Analog Operators Expressions
4.4.4 Time integral operator
| The idt operator computes the time-integral of its argument, as shown in Table 4-13.
Table 4-13—Time integral
Operator Comments
[
idt(expr) Returns J-l x(T)d’C + € , where x(1) is the value of expr attime T, ¢, is
0
the start time of the simulation, ¢ is the current time, and ¢ is the initial
starting point as determined by the simulator and is generally the DC value (the
value that makes expr equal to zero)
t
idt(expr,ic) Returns J-t x(r) dT + ¢, where in this case ¢ is the value of ic at to -
0

idt(expric,assert)

t . L .
Returns J.t X(T)dT + ¢ ,where ¢ is the value of ic at ¢ « » Which is the time

when assert was last nonzero or ty if assert was never nonzero.

idt(expric,assert,abstol)

Same as above, except the absolute tolerance used to control the error in the
numerical integration process is specified explicitly with abstol.

idt(expr,ic,assert,nature)

Same as above, except the absolute tolerance used to control the error in the
numerical integration process is take from the specified nature.

When specified with initial conditions, idt() returns the value of the initial condition in
DC or IC analyses. If assert is specified and nonzero, idt() will return the value of ic at
the time when assert was last nonzero. If assert was never nonzero, idt() will return the
DC /IC (time zero) value of ic. Without initial conditions, idt() multiplies its argument
by infinity in DC analysis. Hence, without initial conditions, it can only be used in a

system with feedback which forces its argument to zero (0).

The optional parameter abstol or nature is used to derive an absolute tolerance if needed.
Whether an absolute tolerance is needed depends on the context where idt() is used. (See
Section 4.4.2 for more information.) The absolute tolerance applies to the input of the idt
operator and is the largest signal level that is considered negligible.

4.4.5 Circular integrator operator

The idtmod operator, also called the circular integrator, converts an expression argument
into its indefinitely integrated form similar to the idt operator, as shown in Table 4-14.

Table 4-14—Circular integrator

Operator

Comments

idtmod(expr)

| LRM?2.3 draft 01/09/06

value (the value that makes expr equal to zero)

Verilog-AMS Language Reference Manual

] . .
Returns L X(T)dT + ¢ , where x(t) is the value of expr at time T,
0
t, 1s the start time of the simulation, ¢ is the current time,and ¢ is the

initial starting point as determined by the simulator and is generally the DC

67

Expressions

Analog Operators

Table 4-14—Circular integrator

Operator Comments
3 . . .
idtmod(expr,ic) Returns jt x(T)d‘C + ¢, where in this case ¢ is the value of ic at ¢, .
0
idtmod(expr,ic,modulus) Returns &, where 0 < k <modulus and k is

_[f)x(r)dr +c = nXmodulus +k ,n=..-3-2-1,0,123....

Where ¢ is the value of ic at ¢, .

idtmod(expr,ic,modulus,offset) Returns &, where of fset <k <offset + modulus and kis

t . ,
on(r)dr +ic = nXmodulus + k Where ¢ isthe value of

ic at ty -

idtmod(expr,ic,modulus, offset, abstol) Same as above, except the absolute tolerance used to control the error in the

numerical integration process is specified explicitly with abstol.

idtmod(expr,ic,modulus,offset, nature) Same as above, except the absolute tolerance used to control the error in the

numerical integration process is take from the specified nature.

68

The initial condition is optional. If the initial condition is not specified, it defaults to zero
(0). Regardless, the initial condition shall force the DC solution to the system.

Ifidtmod() is used in a system with feedback configuration which forces expr to zero (0),
the initial condition can be omitted without any unexpected behavior during simulation.
For example, an operational amplifier alone needs an initial condition, but the same

amplifier with the right external feedback circuitry does not need a forced DC solution.

The output of the idtmod() function shall remain in the range

offset <= idtmod < offset+modulus

The modulus shall be an expression which evaluates to a positive value. If the modulus
is not specified, then idtmod() shall behave like idt() and not limit the output of the
integrator.

The default for offset shall be zero (0).
The following relationship between idt() and idtmod() shall hold at all times.
Examples:

If

idt (expr, ic) ;

<
1l

idtmod (expr, ic, modulus, offset) ;

N
1l

then

y =n * modulus + z ;// n is an integer

where

Verilog-AMS Language Reference Manual LRM?2.3 draft 01/09/06

Analog Operators Expressions

offset £ z < modulus + offset

In this example, the circular integrator is useful in cases where the integral can get very
large, such as a VCO. In a VCO we are only interested in the output values in the range
[0,27], e.g.,

phase = idtmod (fc + gain*V(in), 0, 1, 0);
V(OUT) <+ sin(2*‘M_PI*phase) ;

Here, the circular integrator returns a value in the range [0,1].

4.4.6 Derivative operator

ddx() provides access to symbolically-computed partial derivatives of expressions in the
analog block. The analog simulator computes symbolic derivatives of expressions used
in contribution statements in order to use Newton-Raphson iteration to solve the system
of equations. In many cases in compact modeling, the values of these derivatives are

| useful quantities for design, such as the trans conductance of a transistor (gm) or the
capacitance of a nonlinear charge-storage element such as a varactor. The syntax for this
operator is shown in Syntax 4-2.

ddx_call ::=
ddx (analog_expression, branch_probe_function_call)

| Syntax 4-2—Syntax for the derivative operator

The operator returns the partial derivative of its first argument with respect to the
unknown indicated by the second argument, holding all other unknowns fixed and
evaluated at the current operating point. The second argument shall be the potential of a
scalar net or port or the flow through a branch, because these are the unknown variables
in the system of equations for the analog solver. For the modified nodal analysis used in
most SPICE-like simulators, these unknowns are the node voltages and certain branch
currents.

If the expression does not depend explicitly on the unknown, then ddx() returns zero (0).
Care must be taken when using implicit equations or indirect assignments, for which the
simulator may create internal unknowns; derivatives with respect to these internal
unknowns cannot be accessed with ddx().

Unlike the ddt() operator, no tolerance is required because the partial derivative is
computed symbolically and evaluated at the current operating point.

Examples:

This first example uses ddx() to obtain the conductance of the diode. The variable gdio
is declared as an output variable (see Section 3.1.1) so that its value is available for
inspection by the designer.

| LRM?2.3 draft 01/09/06 Verilog-AMS Language Reference Manual 69

