
Version 2.2 draft e Verilog-AMS Language Reference Manual 133

Paramsets Hierarchical structures

In the following example of instantiating a voltage-controlled oscillator, the parameters

are specified on a named-association basis much as they are for ports.

module n(lo_out, rf_in):
electrical lo_out, rf_in;

//create an instance and set parameters
vco #(.centerFreq(5000), .convGain(1000)) vco1(lo_out, rf_in);

endmodule

Here, the name of the instantiated vco module is vco1. The centerFreq parameter is

passed a value of 5000 and the convGain parameter is passed a value of 1000. The

positional assignment mechanism for ports assigns lo_out as the first port and rf_in as

the second port of vco1.

7.2.4 Parameter dependence

A parameter (for example, gate_cap) can be defined with an expression containing

another parameter (for example, gate_width or gate_length). Since gate_cap

depends on the value of gate_width and gate_length, a modification of gate_width

or gate_length changes the value of gate_cap.

Examples:

In the following parameter declaration, an update of gate_width, whether by a

defparam statement or in an instantiation statement for the module which defined these

parameters, automatically updates gate_cap.

parameter
 gate_width = 0.3e-6,
 gate_length = 4.0e-6,
 gate_cap = gate_length * gate_width * ‘COX;

7.2.5 Detecting parameter overrides

In some cases, it is important to be able to determine whether a parameter value was

obtained from the default value in its declaration statement or if that value was

overridden. In such a case, the $param_given() function described in Section 10.2 can be

used.

7.3 Paramsets

A paramset definition is enclosed between the keywords paramset and endparamset, as

shown in Syntax 7-5. The first identifier following the keyword paramset is the name of

the paramset being defined. The second identifier will usually be the name of a module

with which the paramset is associated. The second identifier can also be the name of a

second paramset; a chain of paramsets may be defined in this way, but the last paramset

in the chain shall reference a module.

134 Verilog-AMS Language Reference Manual Version 2.2 draft e

Hierarchical structures Paramsets

Syntax 7-5—Syntax for paramset

The paramset itself contains no behavioral code; all of the behavior is determined by the

associated module. The restrictions on statements in the paramset are described in

Section 7.3.1.

The paramset provides a convenient way to collect parameter values for a particular

module, such that an instance need only provide overrides for a smaller number of

parameters. A simulator can use this information to optimize data storage for the

instances: multiple instances may share a paramset, and the simulator can share storage

of parameters of the underlying module. The shared storage of paramsets makes them

similar to the SPICE model card. Also like the SPICE model card, paramsets may be

overloaded, as described in Section 7.3.2.

A paramset can have a description attribute, which shall be used by the simulator when

generating help messages for the paramset.

7.3.1 Paramset statements

The restrictions on statements or assignments allowed in a paramset are similar to the

restrictions for analog functions. Specifically, a paramset:

• can use any statements available for conditional execution (see Section 6.1);

paramset_declaration ::=

{attribute_instance} paramset paramset_identifier module_or_paramset_identifier ;
paramset_item_declaration {paramset_item_declaration}

paramset_statement { paramset_statement }

endparamset
paramset_item_declaration ::=

{attribute_instance} parameter_declaration

| {attribute_instance} local_parameter_declaration

| {attribute_instance} string_parameter_declaration

| {attribute_instance} local_string_parameter_declaration

| aliasparam_declaration

| {attribute_instance} integer_declaration

| {attribute_instance} real_declaration

paramset_statement ::=

.module_parameter_identifier = expression ;
| statement

| paramset_seq_block

paramset_seq_block ::=

begin
 { paramset_statement }

end

Version 2.2 draft e Verilog-AMS Language Reference Manual 135

Paramsets Hierarchical structures

• shall not use access functions;

• shall not use contribution statements or event control statements; and

• shall not use named blocks.

The special syntax

.module_parameter_identifier = expression ;

is used to assign values to the parameters of the associated module. The expression on

the right-hand side can be composed of numbers and parameters, local parameters, and

variables declared in the paramset, as well as out-of-module references to parameters of

a different module.

7.3.2 Paramset overloading

Paramset identifiers need not be unique: multiple paramsets can be declared using the

same paramset_identifier, and they may refer to different modules. During elaboration, the

simulator shall choose an appropriate paramset from the set that shares a given name for

every instance that references that name.

When choosing an appropriate paramset, the following rules shall be enforced:

• All parameters overridden on the instance shall be parameters of the paramset

• The parameters of the paramset, with overrides and defaults, shall be all within

the allowed ranges.

• The local parameters of the paramset, computed from parameters, shall be within

the allowed ranges.

The rules above may not be sufficient for the simulator to pick a unique paramset, in

which case the following rules shall be applied in order until a unique paramset has been

selected:

• The paramset with the fewest number of un-overridden parameters shall be

selected.

• The paramset with the greatest number of local parameters with specified ranges

shall be selected.

It shall be an error if there are still more than one applicable paramset for an instance

after application of these rules.

136 Verilog-AMS Language Reference Manual Version 2.2 draft e

Hierarchical structures Ports

7.3.3 Paramset output variables

As with modules, integer or real variables in the paramset that are declared with

descriptions are considered output variables; see Section 3.1.1. A few special rules apply

to paramset output variables and output variables of modules referenced by a paramset:

• If a paramset output variable has the same name as an output variable of the

module, the value of the paramset output variable is the value reported for any

instance that uses the paramset.

• If a paramset variable without a description has the same name as an output

variable of the module, the output variable of that name shall not be available for

instances that use the paramset.

• A paramset output variable’s value may be computed from values of any output

parameters of the module by using the special syntax

.module_output_variable_identifier

However, any paramset variable that depends on a module output variable shall

not be used in the assignment of module parameters.

7.4 Ports

Ports provide a means of interconnecting instances of modules. For example, if a module

A instantiates module B, the ports of module B are associated with either the ports or the

internal nets of module A.

7.4.1 Port association

The syntax for a port association is shown in Syntax 7-6.

Syntax 7-6—Syntax for port

The port expression in the port definition can be one of the following:

• a simple net identifier

port ::=

 port_expression

| . port_identifier ([port_expression])

port_expression ::=

 port_identifier

| port_identifier [constant_expression]
| port_identifier [constant_range]

constant_range ::=

msb_constant_expression : lsb_constant_expression

