
Distinctions between tasks, functions and analog functions Tasks and Functions
Section 10

Tasks and Functions

Tasks, functions and analog functions provide the ability to execute common procedures

from several different places in a description. They also provide a means of breaking up

large procedures into smaller ones to make it easier to read and debug the source

descriptions. The clause discusses the differences between tasks and functions, the

differences between functions and analog functions, describes how to define and invoke

task, functions and analog functions, and presents examples of each.

10.1 Distinctions between tasks, functions and analog functions

Refer to IEEE 1364-2001 Verilog HDL for differences between discrete tasks and

functions. The following rules distinguish functions from analog functions:

• Functions execute within one discrete simulation time unit while analog

functions execute within one analog timestep iteration.

• Functions disallows output and inout arguments, but analog function allows

them.

• When the return type is not specified, functions return a one bit reg value but

analog functions return a real value.

• Functions can be called within called within tasks, initial blocks, always blocks

and other functions; but analog functions can be called from analog blocks and

other analog functions.

• Functions can specify time and realtime return values, while analog functions

cannot.

• Functions can specify a return value range, while analog functions cannot.

• Functions can declare registers, named events, local parameters, realtime and

time arguments and local variables, while analog functions cannot.

• Functions can optionally specify a port list, while analog functions cannot.

• The return value from a function is mandatory, but the return value from an

analog function is optional.
Version 2.3_draft Verilog-AMS Language Reference Manual -1

Tasks and Functions Tasks and task enabling
10.2 Tasks and task enabling

Refer to IEEE 1364-2001 Verilog HDL for declaration and usage. Calling analog

functions within tasks is not permitted.

10.3 Functions and function calling

Refer to IEEE 1364-2001 Verilog HDL for declaration and usage. Calling analog

functions within functions is not permitted.

10.4 Analog functions and analog function calling

The purpose of an analog function is to return a value that is to be used within an analog

expression. Each function can be an analog function or a digital function (as defined in

IEEE 1364-2001 Verilog HDL).

10.4.1 Analog function declarations

The syntax for defining an analog function is given in Syntax 0-1.
-2 Verilog-AMS Language Reference Manual Version 2.3_draft

Analog functions and analog function calling Tasks and Functions
Syntax 0-1—Syntax for an analog function declaration

An analog function declaration shall begin with the keywords analog function, optionally

followed by the type of the return value from the function, then the name of the function

and a semicolon, and ending with the keyword endfunction. When specified, the type of

the return value can be either real or integer. An analog function specified without a type,

returns a real value.

Examples:

The following example defines an analog function called maxValue , which returns the

potential of whichever signal is larger.

analog function real maxValue;
input n1, n2 ;
real n1, n2 ;
begin

// code to compare potential of two signal
maxValue = (n1 > n2) ? n1 : n2 ;

end
endfunction

The next example defines an analog function called geomcalc, which returns both the area

and perimeter of a rectangle.

analog_function_declaration ::= (From Annex A - A.6.6)
analog function [analog_function_type] analog_function_identifier ;
analog_function_item_declaration { analog_function_item_declaration }

analog_function_statement

endfunction
analog_function_type ::= integer | real
analog_function_item_declaration ::=

analog_block_item_declaration

| analog_function_input_declaration

| analog_function_output_declaration

| analog_function_inout_declaration

analog_function_input_declaration ::= input [range] list_of_port_identifiers ;
analog_function_output_declaration ::= output [range] list_of_port_identifiers ;
analog_function_inout_declaration ::= inout [range] list_of_port_identifiers ;
analog_block_item_declaration ::= (From Annex A - A.6.8)

{ attribute_instance } parameter_declaration

| { attribute_instance } integer_declaration

| { attribute_instance } real_declaration

analog_function_statement ::= (From Annex A - A.10.4)
{ attribute_instance } analog_function_case_statement

| { attribute_instance } analog_function_conditional_statement

| { attribute_instance } analog_function_loop_statement

| { attribute_instance } analog_function_seq_block

| { attribute_instance } analog_procedural_assignment

| { attribute_instance } analog_system_task_enable
Version 2.3_draft Verilog-AMS Language Reference Manual -3

Tasks and Functions Analog functions and analog function calling
analog function real geomcalc;
input l, w;
output area, perim;
real l, w, area, perim;
begin

area = l * w ;
perim = 2 * (l + w) ;

end
endfunction

10.4.2 Returning a value from an analog function

The analog function declaration implicitly declares a scalar variable, internal to the

analog function, with the same name as the analog function. This variable either defaults

to real or is the same type as the type specified in the analog function declaration. The

analog function definition initializes the return value from the analog function by

assigning the analog function result to the internal variable with the same name as the

analog function. This variable can be read and assigned within the flow; its last assigned

value is passed back on the return call.

It is illegal to declare another object with the same name as the analog function in the

scope where the analog function is declared. Inside the function, there is an implied

variable with the name of the analog function, which may be used in expressions within

the function. It is, therefore, also illegal to declare another object with the same name as

the analog function inside the function scope.

Example:

The following line (from the example in 10.4.1) illustrates this concept:

maxValue = (n1 > n2) ? n1 : n2 ;

When an analog function does not assign its internal variable, the function shall return

zero (0).

When an analog function computes more than one value, output and inout arguments can

be used to pass these values back to the calling context. These variables can be read and

assigned within the flow; the last value assigned during function evaluation is then

assigned to the corresponding expression in the argument list for the function, which

shall be an integer or real identifier or an element of an integer or real array.

Example:

The following lines (from the example in 10.4.1) illustrates this concept:

area = l * w ;
perim = 2 * (l + w) ;
-4 Verilog-AMS Language Reference Manual Version 2.3_draft

Analog functions and analog function calling Tasks and Functions
10.4.3 Calling an analog function

An analog function call is an operand within an analog expression. The analog function

call has the syntax given in ______.

Syntax 0-2—Syntax for analog function call

The order of evaluation of the arguments to an analog function call is undefined.

Example:

The following example uses the maxValue function defined in 10.4.1.

V(out) <+ maxValue(val1, val2) ;

10.4.4 Function Rules

Analog functions have a number of constraints on the declaration and usage. An analog

function shall:

• not access analog nets and branch values.

• not access digital nets and register values.

• declare at least one input argument of a specific type.

• declare the type of each local variable.

• not declare parameters, localparams or aliasparams.

• not use named sequential block, contribution and analog event control

statements.

• only reference local variables or variables passed as arguments.

• only be called within an analog block or other analog function declarations.

• not (directly or indirectly) recursively call itself.

• be able to be called outside of scope that is declared in.

• not enable tasks or call functions.

analog_function_call ::= (From Annex A - A.8.2)
analog_function_identifier { attribute_instance } (analog_expression { , analog_expression })
Version 2.3_draft Verilog-AMS Language Reference Manual -5

Tasks and Functions Analog functions and analog function calling
-6 Verilog-AMS Language Reference Manual Version 2.3_draft

	Tasks and Functions
	10.1 Distinctions between tasks, functions and analog functions
	10.2 Tasks and task enabling
	10.3 Functions and function calling
	10.4 Analog functions and analog function calling
	10.4.1 Analog function declarations
	10.4.2 Returning a value from an analog function
	10.4.3 Calling an analog function
	10.4.4 Function Rules

