Truncating to Digital Time:

 $[{\rm A}/{\rm D}$ events are generated at the midpoint of the rising edges. Precision is ${\rm lnS}]$

Rounding to Digital Time:

Overlay (truncated in red, rounded in green):

Conclusion

In both cases close A/D events give either a 1-tick 0r zero delay: for truncation, events A & B give a 1-tick delay and C & D a zero delay, and vice-versa for rounding.

The digital events for truncation occur earlier than those for rounding when they differ.