
Environment parameter functions System tasks and functions
Section 10

System tasks and functions

Proposal for additional of Interpolation Function System Task

--Martin O’Leary, Cadence Design Systems, 5/21/2004

NOTE: changes are all in section 10.9 which is a totally new section

Rational: The interpolation capability is useful for quickly making models from
measured data and also for creating more efficient models of complex transistor level
circuits.

This section describes system tasks and functions available in Verilog-AMS HDL.

10.1 Environment parameter functions

The syntax for these functions are shown in Syntax 10-1.

Syntax 10-1—Syntax for the environment parameter functions

These functions return information about the current environment parameters as a real
value.

$temperature does not take any input arguments and returns the circuit’s ambient
temperature in Kelvin units.

$abstime returns the absolute time, that is a real value number representing time in
seconds.

$realtime can have an optional argument which scales the time. If no argument is given,
$realtime’s return value is scaled to the ‘time_unit of the module which invoked it. If an
argument is given, $realtime shall divide the absolute time by the value of the argument
(i.e., scale to the value specified in the argument). The argument for $realtime follows
the symantics of the ‘time_unit, that is it shall consist of an integer followed by a scale

environment_parameter_functions ::=
 $temperature
| $abstime
| $realtime [(real_number)]
| $vt [(temperature_expression)]
Version 2.0 Verilog-AMS Language Reference Manual 10-1

System tasks and functions $random function
factor. Valid integers are: 1, 10, and 100; valid scale factors are: s (seconds), ms
(milliseconds), us (microseconds), ns (nanoseconds), ps (picoseconds), and fs
(femtoseconds).

$vt can optionally have temperature (in Kelvin units) as an input argument and returns
the thermal voltage (kT/q) at the given temperature. $vt without the optional input
temperature argument returns the thermal voltage using $temperature.

Note: Previous Verilog-A modules using $realtime may not produce the same results as in the past as
$realtime used to return time scaled to one (1) second. If the time_unit of the ‘timescale directive is
set to 1s, the behavior shall be the same. For analog blocks, the $abstime function should typically be
used, as it returns time in seconds.

10.2 $random function

The syntax for this function is shown in Syntax 10-2.

Syntax 10-2—Syntax for the random_function

$random provides a mechanism for generating random numbers. The function returns a
new 32-bit random number each time it is called. The random number is a signed integer;
it can be positive or negative.

seed_expression controls the numbers $random returns. seed shall be a reg, integer, or time
variable. The seed value shall be assigned to this variable prior to calling $random.

Examples:

Where b > 0, the expression ($random % b) gives a number in the following range:
[(-b+1) : (b-1)].

The following code fragment shows an example of random number generation between
-59 and 59:

integer rand;
rand = $random % 60;

10.3 $dist_ functions

The syntax for these functions are shown in Syntax 10-3.

random_function ::=
$random [(seed_expression)] ;
10-2 Verilog-AMS Language Reference Manual Version 2.0

$dist_ functions System tasks and functions
Syntax 10-3—Syntax for the probabilistic distribution functions

The following rules apply to these functions.

• All parameters to the system functions are real values, except for seed (which is
defined by $random()). For the $rdist_exponential, $rdist_poisson, $rdist_chi_square,
$rdist_t, and $rdist_erlang functions, the parameters mean, degree_of_freedom,
and k_stage shall be greater than zero (0).

• Each of these functions returns a pseudo-random number whose characteristics
are described by the function name, e.g., $rdist_uniform returns random numbers
uniformly distributed in the interval specified by its parameters.

• For each system function, the seed parameter is an inout parameter; that is, a
value is passed to the function and a different value is returned. The system
functions shall always return the same value given the same seed. This facilitates
debugging by making the operation of the system repeatable. The argument for
seed shall be an integer variable, which is initialized by the user and only updated
by the system function. This ensures the desired distribution is achieved.

• All functions return a real value.

• In $rdist_uniform, the start and end parameters are real inputs which bound the
values returned. The start value shall be smaller than the end value.

• The mean parameter used by $rdist_normal, $rdist_exponential, $rdist_poisson, and
$rdist_erlang is an real input which causes the average value returned by the
function to approach the value specified.

• The standard_deviation parameter used by $rdist_normal is a real input, which
helps determine the shape of the density function. Using larger numbers for
standard_deviation spreads the returned values over a wider range. Using a mean
of zero (0) and a standard_deviation of one (1), $rdist_normal generates Gaussian
distribution.

distribution_functions ::=
 $digital_dist_functions (args) ;
| $rdist_uniform (seed, start_expression, end_expression) ;
| $rdist_normal (seed, mean_expression, standard_deviation_expression) ;
| $rdist_exponential (seed, mean_expression) ;
| $rdist_poisson (seed, mean_expression) ;
| $rdist_chi_square (seed, degree_of_freedom_expression) ;
| $rdist_t (seed, degree_of_freedom_expression) ;
| $rdist_erlang (seed, k_stage_expression, mean_expression) ;

seed ::=
integer_variable_identifier
Version 2.0 Verilog-AMS Language Reference Manual 10-3

System tasks and functions Simulation control system tasks
• The degree_of_freedom parameter used by $rdist_chi_square and $rdist_t is a real
input, which helps determine the shape of the density function. Using larger
numbers for degree_of_freedom spreads the returned values over a wider range.

10.4 Simulation control system tasks

There are two simulation control system tasks, $finish and $stop.

10.4.1 $finish

The syntax for this task is shown in Syntax 10-4.

Syntax 10-4—Syntax for the finish_task

$finish simply makes the simulator exit. If an expression is supplied to this task, its value
determines which diagnostic messages are printed before the prompt is issued, as shown
in Table 10-1. One (1) is the default if no argument is supplied.

10.4.2 $stop

The syntax for this task is shown in Syntax 10-5.

Syntax 10-5—Syntax for the stop_task

$stop causes simulation to be suspended at a converged timepoint. This task takes an
optional expression argument (0, 1, or 2), which determines what type of diagnostic
message is printed. The amount of diagnostic messages output increases with the value
of n, as shown in Table 10-1.

Table 10-1—Diagnostic messages

Parameter Message

0 Prints nothing

1 Prints simulation time and location

2 Prints simulation time, location, and statistics about the memory and CPU time used in simulation

finish_task ::=
$finish [(n)] ;

stop_task ::=
$stop [(n)] ;
10-4 Verilog-AMS Language Reference Manual Version 2.0

File operation tasks System tasks and functions
10.5 File operation tasks

This section details the file operation tasks.

10.5.1 $fopen

The syntax for this task is shown in Syntax 10-6.

Syntax 10-6—Syntax for the file_open_task

$fopen opens the file specified as an argument and returns a 32-bit multichannel
descriptor which is uniquely associated with the file. It returns 0 if the file could not be
opened for writing.

The multichannel descriptor can be thought of as a set of 32 flags, where each flag
represents a single output channel. The least significant bit (bit 0) of a multichannel
descriptor always refers to the standard output. The standard output is also called
channel 0. The other bits refer to channels which have been opened by $fopen.

The first call to $fopen opens channel 1 and returns a multichannel descriptor value of
2—that is, bit 1 of the descriptor is set. A second call to $fopen opens channel 2 and
returns a value of 4—that is, only bit 2 of the descriptor is set. Subsequent calls to $fopen
open channels 3, 4, 5, and so on and return values of 8, 16, 32, and so on, up to a
maximum of 32 open channels. Thus, a channel number corresponds to an individual bit
in a multichannel descriptor.

10.5.2 $fclose

The syntax for this task is shown in Syntax 10-7.

Syntax 10-7—Syntax for the file_close_task

$fclose closes the channels specified in the multichannel descriptor and does not allow
any further output to the closed channels. $fopen reuses channels which have been closed.

10.6 Display tasks

The syntax for these functions are shown in Syntax 10-8.

file_open_task ::=
integer multi_channel_descriptor = $fopen (" file_name ") ;

file_close_task ::=
$fclose (multi_channel_descriptor_identifier) ;
Version 2.0 Verilog-AMS Language Reference Manual 10-5

System tasks and functions Display tasks
Syntax 10-8—Syntax for the display_tasks

The following rules apply to these functions.

— $strobe provides the ability to display simulation data when the simulator has
converged on a solution for all nodes.

— $strobe displays its arguments in the same order they appear in the argument list.
Each argument can be a quoted string, an expression which returns a value, or a
null argument.

— The contents of string arguments are output literally, except when certain escape
sequences are inserted to display special characters or specify the display format
for a subsequent expression.

— Escape sequences are inserted into a string in three ways:

• The special character \ indicates the character to follow is a literal or non-
printable character (see Table 10-2).

• The special character % indicates the next character shall be interpreted as a
format specification which establishes the display format for a subsequent
expression argument (see Table 10-3). For each % character which appears in a
string, a corresponding expression argument shall be supplied after the string.

• The special character string %% indicates the display of the percent sign character
(%) (see Table 10-2).

— Any null argument produces a single space character in the display. (A null
argument is characterized by two adjacent commas (,,) in the argument list.)

— When $strobe is invoked without arguments, it simply prints a newline character.

The $display task provides the same capabilities as $strobe. The $write task provides the
same capabilities as $strobe, but with no newline. The $monitor task provides the same
capabilities as $strobe, but outputs only when a parameter changes.

10.6.1 Escape sequences for special characters

The escape sequences shown in Table 10-2, when included in a string argument, print
special characters.

display_tasks ::=
 $strobe (list_of_arguments) ;
| $display (list_of_arguments) ;
| $monitor (list_of_arguments) ;
| $write (list_of_arguments) ;
10-6 Verilog-AMS Language Reference Manual Version 2.0

Display tasks System tasks and functions
10.6.2 Format specifications

Table 10-3 shows the escape sequences used for format specifications. Each escape
sequence, when included in a string argument, specifies the display format for a
subsequent expression. For each % character (except %m and %%) which appears in a
string, a corresponding expression shall follow the string in the argument list, except a
null argument. The value of the expression replaces the format specification when the
string is displayed.

Any expression argument which has no corresponding format specification is displayed
using the default decimal format in $strobe.

The format specifications in Table 10-4 are used for real numbers and have the full
formatting capabilities available in the C language. For example, the format specification
%10.3g sets a minimum field width of 10 with three (3) fractional digits.

Table 10-2— Escape sequences for printing special characters

\n The newline character

\t The tab character

\\ The \ character

\" The " character

\ddd A character specified by 1 to 3 octal digits

%% The % character

Table 10-3— Escape sequences for format specifications

%h or %H Display in hexadecimal format

%d or %D Display in decimal format

%o or %O Display in octal format

%b or %B Display in binary format

%c or %C Display in ASCII character format

%m or %M Display hierarchical name

%s or %S Display as a string

Table 10-4— Format specifications for real numbers

%e or %E Display ‘real’ in an exponential format

%f or %F Display ‘real’ in a decimal format

%g or %G Display ‘real’ in exponential or decimal format,
whichever format results in the shorter printed output
Version 2.0 Verilog-AMS Language Reference Manual 10-7

System tasks and functions Announcing discontinuity
10.6.3 Hierarchical name format

The %m format specifier does not accept an argument. Instead, it causes the display task
to print the hierarchical name of the module, task, function, or named block which
invokes the system task containing the format specifier. This is useful when there are
many instances of the module which call the system task. One obvious application is
timing check messages in a flip-flop or latch module; the %m format specifier pinpoints
the module instance responsible for generating the timing check message.

10.6.4 String format

The %s format specifier is used to print ASCII codes as characters. For each %s
specification which appears in a string, a corresponding parameter shall follow the string
in the argument list. The associated argument is interpreted as a sequence of 8-bit
hexadecimal ASCII codes, with each 8 bits representing a single character. If the
argument is a variable, its value shall be right-justified so the right-most bit of the value
is the least-significant bit of the last character in the string. No termination character or
value is required at the end of a string and leading zeros (0) are never printed.

10.7 Announcing discontinuity

The $discontinuity function is used to give hints to the simulator about the behavior of the
module so the simulator can control its simulation algorithms to get accurate results in
exceptional situations. This function does not directly specify the behavior of the
module. $discontinuity shall be executed whenever the analog behavior changes
discontinuously.

The general form is

$discontinuity[(constant_expression)];

where constant_expression indicates the degree of the discontinuity.
$discontinuity(i) implies a discontinuity in the i’th derivative of the constitutive
equation with respect to either a signal value or time where i must be non-negative.
Hence, $discontinuity(0) indicates a discontinuity in the equation,
$discontinuity(1) indicates a discontinuity in its slope, etc.

Note: Because discontinuous behavior can cause convergence problems, discontinuity shall be avoided
whenever possible.

The filter functions (transition(), slew(), laplace(), etc.) can be used to smooth discontinuous
behavior. However, in some cases it is not possible to implement the desired
functionality using these filters. In those cases, the $discontinuity function shall be
executed when the signal behavior changes abruptly.

Note: Discontinuity created by switch branches and built-in system functions, such as transition() and
slew(), does not need to be announced.
10-8 Verilog-AMS Language Reference Manual Version 2.0

Announcing discontinuity System tasks and functions
Examples:

Example 1

The following example uses the discontinuity function to model a relay.

module relay (c1, c2, pin, nin) ;
inout c1, c2 ;
input pin, nin ;
electrical c1, c2, pin, nin ;
parameter real r=1 ;

analog begin
@(cross(V(pin,nin))) $discontinuity ;
if (V(pin,nin) >= 0)

I(c1,c2) <+ V(c1,c2)/r;
else

I(c1,c2) <+ 0 ;
end

endmodule

In this example, cross() controls the time step so the time when the relay changes position
is accurately resolved. It also triggers the $discontinuity function, which causes the
simulator to react properly to the discontinuity. This would have been handled
automatically if the type of the branch (c1,c2) had been switched between voltage and
current.

Example 2

Another example is a source which generates a triangular wave. In this case, neither the
model nor the waveforms generated by the model are discontinuous. Rather, the
waveform generated is piecewise linear with discontinuous slope. If the simulator is
aware of the abrupt change in slope, it can adapt to eliminate problems resulting from the
discontinuous slope (typically changing to a first order integration method).

module triangle(out);
output out;
voltage out;
parameter real period = 10.0, amplitude = 1.0;
integer slope;
real offset;

analog begin
@(timer(0, period)) begin

slope = +1;
offset = $abstime ;
$discontinuity;

end

@(timer(period/2, period)) begin
slope = -1 ;
offset = $abstime;
$discontinuity ;

end
Version 2.0 Verilog-AMS Language Reference Manual 10-9

System tasks and functions Time related functions
V(out) <+ amplitude*slope*
(4*($abstime - offset)/period - 1);

end
endmodule

10.8 Time related functions

The $bound_step() function puts a bound on the next time step. It does not specify exactly
what the next time step is, but it bounds how far the next time point can be from the
present time point. The function takes the maximum time step as an argument. It does
not return a value.

The general form is

$bound_step (expression) ;

where expression is a required argument and represents the maximum timestep the
simulator can advance.

Examples:

The example below implements a sinusoidal voltage source and uses the $bound_step()
function to assure the simulator faithfully follows the output signal (it is forcing 20 points
per cycle).

module vsine(out);
output out;
voltage out;
parameter real freq=1.0, ampl=1.0, offset=0.0;

analog begin
V(out) <+ ampl*sin(2.0*‘M_PI*freq*$abstime) + offset;
$bound_step(0.05/freq);

end
endmodule

For details on the last_crossing() function, see 4.4.10.

10.9 Interpolation Function

The $table_model function models the behavior of a system by interpolating between data
points that are samples of that system’s behavior. To build such a model, the user needs
to provide a set of sample behavior points (xi1, xi2, .., xiN, yi) so that f(xi1, xi2, .., xiN) =
yi, where f is the model function and N is the number of independent variables of the
model. Using interpolation techniques, one can get the model value at any point in the
domain of the sample points approximately. In the case when the evaluated point is
outside the domain of the sample points, extrapolation techniques can be used the
10-10 Verilog-AMS Language Reference Manual Version 2.0

Interpolation Function System tasks and functions
calculate the model value at that point. However, extrapolation is usually unreliable
when the evaluated point is far from the domain of the sample points.

The syntax for the table_model function is shown in Syntax 10-9.

Syntax 10-9—Syntax for table model function

10.9.1 Table Model Inputs

table_inputs are numerical expressions that are used as the independent model
variables. They can be any legal expressions that can be assigned to an analog signal.

10.9.2 Data Source

data_source specifies the source of sample points for the table model. There are two
kinds of data sources: files and arrays. The file source requires that the sample points be
stored in a file, while the array source requires that the data points be stored in a set of
array variables. The user can select the data source by either providing the file name of
a file source or a set of array variables.

For a file source, conceptually the sample points are stored in the following format:

P1 P2 P3 ... PM

where Pi (i =1...M) are the sample points. Each sample point Pi is represented as a
sequence of numbers in the order of Xi1 Xi2 .. XiN Yi, where Xik is the coordinate of the
sample point in k’th dimension and Yi is the model value at this sample point. Each

table_model_function ::=
$table_model (table_inputs, table_source, table_control_string)

table_inputs::=
expr{, expr}

table_source ::=
filename_string | table_model_array

table_model_array::=
1st_dim_array_identifier [, 2nd_dim_array_identifier [, 3rd_dim_array_identifier]]],

output_array_identifier | multi_dimensional_array_identifier

table_control_string :: = "[1st_dim_table_sub_ctrl_string] [, 2nd_dim_table_sub_ctrl_string [,
3rd_dim_table_sub_ctrl_string]]"

table_sub_ctrl_string ::=
[table_degree_char] [table_extrap_char]

table_degree_char ::=
1 | 2 | 3

table_extrap_char ::=
C | L | S | E
Version 2.0 Verilog-AMS Language Reference Manual 10-11

System tasks and functions Interpolation Function
sample point must be separated by a newline. To increase readability of the data file,
comments can occur in any place of the file. Comments begin with ‘#’ and end with a
newline.

The sample points can be stored in the file in any order. However, the lexical ascending
order is recommended for performance reason. The lexical order Pi < Pj holds if and only
if there exists k, so that Xil= Xjl (l = 1...k-1) and Xik < Xjk. If the sample points are not
required to be any particular order. The following shows an sample data file:

If the user choose the array source, a set of one-dimensional arrays or a single multi-
dimensiona array that contains the data points should be passed to the table_model
function. The size of these arrays is the number of sample points in the table, M. The data
will be stored in the arrays such that for the kth dimension of the ith sample point,
kth_dim_array_identifier[i] = Xik and such that for the ith sample point
output_array_identifier[i] = Yi .

If a multi-dimensional array, that array must be two dimensional. The first dimension is
designated for points and the second dimension is is designated for coordinates of the
point and its values. Suppose p is such an array, p[i][j] contains the value of the j’th
coordinate of i’th point when and p[i][N] contains the value of the sample
point, where N is the dimension of the table_model.

10.9.3 Control String

The control string is used to control the numerical aspects of the interpolation process. It
consists of subcontrol strings for each dimension of the model. The subcontrol string

example.tbl
2-D table model sample example
#
x y f(x,y)
 -10 -10 0
 -10 -8 -0.4
 -10 -6 -0.8
 -9 -10 0.2
 -9 -8 -0.2
 -9 -6 -0.6
 -9 -4 -1
 -8 -10 0.4
 -8 -9 0.2
 -8 -7 -0.2
 -8 -5 -0.6
 -8 -3 -1
 -7 -10 0.6
 -7 -9 0.4
 -7 -8 0.2
 -7 -7 0
 -7 -6 -0.2
 -7 -5 -0.4

0 j N<≤
10-12 Verilog-AMS Language Reference Manual Version 2.0

Interpolation Function System tasks and functions
may contain one degree character and one or two extrapolation method characters. The
degree is a digit representing the degrees of the splines used for the interpolation. The
degree should not exceed 3. When the degree character does not appear in the subcontrol
string, degree 1 (i.e. linear interpolation) is assumed.

The extrapolation method controls how the point is evaluated when the point is beyond
the region of the user provided sample points. Three extrapolation methods are supported
(see Figure 10.1). The Clamp extrapolation method uses a horizontal line that passes
through the nearest sample point, also called the end point, to extend the model
evaluation. The Linear extrapolation method models the extrapolation through a tangent
line at the end point. The Spline extrapolation method uses the polynomial for the nearest
segment (the segment at the end) to evaluate a point beyond the interpolation area. The
user can also disable extrapolation by choosing the Error extrapolation method. In this
case, when the system tries to evaluate a point beyond the interpolation region, an
interpolation error will be reported. The extrapolation method characters used to specify
the extrapolation methods are shown in Table 10-5.

Users can use up to 2 extrapolation method characters to specify the extrapolation
method used for each end. When no extrapolation method character is given, the Linear
extrapolation method will be used for both ends as default. When one extrapolation

Table 10-5—Meaning of $table_model extrapolation character

extrapolation character meaning of the character

C Clamp extrapolation

L Linear extrapolation (default)

S Spline extrapolation

E Error extraplation

Clamp extrapolation

Linear extrapolation

extrapolation
interpolation

Figure 10 Using the CLAMP and LINEAR end conditions

x

y

Spline extrapolation
Version 2.0 Verilog-AMS Language Reference Manual 10-13

System tasks and functions Interpolation Function
method character is given, the specified extrapolation method will be used for both ends.
When two extrapolation method characters are given, the first character specifies the
extrapolation method used for the end with smaller coordinate value, and the second
character is used for the end with larger coordinate value.

Table 10-6 contains some examples of the control strings and interpretation.

10.9.4 Examples

The following examples are for the same 2-D table model but using the different types
of data source.

Example 1: $table_model with file data source

Note the contents of example.tbl are those given earlier in this section.

Table 10-6—Example control strings and their interpretation

control string

 1st
dimension

interpolation
method

1st
dimen.

left
extrap.
method

1st
dimen.
right

extrap.
method

 2nd
dimen.
interp.
method

2nd
dimen.

left
extrap.
method

2nd
dimen.
right

extrap.
method

“1CL,3SL” 1 Clamp Linear 3 Spline Linear

“1CL,3SL” 1 Clamp Linear 3 Spline Linear

“1L,3S” 1 Linear Linear 3 Spline Spline

“1,3CL” 1 Linear Linear 3 Clamp Linear

“1” 1 Linear Linear 1 Linear Linear

“,3” 1 Linear Linear 3 Linear Linear

“” 1 Linear Linear 1 Linear Linear

module measured_resistance (a, b);
electrical a, b;
inout a, b;

analog begin
 I(a, b) <+ $table_model (V(a), V(b),
“example.tbl", "3S,1S");
end
endmodule
10-14 Verilog-AMS Language Reference Manual Version 2.0

Interpolation Function System tasks and functions
Example 2: $table_model with data source in one-dimensional arrays

module measured_resistance (a, b);
electrical a, b;
inout a, b;
real x[0:17], y[0:17], f_xy[0:17];

analog begin
 @(initial_step) begin
 x[0]= -10; y[0]=-10; f_xy[0]=0; // 0th sample point
 x[1]= -10; y[1]=-8; f_xy[1]=-0.4; // 1st sample point
 x[2]= -10; y[2]=-6; f_xy[2]=-0.8; // 2nd sample point
 x[3]= -9; y[3]=-10; f_xy[3]=0.2;
 x[4]= -9; y[4]=-8; f_xy[4]=-0.2;
 x[5]= -9; y[5]=-6; f_xy[5]=-0.6;
 x[6]= -9; y[6]=-4; f_xy[6]=-1;
 x[7]= -8; y[7]=-10; f_xy[7]=0.4;
 x[8]= -8; y[8]=-9; f_xy[8]=0.2;
 x[9]= -8; y[9]=-7; f_xy[9]=-0.2;
 x[10]= -8; y[10]=-5; f_xy[10]=-0.6;
 x[11]= -8; y[11]=-3; f_xy[11]=-1;
 x[12]= -7; y[12]=-10; f_xy[12]=0.6;
 x[13]= -7; y[13]=-9; f_xy[13]=0.4;
 x[14]= -7; y[14]=-8; f_xy[14]=0.2;
 x[15]= -7; y[15]=-7; f_xy[15]=0;
 x[16]= -7; y[16]=-6; f_xy[16]=-0.2;
 x[17]= -7; y[17]=-5; f_xy[17]=-0.4;
 end
 I(a, b) <+ $table_model (V(a), V(b), x, y, f_xy, "3S,1S");
end
endmodule
Version 2.0 Verilog-AMS Language Reference Manual 10-15

System tasks and functions Interpolation Function
Example 3: $table_model with data source in a multi-dimensional array

module measured_resistance (a, b);
electrical a, b;
inout a, b;
real d[0:17][0:2]; // data source

analog begin
 @(initial_step) begin
 d[0][0]= -10; d[0][1]=-10; d[0][2]=0; // 0th sample point
 d[1][0]= -10; d[1][1]=-8; d[1][2]=-0.4; // 1st sample point
 d[2][0]= -10; d[2][1]=-6; d[2][2]=-0.8; // 2nd sample point
 d[3][0]= -9; d[3][1]=-10; d[3][2]=0.2;
 d[4][0]= -9; d[4][1]=-8; d[4][2]=-0.2;
 d[5][0]= -9; d[5][1]=-6; d[5][2]=-0.6;
 d[6][0]= -9; d[6][1]=-4; d[6][2]=-1;
 d[7][0]= -8; d[7][1]=-10; d[7][2]=0.4;
 d[8][0]= -8; d[8][1]=-9; d[8][2]=0.2;
 d[9][0]= -8; d[9][1]=-7; d[9][2]=-0.2;
 d[10][0]= -8; d[10][1]=-5; d[10][2]=-0.6;
 d[11][0]= -8; d[11][1]=-3; d[11][2]=-1;
 d[12][0]= -7; d[12][1]=-10; d[12][2]=0.6;
 d[13][0]= -7; d[13][1]=-9; d[13][2]=0.4;
 d[14][0]= -7; d[14][1]=-8; d[14][2]=0.2;
 d[15][0]= -7; d[15][1]=-7; d[15][2]=0;
 d[16][0]= -7; d[16][1]=-6; d[16][2]=-0.2;
 d[17][0]= -7; d[17][1]=-5; d[17][2]=-0.4;
 end
 I(a, b) <+ $table_model (V(a), V(b), d, "3S,1S");
end
endmodule
10-16 Verilog-AMS Language Reference Manual Version 2.0

Interpolation Function System tasks and functions
Version 2.0 Verilog-AMS Language Reference Manual 10-17

System tasks and functions Interpolation Function
10-18 Verilog-AMS Language Reference Manual Version 2.0

	System tasks and functions
	10.1 Environment parameter functions
	10.2 $random function
	10.3 $dist_ functions
	10.4 Simulation control system tasks
	10.4.1 $finish
	10.4.2 $stop

	10.5 File operation tasks
	10.5.1 $fopen
	10.5.2 $fclose

	10.6 Display tasks
	10.6.1 Escape sequences for special characters
	10.6.2 Format specifications
	10.6.3 Hierarchical name format
	10.6.4 String format

	10.7 Announcing discontinuity
	10.8 Time related functions
	10.9 Interpolation Function
	10.9.1 Table Model Inputs
	10.9.2 Data Source
	10.9.3 Control String
	10.9.4 Examples

