
Proposal for supporting m-factor
in Verilog-AMS LRM

Preliminary 0.2

Date: 05/24/04

05/24/04

Proposal for supporting m-factor in Verilog-AMS LRM Preliminary 0.2
1 Introduction

This document outlines a proposal to support the SPICE m-factor construct in
Verilog-AMS LRM.

2 References

[1] Device Modeling Committee proposal for mfactor(multiplicity factor)

[2] Cadence Spectre documentation for mfactor

[3] Cadence AMS Documentation on how mfactors are netlisted

[4] Accellera Verilog-AMS LRM - Multiplicity factor on subciruits

3 Introduction to M-factor

M-factor refers to the instance multiplicity scaling factor used in SPICE and
supported by most SPICE-like simulators. It is also known to many extraction and
LVS tools.

It is used to implicitly create multiple parallel copies of a device without the need to
instantiate a whole set of such devices in parallel. It helps simulation performance
because leaf-level devices can scale themselves to behave as it they were multiple
devices connected in parallel.

The m-factor’s value is inherited from subcircuit to subcircuit down an instantiation
hierarchy.

3.1 Example (from Spectre, a SPICE-like simulator)

I1 vdd gnd one // instantiation of the subckt one

subckt one(a,b)
 I2 a b two m=3
ends

subckt two(a,b)
 I3 a b three m=4
ends

subckt three(a,b)
5/24/04 1

Proposal for supporting m-factor in Verilog-AMS LRM Preliminary 0.2
 I4 a b resistor m=2
ends

According to [2]Cadence Spectre documentation for mfactor, on page 1:

“ Subcircuits always have an implicitly defined parameter m. This parameter is
passed to all components in the subcircuit and each component is expected to
multiply it by its own multiplicity factor. In this way, it is possible to efficiently model
several copies of the subcircuit in parallel. It is an error to attempt to explicitly define
m on a parameters line. Also, because m is only implicitly defined, it is not
available for use in expressions in the subcircuit.“

In many SPICE simulators, ‘m’ is an implicit parameter of every subckt. The effective
value of m-factor for every subcircuit is the product of the mfactor value(local
contribution) of itself with the effective mfactor value of its parent. In the example
above:

The effective value of ‘m’ in I1 is '1'.

The effective value of ‘m’ in I1.I2 is '3' (3*1).

The effective value of ‘m’ in I1.I2.I3 is ‘12’ (4*3).

Finally, the effective value of ‘m’ in the resistor is ‘24’ (2*12).

3.2 Uses of m-factor

It is extensively used in analog design and is handled correctly by schematic tools,
including Cadence’s Composer product. Note that the word ‘m’ is specifically used
to refer to m-factor in SPICE. Unlike SPICE, in schematics, the m-factor value can
be specified as a property with any name like ‘multiplicity factor’ or ‘scaling factor’.
The schematic and its netlisting program can be then used to map that property to
the appropriate special name ‘m’ in SPICE or other SPICE-like languages.

The m-factor construct is not supported in the Verilog-A/Verilog-AMS “netlist”
languages[4]Accellera Verilog-AMS LRM - Multiplicity factor on subciruits, on page
1 and this document describes a couple of proposals and a recommendation to
provide that support.

4 Terminology/Definitions

For the purposes of describing m-factor in Verilog-AMS, it can be seen as containing
5/24/04 2

Proposal for supporting m-factor in Verilog-AMS LRM Preliminary 0.2
three components. They are:

1. Implicit mfactor: This refers to the default value of m-factor in every Verilog-AMS
module. Its value is 1. It will be used to compute the effective mfactor value for
the module in the absence of the explicit mfactor value.

2. Explicit mfactor: This refers to the local mfactor contribution for every Verilog-
AMS instance that is specified explicitly as a part of the instantiation statement.
When specified, it will be used(instead of the implicit mfactor value) to compute
the effective mfactor value for the module.

3. Effective mfactor: This refers to the effective(inherited) mfactor value for every
Verilog-AMS instance/module. If the explicit mfactor is specified for an instance,
the effective mfactor for that instance/module is the product of its explicit mfactor
and the effective mfactor of its parent. In the absence of the explicit mfactor for
an instance, its effective mfactor is the product of its implicit mfactor and the
effective mfactor of its parent.

5 Requirements of m-factor support in Verilog-AMS

1. The mfactor value needs to be propagated through the hierarchy which can be any
combination of analog and digital blocks. Note that existing digital blocks will not
have a mfactor but the mfactor value still needs to be propagated through these
digital blocks.

2. It is not acceptable to modify any existing digital blocks to support m-factor.
Appropriate mfactor values should automatically propagate through these blocks in
the hierarchy.

3. At each hierarchical level, the effective mfactor value is the product of the
instance’s local mfactor value(which can be explicit or implicit) and its parent’s
effective mfactor value.

4. If the mfactor is not specified for a module(instance), its local contribution value
should be considered as 1. In other words, the effective mfactor value for such a
module will be the same as its parent module’s effective mfactor value.

5. The mfactor value(expression) can be considered like a globally static expression
i.e a constant.

6. It should be possible to refer to the effective mfactor value in analog behavioral
code. Also, it is neither required nor expected to be used in digital behavioral code.
Note that the syntax and semantics for analog behavioral access of mfactor is being
defined by the device modelling subcommittee[1]Device Modeling Committee
5/24/04 3

Proposal for supporting m-factor in Verilog-AMS LRM Preliminary 0.2
proposal for mfactor(multiplicity factor), on page 1.

7. The value of mfactor will always be a numeric(i.e an integer or real) and it shall be
greater than zero.

8. It will not be possible to set the mfactor value via the defparam statement. This is
to avoid a cycle when evaluating the RHS parameter expression in the defparam
statement. For eg, consider the following defparam statement in an instance, say
top.foo1.foo11:

defparam top.m = m;

Here, the RHS value is the effective mfactor value in top.foo1.foo11, which already
would have been computed using the module top’s effective mfactor value. It is not
clear whether the defparam statement will change the explicit or effective mfactor
value in the LHS. In any case, changing the top module’s mfactor will inturn,
introduce a change in its value, which is a cycle.

6 Proposals

There are four proposals(with pros and cons) which address the requirements for
using mfactor in Verilog-AMS. They specify how the mfactor value can be set
explicitly or used implicitly to calculate the effective mfactor for each instance/
module. The suggested semantics(/syntax) to set the mfactor value and propagate
it through the hierarchy is expected to be common for both structural and behavioral
designs.

The first proposal suggests the use of attributes to propagate the values through the
hierarchy using parameter association by name and order. The second and third
proposals are variations of a common theme - suggesting a new keyword to specify
the mfactor parameter to enable parameter association by order. The fourth proposal
suggests the use of a special parameter name(instead of a keyword) for the mfactor
parameter.

6.1 Two new attributes to refer to the mfactor parameter

This proposal suggests the use of two new attributes: the passed_mfactor and the
inherited_mfactor .

The passed_mfactor attribute is SOLELY for PASSING THE MFACTOR DOWN A
HIERARCHY.

The inherited_mfactor attribute will enable the possibility of using parameter
association by order when the mfactor is passed down the hierarchy.
5/24/04 4

Proposal for supporting m-factor in Verilog-AMS LRM Preliminary 0.2
6.1.1 Passing the mfactor down the hierarchy

To pass the mfactor down the hierarchy, a parameter will be passed to an
instance with the value of mfactor(explicit mfactor) that is desired to be passed.
Also, an attribute will be added to the instance called passed_mfactor which will
specify which parameter assignment is the mfactor assignment. e.g.;

module top;
(* passed_mfactor = “m” *) Foo #(.m(3)) F1;
endmodule

module Foo;
resistor #(.r(1k)) R1(a,b);
endmodule

Notes:

1. The attribute is on the instance.

2. The module being instantiated (in this case Foo) does not have to have the
parameter (in this case m) declared in its interface - in fact this would be the
typical situation (just like SPICE/Spectre). In the absence of this parameter
declaration, Foo is considered to have a default implicit mfactor of value ‘1’.

3. If the passed_mfactor specifies a parameter that doesn’t exist on the
instantiation line, then, the attribute value will be ignored. In other words, the
instance will not have an explicit mfactor setting. Therefore, the implicit
mfactor for that instance will be used to calculate its effective mfactor. e.g. in
the above example if there is no "m" parameter assignment in the instantiation
of F1.

4. Although in the examples in this document, "m" is the parameter name
typically used in the passed_mfactor attribute, other parameter names can be
used e.g:

(* passed_mfactor = “mfactor” *) Foo #(.mfactor(3)) F1;

5. The effective mfactor value for every module/subcircuit is calculated as
specified in 3.Effective mfactor: This refers to the effective(inherited) mfactor
value for every Verilog-AMS instance/module. If the explicit mfactor is
specified for an instance, the effective mfactor for that instance/module is the
5/24/04 5

Proposal for supporting m-factor in Verilog-AMS LRM Preliminary 0.2
product of its explicit mfactor and the effective mfactor of its parent. In the
absence of the explicit mfactor for an instance, its effective mfactor is the
product of its implicit mfactor and the effective mfactor of its parent., on page 3

6. When netlists are generated from schematics, the netlister
program[3]Cadence AMS Documentation on how mfactors are netlisted, on
page 1 can typically generate the passed_mfactor attribute whenever a
parameter of name ‘m’ is encountered in the instantiation statement. The
schematics/netlister program can also use a special database property to
indicate/identify a mfactor parameter with any name other than ‘m’.

6.1.2 Enable parameter association by order for explicit mfactor

In to specify the explicit mfactor value using the parameter association by order
notation, the mfactor needs to be declared in the module. This can be enabled
using a new parameter declaration that has an associated attribute called "(*
inherited_mfactor *)". The parameter declared will typically be called ’m’ but any
legal Verilog identifier name can used.

The default value of the mfactor parameter will always be ‘1’. It will be an error to
set it to any other value in the parameter declaration statement. It will also be an
error if the identifiers used for mfactor in the passed_mfactor and
inherited_mfactor attributes do not match. It will be error to use the declared
mfactor parameter in any expression inside the module. Eg:

module top;
(* passed_mfactor = “m” *) Foo #(3) F1;
endmodule

module Foo;
(* inherited_mfactor *) parameter real m = 1;

resistor #(.r(1k)) R1(a,b);
endmodule

The netlister program can generate the inherited_mfactor attribute whenever a
parameter of name ‘m’ is encountered in the cellview being netlisted. The
schematics/netlister program can also use a special database property to
indicate/identify a mfactor parameter with any name other than ‘m’.
5/24/04 6

Proposal for supporting m-factor in Verilog-AMS LRM Preliminary 0.2
6.1.3 Pros

1. This approach allows mfactor values to be propagated through the hierarchy
including those modules(like digital blocks) which do not have the
inherited_mfactor declaration.

2. The name of ‘mfactor’ is not restricted to be ‘m’ and can be any identifier.
Attributes are used to identify the mfactor parameter for every module/
instance.

3. The schematics and netlister program can either generate these attributes for
a parameter of name ‘m’ or can use database properties to identify any
parameter name other than ‘m’ as a mfactor and generate attributes for that
parameter name.

4. As the mfactor parameter is not allowed in any expression within the module,
the presence of the mfactor parameter declaration does not cause any issues
to the digital blocks and connectivity of the design.

6.1.4 Cons

1. Attributes do not belong to the language. They are just annotations to the
design. So, the attributes mechanism should not be used to add new
semantics(meaning) to the language or have any implications on the existing
language semantics. In this proposal, the ‘passed_mfactor’ attribute is only
used to identify the mfactor parameter in the instance ‘parameter_value_
assignment’ list. It is not modifying any of the semantics of the instance
‘parameter_value_assignment’ list.

The ‘inherited_mfactor’ attribute is used to identify the mfactor parameter at
the time of its declaration. This attribute does modify the semantics of
parameter declaration, in that, its default value and override values do not
follow the regular semantics for parameter declaration. Instead, its final value
is the effective mfactor value as defined earlier in the proposal.

2. The name of the parameter is used in ‘passed_mfactor’ attribute to identify the
mfactor parameter(explicit mfactor) in the instantiation statement. This
approach will be feasible only when a named parameter override is used in
the instantiation statement for instances of modules which do not have a
corresponding ‘inherited_mfactor’ declaration.
5/24/04 7

Proposal for supporting m-factor in Verilog-AMS LRM Preliminary 0.2
6.2 New keyword to enable parameter association by order

This proposal continues to recommend the use of ‘passed_mfactor’ to refer to the
mfactor parameter in the instantiation statement. It address the issue with using
‘inherited_mfactor’ to modify the semantics of a parameter declaration by
suggesting a new keyword ‘mfactor’ and declaration to identify mfactor
parameter. The new declaration can be called the ‘mfactor declaration’ similar to
the ‘ground declaration’ which already exists in Verilog-AMS. For eg:

module top;
(* passed_mfactor = “m” *) Foo #(3) F1;
endmodule

module Foo;
parameter real m = 1;
mfactor m;

resistor #(.r(1k)) R1(a,b);
endmodule

The default value of the mfactor parameter will always be ‘1’. It will be an error to
set it to any other value in the parameter declaration statement. It will also be an
error if the identifiers used for mfactor in the passed_mfactor attribute and the
mfactor declaration do not match. It will be error to use the declared mfactor
parameter in any expression inside the module.

6.2.1 Pros

1. This approach allows mfactor values to be propagated through the hierarchy
including those modules which do not have the inherited_mfactor declaration.

2. The name of ‘mfactor’ is not restricted to be ‘m’ and can be any identifier. The
attribute ‘passed_mfactor’ is used to identify the mfactor parameter for every
instance. A new keyword ‘mfactor’ and declaration ‘mfactor declaration’ is
used to identify the special mfactor parameter within a module. This new
declaration will define the new semantics associated with the mfactor
parameter.

3. The schematics and netlister program can either generate the
passed_mfactor attribute and mfactor keyword for a parameter of name ‘m’
5/24/04 8

Proposal for supporting m-factor in Verilog-AMS LRM Preliminary 0.2
or can use database properties to identify any parameter name other than ‘m’
as a mfactor and generate the attribute/keyword for that parameter name.

4. As the mfactor parameter is not allowed in any expression within the module,
the presence of the mfactor parameter declaration does not cause any issues
to the digital blocks and/or connectivity of the design.

6.2.2 Cons

1. Adding a new keyword to the language can cause compatibility issues with
existing designs. On preliminary investigations, looks like the keyword
‘mfactor’ is not as prevalent as the keyword ‘m’ itself. However, this still
needs further investigation.

2. The name of the parameter is used in ‘passed_mfactor’ attribute to identify
the mfactor parameter(explicit mfactor) in the instantiation statement. This
approach will be feasible only when a named parameter override is used in
the instantiation statement for instances of modules which do not have a
corresponding ‘mfactor declaration’.

6.3 New keyword/Parameter type to enable parameter association by
order

This proposal continues to recommend the use of ‘passed_mfactor’ to refer to the
mfactor parameter in the instantiation statement. In 6.2New keyword to enable
parameter association by order, on page 8, the keyword mfactor is used to
identify the parameter ‘m’ as a special type of parameter. This proposal is a
variation of the keyword usage, in that, it eliminates the new declaration ‘mfactor
declaration’. Instead, the keyword mfactor is used to refer to a new type of
parameter similar to the parameter types - integer and real. For eg:

module top;
(* passed_mfactor = “m” *) Foo #(3) F1;
endmodule

module Foo;
parameter mfactor real m = 1;

resistor #(.r(1k)) R1(a,b);
endmodule

The default value of the mfactor parameter will always be ‘1’. It will be an error to
5/24/04 9

Proposal for supporting m-factor in Verilog-AMS LRM Preliminary 0.2
set it to any other value in the parameter declaration statement. It will also be an
error if the identifiers used for mfactor in the passed_mfactor attribute and
mfactor-typed parameter declaration do not match. It will be error to use the
declared mfactor parameter in any expression inside the module.

6.3.1 Pros

1. This approach allows mfactor values to be propagated through the hierarchy
including those modules which do not have the inherited_mfactor declaration.

2. The name of ‘mfactor’ is not restricted to be ‘m’ and can be any identifier. The
attribute ‘passed_mfactor’ is used to identify the mfactor parameter for every
instance. A new keyword ‘mfactor’ is used to identify the special type of
mfactor parameter. This new type will define the new semantics associated
with the mfactor parameter.

3. The schematics and netlister program can either generate the
passed_mfactor attribute and mfactor keyword for a parameter of name ‘m’
or can use database properties to identify any parameter name other than ‘m’
as a mfactor and generate the attribute/keyword for that parameter name.

4. As the mfactor parameter is not allowed in any expression within the module,
the presence of the mfactor parameter declaration does not cause any issues
to the digital blocks and/or connectivity of the design

6.3.2 Cons

1. mfactor is not really a data type like integer or real.

2. Adding a new keyword to the language can cause compatibility issues with
existing designs. On preliminary investigations, looks like the keyword
‘mfactor’ is not as prevalent as the keyword ‘m’ itself. However, this still
needs further investigation.

3. The name of the parameter is used in ‘passed_mfactor’ attribute to identify
the mfactor parameter(explicit mfactor) in the instantiation statement. This
approach will be feasible only when a named parameter override is used in
the instantiation statement for instances of modules which do not have a
corresponding inherited_mfactor declaration.

6.4 New special parameter in instance parameter list

This proposal is an alternative to the use of ‘passed_mfactor’ attribute in the
5/24/04 10

Proposal for supporting m-factor in Verilog-AMS LRM Preliminary 0.2
instantiation statement to pass the explicit mfactor value. It instead uses the
identifier ‘passed_mfactor’ as a special parameter name which can be used in the
instance parameter list. For eg:

module top;
Foo #(.passed_mfactor(3)) F1;
endmodule

module Foo;
resistor #(.r(1k)) R1(a,b);
endmodule

This proposal can be considered in conjunction with any of the proposals:

6.2New keyword to enable parameter association by order, on page 8,

6.3New keyword/Parameter type to enable parameter association by order, on
page 9,

6.4.1 Pros

1. No new keyword or attributes are required to specify the mfactor parameter.
It is implicitly identified using the special identifier ‘passed_mfactor’ to specify
the explicit mfactor value for that instance.

2. As the mfactor parameter is not allowed in any expression within the module,
the presence of the mfactor parameter declaration does not cause any issues
to the digital blocks and/or connectivity of the design

6.4.2 Cons

1. Potential for conflicts if the same parameter name is used in an existing
design as a regular parameter. This needs further investigation.

2. The mfactor parameter is tied to the name ‘passed_mfactor’ in Verilog-AMS
modules. No other name can become a mfactor parameter in Verilog-AMS.

3. Any existing schematics/netlister programs which associate the name ‘m’ to
mfactor will have to map this name to ‘passed_mfactor’ when generating
Verilog-AMS netlists.
5/24/04 11

Proposal for supporting m-factor in Verilog-AMS LRM Preliminary 0.2
7 Recommendation

The proposal 6.3New keyword/Parameter type to enable parameter association by
order, on page 9 is not recommended as mfactor is not really a data type like integer
or real.

That brings us to three possibilties:

1. The proposal 6.1Two new attributes to refer to the mfactor parameter, on page 4,
uses the attribute mechanism and is already implemented by Cadence. The
possible reservation about this proposal could be in the use of the
“inherited_mfactor” attribute to modify the semantics of a parameter declaration.
It can be perceived as using attributes to modify the language semantics which
may be undesirable.

2. The proposal 6.2New keyword to enable parameter association by order, on
page 8, addresses the potential issue with using “inherited_mfactor” attribute. So,
a combination of this proposal with the “passed_mfactor” attribute in 6.1Two new
attributes to refer to the mfactor parameter, on page 4, is the recommendation.

3. The proposal 6.4New special parameter in instance parameter list, on page 10
provides an alternative to the “passed_mfactor” attribute mechanism. In this
proposal, the special identifier “passed_mfactor” is not a keyword but has a
special meaning which is more of a “magic”. This could still be considered along
with the proposal 6.2New keyword to enable parameter association by order, on
page 8.
5/24/04 12

	1 Introduction
	2 References
	3 Introduction to M-factor
	3.1 Example (from Spectre, a SPICE-like simulator)
	3.2 Uses of m-factor

	4 Terminology/Definitions
	5 Requirements of m-factor support in Verilog-AMS
	6 Proposals
	6.1 Two new attributes to refer to the mfactor parameter
	6.1.1 Passing the mfactor down the hierarchy
	6.1.2 Enable parameter association by order for explicit mfactor
	6.1.3 Pros
	6.1.4 Cons

	6.2 New keyword to enable parameter association by order
	6.2.1 Pros
	6.2.2 Cons

	6.3 New keyword/Parameter type to enable parameter association by order
	6.3.1 Pros
	6.3.2 Cons

	6.4 New special parameter in instance parameter list
	6.4.1 Pros
	6.4.2 Cons

	7 Recommendation

