

February, 16, 2010 Page 1 of 7

Copyright © 2010 Mentor Graphics Corporation

Trademarks that appear in Mentor Graphics product publications that are not owned by Mentor Graphics are
trademarks of their respective owners.

 Mentor Graphics AppNote

A P P N O T E S SM

ADMS_Signals: Nets of User-defined Type in Standard SystemVerilog
for Event-driven Analog Modeling

By: Kenneth Bakalar
Last Modified: February 16, 2010

A common requirement in digital-dominated mixed-signal verification is the need for purely event-driven (“real
number”, or RN) models that imitate Spice or AMS blocks at low fidelity but high speed. Resolved record
types are commonly used for this modeling style in VHDL-based flows. Unfortunately, SystemVerilog defines
only one resolved net type, the logic type. A second, non-standard net type, wreal, has been borrowed from
Verilog-AMS and, with proprietary extensions, added to some implementations of SystemVerilog. wreal is a
single real value with a small, fixed set of resolution functions. It solves only a subset of the problems
commonly encountered in event-driven analog modeling.

In contrast, the ADMS_signals approach is completely general and extensible while still conforming strictly to
the IEEE SystemVerilog standard. The stored data type can be any type that is legal in SystemVerilog,
including arrays and structs (nested to arbitrary depth) and even class instances (objects). The resolution
function is a user-supplied SystemVerilog function. Different networks in the same design hierarchy may be
given distinct stored type and resolution function.

Introduction to ADMS_signals

The package ADMS_signals provides two classes: SignalBase and Driver.

The user first declares a subclass of SignalBase customized for a particular stored type and resolution
function. For example, here is the declaration of a signal with real values that uses an averaging
resolution function:

 import ADMS_signals::*;
typedef real Stored;
class aReal extends SignalBase #(Stored);

 function new(Stored initialValue = 0.0);
 val = initialValue;
 endfunction
 function Stored resolve(Stored arg[]);
 real val = 0.0;
 foreach(arg[i]) val += arg[i];
 val = val / arg.size();
 return val;
 endfunction

February, 16, 2010 Page 2 of 7

 function bit equal(Stored oldValue, Stored newValue);
 equal = (oldValue == newValue);
 endfunction;
 endclass

The portions in black are common to all signals. The portions in red are customized for this particular
stored type and resolution function.

The import statement makes the contents of package ADMS_signals visible. The name of the new type is
aReal. The value of a signal is stored in the variable val. A new aReal instance gets the initial value 0.0
by default. The body of the resolution function resolve computes the average of an array of aReals. The
function equal is used to test whether the value of an aReal driver has changed. If it has, resolve is called
with an array containing all of the values of the drivers of the signal.

The user can declare any number of signals of type aReal in his model:

aReal larry= new (1234), moe = new (0.0), curly = new ;

The numbers in parenthesis are the initial values of the signals. curly gets the default initial value 0.0 from
the new function in the declaration of aReal.

The user must separately declare drivers for the signals:

Driver #(real) larry1= new(larry), larry2 = new(larry);
Driver #(real) moe1= new(moe), moe2 = new(moe);

Drivers of a signal may be driven with calls to the drive method from always and initial blocks, tasks and
functions. Here are some sequential statements in an initial block that drive a signal, and an instance of a
module with aReal ports:

initial begin
 #10 larry1.drive(12);
 #5 larry2.drive(6);
 …
 end
 subc(larry, moe);

The initial block waits for 10 time units to elapse and then drives larry1's signal (larry) with 12. A driver is
not activated until the first time it is driven. Before that, it does not contribute anything.
If this is the first time larry has been driven, after 10 time units the value of larry will change from 1234 to
12. Then 5 units later at time 15, the second statement activates driver larry2 and causes the value of
larry to change to (12+6) / 2 = 9.

An always block can be made sensitive to changes in the value of a signal, and the value of a signal can
be read at any time:

always @(larry.changed) begin
$display("New value for 'larry' detected: %f", larry.value);
…

end;

Signals can be passed by reference through ports. A module may have ports of the new signal type, and
may declare additional, independent drivers for the signals:

module subc (ref aReal a,b);
 Driver #(real) b1 = new(b);

February, 16, 2010 Page 3 of 7

 always @(a.changed) begin
 #3 b1.drive(a1.val);
 end;
endmodule;

Every signal has an associated event named changed, which is triggered each time the value of the
signal changes. The instance of module subc above will drive the new value of larry on to moe 3 time
units after larry changes. In the example, moe changes at times 10+3 and again at time 15+3.

Some additional details:

 Neither a driver nor a signal can be the target of a continuous assignment statement
 A signal cannot be driven directly. Only drivers have the drive method.
 It is possible to change the value of a driver or signal directly, but it probably won’t have the effect

you expect.
o If you change the value of a signal (e.g., larry.val = 345;), the change will persist

until the next time the resolution function is called. That will happen when some driver of
larry is driven with a new value.

o If you change the value of a driver (e.g. moe1.driven_value = 123;) then the new
value will not take effect until the next time the resolution function is called. That will
happen when some driver of moe is driven with a new value. If that driver is moe1 itself,
then the assignment to driven_value will be overwritten and will have no consequential
effect.

A realistic case: AvgWreal

The package AvgReal is a more realistic example using ADMS_signals. The package wreal_signals
defines a stored type Realxz, which is a struct with two fields: a real value, and a strength. The strength is
one of the following literals, varying left to right from strongest to weakest: unknown, supply, strong, pull,
weak, highz. Realxz is used in the declaration of a SignalBase subclass AvgWreal. The resolution
function finds the subset of driver with greatest strength and returns their average. Other drivers are
ignored.

If all drivers drive with a single strength — strength strong, for example — the value of an AvgWreal
signal is the average of all its drivers. You can disable a particular driver by driving it with strength highz
(equivalent to a disconnect or Z) and cause the resolved value to indicate a conflict by driving with
unknown strength (analogous to the X logic strength).

A subclass of Driver called Sdriver illustrates how to make this special case easier to use. Sdriver
includes three methods: drive, inherited form the base class, which takes a Realxz argument, and sdrive,
zdrive and xdrive which take a single real argument with the desired value. sdrive always drives with
strength strong; zdrive drives with strength highz and xdrive drives with strength unknown.

package wreal_signals;
 import adms_signals::*;
 export ADMS_signals::Driver;
 typedef enum {unknown, supply, strong, pull, weak, highz} StrengthType;
 typedef struct {real value; StrengthType strength;} Realxz;

 class AvgWreal extends SignalBase #(Realxz);
 function new(Realxz initialValue = '{0.0, unknown});
 val = initialValue;
 endfunction
 function Realxz resolve(Realxz arg[]);

February, 16, 2010 Page 4 of 7

 real values[StrengthType] = '{default: 0.0};
 integer cnt[StrengthType] = '{default: 0};
 foreach (arg[i]) begin
 values[arg[i].strength] += arg[i].value;
 cnt[arg[i].strength] += 1;
 end
 foreach (cnt[i])
 if (cnt[i] > 0) return '{values[i]/cnt[i], i};
 endfunction
 function bit equal(Realxz oldValue, Realxz newValue);
 equal = (oldValue == newValue);
 endfunction
 endclass

 class Sdriver extends Driver #(Realxz);
 function new(SignalBase #(Realxz) owner = null);
 super.new(owner);
 endfunction
 task sdrive (real arg);
 super.drive('{arg, strong});
 endtask;
 task zdrive (real arg = 0.0);
 super.drive('{arg, highz});
 endtask
 task xdrive (real arg = 0.0);
 super.drive('{arg, unknown});
 endtask
endclass
endpackage : wreal_signals;;

An Example That Uses AvgWreal

Here is a test case for AvgWreal and the output it generates. The example illustrates a number of
different coding styles a user might employ in a real design:

module top1;
 import wreal_signals::*;
 Realxz init = '{0.0, weak};
 Realxz XX ='{0.0, unknown};
 Realxz ZZ ='{0.0, highz};

 AvgWreal a = new(init);
 Driver #(Realxz) a1 = new(a), a2 = new(a);
 Driver #(Realxz) a3 = new(a), a4 = new(a);
 Sdriver a21=new(a), a22=new(a);
 initial begin
 #10 a1.drive('{10.0, strong});
 #10 a2.drive('{20, strong});
 #10 a21.sdrive(30);
 #10 a22.sdrive(20);
 #10 a21.zdrive();
 #10 a3.drive('{30, supply});
 #10 a4.drive('{60, supply});
 #10 a1.drive(XX);
 #10 a1.drive(ZZ);

February, 16, 2010 Page 5 of 7

 end
always @a.changed $display ("'a' changed at %t to %f %s",
 $time, a.val.value, a.val.strength.name());

endmodule

This is the output that top1 generates during simulation:

'a' changed at 10 to 10.000000 strong
'a' changed at 20 to 15.000000 strong
'a' changed at 30 to 20.000000 strong
'a' changed at 50 to 16.666667 strong
'a' changed at 60 to 30.000000 supply
'a' changed at 70 to 45.000000 supply
'a' changed at 80 to 0.000000 unknown
'a' changed at 90 to 45.000000 supply

Definition of the Package ADMS_signals

The package ADMS_signals defines two classes, each parameterized by the type of the data to be stored
in the signals and drivers of the instantiated classes.

The constructor of class Driver stores a pointer to the signal it will drive, then pushes itself on to the
drivers list of that signal. The method drive stores a new value for the driver and calls the method
ResolveDrivers of the owner signal if the new value is not identical to the old. The flag active is zero until
the first time drive is called for a newly minted driver.

SignalBase declares the list drivers of all of the drivers of the signal. The method resolveDrivers
assembles the value fields of all of the drivers into an array and passes it to the function resolve, which
must be overridden in the subclass. Drivers that have never been driven, as indicated by the state of the
active bit, are ignored by resolveDrivers.

The event changed will be triggered if the new resolved value is different from the current stored value.
The definition of “different” is contained the function equal which, with resolve, must be declared in the
user-defined subclass that defines a new kind of resolved signal.

package ADMS_signals;
 typedef class SignalBase;

 class Driver #(type BaseType = bit);
 SignalBase #(BaseType) ownerSignal;
 BaseType driven_value; // input to resolution
 protected bit active;
 function new(SignalBase #(BaseType) owner = null);
 ownerSignal = owner;
 active = 0;
 owner.drivers.push_back(this);
 endfunction
 task drive(BaseType driving_value);
 if (!active | driven_value != driving_value) begin
 active = 1;
 driven_value = driving_value;
 ownerSignal.resolveDrivers();
 end
 endtask
 endclass : Driver

February, 16, 2010 Page 6 of 7

 virtual class SignalBase #(type BaseType = bit);
 Driver #(BaseType) drivers[$];
 BaseType val;
 event changed;
 pure virtual function BaseType resolve(BaseType arg[]);
 pure virtual function bit equal(BaseType oldValue, newValue);
 protected task automatic resolveDrivers();
 BaseType dvals[$];
 BaseType new_value;
 foreach (drivers[i])
 if (drivers[i].active)
 dvals.push_back(drivers[i].driven_value);
 new_value = resolve(dvals);
 if (!equal(new_value,val)) ->changed;
 val = new_value;
 endtask
 endclass : SignalBase
endpackage : ADMS_signals;

Nets of User-defined Type in Standard SystemVerilog for Event-driven Analog Modeling

February, 16, 2010 Page 7 of 7

Copyright © 2010 Mentor Graphics Corporation

Trademarks that appear in Mentor Graphics product publications that are not owned by Mentor Graphics are trademarks
of their respective owners.

