

int w;
/* actual <-- canonical */
voi d svPut Part Sel ect Bi t (svBi t PackedArrRef d, const svBitVec32 s, int i, int w;
voi d svPut Part Sel ect Logi c(svLogi cPackedArrRef d, const svLogicVec32 s, int i,
int w;

/* Array querying functions */

Copyright 2003 Accellera. All rights reserved. 345

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

/* These functions are nodel |l ed upon the SystenVerilog array querying functions
and use the same semantics*/

/* If the dinmension is 0, then the query refers to the packed part (which is one-
di nensional) of an array, and dinensions > 0 refer to the unpacked part of an
array. */

/* h= handl e to open array, d=di mension */

int svLeft(const svQpenArrayHandl e h, int d);

i nt svRi ght (const svQpenArrayHandle h, int d);

int svLow const svOpenArrayHandle h, int d);

i nt svHi gh(const svQpenArrayHandle h, int d);

i nt svlncrement (const svOpenArrayHandl e h, int d);
i nt svLength(const svOpenArrayHandl e h, int d);

i nt svDi mensi ons(const svOpenArrayHandl e h);

/* a pointer to the actual representation of the whole array of any type */
/* NULL if not in Clayout */
voi d *svGet ArrayPtr(const svQOpenArrayHandl e);

int svSizeOf Array(const svOpenArrayHandle); /* total size in bytes or O0if not inC
| ayout */

/* Return a pointer to an elenent of the array
or NULL if index outside the range or null pointer */

voi d *svGet ArrEl enPtr (const svOpenArrayHandl e, int indxl, ...);

/* specialized versions for 1-, 2- and 3-di nensional arrays: */
voi d *svGet Arr El enPtr1(const svOpenArrayHandl e, int indxl);
voi d *svGet Arr El enPtr2(const svOpenArrayHandl e, int indxl, int indx2);
voi d *svGet Arr El enPtr3(const svOpenArrayHandl e, int indxl, int indx2, int indx3);

/* Functions for translation between sinmulator and canoni cal representations*/
/* These functions copy the whol e packed array in either direction. The user is
responsi ble for allocating an array in the canonical representation. */
/* s=source, d=destination */
/* actual <-- canonical */
voi d svPutBitArrEl enVec32 (const svQpenArrayHandl e d, const svBitVec32* s,

int indx1, ...);
voi d svPutBit ArrEl enllVec32(const svOpenArrayHandl e d, const svBitVec32* s, int
i ndx1);
voi d svPut Bit Arr El enRVec32(const svOpenArrayHandl e d, const svBitVec32* s, int
i ndx1,

int indx2);
voi dsvPut Bi t Arr El enBVec32(const svOpenArrayHandl ed, const svBi t Vec32* s,

int indx1, int indx2, int indx3);

voi d svPut Logi cArrEl enVec32 (const svOpenArrayHandl e d, const svLogi cVec32* s,

int indx1, ...);
voi d svPut Logi cArrEl emlVec32(const svOpenArrayHandl e d, const svlLogi cVec32* s,
int indxl);

voi d svPut Logi cArrEl en2Vec32(const svOpenArrayHandl e d, const svLogi cVec32* s,
int indx1, int indx2);

voi d svPut Logi cArrEl en8Vec32(const svOpenArrayHandl e d, const svLogi cVec32* s,
int indx1l, int indx2, int indx3);

/* canoni cal <-- actual */

voi d svGetBitArrEl enVec32 (svBitVec32* d, const svOQpenArrayHandl e s, int indxl1,
)

346 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

voi d svGetBitArrEl enlVec32(svBitVec32* d
voi d svCGetBit Arr El enRVec32(svBitVec32* d, const svOpenArrayHandl e s, int indx1,
int indx2);

voi d svGetBit Arr El enBVec32(svBitVec32* d, const svQpenArrayHandl e s,

voi d svGet Logi cArrEl emec32 (svLogi cVec32* d,

i ndx1,

)

voi d svGet Logi cArrEl emlVec32(svLogi cVec32* d,

i ndx1);

voi d svGet Logi cArrEl em2Vec32(svLogi cVec32* d,

i ndx1,

int indx2);

voi d svGet Logi cArr El enBVec32(svLogi cVec32* d,
int indx1l, int indx2, int

SvBi t svGet Bi t Arr El em (const
SvBi t svGet Bi t Arr El enl(const
SvBi t svGet Bi t Arr El en2(const
svBi t svGet Bi t Arr El enB(const

i ndx3);

svLogi ¢ svGetLogi cArrEl em (const
svLogi ¢ svGet Logi cArrEl enll(const
svLogi ¢ svGet Logi cArrEl en2(const
svLogi ¢ svGet Logi cArrEl enB(const

i ndx3);

voi d svPut Logi cArrEl em (const svOpenArrayHandl e d,
voi d svPut Logi cArrEl eml(const svOpenArrayHandl e d,
voi d svPut Logi cArrEl en2(const svOpenArrayHandl e d,
i ndx2);
voi d svPut Logi cArrEl enB(const svQpenArrayHandl e d,

int

i ndx2,
int

voi d svPutBitArrEl em (const
voi d svPutBitArrEl enll(const
voi d svPutBitArrEl en2(const
i ndx2);

voi d svPutBitArrEl enB(const
i ndx2,

i ndx3);

svOpenAr rayHandl e
svOpenAr rayHandl e
svOpenAr rayHandl e

svOpenAr rayHandl e

int indx3);

/* Functions for working with DPI

int indx1, int indx2,

int i

ndx3) ;

const svOpenArrayHandl e s, int

svOpenArrayHandl e
svOpenArrayHandl e
svOpenArrayHandl e
svOpenArrayHandl e

svOpenArrayHandl e
svOpenArrayHandl e
svOpenArrayHandl e
svOpenArrayHandl e

const svOpenArrayHandl e s, int
const svOpenArrayHandle s, int
const svOpenArrayHandl e s,
i ndx3);
s, int indxl, L)
s, int indx1);
s, int indx1, int indx2);
s, int indx1l, int indx2, int
s, int indxl, L)
s, int indxl);
s, int indx1, int indx2);
s, int indx1l, int indx2, int

svLogi c val ue,

svBi t
SvBit
SsvBit

svBi t

context functions */

val ue,
val ue,
val ue,

val ue,

svLogi c val ue,
svLogi c val ue,

svLogi c val ue,

int
i nt
i nt

int indx1,
int indxl);
int indxl,

SystemVerilog 3.1a/draft 1

const svQpenArrayHandle s, int indxl);

)

int indxl, int

i ndx1, ...);
i ndx1);

i ndx1, int

i ndx1, int

/* Retrieve the active instance scope currently associated with the executing

i mported function.

Unless a prior call to svSetScope has occurred,
function's declaration site, not call site.
Returns NULL if called from C code that

svScope svGet Scope();

/* Set context for subsequent export function execution.
This function nust be called before calling an export function, unless
the export function is called while executing an extern function. In that

case the export function shall

function. This is known as the “default scope”.

Copyright 2003 Accellera. All rights reserved.

this is the scope of the

is *not* an inported function. */

inherit the scope of the surrounding extern

347

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

The return is the previous active scope (as per svGetScope) */
svScope svSet Scope(const svScope scope);

/* Gets the fully qualified nanme of a scope handle */
const char* svGet NanmeFr onScope(const svScope);

/* Retrieve svScope to instance scope of an arbitrary function declaration.
* (can be either nodule, program interface, or generate scope)

* The return value shall be NULL for unrecogni zed scope nanes.

*/

svScope svGet ScopeFromNane(const char* scopeNane);

/* Store an arbitrary user data pointer for later retrieval by svGetUserData()
* The userKey is generated by the user. It must be guaranteed by the user to
* be unique fromall other userKey's for all unique data storage requirenents
* |t is recommended that the address of static functions or variables in the
* user’'s C code be used as the userKey.

* It isillegal to pass in NULL values for either the scope or userData

* arguments. It is also an error to call svPutUserData() with an invalid

* svScope. This function returns -1 for all error cases, 0 upon success. It is
* suggested that userData values of 0 (NULL) not be used as otherwise it can
* be inpossible to discern error status returns when calling svGet UserData()
*/

nt svPut User Dat a(const svScope scope, void *userKey, void* userData);

/* Retrieve an arbitrary user data pointer that was previously

* stored by a call to svPutUserData(). See the comment above

* svPutUserData() for an explanation of userKey, as well as

* restrictions on NULL and illegal svScope and userKey val ues.

* This function returns NULL for all error cases, 0 upon success.
* This function also returns NULL in the event that a prior call
* to svPut UserData() was never nade.

*/

voi d* svGet User Dat a(const svScope scope, void* userKey);

/* Returns the file and line nunber in the SV code fromwhich the extern cal
* was made. If this information avail able, returns TRUE and updates fil eName *
and |ineNunber to the appropriate val ues. Behavior is unpredictable if
* fileName or |ineNunber are not appropriate pointers. If this informationis *
not avail able return FALSE and contents of fileName and |ineNunber not
* nodified. Whether this information is available or not is inplenmentation
* gpecific. Note that the string provided (if any) is owned by the SV
* inplenmentation and is valid only until the next call to any SV function
* Applications must not nodify this string or free it
*/
nt svGetCallerlnfo(char **fileNane, int *lineNunber);

E.2 Source-level compatibility include file svdpi_src.h

/* macros for declaring variables to represent the SystenVerilog */

/* packed arrays of type bit or logic */

/* WDTH= nunber of bits, NAME = nanme of a declared field/variable */

#defi ne SV_BI T_PACKED_ARRAY(W DTH, NAME) / * actual definition goes here */
#defi ne SV_LOG C_PACKED ARRAY(W DTH, NAME) / * actual definition goes here */

348 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Annex F
Inclusion of Foreign Language Code

This annex describes common guidelines for the inclusion of Foreign Language Code into a SystemVerilog
application. This intention of these guidelines is to enable the redistribution of C binaries in shared object
form.

Foreign Language Code is functionality that is included into SystemVerilog using the DPI Interface. As a
result, all statements of this annex apply only to code included using this interface; code included by using
other interfaces (e.g., PL1 or VPI) is outside the scope of this document. Due to the nature of the DPI Interface,
most Foreign Language Code is usually be created from C or C++ source code, although nothing precludes the
creation of appropriate object code from other languages. This annex adheres to this rule, it's content is inde-
pendent from the actual language used.

In general, Foreign Language Code is provided in the form of object code compiled for the actual platform.
The capability to include Foreign Language Code in object-code form shall be supported by all simulators as
specified here. Overview

This annex defines how to:
— specify the location of the corresponding files within the file system
— gpecify the files to be loaded (in case of object code) or

— provide the object code (as a shared library or archive)

Although this annex defines guidelines for acommon inclusion methodology, it requires multiple implementa-
tions (usually two) of the corresponding facilities. This takes into account that multiple users can have differ-
ent viewpoints and different requirements on the inclusion of Foreign Language Code.

— A vendor that wants to provide his IP in form of Foreign Language Code often requires a self-contained
method for the integration, which still permits an integration by a third party. This use-case is often cov-
ered by a bootstrap file approach.

— A project team that specifies a common, standard set of Foreign Language code, might change the code
depending on technology, selected cells, back-annotation data, and other items. This-use case is often cov-
ered by a set of tool switches, although it might also use the bootstrap file approach.

— An user might want to switch between selections or provide additional code. This-use case is covered by
providing a set of tool switches to define the corresponding information, although it might also use the
bootstrap file approach.

NOTE—This annex defines a set of switch names to be used for a particular functionality. Thisis of informative nature;
the actual naming of switchesis not part of this standard. It might further not be possible to use certain character configura-
tionsin all operating systems or shells. Therefore any switch name defined within this document is a recommendation how
to name a switch, but not arequirement of the language.

F.1 Location independence

All pathnames specified within this annex are intended to be location-independent, which is accomplished by
using the switch - sv_r oot . It can receive asingle directory pathname as the value, which isthen prepended to
any relative pathname that has been specified. In absence of this switch, or when processing relative filenames
before any - sv_r oot specification, the current working directory of the user shall be used as the default
value.

F.2 Object code inclusion
Compiled object code is required for cases where the compilation and linking of source code is fully handled

by the user; thus, the created object code only need be loaded to integrate the Foreign Language Code into a
SystemVerilog application. All SystemVerilog applications shall support the integration of Foreign Language

Copyright 2003 Accellera. All rights reserved. 349

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Code in object code form. Figure F-1depicts the inclusion of object code and its relations to the various steps
involved in this integration process.

Performed by the user Object code
inclusion
Source | ||—p Object Systlem
code |[||—® — - Verilog
I code application
Compile Link
Figure F-1 — Inclusion of object code into a SystemVerilog application

Compiled object code can be specified by one of the following two methods:

1) by an entry in a bootstrap file; see Annex F.2.1 for more details on this file and its content. Its location
shall be specified with one instance of the switch - sv_Ii bl i st pat hnane. This switch can be used
multiple times to define the usage of multiple bootstrap files.

2) by specifying the file with one instance of the switch -sv_li b pat hname_wi t hout _ext ensi on
(i.e., the filename shall be specified without the platform specific extension). The SystemVerilog
application is responsible for appending the appropriate extension for the actual platform. This switch can
be used multiple times to define multiple libraries holding object code.

Both methods shall be provided and made available concurrently, to permit any mixture of their usage. Every
location can be an absolute pathname or arelative pathname, where the value of the switch - sv_r oot isused
to identify an appropriate prefix for relative pathnames (see Annex F.1 for more details on forming path-
names).

The following conditions also apply.

— The compiled object code itself shall be provided in form of a shared library having the appropriate exten-
sion for the actual platform.

NOTE—Shared libraries use, for example, . so for Solarisand . sl for HP-UX; other operating systems might use differ-
ent extensions. In any case, the SystemVerilog application needs to identify the appropriate extension.

— The provider of the compiled code is responsible for any external references specified within these objects.
Appropriate data needs to be provided to resolve all open dependencies with the correct information.

— The provider of the compiled code shall avoid interferences with other software and ensure the appropriate
software version is taken (e.g., in cases where two versions of the same library are referenced). Similar
problems can arise when there are dependencies on the expected runtime environment in the compiled
object code (e.g., in cases where C++ global objects or static initializers are used).

— The SystemVerilog application need only load object code within a shared library that is referenced by the
SystemVerilog code or by registration functions; loading of additional functions included within a shared
library can interfere with other parts.

In case of multiple occurrences of the same file (files having the same pathname or which can easily be identi-
fied as being identical; e.g., by comparing the inodes of the files to detect cases where links are used to refer
the samefile), the above order also identifies the precedence of loading; afilelocated by method 1) shall over-
ride files specified by method 2).

350 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

All compiled object code need to be loaded in the specification order similarly to the above scheme; first the
content of the bootstrap file is processed starting with the first line, then the set of - sv_1 i b switchesis pro-
cessed in order of their occurrence. Any library shall only be loaded once.

F.2.1 Bootstrap file

The object code bootstrap file has the following syntax.

1) Thefirst line containsthe string #! SV_LI BRARI ES.

2) An arbitrary amount of entries follow, one entry per line, where every entry holds exactly one library
location. Each entry consists only of the pat hname_wi t hout _ext ensi on of the object code file to
be loaded and can be surrounded by an arbitrary number of blanks; at least one blank shall precede the
entry in theline. The value pat hnane_wi t hout _ext ensi on is equivalent to the value of the switch
-sv_lib.

3) Any amount of comment lines can be interspersed between the entry lines; a comment line starts with the
character # after an arbitrary (including zero) amount of blanks and is terminated with a newline.

F.2.2 Examples

1) If the pathname root has been set by the switch - sv_r oot to/ hone/ user and the following object files
need to be included:

/ home/ user/nyclibs/libl.so
/ home/ user/nyclibs/lib3.so
/ honme/ user/proj 1l/clibs/lib4.so
/ honme/ user/proj3/clibs/lib2.so

then use either of the methods in Example F-1. Both methods are equivalent.

#! SV_LI BRARI ES “sv_lib nyclibs/libl

nyclibs/libl -sv_|lib nyclibs/lib3
myclibs/1ib3 -sv_lib projl/clibs/lib4

proj3/clibs/lib2

proj l/clibs/lib4 -sv_lib proj3/clibs/lib2

Bootstrap file method Switch list method

Example F-1 — Using a simple bootstrap file or a switch list

2) If the current working directory is/ hone/ user, using the series of switches shown in Example F-2 (left
column) result in loading the following files (right column).

-sv_lib svLibraryl /' horre/ user/ svLi braryl. so
-sv_lib svLibrary2 / home/ user/ svLi brary?2. so
-sv_root /hone/project?2/shared_code
-sv_lib svLibrary3 / horre/ pr oj ect 2/ shar ed_code/ svLi brary3. so
-sv_root /hone/project3/code
-sv_lib svLibrary4 /home/project3/code/svLibrary4.so
Switches Files

Example F-2 — Using a combination of -sv_li b and -sv_root switches

Copyright 2003 Accellera. All rights reserved. 351

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

3) Further, using the set of switches and contents of bootstrap files shown in Example F-3:

-sv_root /honme/usrl |y bootstrapl: #! SV_LI BRARI ES
-sv_liblist bootstrapl] lib1
lib2
-sv_root /hone/usr2
-sv_liblist /home/m ne/bootstrap2 ——# bootstrap2: #! SV_LI BRARIES
Iib3
/ conmon/ | i bx
l'i b5

Example F-3 — Mixing - sv_r oot and bootstrap files

results in loading the following files:

[/ home/ usr1/1ibl. ext
/[home/ usr1/1ib2. ext
[/ home/ usr 2/ 1i b3. ext
/ common/ | i bx. ext

/ home/ usr 2/ 1i b5. ext

where ext stands for the actual extension of the corresponding file.

352 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Annex G
SystemVerilog Concurrent Assertions Semantics

G.1 Introduction

This appendix presents aformal semantics for SystemVerilog concurrent assertions. Immediate assertions and
coverage statements are not discussed here. Throughout this appendix, “assertion” is used to mean “concurrent
assertion”. The semanticsis defined by arelation that determines when afinite or infinite word (i.e., trace) sat-
isfies an assertion. Intuitively, such a word represents a sequence of valuations of SystemVerilog variables
sampled at the finest relevant granularity of time (e.g., at the granularity of simulator cycles). The process by
which such words are produced is closely related to the SystemVerilog scheduling semantics and is not defined
here. In this appendix, words are assumed to be sequences of elements, each element being either a set of
atomic propositions or one of two special symbols used as placeholders when extending finite words. The
atomic propositions are not further defined. The meaning of satisfaction of a SystemVerilog boolean expres-
sion by a set of atomic propositions is assumed to be understood.

The semantics is based on an abstract syntax for SystemVerilog assertions. There are several advantages to
using the abstract syntax rather than the full SystemVerilog Assertions BNF.

1) The abstract syntax facilitates separation of derived operators from basic operators. The satisfaction
relation is defined explicitly only for assertions built from basic operators.

2) The abstract syntax avoids reliance on operator precedence, associativity, and auxiliary rules for resolving
syntactic and semantic ambiguities.

3) The abstract syntax simplifies the assertion language by eliminating some features that tend to encumber
the definition of the formal semantics.

a) The abstract syntax eliminates local variable declarations. The semantics of local variables is written
with implicit types.

b) The abstract syntax eliminates instantiation of sequences and properties. The semantics of an assertion
with an instance of a sequence or property is the same as the semantics of arelated assertion obtained
by replacing the sequence or property instance with an explicitly written sequence or property. The
explicit sequence or property is obtained from the body of the associated declaration by substituting
actual arguments for formal arguments.

¢) The abstract syntax does not allow implicit clocks. Clocking event controls must be applied explicitly
in the abstract syntax.

d) The abstract syntax does not allow explicit procedura enabling conditions for assertions. Procedural
enabling conditions are utilized in the semantics definition (see Subsection 3.3.1), but the method for
extracting such conditions is not defined in this appendix.

In order to use this appendix to determine the semantics of a SystemVerilog assertion, the assertion must first
be transformed into an enabling condition together with an assertion in the abstract syntax. Thistransformation
involves eiminating sequence and property instances by substitution, eliminating local variable declarations,
introducing parentheses, determining the enabling condition, determining implicit or inferred event controls,
and eliminating redundant event controls. For example, the following SystemVerilog assertion

sequence s(X Y); x ##1 y, endsequence

sequence t(2; @c) Z*1:2] ##1 B; endsequence

al ways @c) if (b) assert property (s(A B) |=> t(A));
is transformed into the enabling condition “b” together with the assertion

al ways @c) assert property ((A ##1 B) |=> (Al *1:2] ##1 B))

Copyright 2003 Accellera. All rights reserved. 353

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

in the abstract syntax.

G.2 Abstract Syntax

G.2.1 Abstract grammars

In the following abstract grammars, b denotes a boolean expression, v denotes a local variable name, and e
denotes an expression.

The abstract grammar for unclocked sequencesis

R::=b /1 "bool ean expression" form
| (1, v=e) /1 "local variable sanmpling” form
| (R) /1 "parenthesis" form
| (R##1 R) /1 "concatenation" form
| (R##0 R) /1 "fusion" form
| (Ror R) /1l "or" form
| (Rintersect R) /1l "intersect" form
| first_match (R) /1 "first match" form
| R[*0] /1 "null repetition"” form
| R[*1: 9] /] "unbounded repetition” form

The abstract grammar for clocked sequencesis
S::=@h) R /1 "clock" form
| (S## S) /1 "concatenation" form

The abstract grammar for unclocked propertiesis
P::=[disable iff (b)] [not] R /1 "sequence" form
| [disable iff (b)] [not] (R|->[not] R) /1 "inplication" form

Each instance of Rin this production must be a non-degenerate unclocked sequence.See G.3.2 and G.3.5 for the SVA 1
definition of non-degeneracy.

The abstract grammar for clocked propertiesis
Q::= @b P /1 "clock" form
| [disable iff (b)] [not] S /1 "sequence" form
| [disable iff (b)] [not] (S|->[not] S) /1 "inplication" form

Each instance of Sin this production must be a non-degenerate clocked sequence.See G.3.2 and G.3.5 for the SVA 2
definition of non-degeneracy.

The abstract grammar for assertionsis

A ::= always assert property Q /1 "always" form
| always @b) assert property P /1 "always with clock” form
| initial assert property Q /1 "initial" form
| initial @b) assert property P /1 "initial with clock" form

G.2.2 Notations

The following auxiliary notions will be used in defining the semantics.

« ¢ isan unclocked property fragment provided “di sabl e i ff (b) ¢” isan unclocked property.

* Nisanegation specifier if N is either the empty token or not .

Throughout the sequel, the following notational conventions will be used: b, c denote boolean expressions; v
denotes a local variable name; e denotes an expression; ¢ denotes an unclocked property fragment; N, N;, N,
denote negation specifiers; R, Ry, R, denote unclocked sequences; S, S;, S, denote clocked sequences; P denotes
an unclocked property; Q denotes a clocked property; A denotes an assertion; i, j, k, m, n denote non-negative
integer constants.

354 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

G.2.3 Derived forms

Internal parentheses are omitted in compositions of the (associative) operators ##1 and or .
G.2.3.1 Derived non-overlapping implication operator
* (RiI=>NRy) = ((Ry##1 1) |->NRy) .

* (SI=N$) = ((5##@1) 1)[->NS) .

G.2.3.2 Derived consecutive repetition operators
o Letm>0.R[*m] = (R##1R##1 ##1R) //mcopiesof R.
e R[*0:$] = (R[*0] or R[*1:%]) .

e Letm<n R[*m:n]

(R[*m] or R[*m+1] or ' or R[*n]) .
e Letm>1.R[*m: $]

(R[*m-1] ##1 R[*1:$]) .

G.2.3.3 Derived delay and concatenation operators

Leem<n.

o (##[m: n] R)

(1[*m n] ##1 R) .

(##[m $] R) = (1[*m $] ##1 R) .

o (##mMR) = (1[*m ##1 R) .

o Letm>0.(Ry ##[mn] Ry) = (R ##1 1[*m-1n-1] ##1 Ry) .
e Letm>0.(Ry ##[m $] Ry) = (R ##1 1[*m-1:$] ##1 R,) .

o Letm>1 (Ry ##m Ry) = (Ry ##1 1[*m—1] ##1 R,) .

(Ry ##[0:0] Ry) = (Ry ##0 Ry) .
® Letn>0.(R1 ##[0: n] R2) = ((Rl ##0 R2) or (Rl ##[1: n] Rz)) .

G.2.3.4 Derived non-consecutive repetition operators

Letm<n.

e b[*->mn]

(!'b[*0:$] ##1 b)[*mn] .
e b[*->m $]

('b[*0:$] ##1 b)[*m $] .
o b[*->m = (!b[*0:$] ##1 b)[*m] .

e b[*=mn]

(b[*->mn] ##1 'b[*0:%]) .
e b[*=m $]

(b[*->m$] ##1 'b[*0:%]) .
e b[*=m] = (b[*->m] ##1 !b[*0:$]) .

Copyright 2003 Accellera. All rights reserved. 355

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001
G.2.3.5 Other derived operators

° (Rl and R2)
=(((Ry ##1 1[*0:9%]) intersect Ry) or (Ry intersect (R, ##1 1[*0:%]))) .

e (Rywithin R) = ((1[*0:$] ##1 Ry ##1 1[*0:$]) intersect Ry) .

(b throughout R) = ((b[*0:%$]) intersect R).
e (b v=e) = (b ##0 (1, v=e)) .
e (b vizen..,w=8) = ((bvi=e) ##0 (1, V,=€,.,%=g)) for k > 1. SVA 3

EDITOR’'S NOTE: Changes with special symbols were not colored because the symbols are lost when the
color isremoved.

G.3 Semantics

Let P be the set of atomic propositions.

The semantics of assertions and propertiesis defined via arelation of satisfaction by empty, finite, and infinite

words over the alphabet = = 2P U {T, O0}. Such aword is an empty, finite, or infinite sequence of elementsof . | SVA 4
The number of elements in the sequence is called the length of the word, and the length of word w is denoted

[w]- Note that |w]| is either a non-negative integer or infinity.

The sequence elements of aword are called its Ietters and are assumed to be indexed consecutively begl nning
at zero. If |w| > 0, then the first letter of w is denoted w?; if | > 1, then the second letter of w is denoted wt; and
so forth. w'- denotes the word obtained from w by deletmg itsfirst i letters. If i < |w|, thenw'~ = w w'+l If
i > |w|, then w'- is empty.

Ifi <j, then w'] denotes the finite word obtained from w by deleting itsfirst i letters and also deleting all letters
afterits (j + Dst. If i <j < |wl|, thenw’ = wiw™*L wi.

If wisaword over 5, define w to be the word obtained from w by interchanging T with 0. More precisely, SVA 5,6,7
wi=Tifw =0;w=0ifw'=T,;andw' =w' if w' isan element in 2”.

The semantics of clocked sequences and properties is defined in terms of the semantics of unclocked
sequences and properties. See the subsection on rewrite rules for clocks below.

It is assumed that the satisfaction relation { = bisdefined for elements in 2" and boolean expressions b. For
any boolean expression b, define

TEb ad OFb. SVA 8

G.3.1 Rewrite rules for clocks

The semantics of clocked sequences and properties is defined in terms of the semantics of unclocked
sequences and properties. The following rewrite rules define the transformation of a clocked sequence or prop-
erty into an unclocked version that is equivalent for the purposes of defining the satisfaction relation. In this
transformation, it is required that the conditions in event controls not be dependent upon any local variables.

o @c) b—=(1c[*0:$] ##1 c&D) .

e @c)(1, v=e) —=(@c) 1l ##0 (1, v=e)) .
* @O)(R) —=@c0) R.

* @c(R ##1 R) ——=(@c) Ry ##1 @) Ry) .

356 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

* @co)(R #0 R)) —= (@) R ##0 @0 Ry) .

* @o(Ryor R) —=(@c)R or @ Ry) .

* @c)(Ry intersect R,) ——=(@c) Ry intersect @c) Ry)) .
* @c)first_match(R) —=first_match(@c) R) .

* @c) R[*0] ——=(@c) R)[*0] .

e @c) R[*1:$%] —=(@c) R)[*1: %] .

* @c) disable iff (b) ¢ —==disable iff (b) @c) ¢.

e @c) not b——=@c)!b.

e @c) not R—==not @c) R, provided Ris not aboolean expression.
© @) Ny (R [-> N;Ry) — Ny (@0) Ry |-> @0) NpRy) .
(S ##) —= (S ##1 Sy) .

G.3.2 Tight satisfaction without local variables

Tight satisfaction is denoted by . For unclocked sequences without local variables, tight satisfaction is
defined asfollows. w, x, y, z denote Tinite words over %.

« wEbiffw=1andw’ = b. SVA 9
* wE(R)iffw gR.

* wE (R #1 Ry) iff thereexistx, ysuchthatw= xyandx g Riandy E R,.

* wE (R #0 Ry) iff thereexistx, y, zsuchthat w= xyzand y|=1,andxy g Riandyz g R,.

* wE(R or R) iffdtherw gRiorw ER;.

* wE (R intersect Ry) iffbothw ERiandw ER;.

* w Efirst_match (R) iff both

— w ERand

— if thereexistx, y suchthatw=xy and x £ R, theny isempty.
* w E R[*0] iff w|=0.

* W i R[*1: $] iff there exist words wy, wy,..., w; (j > 1) such that w = w;w,...w; and for every i such that

1<i<j,w ER.

If Sisaclocked sequence, thenw = Siff w |z S, where S is the unclocked sequence that results from S by
applying the rewrite rules.

An unclocked sequence R is non-degenerate iff there exists a non-empty finite word w over = such that
seq eg pty SVA 11

W = R A clocked sequence Sis non-degenerate iff the unclocked sequence S that results from Sby applying
the rewrite rules is non-degenerate.

G.3.3 Satisfaction without local variables
G.3.3.1 Satistaction-by-frte-werds Neutral satisfaction SVA 12

w denotes a non-empty finite or infinite word over 3. Assume that all properties, sequences, and unclocked | SVA 13
property fragments do not involve local variables.

Copyright 2003 Accellera. All rights reserved. 357

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Assertion-Satisfaction Neutral satisfaction of assertions:

For the definition of assertion-satisfaction neutral satisfaction of assertions, b denotes the boolean expression
representing the enabling condition for the assertion. Intuitively, b is derived from the conditionsin the context
of aprocedural assertion, whilebis“1” for adeclarative assertion.

* w,b | always @c) assert property Piffforevery0<i<wsuchthatw' = candw' = b,
wi- E @c) P
* wb [always assert property Qiff forevery 0<i<|wj if w = b then w'* E Q.

« wbEinitial @c) assert property Piff (for every 0<i < |w| suchthat w®! E!c[*0:$] #lc
andw' = b, thenw'" = @c) P).

« wbinitial assert property Qiff (ifw® = bthenw = Q).
Property-Satisfaetion Neutral satisfaction of properties:
* wE Qiffw = Q, where Q isthe unclocked property that results from Q by applying the rewrite rules.

* w|=disable iff (b) ¢iff eitherw = ¢ orthereexistsO<k< lw| such that wk |= b and
wO kL © ¢ Here, w1 denotes the empty word.

* w k= not ¢iffw £ ¢.
+ w | Riff thereexists 0 < < [w| suchthat w%! |z R.

© W (R |-> NRy) iff forevery 0<j < | suchthat w®! |z Ry, wi = NR,.

Remark: It can be proved that w |= not biff w = ! b.

G.3.3.2 Weak and strong satisfaction by finite words

This subsection defines weak and strong satisfaction, denoted =~"and | * (respectively) of an assertion A by
afinite (possibly empty) word w over 2. These relations are defined in terms of the relation of neutral satisfac-
tion by infinite words as follows:

o wETAIffWT® E A

o wETAIffwI? E A

A tool checking for satisfaction of A by the finite word w should return
o “trug’ ifw =" A

o “fdse’ ifw £ A

e “unknown” otherwise.

G.3.4 Local variable flow

This subsection defines inductively how local variable names flow through unclocked sequences. Below, “U”
denotes set union, “N” denotes set intersection, “—’ denotes set difference, and “{}” denotes the empty set.

Thefunction “sample” takes a sequence asinput and returns a set of local variable names as output. Intuitively,
this function returns the set of local variable names that are sampled in the sequence.

The function “block” takes a sequence as input and returns a set of local variable names as output. Intuitively,
this function returns the set of local variable names that are blocked from flowing out of the sequence.

Thefunction “flow” takesaset X of local variable names and a sequence asinput and returns a set of local vari-

358 Copyright 2003 Accellera. All rights reserved.

SVA 14
SVA 15

SVA 16

SVA 17

S
5

s [3E] (R |3
3 N (| 30 |8

SVA

)
=

3
»

SVA 26

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

able names as output. Intuitively, this function returns the set of local variable names that flow out of the
sequence given the set X of local variable names that flow into the sequence.

The function “sample” is defined by

e sample(b) ={} .

e sample((1, v=e))={v}.

» sample((R))=sample(R) .

o sample((Ry ##1 Rz))=san‘ple(Fé1) U sample (R)) .

* sample((Ry ##0 Ry,)) =sample (Ry) U sample (Ry) .

* sample((Ry or Ry))=sample (R;) U sample (R)) .
 sample((Ry intersect Ry))=sample(R;) Usample(R,) .

o sample(first_match(R))=sample(R) .

+ sample(R[*0]) ={} .

o sample(R[*1: $]) =sample(R) .

The function “block” is defined by

* block (b) ={} .

o block((1, v=e))={}.

e block ((R)) =bhlock (R) .

* block ((Ry ##1 Ry)) = (block (Ry) —flow ({}, Ry)) U block (Ry) .
* block ((Ry ##0 Ry)) = (block (Ry) —flow ({}, Ry)) U block (Ry)
e block ((Ry or Ry))=bhlock (Ry) U block (Ry) .

e block ((Ry intersect Ry))=bhlock(R;) U block (Ry) U (sample (R)) N sample (Ry)) .
e block(first_match(R))=block (R) .

* block (R[*0])={} .

* block (R[*1: $]) = block (R) .

The function “flow” is defined by

e flow (X, b) = X.

o flow(X, (1, v=e))=XU{v}.

e flow(X,(R))=flow(X,R).

o flow (X, (Ry ##1 R,)) =flow (flow (X, Ry), R)) .

o flow (X, (Ry ##0 Ry)) =flow (flow (X, Ry, Ry) .

o flow(X,(Ry or Ry))="flow(X,Ry) N flow (X, Ry) .

o flow(X,(Ry intersect Ry))=(flow(X, Ry) U flow(X,Ry)—block ((R; i ntersect Ry)).
e flow(X, first_match(R))=flow(X,R).

e flow(X,R[*0]) =X.

Copyright 2003 Accellera. All rights reserved. 359

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

o flow(X,R[*1:$])=flow(X,R) .

Remark: It can be proved that flow (X, R) = (X U flow ({}, R)) —block (R) . It follows that flow ({}, R) and block
(R) aredigoaint. It can also be proved that flow ({}, R) is a subset of sample (R).

G.3.5 Tight satisfaction with local variables SVA 27

A local variable context is a function that assigns values to local variable names. If L isaloca variable con-
text, then dom(L) denotes the set of local variable names that are in the domain of L. If D '= dom(L), then L|
means the local variable context obtained from L by restricting its domain to D.

In the presence of local variables, tight satisfaction is a four-way relation defining when a finite word w over
the alphabet = together with an input local variable context L satisfies an unclocked sequence R and yields an
output local variable context L,. Thisrelation is denoted

W, Lo, Ll E R.
and is defined below. It can be proved that the definition guarantees that

W, Lo, Ly ER implies dom(L,) = flow (dom(Lo), R) .
* Wloly (1, v=e)iffw=1andw® |- 1 and

Ly ={ (v efLo, W} U Lolp ,

Where Lo, W denotesthevalueobtamedfromeb evaluating first according to Ly and second accordin

tow and—l}—demezg)—{v} Incasew® O {TJ }, e[L,T] and L}] can be any constant values of the
type of e.

* WLy Ly E biff w=1and w? = blLg] and L; = Ly Here b[Ly] denotes the expression obtained from b by
substituting values from L .

* Wlo Ly E(R)iffwle Ly ER.

* wlyly E(R #1 Ry) iff thereexistx, y, L'suchthat w=xyand x, Lo, L' g Ryandy, L', L3 ERy.

* Wiyl (R #0 Ry) iff thereexistx, y, z L’ such that w=xyzand |y = 1, and xy, Lo, L' = Ry and
yz, L, L1 ERe.

* WLyl g (R or Ry) iff thereexists L’ such that both of the following hold:

— eitherw, Lo, L' E Ry orw, Lo, L' = Ry, and

— Ly=L'|p, whereD = flow (dom(Lg), (R; or Ry)).

* wlol; (R intersect Ry) iff thereexistL’, L" such that
W, Lo, L' E Rpandw Lo, L' ERoandL; =L | UL" |p , Where

D’ =flow (dom(Lg), Ry) —(block ((R; i ntersect Ry))U sample (R)))
D" = flow (dom(Lg), Ry) — (block ((Ry i ntersect R,)) U sample(R))
Remark: It can be proved that if w, Lo, L' = Ryandw, Lo, L" £ Ry, thenL’ | U L" |p- isafunction.
* WLy Ly first_match(R) iff both
— W Lo Ly [Rand
— ifthereexist x, y, L’ such that w=xy and x, Lo, L' = R, theny isempty. SVA 29
* W Lo Ly ER[*0] iff w=0andL; =L,

360 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

* W Lo Lg E R[*1: %] iff there exist L(O) = Lg, Wy, L(l)! Wo, L(Z)!"'! W, L(]) = Ll(] > 1) such that w = WyWo...W
and for every i suchthat 1 <i <j,w; L _1), L4y E R-

If Sisaclocked sequence, thenw, Lo, Ly = Siff w, Lo, Ly = S, where S isthe unclocked sequence that results
from Sby applying the rewrite rules.

An unclocked sequence Ris non-degenerate iff there exist a non-empty finite word w over = and local variable
contexts Lo, Ly suchthat w, Lo, Ly = R A clocked sequence Sis non-degenerate iff the unclocked sequence S
that results from Shby applying the rewrite rules is non-degenerate.

G.3.6 Satisfaction with local variables
G.3.6.1 Neutral satisfaction by-rfirite-werds
w denotes a non-empty finite or infinite word over =. L, L, denote local variable contexts.

Therules defining neutral satisfaction of an assertion satisfaction are identical to those without local variables,
but with the understanding that the underlying properties can have local variables.

Property-Satisfaetion Neutral satisfaction of properties:
* wE Qiffw{} F Q

* w Ly Qiffw Ly = Q, where Q isthe unclocked property that results from Q by applying the rewrite
rules.

* W Lo | disable iff (b) ¢iff eitherw, Ly = ¢ or thereexists 0 < k < |w| such that
wX = bLg] and w9 Ly = ¢. Here, w® 1 denotes the empty word.

* WLl not ¢piffw Ly £ ¢.
* w Lo [Riff thereexist 0<j <|w| and Ly such that w%J, Lo, Ly £ R.

* Wl (R |-> NRy) iff forevery 0<j<|wand Ly suchthat w®l, Lo, Ly = Ry, wh, Ly = NRy.

G.3.6.2 Weak and strong satisfaction by finite words

The definition isidentical to that without local variables, but with the understanding that the underlying prop-
erties can have local variables.

G.4 Extended Expressions

This section describes the semantics of several constructs that are used like expressions, but whose meaning at
apoint in aword can depend both on the letter at that point and on previous letters in the word. By abuse of
notation, the meanings of these extended expressions are defined for letters denoted “w!” even” though they
depend also on lettersw' for i < j. The reason for this abuse isto make clear the way these definitions should be
used in combination with those in preceding sections.

G.4.1 Extended booleans

w denotes a hon-empty finite or infinite word over , j denotes an integer such that 0 <j < |w|, and T denotes a
clocked or unclocked sequence.

» wl = T ended iff thereexist 0<i<jand L suchthatw"}, {},L | T.

« wl | @o) (T matched) iff thereexists0<i < j suchthatw' = T. ended and
w3 {} E(1c[*0:8] ##1 ¢ .

Copyright 2003 Accellera. All rights reserved. 361

SVA 30

w
=

32,33

4

35

i

A 36
SVA 37
SVA 38

SVA 39

SVA 40
SVA 41

SVA 42

SVA 43

SVA 44
SVA 45

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

o w | @oc) $stabl e(e) iff thereexists0<i <jsuchthatw"l, {},{} | (¢ ##1 c[*->1]) and
ew'] = efw].

« wl = @o) $rose(e iff jwl] = 1and (if thereexists 0 <i <j suchthat wI {},{} |z (¢ ##1 c[*->1])
thenblw'] 1), where b isthe least-significant bit of e.

« w = @c)sfell (e iff biw/] = 0and (if thereexists 0 <i <j such that w' {},{} |= (c ##1 c[*->1])
thenbjw'] « 0), whereb isthe least-significant bit of e.
G.4.2 Past

w denotes a non-empty finite or infinite word over =, and j denotes an integer such that 0 <j < |w.

* Letn>1 If thereexistO<i<jsuchthatw"/,{},{} | (c ##1 c[*->n-1]),then
@c) $past (e n) [wl] = gw]. Otherwise, @ c) $past (e, n) [wi] hasthe value x.

e $past(e) = $past(e 1) .

362 Copyright 2003 Accellera. All rights reserved.

A 49
SVA 50

i §EE

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Annex H
Glossary

(Informative)

Assertion — An assertion is a statement that a certain property must be true. For example, that aread_request
must always be followed by aread grant within 2 clock cycles. Assertions allow for automated checking that
the specified property istrue, and can generate automatic error messages if the property is not true. SystemVer-
ilog provides special assertion constructs, which are discussed in Section 17.

DPI — Direct Programming Interface. Thisis an interface between SystemVerilog and foreign programming
languages permitting direct function calls from SystemVerilog to foreign code and from foreign code to Sys-
temVerilog. It has been designed to have low inherent overhead and permit direct exchange of data between
SystemVerilog and foreign code.

Elaboration — Elaboration is the process of binding together the components that make up a design. These
components can include modul e instances, primitive instances, interfaces, and the top-level of the design hier-
archy. SystemVerilog requires a specific order of elaboration, which is presented in Section 18.2.

Enumerated type — Enumerated data types provide the capability to declare a variable which can have one
of aset of named values. The numerical equivalents of these values can be specified. Enumerated types can be
easily referenced or displayed using the enumerated names, as opposed to the enumerated values. Section 3.10
discusses enumerated types.

Interface — An interface encapsulates the communication between blocks of a design, allowing a smooth
migration from abstract system-level design through successive refinement down to lower-level register-trans-
fer and structural views of the design. By encapsulating the communication between blocks, the interface con-
struct aso facilitates design re-use. The inclusion of interface capabilities is one of the major advantages of
SystemVerilog. Interfaces are covered in Section 19.

LRM — LRM is an abbreviation for Language Reference Manual. “ SystemVerilog LRM” refers to this docu-
ment. “Verilog LRM” refersto the |IEEE manual “1364-2001 | EEE Standard for Verilog Hardware Description
Language 2001". See Annex | for information about this manual.

Packed array — Packed array refers to an array where the dimensions are declared before an object name.
Packed arrays can have any number of dimensions. A one-dimensional packed array is the same as a vector
width declaration in Verilog. Packed arrays provide a mechanism for subdividing a vector into subfields,
which can be conveniently accessed as array elements. A packed array differs from an unpacked array, in that
the whole array is treated as a single vector for arithmetic operations. Packed arrays are discussed in detail in
Section 4.

Process — A process is a thread of one or more programming statements which can be executed indepen-
dently of other programming statements. Each initial procedure, always procedure and continuous assignment
statement in Verilog is a separate process. These are static processes. That is, each time the process starts run-
ning, there is an end to the process. SystemVerilog adds specialized always procedures, which are also static
processes, and dynamic processes. When dynamic processes are started, they can run without ending. Pro-
cesses are presented in Section 9.

SystemVerilog — SystemVerilog refers to the Accellera standard for a set of abstract modeling and verifica
tion extensions to the |EEE 1364-2001 Verilog standard. The many features of the SystemVerilog standard are
presented in this document.

Unpacked array — Unpacked array refers to an array where the dimensions are declared after an object
name. Unpacked arrays are the same as arrays in Verilog, and can have any number of dimensions. An
unpacked array differs from a packed array, in that the whole array cannot be used for arithmetic operations.
Each element must be treated separately. Unpacked arrays are discussed in Section 4.

Verilog — Verilog refers to the |IEEE 1364-2001 Verilog Hardware Description Language (HDL), commonly
called Verilog-2001. This language is documented in the IEEE manual “1364-2001 |EEE Standard for Verilog

Copyright 2003 Accellera. All rights reserved. 363

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

Hardware Description Language 2001". See Annex | for information about this manual.

VPI — Verilog Procedural Interface. The 3rd generation Verilog Programming Language Interface (PLI), pro-
viding object-oriented access to Verilog behavioral, structural, assertion and coverage objects.

364 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001 SystemVerilog 3.1a/draft 1

Annex |
Bibliography

(Informative)

[B1] IEEE Std. 754-1985, IEEE Standard for Binary Floating-Point Arithmetic 1985. ISBN 1-5593-7653-8.
|EEE Product No. SH10116-TBR.

[B2] IEEE Std. 1364-1995, |IEEE Standard Hardware Description Language Based on the Verilog™ Hardware
Description Language 1995. ISBN 0-7381-3065-6. | EEE Product No. WE94418-TBR.

[B3] IEEE Std. 1364-2001, |EEE Standard for Verilog Hardware Description Language 2001. ISBN 0-7381-
2827-9. |EEE Product No. SH94921-TBR.

Copyright 2003 Accellera. All rights reserved. 365

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

366 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

Index

Symbols

1?7=wild inequality 47
183

clocked sequence 183
#1step 132

$assertkill 236
$assertoff 236
$asserton 236

$hits 23, 233
$hitstoshortreal 23
$cast 23

$cast() 91
$countones 181
$dimensions 28, 234
$error 152, 235

$exit 150

$fatal 152, 235

$fell 164

$high 28, 234
$increment 28, 234
$info 152, 235

$inset 180, 236
$insetz 180, 236
$isunknown 180, 237
$left 28, 234

$length 28, 234

$low 28, 234
$onehot 180, 236
$onehot0 180, 236
$past 180

$right 28, 234

$root 196—197

$rose 164
$shortrealtobits 23
$srandom() 117
$stable 164
$urandom 116
$urandom_range() 116
$warning 152, 235

' cast operator 22

*= operator 48

+= operator 48

.* port connections 206
.name port connections 205
/= operator 48

.1 scope operator 94
-= operator 48

=> implication 107
=?=wild equality 47
\ line continuation 240
\abell 4

SystemVerilog 3.1a/draft 1

\f form feed 4

\v vertical tab 4

\x02 hex number 4

‘ * double back tick 240
‘define 240

[=> multi-clock sequence 183

Numerics
2-state types 8
4-state types 8

A
Active region 132
aggregate expressions 54
alias 42
aways @* 66
aways comb 66—67
aways ff 66—67
aways latch 66—67
and 164—165
anding sequences 164
array literals 5
array part selects 27
array querying functions 28, 234
array dlices 27
arrays 25
assert 151
assertion APl 254—262
assertion system functions 236
assertion system tasks 235—236
assertions 151—195, 363
assign 56, 65, 242
assignment operators 46
associative array methods

delete() 34

exists() 35

first() 35

last() 35

next() 35

num() 34

prev() 36
associative arrays 31—37
atobin() 12—13
atohex() 12—13
atoi() 12
atooct() 12—13
atoreal() 13
attributes 45
automatic 38, 40, 73
automatic tasks 75
await() method 71

B
back() 316
before 104

Copyright 2003 Accellera. All rights reserved. 367

SystemVerilog 3.1a/draft 1

bell 4

bind 193

bintoa() 13

bit 6-8

block name 62—63
blocking assignments 58
boolean expression 156
break 56, 61, 63
built-in methods 49
built-in namespace 50
byte 7-8

C

casting 22—23

chandle 6, 8, 85

check 152

class 21, 83—98

clear() 318

clock tick 153
combinational logic 66
compare() 12
concatenation 50
concurrent assertions 153
conditional operator 54
configurations 232

const 38—39, 92
constants 39

constraint blocks 103
constraint_mode() method 101, 114
context 82, 246—248
continue 56, 61, 63
continuous assignment 68
cover 186—187

coverage APl 263—273

D
data declarations 38
data types 6
data() 315
deassign 56, 65, 242
decrementor operator 46
defparam 230, 242
delete() 29, 34
Direct Programming Interface (DPI) 244—253
disable 63
disable fork 66, 70
dist 104, 106
distribution 106
do...while loop 56, 60
double 8
dynamic array methods
delete() 29
size() 29
dynamic arrays 28

Accellera
Extensions to Verilog-2001

dynamic processes 66

E
edge event 164
elaboration 196, 363
empty() 315
encapsulation 92
enum 15-16
enumerated type methods

first() 18

last() 18

name() 19

next() 18

num() 19

prev() 19
enumerated types 1516, 363
eq() 314

erase() 317
erase_range() 317

exists() 35

export 81, 221, 252—253
extends 91

extern 95, 221, 224

F

final 56, 61

finish() 316

FINISHED process status 71
first() 18, 35

first_match 170

float 8

for loops 60

force 56

fork...join 68

forkjoin 210, 221, 224

form feed 4

front() 316

functions 77

functions in interfaces 220
functions, arg passing by name 80
functions, default args 80
functions, exporting 81, 221, 252—253
functions, importing 81, 220, 248

G

garbage collection 86
getc() 12

goto 61

H

handle 85

hextoa() 13
hierarchical names 209

368 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

I

icompare() 12

if...else 108

if..else 107

iff 64, 153

immediate assertions 151
implication 107

import 81, 220, 248
Inactive region 132
incrementor operator 46
inheritance 89, 105
insert() 316
insert_range() 317
inside 55, 105

int 68

integer 8

integer literals 3

integral 8

interface 210—228, 363
intersect 167
introduction to SystemVerilog 1
itoa() 13

J
join_any 66, 68
join_none 66, 68

K
kill() method 71
KILLED process status 71

L

labels 63

last() 18, 35

latched logic 67

len() 11

libraries 232

library map files 232

linked lists 313—318

list methods
back() 316
clear() 318
data() 315
empty() 315
eq() 314

erase() 317
erase range() 317

finish() 316
front() 316
insert() 316
insert_range() 317
neq() 315

next() 314
pop_back() 316
pop_front() 316

SystemVerilog 3.1a/draft 1

prev() 314
purge() 318
push_front() 315
set() 317
size() 315
start() 316
swap() 318
literal values 3
local 92
localparam 230
logic 6, 8
longest static prefix 51
longint 68
LRM 363

M

matched 185

memory management 97
methods 86

methods, built-in 49

modport 210, 216

modport expressions 219
module instantiation 205—206
multiple dimension arrays 26

N

name() 19

named blocks 62

named port connections 205
namespace 50

NBA region 132

neq() 315

nested identifiers 209
nested modules 198—199
new 86

next() 18, 35, 314
nonblocking assignments 58
null 9, 13, 98

num() 19, 34

O

object handle 84—85
object-oriented 83

Observed region 132

octtoa() 13

operator associativity 438
operator precedence 48, 161
or 168

oring sequences 168
overview of SystemVerilog 1

P

packed arrays 2526, 47, 363
parameter 96, 230

parameter type 231

Copyright 2003 Accellera. All rights reserved.

369

SystemVerilog 3.1a/draft 1

part selects 27
PLI callbacks 135
pointer 85
polymorphism 93
pop_back() 316
pop_front() 316
port connections, .* 206
port connections, .name 205
port declarations 201
port expressions 202
post_randomize() method 101, 111
Post-NBA region 132
Post-observed region 132
Postponed region 132
pre_randomize() method 101, 111
Pre-active region 132
precedence 48
Pre-NBA region 132
Preponed region 132
prev() 19, 36, 314
priority 59—60
process 70, 363
process control 69—70
process execution threads 69
process methods

await() 71

kill() 71

resume() 71

self() 71

status() 71

suspend() 71
program block 147—150
property 154, 181
protected 92
pure 82, 246—247
purge() 318
push_back() 315
push_front() 315
putc() 11

R

rand 101

rand_mode() method 101, 113

randc 101

randcase 119

random constraints 99—119

random distribution 106

random implication 107

Random Number Generator (RNG) 117

randomization methods
constraint_mode() 101, 114
post_randomize() 101, 111
pre_randomize() 101, 111
rand_mode() 101, 113

Accellera
Extensions to Verilog-2001

randomize() 99, 111
randomize() method 99, 111
randomize()...with 112
Reactive region 132
rea 4, 6, 8, 48
real literals 4
realtoa() 13
ref 79
reg 6, 8
regions

Active 132

Inactive 132

NBA 132

Observed 132

Post-NBA 132

Post-observed 132

Postponed 132

Pre-active 132

Pre-NBA 132

Preponed 132

Reactive 132
release 56
repetition 161
resume() method 71
return 56, 61, 63, 75, 77
RNG (Random Number Generator) 117
RUNNING process status 71

S

scheduling semantics 131—135
self() method 71

sequence 156, 159

sequence expression 157
sequential logic 67

set() 317

sets 55

shortint 7—8

shortredl 4, 6, 8, 48

signed types 8

singular 22

size() 29, 315

dlices 27

solve...before 104, 110
Sparse arrays, see associative arrays
specify block 220

specparam 230

start() 316

statement labels 62

static 38—40, 73, 87

static processes 66

static tasks 75

static, longest static prefix 51
status() method 71

step 4, 132, 138, 203

370 Copyright 2003 Accellera. All rights reserved.

Accellera
Extensions to Verilog-2001

stratified event scheduler 131

string 9-13

string literals 4

string methods
atobin() 12—13
atohex() 12—13
atoi() 12
atooct() 12—13
atoreal() 13
bintoa() 13
compare() 12
getc() 12
hextoa() 13
icompare() 12
itoa() 13
len() 11
octtoa() 13
putc() 11
realtoa() 13
substr() 12
tolower() 12
toupper() 12

struct 20

structure literals 5

structures 19

subclasses 89

substr() 12

super 90

suspend() method 71

SUSPENDED process status 71

swap() 318
SystemVerilog, overview 1

SystemVerilog,version numbers 1

T
tasks 74

tasksin interfaces 220
tasks, arg pass by name 80
tasks, default args 80

this 87

threads 69

time 8

timeliterals 4

time unit 4

tolower() 12

top level 196

toupper() 12

type 231

typedef 6, 14, 97

U

union 20
unions 19
unique 59-60

SystemVerilog 3.1a/draft 1

unpacked arrays 25—26, 363
unsigned types 8

unsized literals 4
user-defined types 14

\

variable initialization 39
VCD 239

vertical tab 4

virtual 92—93

void 8

void functions 73, 77

W

wait fork 66, 69

WAITING process status 71
while 56, 60

wild-card operators 47

with 112

Copyright 2003 Accellera. All rights reserved.

Accellera
SystemVerilog 3.1a/draft 1 Extensions to Verilog-2001

372 Copyright 2003 Accellera. All rights reserved.

	Acknowledgements
	Table of Contents
	Section 1 Introduction to SystemVerilog
	Section 2 Literal Values
	2.1 Introduction (informative)
	2.2 Literal value syntax
	2.3 Integer and logic literals
	2.4 Real literals
	2.5 Time literals
	2.6 String literals
	2.7 Array literals
	2.8 Structure literals

	Section 3 Data Types
	3.1 Introduction (informative)
	3.2 Data type syntax
	3.3 Integer data types
	3.3.1 Integral types
	3.3.2 2-state (two-value) and 4-state (four-value) data types
	3.3.3 Signed and unsigned data types

	3.4 Real and shortreal data types
	3.5 Void data type
	3.6 chandle data type
	3.7 String data type
	3.7.1 len()
	3.7.2 putc()
	3.7.3 getc()
	3.7.4 toupper()
	3.7.5 tolower()
	3.7.6 compare()
	3.7.7 icompare()
	3.7.8 substr()
	3.7.9 atoi(), atohex(), atooct(), atobin()
	3.7.10 atoreal()
	3.7.11 itoa()
	3.7.12 hextoa()
	3.7.13 octtoa()
	3.7.14 bintoa()
	3.7.15 realtoa()

	3.8 Event data type
	3.9 User-defined types
	3.10 Enumerations
	3.10.1 Defining new data types as enumerated types
	3.10.2 Enumerated type ranges
	3.10.3 Type checking
	3.10.4 Enumerated types in comparison expressions
	3.10.5 Enumerated types in numerical expressions
	3.10.5.1 first()
	3.10.5.2 last()
	3.10.5.3 next()
	3.10.5.4 prev()
	3.10.5.5 num()
	3.10.5.6 name()
	3.10.5.7 Using enumerated type methods

	3.11 Structures and unions
	3.12 Class
	3.13 Singular type
	3.14 Casting
	3.15 $cast dynamic casting

	Section 4 Arrays
	4.1 Introduction (informative)
	4.2 Packed and unpacked arrays
	4.3 Multiple dimensions
	4.4 Indexing and slicing of arrays
	4.5 Array querying functions
	4.6 Dynamic arrays
	4.6.1 new[�]
	4.6.2 size()
	4.6.3 delete()

	4.7 Array assignment
	4.8 Arrays as arguments
	4.9 Associative arrays
	4.9.1 Wildcard index type
	4.9.2 String index
	4.9.3 Class index
	4.9.4 Integer (or int) index
	4.9.5 Signed packed array
	4.9.6 Unsigned packed array or packed struct

	4.10 Associative array methods
	4.10.1 num()
	4.10.2 delete()
	4.10.3 exists()
	4.10.4 first()
	4.10.5 last()
	4.10.6 next()
	4.10.7 prev()

	4.11 Associative array assignment
	4.12 Associative array arguments
	4.13 Associative array literals

	Section 5 Data Declarations
	5.1 Introduction (informative)
	5.2 Data declaration syntax
	5.3 Constants
	5.4 Variables
	5.5 Scope and lifetime
	5.6 Nets, regs, and logic
	5.7 Signal aliasing

	Section 6 Attributes
	6.1 Introduction (informative)
	6.2 Default attribute type

	Section 7 Operators and Expressions
	7.1 Introduction (informative)
	7.2 Operator syntax
	7.3 Assignment operators
	7.4 Operations on logic and bit types
	7.5 Wild equality and wild inequality
	7.6 Real operators
	7.7 Size
	7.8 Sign
	7.9 Operator precedence and associativity
	7.10 Built-in methods
	7.10.1 Built-in namespace

	7.11 Concatenation
	7.12 Static Prefixes
	7.13 Unpacked array expressions
	7.14 Structure expressions
	7.15 Aggregate expressions
	7.16 Conditional operator
	7.17 Set membership

	Section 8 Procedural Statements and Control Flow
	8.1 Introduction (informative)
	8.2 Statements
	8.3 Blocking and nonblocking assignments
	8.4 Selection statements
	8.5 Loop statements
	8.5.1 The do...while loop
	8.5.2 Enhanced for loop

	8.6 Jump statements
	8.7 Final blocks
	8.8 Named blocks and statement labels
	8.9 Disable
	8.10 Event control
	8.11 Procedural assign and deassign removal

	Section 9 Processes
	9.1 Introduction (informative)
	9.2 Combinational logic
	9.2.1 Implicit always_comb sensitivities

	9.3 Latched logic
	9.4 Sequential logic
	9.5 Continuous assignments
	9.6 fork...join
	9.7 Process execution threads
	9.8 Process control
	9.8.1 Wait fork
	9.8.2 Disable fork

	9.9 Fine-grain process control

	Section 10 Tasks and Functions
	10.1 Introduction (informative)
	10.2 Tasks
	10.3 Functions
	10.3.1 Void functions
	10.3.2 Discarding function return values

	10.4 Task and function scope and lifetime
	10.5 Task and function argument passing
	10.5.1 Pass by value
	10.5.2 Pass by reference
	10.5.3 Default argument values
	10.5.4 Argument passing by name
	10.5.5 Optional argument list

	10.6 Import and export functions

	Section 11 Classes
	11.1 Introduction (informative)
	11.2 Syntax
	11.3 Overview
	11.4 Objects (class instance)
	11.5 Object properties
	11.6 Object methods
	11.7 Constructors
	11.8 Static properties
	11.9 Static methods
	11.10 This
	11.11 Assignment, re-naming and copying
	11.12 Inheritance and subclasses
	11.13 Overridden members
	11.14 Super
	11.15 Casting
	11.16 Chaining constructors
	11.17 Data hiding and encapsulation
	11.18 Constant Properties
	11.19 Abstract classes and virtual methods
	11.20 Polymorphism: dynamic method lookup
	11.21 Class scope resolution operator ::
	11.22 Out of block declarations
	11.23 Parameterized classes
	11.24 Typedef class
	11.25 Classes, structures, and unions
	11.26 Memory management

	Section 12 Random Constraints
	12.1 Introduction (informative)
	12.2 Overview
	12.3 Random variables
	12.3.1 rand modifier
	12.3.2 randc modifier

	12.4 Constraint blocks
	12.4.1 External constraint blocks
	12.4.2 Inheritance
	12.4.3 Set membership
	12.4.4 Distribution
	12.4.5 Implication
	12.4.6 if..else constraints
	12.4.7 Global constraints
	12.4.8 Variable ordering
	12.4.9 Static constraint blocks

	12.5 Randomization methods
	12.5.1 randomize()
	12.5.2 pre_randomize() and post_randomize()
	12.5.3 Randomization methods notes

	12.6 In-line constraints — randomize() with
	12.7 Disabling random variables with rand_mode()
	12.8 Controlling constraints with constraint_mode()
	12.9 Dynamic constraint modification
	12.10 Random number system functions
	12.10.1 $urandom
	12.10.2 $urandom_range()
	12.10.3 $srandom()

	12.11 Random stability
	12.11.1 Random stability properties
	12.11.2 Thread stability
	12.11.3 Object stability

	12.12 Manually seeding randomize
	12.13 Random weighted case — randcase

	Section 13 Inter-Process Synchronization and Communication
	13.1 Introduction (informative)
	13.2 Semaphores
	13.2.1 new()
	13.2.2 put()
	13.2.3 get()
	13.2.4 try_get()

	13.3 Mailboxes
	13.3.1 new()
	13.3.2 num()
	13.3.3 put()
	13.3.4 try_put()
	13.3.5 get()
	13.3.6 try_get()
	13.3.7 peek()
	13.3.8 try_peek()

	13.4 Parameterized mailboxes
	13.5 Event
	13.5.1 Triggering an event
	13.5.2 Nonblocking event trigger
	13.5.3 Waiting for an event
	13.5.4 Persistent trigger: triggered property

	13.6 Event sequencing: wait_order()
	13.7 Event variables
	13.7.1 Merging events
	13.7.2 Reclaiming events
	13.7.3 Events comparison

	Section 14 Scheduling Semantics
	14.1 Execution of a hardware model and its verification environment
	14.2 Event simulation
	14.3 The stratified event scheduler
	14.3.1 The SystemVerilog simulation reference algorithm

	14.4 The PLI callback control points

	Section 15 Clocking Domains
	15.1 Introduction (informative)
	15.2 Clocking domain declaration
	15.3 Input and output skews
	15.4 Hierarchical expressions
	15.5 Signals in multiple clocking domains
	15.6 Clocking domain scope and lifetime
	15.7 Multiple clocking domains example
	15.8 Interfaces and clocking domains
	15.9 Clocking domain events
	15.10 Cycle delay: ##
	15.11 Default clocking
	15.12 Input sampling
	15.13 Synchronous events
	15.14 Synchronous drives
	15.14.1 Drives and nonblocking assignments
	15.14.2 Drive value resolution

	Section 16 Program Block
	16.1 Introduction (informative)
	16.2 The program construct
	16.3 Multiple programs
	16.4 Eliminating testbench races
	16.4.1 Zero-skew clocking domain races

	16.5 Blocking tasks in cycle/event mode
	16.6 Program control tasks
	16.6.1 $exit()

	Section 17 Assertions
	17.1 Introduction (informative)
	17.2 Immediate assertions
	17.3 Concurrent assertions overview
	17.4 Boolean expressions
	17.4.1 Operand types
	17.4.2 Variables
	17.4.3 Operators

	17.5 Sequences
	17.6 Declaring sequences
	17.7 Sequence operations
	17.7.1 Operator precedence
	17.7.2 Repetition in sequences
	17.7.3 Value change functions
	17.7.4 AND operation
	17.7.5 Intersection (AND with length restriction)
	17.7.6 OR operation
	17.7.7 first_match operation
	17.7.8 Conditions over sequences
	17.7.9 Sequence occurrence within another sequence
	17.7.10 Detecting and using endpoint of a sequence
	17.7.11 Implication

	17.8 Manipulating data in a sequence
	17.9 System functions
	17.10 The property definition
	17.11 Multiple clock support
	17.11.1 Detecting and using endpoint of a sequence in multi-clock context

	17.12 Concurrent assertions
	17.12.1 Using concurrent assertion statements outside of procedural code
	17.12.2 Embedding concurrent assertions in procedural code

	17.13 Clock resolution
	17.14 Binding properties to scopes or instances

	Section 18 Hierarchy
	18.1 Introduction (informative)
	18.2 The $root top level
	18.3 Module declarations
	18.4 Nested modules
	18.5 Port declarations
	18.6 List of port expressions
	18.7 Time unit and precision
	18.8 Module instances
	18.8.1 Instantiation using positional port connections
	18.8.2 Instantiation using named port connections
	18.8.3 Instantiation using implicit .name port connections
	18.8.4 Instantiation using implicit .* port connections

	18.9 Port connection rules
	18.9.1 Port connection rules for variables
	18.9.2 Port connection rules for nets
	18.9.3 Port connection rules for interfaces
	18.9.4 Compatible port types
	18.9.5 Unpacked array ports and arrays of instances

	18.10 Name spaces
	18.11 Hierarchical names

	Section 19 Interfaces
	19.1 Introduction (informative)
	19.2 Interface syntax
	19.2.1 Example without using interfaces
	19.2.2 Interface example using a named bundle
	19.2.3 Interface example using a generic bundle

	19.3 Ports in interfaces
	19.4 Modports
	19.4.1 An example of a named port bundle
	19.4.2 An example of connecting a port bundle
	19.4.3 An example of connecting a port bundle to a generic interface
	19.4.4 Modport expressions

	19.5 Interfaces and specify blocks
	19.6 Tasks and functions in interfaces
	19.6.1 An example of using tasks in an interface
	19.6.2 An example of using tasks in modports
	19.6.3 An example of exporting tasks and functions
	19.6.4 An example of multiple task exports

	19.7 Parameterized interfaces
	19.8 Access without ports

	Section 20 Parameters
	20.1 Introduction (informative)
	20.1.1 Defparam removal

	20.2 Parameter declaration syntax

	Section 21 Configuration Libraries
	21.1 Introduction (informative)
	21.2 Libraries
	21.3 Library map files

	Section 22 System Tasks and System Functions
	22.1 Introduction (informative)
	22.2 Expression size system function
	22.3 Shortreal conversions
	22.4 Array querying system functions
	22.5 Assertion severity system tasks
	22.6 Assertion control system tasks
	22.7 Assertion system functions
	22.8 Random number system functions
	22.9 Program control
	22.10 Coverage system functions
	22.11 Enhancements to Verilog-2001 system tasks
	22.12 $readmemb and $readmemh

	Section 23 VCD Data
	Section 24 Compiler Directives
	24.1 Introduction (informative)
	24.2 ‘define macros
	24.3 `include

	Section 25 Features under consideration for removal from SystemVerilog
	25.1 Introduction (informative)
	25.2 Defparam statements
	25.3 Procedural assign and deassign statements

	Section 26 Direct Programming Interface (DPI)
	26.1 Overview
	26.1.1 Functions
	26.1.2 Data types
	26.1.2.1 Data representation

	26.2 Two layers of the DPI
	26.2.1 DPI SystemVerilog layer
	26.2.2 DPI foreign language layer

	26.3 Global name space of imported and exported functions
	26.4 Imported functions
	26.4.1 Required properties of imported functions - semantic constraints
	26.4.1.1 Instant completion
	26.4.1.2 input and output arguments
	26.4.1.3 Special properties pure and context
	26.4.1.4 Memory management

	26.4.2 Pure functions
	26.4.3 Context functions
	26.4.4 Import declarations
	26.4.5 Function result
	26.4.6 Types of formal arguments
	26.4.6.1 Open arrays

	26.5 Calling imported functions
	26.5.1 Argument passing
	26.5.1.1 “What You Specify Is What You Get” principle

	26.5.2 Value changes for output and inout arguments

	26.6 Exported functions

	Section 27 SystemVerilog Assertion API
	27.1 Requirements
	27.1.1 Naming conventions

	27.2 Extensions to VPI enumerations
	27.2.1 Object types
	27.2.2 Object properties
	27.2.3 Callbacks
	27.2.4 Control constants

	27.3 Static information
	27.3.1 Obtaining assertion handles
	27.3.2 Obtaining static assertion information
	27.3.2.1 Using vpi_get_assertion_info
	27.3.2.2 Extending vpi_get() and vpi_get_str()

	27.4 Dynamic information
	27.4.1 Placing assertion system callbacks
	27.4.2 Placing assertions callbacks

	27.5 Control functions
	27.5.1 Assertion system control
	27.5.2 Assertion control

	Section 28 SystemVerilog Coverage API
	28.1 Requirements
	28.1.1 SystemVerilog API
	28.1.2 Naming conventions
	28.1.3 Nomenclature

	28.2 SystemVerilog real-time coverage access
	28.2.1 Predefined coverage constants in SystemVerilog
	28.2.2 Built-in coverage access system functions
	28.2.2.1 $coverage_control
	28.2.2.2 $coverage_get_max
	28.2.2.3 $coverage_get
	28.2.2.4 $coverage_merge
	28.2.2.5 $coverage_save

	28.3 FSM recognition
	28.3.1 Specifying the signal that holds the current state
	28.3.2 Specifying the part-select that holds the current state
	28.3.3 Specifying the concatenation that holds the current state
	28.3.4 Specifying the signal that holds the next state
	28.3.5 Specifying the current and next state signals in the same declaration
	28.3.6 Specifying the possible states of the FSM
	28.3.7 Pragmas in one-line comments
	28.3.8 Example

	28.4 VPI coverage extensions
	28.4.1 VPI entity/relation diagrams related to coverage
	28.4.2 Extensions to VPI enumerations
	28.4.3 Obtaining coverage information
	28.4.4 Controlling coverage

	Annex A Formal Syntax
	A.1 Source text
	A.1.1 Library source text
	A.1.2 Configuration source text
	A.1.3 Module and primitive source text
	A.1.4 Module parameters and ports
	A.1.5 Module items
	A.1.6 Interface items
	A.1.7 Program items
	A.1.8 Class items
	A.1.9 Constraints

	A.2 Declarations
	A.2.1 Declaration types
	A.2.1.1 Module parameter declarations
	A.2.1.2 Port declarations
	A.2.1.3 Type declarations

	A.2.2 Declaration data types
	A.2.2.1 Net and variable types
	A.2.2.2 Strengths
	A.2.2.3 Delays

	A.2.3 Declaration lists
	A.2.4 Declaration assignments
	A.2.5 Declaration ranges
	A.2.6 Function declarations
	A.2.7 Task declarations
	A.2.8 Block item declarations
	A.2.9 Interface declarations
	A.2.10 Assertion declarations

	A.3 Primitive instances
	A.3.1 Primitive instantiation and instances
	A.3.2 Primitive strengths
	A.3.3 Primitive terminals
	A.3.4 Primitive gate and switch types

	A.4 Module, interface and generated instantiation
	A.4.1 Instantiation
	A.4.1.1 Module instantiation
	A.4.1.2 Interface instantiation
	A.4.4.1 Program instantiation

	A.4.2 Generated instantiation
	A.4.2.1 Generated module instantiation
	A.4.2.2 Generated interface instantiation

	A.5 UDP declaration and instantiation
	A.5.1 UDP declaration
	A.5.2 UDP ports
	A.5.3 UDP body
	A.5.4 UDP instantiation

	A.6 Behavioral statements
	A.6.1 Continuous assignment and net alias statements
	A.6.2 Procedural blocks and assignments
	A.6.3 Parallel and sequential blocks
	A.6.4 Statements
	A.6.5 Timing control statements
	A.6.6 Conditional statements
	A.6.7 Case statements
	A.6.8 Looping statements
	A.6.9 Task enable statements
	A.6.10 Assertion statements
	A.6.11 Clocking domain

	A.7 Specify section
	A.7.1 Specify block declaration
	A.7.2 Specify path declarations
	A.7.3 Specify block terminals
	A.7.4 Specify path delays
	A.7.5 System timing checks
	A.7.5.1 System timing check commands
	A.7.5.2 System timing check command arguments
	A.7.5.3 System timing check event definitions

	A.8 Expressions
	A.8.1 Concatenations
	A.8.2 Function calls
	A.8.3 Expressions
	A.8.4 Primaries
	A.8.5 Expression left-side values
	A.8.6 Operators
	A.8.7 Numbers
	A.8.8 Strings

	A.9 General
	A.9.1 Attributes
	A.9.2 Comments
	A.9.3 Identifiers
	A.9.4 Identifier branches
	A.9.5 White space

	Annex B Keywords
	Annex C Linked Lists
	C.1 List definitions
	C.2 List declaration
	C.2.1 Declaring list variables
	C.2.2 Declaring list iterators

	C.3 Linked list class prototypes
	C.3.1 List_Iterator class prototype
	C.3.2 List class prototype

	C.4 List_Iterator methods
	C.4.1 next()
	C.4.2 prev()
	C.4.3 eq()
	C.4.4 neq()
	C.4.5 data()

	C.5 List methods
	C.5.1 size()
	C.5.2 empty()
	C.5.3 push_front()
	C.5.4 push_back()
	C.5.5 front()
	C.5.6 back()
	C.5.7 pop_front()
	C.5.8 pop_back()
	C.5.9 start()
	C.5.10 finish()
	C.5.11 insert()
	C.5.12 insert_range()
	C.5.13 erase()
	C.5.14 erase_range()
	C.5.15 set()
	C.5.16 swap()
	C.5.17 clear()
	C.5.18 purge()

	Annex D DPI C-layer
	D.1 Overview
	D.2 Naming conventions
	D.3 Portability
	D.3.1 Binary compatibility
	D.3.2 Source-level compatibility

	D.4 Include files
	D.4.1 svdpi.h include file
	D.4.2 svdpi_src.h include file

	D.5 Semantic constraints
	D.5.1 Types of formal arguments
	D.5.2 input arguments
	D.5.3 output arguments
	D.5.4 Value changes for output and inout arguments
	D.5.5 context and non-context functions
	D.5.6 pure functions
	D.5.7 Memory management

	D.6 Data types
	D.6.1 Limitations
	D.6.2 Duality of types: SystemVerilog types vs. C types
	D.6.3 Data representation
	D.6.4 Basic types
	D.6.5 Normalized ranges
	D.6.6 Mapping between SystemVerilog ranges and normalized ranges
	D.6.7 Canonical representation of packed arrays

	D.7 Argument passing modes
	D.7.1 Overview
	D.7.2 Calling SystemVerilog functions from C
	D.7.3 Argument passing by value
	D.7.4 Argument passing by reference
	D.7.5 Allocating actual arguments for SystemVerilog-specific types
	D.7.6 Argument passing by handle—open arrays
	D.7.7 input arguments
	D.7.8 inout and output arguments
	D.7.9 Function result

	D.8 Context functions
	D.8.1 Overview of DPI and VPI context
	D.8.2 Context of imported and export functions
	D.8.3 Working with DPI context functions in C code
	D.8.4 Example 1 — Using DPI context functions
	D.8.5 Relationship between DPI and VPI/PLI interfaces

	D.9 Include files
	D.9.1 Binary compatibility include file svdpi.h
	D.9.1.1 Scalars of type bit and logic
	D.9.1.2 Canonical representation of packed arrays
	D.9.1.3 Implementation-dependent representation
	D.9.1.4 Translation between the actual representation and the canonical representation

	D.9.2 Source-level compatibility include file svdpi_src.h
	D.9.3 Example 2 — binary compatible application
	D.9.4 Example 3— source-level compatible application

	D.10 Arrays
	D.10.1 Multidimensional arrays
	D.10.2 Direct access to unpacked arrays
	D.10.3 Access to packed arrays via canonical representation
	D.10.3.1 Bit selects
	D.10.3.2 Part selects

	D.11 Open arrays
	D.11.1 Actual ranges
	D.11.2 Array querying functions
	D.11.3 Access functions
	D.11.4 Access to the actual representation
	D.11.5 Access to elements via canonical representation
	D.11.6 Access to scalar elements (bit and logic)
	D.11.7 Access to array elements of other types
	D.11.8 Example 4— two-dimensional open array
	D.11.9 Example 5 — open array
	D.11.10 Example 6 — access to packed arrays
	D.11.11 Example 7 — binary compatible calls of exported functions

	Annex E Include files
	E.1 Binary-level compatibility include file svdpi.h
	E.2 Source-level compatibility include file svdpi_src.h

	Annex F Inclusion of Foreign Language Code
	F.1 Location independence
	F.2 Object code inclusion
	F.2.1 Bootstrap file
	F.2.2 Examples

	Annex G SystemVerilog Concurrent Assertions Semantics
	G.1 Introduction
	G.2 Abstract Syntax
	G.2.1 Abstract grammars
	G.2.2 Notations
	G.2.3 Derived forms
	G.2.3.1 Derived non-overlapping implication operator
	G.2.3.2 Derived consecutive repetition operators
	G.2.3.3 Derived delay and concatenation operators
	G.2.3.4 Derived non-consecutive repetition operators
	G.2.3.5 Other derived operators

	G.3 Semantics
	G.3.1 Rewrite rules for clocks
	G.3.2 Tight satisfaction without local variables
	G.3.3 Satisfaction without local variables
	G.3.3.1 Satisfaction by infinite words Neutral satisfaction
	G.3.3.2 Weak and strong satisfaction by finite words

	G.3.4 Local variable flow
	G.3.5 Tight satisfaction with local variables
	G.3.6 Satisfaction with local variables
	G.3.6.1 Neutral satisfaction by infinite words
	G.3.6.2 Weak and strong satisfaction by finite words

	G.4 Extended Expressions
	G.4.1 Extended booleans
	G.4.2 Past

	Annex H Glossary
	Annex I Bibliography
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

