
A Mechanism for VHDL Source Protection

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

2

1 Overview

The intent of this specification is to define the VHDL source protection mechanism. It defines the rules to
encrypt the VHDL source. It also defines the format of the encrypted VHDL file. Its primary audiences
are implementers of tools that produce encrypted VHDL, or the tools that consume and process the
encrypted VHDL.

This specification has been described using the context-free syntax described in the IEEE Standard
VHDL Language Reference Manual (IEEE Std. 1076-1993) section 0.2.1.

2 Conventions used in document

This proposal recommends the use of pragmas to demarcate parts of VHDL source that need to be
encrypted and to specify various cryptographic directives to be used during the encryption and decryption
process. For encryption of the VHDL source, the pragmas are defined in the following format. This sub
clause specifies the syntactic mechanism that shall be used for specifying pragmas, without standardizing
on any particular pragmas.

pragma ::= `protect { pragma_expression } \n

pragma_expression ::= pragma_keyword

| pragma_keyword = pragma_value

| pragma_value

pragma_value ::= constant_expression

| string

pragma_keyword := begin

| end

| data_keyowner

| data_keyname

| data_method

| key_keyowner

| key_method

| key_keyname

| data_public_key

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

3

| data_decrypt_key

| author

| author_info

| encrypt_agent

| decrypt_license

| runtime_license

| encoding

| begin_protected

| end_protected

| key_block

| end_key_block

| data_block

| end_data_block

| digest_block

| end_digest_block

| comment

In addition, the following convention is used to define the source of various pragma keywords.

ENCRYPTION INPUT refers to anything that user provides to encrypting tool.

ENCRYPTION OUTPUT refers to the output generated by the encryption tool.

DECRYPTION INPUT refers to the input to decryption tool (which is the output of encrypting tool)

3 Protected Envelopes

Protected Envelopes specify a region of text which shall be encrypted prior to analysis by the source
language processor. These regions of text are structured to provide the source language processor with the
specification of the cryptographic algorithm, key, envelope attributes, and textual design data.

Envelopes may be defined for either of two modes of processing. Encryption envelopes specify the
pragma expressions for encrypting source text regions. Decryption envelopes specify the pragma
expressions for decrypting encrypted text regions. Decryption envelopes may contain other envelopes
within their enclosed data block. The number of nested decryption envelopes that can be processed is
implementation-specified.

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

4

3.1 Specifying Protected Envelopes

All information which identifies a Protected Envelope is introduced by the protect pragma. This pragma
is reserved by this standard for the description of Protected Envelopes, and is the prefix for specifying the
regions and processing specifications for each protected envelope. Additional information is associated
with the pragma by appending pragma expressions.

hdl_envelope ::= encrypt_envelope
| decrypt_envelope

encrypt_envelope ::= protect_pragma encrypt_content_params begin_pragma source_text end_pragma

encrypt_content_params ::= key_block_params [license_params] [encoding_pragma]
[author_info_pragma] [data_params_set] [comment_pragma]

key_block_params ::= {key_params_set}

key_params_set ::= key_keyowner_pragma key_keyname_pragma key_method_pragma

data_params_set ::= data_keyowner_pragma data_keyname_pragma data_method_pragma

license_params ::= decrypt_license_pragma | runtime_license_pragma

decrypt_envelope ::= begin_protected_pragma decrypt_content_params decrypt_data_block
end_protected_pragma

decrypt_content_params := {decrypt_key_block} [encoding_pragma] [author_info_pragma]
[comment_pragma]

decrypt_key_block ::= key_params_set key_block digest_block

key_block ::= key_block_pragma encoded_text end_key_block_pragma

digest_block ::= digest_block_pragma encoded_text end_digest_block_pragma

decrypt_data_block ::= data_block digest_block

data_block ::= data_block_pragma encoded_text end_data_block_pragma

author_info_pragma ::= `protect {author_info_keywords}=string\n

author_info_keywords ::= author | author_info | encrypt_agent

protect_pragma ::= `protect \n

begin_pragma ::= `protect begin \n

end_pragma ::= `protect end \n

key_keyowner_pragma ::= `protect key_keyowner=string \n

key_keyname_pragma ::= `protect key_keyname=string \n

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

5

key_method_pragma ::= `protect key_method=method_name \n

data_keyowner_pragma ::= `protect data_keyowner=string \n

data_keyname_pragma ::= `protect data_keyname=string \n

data_method_pragma ::= `protect data_method=method_name \n

method_name ::= DES | AES | RSA | RC2 | RC4 | RC5

decrypt_license_pragma ::= `protect decrypt_license=string \n

runtime_license_pragma ::= `protect runtime_license=string \n

begin_protected_pragma ::= `protect begin_protected \n

end_protected_pragma ::= `protect end_protected \n

key_block_pragma ::= `protect key_block \n

end_key_block_pragma ::= `protect end_key_block \n

encoding_pragma ::= `protect encoding_descriptor \n

encoding_descriptor ::= encoding=encoding_type [line_length=number] [bytes=number] \n

encoding_type := raw|uuencode|RFC1113_printable | RFC2045_base64 | RFC2045_quoted-printable

digest_block_pragma ::= `protect digest_block \n

end_digest_block_pragma ::= `protect end_digest_block \n

data_block_pragma ::= `protect data_block \n

end_data_block_pragma ::= `protect end_data_block \n

comment_pragma ::= `protect comment=string \n

Note:
source_text: The source text encompasses all the text, comments, included pragma directives, user code
etc.
encoded_text: is the binary data encoded in printable characters, spanning over multiple lines. This can
contains both the encrypted and the message digest data.

The pragma expressions between the protect_pragma and the begin_pragma in a encryption envelope or
between the begin_protect_pragma and end_protect_pragma are processed to encrypt or decypt the data
in the envelopes.

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

6

Examples:
library IEEE;
use IEEE.std_logic_1164.all;
package pack_inst is
`protect
`protect data_keyowner =owner1
`protect data_method = RC5
`protect data_keyname = data_test1.1
`protect key_keyowner = keyowner1
`protect key_method = RC4
`protect key_keyname = key_test1.1
`protect key_keyowner = keyowner2
`protect key_method = DES
`protect key_keyname = key_test1.2
`protect begin
signal sigp_protected : std_logic ;
`protect end
end pack_inst;

After processing the above input VHDL the encrypting tool should generate data similar to the following:

library IEEE;
use IEEE.std_logic_1164.all;
package pack_inst is
`protect begin_protected
`protect key_keyowner=keyowner1
`protect key_keyname=key_test1.1
`protect key_method=RC4
`protect encoding=RFC1113_printable line_length=64 bytes=208
`protect key_block
T/R0BKmye8wSe1N/JJdpeF3ga6182MsHa15sGnOPLiVkVehOYX4unuoXG6W65Nuy
FY6FWTX+TskQu+qyW+5mVFeMFOtPa6UD8Lfy2S8MuzTDVCGpg8d9k7nXb92SLdeC
fuE/rUhMCQEOtF0sRvAcLGX5Mh3dUql3bncGe8CC2s1yDzmHdDwjuotUN3xDaZVM
sqRv98aQ6gZT5Dg=
`protect end_key_block
`protect encoding=RFC1113_printable line_length=64 bytes=28
`protect digest_block
X9PyX59giDALGPEeblCyRkc3f7E=
`protect end_digest_block
`protect key_keyowner=keyowner2
`protect key_keyname=key_test1.2
`protect key_method=DES
`protect encoding=RFC1113_printable line_length=64 bytes=216
`protect key_block
JgRb6WfTB471/JeMPU/Z6wYS/JE5gz6kExQo2XBDmXto/Zy6KCD5vQWEDqd/PWW0
OIoXudfttDIr5WmN/UvHA2FUHb6BrVVsqNDlTZQZBjMGHxCJpDNZvuLezV9fnia6
pPJTG2pGg6FQMol1ouTK2X39Z/Tn/Q2unXPSLM91Ftd7y58oc/VjQZ4rEV05DzLw
8BuRP9/CdG3A5ICYbXn+Xg==
`protect end_key_block
`protect encoding=RFC1113_printable line_length=64 bytes=28
`protect digest_block
dkSkDU5xwADj+B7HhomnCn9A8tc=
`protect end_digest_block

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

7

`protect encoding=RFC1113_printable line_length=64 bytes=88
`protect data_block
liK5iC2NkCoqsbvVio9k8ak2/mZslgagqY5U570gsbcEHHAcTpMF5NYNqlusKUE8
17mw8C24N3H6CoRiJB1VHA==
`protect end_data_block
`protect encoding=RFC1113_printable line_length=64 bytes=28

`protect digest_block
TgouRSRZcvyiJFdcJiev1uX6dZM=
`protect end_digest_block
`protect end_protected
 end pack_inst;

3.2 Processing protected envelopes

Two modes of processing are defined for protected envelopes. Envelope encryption is the process of
recognizing encryption envelopes in the source text and transforming them into decryption envelopes.
Envelope decryption is the process of recognizing decryption envelopes in the input text and transforming
them into the corresponding clear text for the parsing step that follows.

3.2.1 Encryption
VHDL tools that provide encryption services shall transform source text containing encryption envelopes.
The tool replaces each encryption envelop with a decryption envelope by encrypting the source text
according to the specified pragmas. Source text which is not contained in an encryption envelope shall
not be modified by the encrypting language processor.

In the encryption block if the data pragmas (data_keyname, data_keyowner, data_method) are defined,
the specified key and algorithm are used along with the session key to encrypt the data. If these pragmas
are absent, a random session key is generated and used to encrypt the data. The encrypted data is enclosed
in the data_block pragmas. This session key data (or the information about the session key) and the
information about the encryption algorithm is encrypted by another key and is output between the
key_block pragmas. This second key and the algorithm are specified by the key pragmas. If the key
pragmas (key_method, key_owner, key_name) are absent in the encryption block, the tool’s internal key
is used.

3.2.2 Decryption

VHDL tools that support compilation of encrypted data internally decrypt the decryption envelopes
according to the specified pragma expressions.

4 Envelope Directives

Protected envelopes are specified as lexical regions delimited by protect pragma declarations. The
semantics of a particular protect pragma declaration is specified by its pragma expressions. This standard
reserves the keyword names listed in the following table for use as keywords to the protect pragma. These
keywords are defined in section 6.1, with a specification of how each participates in the encryption and
decryption processing modes. Some keywords are used exclusively in the encryption envelope, some are
used exclusively in the decryption envelope, where as some are used in both kind of envelopes.

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

8

The following pragma keywords are relevant to encryption envelopes only:
<empty> Opens a new encryption envelope
begin Opens a input data block for encryption
end Closes an encryption envelope
The following are used only in the decryption envelope:
begin_protected Opens a new decryption envelope
end_protected Closes a decryption envelope
key_block Begins an encoded block of key data
end_key_block Closes an encoded block of key data
data_block Begins a block of encrypted data
end_data_block Closes a block of encrypted data
digest_block Begins an encoded block of authentication code data for data integrity
end_digest_block Closes the authentication code
decrypt_license Specifies licensing constraints on decryption
runtime_license Specifies licensing constraints on simulation
The following are used both by the encryption and decryption envelopes.
encoding Specifies the coding scheme for encrypted data
data_keyowner Identifies the owner of the data encryption key
data_method Identifies the data encryption algorithm
data_keyname Specifies the name of the data encryption key
key_keyowner Identifies the owner of the key encryption key
key_method Specifies the key encryption algorithm
key_keyname Specifies the name of the key encryption key
data_public_key Specifies the public key for data encryption
data_decrypt_key Specifies the session key for data decryption
viewport Modifies scope of access into protected envelope
The following pragma keywords are just informational in nature.
author Specifies the author of an envelope
author_info Specifies additional information about the author
encrypt_agent Identifies the encryption service
comment Uninterpreted documentation string

The scope of protect pragma declarations is completely lexical and not associated with any declarative
region or declaration in the HDL text itself.

In the protection envelopes where a specific pragma keyword is absent, the VHDL tool shall use the
default value. VHDL tools that perform encryption should explicitly output all relevant pragmas
keywords (including the ones for which default values were used) for each envelope in order to avoid
unintended interpretations during decryption.

4.1 Envelope encoding keywords

4.1.1 begin

4.1.1.1 Syntax
begin

4.1.1.2 Description

ENCRYPTION INPUT: The begin pragma expression is used in the input text to indicate to an
encrypting tool the point at which encryption begins. All text, including comments and other protect

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

9

pragmas, between the begin pragma expression and the corresponding end pragma expression is
encrypted and is stored in the output format using the data_block pragma expression.

Nesting of pragma begin/end blocks is not supported, although there may be begin_protected/
end_protected blocks containing previously encrypted content inside such a block. They are simply
treated as a byte stream and encrypted as if they were text.

ENCRYPTION OUTPUT: none

DECRYPTION INPUT: none

4.1.2 end

4.1.2.1 Syntax
end

4.1.2.2 Description

ENCRYPTION INPUT: The end pragma expression is used in the input clear text to indicate the end of
the region that shall be encrypted

ENCRYPTION OUTPUT: none

DECRYPTION INPUT: none

4.1.3 begin_protected

4.1.3.1 Syntax
begin_protected

4.1.3.2 Description

ENCRYPTION INPUT: If found in an input file during encryption begin_protected/end_protected
block and its contents are treated as input clear text. This could result from a situation where a previously
encrypted model is being re-encrypted as a portion of a larger model. An additional requirement is that
any other protect pragmas inside the begin_protected/end_protected block shall not be interpreted or
override pragmas in effect. In this way, nested encryption will not corrupt pragma values in the current
encryption in process.

ENCRYPTION OUTPUT: After encrypting a begin/end block during encryption, the encrypting tool
produces a corresponding begin_protected/end_protected block in the output file. This block begins
with the begin_protected pragma expression. Following begin_protected all pragma expressions
required as encryption output shall be generated prior to outputting the end_protected pragma
expression. In this way protected blocks are completely self-contained avoiding any undesired interaction
when using multiple encrypted models during the decryption process.

Note that this does not begin a block of encrypted data or keys, the data_block and key_block pragma
expressions are used for this purpose and they are found within a begin_protected/end_protected block.

DECRYPTION INPUT: The begin_protected pragma expression begins a previously encrypted region.
A decrypting tool accumulates all the pragma expressions in the block for use in decryption of the block.

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

10

4.1.4 end_protected

4.1.4.1 Syntax
end_protected

4.1.4.2 Description

ENCRYPTION INPUT: This pragma expression indicates the end of a previous begin_protected block.
This indicates that the block is complete and new pragma expression values shall be accumulated for the
next envelope.

ENCRYPTION OUTPUT: The end_protected pragma expression shall be output to indicate the end of a
protected block.

DECRYPTION INPUT: The end_protected pragma expression indicates the end of a set of pragmas that
should be sufficient to decrypt the current block. Upon encountering end_protected a tool shall verify
that all required information is present.

4.1.5 author

4.1.5.1 Syntax
author=<string>

4.1.5.2 Description
ENCRYPTION INPUT: The author pragma expression is used to indicate the name of the IP author. It
should be given outside any begin/end block so that this information is transferred to clear text in the
output file.
ENCRYPTION OUTPUT: The author pragma expression should be output in each protected block
unchanged from the input.
DECRYPTION INPUT: none.

4.1.6 author_info

4.1.6.1 Syntax
author_info=<string>

4.1.6.2 Description
ENCRYPTION INPUT: The author_info pragma expression is provided to allow arbitrary information to
be provided by the IP Author in the form of a string value. Its use is strictly optional and the contents are
not required in any way during encryption or decryption.
ENCRYPTION OUTPUT: The author_info pragma expression should be output in each protected block
unchanged from the input.
DECRYPTION INPUT: none

4.1.7 encrypt_agent

4.1.7.1 Syntax

encrypt_agent=<string>

4.1.7.2 Description

ENCRYPTION INPUT: none

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

11

ENCRYPTION OUTPUT: The encrypt_agent pragma expression should be output as clear text in each
protected block. It takes a string value indicating the name of the encrypting tool. This is the tool vendor
or tool being used to perform the encryption. This key-word is optional in all cases but may be included to
document the toolset performing the encryption.
DECRYPTION INPUT: none

4.1.8 Encrypt_agent_info

4.1.8.1 Syntax
encrypt_agent_info=<string>

4.1.8.2 Description

ENCRYPTION INPUT: none
ENCRYPTION OUTPUT: The encrypt_agent_info pragma expression is provided to allow arbitrary
information to be provided by the encrypting tool in the form of a string value. Its use is strictly optional
and the content is not required in any way during encryption or decryption.

DECRYPTION INPUT: none

4.1.9 encoding

4.1.9.1 Syntax
encoding=<encoding_descriptor>

4.1.9.2 Description
ENCRYPTION INPUT: The encoding pragma expression specifies how pragma expressions and
encrypted text shall be encoded. The encoding is necessary to ensure that this potentially binary data can be
re-inserted into a text document without impairing the subsequent editing or transmission of the document.
If an encoding pragma expression is present in the input stream it specifies how the output should be
encoded. A tool may choose to encode the data even if no encoding pragma expression was found in the
input stream and should output the corresponding encoding pragma expression.

The following sub-keywords values are specified for the value of the <encoding_descriptor> of the
encoding pragma expression. Each of them are found in the pragma expression string value given as the
<encoding_descriptor> and are separated by white space.

encoding=<encoding_type> - specifies the method for calculating the encoding.

raw Identity transformation
uuencode Method specified in IEEE 1003.1-2001 (uuencode Historical Algorithm)
RFC2045_base64 Base64 encoding method specified in IETF RFC 2045 (also IEEE 1003.1-

2001 uuencode -m)
RFC2045_quoted-printable Quoted-printable encoding method specified in IETF RFC 2045
RFC1113_printable Method specified in RFC 1113

If raw then no encoding has been performed and the encoded data may contain non-printable characters.
Further encoding methods may be added in future.

All compliant tools are expected to support at least the RFC2045_base64 encoding mechanism. Default
encoding mechanism can be tool specific.

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

12

line_length=<number> - this is the number of characters (after any encoding) in a line of the data_block.
This allows the insertion of line breaks in the data_block after encryption and encoding to make
embedding in ASCII formats simpler. Without the additional line breaks the data_block would typically
exceed the line length requirements of commonly used editors (such as vi) and make the containing file not
editable.

In the absence of a line_length keyword, a tool may use an implementation specific value for line_length.
In such a case, the tool should output the corresponding line_length pragma expression.

ENCRYPTION OUTPUT: The encoding directive should be output in each begin_protected/
end_protected block to explicitly specify the encoding used by the encrypt_agent.

The data_block, data_public_key, data_decrypt_key, digest_block, key_block, and key_public_key
are all encoded using this encoding. If separate encoding is desired for each of these fields then multiple
encoding pragma expressions can be given in the input stream prior to each of the above pragma
expressions. In addition to sub-keywords specified for the value of the <encoding_descriptor> in the input
text, the encrypting tool is expected to generate the following:

bytes=<number> - this is the number of bytes in the original block of data before any encoding or the
addition of line breaks. The bytes value is added by the encrypting tool for each block that it encrypts.

DECRYPTION INPUT: During decryption, the encoding directive is used to find the encoding algorithm
used and the size of actual data. The decoded data is then used for further processing.

4.1.10 data_keyowner

4.1.10.1 Syntax
data_keyowner=<string>

4.1.10.2 Description

ENCRYPTION INPUT: The data_keyowner specifies the company or tool that is providing the keys
used for encryption and decryption of the data. The keys might be provided by an IP Author, the
encrypting tool, the IP consumer, or possibly even a third party distributor of the IP. It has to be a value
which is available in the tool’s key database. If this pragma is absent the encrypting tool shall use its own
embedded key. If specified, the tool reads the key from the database and uses this to encrypt the data
block.

ENCRYPTION OUTPUT: The data_keyowner is encrypted with the key_method and found in the
key_block.

DECRYPTION INPUT: During decryption, the data_keyowner is combined with the data_keyname to
determine the appropriate secret/private key to use during decryption of the data_block.

4.1.11 data_method

4.1.11.1 Syntax
data_method=<method_name>

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

13

4.1.11.2 Description

ENCRYPTION INPUT: The data_method pragma expression indicates the encryption algorithm that
shall be used to encrypt subsequent begin/end block. The encryption method is an identifier that is
commonly associated with a specific encryption algorithm.

This standard specifies the following values for the data_method pragma expression. Additional
identifier values are implementation-defined:

DES Data Encryption Standard
RSA RSA Public Key
RC2 RSA RC2
RC4 RSA RC4
RC5 RSA RC5
RC6 RSA RC6

Editor's Note: The above list should be replaced with a normative reference to an existing registry of encryption
algorithm identifiers. IETF and W3C are potential registries, and others may exist.

All compliant tools are expected to support at least the RC5 encryption algoritm. Default encryption
algorithm can be tool specific.

ENCRYPTION OUTPUT: The data_method is encrypted with the key_method and found in the
key_block.

DECRYPTION INPUT: The data_method indicates the algorithm that should be used to decrypt the
data_block.

4.1.12 data_keyname

4.1.12.1 Syntax
data_keyname=<string>

4.1.12.2 Description

ENCRYPTION INPUT: The data_keyname pragma expression provides the name of the key or key pair
that is used to decrypt the data_block. A given data_keyowner will typically have multiple keys that
they have shared in different ways with different vendors or customers. This pragma expression indicates
which of these many keys has been used.

ENCRYPTION OUTPUT: When a data_keyname is provided in the input, it indicates the key that is to
be used for encrypting the data. The encrypting tool must be able to combine this pragma expression with
the data_keyowner and determine the key to use. The data_keyname is encrypted using key_method
and and encoded in the key_block.

DECRYPTION INPUT: In use models where the data_keyowner has provided a secret/private key to a
Tool Vendor, or a Tool Vendors secret key has been used, then a unique key name must be identified for
each key during this exchange. This key name is then used to identify at decryption time which of many
possible secret keys for a given key owner should be used for decryption.

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

14

4.1.13 data_public_key

4.1.13.1 Syntax
data_public_key=<key>

4.1.13.2 Description
ENCRYPTION INPUT: The data_public_key pragma expression indicates that the next line of the file
contains the encoded value of the public key, preceded by the single line comment prefix. This is the public
key that should be used to encrypt the data. The encoding is specified by the encoding pragma expression
that is currently in effect. If both data_public_key and data_keyname are present then they must refer to
the same key.
ENCRYPTION OUTPUT: The data_public_key pragma expression should be output in each protected
block for which it is used, followed by the encoded value. The data_method and data_public_key can be
combined to fully specify the required encryption.
DECRYPTION INPUT: The data_keyowner and data_method can be combined with the
data_public_key to determine if the decrypting tool knows the corresponding private key to decrypt a
given data_block. If the decrypting tool can compute the required key the model can be decrypted (if
licensing allows it).

4.1.14 data_decrypt_key

4.1.14.1 Syntax
data_decrypt_key=<key>

4.1.14.2 Description
ENCRYPTION INPUT: The data_decrypt_key indicates that the next line contains the encoded value of
the key that will decrypt the data_block. This pragma expression should only be used when digital
signatures are used. An IP author can generate a key and use it to encrypt the clear text. This encrypted text
is then stored in the output file as the data_block. Then the data_method and data_decrypt_key are
encrypted using the key_method and stored in the output file as the contents of the key_block. Note that the
data_block itself is not re-encrypted, only the information about the data key is.
ENCRYPTION OUTPUT: The data_decrypt_key is output as part of the encrypted content of the
key_block. The value is encoded as specified by the encoding pragma expression.
DECRYPTION INPUT: Upon determining that a digital signature was in use for given protected region,
the decrypting tool must decrypt the key_block to find the data_decrypt_key and data_method which in
turn can be used to decrypt the data block.

4.1.15 data_block

4.1.15.1 Syntax
data_block

4.1.15.2 Description

ENCRYPTION INPUT: A data_block should never be found in an input file unless it is contained within
a previously generated begin_protected/end_protected block in which case it is ignored.

ENCRYPTION OUTPUT: The data_block pragma expression indicates that a data block begins on the
next line in the file. An encrypting tool takes each begin/end block, encrypts the contents as specified by
the data_method pragma expression, and then encodes the block. The resultant text is generated as the
output.

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

15

DECRYPTION INPUT: The data_block is first read in the encoded form. The encoding is reversed, and
then the block should be decrypted in-memory for consumption.

4.1.16 digest_block

4.1.16.1 Syntax
digest_block

4.1.16.2 Description

ENCRYPTION INPUT: none

ENCRYPTION OUTPUT: A Message Authentication Code (MAC) is used to ensure that the IP has not
been modified. In Message Authentication Code, the encrypting tool generates the message digest (fixed
length, computationally unique identifier corresponding to a set of data). The message digest is generated
for both data_block and the key_block.

DECRYPTION INPUT: In order to authenticate the message, the consuming tool shall first decrypt the
message, then generate the message digest on the original message, and compare the two message
digests. If the two don’t match this means that either the MAC or data_block or the key_block has been
altered, and the tool can error out.

4.1.17 key_keyowner

4.1.17.1 Syntax
key_keyowner=<string>

4.1.17.2 Description

ENCRYPTION INPUT: The key_keyowner specifies the company or tool that is providing the keys
used for encryption and decryption of the key information. The value of the key_keyowner also has the
similar constraint as mentioned in the data_keyowner values.

ENCRYPTION OUTPUT: The key_keyowner should be unchanged in the output file.

DECRYPTION INPUT: During decryption, the key_keyowner can be combined with the key_keyname
to determine the appropriate secret/private key to use during decryption of the key_block.

4.1.18 key_method

4.1.18.1 Syntax
key_method=<method_name>

4.1.18.2 Description

ENCRYPTION INPUT: The key_method pragma expression indicates the encryption algorithm that
shall be used to encrypt the keys used to encrypt the data_block. The same names and formats are used
for data_method and key_method. The values have the same constraint as mentioned for the
data_method values.

ENCRYPTION OUTPUT: The key_method remains unchanged in the output file.

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

16

DECRYPTION INPUT: The key_method indicates the algorithm that shall be used to decrypt the
key_block.

4.1.19 key_keyname

4.1.19.1 Syntax
key_keyname=<string>

4.1.19.2 Description

ENCRYPTION INPUT: The key_keyname pragma expression provides the name of the key or key pair
that should be used to decrypt the key_block. A given key_keyowner will typically have multiple keys
that they have shared in different ways with different vendors or customers. This pragma expression
indicates which of these many keys has been used.

ENCRYPTION OUTPUT: When a key_keyname is provided in the input, it indicates the key that shall
be used for encryption of the data encryption keys. The encrypting tool must be able to combine this
pragma expression with the key_keyowner and determine the key to use. The key_keyname itself should
be output as clear text in the output file.

DECRYPTION INPUT: In use models where the key_keyowner has provided a secret/ private key to a
Tool Vendor, or a Tool Vendors secret key has been used, a unique key name must be identified for each
key during encryption. This key name is then used to identify at decryption time which of the many
possible secret keys for a given key owner shall be used for decryption.

4.1.20 key_block

4.1.20.1 Syntax
key_block

4.1.20.2 Description

ENCRYPTION INPUT: A key_block shall never be found in an input file unless it is contained within a
previously generated begin_protected/end_protected block in which case it is ignored.

ENCRYPTION OUTPUT: The key_block pragma expression indicates that a key block begins on the
next line in the file. An encrypting tool takes data_method, data_keyname and data_keyowner to form
a text buffer. This buffer is then encrypted with the appropriate key_method,,key_keyname and
key_keyowner. Then the encrypted region is be encoded. The output of this encoding shall be generated
as the contents of the key_block.

Where more than one key_block pragma expression occurs within a single begin/end block, the
generated key blocks shall all encode the same data decryption key data. Multiple key blocks are
specified for the purpose of providing alternative decryption keys for a single decryption envelope.

DECRYPTION INPUT: The key_block is first read. The encoding is reversed and then the block
internally decrypted. The resulting text can now be parsed to determine the keys required to decrypt the
data_block. If for a key_block the specified key is not available, the tool should try the subsequent
key_blocks for availability.

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

17

4.1.21 Decrypt_license

4.1.21.1 Syntax
decrypt_license=<library_name:entry_point_name:string_parameter[:exit_p
oint_name>]

4.1.21.2 Description

ENCRYPTION INPUT: The decrypt_license pragma expression will typically be found inside a begin/end
pair in the original clear text. This is necessary so that it is encrypted in the output IP shipped to the end
user.

ENCRYPTION OUTPUT: The decrypt_license is output unchanged in the output description except for
encryption and encoding of the pragma exactly as other clear text in the begin/end pair. Note that typically
it will be output in the data_block.

DECRYPTION INPUT: After encountering a decrypt_license pragma expression in an encrypted model,
prior to processing the decrypted text, the application should load the specified library and call the function
indicated by the given entry_point_name, passing it the string_parameter specified. This routine should
then return a 0 if the application is licensed to decrypt the model and non-zero if the application is not
licensed to decrypt the model. The non-zero value should be printed in any error message about the failure
of licensing. If an exit_point_name is specified then it should be called prior to exiting the decrypting
application to allow for releasing the license.

Note that this only provides marginal security because the end-user of the model has the shared library and
could use readily available debuggers to debug the calling sequence of the licensing mechanism. They
could then produce an equivalent library that returns a 0 but avoids the license check.

4.1.22 runtime_license

4.1.22.1 Syntax
runtime_license=<library_name:entry_point_name_name:string_parameter>[:
exit_point_name>]

4.1.22.2 Description

ENCRYPTION INPUT: The runtime_license pragma expression will typically be found inside a
begin/end pair in the original clear text. This is necessary so that it is encrypted in the output IP shipped to
the end user.

ENCRYPTION OUTPUT: The encrypt_license is output unchanged in the output description except for
encryption and encoding of the pragma exactly as other clear text in the begin/end pair.

DECRYPTION INPUT: After encountering a runtime_license pragma expression in an encrypted model,
prior to executing, the application should load the specified library and call the function indicated by the
given entry_point_name, passing it the string_parameter specified. This routine should then return a 0 if
the application is licensed to execute the model and non-zero if the application is not licensed to execute
the model. The non-zero value should be printed in any error message about the failure of licensing. If an
exit_point_name is specified then it should be called prior to exiting the executing application to allow for
releasing the license. Note that execution could mean anything from simulation to layout to synthesis.

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

18

Note that this only provides marginal security because the end-user of the model has the shared library and
could use readily available debuggers to debug the calling sequence of the licensing mechanism. They
could then produce an equivalent library that returns a 0 but avoids the license check.

4.1.23 comment

4.1.23.1 Syntax
comment=<value>

4.1.23.2 Description

ENCRYPTION INPUT: The comment pragma expression can be found anywhere in an input file and
indicates that even if this is found inside a begin/end block the value should be output as a comment in
clear text in the output immediately prior to the data_block. This is provided so that comments that may
and up being included in other files inside a begin/end block can protect themselves from being encrypted.
This is important so that critical information such as copyright notices can be explicitly excluded from
encryption. Since this constitutes known clear text that would be found inside the data_block the pragma
itself and the value should not be included in the encrypted text.

ENCRYPTION OUTPUT: The entire comment including the beginning pragma should be output in clear
text immediately prior to the data_block corresponding to the begin/end in which the comment was found.

DECRYPTION INPUT: none.

4.1.24 viewport

4.1.24.1 Syntax
viewport=<object_name>:<access>

4.1.24.2 Description

The viewport pragma expression describes objects within the current protected envelope for which access
should be permitted by the VHDL tool. The specified object name shall be contained within the current
envelope. The access value is an implementation specified relaxation of protection

5 Appendix A

5.1 Encryption/Decryption Flow

This section describes the various scenarios which can be used for IP Protection, and it also shows how to
achieve the desired effect of securely protecting, distributing, and decrypting the model.

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

19

The data that needs to be protected from access or from unauthorized modification, should be placed in
within the protect begin/end block. As the tool encrypts all the information in the begin/end block, the
information is also protected.

5.2 Tool Vendor Secret key encryption system

In the secret key encryption system the key is tool vendor proprietary and will be embedded within the
tool itself. The same key is used for both encryption and decryption. (In the EDA domain this is the
simplest scenario and is roughly equivalent to the existing Verilog-XL `protect technique). It has the
drawback of being completely tool vendor specific. Using this technique, the IP author can encrypt the IP
and any IP consumer with appropriate licenses and the same tool vendor can utilize the IP.

If the key pragma are absent in the encryption block, the tool uses its internal key to encrypt the data
block. As usual the session is specified by the data pragmas, i.e. data pragmas are specified the mentioned
key is used, otherwise a random key is generated to encrypt the data.

5.3 Digital Envelopes

Editor’s Note: This is the preferred exchange form in that it permits use of session keys to limit the amount of cipher
text exposure for the exchanged encryption keys. The following text is incorrect in the assumption that asymmetric
algorithms are the only useful exchange key mechanisms.

In this mechanism, each user will have a public and private key. The public key is made public while the
private key remains secret. The sender encrypts the message using a symmetric key encryption algorithm,
then encrypts the symmetric key using the recipient’s public key. The recipient then decrypts the
symmetric key using the appropriate private key and then decrypts the message with the symmetric key.
In this way a fast encryption methods processes large amount of data, yet secret information is never
transmitted without encryption. In digital envelopes, using the above encryption technology (secret key
encryption system, where the key will be given by the IP author/end user), encryption tool will protect the
IP. This symmetric key and algorithm information is them encrypted with a public key, the corresponding
private key of which is available to the tool. So only the tool can decrypt the symmetric key internally
and decrypt the protected IP.

Instead of using the public key of public/private key pair, a tool specific embedded key can also be used
to encrypt the key_block. In this case also as only the tool knows its embedded key, only it can internally
decrypt the design, hence the same effect can be achieved.

The data_method and data_keyowner/data_keyname are used to encrypt the data_block. The
encrypting tool then encrypts the data_keyowner and data_keyname pragmas with the
key_keymethod/key_keyname and puts them in the key_block along with data_method. Alternatively
if a dynamic session key is generated, the session key itself is encrypted along with the data method and
put in the key block.

In the first approach the data_keyowner/data_keyname should also be present with the decrypting tool.
No such dependency exists with the second approach as the key is present in the file itself.

For better security in the first approach the encrypting tool can actually read the data_keyowner/
data_keyname key and put it in the key_block as data_decrypt_key. Which not only will remove the
dependency mentioned above, but will also protect against the hit & trial breaking of the data_block with
the existing keys at the IP users end.

November 16, 2004

Copyright © 2003 Cadence Design Systems, Inc. All rights reserved.

20

