
Overloading Modules, Paramsets,

and alternative methods of implementing

Spice .model cards in Verilog-AMS

1. Introduction

This document will compare three proposed methods of obtaining functionality of SPICE .model

cards and some important extensions to that functionality. The functionality is best described in

the document, “paramset: A Verilog-A/MS Implementation of SPICE .model Statements,” linked

on the page http://www.eda.org/verilog-ams/htmlpages/compact.html

The three methods are as follows:

1. Paramsets: this is a completely new construct in Verilog-AMS. The proposed syntax can be

found in Section 7.3 of the Verilog-AMS LRM 2.2 draft e, which is also linked at the above

site. The basic concepts are: Paramsets are collections of parameter values, specifically

intended for compact transistor models, which have hundreds of parameters that are specific

to a type of device (eg, an NMOS transistor) and shared amongst many (hundreds or thou-

sands) instances that may have different instance-specific parameters (such as length and

width). Paramsets contain no behavioral code but are associated with a module that contains

the behavioral code. They can be overloaded, and there is an algorithm for picking one for a

particular instance.

2. Overloading modules: this consists mainly of allowing several modules to have the same iden-

tifier, specifying a resolution method for choosing between them, and some convenience fea-

tures.

3. Using generate and configurations: this method uses only existing constructs in 1364-2001

Verilog (and SystemVerilog -- though not Verilog-AMS).

Verilog-AMS already provides methods for instantiating SPICE primitives in Verilog netlists, but

does not specify the resolution mechanism for primitives that require model cards. The resolution

is assumed to involve some sort of SPICE library file. The compact modeling extensions should

provide methods to write this library in the Verilog language.

2. Motivating Example

In a typical SPICE netlist, one has instances of transistors for which the designer specifies a model

name, a length, and a width. The SPICE library contains the definition of the model, a .model state-

ment, which can contain dozens of parameter values for a BSIM3 transistor model. The SPICE

netlist would have this line:

m1 d g s b nmos l=0.18u w=10u
and the SPICE library would have several lines of the following form:

.model nmos (level=3 uo=600 tox=1e-7 vto=0.5
+ lmin=0.18u lmax=0.25u wmin=1u wmax=3u
+ cgbo=1e-15 cgdo=3e-15 cgso=3e-15)

How should this be translated to a Verilog-AMS netlist? The designer should not be responsible

for setting all the values of the process parameters, so the instance line should be a simple transla-

tion of the instance line of the SPICE netlist:

nmos #(.l(0.18u), .w(10u)) m1(.d(d), .g(g), .s(s), .b(b));
The identifier nmos will be resolved to something in an associated library file. This library file

would look different under the three potential methods described above.

2.1 Example Using Paramsets
Using paramsets, the library file would have statements like the following:

paramset nmos mos_level_3;
 parameter real l = 0.18u from [0.18u:0.25u);
 parameter real w = 1u from [1u:3u];
 .uo = 600; .tox=1e-7; .vto=0.5;
 .cgbo=1e-15; .cgdo=3e-15; .cgso=3e-15;
endparamset

where mos_level_3 refers to a module that contains the behavioral equations for a MOSFET.

The ports specified on the instance are connected to the ports of mos_level_3. No hierarchy is

introduced, and the output variables of the module are directly available from the instance. (Out-

put variables are variables marked with a description attribute so that the simulator will print their

values for an operating point calculation; Gm of a transistor is a common example of a variable

computed by the module that is useful to the designer.) One paramset exists for each model state-

ment in the SPICE library, and the algorithm for choosing a paramset from all those with the same

name includes a rule that the parameters (l and w) must fit the specified ranges.

2.2 Example Using Overloaded Modules
Using overloaded modules, the library file would have statements like this:

module nmos interface const mos_level_3;
 parameter real l = 0.18u from [0.18u:0.25u);
 parameter real w = 1u from [1u:3u];
 mos_level_3 #(.*) M(.*);
 defparam M.uo = 600, M.tox=1e-7, M.vto=0.5,
 M.cgbo=1e-15, M.cgdo=3e-15, M.cgso=3e-15;
endmodule

The specification interface is used to denote that the module gets its parameters, ports, and

output variables from the module mos_level_3; the specification const denotes that the

parameters of mos_level_3 cannot be overridden by instances of nmos, except for the param-

eters l and w that are explicitly mentioned in the definition of nmos. The syntax .* is already

used in SystemVerilog for connecting ports of a module to nets of the instantiating module with

the same name (for the nmos’ ports, .* means .d(d), .g(g), .s(s), .b(b)). The syntax is applied here

to pass the parameters as well (.* here means .l(l), .w(w)). One module exists for each model

statement in the SPICE library, and the algorithm for choosing a module is the same as for param-

sets.

2.3 Example Using Existing Syntax
Using existing syntax, the library file would have one long module definition with a generate

statement:

module nmos (inout d, inout g, inout s, inout b);
 parameter real l = 0.18u;
 parameter real w = 1u;
 generate
 if (l>=0.18u && l<=0.25u && w>=1u && w<=3u) begin
 mos_level_3 #(.*) M(.*);
 defparam M.uo = 600, M.tox=1e-7,M.vto=0.5,
 M.cgbo=1e-15, M.cgdo=3e-15, M.cgso=3e-15;
 end else if (...) begin
 ...
 end
 endgenerate
endmodule

This module will be called the master module in the remainder of this document. The output vari-

ables must be declared explicitly. The algorithm for choosing is explicit in the if statement of the

generate block. Both the overloaded module approach and the generate approach make use of the

defparam statement, which SystemVerilog proposes to deprecate. The alternative is to specify the

parameters on the instantiation

 mos_level_3 #(.uo(600), .tox(1e-7), .vto(0.5), .cgbo(1e-15),
 .cgdo(3e-15), .cgso(3e-15), .*) M(.*);

3. Corner Models

In addition to bins, another common feature in SPICE libraries is corner models: several of the

parameters of devices are varied from their nominal or typical values, corresponding to variations

in the manufacturing process. Usually, two sets of variations are considered: one that makes digi-

tal gates run faster than nominal, and one that makes them run slower. The circuit is checked for

both conditions to make sure it still performs correctly (no timing violations, etc.).

This feature can be implemented quite efficiently using paramsets because of the ability to nest

paramsets. Suppose for a particular process, the fast/slow/typical corners were achieved by only

varying the threshold voltage (vto).

paramset nmos_base mos_level_3;
 parameter real l = 0.18u from [0.18u:0.25u);
 parameter real w = 1u from [1u:3u];
 parameter real vto = 0.5;
 .uo = 600; .tox=1e-7; .vto=vto;
 .cgbo=1e-15; .cgdo=3e-15; .cgso=3e-15;
endparamset
paramset nmos nmos_base; // typical nmos
 parameter real l = 0.18u from [0.18u:0.25u);
 parameter real w = 1u from [1u:3u];
 localparam string corner = design.corner from
 {"tt","ts","tf"};
 .l=l; .w=w; .vto=0.5;
endparamset

paramset nmos nmos_base; // fast nmos
 parameter real l = 0.18u from [0.18u:0.25u);
 parameter real w = 1u from [1u:3u];
 localparam string corner = design.corner from
 {"ft", "fs", "ff"};
 .l=l; .w=w; .vto=0.4;
endparamset
paramset nmos nmos_base; // slow nmos
 parameter real l = 0.18u from [0.18u:0.25u);
 parameter real w = 1u from [1u:3u];
 localparam string corner = design.corner from
 {"st", "ss", "sf"};
 .l=l; .w=w; .vto=0.6;
endparamset

Here, we assume that the corner is set by a parameter in a top-level module (in SPICE , the corner

is set by the .lib command). The two characters specify whether the nmos and pmos devices,

respectively, are slow, typical, or fast (“sf” means slow nmos, fast pmos). This approach is partic-

ularly efficient because the values of parameters that do not vary across corners are stored only

once, in the base paramset.

The approach could be replicated using overloaded modules; however, it would require adding a

second layer of hierarchy.

Implementation of this feature using existing SystemVerilog syntax could be done with a more

complicated generate structure, but would more likely be handled with configurations, which are

already present in 1364-2001 Verilog; one could bind the top-level design to use a specific library.

4. Drawbacks of the Generate Approach

There are several drawbacks to the generate approach. The two main problems are the inefficiency

related to storing of instance-specific parameters and the inflexibility of the master module.

4.1 Memory Inefficiency of the Generate Approach
Consider the case of two sets of models, one for use before a layout has been generated, and one

for use after. The pre-layout models would have only two parameters: length and width, and the

simulator would store these values for each instance. The post-layout models, however, could

have many additional parameters: area and perimeter of the drain and source regions (AD, PD,

AS, PS) and the diffusion size for hydrostatic stress (SA, SB in the BSIM4 model). Thus, a post-

layout model could contain an additional six parameters that the simulator would need to store for

each instance.

(Slightly more explanation is required here: the pre-layout models will in fact have non-zero val-

ues for AD, PD, AS, PS, and these values will be computed using the device (gate) width. Since

these “model parameters” depend on an instance parameter, one might think that the simulator

must store values for them for each instance even in the pre-layout case. However, since comput-

ing them requires very few operations relative to the number of operations in the BSIM4 model

code, it might actually be more efficient to recompute the values rather than storing the extra four

double-precision numbers for each instance in a million-transistor design. The stress parameters

are not dependent on the gate length and width, so pre-layout models never need to store values

for them per instance.)

If one uses the generate approach, all eight parameters would need to be parameters of the master

module, and the simulator would need to remember values for each of them for each instance. For

a pre-layout simulation, this would result in a quadrupling of memory requirements. The paramset

approach would map the pre-layout netlist instances to the pre-layout models (by means of the

paramset resolution algorithm that specifies selection of the paramset with the fewest un-overrid-

den parameters).

4.2 Inflexibility of the Generate Approach
Now consider the case where a designer wants to generate a specific model to be used in special

cases, for which he will specify an extra parameter. Using paramsets, he creates the following:

paramset nmos mos_level_3;
 parameter real l = 0.18u from [0.18u:0.25u);
 parameter real w = 1u from [1u:3u];
 parameter integer special = 0 from [1:1];
 .uo = 600; .tox=1e-7; .vto=vto;
 .cgbo=1e-15; .cgdo=2e-15; .cgso=4e-15;
endparamset

Since the default value for the parameter special is zero, this paramset will not be chosen unless

the designer specifies an override of 1. (In this case, the overlap capacitances have been modified

to decrease the drain capacitance.) The designer can place this paramset in his design, and he does

not require write access to the library files, which are typically stored in a read-only location (and

may possibly be encrypted). To obtain this special model using generates, one would need to edit

the master module, possibly by copying it to the user’s directory (which is hazardous: if the

library files are updated on the system, the user will not get the update automatically).

4.3 No Existing Syntax for Output Variable Propagation
Output variables, such as Gm and Cgs, are very important for design. The compact modeling

extensions provide for a way to declare output variables in a Verilog-AMS module. However, they

will be declared for the behavioral module, and there is no existing syntax to propagate these dec-

larations to the master module. Using existing syntax, all these output variables would have to be

redeclared for the master module, and some code would be necessary to copy the value from tbe

behavioral module to the master module, such that instances of the master module would have the

values accessible.

5. Drawbacks of Overloading Modules

There are a few clear but minor drawbacks to using module overloading.

Current Verilog LRMs specify that modules must have unique names; however, it seems unlikely

that anyone is counting on an error being generated in order that the simulation be correct. (It is

possible that this error prevents designers from specifying too many include files.)

The extra level of hierarchy is unfortunate. (The corner module example requires two extra lev-

els). Although one simulator is reported to in-line macromodules, this behavior is not standard,

and we should not require a change to existing modules or simulators.

One confusion that would exist, using the interface const syntax, is that const is taken

to refer to the parameters (a user may not override those parameters of a module that were

obtained from the interface module), but not the ports (a user may specify connections to the ports

on the instance line in a manner which looks quite similar to the manner of overriding parame-

ters).

Despite the minor nature of the drawbacks to overloading modules, the SystemVerilog committee

members who responded to the e-mail poll on the topic did not seem particularly enthusiastic

about the idea. One respondent indicated that SystemVerilog was unlikely to want overloaded

modules for any purpose outside compact modeling.

6. Advantages to Paramsets

There are several advantages to the paramset method of implementing .model cards. The main

advantage is that the paramset is very close conceptually to the .model card in Spice. This means

that most of the optimizations performed in SPICE-like simulators to minimize memory require-

ments of designs where transistor models share hundreds of parameters would carry over directly.

This should dramatically accellerate the acceptance of Verilog-AMS as a compact modeling lan-

guage. The similarity to existing .model cards would also ease the transition on the part of the

model extraction community.

The other advantages of paramsets derive from the fact that they are a new construct. They can be

defined not to introduce hierarchy. They can be defined to automatically propagate output vari-

ables from the underlying module (rather than requiring extra syntax). The existence of the new

construct will only affect users who use compact models in their designs, and will also only

require changes to simulators that intend to simulate analog (or mixed-signal) modules. The mod-

ule statement (and the uniqueness of module identifiers) is unaffected for most designs.

	1. Introduction
	1. Paramsets: this is a completely new construct in Verilog-AMS. The proposed syntax can be found...
	2. Overloading modules: this consists mainly of allowing several modules to have the same identif...
	3. Using generate and configurations: this method uses only existing constructs in 1364-2001 Veri...

	2. Motivating Example
	2.1 Example Using Paramsets
	2.2 Example Using Overloaded Modules
	2.3 Example Using Existing Syntax

	3. Corner Models
	4. Drawbacks of the Generate Approach
	4.1 Memory Inefficiency of the Generate Approach
	4.2 Inflexibility of the Generate Approach
	4.3 No Existing Syntax for Output Variable Propagation

	5. Drawbacks of Overloading Modules
	6. Advantages to Paramsets

