
8-4 Verilog-AMS Language Reference Manual Version 2.0

Mixed-signal Behavioral interaction

8.3 Behavioral interaction

Verilog-AMS HDL supports several types of block statements for describing behavior,
such asanalog blocks,initial blocks, andalways blocks. Typically, non-analog
behavior is described ininitial andalways blocks, assignment statements, or assign
declarations. There can be any number ofinitial andalways blocks in a particular
Verilog-AMS HDL module. However there can only be oneanalog block in that
module.

Nets and variables in the continuous domain are termedcontinuous netsandcontinuous
variables respectively. Likewise nets, regs and variables in the discrete domain are
termeddiscrete nets, discrete regs, anddiscrete variables. In Verilog-AMS HDL, the
nets and variables of one domain can be referenced in the other’s context. This is the
means for passing information between two different domains (continuous and discrete).
Read operations of nets and variables in both domains are allow from both contexts.
Write operations of nets and variables are only allowed from the context of their domain.

Verilog-AMS HDL provides ways to:

• access discrete primaries (e.g., nets, regs, or variables) from a continuous context

• access continuous primaries (e.g., flows, potentials, or variables) from a discrete
context

• detect discrete events in a continuous context

• detect continuous events in a discrete context

The specific time when an event from one domain is detected in the other domain is
subject to the synchronization algorithm described in 8.3.6 and Section 9. This algorithm
also determines when changes in nets and variables of one domain are accessible in the
other domain.

8.3.1 Accessing discrete nets and variables from a continuous context

Discrete nets and variables can be accessed from a continuous context. However,
because the data types which are supported in continuous contexts are more restricted
than those supported in discrete contexts, certain discrete types can not be accessed in a
continuous context.

Version 2.0 Verilog-AMS Language Reference Manual 8-5

Behavioral interaction Mixed-signal

Table 8-1 lists how the various discrete net/variable types can be accessed from a
continuous context.

The syntax for a Verilog-AMS HDL primary is defined in Syntax 8-1.

Syntax 8-1—Syntax for primary

Examples:

The following example accesses the discrete primaryin from a continuous context.

Table 8-1—Discrete net/reg/variable access from a continuous context

Discrete net/reg/
variable type

Examples Equivalent
continuous

variable type

Access to this discrete net/reg/variable
type from a continuous context

real real r;

real
rm[0:8];

real Discrete reals are accessed in the continuous context
as real numbers.

integer integer i;

integer
im[0:4];

integer Discrete integers are accessed in continuous context
as integer numbers.

bit reg r1;

wire w1;

reg [0:9]
r[0:7];

reg r[0:66];

reg [0:34]
rb;

integer Discrete bit and bit groupings (buses and part
selects) are accessed in the continuous context as
integer numbers.
The sign bit (bit 31) of the integer is always set to
zero (0). The lowest bit of the bit grouping is
mapped to the0th bit of the integer. The next bit
of the bus is mapped to the1st bit of the integer
and so on.
If the bus width is less than 31 bits, the higher bits of
the integer are set to zero (0).
Access of discrete bit groupings with greater than 31
bits is illegal.

primary ::=
 number
| identifier
| identifier[expression]
| identifier[msb_constant_expression: lsb_constant_expression]
| concatenation
| analog_function_call
| string
| access_function

8-6 Verilog-AMS Language Reference Manual Version 2.0

Mixed-signal Behavioral interaction

module onebit_dac (in, out);
input in;
inout out;
wire in;
electrical out;

analog
if (in == 0)

V(out) <+ 0.0;
else

V(out) <+ 3.0;

endmodule

Issue 24,58: Section 8.3.2 cleanup. The current LRM is ambigous in
accessing X & Z bits in the analog context. (Sri)

8.3.2 Accessing X and Z bits of a discrete net in a continuous context

Discrete nets can contain bits which are set toX (unknown) or Z (high impedance).
Verilog-AMS HDL supportscomparisons which take account ofX andZ bits in the
continuouscontext.Thespecificfeaturesare: accessing of 4-state logic values within the
analog context. The x and z states must be translated to equivalent analog real or integer
values before being used within the analog context. The language supports the following
specific features which provide a mechanism to perform this conversion.

• the case equality operator (===)

• the case inequality operator (!==)

• thecase, casex, andcasez statements

• binary, octal and hexadecimal numeric constants which can containX andZ as
digits.

The case equality and case inequality operators have the same precedence as the equality
operator.

Example:

module a2d(dnet, anet);
input dnet;
wire dnet;
logic dnet;
output anet;
electrical out;

analog begin

Version 2.0 Verilog-AMS Language Reference Manual 8-7

Behavioral interaction Mixed-signal

case (dnet)
1’b1:var = 5;
1’bx:var = var;// hold value
1’b0:var = 0;
1’bz:var = 2.5; // high impedence - float value

endcase
V(anet) <+ var;

end
endmodule

Note: case statement may be replaced with if-else-if statement using the case equality
operators to perform the 4-state logic value comparisons.

Accessing digital net and digital binary constant operands are supported within analog
context expressions. It is an error these operands returns ’x’ or ’z’ bits values when
solved. It will be an error if the value of the digital variable being accessed in the analog
context goes either to ’x’ or ’z’.

Example:

moduleconverter(dnet,anet);
reg dnet;
electrical anet;
integer var1;
real var2;

initial begin
dnet = 1’b1;
#50 dnet = 1’bz;
$finish;

end

analog begin
var1 = 1’bx;// error
var2 = 1’bz;// error
var1 = 1 + dnet;// error after #50

if (dnet == 1’bx)// error
$display(“Error to access x bit in continous context”);

V(anet) <+ 1’bz;// error
V(anet) <+ 1’bz;// error after #50

end
endmodule

All operators, functions, and statements are allowed in continuous contexts, except for
case-equality,case-inequality,case , casex , andcasez , whichshallreportanerrorif the
expressions they operate on containX or Z bits.

The syntax for the features which supportX andZ comparisons in a continuous context
is defined in 2.5 and 6.5. Support forX andZ is limited in the analog blocks as defined
above.

Note: ConsultIEEE 1364-1995 Verilog HDL for a description of the semantics of these operators.

8-8 Verilog-AMS Language Reference Manual Version 2.0

Mixed-signal Behavioral interaction

8.3.3 Accessing continuous nets and variables from a discrete context

All continuous nets can be probed from a discrete context using access functions. All
probes which are legal in a continuous context of a module are also legal in the discrete
context of a module. Therefore for Verilog-AMS HDL, the definition ofIEEE 1364-
1995 Verilog HDL’s primary is shown in Syntax 8-2.

Syntax 8-2—Syntax for digital_primary

Examples:

The following example accesses the continuous netV(in) from the discrete context is.

module sampler (in, clk, out);
inout in;
input clk;
output out;
electrical in;
wire clk;
reg out;

always @(posedge clk)
out = V(in);

endmodule

Continuous variables can be accessed for reading from any discrete context in the same
module where these variables are declared. Because the discrete domain can fully
represent all continuous types, a continuous variable is fully visible when it is read in a
discrete context.

8.3.4 Detecting discrete events in a continuous context

Discrete events can be detected in a Verilog-AMS HDL continuous context. The
arguments to discrete events in continuous contexts are in the discrete context. A discrete
event in a continuous context is non-blocking like the other event types allowed in
continuous contexts. The syntax for events in a continuous context is shown in
Syntax 8-3.

digital_primary ::=
digital_number

| identifier
| identifier[digital_expression]
| identifier[digital_msb_constant_expression : digital_lsb_constant_expression]
| digital_concatenation
| digital_multiple_concatenation
| digital_function_call
| (digital_mintypmax_expression)
| access_function_reference

Version 2.0 Verilog-AMS Language Reference Manual 8-9

Behavioral interaction Mixed-signal

Syntax 8-3—Syntax for event control statement

Examples:

The following example shows a discrete event being detected in an analog block.

module sampler3 (in, clk1, clk2, out);
input in, clk1, clk2;
output out;
wire clk1;
electrical in, clk2, out;

analog begin
@(posedge clk1 or cross(V(clk2), 1))

vout = V(in);
V(out) <+ vout;

end

endmodule

8.3.5 Detecting continuous events in a discrete context

In Verilog-AMS HDL, monitored continuous events can be detected in a discrete
context. The arguments to these events are in the continuous context. A continuous event
in a discrete context is blocking like other discrete events. For Verilog-AMS HDL, the
definition of IEEE 1364-1995 Verilog HDL’s event_expression is shown in Syntax 8-4.

event_control_statement ::=
event_control statement_or_null

event_control ::=
@ event_identifier

| @ (event_expression)

event_expression ::=
 global_event
| event_function
| digital_expression
| event_identifier
| posedgedigital_expression
| negedgedigital_expression
| event_expressionor event_expression

8-10 Verilog-AMS Language Reference Manual Version 2.0

Mixed-signal Behavioral interaction

Syntax 8-4—Syntax for digital event expression

Examples:

The following example detects a continuous event in an always block.

module sampler2 (in, clk, out);
input in, clk;
output out;
wire in;
reg out;
electrical clk;

always @(cross(V(clk) - 2.5, 1))
out = in;

endmodule

8.3.6 Concurrency

Verilog-AMS HDL provides synchronization between the continuous and discrete
domains. Simulation in the discrete domain proceeds in integer multiples of the digital
tick. This is the smallest value of the second argument of the`timescale directive (see
section 16.7 inIEEE 1364-1995 Verilog HDL). Thus, values calculated in the digital
domain shall be constant between digital ticks and can only change at digital ticks.

Simulation in the continuous domain appears to proceed continuously. Thus, there is no
time granularity below which continuous values can be guaranteed to be constant.

The rest of this section describes synchronization semantics for each of the four types of
mixed-signal behavioral interaction. Any synchronization method can be employed,
provided the semantics preserved. A typical synchronization algorithm is described in
9.2.

8.3.6.1 Analog event appearing in a digital event control

In this case, an analog event, such ascross or timer , appears in an@() statement in the
digital context.

digital_event_expression ::=
digital_expression

| event_identifier
| posedgedigital_expression
| negedgedigital_expression
| event_function
| digital_event_expressionor digital_event_expression

Version 2.0 Verilog-AMS Language Reference Manual 8-11

Behavioral interaction Mixed-signal

Examples:

always begin
@(cross(V(x) - 5.5,1))
n = 1;

end

When it is determined the event has occurred in the analog domain, the statements under
the event control shall be scheduled in the digital domain at the largest digital time tick
smaller than or equal to the time of the analog event. This event shall not be schedule in
the digital domain earlier than the current digital event (see 9.2.3).

8.3.6.2 Digital event appearing in an analog event control

Examples:

analog begin
@(posedge n)
r = 3.14

end

In this case, a digital event, such asposedge or negedge , appears in an@() statement in
the analog context.

When it is determined the event has occurred in the digital domain, the statements under
the event control shall be executed in the analog domain at the time corresponding to a
real promotion of the digital time (e.g.,27 ns to 27.0e-9).

8.3.6.3 Analog primary appearing in a digital expression

In this case, an analog primary (variable, potential, or flow) whose value is calculated in
the continuous domain appears in a expression which is in the digital context; thus the
analog primary is evaluated in the digital domain.

The expression shall be evaluated using the analog value calculated for the time
corresponding to a real promotion of the digital time at which the expression is
evaluated.

8.3.6.4 Digital primary appearing in an analog expression

In this case, a digital primary (reg, wire, integer, etc.) whose value is calculated in the
discrete domain appears in an expression which is in the analog context; thus the analog
primary is evaluated in the continuous domain.

The expression shall be evaluated using the digital value calculated for the greatest
digital time tick which is less than or equal to the analog time when the expression is
evaluated.

