
Analog simulation cycle Scheduling semantics
Section 9

Scheduling semantics

This section details the simulation cycles for analog simulation and mixed A/D
simulations.

9.1 Analog simulation cycle

Simulation of a network, or system, starts with an analysis of each node to develop
equations which define the complete set of values and flows in a network. Through
transient analysis, the value and flow equations are solved incrementally with respect to
time. At each time increment, equations for each signal are iteratively solved until they
converge on a final solution.

9.1.1 Nodal analysis

To describe a network, simulators combine constitutive relationships with Kirchhoff’s
Laws in nodal analysis to form a system of differential-algebraic equations of the form

These equations are a restatement of Kirchhoff’s Flow Law (KFL).

v is a vector containing all node values

t is time

q and i are the dynamic and static portions of the flow

f() is a vector containing the total flow out of each node

v0 is the vector of initial conditions

This equation was formulated by treating all nodes as being conservative (even signal
flow nodes). In this way, signal-flow and conservative terminals can be connected
naturally. However, this results in unnecessary KFL equations for those nodes with only
signal-flow terminals attached. This situation is easily recognized and those unnecessary
equations are eliminated along with the associated flow unknowns, which shall be zero
(0) by definition.

f v t,() dq v t,()
dt

------------------- i v t,()+ 0= =

v 0() v0=
Version 2.0 Verilog-AMS Language Reference Manual 9-1

Scheduling semantics Analog simulation cycle
9.1.2 Transient analysis

The equation describing the network is differential and non-linear, which makes it
impossible to solve directly. There are a number of different approaches to solving this
problem numerically. However, all approaches discretize time and solve the nonlinear
equations iteratively, as shown in Figure 9-1.

The simulator replaces the time derivative operator (dq/dt) with a discrete-time finite
difference approximation. The simulation time interval is discretized and solved at
individual time points along the interval. The simulator controls the interval between the
time points to ensure the accuracy of the finite difference approximation. At each time
point, a system of nonlinear algebraic equations is solved iteratively. Most circuit
simulators use the Newton-Raphson (NR) method to solve this system.
9-2 Verilog-AMS Language Reference Manual Version 2.0

Analog simulation cycle Scheduling semantics
Figure 9-1 Simulation flowchart (transient analysis)

9.1.3 Convergence

In the analog kernel, the behavioral description is evaluated iteratively until the NR
method converges. On the first iteration, the signal values used in expressions are
approximate and do not satisfy Kirchhoff’s Laws.

No

Initialization
t <- 0

v(0) <- v0

Update time
t <- t + ∆t

Update values
v <- v + ∆v

Evaluate equations
f(v,t) = residue

 Converged?
residue < e

∆v < ∆

Yes

No
time step?
Accept the

$Display

Start Analysis

Done? (T = t)

Yes

No

Yes
End
Version 2.0 Verilog-AMS Language Reference Manual 9-3

Scheduling semantics Mixed-signal simulation cycle
In fact, the initial values might not be reasonable, so models need to be written so they
do something reasonable even when given unreasonable signal values.

For example, the log or square root of a signal value is being computed, some signal
values cause the arguments to these functions to become negative, even though a real-
world system never exhibits negative values.

As the iteration progresses, the signal values approach the solution. Iteration continues
until two convergence criteria are satisfied. The first criterion is the proposed solution on
this iteration, v(j)(t), shall be close to the proposed solution on the previous iteration, v(j-

1)(t), and

| vn
(j) - vn

(j-1) | < reltol (max(| vn
(j)| , |vn

(j-1)|)) + abstol

where reltol is the relative tolerance and abstol is the absolute tolerance.

reltol is set as a simulator option and typically has a value of 0.001. There can be many
absolute tolerances, which one is used depends on the quantity the signal represents
(volts, amps, etc.). The absolute tolerance is important when vn is converging to zero (0).
Without abstol, the iteration never converges.

The second criterion ensures Kirchhoff's Flow Law is satisfied:

where fn
i(v(j)) is the flow exiting node n from branch i.

Both of these criteria specify the absolute tolerance to ensure convergence is not
precluded when vn or fn(v) go to zero (0). The relative tolerance can be set once in an
options statement to work effectively on any node in the circuit, but the absolute
tolerance shall be scaled appropriately for its associated signal. The absolute tolerance
shall be the largest signal value which is considered negligible on all the signals where
it is associated.

The simulator uses absolute tolerance to get an idea of the scale of signals. Absolute
tolerances are typically 1,000 to 1,000,000 times smaller than the largest typical value
for signals of a particular quantity. For example, in a typical integrated circuit, the largest
potential is about 5 volts, so the default absolute tolerance for voltage is 1µV. The largest
current is about 1mA, so the default absolute tolerance for current is 1pA.

9.2 Mixed-signal simulation cycle

This section describes the semantics of the initialization and time-sweep phases of a
transient analysis in a mixed-signal simulation cycle.

f n v j()()
n
∑ reltol max f i

n v j()()()() abstol+<
9-4 Verilog-AMS Language Reference Manual Version 2.0

Mixed-signal simulation cycle Scheduling semantics
9.2.1 Circuit initialization

The initialization phase of a transient analysis is the process of initializing the circuit
state before advancing time.

9.2.2 Synchronization of Analog and Digital in Transient Analysis

A Verilog-AMS simulation consists of a number of (analog and digital) processes
communicating via events, shared memory and conservative nodes. Analog processes
which share conservative nodes are “solved” jointly and can be viewed as a “macro”
process, there may be any number “macro” processes, and it is left up to the
implementation whether it solves them in a single matrix, multiple matrices or uses other
techniques but it should abide by the accuracy stipulated in the disciplines and analog
functions.

9.2.2.1 Concurrency

Most (current) simulators are single-threaded in execution, meaning that although the
semantics of Verilog-AMS imply processes are active concurrently, the reality is that
they are not. If an implementation is genuinely multithreaded, it should not evaluate
processes that directly share memory concurrently as there are no data locking semantics
in Verilog-AMS.

9.2.2.2 Analog Macro Process Semantics

An analog “macro” process interacts with other processes through events and shared
variables. When it is initially activated, it will attempt to predict a potential “solution” at
a future time (the “acceptance time”) and will store (but not communicate) values1 for
all nodes at that time, and will schedule a “wake up” event for the acceptance time. The
process is then inactive until woken up or it receives an event from another process. If it
is woken up by its own “wake up” event it calculates a new solution point, acceptance
time etc. and deactivates. If it is woken up prior to acceptance time by an event that
disturbs its current solution it will cancel its own “wake up” event, accept at the wake-
up time, recalculate its solution and schedule a new “wake up” event for the new
acceptance time. The process may also wake itself up early for reevaluation by use of a
timer (which can be viewed as just another process).

If the analog process identifies potential “crossings” or timer events then it will schedule
it’s wake-up event for the time of the first such event rather than the acceptance time. If
the analog process is woken by such a crossing event it will communicate any related
events at that time and de-activate, rescheduling it’s wake-up for the next crossing or
acceptance; events to external processes generated from analog events are not
communicated until the global simulation time reaches the time of the analog event.

If the time to acceptance is infinite then no “wake up” event needs to be scheduled2.

1. Or derivatives w.r.t. time used to calculate the values.
Version 2.0 Verilog-AMS Language Reference Manual 9-5

Scheduling semantics Mixed-signal simulation cycle
As with digital processes, analog processes are insensitive to changes in variables i.e. a
change in a variable does not force re-evaluation of the process, neither are they
implicitly sensitive to digital signals used in procedural code, only changes in signals in
event expressions will trigger re-evaluation prior to scheduled wake-up.

9.2.2.3 A/D Boundary Timing

In the analog kernel, time is a floating point value. In the digital kernel time is an integer
value. Hence, A2D events generally do not occur exactly at digital integer clock ticks.

For the purpose of reporting results and scheduling delayed future events, the digital
kernel rounds A2D events to the nearest tick so that error is limited to half a tick when
swapping an analog device for its digital equivalent. A2D statements that do not include
a scheduling delay are processed immediately in a new digital simulation cycle such that
dependent zero-delay non-blocking assigns are executed before control returns to the
analog domain.

Consequently an A2D event which results in a D2A event being scheduled with zero (0)
delay, shall have its effect propagated back to the analog kernel with zero (0) delay.

Figure 9-2 A zero delay inverter

If the circuit shown in Figure 9-2 is being simulated with a digital time resolution of 1e-
9 (one (1) nanosecond) then all digital events shall be reported by the digital kernel as
having occurred at an integer multiple of 1e-9.

If connector A detects a positive threshold crossing the resulting falling edge at connector
B generated by the propagation of the signal through verilog inverter model shall be
reported to the analog kernel with no further advance of analog time. The digital kernel
will treat these events as if they occurred at the nearest nanosecond.

Example:

2. The case when all derivatives are zero - the circuit is stable.

Connection modules

Zero delay inverter:

A B

 always @(A) B<= !A;
9-6 Verilog-AMS Language Reference Manual Version 2.0

Mixed-signal simulation cycle Scheduling semantics
If A detects a positive crossing as a result of a transient solution at time 5.27e-9, the
digital kernel shall report a rising edge at A at time 5.0e-9 and falling edge at B at time
5.0e-9, but the analog kernel shall see the transition at B begin at time 5.27e-9, as
shown in Figure 9-3. D2As fed with zero delay events cannot be preemptive, so the
crossover on the return is delayed from the digital event; zero-delay inverters are not
physicaly realizable devices.

Figure 9-3 Zero delay transient solution times

If the inverter equation is changed to use a one unit delay (always @(A) B<= #1 !A), then
the timing is as in Figure 9-4.

5 ns 6 ns

A

B

4 ns

analog

digital reported

analog

digital reported

signal

signal

digital real-time

digital real-time

Analog gate delay
Version 2.0 Verilog-AMS Language Reference Manual 9-7

Scheduling semantics Mixed-signal simulation cycle
Figure 9-4 Unit delay transient solution times

9.2.3 The synchronization loop

Verilog-AMS uses a “conservative” simulation algorithm, the processes (as described in
Section 9.2.2) which are managed by the digital and analog kernels shall be
synchronized so neither computes results which will invalidate signal values that have
already been assigned; time never goes backwards. While the implementation of the
simulator may have seperate event queues, it can be viewed as a single event queue
logically with a common global time. Analog processes are similar to Verilog initial
statements in that they start automatically at time zero. The event sequence for the
transient simulation shown in Figure 9-4 would be as follows:

Time Event Queue

4.9ns Evaluate the first analog inverter

Evaluate acceptance at 5.4ns, but schedule wake-up

for 5.2 for crossing.

5.2ns Evaluate crossing event

The A2D logic sets the digital signal A which triggers
the evaluation of the non-blocking assign to B which

5 ns 6 ns

A

B

4 ns

analog

digital reported

analog

digital reported

signal

signal

digital real-time

digital real-time

Analog gate delay
9-8 Verilog-AMS Language Reference Manual Version 2.0

Mixed-signal simulation cycle Scheduling semantics
schedules the actual assignment for 6ns (rounded 1ns
delay).

D2A notices queued event and schedules wake-up for
5.75.

Schedule wake-up at 5.4ns (as previously calculated).

5.4ns Evaluate acceptance

Circuit evaluates stable, nothing scheduled.

5.75ns D2A process wake-up

Start ramp in analog domain.

Schedule wake-up for 0V crossing to complete.

6.0ns Non blocking assign performed (digital event).

D2A may be sensitive, but doesn’t need to do anything.

6.25ns D2A process wake-up

Drive 0V to complete ramp. Nothing more to schedule.

Any events queued ahead of the current global event time may be cancelled. For instance
if the sequence above is interrupted by an a change on the primary input before digital
assignment takes place as shown in Figure 9-5.

Time Event Queue

4.9ns Evaluating the first analog inverter

Evaluate acceptance at 5.4ns, but schedule wake-up

for 5.2 for crossing.

5.2ns Evaluate crossing event

The A2D logic sets the digital signal A which triggers
the evaluation of the non-blocking assign to B which
schedules the actual assignment for 6ns (rounded 1ns
delay).

D2A notices queued event and schedules wake-up for
5.75.

Schedule wake-up at 5.4ns (as previously calculated).

5.3ns Analog event disturbs the solution

Cancel 5.4ns wake-up.

New acceptance is 5.45ns, but schedule wake-up for
crossing at 5.4ns.

5.4ns Evaluate crossing event
Version 2.0 Verilog-AMS Language Reference Manual 9-9

Scheduling semantics Mixed-signal simulation cycle
The A2D logic sets the digital signal A which triggers
the evaluation of the non-blocking assign to B which
schedules the actual assignment for 6ns (rounded 1ns
delay) cancelling previous event.

D2A notices queued event is going to drive the current
value and deschedules the wake-up for 5.75.

Schedule wake-up at 5.45ns (as previously calculated).

5.45ns Evaluate acceptance

Circuit evaluates stable, nothing scheduled.

6.00ns Non blocking assign performed (digital event).

Value of B doesn’t change.

Figure 9-5 Transient solution times with glitch

If the cancelling event arrived after the ramp on B had started but before the assignment
to the digital B it is possible to see the glitch propagate back into the analog domain
without an event appearing on B.

5 ns 6 ns

A

B

4 ns

analog

digital reported

analog

digital reported

signal

signal

digital real-time

digital real-time
9-10 Verilog-AMS Language Reference Manual Version 2.0

Mixed-signal simulation cycle Scheduling semantics
The synchronization algorithm can exploit characteristics of the analog and digital
kernels described in the next section.

A sample run is shown in Figure 9-4.

1. The Analog engine begins transient analysis and sends state information to the
Digital engine (1, 2).

2. The Digital engine begins to run using its own time steps (3); however, if there
is no D2A event, the Analog engine is not notified and the digital engine
continues to simulate to until it can not advance its time without surpassing the
time of the analog solution (4). Control of the simulation is then returned to the
analog engine (5). This process is repeated (7, 8, 9, 10, and 11).

3. If the Digital engine produces a D2A event (12), control of the simulation is
returned to the Analog engine (13). The analog engine returns to the point at
which the digital engine last surrendered control (14). The Analog engine
recalculates the analog solution up to the time when the D2A event occurred (15).
The Analog engine then takes the next time step (16).

4. If the Analog engine produces an A2D event, it returns control to the Digital
engine (17), which simulates up to the time of the A2D event and then surrenders
control (18 and 19).

5. This process continues until transient analysis is complete.

Figure 9-6 Sample run

9.2.4 Assumptions about the analog and digital algorithms

1. Advance of time in a digital algorithm

A. The digital simulation has some minimum time granularity and all digital events
occur at a time which is some integer multiple of that granularity.

B. The digital simulator can always accept events for a given simulation time
provided it has not yet executed events for a later time. Once it executes events
for a given time, it can not accept events for an earlier time.

C. The digital simulator can always report the time of the most recently executed
event and the time of the next pending event.

2. Advance of time in an analog algorithm

A. The analog simulator advances time by calculating a sequence of solutions. Each
solution has an associated time which, unlike the digital time, is not constrained
to a particular minimum granularity.
Version 2.0 Verilog-AMS Language Reference Manual 9-11

Scheduling semantics Mixed-signal simulation cycle
B. The analog simulator can not tell for certain the time when the next solution
converges. Thus, it can tell the time of the most recently calculated solution, but
not the time of the next solution.

C. In general, the analog solution is a function of one or more previous solutions.
Having calculated the solution for a given time, the analog simulator can either
accept or reject that solution; it can not calculate a solution for a future time until
it has accepted the solution for the current time.

3. Analog to digital events

A. Analog to digital events are generated by conversion elements (which are analog/
digital behavioral models) when evaluated by the analog simulator.

B. Analog events (e.g., cross, initial_step, and final_step) cause an analog
solution of the time where they occur.

C. Thus, any analog to digital event is generated as the result of a particular transient
solution. This means events can stay associated with the solution which produced
them until they are passed to the digital simulator, then they can be rejected along
with the solution if it is rejected.

4. Digital to analog events shall cause an analog solution of the time where they
occur.

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15 16

17

18

19

etc.

D2A

A2D

T1 T2 T3 T4 T5 T6

ANALOG

DIGITAL
9-12 Verilog-AMS Language Reference Manual Version 2.0

Mixed-signal simulation cycle Scheduling semantics
Version 2.0 Verilog-AMS Language Reference Manual 9-13

Scheduling semantics Mixed-signal simulation cycle
9-14 Verilog-AMS Language Reference Manual Version 2.0

	Scheduling semantics
	9.1 Analog simulation cycle
	9.1.1 Nodal analysis
	9.1.2 Transient analysis
	9.1.3 Convergence

	9.2 Mixed-signal simulation cycle
	9.2.1 Circuit initialization
	9.2.2 Synchronization of Analog and Digital in Transient Analysis
	9.2.2.1 Concurrency
	9.2.2.2 Analog Macro Process Semantics
	9.2.2.3 A/D Boundary Timing

	9.2.3 The synchronization loop
	9.2.4 Assumptions about the analog and digital algorithms

