
SUAVE Language Description

7 July 1999

Peter J. Ashenden
petera@cs.adelaide.edu.au

Department of Computer Science
The University of Adelaide, SA 5005

Australia

Philip A. Wilsey
phil.wilsey@uc.edu

Dale E. Martin
dmartin@ececs.uc.edu

Department of Electrical and Computer Engineering
and Computer Science

University of Cincinnati,
PO Box 210030

Cincinnati, OH 45221-0030
USA

Technical Report 99/04
Department of Computer Science, The University of Adelaide

This work was partially supported by Wright Laboratory
under USAF contract F33615-95-C-1638

Abstract

Designers are increasingly using VHDL for high-level modeling. However, their task is hin-
dered by the lack of language features for object-oriented modeling, genericity, and abstract
communication and concurrency. SUAVE extends VHDL by adapting several object-oriented
and genericity features from Ada-95, and by adding more abstract forms of communication
and concurrency than those currently in the language. The extensions improve support for
modeling in VHDL from system level down to gate level. This report describes the extensions
and illustrates their use with examples.

SUAVE Language Description — 7 July 1999

1

1. Introduction

VHDL is widely used by designers of digital systems for specification, simulation and synthe-
sis. Increasingly, designers are using VHDL at high levels of abstraction as part of the system-
level design process. At this level of abstraction, the aggregate behavior of a system is de-
scribed in a style that is similar to that of software. Data is modeled in abstract form, rather
than using any particular binary representation, and functionality is expressed in terms of
interacting processes that perform algorithms of varying complexity. A subsequent partition-
ing step in the design process may determine which aspects of the modeled behavior are to
be implemented as hardware subsystems, and which are to be implemented as software.

Experience in the software engineering community has lead to adoption of object-ori-
ented design and programming techniques for managing complexity through abstraction data
types (ADTs) and re-use [4]. Features included in programming languages to support these
techniques are abstraction and encapsulation mechanisms, inheritance, and genericity. The
term “object-based”is widely used to refer to a language that included abstraction and encap-
sulation mechanisms [10]. The term “object-oriented”is used to refer to a language that addi-
tionally includes inheritance.

While VHDL can be used for behavioral modeling at the system level, it has some deficien-
cies that make the task more difficult than it would otherwise be. These difficulties center
around language features (or lack of some features) for supporting complexity management.
VHDL is currently somewhat less than object-based, as its encapsulation mechanism are
weak. It is certainly not object-oriented, as it does not include any form of inheritance. While
it does include a mechanism for genericity, that mechanism is severely limited, allowing only
parameterization of units by constant values. Furthermore, its signalling features are still
closely bound to electrical implementation; no mechanisms are provided for more abstract
forms of communication between modules.

SUAVE aims to improve support for high-level modeling in VHDL by extending the lan-
guage with features for object-orientation, genericity, abstract communication, and dynamic
process creation. As well as adding specific language features, some existing features are
generalized. We have previously argued that extending VHDL in this way has the side-effect
of improving its expressiveness at all levels of abstraction [1]. We have also presented a
discussion of the issues that must be considered in extending VHDL to provide more abstract
forms of concurrency and communication [2].

The purpose of this report is to define the language extensions proposed in SUAVE. Many
of the features added to VHDL are adapted from features in Ada-95 [9], and are included large-
ly for the same reasons that they are included in Ada-95 [3]. Section 2 of this report outlines
the design principles and objectives that were followed in deciding how to extend VHDL.
Subsequent sections describe the extensions in detail and illustrate them with examples. Sec-
tion 3 describes the extensions to the type system of VHDL to support type derivation, exten-
sion and class-wide programming. Section 4 describes the extensions that improve the encap-
sulation features of VHDL. In combination, the extensions in these two sections turn VHDL
into an object-oriented language. Section 5 describes extensions to improve genericity in
VHDL. Section 6 presents the details of the abstract communication language features in
SUAVE. Section 7 presents the details of the extensions for concurrency abstraction. Section
8 describes some minor changes the the existing languages to allow the extended features
to integrate cleanly with existing features. The changes to the existing syntax rules for VHDL
are summarized in Section 9.

While this report does describe the SUAVE extensions in some detail, it does not present
the level of detail that would be required to allow an implementation of the extensions. A
complete description in the form of changes the the VHDL Language Reference Manual [8]
will be developed as part of future work in the SUAVE project.

SUAVE Language Description — 7 July 1999

2

2. SUAVE Design Objectives

A previous paper [1] reviews the issues to be addressed in extending VHDL for high-level
modeling and discusses principles that should govern the design of language extensions.
As a result of that analysis, a number of design objectives were formulated for SUAVE:

S to improve support for high-level behavioural modeling by improving
encapsulation and information hiding capabilities and providing for hierarchies of
abstraction,

S to improve support for re-use and incremental development by allowing further
delaying of bindings through type-genericity and dynamic polymorphism,

S to provide a more abstract form of communication than the existing mechanisms
of signals and signal assignment,

S to provide dynamic process creation and termination,

S to preserve capabilities for synthesis and other forms of design analysis,

S to provide abstractions that are not biased towards hardware or software
implementations, allowing subsequent partitioning and refinement
(hardware/software co-design),

S to support hardware/software co-design through improved integration with
programming languages (e.g., Ada),

S to support refinement of models through elaboration of components rather than
through repartitioning, and

S to preserve correctness of existing models within the extended language.

Since SUAVE is an extension of the existing VHDL language, it is important that the exten-
sions integrate well with all aspects of the existing language. We are guided by Fred Brooks’
notion of “conceptual integrity”[5]. As Brooks notes, “Conceptual integrity does require that
a system reflect a single philosophy and that the specification as seen by the user flow from
a few minds.”In designing the SUAVE extensions, the design principals followed during the
restandardization of VHDL that lead to the current language [8] were adopted in addition to
those listed above. They are [6]:

S upward compatibility

S preserve strong typing

S separate declaration and functionality

S unification of timing semantics

S preserve determinism

S preserve generality

S preserve scope of VHDL (gate to system)

S preserve intermixed abstraction levels

S preserve concurrency

S preserve and improve consistency

S preserve and improve portability

S no application specific packages

SUAVE Language Description — 7 July 1999

3

S minimize implementation impact

S maximize implementation efficiency

SUAVE Language Description — 7 July 1999

4

3. Extensions to the Type System

A data type in VHDL is characterized by a set of values and a set of operations. The set of
values is specified by a type definition. An abstract data type (ADT) is one in which the con-
crete details of the type definition are hidden from the user of the ADT. The user may only
use the operations of the ADT to manipulate values.

SUAVE extends the type system of VHDL to improve facilities for defining ADTs by adopt-
ing the object-oriented features of Ada-95. An ADT is defined by declaring a type and its
primitive operations in a package. Derived types inherit the primitive operations. If a type
is declared as a tagged record, additional record elements can be added on derivation. Class-
wide types allow definition of operations that operate on values of any type within a deriva-
tion hierarchy. Where the particular type of an object of a class-wide type is not known stati-
cally, dynamic dispatching is used to determine the operation to invoke.

3.1 Primitive Operations

An operation on a type is expressed in the form of a subprogram (a procedure or a function)
that has one or more parameters of the type or a function result of the type. Such a subpro-
gram can be declared in any part of a model where the type is visible. When a type is de-
clared, a number of predefined operations on the type are implicitly declared. For example,
when a numeric type is declared, the arithmetic operations are implicitly declared.

SUAVE defines the notion of primitive operations of a type as follows.

S The predefined operations implicitly declared when the type is declared are
primitive operations of the type.

S For a derived type (see Section 3.2) the primitive operations of the parent type are
inherited as primitive operations of the derived type.

S For a type explicitly declared within a package declaration, any subprograms that
are also explicitly declared within the same package declaration and that operate
on the type are primitive operations of the type.

Example

The following package defines a type for complex numbers. The predefined operators “=”
and “/=”are primitive operations. The explicitly declared operations “&”, re, im, “+”, “–”, “*”
and “/”are also primitive operations on type complex.

package complex_numbers is

type complex is
record

re, im : real;
end record complex;

-- The predefined operators “=”and “/=”are primitive operations.

function “&”(L, R : real) return complex;
function re (C : complex) return real;
function im (C : complex) return real;

function “+”(L, R : complex) return complex;
function “–”(L, R : complex) return complex;
function “*”(L, R : complex) return complex;
function “/”(L, R : complex) return complex;

-- The operations “&”, re, im, “+’, “–”, “*” and “/” are primitive operations of the type
complex.

SUAVE Language Description — 7 July 1999

5

end package complex_numbers;

— — —

3.2 Derived Types

A derived type is a means of inheriting type information from a parent type to form a new
type. The derived type inherits the set of values and the primitive operations of the parent
type. In each inherited primitive operation, occurrences of the parent type in the operation’s
profile are replaced by occurrences of the derived type. The inherited primitive operations
may be overridden by defining new primitive operations for the derived type. A derived type
is defined using a new form of type definition, expressed by the extended syntax rule:

type_definition ::=
. . .

| derived_type_definition

derived_type_definition ::=
[abstract] new parent_subtype_indication [record_extension_part]

The parent subtype indication specifies the parent subtype. The type of the parent sub-
type is the parent type. If the reserved word abstract is included, the derived type is abstract
(see Section 3.4). A record extension part is only allowed if the parent type is a tagged type
(see Section 3.3). The derived type is unconstrained if the parent subtype is unconstrained,
otherwise the derived type is constrained with the constraints specified in the parent subtype
indication.

Example

type word is new bit_vector(0 to 31);

The type word inherits the predefined logical, shift, “&”, “=” and “/=” operations. It is
constrained, since the parent subtype indication is constrained.

— — —

A derived type can also be defined by a private extension declaration in the visible part
of a package (See Section 4.3), or a formal derived type definition in a generic interface list
(see Section 5.3.1).

3.3 Tagged Types and Type Extension

A record type or a private type may include the reserved word tagged in its definition. Such
a type is called a tagged type. See Section 4.3 for a description of private types. The modified
syntax rule for a record type definition is:

record_type_definition ::= [[abstract] tagged] [limited] record_definition

record_definition ::=
record

element_declaration
{ element_declaration }

end record [record_type_simple_name]
| null record

SUAVE Language Description — 7 July 1999

6

If the reserved word abstract is included, the record type is abstract (see Section 3.4).
If the reserved word limited is included, the record type is limited (see Section 4.4). An object
of a tagged type includes a run-time tag that identifies the specific type used to create the
object. For an object of a class-wide type (see Section 3.5), the tag is used to determine the
specific type of the object when dispatching an operation on the object.

Example

Suppose the following type and subprograms are declared in a package:

type instruction is
tagged record

opcode : opcode_type;
end record instruction;

function privileged (instr : instruction; mode : protection_mode) return boolean;

procedure disassemble (instr : instruction; L : inout line);

The type instruction represents the root type of a hierarchy of kinds of instructions in a
CPU. All instructions have an opcode. Other kinds of instructions will be derived from in-
struction and will extend it with additional fields. The subprograms are primitive operations
of instruction and will be inherited by derived types.

— — —

A tagged type may be extended on derivation either by a record extension or a private
extension. The derived type is also a tagged type. See Section 4.3 for a description of private
extensions. A record extension is defined by the syntax rule:

record_extension_part ::= with record_definition

A record extension defines additional record elements that are included in the derived
type in addition to those of the parent type. The names of the elements in the record exten-
sion must be distinct from visible element names in the parent type.

Example

type ALU_instruction is
new instruction with record

destination, source_1, source_2 : register_number;
end record ALU_instruction;

procedure disassemble (instr : ALU_instruction; L : inout line);

The type ALU_instruction is derived from instruction and has four elements: the opcode ele-
ment inherited from instruction, and the three register number elements defined in the exten-
sion. A version of the function privileged is inherited from instruction with the instr parameter
being of type ALU_instruction. The disassemble instruction defined for ALU_instruction over-
rides that inherited from instruction.

— — —

3.4 Abstract Types and Subprograms

An abstract type is a tagged type that is intended for use solely as the parent of some other
derived type. A tagged type may be declared as abstract by including the reserved word ab-

SUAVE Language Description — 7 July 1999

7

stract in its definition. Objects may not be declared to be of an abstract type. An abstract
subprogram is one that has has no body, because it is intended to be overridden when inher-
ited by a derived type. An abstract subprogram declaration may appear in any declarative
part where a subprogram declaration may appear. It is declared using an abstract subprogram
declaration:

subprogram_declaration ::= subprogram_specification [is abstract] ;

Example

The following type declaration defines a kind of instruction that addresses memory using a
base register and an offset. It is declared abstract, since it is intended to be the parent type
for load and store instruction types. The function effective_address_of is not abstract, since
it can calculate the result using the data in a memory_instruction record. The function can be
inherited “as is” by derived types. The procedure perform_memory_transfer, on the other
hand, is declared abstract since the direction of transfer depends on whether a memory in-
struction is a load or a store. The derived types must provide overriding non-abstract imple-
mentations of this procedure.

type memory_instruction is
abstract new instruction with record

base : register_number
offset : integer:

end record memory_instruction;

function effective_address_of (instr : memory_instruction) return integer;

procedure perform_memory_transfer (instr : memory_instruction) is abstract;

The definition of the load and store instruction types is as follows:

type load_instruction is
new memory_instruction with record

destination : reg_number;
end record load_instruction;

procedure perform_memory_transfer (instr : load_instruction);

type store_instruction is
new memory_instruction with record

source : reg_number;
end record store_instruction;

procedure perform_memory_transfer (instr : store_instruction);

Objects cannot be declared to be of type memory_instruction, but they can be declared
to be of type load_instruction or store_instruction.

— — —

3.5 Class-Wide Types

For a tagged type T, there is a class-wide type denoted by T’Class that is the union of T and
all types derived directly or indirectly from T. The type T is called the root of the class-wide
type T’Class. An object of type T’Class can have a value of any specific type in T’Class. The
tag of a value of T’Class determines the specific type of the value. The only elements of an
object of type T’Class that are visible are those that are visible for type T. There are no primi-
tive operations of a class-wide type. However, a subprogram may have a parameter of a class-
wide type, in which case the subprogram is called a class-wide operation. A class-wide type
is considered to be an unconstrained type.

SUAVE Language Description — 7 July 1999

8

Example

Consider the instruction type shown in previous sections. The class-wide type instruction’Class
includes instruction, ALU_instruction, and any other types that may be derived from these. For
an object of type instruction’Class, the only element that can be accessed is opcode. A class-
wide operation to execute any kind of instruction might be declared as:

procedure execute (instr : instruction’Class);

— — —

3.6 Objects of Tagged Types

A constant, variable or signal may be of a specific tagged type. A constant may be of a class-
wide type, but must be initialized with a value of a specific tagged type. A variable must be
declared to be of a specific type, and may only be assigned values of that specific type. A
signal may be of a class-wide type, and may be assigned values of differing specific types.
Thus, a signal may be a polymorphic object. An access type may have a class-wide type as
its designated type. An object created by an allocator for an access type is a variable of a
specific type, and thus may only be assigned values of that specific type. A file type may not
have elements of a specific tagged type or of a class-wide type, since the correspondence
between tag values and specific types may vary between models.

Note that a signal may not be of a type that directly or indirectly includes an access type
element. In the case of a signal of a class-wide type, it may not be possible to check this during
analysis of the unit containing the signal declaration. While the root type of the class might
not include an access type element, there may be an access type element in an extension in
a descendant type. In general, the hierarchy of classes covered by a class-wide type is globally
static. A check can be performed at elaboration-time that, for a signal of a class-wide type,
the class does not cover any specific type that includes an access type element.

Example

The following declares two constants. The first is of the specific type instruction. The second
is of the class-wide type instruction’class, constrained by the initialization expression to be a
value of the specific type instruction:

constant nop_instruction : instruction := instruction’(opcode => op_nop);
constant undef_instruction : instruction’Class := instruction’(opcode => op_undef);

The following entity declaration represents an instruction register that has a facility to
overwrite the stored instruction with a NOP instruction:

entity instruction_reg is
port (load_enable : in bit;

jam_nop : in bit;
instr_in : in instruction’class;
instr_out : out instruction’class);

end entity instruction_reg;

The ports instr_in and instr_out are signals of a class-wide type. A behavioral architecture
body for the register is:

architecture behavioral of instruction_reg is
begin

store : process (load_enable, jam_nop, instr_in) is
begin

SUAVE Language Description — 7 July 1999

9

if jam_nop = ’1’then
instr_out <= nop_instruction;

elsif load_enable = ’1’then
instr_out <= instr_in;

end if;
end process store;

end architecture behavioral;

— — —

3.7 Dispatching

The primitive operations of a tagged type are called dispatching operations. The specific
types of the operands and the expected result in a subprogram call determine the controlling
tag, namely the tag of the type whose operation is called. If the controlling tag is statically
determined, the particular subprogram body to be invoked is statically determined. If the
controlling tag can only be determined dynamically, the subprogram is dispatched at run-
time— the particular operation for the type corresponding to the controlling tag is invoked.

Example

Suppose a model includes the declarations:

constant halt_instruction : instruction := instruction’(opcode => op_halt);
signal fetched_instruction : instruction’Class;

The first of the following two function calls is statically dispatched, since the specific type
of the operand halt_instruction is statically determined to be instruction. The second call, on
the other hand, must be dynamically dispatched, since at different times fetched_instruction
might have values of different types derived from instruction. The tag of fetched_instruction
determines which version of privileged is invoked.

privileged (halt_instruction, user_mode)

privileged (fetched_instruction, user_mode)

— — —

3.8 The ’Tag Attribute

There is a predefined private type named Tag. For a specific subtype S, the predefined attrib-
ute S’Tag yields a value of type Tag that represents the tag of the type of S. For a class-wide
subtype S, the predefined attribute S’Tag yields a value that represents the tag of the specific
tagged type at the root of the class hierarchy denoted by S. For an object X of a specific type,
the predefined attribute X’Tag yields a value of type Tag that represents the tag of the type
of X. For an object X of a class-wide type, the predefined attribute X’Tag yields a value of
type Tag that represents the tag of the specific type of X. For an access object X whose desig-
nated type is a class-wide type, the predefined attribute X’Tag yields a value of type tag that
represents the tag of the specific type of the designated object.

The predefined relational operators (“=”, “/=”, “<”, “<=”, “>”and “>=”) are defined for
operands of type Tag. For specific tagged types L and R:

SUAVE Language Description — 7 July 1999

10

S L’Tag = R’Tag iff L and R are the same type,

S L’Tag /= R’Tag iff L and R are different types,

S L’Tag < R’Tag iff L is derived directly or indirectly from R,

S L’Tag <= R’Tag iff L is derived directly or indirectly from R or L is the same type as
R,

S L’Tag > R’Tag iff R is derived directly or indirectly from L,

S L’Tag >= R’Tag iff R is derived directly or indirectly from L or R is the same type
as L.

The relational operators applied to tags of class-wide types and objects of class-wide types
similarly determine the relationships between the specific types at the roots of the class hierar-
chies. Note that the ordering implied by the relational operations is a partial order. Thus,
L’Tag < R’Tag yielding false does not imply that L’Tag >= R’Tag yields true. If neither L nor
R is derived from the other, both operations yield false.

Example

The relational operators provide a means of performing membership tests. Given the instruc-
tion types defined in previous examples, and the signal declaration:

signal current_instruction : instruction’class;

the following test whether the value of current_instruction is a member of the class hierarchy
rooted at memory_instruction:

current_instruction’Tag <= memory_instruction’Tag

— — —

3.9 Type Conversions

SUAVE extends the notion of a type conversion to include value conversion and view conver-
sions. A value conversion is the same as a type conversion currently in VHDL. It takes an
operand of a source type and yields a value of a target type. A view conversion, on the other
hand, takes a name of a source type and denotes a name of a target type. The revise syntax
rules are:

name ::=
. . .

| type_conversion

type_conversion ::=
type_mark (expression)

| type_mark (name)

A type conversion whose operand is the name of an object is a view conversion if its target
type is tagged, or if it appears as an actual parameter of mode out or inout or as the desig-
nated name in an alias declaration; other type conversions are value conversions.

Conversion from a source tagged type to a target tagged type is allowed under the follow-
ing circumstances:

S Conversion is allowed between two specific tagged types if the target type is an
ancestor of the source type.

SUAVE Language Description — 7 July 1999

11

S Conversion from a specific type to a class-wide type is allowed only if the root of
the class-wide type is an ancestor of the source type. Such a conversion need not
be explicitly stated.

S Conversion from a class-wide type to a specific type is allowed only if the actual
value is of the target type or one of its descendants. A run-time check is required
if the target type is a descendent of the root type of the source class-wide type.

S Conversion from a source class-wide type to a target class-wide type is allowed
only if the classes have a common ancestor and the source class-wide type is
covered by the target class-wide type. A run-time check is required if the source
type is not an subclass of the target type.

Type conversion of a value or an object of a tagged type does not change the tag or any
elements of the value or object. The converted value or object is treated as being of the target
type.

3.10 Aggregates

A value may not be converted from a specific tagged type to a specific descendent type.
Instead, an extension aggregate must be used. An extension aggregate is a form of record
aggregate that uses a record value of a parent type and adds extension elements for the de-
scendent type. The revised syntax rules for aggregates are:

aggregate ::= record_aggregate | extension_aggregate | array_aggregate

record_aggregate ::= (record_element_association_list)

record_element_association_list ::=
element_association_list

| null record

extension_aggregate ::= (ancestor_part with record_element_association_list)

ancestor_part ::= expression | type_mark

array_aggregate ::= (element_association_list)

element_association_list ::=
element_association { , element_association }

The syntax rule for a normal record aggregate requires revision to handle the possibility
of a null record. The syntax rule for an array aggregate is unchanged. The syntax rule for
an extension aggregate allows specification of an expression of an ancestor type, followed
by values for elements added to that type to derive the descendent type. Alternatively, if only
an ancestor type name is specified, an ancestor record value with default element values is
used.

Example

The variable potential_load is of type load_instruction, a descendent of the type instruction. The
assignment below uses the value of the constant nop_instruction of type instruction, just con-
taining an opcode element. The aggregate extends this value with elements base and offset
required for the type memory_instruction and the element destination required for the type
load_instruction.

variable potential_load : load_instruction;
. . .

SUAVE Language Description — 7 July 1999

12

potential_load := load_instruction’(nop_instruction with
base => 0, offset => 0, destination => 0);

— — —

SUAVE Language Description — 7 July 1999

13

4. Extensions for Encapsulation

Definition of an ADT requires that the concrete implementation details of the type are hidden
from users. The interface visible to users should consist only of the operations for manipulat-
ing ADT values. SUAVE extends the features of VHDL packages to improve encapsulation
of the implementation of ADTs. It adopts the mechanisms of private types and private parts
in packages to provide improved encapsulation.

4.1 Declaration of Packages

In VHDL-93 a package may only be declared at the library level. This prevents use of pack-
ages for defining abstract data types that are local to a declarative region. In SUAVE, the rules
for declarative parts are modified to allow a package declaration or a package body to occur
in:

S an entity declaration

S an architecture body

S a block statement

S a generate statement

S a process statement

S a subprogram body

The revised syntax rules are:

entity_declarative_item ::=
. . .

| package_declaration
| package_body_declaration

block_declarative_item ::=
. . .

| package_declaration
| package_body_declaration

process_declarative_item ::=
. . .

| package_declaration
| package_body_declaration

subprogram_declarative_item ::=
. . .

| package_declaration
| package_body_declaration

Furthermore, a package declaration may occur within a package declaration or a package
body, and a package body may occur within a package body. The revised syntax rules are:

package_declarative_item ::=
. . .

| package_declaration

package_body_declarative_item ::=
. . .

SUAVE Language Description — 7 July 1999

14

| package_declaration
| package_body_declaration

Since a package declaration and its corresponding package body (if required) form a
single declarative region, they must both be declared directly within the same enclosing de-
clarative region. If a package declaration is nested within a package declaration and the inner
package requires a body, then the outer package also requires a body and must contain the
body of the inner package.

A name declared within a package declaration is visible by selection in the scope of the
package name by using the package name as a prefix. A name may be made directly visible
in the scope of the package by writing a use clause that names the package as a prefix.

Example

The following architecture body for a FIFO includes a package that defines a queue type.
The package declaration defines a number of items, including the type queue and the subpro-
gram empty. Since there is a subprogram specification in the package declaration, a package
body is required. The items declared in the package are visible by selection within the archi-
tecture body. The use clause makes the type name queue directly visible.

architecture behavioral of FIFO is

package queues is
. . .
type queue is . . .
function empty (Q : queue) return boolean;
. . .

end package queues;

package body queues is
function empty (Q : queue) return boolean is . . .
. . .

end package body queues;

begin

FIFO_manager : process is

use queues.queue;
variable FIFO_queue : queue;

begin
. . .
if queues.empty (FIFO_queue) then . . .
. . .

end process FIFO_manager;

end architecture behavioral;

— — —

A package declaration directly or indirectly nested within a subprogram body or a process
statement may not contain a signal declaration. This is an extension of the rule that a signal
may not be declared within a subprogram body or a process statement.

A variable declaration in a package declaration that is directly or indirectly nested within
a subprogram body or a process statement may be an ordinary variable declaration. If the
package is nested with a subprogram body, the variable dynamically elaborated as part of
invocation of the subprogram, and is only accessible to the thread of control of the process
that is the parent of the subprogram invocation; hence concurrent access to the variable is
not possible. A similar argument applies if the package is nested within a process statement.

SUAVE Language Description — 7 July 1999

15

A variable declaration in a package declaration that is directly or indirectly nested within any
other context must be a shared variable declaration. In such circumstances, the variable may
be accessible to more than one process, so concurrent access is possible.

4.2 Visible and Private Parts of Packages

A package declaration may be divided into two parts: a visible part and a private part. The
visible part may be used to declare the interface of an ADT so that it is visible to users. The
ADT is expressed as a private type and related primitive operations. The private part of the
package is then used to declare the concrete implementation details of the private type that
should be hidden from the user, but which may not be deferred to the package body. See
Section 4.3 for a description of private types and for examples of private parts of packages.
The modified syntax rule for a package declaration is:

package_declaration ::=
package identifier is

[formal_generic_clause]
package_declarative_part

[private
package_private_declarative_part]

end [package] [package_simple_name] ;

package_private_declarative_part ::= { package_private_declarative_item }

package_private_declarative_item ::=
subprogram_declaration

| process_declaration
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration
| package_declaration
| generic_package_instantiation
| generic_subprogram_instantiation

See Section 5.1 for a description of a generic clause in a package declaration, and see
Section 7.1 for a description of process declarations. The first declarative part in the package
declaration is the visible part and the second declarative part is the private part. The visible
part and the private part are considered to form a single declarative part for the purpose of
rules that relate to items within declarative parts. The names declared within the visible part
are visible by selection where the package name is visible. They may be made directly visible
by a use clause that names the package. The names declared in the private part are visible
within the declarative region of the package and nowhere else.

4.3 Private Types and Private Extensions

A type declared in the visible part of a package declaration may be declared as a private type
or a private extension. These define a partial view of the type, in which only some of the

SUAVE Language Description — 7 July 1999

16

details of the type are defined. The full view of the type defines all of the details of the type.
It must be defined by a full type declaration for the type in the private part of the package.
The syntax rules for defining a private type and a private extension are:

type_declaration ::=
. . .

| private_type_declaration
| private_type_extension

private_type_declaration ::=
type identifier is [[abstract] tagged] [limited] [access] private ;

private_extension_declaration ::=
type identifier is

[abstract] new ancestor_subtype_indication with [access] private ;

If the reserved word abstract is included, the type is abstract (see Section 3.4). If the
reserved word tagged is included, the type is tagged (see Section 3.3) and must be completed
in the full view with a tagged type. The full view may be a tagged type even if the partial
view is not. If the reserved word limited is included, the partial view of the type is limited
(see Section 4.4). The full view of the type may also be limited, but usually it is not, since
the implementation of operations on the type will need to use assignment. If the reserved
word access is included, the type may be of an access type or include an element of an access
type. The reserved word is required if the full view of the type does include an access type.
This allows checking that the type is not used in contexts where inclusion of an access type
is prohibited, for example, as the type of a signal.

A private type allows the concrete details of the type to be hidden from users of the type.
A private extension allows the fact that a type is derived from a particular ancestor to be
known, but hides the details of the extension. The ancestor type specified must be a specific
tagged type. In the full view, the type must be derived from the specified ancestor type, al-
though it need not be derived directly. It may be derived via one or more intermediate types.

For a private type or private extension, only the partial view is visible to users of the pack-
age. However, within the private part and body of the package, the full view is visible. The
full view must be completed in the private part of the package declaration rather than being
deferred to the package body in order to provide the analyzer with enough information to
be able to allocate objects of the type, determine parameter passing mechanisms, etc.

The full view of a private type must be a constrained type. This ensures that the size of
a value of the type is known when an object of the type is to be created. The full view may
not be a file type. A file object can not be of a private type or private extension, nor may
it have a private type or private extension as the element type. This is required, since a file
element may not be of a tagged type, and the full view of a private type may be tagged even
if the partial view is not.

Example

An ADT for complex numbers can be defined in a package as follows.

package complex_numbers is

type complex is private;

constant i : complex;

function “&”(L, R : real) return complex;
function re (C : complex) return real;
function im (C : complex) return real;

function “+”(L, R : complex) return complex;
function “–”(L, R : complex) return complex;

SUAVE Language Description — 7 July 1999

17

function “*”(L, R : complex) return complex;
function “/”(L, R : complex) return complex;

private

type complex is
record

re, im : real;
end record complex;

end package complex_numbers;

Since the type complex is not limited, assignment is allowed and equality is predefined.
This is appropriate for the Cartesian representation used in the implementation.

— — —

Example

The following package declares an ADT for tokens used in uninterpreted modeling. The
private type token is declared tagged so that it can be extended by ADT users. The concrete
implementation is as a tagged record type.

package tokens is

type token is tagged private;

function new_token return token;

. . .

private

type token is
tagged record

id : natural;
creation_time : time;

end record token;

end package tokens;

The token type can use used as the parent of a derived type as shown below. The new_to-
ken function for colored tokens creates its result with an extension aggregate based on a value
of the parent type.

type colored_token is new token with
record

color : color_type;
end record;

function new_token (new_color : color_type := default_color) return colored_token is
begin

return (token’(new_token) with color => new_color);
end function new_token;

variable next_token : colored_token := new_token;
variable subsequent_token : colored_token := new_token(red);

— — —

Example

The following package declares an ADT for traceable tokens that record their recent history
of flow around a queuing network. The type is derived from the token type declared in the
example above, but the details of the extension are private.

SUAVE Language Description — 7 July 1999

18

package traceable_tokens is

type traceable_token is new token with private;

function new_token return traceable_token;

. . .

private

type history_queue_type is ...

type traceable_token is new token with
record

history_queue : history_queue_type;
end record traceable_token;

end package traceable_tokens;

— — —

4.4 Limited Types

A limited type is a view of a type for which the assignment operation is not allowed. A type
may declared limited by including the reserved word limited in a private type declaration,
a formal private type definition, or a record type definition. A type is also limited if it is a
composite type with a limited element, or a descendent of a limited type. The equality opera-
tor is not predefined for a limited type.

Example

The following package declares an ADT for lists of thingies. The concrete implementation
is as a linked list of elements. The type is declared limited because deep copy is required,
rather than just copying the pointer to the first element in a list. The private type declaration
also includes the reserved word access because the concrete implementation uses access
types.

package thingy_lists is

type list is limited access private;

constant empty_list : list;

procedure copy (from : in list; to : out list);

impure function “=”(L, R : list) return boolean;

procedure add (L : inout list; element : thingy);
. . .

private

type element_node;
type element_ptr is access element_node;
type list is new element_ptr;

end package thingy_lists;

package body thingy_lists is

use work.thingies.all;

type element_node is
record

next_element : element_ptr;

SUAVE Language Description — 7 July 1999

19

element : thingy;
end record element_node;

constant empty_list : list := list(element_ptr’(null));

procedure copy (from : in list; to : out list) is . . .

. . .

end package body thingy_lists;

— — —

SUAVE Language Description — 7 July 1999

20

5. Generics

Reuse of a software module can be improved by making it applicable in a wider set of con-
texts, for example, by making it more generic. VHDL currently includes a mechanism, generic
constants, that allows components and entities to be parameterized with formal constants.
Actual generic constants are specified when components are instantiated and when entities
are bound. The generic constant mechanism is widely used to specify timing parameters and
array port bounds, among other things.

SUAVE extends the generic mechanism of VHDL to improve support for reuse. There
are two main aspects to the extension. The first is to allow subprograms and packages to have
generic interface clauses. The second is to allow formal types in a generic interface clause,
making the generic item reusable for a variety of different types. Formal subprograms and
formal packages are also allowed as a corollary to allowing formal types.

Note: a further extension yet to be fully designed is the inclusion of formal processes in
generic clauses. This parallels formal subprograms, allowing specification of action processes
for instances of generic units.

5.1 Generic units

SUAVE extends the declaration of packages and subprograms to allow inclusion of a formal
generic clause. The extended syntax rule for a package declaration is shown in Section 4.2,
and is repeated here:

package_declaration ::=
package identifier is

[formal_generic_clause]
package_declarative_part

[private
package_private_declarative_part]

end [package] [package_simple_name] ;

A package that includes a formal generic clause is a generic package. A generic package
is a template for an ordinary package, and does not provide declarations itself. It must be
instantiated as described in Section 5.2. Examples of packages with formal generic clauses
are shown in Section 5.3.

The extended syntax rule for a subprogram specification is:

subprogram specification ::=
procedure designator

[generic (generic_list)] [(formal_parameter_list)]
| [pure | impure] function designator

[generic (generic_list)] [(formal_parameter_list)] return type_mark

A subprogram declaration or body that includes a formal generic clause in its specification
is a generic subprogram. A generic subprogram is a template for an ordinary subprogram.
It cannot be called, but must be instantiated as described in Section 5.2. Examples of subpro-
grams with formal generic clauses are shown in Section 5.3.

If a generic subprogram is declared as a separate subprogram declaration and subpro-
gram body, the subprogram body must include the formal generic clause, which must con-
form with the formal generic clause in the subprogram declaration.

SUAVE also allows the declaration of processes that can be statically or dynamically instan-
tiated, and process declarations can include a generic clause. See Section 7.

SUAVE Language Description — 7 July 1999

21

5.2 Instantiating Generic Units

A generic subprogram may be instantiated as a subprogram. The syntax rule is:

generic_subprogram_instantiation ::=
subprogram_kind designator is new generic_subprogram_name

[generic_map_aspect] ;

Similarly, a generic package may be instantiated as a package. The syntax rule is:

generic_package_instantiation ::=
package identifier is new generic_package_name

[generic_map_aspect] ;

Generic subprograms may be instantiated in any declarative part in which subprograms may
be declared. Generic packages may be instantiated in any declarative parts in which packages
may be declared. The extended syntax rules are:

entity_declarative_item ::=
. . .

| generic_package_instantiation
| generic_subprogram_instantiation

block_declarative_item ::=
. . .

| generic_package_instantiation
| generic_subprogram_instantiation

process_declarative_item ::=
. . .

| generic_package_instantiation
| generic_subprogram_instantiation

subprogram_declarative_item ::=
. . .

| generic_package_instantiation
| generic_subprogram_instantiation

package_declarative_item ::=
. . .

| generic_package_instantiation
| generic_subprogram_instantiation

package_body_declarative_item ::=
. . .

| generic_package_instantiation
| generic_subprogram_instantiation

primary_unit ::=
. . .

| generic_package_instantiation

A generic package that directly or indirectly contains a declared signal may not be instantiated
within the declarative region of a process statement or a subprogram body. Instantiation of
components and entities remains unchanged. Examples of instantiation of generic subpro-
grams and packages are shown in Section 5.3.

5.2.1 Extended Generic Maps

A generic map aspect is used to associate actual generics with formal generics upon instantia-
tion of a generic subprogram, a generic package, a process, a component or an entity. A

SUAVE Language Description — 7 July 1999

22

generic map is also used to associate actual generics with formal generics in a block statement.
The extended syntax rule for an actual designator, allowing specification of actual generics
for formal type, subprogram and package generics, is:

actual_designator ::=
. . .

| type_mark
| subprogram_name
| package_instance_name

For a formal generic type, the associated actual type is designated by a type mark. For
a formal generic subprogram, the associated actual subprogram is designated by a subpro-
gram name. For a formal generic package, the associated actual package is designated by
the name of a package instance. Examples of extended generic maps are shown in Section
5.3.

5.3 Extended Generic Clauses

SUAVE extends the kinds of formal generics that may be specified in a formal generic clause
to include formal types, formal subprograms and formal packages. These can be included
in generic clauses of package declarations, subprogram specifications, block statements, enti-
ty declarations and component declarations. The revised syntax rule is:

interface_declaration ::=
. . .

| interface_type_declaration
| interface_subprogram_declaration
| interface_package_declaration

[Note: interface processes declarations to be added here.]

Interface type, subprogram and package declarations may only appear in formal generic
clauses. A formal generic clause may only include interface constant, type, subprogram and
package declarations.

The rule (LRM ¶4.3.2.1) that prohibits use of an item declared in an interface list within
the declaration of other items in the interface list is relaxed in the case of generic interface
lists. Items declared in a generic interface list may be used in the declaration of items declared
subsequently in the interface list.

5.3.1 Formal Generic Types

An interface type declaration defines a formal generic type that can be used to pass a particu-
lar type when the generic unit is instantiated. The form of the interface type definition deter-
mines the class of type that can be passed as the actual generic type. The syntax rules are:

interface_type_declaration ::=
type identifier is interface_type_definition

interface_type_definition ::=
interface_private_type_definition

| interface_derived_type_definition
| interface_discrete_type_definition
| interface_integer_type_definition
| interface_physical_type_definition
| interface_floating_type_definition

SUAVE Language Description — 7 July 1999

23

| interface_array_type_definition
| interface_access_type_definition
| interface_file_type_definition

5.3.2 Formal Private Types

An interface private type definition defines a formal generic type that can denote any type,
subject to the restrictions described below. The syntax rule is:

interface_private_type_definition ::=
[[abstract] tagged] [limited] [access] private

Inclusion of the reserved word tagged specifies that the formal type denotes a tagged type—
the actual type must be tagged. Omission of the reserved word tagged specifies that the
formal type is not tagged— the actual type may be tagged or untagged. Inclusion of the re-
served word abstract specifies that the formal type is abstract— the actual type may be ab-
stract or non-abstract. Omission of the reserved word abstract specifies that the formal type
is non-abstract— the actual type must be non-abstract. Inclusion of the reserved word limit-
ed specifies that the formal type denotes a limited type— the actual type may be limited or
unlimited. Omission of the reserved word limited specifies that the formal generic type is
unlimited— the actual type must be unlimited. Inclusion of the reserved word access speci-
fies that the formal generic type may be of or include an element of an access type— the actual
type may or may not be of or include an access type. Omission of the reserved word access
specifies that the formal generic type does not include an access type— the actual type must
not be an access type nor include an element of an access type.

Example

A package defining an ADT for sets of elements can be made reusable by making it generic
with respect to element type, as shown below. The formal type generic element_type is unlim-
ited, non-tagged and non-abstract. Hence, any actual type provided on instantiation must
be an unlimited, non-abstract type, but may be a tagged type.

package sets is
generic (type element_type is access private);

type set is access private;

constant empty_set : set;

procedure copy (from : in set; to : out set);

function “+”(R : element_type) return set; -- singleton set
impure function “+”(L : set; R : element_type) return set; -- add to set
impure function “+”(L : element_type; R : set) return set; -- add to set

. . .

private

type element_node;
type element_ptr is access element_node;
type set is new element_ptr;

end package sets;

package body sets is

type element_node is
record

next_element : element_ptr;
value : element_type;

end record element_node;

SUAVE Language Description — 7 July 1999

24

. . .

end package body sets;

Given a type thingy, an ADT for sets of elements of this type may instantiated as follows:

package thingy_sets is
new sets

generic map (element_type => thingy);

— — —

5.3.3 Formal Derived Types

An interface derived type definition defines a formal generic type that denotes any type in
the derivation tree rooted at a specified type. The syntax rule is:

interface_derived_type_definition ::=
[abstract] new type_mark [with [access] private]

The reserved words with private must be included if and only if the ancestor type specified
is a specific tagged type, in which case the formal generic type denotes a private extension
of the ancestor type. If the reserved words with private are omitted the ancestor type must
not be a tagged type. The reserved word abstract may only be included if the ancestor type
is a tagged type, and specifies that the formal generic type denotes an abstract type— the actu-
al type may or may not be abstract. Omission of the reserved word abstract specifies that
the formal type is non-abstract— the actual type must be non-abstract. Inclusion of the re-
served word access specifies that the private extension may include an element of an access
type— the actual type may or may not include an access type. Omission of the reserved word
access specifies that the private extension does not include an access type— the actual type
must not include an element of an access type.

Example

The following package defines a mixin derivation for adding indexed addressing information
to a type derived from the instruction type. Use of the reserved words with private in the
formal type generic specifies that the type instruction is a specific tagged type and that par-
ent_instruction is derived from it. The type indexed_instruction is declared abstract in case the
user needs the type resulting from mixing in the indexed addressing properties to be abstract.
If the user needs the type to be non-abstract, a non-abstract version can be derived from in-
dexed_instruction.

package indexed_addressing_mixin is
generic (type parent_instruction is abstract new instruction with private);

type indexed_instruction is
abstract new parent_instruction with record

index_base, index_offset : register_number;
end record indexed_instruction;

function effective_address (instr : indexed_instruction) return address;

end package indexed_addressing_mixin;

Suppose types load_instruction and store_instruction are derived from type instruction as
follows:

type load_instruction is
abstract new instruction with record

destination : register_number;
end record load_instruction;

SUAVE Language Description — 7 July 1999

25

type store_instruction is
abstract new instruction with record

source : register_number;
end record store_instruction;

Indexed versions of these instructions can be derived through instantiations of the in-
dexed_addressing_mixin package, as follows:

package indexed_loads is
new indexed_addressing_mixin

generic map (parent_instruction => load_instruction);
type indexed_load_instruction is

new indexed_loads.indexed_instruction with null record;

package indexed_stores is
new indexed_addressing_mixin

generic map (parent_instruction => store_instruction);
type indexed_store_instruction is

new indexed_stores.indexed_instruction with null record;

— — —

5.3.4 Formal Discrete Types

An interface discrete type definition defines a formal generic type that denotes any discrete
type. The syntax rule is:

interface_discrete_type_definition ::= (<>)

Example

The following entity declaration describes a counter that counts through successive values
of any discrete type denoted by count_type:

entity counter is
generic (type count_type is (<>));
port (clk : in bit; data : out count_type);

end entity counter;

An architecture body for the counter is shown below. Since count_type denotes a discrete
type, the process can use the attributes low, high and succ.

architecture behavioral of counter is
begin

count_behavior : process is
variable count : count_type := count_type’low;

begin
data <= count;
wait until clk = ’1’;
if count = count_type’high then

count := count_type’succ(count);
else

count := count_type’low;
end if;

end process count_behavior;

end architecture behavioral;

Some examples of instantiation of this counter are:

type state_type is (idle, receiving, processing, replying);
. . .

SUAVE Language Description — 7 July 1999

26

natural_counter : entity work.counter(behavioral)
generic map (count_type => natural)
port map (clk => master_clk, data => natural_data);

state_counter : entity work.counter(behavioral)
generic map (count_type => state_type)
port map (clk => master_clk, data => state_data);

— — —

5.3.5 Formal Integer Types

An interface integer type definition defines a formal generic type that denotes any integer
type. The syntax rule is:

interface_integer_type_definition ::= range <>

Example

The counter example can be rewritten to use a formal integer type, allowing use of the addi-
tion operator in the implementation.

entity counter is
generic (type count_type is range <>);
port (clk : in bit; data : out count_type);

end entity counter;

architecture behavioral of counter is
begin

count_behavior : process is
variable count : count_type := count_type’low;

begin
data <= count;
wait until clk = ’1’;
if count = count_type’high then

count := count + 1;
else

count := count_type’low;
end if;

end process count_behavior;

end architecture behavioral;

— — —

5.3.6 Formal Physical Types

An interface physical type definition defines a formal generic type that denotes any physical
type. The syntax rule is:

interface_physical_type_definition ::= units <>

Example

The following generic package defines a physical type that is the dimensional product of two
physical types specified as formal physical type generics:

package product_measures is
generic (type measure1, measure2 is units <>);

SUAVE Language Description — 7 July 1999

27

type product_measure is
units

product_unit;
product_unit_E3 = 1E3 product_unit;
product_unit_E6 = 1E6 product_unit;
product_unit_E9 = 1E9 product_unit;
product_unit_E12 = 1E12 product_unit;

end units product_measure;

function “*”(L : measure1; R : measure2) return product_measure;
function “/”(L : product_measure; R : measure1) return measure2;
function “/”(L : product_measure; R : measure2) return measure1;

end package product_measures;

The implementation of the operators is completed in the package body:

package body product_measures is
function “*”(L : measure1; R : measure2) return product_measure is
begin

return product_measure’val(measure1’pos(L) * measure2’pos(R));
end function “*”;

function “/”(L : product_measure; R : measure1) return measure2 is
begin

return measure2’val(product_measure’pos(L) / measure1’pos(R));
end function “/”;

function “/”(L : product_measure; R : measure2) return measure1 is . . .

end package body product_measures;

An instantiation of the package to define a type for power as the product of voltage and
current is shown below. Use of the “*” and “/” functions defined by the package instance
performs dimensionally correct arithmetic on voltage, current and power values.

type voltage is
units

microvolt;
millivolt = 1000 microvolt;
volt = 1000 millivolt;

end units voltage;

type current is
units

microamp;
milliamp = 1000 microamp;
amp = 1000 milliamp;

end units current;

package power_measures is
new product_measure generic map (measure1 => voltage, measure2 => current);

alias power is power_measures.product_measure;
alias picowatt is power_measures.product_unit;
alias nanowatt is power_measures.product_unit_E3;
alias microwatt is power_measures.product_unit_E6;
alias milliwatt is power_measures.product_unit_E9;
alias watt is power_measures.product_unit_E12;

— — —

5.3.7 Formal Floating Types

An interface floating type definition defines a formal generic type that denotes any floating-
point type. The syntax rule is:

SUAVE Language Description — 7 July 1999

28

interface_floating_type_definition ::= range <> . <>

See Section 5.3.10 for an example that includes use of a formal floating-point type generic.

5.3.8 Formal Array Types

An interface array type definition defines a formal generic type that denotes any array type.
The syntax rule is:

interface_array_type_definition ::= array_type_definition

A formal array type and the associated actual array type must both be constrained or both
be unconstrained. Both must have the same dimensionality, the same index types in each
dimension and the same element types. For a formal constrained array type, the index
constraint must be specified in the form of a type mark, and the actual array type must have
the same index range as the formal array type.

Example

The following entity declaration describes a shift register that stores and shifts a vector of arbi-
trary type:

entity shift_register is
generic (type index_type is (<>);

type element_type is private;
type vector is array (index_type range <>) of element_type);

port (clk : in bit;
data_in : element_type;
data_out : vector);

end entity shift_register

The architecture body is:

architecture behavioral of shift_register is
begin

shift_behavior : process is
constant data_low : index_type := data_out’low;
constant data_high : index_type := data_out’high;
type ascending_vector is array (data_low to data_high) of element_type;
variable stored_data : ascending_vector;

begin
data_out <= stored_data;
wait until clk = ’1’;
stored_data(data_low to index_type’pred(data_high))

:= stored_data(index_type’succ(data_low) to data_high);
stored_data(data_high) := data_in;

end process shift_behavior;

end architecture behavioral;

The entity can be instantiated as follows:

signal master_clk, carry_in : bit;
signal result : bit_vector(15 downto 8);

bit_vector_shifter : entity work.shift_register(behavioral)
generic map (index_type => natural, element_type => bit, vector => bit_vector)
port map (clk => master_clk, data_in => carry_in, data_out => result);

— — —

SUAVE Language Description — 7 July 1999

29

5.3.9 Formal Access Types

An interface access type definition defines a formal generic type that denotes any access type.
The syntax rule is:

interface_access_type_definition ::= access_type_definition

Example

The following generic procedure copies the value of one dynamic vector to another. The
index type and element type of the dynamic vectors are specified as formal generic types,
and the dynamic vector type is represented as a pointers to an allocated array.

procedure copy_vector
generic (type index_type is (<>); type element_type is private;

type vector is array (index_type range <>) of element_type;
type vector_ptr is access vector)

(src : in vector_ptr; dest : inout vector_ptr) is
begin

if dest /= null then
deallocate (dest);

end if;
dest := new src.all;

end procedure copy_vector;

Given the following declarations for dynamic vectors of time values:

type time_vector is array (natural range <>) of time;
type time_vector_ptr is access time_vector;

variable schedule1 : time_vector_ptr := new time_vector’(1 ns, 3 ns, 10 ns);
variable schedule2 : time_vector_ptr;

The procedure may be instantiated and called as follows:

procedure copy_time_vector is
new copy_vector

generic map (index_type => natural, element_type => time,
vector => time_vector, vector_ptr => time_vector_ptr);

. . .

copy_time_vector (src => schedule1, dest => schedule2);

— — —

5.3.10 Formal File Types

An interface file type definition defines a formal generic type that denotes any file type. The
syntax rule is:

interface_file_type_definition ::= file_type_definition

Example

VHDL does not allow a file to contain elements that are multidimensional arrays. One means
of working around this restriction is to use a file of the element type of the multidimensional
array, and to read and write array elements in sequence. The following package provides
read and write operations using this approach for two-dimensional arrays. The package is
generic with respect to the array type, and includes a file type with the same element type

SUAVE Language Description — 7 July 1999

30

as the array type. The package cannot be written with a private type for the element type,
since there are restrictions on the kinds of types that can be included as file elements. This
example uses a floating-point type as the element type. Similar packages could be written
for other kinds of types that are permissible for file elements.

package floating_matrix_IO is
generic (type row_index_type, col_index_type is (<>);

type element_type is (<>.<>);
type matrix is array (row_index_type, col_index_type) of element_type;
type matrix_file is file of element_type);

procedure read (file f : matrix_file; value : out matrix);

procedure write (file f : matrix_file; value : in matrix);

end package floating_matrix_IO;

An implementation of the read and write operations is shown in the following package
body.

package body floating_matrix_IO is

procedure read (file f : matrix_file; value : out matrix) is
begin

for row_index in row_index_type loop
for col_index in col_index_type loop

read (f, value(row, col));
end loop;

end loop;
end procedure read;

procedure write (file f : matrix_file; value : in matrix) is
begin

for row_index in row_index_type loop
for col_index in col_index_type loop

write (f, value(row, col));
end loop;

end loop;
end procedure write;

end package body floating_matrix_IO;

An example of instantiation and use of this package is:

subtype transformation_index is integer range 1 to 3;
type transformation_matrix is array (transformation_index, transformation_index) of real;
type real_file is file of real;

package transformation_matrix_IO is
new floating_matrix_IO

generic map (row_index_type => transformation_index,
col_index_type => transformation_index,
element_type => real,
matrix => transformation_matrix,
matrix_file => real_file);

use transformation_matrix_IO.all;

file transformation_file : real_file;
variable next_transformation : transformation_matrix;
. . .

file_open (transformation_file, “test_transformations.dat”, read_mode);
read (transformation_file, next_transformation);

— — —

SUAVE Language Description — 7 July 1999

31

5.3.11 Formal Subprogram Generics

An interface subprogram declaration defines a formal generic subprogram that can be used
to pass a particular subprogram when the generic unit is instantiated. The syntax rule is:

interface_subprogram_declaration ::=
subprogram_specification [is subprogram_default]

subprogram_default ::= name | <>

The subprogram specification may not contain a generic clause. The subprogram default
specifies the subprogram to use if no actual generic subprogram is provided on instantiation.
If a name is specified as the subprogram default, it must denote a callable subprogram with
the same profile as that of the subprogram specification. If a box is specified as the subpro-
gram default, it indicates that the actual generic subprogram should be a subprogram that
is directly visible at the point of instantiation and that has the same name and profile as those
of the subprogram specification.

Example

The following package defines an ADT for lookup tables. A table contains elements that are
each identified by a key value. The formal function key_of determines the key for a given
element. No default function is provided, so the user must supply an actual function on
instantiation of the package. The formal function “<” is used to compare key values. The
default function is specified using the “<>”notation, so if an appropriate function named “<”
is visible at the point of instantiation, no actual need be specified. The generic procedure
traverse is parameterized by an action procedure. An instance of traverse applies the actual
action procedure to each element in the table.

package lookup_tables is
generic (type element_type is access private;

type key_type is private;
function key_of (E : element_type) return key_type;
function “<”(L, R : key_type) return boolean is <>);

type lookup_table is limited access private;

procedure lookup (table : in lookup_table; lookup_key : in key_type;
element : out element_type; found : out boolean);

procedure search_and_insert (table : in lookup_table; element : in element_type;
already_present : out boolean);

procedure traverse
generic (procedure action (element : in element_type))
(table : in lookup_table);

private

type tree_record;
type tree_ptr is access tree_record;
type tree_record is

record
left_subtree, right_subtree : tree_ptr;
element : element_type;

end record tree_record;

type lookup_table is new tree_ptr;

end package lookup_tables;

The package body is shown below. The formal functions key_of and “<” are invoked
using the formal name.

package body lookup_tables is

SUAVE Language Description — 7 July 1999

32

procedure lookup (table : in lookup_table; lookup_key : in key_type;
element : out element_type; found : out boolean) is

variable current_subtree : tree_ptr := tree_ptr(table);
begin

found := false;
while current_subtree /= null loop

if lookup_key < key_of(current_subtree.element) then
lookup (lookup_table(current_subtree.left_subtree),

lookup_key, element, found);
elsif key_of(current_subtree.element) < lookup_key then

lookup (lookup_table(current_subtree.right_subtree),
lookup_key, element, found);

else
found := true;
element := current_subtree.element;
return;

end if;
end loop;

end procedure lookup;

procedure search_and_insert (table : in lookup_table; element : in element_type;
already_present : out boolean) is ...

procedure traverse
generic (procedure action (element : in element_type))
(table : in lookup_table) is
alias tree is tree_ptr(table);

begin
if tree = null then

return;
end if;
traverse (lookup_table(tree.left_subtree));
action (tree.element);
traverse (lookup_table(tree.right_subtree));

end procedure traverse;

end package body lookup_tables;

Suppose a model requires a lookup table of test patterns that use character strings as keys.
Such a table may be instantiated as shown below. Since the predefined function “<”operating
on strings is visible at the point of instantiation, it is used as the actual function for the formal
function “<”.

type test_pattern_type is . . .
function test_id_of (test_pattern : in test_pattern_type) return string;

package test_pattern_tables is
new lookup_tables

generic map (element_type => test_pattern_type,
key_type => string,
key_of => test_id_of);

The traversal procedure can be used to count the number of elements in the table by
instantiating it as follows:

variable count : natural := 0;

procedure count_a_test_pattern (test_pattern : in test_pattern_type) is
begin

count := count + 1;
end procedure count_a_test_pattern;

procedure count_test_patterns is
new test_pattern_tables.traverse

generic map (action => count_a_test_pattern);

SUAVE Language Description — 7 July 1999

33

The instantiated traversal function can be called with a test pattern lookup table as a pa-
rameter, as follows:

variable patterns_to_apply : test_pattern_tables.lookup_table;
. . .

count_test_patterns (patterns_to_apply);

— — —

5.3.12 Formal Process Generics

Note: this language feature to be designed.

5.3.13 Formal Package Generics

An interface package declaration defines a formal generic package that can be used to pass
a particular instance of a generic package when the generic unit is instantiated. The syntax
rule is:

interface_package_declaration ::=
package identifier is

new generic_package_name interface_package_actual_part ;

interface_package_actual_part ::=
generic map (<>)

| [generic_map_aspect]

The name must denote a generic package. If the interface package actual part is of the
form that includes a box, the actual package may be any instance of the named generic pack-
age. If the interface package actual part is a generic map aspect, the actual package must
be an instance of the named generic package with the same actual generics as those specified
in the generic map aspect. If the interface package actual part is empty, the actual package
must be an instance of the named generic package with the same actual generics as the de-
faults for the generic package.

The following example is adapted from the Ada Rationale [3].

Example

Suppose a generic package for complex numbers is defined as follows:

package generic_complex_numbers is
generic (type float_type is range <>.<>);

type complex is private;

function “+”(L, R : complex) return complex;
function “–”(L, R : complex) return complex;
. . .

private
. . .

end package generic_complex_numbers;

The package is generic so that it may be used with different floating point types. A pack-
age for generic complex vectors can be defined as shown below. It is generic with respect
to the type of complex number used as vector elements. The package could be defined with
the complex type as a formal type generic, but then the operators needed to implement the
vector functions would also have to be included as formal subprogram generics. A more

SUAVE Language Description — 7 July 1999

34

succinct form is to specify a formal package generic for the package defining the complex
number ADT.

package generic_complex_vectors is
generic (package complex_numbers is

new generic_complex_numbers
generic map (<>));

use complex_numbers.all;

type complex_vector is array (natural range <>) of complex;

function “+”(L, R : complex_vector) return complex_vector;
function “–”(L, R : complex_vector) return complex_vector;
. . .

end package generic_complex_vectors;

As an illustration of how the operations defined in the formal complex number ADT pack-
age are used, the package body for the complex vectors package is as follows:

package body generic_complex_vectors is

function “+”(L, R : complex_vector) return complex_vector is
alias L_norm : complex_vector(1 to L’length) is L;
alias R_norm : complex_vector(1 to R’length) is R;
variable result : complex_vector(1 to L’length);

begin
assert L’length = R’length

report “Addition of complex vectors of different lengths”;
for index in result’range loop

result(index) := L_norm(index) + R_norm(index);
end loop;
return result;

end function “+”;

function “–”(L, R : complex_vector) return complex_vector is . . .
. . .

end package body generic_complex_vectors;

Suppose now that the complex numbers package is instantiated as follows:

type short_float is range –10.0 to 10.0;

package short_complex_numbers is
new generic_complex_numbers

generic map (float_type => short_float);

alias short_complex is short_complex_numbers.complex;

The complex vectors package is then instantiated as follows:

package short_complex_vectors is
new generic_complex_vectors

generic map (complex_numbers => short_complex_numbers);

alias short_complex_vector is short_complex_vectors.complex_vector;

Suppose now that a generic package for mathematical functions on floating point types
is defined as follows:

package generic_float_functions is
generic (type float_type is range <>.<>);

function sqrt (x : float_type) return float_type;
function log (x : float_type) return float_type;
. . .

end package generic_float_functions;

SUAVE Language Description — 7 July 1999

35

A generic package for mathematical functions on complex numbers can be defined as
shown below. The formal package generic complex_numbers is an instance of the generic
complex_numbers package defined above. That package is generic with respect to the under-
lying floating point type used. The complex functions package must use the generic floating
point functions package, but instantiated with the same underlying floating point type. This
is enforced by the actual part specified for the formal package generic_float_functions.

package generic_complex_functions is
generic (package complex_numbers is

new generic_complex_numbers
generic map (<>);

package float_functions is
new generic_float_functions

generic map (float_type => complex_numbers.float_type));

use complex_numbers.all;

function sqrt (x : complex) return complex;
function log (x : complex) return complex;
. . .

end package generic_complex_functions;

This package can be instantiated for the complex number type as follows:

package short_float_functions is
new generic_float_functions

generic map (float_type => short_float);

package short_complex_functions is
new generic_complex_functions

generic map (complex_numbers => short_complex_numbers,
float_functions => short_float_functions);

— — —

SUAVE Language Description — 7 July 1999

36

6. Channels and Communication in SUAVE

At the system level of design, processes representing active objects must interact to communi-
cate data and to synchronize their operation. The simplest form of interaction is message
passing, involving the transfer of data from a sender process to a receiver process. The act
of message passing can also be used to synchronize processes. SUAVE extends VHDL with
message passing for abstract communication as it is a natural abstraction of communication
common to both software and hardware. Other forms of interaction, such as rendezvous and
remote procedure call are possible, but are oriented specifically toward software implementa-
tion. Fortunately, they are easily expressed in terms of message passing.

There are two ways that message passing abstracts away the details of communication
in hardware description languages. First, communication events are not tied to specific times,
but rather are simply ordered by relative time of sending. This causality-based ordering is
weaker and less constraining than clock-time ordering, and is therefore more appropriate at
the early stages of design. Second, communication events may be queued (either by queuing
messages or processes), rather than relying on the recipient sensing data at the correct time.
This allows multiple communication events to form a stream or a transaction without the need
for detailed signalling protocols.

6.1 Channels

Abstract communication in SUAVE occurs over channels, which are of declared channel types.
Channels can be declared objects or interface objects. A channel is a first-in-first-out buffer
of values called messages.

6.1.1 Channel Types

SUAVE extends the classes of types that can be defined to include channel types. The revised
syntax rule for a type definition is:

type_definition ::=
. . .

| channel_type_definition

The syntax rules for a channel type definition are:

channel_type_definition ::=
unbounded_channel_definition

| unconstrained_bounded_channel_definition
| constrained_bounded_channel_definition

unbounded_channel_definition ::=
channel of subtype_indication

| null channel

unconstrained_bounded_channel_definition ::=
channel buffer <> of subtype_indication

| null channel buffer <>

constrained_bounded_channel_definition ::=
channel buffer_constraint of subtype_indication

| null channel buffer_constraint

buffer_constraint::=
buffer simple_expression

SUAVE Language Description — 7 July 1999

37

The subtype indication specified in a channel type definition is called the message type
of the channel type. It denotes the subtype of values that may be passed as messages on
a channel of the channel type. The base type of this subtype must not be a file type. If it
is an access type or is of a type that contains an element that is an access type, the access
type must be an access-to-channel type (see Section 6.3.1). The forms of channel type defini-
tion that include the reserved word null instead of a subtype indication define null channel
types. Such a channel type is used for a channel on which the messages have no data content.

A channel type may be unbounded or bounded. A channel of an unbounded channel
type has an indefinitely large message buffer. Any buffer capacity limitations are implementa-
tion dependent. A channel of a bounded channel type has a message buffer whose size it
determined by its channel type. A constrained bounded channel type specifies the buffer
size using a buffer constraint. An unconstrained buffered channel type leaves the buffer un-
specified. Declaration and definition of constrained and unconstrained channel types is anal-
ogous to declaration and definition of constrained and unconstrained arrays. In particular,
a constrained channel type is a subtype of an unconstrained channel type with the same mes-
sage type.

A channel type may only be used to define a channel object, an interface channel, or an
access-to-channel type. It may not be used to define any other class of object or type.

The existing VHDL syntax rule for constraints is modified to include buffer constraints:

constraint ::=
range_constraint

| index_constraint
| buffer_constraint

A buffer constraint may only be used in a subtype indication denoting a subtype of an
unconstrained bounded channel type or in a constrained bounded channel definition. The
simple expression in a buffer constraint must be a non-negative integer; it determines the
buffer size for channels of the channel type or subtype.

The predefined attribute ’Length may be used to determine the buffer size for a
constrained bounded channel type or an object of a constrained bounded channel type.

Example

The following declaration defines an unbounded channel type:

type acknowledgment_channel is null channel;

The following declarations define two constrained bounded channel types:

type blocking_request_channel is channel buffer 4 of request_message;
type bigger_request_channel is

channel buffer 2 * blocking_request_channel’length of request_message;

The following declarations define an unconstrained bounded channel type and a constrained
bounded channel subtype:

type result_channel is channel buffer <> of request_message;
subtype blocking_result_channel is result_channel buffer 2;

— — —

6.1.2 Channel Declarations

SUAVE extends VHDL to include channel objects for abstract message-passing communica-
tion. The syntax rule for object declarations is extended to include channel declarations:

SUAVE Language Description — 7 July 1999

38

object_declaration ::=
. . .

| channel_declaration

One or more channels may be declared using a channel declaration. The syntax rule is:

channel_declaration ::=
channel identifier_list : subtype_indication ;

A channel declaration may only appear in a block declarative part, an entity declarative part,
or a package declarative part. The subtype indication must denote an unbounded channel
type or a constrained bounded channel type.

A channel is analogous to a signal, except that information is transferred using the send
and receive message passing operations (described in Sections 6.2.1 and 6.2.2). There is no
notion of resolution of multiple source values, nor of specific times at which values occur
on channels. When the channel object is created, the message buffer is initially empty.

Example

The following declarations define two channel objects:

channel acknowledgment : acknowledgment_channel;
channel request : blocking_request_channel;
channel result_1 : result_channel buffer 1;
channel result_2 : blocking_result_channel;

— — —

6.1.3 Interface Channels

Interface declarations are extended to include interface channels. Interface channels may
appear as ports of design entities, components, blocks and processes, and as channel parame-
ters of subprograms. The extended syntax rules for interface declarations are:

interface_declaration ::=
. . .

| interface_channel_declaration

interface_channel_declaration ::=
channel identifier_list : [mode] subtype_indication

The mode, if present, must be one of in or out. An in mode channel may be used to receive
messages, and an out mode channel may be used to send messages. The subtype indication
must denote a channel type. A composite interface channel must be associated in whole.
An interface channel of mode in must be associated with an actual channel object or be unas-
sociated; it may not be associated with an expression.

A formal interface channel can be declared of any of the three classes of channel types:
unbounded, unconstrained bounded or constrained bounded. Where the formal channel
is of an unbounded channel type, the associated actual channel must also be of an un-
bounded channel type. This ensures that, if inferences are made about process behaviour
based on the premise that sending to the formal channel does not block, those inferences
remain valid independent of characteristics of the actual channel. Where a formal channel
is of a constrained bounded channel type or subtype, the associated actual channel must be
of the same constrained bounded channel type or subtype, and have the same buffer size
as the formal channel. Where a formal channel is of an unconstrained bounded channel type,
the actual channel must be of a constrained subtype of the formal’s type, and the buffer size
of the formal channel is inferred from the buffer size of the actual channel.

SUAVE Language Description — 7 July 1999

39

Where an interface channel appears as a channel parameter of a subprogram, the actual
channel object is passed by reference. Send and receive operations on the formal channel
object are performed on the actual channel object.

Example

In the following architecture body, the image_channel type represents tokens in an uninter-
preted queuing model. The component image_filter has unbounded channel ports for receiv-
ing and sending tokens. The component instance filter has its ports associated with the actual
unbounded channel objects raw_image and filtered_image.

architecture performance_modeling of motion_detector is

type image_channel is channel of image_token;

component image_filter is
port (channel raw_image : in image_channel;

channel filtered_image : out image_channel);
end component image_filter;

channel raw_image, filtered_image : image_channel;
. . .

begin

filter : component image_filter
port map (raw_image => raw_image,

filtered_image => filtered_image);
. . .

end architecture performance_modeling;

— — —

Example

The following procedure declaration has two channel parameters:

procedure process_request (channel request : in request_channel;
channel result : out result_channel);

— — —

Example

In the following model fragment, pipe_link is an unconstrained bounded channel type. The
process pipe_stage has a generic constant size that is used to specify the buffer sizes for the
formal input and output channel ports. Use of the generic constant in this way ensures that
the channels have the same buffer size. The channel objects link1 and link2 are declared to
be of an anonymous subtype of pipe_link, with buffer size link_buffer_size. In the process
instance stage1, the generic constant is given the value link_buffer_size, and so the two channel
ports assume that value for their buffer sizes. Hence the association with the actual channel
objects is legal, since they have the same buffer sizes. This scheme is analogous to the way
in which generics and signal ports of unconstrained array types are often used in standard
VHDL.

type pipe_link is channel buffer <> of link_data;

process pipe_stage is
generic (size : natural);

SUAVE Language Description — 7 July 1999

40

port (channel link_in : in pipe_link buffer size;
channel link_out : out pipe_link buffer size);

end process pipe_stage;

channel link1, link2 : pipe_link buffer link_buffer_size;
...

stage1 : process pipe_stage
generic map (size => link_buffer_size)
port map (link_in => link1, link_out => link2);

— — —

6.2 Communication Statements

SUAVE extends the set of sequential statements to include send statements, receive statements
and select statements. The extended syntax rule is:

sequential_statement ::=
. . .

| send_statement
| receive_statement
| select_statement

6.2.1 Send Statement

A message is added to the queue of a channel using a send statement. The syntax rule is:

send_statement ::=
[label :] send [expression] to channel_name ;

The expression is disallowed if the channel is of a null channel type. In that case, a data-less
message is sent. Otherwise, the expression is required and denotes the value to be sent as
a message. The base type of the expression must be the same as the base type of the message
type of the channel denoted by the channel name.

Execution of a send statement involves examining the message buffer of the named chan-
nel. If the message buffer of the channel is full, the sending process blocks. The channel
is full if there is a receiving process associated with the channel for which the number of
messages sent on the channel less the number of messages received by that process is equal
to the buffer size of the channel. When the channel is no longer full, the sending process
resumes and adds the message to the tail of the message buffer of the named channel. The
sending process then continues executing. If multiple processes execute send statements to
the same channel concurrently, the order in which the messages are added to the message
queue is not defined.

An unbounded channel is never full. However, an implementation may run out of storage
for the channel buffer, and thus not be able to complete execution of the model. In the case
where the buffer size is zero, synchronous communication results, with blocking semantics
similar to those of CSP [7].

Example

The following two statements send to a channel with data and to a null channel respectively:

send result_message’(. . .) to result;

SUAVE Language Description — 7 July 1999

41

send to acknowledgment;

— — —

6.2.2 Receive Statement

A process accepts a message from a channel using a receive statement. The syntax rule is:

receive_statement ::=
[label :] receive [target] from channel_name ;

The target is disallowed if the channel is of a null channel type, otherwise it is required. The
target must denote a variable name or an aggregate of variable names. Execution of a receive
statement involves examining the message buffer of the named channel. If the message buffer
is empty, the process suspends until a message arrives. When there is a message available,
it is removed from the buffer. If the channel is not of a null channel type, the value of the
message is assigned to the target using the same rules as variable assignment.

If multiple processes can read a message channel, all processes receive each message sent
to the channel. Furthermore, all processes receive the messages from the channel in the same
order. An implementation may achieve this effect either by providing one message queue
for the channel, from which each process copies message values, or by replicating the mes-
sage queue at each process.

Example

The following two statements receive from a channel with data and from a null channel re-
spectively:

receive next_request from request;

receive from acknowledgment;

— — —

6.2.3 Select Statement

A process may choose between a number of channels for communication using a select state-
ment. The syntax rules are:

select_statement ::=
[select_label :]

select
[guard] select_alternative

{ or
[guard] select_alternative }

[or
timeout_alternative]

[else
sequence_of_statements]

end select [select_label] ;

guard ::= when condition =>

select_alternative ::=
receive_alternative

| send_alternative

SUAVE Language Description — 7 July 1999

42

receive_alternative ::=
receive_statement [sequence_of_statements]

send_alternative ::=
send_statement [sequence_of_statements]

timeout_alternative ::=
timeout_guard sequence_of_statements

timeout_guard ::= after time_expression =>

A select statement allows non-deterministic choice between alternative targets for mes-
sage sending or sources for message reception. It also allows for time-out in the case of
communication not being possible within a specified interval. Each select alternative may
be guarded by a boolean condition; a guarded alternative may only be chosen if the guard
is true.

Execution of the select statement consists firstly of evaluating the guard conditions. An
alternative is said to be open if it has no guard, or if its guard evaluates to true. If no alternative
is open and the select statement has an else clause, the statements in the else clause are exe-
cuted, thus completing execution of the select statement. It is an error if no alternative is open
and there is no else clause.

An open receive alternative can be executed if the channel named in the receive state-
ments has queued messages, or in the case of a channel with a buffer size of zero, if there
is a sender waiting to send to the channel. An open send alternative can be executed if the
message buffer of the channel named in the send statement is not full, or, in the case of a
channel with a buffer size of zero, if all of the receivers of the channel are waiting to receive
from the channel.

If there are open alternatives that can be executed, one of the open alternatives is chosen
arbitrarily. The send or receive statement is executed, followed by execution of the sequence
of statements (if present), completing execution of the select statement.

If there are open alternatives but none of them can be executed, the process executing
the select statement blocks until one or more of the open alternatives can be executed. Execu-
tion then proceeds as described in the previous paragraph. The guard conditions are not
re-evaluated while the process is blocked.

The timeout alternative, if present, specifies the maximum amount of time for which the
process will remain blocked waiting for an open select alternative to be executed. If the pro-
cess remains blocked for the specified time after commencing execution of the select state-
ment, the process resumes and executes the sequence of statements in the timeout alternative,
thus completing execution of the select statement. If the timeout clause has a timeout interval
of 0 fs, the process will resume on the next simulation cycle. If the timeout alternative is
omitted, the process may block indefinitely.

Example

In the following example, the process access_controller arbitrates between readers and writers
of a shared resource. A reader sends a read-request message to the process, and only pro-
ceeds when the process responds with an acknowledgment. When the reader finishes read-
ing, it sends a read-finished message to the process. Writers obey a similar protocol. Multiple
readers are allowed concurrent access, provided the number of active writers is zero. Only
one writer at a time is permitted, and then only if there are no active readers. The guards
in the select statement control the reception of request messages, based on the number of
readers or writers currently active.

type read_request_channel is channel of . . . ;
type read_finished_channel is null channel;

SUAVE Language Description — 7 July 1999

43

type write_request_channel is channel of . . . ;
type write_finished_channel is null channel;
. . .

channel read_request : read_request_channel;
channel read_finished : read_finished_channel;
channel write_request : write_request_channel;
channel write_finished : write_finished_channel;
. . .

access_controller : process is
variable number_of_readers, number_of_writers : natural := 0;

begin
select

when number_of_writers = 0 =>
receive read_request_info from read_request;
number_of_readers := number_of_readers + 1;
. . . - - acknowledge read request

or
receive from read_finished;
number_of_readers := number_of_readers - 1;

or
when number_of_readers = 0 and number_of_writers = 0 =>

receive write_request_info from write_request;
number_of_writers := number_of_writers + 1;
. . . - - acknowledge write request

or
receive from write_finished;
number_of_writers := number_of_writers - 1;

end select;
end process access_controller;

— — —

Example

The following example illustrates inclusion of blocking send and receive alternatives in a se-
lect statement. The process models a network interface that accepts packets from a source
and forwards them in a stream over a network. Flow control is modeled by the finite buffer
size of the channel type (packet_stream_channel) representing the network stream. The net-
work is assumed to be unreliable, so the receiver (not shown), periodically sends acknowl-
edgment messages that include the sequence number of the last correctly received packet.
The network interface process saves packets until they have been been acknowledged. If
an acknowledgment message indicates incorrect reception of a packet, the network interface
process resets the packet save buffer back to the last correctly received packet and retries
sending from the incorrectly received packet.

type packet_source_channel is channel buffer 0 of packet_type;
type packet_stream_channel is channel buffer window_size of packet_type;
type ack_stream_channel is channel buffer 1 of ack_type;

process network_interface is
port (channel packet_source : in packet_source_channel;

channel packet_stream : out packet_stream_channel;
channel ack_stream : in ack_stream_channel);

. . .

begin
select

SUAVE Language Description — 7 July 1999

44

not full(save_buffer) =>
receive incoming from packet_source;
insert(incoming, save_buffer);

or
send next_outgoing(save_buffer) to packet_stream
advance(save_buffer);

or
receive (ok, last_seq_no) from ack_stream
if ok then

reclaim(last_seq_no, save_buffer);
else

reset(last_seq_no, save_buffer);
end if;

end select;
end process network_interface;

— — —

Example

The following statements show how a real-time process might request information from a
server. If the server does not respond before the process’s deadline, the process proceeds
without the response.

send request_details to server_request;
select

receive response_info from server_response;
act_on(response_info);

or after 10 ms =>
act_on(default_info);

end select;

— — —

Example

The following example illustrates the use of a timeout alternative in a select statement to
choose an alternative action when an output channel is full. The model describes a lossy
message source for a network system. The system (not shown here) has an input channel
that can accept messages at a given maximum rate. The channel has a bounded buffer to
absorb bursts of messages that arrive at a greater rate. However, if the buffer capacity is ex-
ceeded, the message source discards messages.

type bounded_channel is channel buffer max_size of message_type;

process message_source is
port (channel message_stream : out bounded_channel);

variable next_message : message_type;

begin
. . . -- construct next message in stream
select

send next_message to message_stream;
. . . -- log successful send

or after 0 fs =>
. . . -- log loss of message from stream

end select;
end process message_source;

— — —

SUAVE Language Description — 7 July 1999

45

6.3 Dynamically Created Channels

SUAVE provides mechanisms for dynamically creating channels in order to communicate with
dynamically created processes.

6.3.1 Access-to-Channel Types

An access type may be declared to have a channel type as its designated type. Such an access
type is called an access-to-channel type.

Example

The following declarations respectively define a type to be used for message values, a channel
type, an access-to-channel type, and a record type containing an element of the access-to-
channel type:

type result_value is . . . ;
type result_channel is channel result_value;
type result_ref is access result_channel;

type request_info is record
. . .; - - info for the transaction
result_please : result_ref;

end record request_info;

— — —

6.3.2 Dynamic Allocation and Deallocation of Channels

A channel may be dynamically allocated using an allocator with a subtype indication denoting
a channel type. The access value returned by the allocator designates the newly allocated
channel.

The procedure deallocate is implicitly declared for access-to-channel types, just as it is for
other access types. Deallocating a channel designated by an access-to-channel value causes
loss of any messages in the message queue of the channel. Subsequent use of the access-to-
channel value is erroneous, as are subsequent send and receive operations using formal chan-
nels directly or indirectly associated with the deallocated channel.

Example

In the following model fragment, the variable declarations defines a variable of an access-to-
channel type initialized with a reference to a dynamically created channel. The send state-
ment send a message containing a reference to the dynamically created channel. The receive
statement receives a message from the dynamically created channel. The call to the deallocate
procedure deallocates the dynamically created channel.

variable result : result_ref := new result_channel;

. . .
send (. . . , result) to request;
receive . . . from result.all;
. . .
deallocate (result);

— — —

SUAVE Language Description — 7 July 1999

46

7. Extensions for Abstraction of Concurrency

A system-level design language needs to allow expression of concurrent processes represent-
ing the active objects in a system. In some systems, the number of active objects is not statical-
ly determined, but may vary during operation of the system. For example, in a client/server
system, new service agents may be created as requests arrive from clients, allowing multiple
requests to be processed concurrently. In order to describe such systems, a system-level de-
sign language must allow expression of process types that may be dynamically instantiated
and terminated.

The model of concurrency in VHDL is based on processes which are statically specified
in architecture bodies. However, the language does not allow specification of a process type
that can be separately instantiated. Instead, the process must be encapsulated in a design
entity and instantiated through the component instantiation mechanism. This is cumbersome,
and has the disadvantage of implying structural partitioning. Furthermore, it does not allow
dynamic instantiation of processes.

These deficiencies can be overcome by extending VHDL to include process declarations,
abstracting over the statically specified processes currently provided in the language. A pro-
cess interacts with its environment using the communication mechanism provided by the lan-
guage. Therefore, a process declaration includes an interface in which formal communica-
tion objects can be specified. A process declaration can be statically instantiated as a
concurrent statement in an architecture body, with bindings made between formal and actual
communication objects. It can also be dynamically instantiated by the execution of a sequen-
tial process instantiation statement. Process declarations and their instantiation and termina-
tion are described more fully below.

7.1 Process Declarations

SUAVE extends declarative parts to include process declarations and process bodies as fol-
lows:

process_declaration ::=
process_specification
end process [process_simple_name] ;

process_body ::=
process_specification

process_declarative_part
begin

process_statement_part
end process [process_simple_name] ;

process_specification ::=
process identifier is

[generic_clause]
[port_clause]

Process declarations, like subprogram declarations, may be defined with separate specifi-
cations and bodies. Process declarations and process bodies may be included in the declara-
tive parts of entity declarations, architecture bodies, block statements, generate statements,
process statements, process bodies, and subprogram bodies. The extended syntax rules are:

entity_declarative_item ::=
. . .

| process_declaration
| process_body

SUAVE Language Description — 7 July 1999

47

block_declarative_item ::=
. . .

| process_declaration
| process_body

process_declarative_item ::=
. . .

| process_declaration
| process_body

subprogram_declarative_item ::=
. . .

| process_declaration
| process_body

Process declarations may also be included in package declarations and package bodies,
and process bodies may be included in package bodies. The extended syntax rules are:

package_declarative_item ::=
. . .

| process_declaration

package_body_declarative_item ::=
. . .

| process_declaration
| process_body

If a package declaration contains a process declaration, the package must have a package
body that contains a process body corresponding to the process declaration. If a process has
separate declaration and body, the generic clause and port clause in the body must conform
with the generic clause and port clause in the declaration.

7.2 Concurrent Process Instantiation Statement

Static instantiation of declared processs is done using a process instantiation statement. The
syntax rules are:

concurrent_statement ::=
. . .

| process_instantiation_statement

process_instantiation_statement ::=
[instantiation_label :]

process process_name
[generic_map_aspect]
[port_map_aspect] ;

A process instantiation statement is equivalent to a block statement with the generic clause
and port clause taken from the process declaration and the generic map aspect and port map
aspect taken from the process instantiation statement. The declarative part of the block state-
ment is empty, and the statement part contains a process whose declarative part and statement
part are taken from the process body. The meaning of any identifier within the block state-
ment and the process it contains is that associated with the identifier in the process declaration
or body. To illustrate application of these rules, consider the following process body and
instantiation statement:

process p is
generic (g : integer);
port (channel c : c_chan);

SUAVE Language Description — 7 July 1999

48

variable v : integer;

begin
v := x;

end process p;
. . .

p_inst : process p
generic map (g => 5)
port map (c => c1);

The process instantiation statement is semantically equivalent to:

p_inst : block is
generic (g : integer);
generic map (g => 5);
port (channel c : c_chan);
port map (c => c1);

begin

p : process is
variable v : integer;

begin
v := x;

end process p;

end block p_inst;

The name x is prefixed to ensure that it refers to the same item visible in the process declara-
tion rather than any homograph that hides the name.

7.3 Sequential Process Instantiation Statement

Dynamic instantiation of a process is performed using a sequential process instantiation state-
ment. The syntax rules are:

sequential_statement ::=
. . .

| sequential_process_instantiation_statement

sequential_process_instantiation_statement ::=
[label :]

process process_name
[generic_map_aspect]
[port_map_aspect] ;

Execution of a sequential process instantiation statement involves the following steps:

S elaboration of the generic list of the process declaration to create the formal
generics, and association of the actual generics with the formal generics;

S elaboration of the port list of the process declaration to create the formal ports,
and association of the actual signals, channels and values with the formal ports;

S elaboration of the declarations of the process; and

S creation and initialization of the drivers of the process.

The newly instantiated process then commences execution of its statement part concur-
rently with the instantiating process in the current simulation cycle. The newly instantiated
process is said to depend on the instance or activation of the declaration or statement that
immediately contains the declaration of the process. That instance or activation may not re-

SUAVE Language Description — 7 July 1999

49

turn or terminate until all of the processes that depend on it have terminated, since such pro-
cesses may refer to items declared by the declaration or statement.

7.3.1 Dynamic Association with Signal Ports

The semantics of dynamically associating a signal with a signal port of a process depends on
the mode of the port. For an unassociated signal port of mode in with a default value expres-
sion, the driving and effective values of the port are set to the value of the expression. Similar-
ly, for a signal port of mode in associated with an expression, the driving and effective values
of the port are set to the value of the expression. For a signal port of mode in associated
with a signal, the port becomes part of the same net as the signal, and the effective value of
the port is determined by the signal update algorithm.

For a signal port of mode out or buffer associated with a signal, the driver in the process
is a source of the port. The port becomes a new source for the associated signal. This is
analogous to reconnection of a driver that had previously become disconnected through a
null signal assignment.

For a signal port of mode inout, the semantics are a combination of the semantics for
ports of mode in and mode out.

7.3.2 Dynamic Association with Channel Ports

The semantics of dynamically associating a channel with a channel port of a process also de-
pends on the mode of the port. For an unassociated channel port of mode in, the the port
denotes an empty message buffer. For a channel port of mode in associated with a channel,
the port denotes the message buffer of the channel. Messages sent to the channel prior to
association of the port with the channel are not received by the process. Messages sent to
the channel after the association is made are received by the process. If a message is sent
to the channel in the same simulation cycle that the association is made, it is not defined
whether the process receives the message. However, if the process receives one message
from a given sender, it receives any message subsequently sent by that sender.

For an unassociated channel port of mode out, the port denotes a message buffer to
which the process may send messages. However, no process will ever receive the messages.
For a channel port of mode out associated with a channel, the port denotes the message buff-
er of the channel. Messages sent by the process to the port are added to the message buffer
of the channel.

7.4 Process Termination

A process may terminate by executing a sequential statement called a terminate statement.
The syntax rules are:

sequential_statement ::=
. . .

| terminate_statement

terminate_statement ::=
[label :] terminate ;

A terminate statement is only allowed within the statement part of a process body. Ter-
mination of a process involves the following actions:

S The process waits until all processes that depend on it have terminated.

S The drivers of the process are disconnected from the signals that they drive. It is
an error if any of these signals are not guarded signals.

SUAVE Language Description — 7 July 1999

50

S The formal ports are disassociated from the actual signals and channels.

7.5 Example: A Client-Server System

This example is a model of a client-server system in which the server is multi-threaded, allow-
ing it to serve multiple transactions concurrently. Since the number of clients to be served
concurrently is not known a priori, the server creates agents dynamically to perform the trans-
actions. The organization of the system is illustrated below. The system may ultimately be
implemented in software, but it desirable to model it early in the design flow before hard-
ware/software partitioning is performed.

ClientClient Server

Agent

request

result forwarded
request

dynamically
created

The type result_channel represents a channel for receiving result messages from the server,
and the type result_ref is a reference to such a channel. The type request_info is the message
type for requests to the server. It includes a reference to the channel upon which the client
expects to receive the result of the request. The type request_channel represents a channel
for sending requests, and the type request_ref is a reference to a request channel.

The client process’s port is a channel upon which it sends requests. Part of the client’s
state is a dynamically created channel for receiving transaction results. When the client makes
a request, it includes the reference to its result channel as part of the request.

The server process has a channel port for receiving requests, and encapsulates a process
declaration for agents, which also has a channel port for requests. The body of the server
receives a request message on its request channel, and saves the request in the variable info.
It then dynamically creates a new request channel and a new agent process, with the agent’s
request channel port mapped to the new request channel. The server then forwards the saved
request message via the new channel. The newly created agent receives the forwarded mes-
sage, performs the transaction, and sends the results to the channel referenced in the request
message. The agent then terminates. While the agent is processing the transaction, the server
may receive further request messages and create agents to process them concurrently.

architecture system_level of client_server_system is
type result_value is . . . ;
type result_channel is channel of result_value;
type result_ref is access result_channel;

type request_info is record
. . .; -- info for the transaction
result_please : result_ref;

end record request_info;
type request_channel is channel of request_info;
type request_ref is access request_channel;

process client is
port (channel request : out request_channel);

SUAVE Language Description — 7 July 1999

51

variable result : result_ref := new result_channel;

begin
. . .
send (. . ., result) to request;
receive . . . from result.all;
. . .

end process client;

process server is
port (channel request : in request_channel);

process agent is
port (channel request : in request_channel);

variable info : request_info;

begin
receive info from request;
. . .; -- perform transaction
send . . . to info.result_please.all;
terminate;

end process agent;

variable info : request_info;
variable new_agent_request : request_ref;

begin
receive info from request;
new_agent_request := new request_channel;
process agent

port map (new_agent_request.all);
send info to new_agent_request.all;

end process server;

channel server_request : request_channel;

begin

the_server : process server
port map (request => server_request);

client_pool : for client_index in 1 to number_of_clients generate
a_client : process client

port map (request => server_request);
end generate client_pool;

end architecture system_level;

SUAVE Language Description — 7 July 1999

52

8. Other Related Changes

This section described miscellaneous extensions to VHDL that enable more effective use of
the extensions described earlier.

8.1 Access Constants and Constant Parameters

SUAVE removes the VHDL-93 rule prohibiting an object of class constant from being of an
access type or a type that includes an access type. This applies to declared constants and
to constant interface objects. A constant access-type object is initialized to point to a given
allocated object, and cannot be changed to point to any other object. The value of the object
designated by the access value can, however, be changed. The removal of the restriction
allows a constant to be declared of an abstract data type that is implemented using an access
type. It also allows impure functions to have in-mode constant-class parameters of access
type. This means an abstract data type that is implemented using an access type can have
operations that are functions, and that have the abstract data type as parameter and result
types.

Example

An ADT for dynamically created lists of time values is declared below. The function empty
has a constant parameter that is of an access type, hence the function is declared to be impure.
Currently in VHDL, this operation would have to be declared as a procedure with an in-mode
variable parameter.

package time_lists is

type time_list_ptr is access private;

function new_time_list return time_list_ptr;

impure function empty (time_list : time_list_ptr) return boolean;
. . .

private
type time_list_node;
type time_list_ptr is access time_list_node;
type time_list_node is

record
value : time;
next : time_list;

end record time_list_node;

end package time_lists;

— — —

Example

The following declarations define a type for an array of dynamic strings. The constant of this
type is initialized with an array of pointers to strings forming a multi-line message.

type string_ptr is access string;
type string_array is array (positive range <>) of string_ptr;

constant help_message : string_array
:= (new string’(“Enter the port name and driving value.”),

new string’(“If the port is to be disconnected, enter ““null””in place of the value.”),
new string’(“To terminate simulation, enter ““quit””.”));

— — —

SUAVE Language Description — 7 July 1999

53

9. Summary of Syntax Changes

actual_designator ::=
. . .

| type_mark
| subprogram_name
| package_instance_name

aggregate ::= record_aggregate | extension_aggregate | array_aggregate

ancestor_part ::= expression | type_mark

array_aggregate ::= (element_association_list)

block_declarative_item ::=
. . .

| package_declaration
| package_body_declaration
| process_declaration
| process_body
| generic_package_instantiation
| generic_subprogram_instantiation

buffer_constraint::=
buffer simple_expression

channel_declaration ::=
channel identifier_list : subtype_indication ;

channel_type_definition ::=
unbounded_channel_definition

| unconstrained_bounded_channel_definition
| constrained_bounded_channel_definition

concurrent_statement ::=
. . .

| process_instantiation_statement

constrained_bounded_channel_definition ::=
channel buffer_constraint of subtype_indication

| null channel buffer_constraint

constraint ::=
range_constraint

| index_constraint
| buffer_constraint

derived_type_definition ::=
[abstract] new parent_subtype_indication [record_extension_part]

element_association_list ::=
element_association { , element_association }

entity_declarative_item ::=
. . .

| package_declaration
| package_body_declaration
| process_declaration

SUAVE Language Description — 7 July 1999

54

| process_body
| generic_package_instantiation
| generic_subprogram_instantiation

extension_aggregate ::= (ancestor_part with record_element_association_list)

generic_package_instantiation ::=
package identifier is new generic_package_name

[generic_map_aspect] ;

generic_subprogram_instantiation ::=
subprogram_kind designator is new generic_subprogram_name

[generic_map_aspect] ;

guard ::= when condition =>

interface_access_type_definition ::= access_type_definition

interface_array_type_definition ::= array_type_definition

interface_channel_declaration ::=
channel identifier_list : [mode] subtype_indication

interface_declaration ::=
. . .

| interface_type_declaration
| interface_subprogram_declaration
| interface_package_declaration
| interface_channel_declaration

interface_derived_type_definition ::=
[abstract] new type_mark [with [access] private]

interface_discrete_type_definition ::= (<>)

interface_file_type_definition ::= file_type_definition

interface_floating_type_definition ::= range <> . <>

interface_integer_type_definition ::= range <>

interface_package_actual_part ::=
generic map (<>)

| [generic_map_aspect]

interface_package_declaration ::=
package identifier is

new generic_package_name interface_package_actual_part ;

interface_physical_type_definition ::= units <>

interface_private_type_definition ::=
[[abstract] tagged] [limited] [access] private

interface_subprogram_declaration ::=
subprogram_specification [is subprogram_default]

interface_type_declaration ::=
type identifier is interface_type_definition

interface_type_definition ::=
interface_private_type_definition

SUAVE Language Description — 7 July 1999

55

| interface_derived_type_definition
| interface_discrete_type_definition
| interface_integer_type_definition
| interface_physical_type_definition
| interface_floating_type_definition
| interface_array_type_definition
| interface_access_type_definition
| interface_file_type_definition

name ::=
. . .

| type_conversion

object_declaration ::=
. . .

| channel_declaration

package_body_declarative_item ::=
. . .

| package_declaration
| package_body_declaration
| process_declaration
| process_body
| generic_package_instantiation
| generic_subprogram_instantiation

package_declaration ::=
package identifier is

[formal_generic_clause]
package_declarative_part

[private
package_private_declarative_part]

end [package] [package_simple_name] ;

package_declarative_item ::=
. . .

| package_declaration
| process_declaration
| generic_package_instantiation
| generic_subprogram_instantiation

package_private_declarative_item ::=
subprogram_declaration

| process_declaration
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration

SUAVE Language Description — 7 July 1999

56

| package_declaration
| generic_package_instantiation
| generic_subprogram_instantiation

package_private_declarative_part ::= { package_private_declarative_item }

primary_unit ::=
. . .

| generic_package_instantiation

private_extension_declaration ::=
type identifier is

[abstract] new ancestor_subtype_indication with [access] private ;

private_type_declaration ::=
type identifier is [[abstract] tagged] [limited] [access] private ;

process_body ::=
process_specification

process_declarative_part
begin

process_statement_part
end process [process_simple_name] ;

process_declaration ::=
process_specification
end process [process_simple_name] ;

process_declarative_item ::=
. . .

| package_declaration
| package_body_declaration
| process_declaration
| process_body
| generic_package_instantiation
| generic_subprogram_instantiation

process_instantiation_statement ::=
[instantiation_label :]

process process_name
[generic_map_aspect]
[port_map_aspect] ;

process_specification ::=
process identifier is

[generic_clause]
[port_clause]

record_aggregate ::= (record_element_association_list)

record_definition ::=
record

element_declaration
{ element_declaration }

end record [record_type_simple_name]
| null record

record_element_association_list ::=
element_association_list

| null record

SUAVE Language Description — 7 July 1999

57

record_extension_part ::= with record_definition

record_type_definition ::= [[abstract] tagged] [limited] record_definition

receive_alternative ::=
receive_statement [sequence_of_statements]

receive_statement ::=
[label :] receive [target] from channel_name ;

select_alternative ::=
receive_alternative

| send_alternative

select_statement ::=
[select_label :]

select
[guard] select_alternative

{ or
[guard] select_alternative }

[or
timeout_alternative]

[else
sequence_of_statements]

end select [select_label] ;

send_alternative ::=
send_statement [sequence_of_statements]

send_statement ::=
[label :] send [expression] to channel_name ;

sequential_process_instantiation_statement ::=
[label :]

process process_name
[generic_map_aspect]
[port_map_aspect] ;

sequential_statement ::=
. . .

| send_statement
| receive_statement
| select_statement
| sequential_process_instantiation_statement
| terminate_statement

subprogram_declaration ::= subprogram_specification [is abstract] ;

subprogram_declarative_item ::=
. . .

| package_declaration
| package_body_declaration
| process_declaration
| process_body
| generic_package_instantiation
| generic_subprogram_instantiation

subprogram_default ::= name | <>

SUAVE Language Description — 7 July 1999

58

subprogram specification ::=
procedure designator

[generic (generic_list)] [(formal_parameter_list)]
| [pure | impure] function designator

[generic (generic_list)] [(formal_parameter_list)] return type_mark

terminate_statement ::=
[label :] terminate ;

timeout_alternative ::=
timeout_guard sequence_of_statements

timeout_guard ::= after time_expression =>

type_conversion ::=
type_mark (expression)

| type_mark (name)

type_declaration ::=
. . .

| private_type_declaration
| private_type_extension

type_definition ::=
. . .

| derived_type_definition
| channel_type_definition

unbounded_channel_definition ::=
channel of subtype_indication

| null channel

unconstrained_bounded_channel_definition ::=
channel buffer <> of subtype_indication

| null channel buffer <>

SUAVE Language Description — 7 July 1999

59

10. References

[1] P. J. Ashenden and P. A. Wilsey, Principles for Language Extension to VHDL to
Support High-Level Modeling, Dept. Computer Science, University of Adelaide,
Technical Report TR-03/97, ftp://ftp.cs.adelaide.edu.au/pub/VHDL/TR-princi-
ples.ps, 1997.

[2] P. J. Ashenden and P. A. Wilsey, “Considerations on System-Level Behavioural
and Structural Modeling Extensions to VHDL,”Proceedings of VHDL Internation-
al Users Forum Spring 1998 Conference, Santa Clara, CA, pp. 42–50, 1998.

[3] J. Barnes, Ed. Ada 95 Rationale, Lecture Notes in Computer Science, vol. 1247.
Berlin, Germany: Springer-Verlag, 1997.

[4] G. Booch, Object-Oriented Analysis and Design with Applications. Redwood
City, CA: Benjamin/Cummins, 1994.

[5] F. P. Brooks, Jr., The Mythical Man-Month, Anniversary ed. Reading, MA: Addi-
son-Wesley, 1995.

[6] E. Christen, “VHDL’93 Design Guidelines,”personal communication, 1997.

[7] C. A. R. Hoare, Communicating Sequential Processes. London: Prentice Hall,
1985.

[8] IEEE, Standard VHDL Language Reference Manual. Standard 1076-1993, New
York, NY: IEEE, 1993.

[9] ISO/IEC, Ada 95 Reference Manual. International Standard ISO/IEC 8652:1995
(E), Berlin, Germany: Springer-Verlag, 1995.

[10] P. Wegner, “Dimensions of Object-Based Language Design,”ACM SIGPLAN No-
tices, vol. 22, no. 12, Proceedings of OOPSLA ’87, pp. 168–182, 1987.

