 Process vs. Port Interface Injection
We present here a comparison of methods used to automatically insert D2A (digital to analog) and A2D (analog to digital) interface elements in a mixed analog/digital design. The first case we look at is where all interconnect elements are undeclared. We then show what happens when declarations occur. Our aim is to clarify the differences and similarities between the proposed methodologies (Antrim’s vs. Verilog-AMS LRM 2.0).

I. Undeclared interconnects:

A general case of a mixed net will be that a node will have n drivers, m loads and analog devices attached to it. We assume here a single analog device, since the total voltage and currents of all analog devices attached to a node may be solved for by a single matrix. For now, we assume that the digital “view” of the node is either input or output and the analog is either input, output or bi-directional (bi-directional in digital will be discussed later).

We use the following notation:

Nd is the digital view of the node.
Na the analog view.

Nl is the digital view with the load (same node as Nd in Fig. 1)
Di a digital driver.

Li a digital load.

A all analog devices attached to the node.

After flatting a circuit, we have the following general case:

First consider two methods of adding interface elements, merged and split. For the merged method, the drivers first resolve the signal to Nd and then add a D2A interface element to Na (for convenience, we assume Na to be inout). Since, in this case, all digital nodes have the same discipline, all the thresholds will be the same so there will be only one AtoD to needed to drive the loads (NOTE: the loading effect of that A2D will be proportional to the L’s – this will be covered in another document). Fig. 2 shows the result.

For the split method, each drivers output will be evaluated independently and n D2A’s will drive Na. By the same argument for the merged method, there will only be one A2D as in the merged method.

How does Fig 2 and 3 differ from the LRM? The LRM proposes 4 algorithms to do partial splits and merges (default/merge, default/split, detailed/merged and detailed/split). Depending on the algorithm and the design hierarchy one chooses one may merge the Dn’s in various manners. For example, in LRM8.8.8,

the default merged will add two D2A interface elements, one will merge 4 D’s to resolve the first D2A and the other will look at the output of the 5th driver. Our algorithm will have 1 interface element for merged and 5 for split. Below, we examine (a similar) 8.8.8 more carefully.

Figure 4a and a’ represent two different descriptions of the circuit described in 8.8.8 of the LRM. To review, M2,3,4 and 6 are pure digital modules and A is pure analog. Net1 is assumed to be an output port. In our discussion, we will focus on the default merged algorithm of the LRM. The only difference between 4a and 4a’ is how the circuit is instantiated – if the circuit were pure analog or pure digital, 4a and 4a’ will be identical.

In Figure 4c (the result of adding interface elements from Figure 4a) we first resolve M2, 3 and 4 since they are in the same module, and then add D2a1 which is a function of that resolved signal. D2a2 is a function of the output of M6. In Figure 4c’ (the result of adding interface elements from Figure 4a’) we first resolve M2 and 3 since they are in the same module, and then add D2a1 which is a function of that resolved signal. We next resolve M4 and 6 and add D2a2 which is a function of the 4-6 resolved signal. The LRM provides detail on where to add these D2a’s.

The first problem we face, is what does it mean to add a D2a? To answer this, let us assume a simple D2a to be a voltage source, which is some function of the resolved signal, and a series resistor:

In the above case, Nout is the actual (elaborated) analog node attached to Net1. In fact, for a given analog net attached to digital drivers, all inserted D2a’s, no matter which algorithm is used, will output to the same actual analog node. In reality, the LRM only describes how to bundle the digital devices to form the resolved signal.

As far as placement goes, it really does not matter where you put the D2a as long as it is attached to the proper analog node (NOTE: I did not discuss back-annotation here, maybe placement is important in that case).

The algorithm we use at Antrim, bundles the nets in a much more straight forward fashion – for merged, we resolve all digital drivers attached to a given analog net and add one D2a, and for split, we will treat each one individually as shown in Figures 2 and 3. Also, there will only be one A2d for all the loads since all nets are undeclared. I am not sure how many A2d’s are added for the LRM’s algorithms.

In this section, we discussed undeclared interconnects. Extending our algorithm to declared interconnects is straight forward as shown in the next section.

II. Declared interconnects:

To see how declared interconnects work in the LRM, let us again consider figures 4a and 4a’. In this case, we assume that Net1 is some declared digital discipline inside modules M2 and M3. It can be shown that for the merged default method, Figure 4c becomes:

Figure 4C’ remains the same.

For Antrim’s algorithm, both figure 4a and a’ produce the same results in the merged case (Figure 4C’).

We can write the algorithm proposed by Antrim as follows: for a given analog net attached to digital nets,

· Merge: one D2a for all digital drivers of same digital discipline and one A2d for all loads of same digital discipline.

· Split: one D2a for each digital drivers and one A2d for all loads of same digital discipline.

Note that the load split case is the same as the merge since it does not make sense to split disciplines of different thresholds.

III. Conclusions

The LRM presents a method for auto insertion of interface elements based on port boundaries. In reality, the method simply bundles the drivers and loads together to calculate which resolved node will drive or receive signals. If we want to keep this algorithm, we really need a good rationale since 1) the algorithm is much more complicated then the one presented by Antrim and 2) it is questionable that the “bundling” scheme is more accurate and/or efficient.

We also want to mention that we do not regard this work to be a complete description of the LRM algorithms, but as a possible starting point for the LRM working group.

D1

.

.

.

Dn

Lm

L1

.

.

.

 A

Nd/Na/Nl

Fig. 1

Flattened circuit with no interface elements

A2D = analog circuitry

 Na

 A

Lm

L1

.

.

.

Dn

D1

.

.

.

D2A1=f(Nd1)

 .

 .

 .

D2An=f(Ndn)

Nl = f(Na)

A2D = analog circuitry

D2A=f(Nd)

Nl = f(Na)

Nd

Fig. 2

Flattened circuit with merged interface elements

Nd1

Fig. 3

Flattened circuit with split interface elements

 Na

 A

Lm

L1

.

.

.

Dn

D1

.

.

.

Ndn

M4

M2

top

M3

M6

A

M1

M5

Net1

Figure 4a

Net1

M1

M5

A

M6

M3

M2

M4

top

Figure 4a’

Figure 4b

 module top();

 M1 d1 (Net1);

 M5 d2 (Net1);

 endmodule

 module M1(Net1);

 output Net1;

 M2 d1(Net1);

 M3 d2(Net1);

 M4 d3(Net1);

 endmodule

 module M1(Net1);

 output Net1;

 M2 d1(Net1);

 A a1(Net1);

 endmodule

Figure 4b’

 module top();

 M1 d1 (Net1);

 M5 d2 (Net1);

 endmodule

 module M1(Net1);

 output Net1;

 M2 d1(Net1);

 M3 d2(Net1);

 endmodule

 module M1(Net1);

 output Net1;

 M2 d1(Net1);

 A a1(Net1);

 M4 d3(Net1);

 endmodule

Figure 4c

Net1

D2a2

A

M6

M4

M3

M2

D2a1

Figure 4c’

Net1

D2a2

A

M6

M4

M3

M2

D2a1

Nout

Figure 5

Net1

D2a2

A

M6

M4

M3

M2

D2a1

D2a3

1
5

