
#

WebSite
RefNum
(flatten)

WebSite
Ref Item
_SubItem LRM Section Title Description

Ranking
1 (HI)

2(MED)
3(LOW)

Approve
(Y / N) Comments

1 1 9.2.2 Truncating vs Rounding when converting
Analog to Digital times

Truncating time on conversions will (on average) reduce simulation time vs. real time for the hardware, making the
simulation optimistic. Also, if the user swap analog and digital components the timing is more likely to be off and lead to
"false" errors in simulation results.

Diagrams (Not included)

2 2 2 8.9 Driver-receiver Segregation Connect statements and the insertion of A/D & D/A converters is actually an extended form of ‘signal resolution’ - both
VHDL and Verilog have mechanisms where all drivers of a signal have their values merged and the result appears as the
value for that signal everywhere. The driver-receiver segregation section in the Verilog-AMS LRM as it stands appears
inconsistent with this accepted approach and should be restated.

 [In general for a net that appears in multiple domains, the drivers in those domains need to be converted to the domain of
highest accuracy, resolution is performed in the domain of highest accuracy (analog) and the result converted back to the
lower accuracy domains.]

3 3 3 8.8 A/D Convertor placement Auto-inserted convertors should be on the child side of ports where conversion takes place as they are really associated
with the driving and receiving processes in the child (not the parent), and because back-annotation may not work correctly
otherwise. Also, if A/D convertors need to attach to a local power supply (say 'local.vdd' in Verilog) the search scope should
start in the child.

For 'merged' A/D convertors (where one converter serves multiple modules) the placement should be in the module that
contains all the relevent processes in it's subhierarchy.

4 4 4 8.10 Driver Type Function (ENH) Proposal: We should add a "driver access" function for finding the type of a driver e.g.:
driver_type_function ::= $driver_type (signal_name , driver_index);

It would return an integer (defined in a header file) indicating the type of the driver. The user's connection module code can
query it and decide how to handle
updates on that driver. Possible header file values:

 // Driver Access Definitions: driver.h
 `define DRIVER_UNKNOWN 0
 // Or-able bit flags
 `define DRIVER_DELAYED 1
 `define DRIVER_GATE 2
 `define DRIVER_BEHAVIORAL 4
 `define DRIVER_SDF 8
 `define DRIVER_TRANSPORT 16
 `define DRIVER_RELIABLE(D) ((D) & (`DRIVER_DELAYED|`DRIVER_SDF))
 `define DRIVER_UNRELIABLE(D) (((D) & `DRIVER_BEHAVIORAL) && ! ((D) & `DRIVER_SDF))

Note: Simulators can return '0' if unable to implement this functionality.

5 5 5 9.1 A/D Synchronization See LRM: 9.1 Analog simulation cycle

The A/D synchronization algorithm is described at a kernel level rather than at the behavioral process level. I would prefer a
description that is more general and
applicable to multi-solver and multi-kernel simulators, e.g.:

 Step 1: Processes execute and schedules future values (and set d? /dt etc.) and a callback event (at acceptance, if
necessary).
 Step 2: Simulator steps to global next event (analog or digital) and executes it.
 Step 3: Processes activated by event execute and reschedule future values and events.
 Step 4: Goto step 2

NB: Time is continous, 'digital time' doesn't really exist. The diagrams at the end of the link above confuse the issue by
"hopping" around in time. (See "Time Continued")

Disjoint analog blocks in a mixed-signal simulation need not use the same matrix solver and some analog blocks may not
need a solver at all if they are entirely "Signal flow".

6 6 6 AnnexE External Module Definitions (ENH) Requirement: Verilog-A[MS] is intended to replace the use of SPICE netlists. In the initial cut of the language the approach
was taken that models (primitive analog modules) were implicit and that any modules used in a Verilog-A description that
were not declared would be found in the simulator.

This 'implicit declaration' approach has the problem that a design tool other than the actual simulator cannot tell if a design
is complete. Modules which are required by a design but only supplied by a simulator need to be declared 'external' (as
routines in C program modules are).

Proposal: I propose extending the Verilog-A syntax by allowing the keyword 'extern' before a module declaration, and that
such a module declaration can only contain port, parameter and variable declarations (i.e. no processes). I would also like
to propose that the file including the standard (SPICE?) definitions is placed with the other simulation system include files
accessible with:

 `include <models.h>

Failure to locate a module definition would not be considered an error (but may cause a warning to be issued).
The information about the class of the module and the supporting simulators should be handled by a standard attribute mechanism.

7 7 7 NA Back-Annotation (ENH) Compatibility: Verilog-AMS is expected to be a superset of Verilog. Verilog uses SDF for back-annotation, which is a
methodology that does not require re-netlisting. For full compatibility Verilog-A[MS] also needs a mechanism that supports
back-annotation without re-netlististing.

Methodology: Top-down/bottom-up design usually involves designing functional blocks (modules) and then connecting
them together to create larger functional blocks initially without interconnect. Those designs are then pushed through "place
& route" to produce a "physical" design. The design after P & R has the same hierarchy as before, but the port connections
are no longer simple connections but wires on Silicon.

The working assumption with SDF was that wires can be treated as mostly capacitive - which was mostly true when it was
invented. In "deep-submicron" circuits wiring is relatively much longer and suffers from relatively higher resistance and
more crosstalk. A mechanism is required to back-annotate the actual circuit of the wiring between the modules to model it
accurately.

8 801 8_1.2 1.2 Mixed-signal language features Access to analog signals from digital behavioral blocks, and vice versa. This is where the largest differences appear from
earlier language levels. The features are defined further in Chapter 8 and other places.

9 802 8_3.3 3.3 Genvars Cleaned up from earlier versions (which had a generate statement). There are significant issues of scoping, etc, related to
genvar. Verilog-2k has different mechanisms for this. This looks like a highly unportable feature.

10 803 8_3.4.3 3.4.3 3.4.3.{2,3} Empty disciplines; undeclared nets Description allows for netlists with uncommitted interconnect. The intention is clear although the explanatory text is highly
ambiguous. Antrim AMS supports netlists using wire as an interconnect using psuedodisciplines.

11 804 8_3.4.5 3.4.5 Ground declaration Changed completely from previous usage (and totally incompatible with it, since ground now becomes a different kind of
keyword). Need a migration plan for present users.

12 805 8_3.5 3.5 Real net declarations Changed (and relocated) from previous definition. This is an attempt to formalize $realtobits(), etc. Most of the semantics
and syntax is missing from the definition. No rules provided for conversions with other net types. Expect Verilog-2k to
conflict. This looks like a highly unportable feature.

13 806 8_3.6 3.6 Default discipline This applies to discrete disciplines only. Requires further definition (e.g. relationship with `reset_all).

14 807 8_4.4.1 4.4.1 Restrictions on analog operators See earlier comments on genvar. Also, this LRM introduces null arguments to these and other functions; this in turn
introduces the need for various default values (which are not all provided by the LRM).

15 808 8_4.4.7 4.4.7 Absolute delay operator The LRM renames the previously named delay operator (which was a potential source of conflict with existing Verilog-D
decks).

Will need to support ‘delay’ as an alias for a migration period.

16 809 8_4.5 4.5 Analysis dependent functions Extended and better defined (with tables) in this LRM. Meaning of some cases (see also initial_step) is not clear for AC
analysis, etc.

17 810 8_6.7 6.7 Events This LRM allows mixture of analog and digital events. This is a major new feature. It allows constructs like @(posedge clk
or cross(V(1), 1)). Requires analog/digital synchronization semantics to be *much* better defined.

18 811 8_6.7.4 6.7.4 Global events Additional definition provided (including a table). The meaning of ‘analysis point’ is not clear.

19 812 8_7.1.1 7.1.1 Top-level modules Are multiple top-level modules that contain analog behavior allowed?

20 813 8_7.3 7.3 Ports [Not the right place for this]: need rules for vector versus scalar connections if the entity
is reg rather than a wire type.

21 814 8_7.3.3 7.3.3 Real valued ports Require considerably more in the way of definition, especially how these interoperate with existing Verilog-D types,
semantics, and syntax.

22 815 8_8.2 8.2 8.2.{1,2} Domains. Contexts These sections have been added to provide definitions for following sections. The concept of variables being associated
with a particular domain depending on assignment is ambiguous.

23 816 8_8.3 8.3 Behavioral Interaction Provides definitions and rules for mixed access and mixed events. Rules for synchronization are not sufficient to produce
portable code - needs definition.

24 817 8_8.3.1 8.3.1 Accessing discrete nets and variables ‘Bit’ is pretty strange. Results are undefined if any bit values are ‘x’/’z’.

25 818 8_8.3.6 8.3.6 Concurrency New section(s). [Attempts to] provide rules under which the four subsequent sections are to be interpreted.

Totally inadequate to write portable code that accesses variables from multiple domains. This is important since these
mechanisms are proposed for constructing connect modules, etc. Whole area requires some clear semantics and possibly
additional synchronization constructs.

26 819 8_8.4 8.4 Discipline Resolution Totally reworked from previous versions. The algorithms described are based on net types rather than on drivers/loads that
appear on the a mixed net. The source of much disagreement. Antrim AMS has a different view based on the importance
of the entities on the net rather than the declared net types; and an emphasis on accurate representation of the analog part
of mixed nets. I think this whole section will be replaced by whatever a successful AMS simulator decides to implement.

27 820 8_8.4.3 8.4.3 Connection of continuous-time disciplines Makes it illegal to have incompatible continuous disciplines on the same net (previously undefined). Antrim AMS allows this;
standard rules for connect module insertion apply. User has complete control and it’s a useful feature.

28 821 8_8.5 8.5 8.{5-8} Connect Modules Modified from previous versions. New syntax (connectmodule). New mechanism for finding matching connect modules.
New block added (connectrules/endconnectrules). New mechanism provided for reusable connect modules. New syntax
provided for uni-/bi-directional connect modules.

100% incompatible with previous approach. Some of these changes are cosmetic. Others apply totally different
mechanisms from prior LRM. Will need major migration plan to accommodate present users.

29 822 8_8.10 8.10 Driver Access and net resolution New material or better defined relative to previous versions. Note that these are stated to be callable from connect modules
only.

These functions allow most of a mixed signal resolution function to be implemented. There are some missing functions,
though (e.g. there is no way to discover what change caused driver_update() to become active). net_resolution() is pretty
strange - what does ‘the default’ mean in the explanatory text?

Preferred approach is to insert CBs corresponding to net loads/drivers, not to dream up smart CBs.

30 823 8_8.11 8.11 8.11 Supplementary driver access functions Added on demand to provide at least a back door to enable accurate registration of analog and digital events (i.e. start
analog ramp so that threshold crossing matches digital event).

Necessary but not sufficient (mechanisms for decoupling digital drivers from the mixed net, etc, are also required). This
whole area needs work - perhaps with user community who care about backannotation, mixed delay calculation, etc.

31 824 8_9.2 9.2 9.2 Mixed-signal simulation cycle The information provided about initialization is inadequate to a mixed signal user. This should be written in terms of Verilog-
D initialization semantics, and explain any values taken by Verilog-D entities during this phase.

32 825 8_10 10.0 10 System tasks and functions Some changes from previous versions. The $realtime vs. $realtime(N) mess gets cleaned up by introducing $abstime().
There is potential ambiguity with system tasks with the same name in Verilog-D and Verilog-AMS, but with two different
definitions ($random, possibly); and with system tasks that modify their argument (for example, some system tasks take and
modify a seed value. Does this count as ‘assignment’ for the purpose of defining the domain of the variable (c.f. 8.2.1)? If
so, does this behavior apply to user system tasks also? How can the simulator determine whether a system task argument
is read-only or is modified by the task?).

Verilog-AMS needs table lookup functions for modeling - add $table & variants here.

33 826 8_11 11.0 Compiler directives Extended from previous versions. Presumably these are reset by `resetall.

34 827 8_D AnnexD Standard definitions The file names have changed from <foo>.h to <foo>.vams. When? Why?

35 828 8_E AnnexE SPICE compatibility Successful implementations will need to be able to import large chunks of legacy SPICE (including models). The material in
the LRM is very Spectre-specific (see the independent sources, for example).

Additional mechanisms (in particular, global parameter and node features) are necessary to import SPICE code that uses
these, since Verilog does not have these capabilities.

36 829 8_F AnnexF Discipline resolution methods This was added as part of the discussion over net resolution, with the intention of removing details of the algorithm from
Chapter 8, and leaving that chapter generic. It didn’t work (Annex F looks really odd. One solution would be to simplify
Chapter 8, leaving room for alternate views on mixed nets, and delete Annex F).

37 901 9_12 3.2.1 Coercion of strings to real allowed but not
defined

 module pureD;
 parameter real rparam = "string1";
 parameter integer iparam = "string2";
 parameter sparam = "string3";
 initial begin
 $strobe("String Value assigned to real: \n PCg= %g \n
 PCf= %f \n PCna= ",rparam,rparam,,rparam);
 $strobe("String Value assigned to integer: \n PCs= %s
 \n PCd= %d \n PCf= %f \n PCna= ",iparam,iparam,
 iparam,,iparam);
 $strobe("String Value assigned to sparam: \nPCs= %s \n
 PCd= %d \n PCna= ",sparam,sparam,,sparam);
 end

 endmodule

 The above results in the following:
 String Value assigned to real:
 PCg= 1.76884e+09
 PCf= 1768843057.000000
 PCna= 1768843057
 String Value assigned to integer:
 PCs= ing2
 PCd= 1768843058
 PCf= 1768843058.000000
 PCna= 1768843058
 String Value assigned to sparam:
 PCs= string3
 PCd= 32497657065662259

 PCna= 32497657065662259

 The LRM implies that "string1" should be coerced to a real but does not describe how the coercion should be done. It
makes a lot more sense that this would be an error. That would be far more useful for users. Similarly parameter integer
iparam = "string2" should be an error.

Recommendation: Someone must better define this or we should make illegal. Note, this is certainly specified in 1364 so we must also work this through with them.

38 902 9_22 3.2.2 When to do range checks? Should range checking be done on default values or only final values of an instance.
 Recommendation: Checking should only be done on the final values as this feature is meant for users to set values not
the model developers.

39 903 9_20 3.4.2 Connections to port expressions (whats a
driver?)

Behavioral expression attached to ports
 - should be able to indicate the disciplines of such ports somehow.
 e.g;
 module foo;
 reg a;
 reg b;
 Bar b1(a&b);

 endmodule

 How can the discipline of 'a&b' be indicated?
 Recommendations: Cadence recommendation forth coming, several potential options

40 904 9_21 3.4.2 OOMR disciplines on behavioral nets Should be limitations on OOMR declarations of nets that are used behaviorally - should be only able to OOMR to a
undeclared net. Therefore couldn't change the discipline of a net that was used behaviorally.
 e.g;
 module top;
 pll pll1();
 mechanical pll.f; // this should be illegal!!
 endmodule

 module pll (f);
 electrical f;
 analog begin
 V(f) <+ sin(w*$abstime);
 end

 endmodule

 V() is not the mechanical access function, it is the electrical access function, so is V(f) an error?!!

 Recommendation: Make it illegal to use OOMRs to override the discipline of nets that are behavioral. Other nets should
be able to be overridden to aid coercion.

41 905 9_38 3.4.3.2 neutral disciplines Why do you need neutral disciplines if wire is already neutral
 - should remove this feature?
 Recommendations: Consider as part of discipline compatability issues of Annex E3

42 906 9_8 3.4.3.3 ... LRM cleanup issue: TRI and WIRE are aliases Recommendation: Specify that tri should be treated as wire at least in 3.6, other places?

43 907 9_11 3.5 Initial value of wreal nets not defined The LRM says..
 "If no driver is connected to a wreal net, its value shall be 0.0" It does not define the value of a real net at t = 0. And of
course a net cannot store a value (except trireg), its value as we know is only determined by its drivers. If in an example
however, we have a driver (continuous assignment.) to the real net. In the same example, if I removed the continuous
assignment, at t = 0, out2 = 0. I am not sure as to what the value of out2 should be (at init.) when it has a driver.

 Recommendation: value set to 0.0 if value hasn't been determined at t=0.

44 908 9_5 3.5 and 7.7.3 Real value port examples have errors: The examples in 3.5 and 7.3.3 have errors that prevent them from working without additional changes. The example in 3.5
should be changed as follows:
 // The following three lines should be added so that a wreal is passed into foo
 wreal wstim;
 assign wstim=stim;
 foo f1(wstim,load);
 // foo f1(stim,load); //This line should be deleted3 as it is illegal for ports of type real
 // dut d1 (load, out); // This line should be deleted as it provides not added value
 The example in 7.3.3 should be changed as follows:
 First there is no top level module that instantiates the two blocks so add:
 module top ();
 wreal stim;
 reg clk;
 wire [1:8] out;
 teststim tb1 (stim, clk);
 a2d dut (out, stim, clk);
 initial clk=0;
 always #1 clk=~clk;

 endmodule

 In addition, the testbench module must be converted to use wreal since it is passing a real value through one of its ports
(the whole reason for
 wreal). The following fixes this issue:
 module teststim (wout,clk); // change output port to wout
 input clk;
 output wout; // change output port from out to wout
 real out;
 wire clk;
 wreal wout; // add wout declaration as type wreal
 assign wout=out; // assign wreal (wout) value to be value of real (out)

 Recommendations: Make the above changes as shown

45 909 9_32 3.6 default_discipline clarifications In the first paragraph, it seems that the word scope in used in two different ways which is potentially confusing;
 1. as the scope of application of the compiler directive
 2. as an argument to the default_discipline compiler directive.
 Also does the scope argument only apply to the refer instance or does it apply to the children of that instance too?
 Recomendation: Clarify this paragraph to make clear

46 910 9_33 3.6 default_discipline only for digital? Is default_discipline only applicable to digital? If so then need to remove references to 'default_discipline electrical e.g. p3-
20 of 2.0 LRM.
 Recomendation: Resolve analog default_discipline (section 11.1) and then ensure that this section is in alignment.

47 911 9_31 3.7 Discipline presendence issues 'default_discipline as a compiler directive seems like a very poor approach for library-based simulation and for simulation
based on configurations. It makes much more sense to put this information into a design unit such as connectrules or the
config. It is also more consistent with the way configs, connectrules are handled.

 The compiler directive 'default discipline is not a very suitable way to specify how a hierarchy flattening action (discipline
resolution) is to be done. The compiler directive 'default discipline is not a very suitable way to specify how a hierarchy
flattening action (discipline resolution) is to be done.

 Okay maybe someone could use the scope, qualifier fields of the default_discipline. However these refer to instance
names and there is no precedence in compiler directives for doing that. Instances haven't been created at compile time.
 How are conflicting default_discipline references to be resolved?

 e.g. in one part of a file there is;
 'default_discipline electrical top.foo.bar
 and in another part of the file there is;
 'default_discipline mechanical top.foo.bar

 Recommendation: Items 3 and 4 in the precendence list (those referring to instances) should be removed from the list. For conflicts in compiler directives the last one should win but the LRM should be updated and a rule added that these compiler directives for the same net must be compatiable.

48 912 9_41 3.7 disiplines rules of branches What are the rules for decid-ing the discipline of Branches? - LRM isnot clear on this. Section 3.7
 Recommendation: Someone needs to define this.

49 913 9_37 3.9 branches - clarifications - should say that branches cannot be declared using discrete nets.
 - Clarification of vector branches is needs
 1) It should be illegal to create a vector branch from Vector terminals of different sizes.
 2) It should be illegal to create a vector branch from Vector terminals of different directions or else it should be specified
how they are connected up.
 3) When a vector branch is created from vector nets, it range size (direction?) should be the same as the vector terminals.
 Recommendation: This feature either be clarified or removed

50 914 9_42 4.5.1 & 6.7.4 Initial Conditions What mechanism should be used to set initial conditions; (analysis("ic")) or @(initial_step("ic"))? If so how does it work and
if so, how will a
 piece of code like the following behave;
 @(initial_step("ic"))
 V(out) <+ V(in);
 Recommend that this feature be removed or clarified

51 915 9_24 5.1.6 Implicit Switch Branches? What is the behavior of
 if (open)

 I(p,n) <+ 5;

 Is this equivalent to;
 if (open)
 I(p,n) <+ 5;
 else

 I(p,n) <+ 0;

 Recommendation: These should be considered the same, clarify in LRM.

52 916 9_25 5.3.2 Indirect assignments in conditionals Indirect branch assignments should be illegal inside conditionally executed statements. The LRM doesn't state this and
doesn't indicate what behavior should occur if it happens;
 e.g.;
 analog begin
 if (xx == 2) then
 V(out) :ddt(V(x)) == 0;

 end

 Recommendation: This should be stated as illegal, like other conditionals

53 917 9_27 6.1 & BMF Syntax consistencies with 1364 To consistent with 1364 formulation, there should be semi-colons after:
 analog_branch_contribution
 analog_indirect_branch_assignment
 analog_procedural_assignment
 procedural_assignment

 Recommendation: Make above changes

54 918 9_28 6.3, 6.4, 6.5,
BNF

(28) Syntax 6-3, Syntax 6-4, Syntax 6-5 and
BNF

These should contain no semi-colons after changes to syntax 6-1 above.

 Recommendation: Make above changes

55 919 9_26 6.4 Switch branches illegal in BNF The BNF of the conditional_statement disallows switch branches. In 6.1, strongly recommend that attempts to limit
analog_statements inside analog statements using BNF be removed and replace by a semantic restriction. It is impossible
as far as I can tell!
 See restrictions on analog operators in 4.4.1 as this also implies that switch branches are illegal.
 Recommendation: BNF should be adjusted to allow these. May need to do limitations on conditionals as semantic rules.

56 920 9_19 7.2 and 1364 defparam vs. instantiation precedence This comes up in netlisting as the 1364 LRM is really weird in this space. The defparam precedence is defined by last one
seen (like a compiler directive) which in a netlisting environment sucks. If searching libraries then the result stated by 1364
is unknown, yek! This should be by level in the hierarchy and then instantiations should be treated as the same as
defparams.

 Recommendation: If this does not get cleaned up to be reasonable we will need to ensure that the issue is addressed
when global design variables are supported.

57 921 9_23 8.2.4 Compatible disciplines Compatibility of continuous disciplines on the same signal. Should be stated that the continuous disciplines of a signal must
all be compatible as they are solved as the same node.

 Recommendation: Make the above changes to the LRM

58 922 9_14 8.3.6.4 and
8.3.1

Clarification on X and Z . These sections should be enhanced to ensure that users and implementers understand that when accessing a digital net, X
and Z must be dealt with prior to assigning a value to a variable and certain functions like case, casex, casez, ===, and !==
need to be used to prevent errors.
 We need to close on if == and != can be used in analog on digital signals and if so does X or Z mean a failure of the
comparison? Supporting them would require being able to do comparisons against X and Z only. The bottom line is analog
cannot be assigned a value of X or Z. Do we need to allow the user to specify what X and Z would be set to?

 Recommendation: Currently we should limit analog to not support == and != when the signal is digital and contains X or Z.
We should clarify this more in the LRM with the core agreement that signals cannot be set to X or Z in analog.

59 923 9_1 8.4.4.1 and
Annex F

Discipline Resolution: No clear definition on how
to deal with "leaf level" wires.

Leaf level wires (net segments) are primarily the result of alias modules used in netlisters and pass through's as a result of
synthesis. These wires (net segments) have no components connected to them at the specified hierarchy thus the only
connections to this wire (net segment) are higher in the hierarchy.
 While in the detail resolution the discipline is and can be passed down into this net segment if needed the same is not true
for the default method. In default all disciplines are passed up the hierarchy but these net segments may not have a
discipline to pass up.

 Recommendation: The default method needs to have additional clarification that this special cases must resolve their
discipline by looking up the hierarchy until a discipline can be defined. If two or more ports are connected to this leaf level
wire that would pass down a different discipline the basic rules apply, disciplines must be compatible and continuous wins
over discrete. Cadence will provide the update for section 8.4 and the Annex

60 924 9_2 8.4 and Annex
F

Discipline Resolution: No clear definition on how
to deal with out of module references
(OOMRs).

OOMR connections such as (.out(top.middle.bottom.in)) must be considered in discipline resolution. There are two options
in addressing this issue.

 a) OOMR reference recieves discipline from connection
 b) OOMR connection recieves discipline from referenced net
 In one the referenced wire (top.middle.bottom.in) is impacted by the connected wire (out) discipline. In the second case the
wire (out) is impacted by the resolved discipline of (top.middle.bottom.in)

 Recommendation: The connection should drive the discipline of the OOMR referene. Cadence will provide the update for
section 8.4 and the Annex

61 925 9_29 8.6 bi-dir issues The text suggests that a bidir can be connected to a port that is being driven by a reg or an expression.This doesn't make
an sense!
 Recommendation: This needs to be fixed as a reg can drive but cannot be written to from outside the module.

62 926 9_7 8.10.5 net_resolution function: No one liked this so if
we are going to change it lets do it now.

We have used the assign dVal = dVal; without much problems or complaints. The real issue is explaining driver receiver
segregation not the syntax. Also, in 8.10.5 if we keep this syntax we should change it to be net_resoultion(port_identifier,
net_identifier). LRM needs to clear up some things here i.e. 1) assign d=d will not work if d is a reg, 2) net_resolution is
pretty hokey.

 Recommendation: Get rid of net_resolution and move back to assign statement. With connect modules now marked by
the connectmodule keyword we should consider making assign dVal=dVal a default (not required to be specified) and then
do a better job documenting how all of this works. What about if dVal is a reg?, does it get segregated in a connect module?
Probably not. Should reg's be allowed on connect module ports since they cannot "listen"? suspect this is needed so need
to resolve this

63 927 9_36 8.11 Supplementary drivers and delays Supplementary driver_update functions are insufficiently well defined in terms of what delays should be accounted for?
 a = #1 b;
 #1 a =b;
 must both of these be accounted for? How about SDF delays?
 How about;
 #1;
 $strobe("testing");
 a = b;
 Recommendation: These should be removed, made informative or more clearly defined.

64 928 9_42a 9.0 Which solver starts first? Initialization sequence of the simulation should be described - does the digital kernel or the analog kernal go first?
 Recommendation: Specify that digital start first as part of the VHDL-AMS sync effort. Needed for simulator commands at
time zero as well as mixed language simulators

65 929 9_42b 9 Initialization method - Different from VHDL With the movement to mixed language simulators this is an issue and while we could say it is therer problem I think we
need to address it. We can either switch to theirs or we can specify both methods and let the user select between them. For
circuits with VHDL we might be forced to use only theirs.
 Recommendation: Specify the same method as VHDL-AMS. Needed for simulator commands at time zero as well as
mixed langauge simualtors

See Figure from VHDL Manual or Web Site

66 930 9_15 10.2 1364 sync-up Random function Random function for analog not clearly defined but in 1364 it is as the code is now provided.

 Recommendation: Sync up with 1364-2001 ASAP

67 931 9_39 12.5.2 VPI Issue Nature and discipline should not use param_assign, instead there should be a new object created called attr_assign.
 Recommendation: Make the above change

68 932 9_4a Annex A BNF clarification - Connectrules LRM states that the connect statements can have 'zero or more' count in the connectrules block. For example:
 connectrules AMSconnect;
 endconnectrules
Recommendation: Either allow (might be usefule for tools that create these rules) or changed to one or more.

69 932 9_4b Annex A, 8.5 BNF clarification - Connectmodule 8.5 is missing net_resolution and both are missing digital sections at a minimum. Someone needs to look at this.
 Recommendation: Add the missing data.

70 933 9_18 Annex B flow and potential, should these be global
keywords?

May not be a big of an issue after 1364 pulled the rug out from us on the section specific keywords. Should we go back to
one single list?
 Recommendation: Consider impact of single list of keywords. Must move potential and flow to global keywords (from B2 to
B1)
 as they are needed in accessing attributes (see 5.2.2)

71 934 9_3a Annex C Annex C changes that were missed: Null
Argument

In VerilogA 1.0 the following was allowed: {} while in VerilogAMS 2.0 null arguments are defined by ", ," (comma-nullarg-
comma).

Thus {} would be represented as {,}. Null args for things like laplace and z-transforms of no numerator must be written as
either { 1 } or { , }.

Recommendation: This needs to be added to the list of changes and possibly shown in the areas where most likely to occur
such as in the laplace and or z transform sections.

72 934 9_3b Annex C Annex C changes that were missed: Z-filter
roots

The original 1.0 LRM version had the roots specified as the product of terms like:

 (1) (1 - z^(-1)/(r_r + j r_i))
 ...so the poles and zeros are roots of the polynomial in z(-1), which makes sense given the zi_nd form is a polynomial in z(-
1) -- to get your
 poles and zeros you just factor the polynomial. But, the 1.4 LRM has:
 (2) (1 - z^(-1)*(r_r + j r_i))
 ...which means that the term goes to zero if z = (r_r + j r_i)), so the roots are of a polynomial in z, the inverse of the above.
 Recommendation: Researching to determine why this change was made. Need to find out reason for change to determine
if going back is even feasible. Need to add this to table also.

73 934 9_3c Annex C Annex C changes that were missed: boundstep
argument

Verilog-A defined the argument to $bound_step() to be constant.
Verilog-AMS allows "expression" as an argument to $bound_step() which can be dynamic.
Recommendation: Add this Verilog-A 1.0 typo to the list of changes in Annex C.

74 934 9_3d Annex C Annex C changes that were missed: $random
interpretation

One may argue that only our implementation will change as others interpreted the Verilog-A LRM to be what is in 2.0 but in
either case it was not clear. Also, we will be changing to match up with 1364 meaning shortly.

 Recommendation:Add note in Annex C.

75 935 9_16a Annex D Discipline and Constants file corrections: The units "coul" should be "C" for nature Charge. This is the standard SI symbol. Of course, that could confuse some folks
with temperature would be "degC". Recommendation: Make the above change

76 935 9_16b Annex D Discipline and Constants file corrections: The unit on Angle would be "rad" to be SI compliant. And "rad/s" for Angular_Velocity and "rad/s^2" for
Angular_Acceleration. Each of these put an "s" at the end of rad. Recommendation: Make the above change

77 935 9_16c Annex D Discipline and Constants file corrections: The physical constants should be listed with a reference. What is the source of these values? The 1998 NIST values differ
from those given for physical constants:

 charge: 1.602176462e-19
 light: 2.99792458e-8
 boltzmann: 1.3806503e-23
 planck: 6.62606876e-34
 ...etc...
 Source:physics.nist.gov/cuu/Constants/index.html Recommendation: Make the above changes

78 935 9_16d Annex D Discipline and Constants file corrections: Both Boltzmann and Planck are misspelled in the constants file.

 Recommendation: Make the above changes

79 936 9_10 Annex D: upcase issues with disciplines.vams file There is also a clash between the nature "Force" and the Verilog keyword "force" when doing -UPCASE. In addition each
nature like Voltage is case sensitive (note uppercase "V") which when used in -upcase cannot work unless we define
something else.

 Recommendation: Leave as is but provide a warning to the users about these conflicts.

80 937 9_34 Annex E SPICE master name conflict If a SPICE master has the same name as a Verilog master, which matches or is it an error? Recommendation: Thoughts?
Do we allow overriding of analog primitives? Will the LRM force a specific implementation?

81 938 9_35 Annex E2 Case sensitive SPICE simulators Some spice simulators are case-sensitive, this should be accounted for too. Issues exists with the case-insensitive
matching of SPICE components. Verilog is a case-sensitive language and if I write a Verilog construct (in this case an
instantiation), it should comply with with the rules of Verilog i.e. case insensitivity. Believe it is better and more consistent
with Verilog if all SPICE references must be lower-case, then the binding algorithm is much less complex. Consider that if I
define a model called `Cap' and a module called `cap'. However if I type `cap' and expect to get `Cap', I would be wrong.
Recommendation: Require all SPICE references to be lower case.

82 939 9_9 Annex E3 Disciplines of analog primitives: How to set and
defaults (see 9_30)

Analog primitives cannot via the language get a discipline defined so we need to specify a default value and a method for
setting the disciplines. Recommendation: Lots of possibilities, part of discipline resolution method, use OOMR declarations,
default_analog_discipline (of course compiler directives suck in most of today's solutions) See more on next item

83 939 9_30 Annex E3, 3.8 Compatible disciplines to analog primitives (see
9_9)

Certain primitives are not limited to electrical domain.

Primitives like sources, resistors, capacitors, ... can often be used in mechanical and other domains but if they are electrical
then they will not be compatible.

Recommendation: Analog primitives should default to domain continuous (neutral) and the discipline should resolve as
follows:

 (THIS NEEDS MORE WORK!)

 i. The discipline of defined primitives and behavioral blocks connected to each port
 - If incompatible disciplines exists then error
 ii. The global analog discipline
 iii. The default discipline

The above assumes that the default discipline will be electrical for continuous domains and that there is a mechanism(s) for
setting the global discipline and the discipline of specific ports. Disciplines of ports could be set via OOMR discipline
declarations (mechanical top.I1.I2.R1.a) where a is the port name.

84a 949 9_13a see items LRM Cleanup Typos a. Section: 3.4.1.1 and 3.4.3.5 : A user define attribute is specified called "max", this is a keyword and not be used here.
Should change to something like "maxvalue".

b. Section: 4.4.14, table should have absdelay not delay

c. Section: 6.7.4: In table 6-1, @final_step for DCOP should be 1 not 0.

d. Section: 8 : Several places have the keyword merged listed as merge

e. Section 8.2.3 : The figure has Net C.b_out which should be Net C.c_out

f. Section: 8.3.1, 8.8 : Mixed signal examples falsely use == comparison of digital signals in analog context. Need to change
examples to use methods that support X and Z.

 8.3.1 Example:

 real aout;
 analog begin
 if (in === 1)
 aout = 3.0;
 else
 aout = 0.0;
 V(out) <+ aout;
 end
 endmodule

 8.8 Example:

 analog
 V(e1) <+ transition((cm === 1) ? 5.0 : 0.0);

 Recommendations: Make the above changes

84b 940 9_13b see items LRM Cleanup Typos II g. Section: 8.3.2 : Next to last paragraph is in error, change to: and statements that are casez, shall report ... Add the
that and drop the which.

h. Section: 8.6: p8-17, Last line should be change to "and whose other connection is compatible with electrical"

i. Section: 8.10.6 : In the example on 8-37 of the 2.0 LRM, has input and inout as the directions for the ports of the CM.
They both had to be inout if one is.

j. Section: 8.10.6 : The example has "initial net_resolution(d,out);" initial is not needed

k. Annex C : The Table C-1 first item should be $abstime not $atime.

 Recommendations: Make the above changes

85 941 9_40 Global Support for global design variables (accessible
throughout hierarchy)

Can do some of this via defparams and OOMR but can get very ugly and many limitations that make this difficult to be
considered a viable solution as-is.

Recommendation: Need to consider the dynamic parameter proposal. Lots of issues with current capabilities that this must
resolve.

86 10 10 3.8 Issues on discipline and Nature compatibility Section 3.8 of LRM 1.9 states
1. The opening paragraph begins by discussion of net compatibility. However, it then states to conclude: "The following rules apply in deciding whether two
disciplines are compatible". Some of the rules presented are not about disciplines per se, but rather about net usage, which then contradicts what the
statement has.
2. There is no rule to state that a nature is compatible with itself.
3. There is no rule to state that a nature is compatible with its base nature.
4. The Nature Incompatibility rule does not make sense. A. If the natures are compatible, of course they will be not incompatible! B. A nature cannot be
compatible with a non-existent nature. For a nature to be non-existent, it must not be defined. The correct wording of this rule should in fact refer to a non-
existent binding within the discipline.
5. The Potential and Flow Compatibility Rules state effectively the same thing. It would be better simply for each to state that if the potential or flow natures are
incompatible, then the disciplines themselves must be incompatible. This is much clearer and more concise.
6. Empty Discipline Rule is misleading: an empty discipline has no domain, but rather is compatible with any other discipline, regardless of domain.
7. Discrete Domain Rule is actually applying to nets; disciplines (discrete or otherwise) do not have a signal value type.
8. Signal Connection Rule is also applying to net usage. This is also two different rules which are tenuously linked, but have been combined. The first rule states that nets with disciplines of different domains states that nets with incompatible disciplines with the same domain cannot be connected together; to do so will result in an error.

9. The rules themselves are scattered and intermixed. It would be much better to separate them into groups of rules about net connections, groups of rules about discipline compatibility, and groups of rules about nature compatibility (perhaps even in sub-sections?). This would make it very clear and obvious what sort of things are required for compatibility at the net connection level, at the discipline level, and at nature level - which are kind-of hierarchical because of the way things are defined.

Proposal: 3.8 Net Compatibility Certain operations can be done on nets only if the two (or more) nets are compatible. For example, if an access function has two nets as following rules shall apply to determine the compatibility of two (or more) nets:
DISCRETE DOMAIN RULE: Digital nets with the same signal value type (ie. bit, real, integer) are compatible with each other if their disciplines are compatible, ie. the discipline has a discrete domain or is empty.
SIGNAL DOMAIN RULE: It shall be an error to connect two ports or nets of different domains unless there is a connect statement (see 8.4) defined between the disciplines of the nets or ports.
SIGNAL CONNECTION RULE: It shall be an error to connect two ports or nets of the same domain with incompatible disciplines.

The following rules shall apply to determine discipline compatibility:
SELF-RULE (DISCIPLINE): A discipline is compatible with itself.
EMPTY DISCIPLINE RULE: An empty discipline is compatible with all other disciplines, regardless of domain.
DOMAIN INCOMPATIBILITY RULE: Disciplines with different domain attributes are incompatible.
POTENTIAL INCOMPATIBILITY RULE: Disciplines with incompatible potential natures are incompatible.
FLOW INCOMPATIBILITY RULE: Disciplines with incompatible flow natures
are incompatible.

The following rules shall apply to determine nature compatibility:
SELF-RULE (NATURE): A nature is compatible with itself
NON-EXISTENT BINDING RULE: A nature is compatible with a non-existent discipline binding.
BASE NATURE RULE: A derived nature is compatible with its base nature.
DERIVED NATURE RULE: Two natures are compatible if they are derived from the same base nature.
NATURE COMPATIBILITY RULE: Two natures are compatible if they have the same value for the access and units attribute.

87 11 11 6.4 Issues on if-elseif Consider the following Verilog-AMS module:

module curly;
genvar g;
integer i;
electrical a,b;
analog begin
if(g==3) // #1
V(a) <+ transition(...); // #2
else if(i==6) // #3
V(b) <+ slew(...); // #4
else // #5
// some other code
end

endmodule

Now, the LRM defines any if() with a genvar expression as an analog if. g==3 is a genvar expression, so conceivably the if
from #1 with else at #3 is an analog if statement; the if at #3 with else at #5 would then be considered as a nested if
statement. In this scenario, statement #2 is OK but #4 is wrong. This is fine if you consider if-else as an integral statement,
which the LRM kind of says.

However, the LRM also defines if-else-if-else as a "multi-way decision". Under this situation, the whole statement from #1 to
#5 is a *single* statement. Because the condition at #3 is not a genvar expression, the whole thing is procedural, not
analog, and therefore both #2 and #4 are wrong.

We have a case here of the LRM contradicting itself, and the consequences are pretty bad for analog operator usage

88 12 12 3.8 Issues with regards to example on Section 3.8 The examples for discipline compatibility need to be re-worked; there are quite a few issues:

1. discipline highvolt is shown to be derived from discipline
electrical. This is wrong. highvolt's declaration should be:

discipline highvolt
potential Voltage;
flow Current;
potential.abstol = 1;

enddiscipline

2. The fourth dot-point giving a description should be changed. Discipline mechanical (which does not appear in the
example) should be changed to rotational (which is in the example.

3. The sixth dot-point makes no sense at all in the context of explaining the example. It should state the following:
* discipline empty is independently compatible with all other declared disciplines, ie. electrical, highvolt, sig_flow_v,
sig_flow_i, rotational, sig_flow_x, sig_flow_f and logic. This is because empty has no natures and has no declared domain.

4. The final dot-point also needs some adjustment. The point begins discussing the disciplines and their compatibility, but
then states that "A connect statement must be used to connect these nets and or ports together". This final statement
should state "A connect statement must be used to connect nets or ports of these disciplines together."

5. There is no discipline with an explicit continuous domain specification. There should be one, perhaps as follows:
discipline continuous_elec
domain continuous;
potential Voltage;
flow Current;

enddiscipline

The explanation should have an extra dot-point similar to this:
* Disciplines electrical and continuous_elec are compatible because the default domain for electrical is continuous, and the specified natures for potential and flow are the same.

89 13 13 ENH Add support for NaN & 'X' I would like to introduce NaN into Verilog-AMS for a couple of reasons:

 For initialization of 'real' type values. Any real arithmetic function whose result depends on an 'X' (or 'Z') digital value
should have the result NaN.

It will be illegal to assign NaN to a branch, but the user can test for NaN e.g.:
 if (Vout != NaN) V(out) <+ Vout;

This may help later with VPI functions that return can return NaN.

90 14 14 3.8 ENH Discipline Compatibility Discipline compatibility for disciplines derived from the same base discipline depends on their attribute compatibility. If
attributes differ (e.g. abstol) then thereshould be a resolution function that takes all the values present and returns the
working value, otherwise the disciplines should be considered incompatible.

Attribute resolution functions probably need new syntax e.g.:

 discipline electrical resolve abstol = abs_min; // probably in the standard include
or
 discipline electrical resolve my_attr = my_func; // my_func is bound later
or
 discipline electrical resolve my_attr function begin
 //implicit integer my_attr_size
 integer n = my_attr_size;
 real tot = 0;
 while (n-- > 0) tot += my_attr[n];
 resolve = avg/my_attr_size; // return average
 endfunction

If you have two electrical disciplines with different vdd/vss attributes and without a resolution function for them they would
be considered incompatible, and the Verilog-AMS compiler will look for a discipline connection rule (which might be a level
shifter module).

91 15 15 11.5 `include Proposal

Unlike Verilog-D, Verilog-A has "system" include files for default/standard disciplines physical constant values and maybe
simulator/tool supported features. As with "C" Verilog-A[MS] should include these with "<>" rather than '"' quotes.

For backward compatibility the system file include path should be appended to the end of the user search path so that
system files quoted with '"' will be found (if not overridden).

92 16 16 9.0 ENH Mixed signal initialization (digital) Existing Verilog-D simulators are entirely transient in operation, and therefore don't have any mechanisms for static/steady
state simulation. Clearing all the time-zero events won't necessarily help stabilize feedback loops through analog behavior.

For gate-level combinational logic it is possible to evaluate valid steady-state values and therefore close loops, but
synchronous logic and behavior usually requires a clock cycle or reset pulse to bring it to a sensible state.

Proposal

We should add a block type to Verilog-D for evaluating module steady-state behavior. We need a syntax which allows
multiple event driven processes e.g.:

module stt_mc(clk,a,b,c,d,q1,q2);

 steady begin
@(a,b,c,d) begin
 {q1,q2} = chk_func(q1,q2,a,b,c,d); // only allow valid states
 end;
 endsteady;

"steady" blocks would use any Verilog statements that don't involve delays (or delays would be ignored). Data values from
the steady-state analysiscould/would be discarded after operating point analysis and 'X' values used instead.

N.B. This kind of functionality may be required for arbitrary operating point analysis.

93 17 17 ENH Filters for foreign languages Most CAD design systems use legacy design languages (e.g. Spice - which has many variants, Spectre and Mast).
Stipulating that Verilog-AMS simulators should read any of these languages directly is an unreasonble onus on simulator
developers, even if the DOD requires Spice compatibility. It is also unreasonable (and sometimes impracticable) to have
users maintain multiple copies of the same data in different formats.

Proposal
The "external module" proposal should be extended with parameters and/or keywords indicating a source file, the language
of the source file and a filter program which will translate the specified source into Verilog-AMS. Filter programs could be
supplied by users or by vendors.

Example:
 extern module my_spf;
 parameter source = "/proj/big_chip/big.spf"; // may be list
 parameter language = "HSpice";
 parameter filter = "spc2vams"; // may include arguments

 endmodule

If the simulator can read the specified file type directly (and the file exists) it may do so, otherwise a "pipe" is created and
the filter called (see Unix "popen") as:
 <filter> -module=<module name> -language=<language>\
 -simulator=<caller name> -version=<caller version>\
 <source>
 e.g.:
 spc2vams -module=my_spf -language=HSpice\

 -simulator=vams -version=0.99.1\
 /proj/big_chip/big.spf

The output of the filter should be read in the same manner as a `include'd file.
Since the filter program may need extra information, it's standard input stream should be the (post processed) text from extern to endmodule so that it can read any parameters and attributes associated with the definition.

If the filter returns a non-zero status the simulator should abort.
Notes: The source specification does not have to be a file, it can be a database reference (e.g. milkyway) or some other logical name that the filter understands (e.g. WWW URL's and encrypted files). If we want to do this as part of pre-processing we should probably use `extern rather than extern, and maybe add `endextern

94 18 18 ENH Light Weight Conversion Rationale
Current "connect module" insertion only addresses automatic conversion of signals passed through ports (structural
connection). This is viewed as a "heavy weight" conversion problem requiring persistant state (hence the use of modules)
and provides high-accuracy multi-domain signal resolution.

Behavioral code (e.g. test benches) often ask for values which are not passed through ports (e.g. OOMRs) but may be in
another domain in a mixed signal design (unknown to the testbench designer). These conversion requests are often just
"probes" that need neither resolution or persistant state and are viewed as "light weight".

Proposal
As light-weight conversion doesn't require persistant state it can be performed by Verilog functions. An analog to digital
conversion function would take the potential or flow of a branch as an input and return a logic value (0,1,X,Z + strength),
and a digital to analog conversion function would convert the drivers or resolved value of the digital signal to a real value.

Light-weight conversion would be short-circuited if a signal is converted by a heavy-weight conversion - i.e. the output of
the heavy-weight conversion is used instead of using the light-weight conversion function.

The syntax for specifying a light-weight "connect" would be similar too the heavy-weight:
 connectfunction [real] <module_identifier> (<input_declaration>)
 endfunction

The function overloads the connect module name in the connect rules - i.e. if the rules indicated the connect module to be inserted was "connectmodule foo", then in the case of light-weight conversion the routine used is "connectfunction foo". There may be more than one returning different output types for A2D or D2A (output is "real"), the input would be same as for the corresponding connect module.

If a connect rule has only matching connect-functions and no connect-modules then only light-weight connections are possible and vice-versa.

95 19 19 ENH Representation Stops In order to avoid having to translate netlists into slightly different forms for different purposes, or doing nasty things with
`define/`ifdef, it would be useful to have a "representation stop" in the language (first mentioned by Kim Hailey
[Metasoftware] ~1996).

A "representation stop" mechanism indicates what a module call represents to different simulator kernels or secondary
tools. In particular it allows netlists translated from Spice to be used with different simulator models for transistors or used in
a digital simulator with switch level models.

An official "representation stop" mechanism also allows different versions to be simultaneously visible (unlike `ifdef) and
declares them to be different views of the same object which makes it is easier for a smart tool to check that they are
consistent.

Proposal A and B to follow

Item 95: Proposal A: Augment "external module" and "macromodule" definitions with a "simulator class", a suggested
syntax is:

 <repstop> ::= (extern module|macromodule)
 [<simulator class::>]<module name> [(<ports>)];

See also the "external module" proposal.

Usage: Declaring an external "Spice" transistor:
 extern module spice::nmos(drain,gate,source,back);
 parameter model = "NMOS3";
 parameter l = length ; // translate parameter
 parameter w = width ; // translate parameter
 // this component is primitive of the simulator
 endmodule;
The simulator would use the parameters "model","l" and "w" as stated and calculated from the actual instance.

Alternative "digital" transistor version of the above for pure digital simulation:
 macromodule digital::nmos(drain,gate,source,back);
 rnmos(drain, source, gate); // use digital primitive

 endmodule;

Simulators and tools would ignore class definitions that they do not understand, and would default to a particular behavior
as directed by the user (or Verilog 2000 configuration directives, considering the "simulator class" as the view), if they can handle more than one.

Item 95: Proposal B.
Seperate represention-stop declaration.
Syntax:
 <repstop> ::= repstop <module name> [(<ports>)];
 {<parm>}
 {<alias>{[,<alias>]}} endrepstop
 <alias> ::= alias [<tool>::]<alt module name> [(<alt ports>)];

 {<parm>} endalias

See message #104 for an example.

Usage: The "rep-stops" for a given simulator would be bundled with it as a header file in the same directory as other
standard include files, e.g.:

 #include <repstop.h>
Example contents:
 repstop sp_nmos(d,g,s,b);
 alias spectre::mos(d,g,s,b);
 parameter device = "NMOS";
 parameter model = "BSIM3.3";
 endalias;

 endrepstop

A translated Spice netlist may include a default rep-stop:

