cādence

Wreal Items for Verilog-AMS Accellera Donation

Martin O'Leary Abhijeet Kolpekwar

 We are reviewing this technology contribution in order to vote on its potential inclusion in the Accellera Verilog-AMS committee process as extensions to the current standard

• We are NOT reviewing the technology contribution for immediate inclusion in the standard

Motivation

- LRM needs more support for promoting "Wreal" type to represent typical AMS modeling scenarios
 - "Wreal" type lacks ability to represent Unknown and Hi-Impedence states; a common modeling requirement
 - Addresses Mantis 2162: Need ability to assign z to wreal
 - No support for determining resolution of multiple Wreal Drivers; a situation that is very likely in the real world
 - Addresses Mantis 2281: disciplines and wreal
 - No support for defining programming interaction of Wreals with Electricals
 - Request in <u>Mantis 2160</u>: reals and integers should be able to drive eventdriven ports
 - No support for advanced sampling function for sampling continuous signals to discrete wreal
 - Request in <u>Mantis 936</u>: enhanced analog/digital event control

Items for Donation

- Wreals and disciplines
- Wreal Multiple Driver Resolution
 - X/Z States
 - Resolution function definitions
 - Resolution function and disciplines mapping
- Wreal-Electrical Connections
 - Selection and Insertion of Wreal-Electrical Connect Modules
 - New Analog event expression that helps with accurate sampling of analog signals to analog-to-wreal conversion

cādence[~]

Wreal-Disciplines Declaration

- Wreal is like a Verilog-AMS wire type from discipline resolution point of view with a real value type
- Wreal can have a discipline associated with it. Following ways can be used to associate a discipline with wreals
 - `default_discipline wreal ddiscrete
 - Discipline declaration

```
wreal w;
ddiscrete w;
```

• Like Verilog-AMS wire, the wreal can get its discipline from discipline resolution process on the basis of its connectivity and usage

Z and X for Wreal discrete signals

- `wrealZState High-impedance state
- `wrealXState Unknown state
- This are predefined states that can be accessed in the behavioral source code

```
module buf1(in, en, out);
input in, en; output out;
wreal in, out;
real outval;
always @(in,en) begin
if (!en) outval=`wrealZState;
else if (in === `wrealXState) outval=0;
else outval=in;
end
assign out=outval;
endmodule;
```

Example: analog buffer with enable

Resolution Functions for Wreal Nets

- When two or more wreal drivers are driving a receiver, a resolution of the wreal driver values is performed using wreal resolution function
- Defined Resolution Functions
 - **DEFAULT** Single active driver only, support for Z state
 - **4STATE** Similar to verilog 4-State resolution for digital nets
 - **SUM** Resolves to a summation of all the driver values
 - **AVG** Resolves to the average of all the driver values
 - MIN Resolves to the least value of all the driver values
 - MAX Resolves to the greatest value of all the driver values

Global Selectable Resolution Functions for Wreal Nets

R

D1	D2	Dflt	4st.	sum	avg	min	max
x	x	x	x	x	x	x	x
x	z	x	x	x	x	x	x
x	1.1	х	x	x	x	x	x
z	z	z	z	z	z	z	z
z	1.1	1.1	1.1	1.1	1.1	1.1	1.1
2.2	1.1	x	x	3.3	1.65	1.1	2.2
1.1	1.1	X	1.1	2.2	1.1	1.1	1.1

cādence[™]

Associating resolution functions with wreals

- Through discipline declaration discipline real_current; domain discrete; realresolve sum; enddiscipline
- A default setting

`default_realresolve sum

This setting should take effect where no other means are available.

Wreal-Electrical Connections

- Connect Module Selection
 - Extension of connect rule semantics
- @absdelta system function to support wreal sampling

absdelta system function for wreal sampling

- Performs real signal sampling based on user provided input
 - Time tolerance, Voltage tolerance, Voltage delta, Rise/Fall time

```
absdelta ( expr, delta [, time_tol [ , expr_tol ]])
```

This is triggered

- At time zero
- When the analog solver finds a stable solution during initialization
- When the expr value changes more than delta plus or minus expr_tol, relative to the previous absdelta event (but not when the current time is within time_tol of the previous absdelta event)

cādence

• When expr changes direction (but not when the amount of the change is less than expr_tol

Extensions to connect module to support Wreal-Electrical connections

- Will use following information for connect module selections
 - Disciplines (as before)
 - Port directions (as before)
 - Port/Net value type (New!)

e.g.

```
connect R2E input ddiscrete output electrical;
connect L2E input ddiscrete output electrical;
```

cādence

 Note the 2 connect modules for same disciplines and port directions. The selection will depend on the actual net/port types in the design. If a port/net type of "wreal" R2E will be selected.

An illustration of Electrical -> Wreal conversion

```
connectmodule E2R (Ain, Dout);
input Ain;
electrical Ain; //input electrical
output Dout;
wreal Dout; //output wreal
ddiscrete Dout; //discrete domain
parameter real vdelta=1.8/64 from (0:inf); // voltage delta
parameter real vtol=vdelta/4 from (0:vdelta); // voltage tolerance
parameter real ttol=10p from (0:1m]; // time tolerance
real Dreg; //real register for A to D wreal conversion
assign Dout = Dreg;
  //discretize V(Ain) triggered by absdelta function
always @(absdelta(V(Ain), vdelta, ttol, vtol))
       Dreq = V(Ain);
```

cādence[®]

endmodule

Summary

- Items for donation
 - Wreals and disciplines
 - Wreal Multiple Driver Resolution
 - X/Z States
 - Resolution function definitions
 - Resolution function and disciplines mapping
 - Wreal-Electrical Connections
 - Selection and Insertion of Wreal-Electrical Connect Modules
 - New Analog event expression that helps with accurate sampling of analog signals to analog-to-wreal conversion
- We are reviewing this technology contribution in order to vote on its potential inclusion in the Accellera Verilog-AMS committee process as extensions to the current standard
- We are not reviewing the technology contribution for immediate inclusion in the standard