
1

IEEE 200X Fast Track Change Proposal

ID: FT10A

Proposed By: Jim Lewis jim@synthworks.com5
Analyzed By: Jim Lewis jim@synthworks.com
 With significant help/input from John Ries

Status: Analyzed
Proposed: 12/0310
Analyzed: 07/11

Enhancement Summary:
Add nnary expressions

Revisions:15
Rev4: Made nnary expression left recursive. Changed n-nary to nnary.
 Fixed error in example. Added to further study section.
Rev3: Split into 10A nnary expressions and 10B sequential assignments
Rev2: Initial pdf/word release. Changed conditional_expression to ternary_expression.

Removed proposed changes to conditional waveforms due to ambiguity.20
Combined conditional assignments with selected assignments.

Rev1: Initial release

Related issues:

Relevant LRM sections:
7.125

Enhancement Detail:
This enhancement is intended to bring a generalized form of conditional expressions, termed
nnary expressions. In a generalized form, a nnary expression is as follows:

 expression1 if condition1,30
 expression2 if condition2,
 •
 •
 •
 expressionN–1 if conditionN–1,35
 expressionN

Code example:
Y <= A if Asel=’1’, B if Bsel=’1’, C if Csel=’1’, D if Dsel=’1’, E ;

40
The syntax is deliberately selected different from conditional signal assignment to avoid
ambiguity.

2

Use in initialization:45
Signal A : integer := 7 if GEN_VAL = 1, 15 ;

Used in port range:
entity fifo is
 generic (word_size : Natural := 8);50
 port (data : std_logic_vector(
 (7 if word_size <= 8,
 15 if word_size <= 16, 31) downto 0) ;

 -- Added parentheses to demonstrate evaluation order:55
 port (data : std_logic_vector(
 (7 if word_size <= 8,
 (15 if word_size <= 16, 31)) downto 0);

Nnary expressions are similar in precedence to conditional signal assignment:60
 EX_1A: Y <= A and B if S = '1', C and D ;
 EX_1B: Y <= (A and B) if S = '1', (C and D) ;

Parentheses required due to low precedence:
 EX_1C: Y <= A and (B if S = '1', C) and D ;65

Must be differentiated from both conditional signal assignment and selected signal assignment
 EX_2: Y <= A if S1='1', B when S2='1' else C ;
 ^^^^^^^^^^^^^^ vvvvvvvvvvvvvvvvvvv
 nnary conditional waveform70

 EX_3: with MuxSel select
 Y <= A if Asel=’1’, B when ‘0’,
 C if Csel=’1’, D when ‘1’,
 ‘X’ when others ;75

The following two are equivalent:
EX4A: AReg <= '0' if nReset = '1', A when rising_edge(Clk) ;
EX4B: AReg <= ('0' if nReset = '1', A) when rising_edge(Clk) ;

80
A similar expression, however different implication with conditional signal assignment:

EX5: AReg <= '0' when nReset = '1' else A when rising_edge(Clk) ;

With unaffected (future extension), similar to EX5 in semantics:
EX6A: AReg <= '0' if nReset = '1', A if rising_edge(Clk) ;85
EX6B: AReg <= '0' if nReset = '1', (A if rising_edge(Clk)) ;

Use of unaffected (future extension), equivalent to EX4A and EX4B:
EX7: AReg <= ('0' if nReset = '1', A) if rising_edge(Clk) ;

90

3

Analysis
The goal of this proposal is to find a solution that maximizes the following conditions:

1. Work in sequential and concurrent context
2. Work in initializations and general expressions95
3. Each condition can test different signals
4. The new syntax cannot conflict with existing syntax
5. Be concise but also maintain the nature and spirit of VHDL
6. No parentheses

100
First the following syntax for nnary expression was considered. This syntax requires parentheses
in many contexts (selected signal assignment and conditional signal assignment). It has been
rejected due to its similarity to conditional signal assignment, it appears not to have parentheses
in some situations.

 expression1 when condition1 else105
 expression2 when condition2 else
 •
 •
 •
 expressionN–1 when conditionN–1 else110
 expressionN

The following sets of syntax were also considered. The first one selected was selected due to its
conciseness while maintaining readability:
Form1 (accepted):115

 expression1 if condition1,
 expression2 if condition2,
 •
 •
 •120
 expressionN–1 if conditionN–1,
 expressionN

Form2 (rejected: else does not provide additional benefit over “,”):
 expression1 if condition1 else125
 expression2 if condition2 else
 •
 •
 •
 expressionN–1 if conditionN–1 else130
 expressionN

Form3 (rejected: ? has reduced readability and not enough benefit over if):
 expression1 ? condition1,
 expression2 ? condition2,135
 •
 •
 •
 expressionN–1 ? conditionN–1,
 expressionN140

4

Approach Overview:
In section 7 added nnary expression. Since nnary expressions have lower precedence than
logical operators, they need to be first in the BNF. Nesting of nnary expressions occurs through
a primary having a choice of “(expression)”.

145
Add section 7.6 that defines nnary expressions and how they are evaluated. Note that nnary
expressions are not operators and hence are not overloaded. Their result value is a function of
the result value of the enclosed expressions.

Further Study
Can unaffected be used in nnary expressions? How would constants and inputs to subprograms150
be handled?

 nnary_expression ::=
 { logical if condition, }
 logical [if condition]

155
From Jim: This means we would have to deal with the dangling else given that condition is
allowed to contain a nnary expression.

Is “A if B if C, D” the same as “A if (B if C, D) “ or is it “A if (B if C), D”? Other
languages seem to use the first one.

160
From John Ries:
If unaffected is a primary then we need to define how it works in all cases. In a number of cases
this is very unclear. For example.

a(3 downto 0) := s1 & s2 & s3 & ('1' if (cntrl = '1'), unaffected);
165

Does this mean that the value of a(0) is unchanged? Lets make it slightly more complicated
integer_variable := convert_to_integer(s1 & s2 & s3 & ('1' if (cntrl = '1'), unaffected));

What gets passes to convert_to_integer? What is the result?

LRM Changes170

Changes to Clause 7.1
Modify the BNF in section 7.1 as follows:

expression ::= nnary_expression
175

nnary_expression ::=
 { logical if condition, } logical

logical ::=
 relation { and relation }180
 | relation { or relation }
 | relation { xor relation }
 | relation [nand relation]
 | relation [nor relation]

5

 | relation { xnor relation }185

Add new Clause 7.6
7.6 Nnary Expression
A nnary expression is an expression that selects a result value from one of the enclosed
expressions. To select a result value, each condition is evaluated in succession until one190
evaluates to TRUE. The expression preceding the TRUE condition is evaluated and its result
value is the result value of the nnary expression. If each condition evaluates to FALSE the last
expression is evaluated and its value is the result value of the nnary expression.

Note: A nnary expression is not an operator or subprogram and it cannot be overloaded.195

Examples:
Use of a nnary expression to initialize a signal:

Signal A : integer := 7 if GEN_VAL = 1, 15 ;
200

Use of a nnary expression to constrain the size of an array:
entity fifo is
 generic (word_size : Natural := 8);
 port (data : std_logic_vector(
 (7 if word_size <= 8,205
 15 if word_size <= 16, 31) downto 0) ;

 -- Added parentheses to demonstrate evaluation order:
 port (data : std_logic_vector(
 (7 if word_size <= 8,210
 (15 if word_size <= 16, 31)) downto 0);

Nnary expressions allow a richer set of expressions than currently available in conditional signal
assignment:

Y <= A and (B if S = '1', C) and D ;215
Y <= ('1' if en = '1', 'Z') after 5 ns ;

Editing note for 7.6
If nnary expressions are expanded as suggested in Further Study, the following text replaces the
last sentence of the first paragraph in clause 7.6220

If all of the conditions evaluate to FALSE and there is an expression following the last condition,
this expression is evaluated and its result value is the result value of the nnary expression. If all
of the conditions evaluate to FALSE and there is not an expression following the last condition,
then the result value of the nnary expression is unaffected. It is an error for the expression to225
result in unaffected where a value is required.

