
Analog simulation cycle Scheduling semantics
Section 9

Scheduling semantics

This section details the simulation cycles for analog simulation and mixed A/D

simulations.

9.1 Analog simulation cycle

Simulation of a network, or system, starts with an analysis of each node to develop

equations which define the complete set of values and flows in a network. Through

transient analysis, the value and flow equations are solved incrementally with respect to

time. At each time increment, equations for each signal are iteratively solved until they

converge on a final solution.

9.1.1 Nodal analysis

To describe a network, simulators combine constitutive relationships with Kirchhoff’s

Laws in nodal analysis to form a system of differential-algebraic equations of the form

These equations are a restatement of Kirchhoff’s Flow Law (KFL).

v is a vector containing all node values

t is time

q and i are the dynamic and static portions of the flow

f() is a vector containing the total flow out of each node

v0 is the vector of initial conditions

This equation was formulated by treating all nodes as being conservative (even signal

flow nodes). In this way, signal-flow and conservative terminals can be connected

naturally. However, this results in unnecessary KFL equations for those nodes with only

signal-flow terminals attached. This situation is easily recognized and those unnecessary

equations are eliminated along with the associated flow unknowns, which shall be zero

(0) by definition.

f v t,() dq v t,()
dt

------------------- i v t,()+ 0= =

v 0() v0=
Version 2.0 Verilog-AMS Language Reference Manual 9-1

Scheduling semantics Analog simulation cycle
9.1.2 Transient analysis

The equation describing the network is differential and non-linear, which makes it

impossible to solve directly. There are a number of different approaches to solving this

problem numerically. However, all approaches discretize time and solve the nonlinear

equations iteratively, as shown in Figure 8-1.

The simulator replaces the time derivative operator (dq/dt) with a discrete-time finite

difference approximation. The simulation time interval is discretized and solved at

individual time points along the interval. The simulator controls the interval between the

time points to ensure the accuracy of the finite difference approximation. At each time

point, a system of nonlinear algebraic equations is solved iteratively. Most circuit

simulators use the Newton-Raphson (NR) method to solve this system.
9-2 Verilog-AMS Language Reference Manual Version 2.0

Analog simulation cycle Scheduling semantics
Figure 8-1 Simulation flowchart (transient analysis)

9.1.3 Convergence

In the analog kernel, the behavioral description is evaluated iteratively until the NR

method converges. On the first iteration, the signal values used in expressions are

approximate and do not satisfy Kirchhoff’s Laws.

No

Initialization

t <- 0
v(0) <- v0

Update time

t <- t + ∆t

Update values

v <- v + ∆v

Evaluate equations

f(v,t) = residue

Converged?

residue < e
∆v < ∆

Yes

No

time step?

Accept the

$Display

Start Analysis

Done? (T = t)

Yes

No

Yes

End
Version 2.0 Verilog-AMS Language Reference Manual 9-3

Scheduling semantics Mixed-signal simulation cycle
In fact, the initial values might not be reasonable, so models need to be written so they

do something reasonable even when given unreasonable signal values.

For example, the log or square root of a signal value is being computed, some signal

values cause the arguments to these functions to become negative, even though a real-

world system never exhibits negative values.

As the iteration progresses, the signal values approach the solution. Iteration continues

until two convergence criteria are satisfied. The first criterion is the proposed solution on

this iteration, v(j)(t), shall be close to the proposed solution on the previous iteration, v(j-

1)(t), and

| vn
(j) - vn

(j-1) | < reltol (max(| vn
(j)| , |vn

(j-1)|)) + abstol

where reltol is the relative tolerance and abstol is the absolute tolerance.

reltol is set as a simulator option and typically has a value of 0.001 . There can be many

absolute tolerances, which one is used depends on the quantity the signal represents

(volts, amps, etc.). The absolute tolerance is important when vn is converging to zero (0).

Without abstol, the iteration never converges.

The second criterion ensures Kirchhoff's Flow Law is satisfied:

where fn
i(v(j)) is the flow exiting node n from branch i.

Both of these criteria specify the absolute tolerance to ensure convergence is not

precluded when vn or fn(v) go to zero (0). The relative tolerance can be set once in an

options statement to work effectively on any node in the circuit, but the absolute

tolerance shall be scaled appropriately for its associated signal. The absolute tolerance

shall be the largest signal value which is considered negligible on all the signals where

it is associated.

The simulator uses absolute tolerance to get an idea of the scale of signals. Absolute

tolerances are typically 1,000 to 1,000,000 times smaller than the largest typical value

for signals of a particular quantity. For example, in a typical integrated circuit, the largest

potential is about 5 volts, so the default absolute tolerance for voltage is 1µV. The largest

current is about 1mA, so the default absolute tolerance for current is 1pA.

9.2 Mixed-signal simulation cycle

This section describes the semantics of the initialization and time-sweep phases of a

transient analysis in a mixed-signal simulation cycle.

f n v j()()
n
∑ reltol max f i

n v j()()()() abstol+<
9-4 Verilog-AMS Language Reference Manual Version 2.0

Mixed-signal simulation cycle Scheduling semantics
9.2.1 Circuit initialization

The initialization phase of a transient analysis is the process of initializing the circuit

state before advancing time.

This section addresses Issue 5. >>

9.2.2 Synchronization of Analog and Digital in Transient Analysis

A Verilog-AMS simulation consists of a number of (analog and digital) processes

communicating via events, shared memory and conservative nodes. Analog processes

which share conservative nodes are “solved” jointly and can be viewed as a “macro”

process, there may be any number “macro” processes, and it is left up to the

implementation whether it solves them in a single matrix, multiple matrices or uses other

techniques but it should abide by the accuracy stipulated in the disciplines and analog

functions.

9.2.2.1 Concurrency

Most (current) simulators are single-threaded in execution, meaning that although the

semantics of Verilog-AMS imply processes are active concurrently, the reality is that

they are not. If an implementation is genuinely multithreaded, it should not evaluate

processes that directly share memory concurrently as there are no data locking semantics

in Verilog-AMS.

9.2.2.2 Analog Macro Process Semantics

An analog macro process interacts with other processes through events and shared

variables. When it is initially activated, it will attempt to predict a potential “solution” at

a future time (the “acceptance time”) and will store (but not communicate) values1 for

all nodes at that time, and will schedule a “wake up” event for the acceptance time. The

process is then inactive until woken up or it receives an event from another process. If it

is woken up by its own “wake up” event it calculates a new solution point, acceptance

time etc. and deactivates. If it is woken up prior to acceptance time by an event that

disturbs its current solution it will cancel its own “wake up” event, accept at the wake-

up time, recalculate its solution and schedule a new “wake up” event for the new

acceptance time. The process may also wake itself up early for reevaluation by use of a

timer (which can be viewed as just another process).

If the analog process identifies future analog events such as “crossings” or timer events

(see Monitored Events 6.7.5 ??) then it will schedule it’s wake-up event for the time of

the first such event rather than the acceptance time. If the analog process is woken by

such an analog event it will communicate any related events at that time and de-activate,

rescheduling it’s wake-up for the next analog event or acceptance; events to external

1. Or derivatives w.r.t. time used to calculate the values.
Version 2.0 Verilog-AMS Language Reference Manual 9-5

Scheduling semantics Mixed-signal simulation cycle
processes generated from analog events are not communicated until the global

simulation time reaches the time of the analog event.

If the time to acceptance is infinite then no wake-up event needs to be scheduled1.

Analog processes are sensitive to changes in all variables and digital signals read by the

process unless that access is only in statements ‘guarded’ by event expressions. For

example the following code implements a simple digital to analog convertor:

module d2a(val,vo); // 16 bit D->A

parameter Vgain = 1.0/65536;

input val;

wire [15:0] val;

electrical vo;

analog begin

V(vo) <+ Vgain * val;

end

endmodule

The output voltage V(vo) is reevaluated when any bit in val changes, which is not a

problem if all the bits change simultaneously and no ‘X’ values occur. A practical design

would require that the digital value is latched to avoid bad bit sequences as in the

following version:

module d2aC(clk,val,vo); // Clocked 16 bit D2A

parameter Vgain = 1.0/65536;

input clk;

input val;

wire [15:0] val;

electrical vo;

real v_clkd;

analog begin

@(posedge clk) v_clkd = Vgain * val;

V(vo) <+ v_clkd;

end

endmodule

Since val is now guarded by the @(posedge clock) expression the analog block is not

sensitive to changes in val and only reevaluates when clk changes.

1. The case when all derivatives are zero - the circuit is stable.
9-6 Verilog-AMS Language Reference Manual Version 2.0

Mixed-signal simulation cycle Scheduling semantics
Macro processes can be evaluated seperately, but may be evaluated together1 in which

case the wake up event for one process will cause the re-evaluation of all or some of the

processes. Users should bear this in mind when writing mixed signal code, as it will

mean that the code should be able to handle re-evaluation at any time (not just at its own

event times).

9.2.2.3 A/D Boundary Timing

In the analog kernel, time is a floating point value. In the digital kernel time is an integer

value. Hence, A2D events generally do not occur exactly at digital integer clock ticks.

Addressing Issue 1 >>

For the purpose of reporting results and scheduling delayed future events, the digital

kernel rounds A2D events to the nearest tick so that error is limited to half a tick when

swapping an analog device for its digital equivalent. A2D statements that do not include

a scheduling delay are processed immediately in a new digital simulation cycle such that

dependent zero-delay non-blocking assigns are executed before control returns to the

analog domain. Rounding of time to the digital clock tick on A2D events is required to

support implementations using seperate event queues (See section 9.2.4).

Consequently an A2D event which results in a D2A event being scheduled with zero (0)

delay, shall have its effect propagated back to the analog kernel with zero (0) delay.

Figure 8-2 A zero delay inverter

If the circuit shown in Figure 8-2 is being simulated with a digital time resolution of 1e-

9 (one (1) nanosecond) then all digital events shall be reported by the digital kernel as

having occurred at an integer multiple of 1e-9 . The A2D and D2A modules inserted are

a simple level detector and a voltage ramp generator:

connectmodule a2d(i,o);

1. This is implementation dependent.

Connection modules

Zero delay inverter:

A B

 always @(A) B<= !A;
Version 2.0 Verilog-AMS Language Reference Manual 9-7

Scheduling semantics Mixed-signal simulation cycle
parameter VDD = 1.0;

input i;

output o;

reg o;

electrical i;

analog begin @(cross(V(i) - VDD/2,+1)o <= 1;

@(cross(V(i) - VDD/2,-1)o <= 0; end

endconnectmodule

connectmodule d2a(i, o);

parameter VDD = 1.0;

parameter slew = 2.0/1e9; // V/s

input i;

output o;

electrical o;

reg qd_val, // queued value

nw_val;

real et; // delay to event

always @(driver_update i) begin

nw_val = $driver_next_state(i,0); // assume one driver

if (nw_val == qd_val) begin

// no change (assume delay constant)

else

et = $driver_delay(i,0) * 1e-9; // real delay

qd_val = nw_val;

end

end

real start_delay; // .. to ramp start

analog begin

@(qd_val) start_dly = et - (VDD/2)/slew;

V(o) <+ VDD * transition(qd_val,start_dly,VDD/slew);

end

endmodule

If connector A detects a positive threshold crossing the resulting falling edge at connector

B generated by the propagation of the signal through verilog inverter model shall be
9-8 Verilog-AMS Language Reference Manual Version 2.0

Mixed-signal simulation cycle Scheduling semantics
reported to the analog kernel with no further advance of analog time. The digital kernel

will treat these events as if they occurred at the nearest nanosecond.

Example:

If A detects a positive crossing as a result of a transient solution at time 5.2e-9 , the

digital kernel shall report a rising edge at A at time 5.0e-9 and falling edge at B at time

5.0e-9 , but the analog kernel shall see the transition at B begin at time 5.2e-9 , as shown

in Figure 8-3. D2As fed with zero delay events cannot be preemptive, so the crossover

on the return is delayed from the digital event; zero-delay inverters are not physicaly

realizable devices.

Figure 8-3 Zero delay transient solution times

If the inverter equation is changed to use a one unit delay (always @(A) B<= #1 !A), then

the timing is as in Figure 8-4.

5 ns 6 ns

A

B

4 ns

analog

digital reported

analog

digital reported

signal

signal

digital real-time

digital real-time

Analog gate delay
Version 2.0 Verilog-AMS Language Reference Manual 9-9

Scheduling semantics Mixed-signal simulation cycle
Figure 8-4 Unit delay transient solution times

9.2.3 The synchronization loop

Verilog-AMS uses a “conservative” simulation algorithm, the analog and digital

processes which are managed by the simulation kernel are synchronized such that neither

computes results which will invalidate signal values that have already been assigned;

time never goes backwards. While the implementation of the simulator may have

seperate event queues for analog and digital events (See section 9.2.4), it can be viewed

as a single event queue logically with a common global time. Analog processes are

similar to Verilog initial statements in that they start automatically at time zero. The

event sequence for the transient simulation shown in Figure 8-4 would be as follows:

Time Event Queue

4.9ns Evaluate the first analog inverter

Evaluate acceptance at 5.4ns, but schedule wake-up

for 5.2 for crossing.

5.2ns Evaluate crossing event

The A2D logic sets the digital signal A which triggers

the evaluation of the non-blocking assign to B which

5 ns 6 ns

A

B

4 ns

analog

digital reported

analog

digital reported

signal

signal

digital real-time

digital real-time

Analog gate delay
9-10 Verilog-AMS Language Reference Manual Version 2.0

Mixed-signal simulation cycle Scheduling semantics
schedules the actual assignment for 6ns (rounded 1ns

delay).

D2A notices queued event and schedules wake-up for

5.75 via rampgen module.

Schedule wake-up at 5.4ns (as previously calculated).

5.4ns Evaluate acceptance

Circuit evaluates stable, nothing scheduled.

5.75ns D2A/rampgen process wake-up

Start ramp in analog domain.

6.0ns Non blocking assign performed (digital event).

D2A may be sensitive, but doesn’t need to do anything.

6.25ns D2A/rampgen process wake-up

Drive 0V to complete ramp. Nothing more to schedule.

Any events queued ahead of the current global event time may be cancelled. For instance

if the sequence above is interrupted by an a change on the primary input before digital

assignment takes place as shown in Figure 8-5.

Time Event Queue

4.9ns Evaluating the first analog inverter

Evaluate acceptance at 5.4ns, but schedule wake-up

for 5.2 for crossing.

5.2ns Evaluate crossing event

The A2D logic sets the digital signal A which triggers

the evaluation of the non-blocking assign to B which

schedules the actual assignment for 6ns (rounded 1ns

delay).

D2A notices queued event and schedules wake-up for

5.75.

Schedule wake-up at 5.4ns (as previously calculated).

5.3ns Analog event disturbs the solution

Accept at 5.3ns.

Cancel 5.4ns wake-up.

New acceptance is 5.45ns, but schedule wake-up for

crossing at 5.4ns.

5.4ns Evaluate crossing event
Version 2.0 Verilog-AMS Language Reference Manual 9-11

Scheduling semantics Mixed-signal simulation cycle
The A2D logic sets the digital signal A which triggers

the evaluation of the non-blocking assign to B which

schedules the actual assignment for 6ns (rounded 1ns

delay) cancelling previous event.

D2A notices queued event is going to drive the current

value and deschedules the wake-up for 5.75.

Schedule wake-up at 5.45ns (as previously calculated).

5.45ns Evaluate acceptance

Circuit evaluates stable, nothing scheduled.

6.00ns Non blocking assign performed (digital event).

Value of B doesn’t change.

Figure 8-5 Transient solution times with glitch

If the cancelling event arrived after the ramp on B had started but before the assignment

to the digital B it is possible to see the glitch propagate back into the analog domain

without an event appearing on B.

5 ns 6 ns

A

B

4 ns

analog

digital reported

analog

digital reported

signal

signal

digital real-time

digital real-time
9-12 Verilog-AMS Language Reference Manual Version 2.0

Mixed-signal simulation cycle Scheduling semantics
9.2.4 Dual Kernel Algorithm

Mixed-signal simulators are often the combination of two seperate analog and digital

simulators. The algorithm above is an abstract description of how digital and analog

processes communicate and synchronize. Dual kernel simulators will have two seperate

event queues, one for analog events and one for digital, and control passes between the

kernels to keep them synchronized.

The synchronization algorithm can exploit characteristics of the analog and digital

kernels described in the next section.

A sample run is shown in Figure 8-6.

Figure 8-6 Sample Run

1. The Analog engine begins transient analysis and sends state information (that it

is good up to T2) to the Digital engine (1, 2).

2. The Digital engine begins to run using its own time steps (3); however, if there

is no D2A event, the Analog engine is not notified and the digital engine

continues to simulate until it can not advance its time without surpassing the time

of the analog solution (4). Control of the simulation is then returned to the analog

engine (5) which accepts at T2. This process is repeated (7, 8, 9, 10, and 11).

3. If the Digital engine produces a D2A event (12), control of the simulation is

returned to the Analog engine (13). The analog engine accepts at the time of the

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

etc.

D2A

A2D

T1 T2 T3 T4 T5 T6

ANALOG

DIGITAL
Version 2.0 Verilog-AMS Language Reference Manual 9-13

Scheduling semantics Mixed-signal simulation cycle
D2A event (14, which may involve recalculating from T3). The Analog engine

then calculates the next time step (15).

4. If the Analog engine produces an A2D event, it returns control to the Digital

engine (16), which simulates up to the time of the A2D event and then surrenders

control (17 and 18).

5. This process continues until transient analysis is complete.

9.2.5 Assumptions about the analog and digital algorithms

1. Advance of time in a digital algorithm

A.The digital simulation has some minimum time granularity and all digital

events occur at a time which is some integer multiple of that granularity.

B. The digital simulator can always accept events for a given simulation time

provided it has not yet executed events for a later time. Once it executes events

for a given time, it can not accept events for an earlier time.

C. The digital simulator can always report the time of the most recently executed

event and the time of the next pending event.

2. Advance of time in an analog algorithm

A. The analog simulator advances time by calculating a sequence of solutions.

Each solution has an associated time which, unlike the digital time, is not

constrained to a particular minimum granularity.

B. The analog simulator can not tell for certain the time when the next solution

converges. Thus, it can tell the time of the most recently calculated solution,

but not the time of the next solution.

C. In general, the analog solution is a function of one or more previous solutions.

Having calculated the solution for a given time, the analog simulator can

either accept or reject that solution; it cannot calculate a solution for a future

time until it has accepted the solution for the current time.

3. Analog to digital events

A. Analog to digital events are generated by conversion elements (which are

analog/digital behavioral models) when evaluated by the analog simulator.

B. Analog events (e.g., cross , initial_step , and final_step) cause an

analog solution of the time where they occur.

C. Thus, any analog to digital event is generated as the result of a particular

transient solution. This means events can stay associated with the solution

which produced them until they are passed to the digital simulator, until then

they can be rejected along with the solution if it is rejected.
9-14 Verilog-AMS Language Reference Manual Version 2.0

Mixed-signal simulation cycle Scheduling semantics
4. Digital to analog events shall cause an analog solution of the time where they

occur.
Version 2.0 Verilog-AMS Language Reference Manual 9-15

Scheduling semantics Mixed-signal simulation cycle
9-16 Verilog-AMS Language Reference Manual Version 2.0

	Scheduling semantics
	9.1 Analog simulation cycle
	9.1.1 Nodal analysis
	9.1.2 Transient analysis
	9.1.3 Convergence

	9.2 Mixed-signal simulation cycle
	9.2.1 Circuit initialization
	9.2.2 Synchronization of Analog and Digital in Transient Analysis
	9.2.2.1 Concurrency
	9.2.2.2 Analog Macro Process Semantics
	9.2.2.3 A/D Boundary Timing

	9.2.3 The synchronization loop
	9.2.4 Dual Kernel Algorithm
	9.2.5 Assumptions about the analog and digital algorithms

