
Draft Proposal for Unifying Path Names

Peter Ashenden

30 April 2004

1. Introduction
Path names occur in various forms in VHDL, both as it stands in IEEE Std 1076-2002 and in
proposed revisions:

1. In expanded names

2. In the 'path_name and 'instance_name attributes

3. In the DefName and FullName prperties proposed for VHPI

4. In proposed cross module references (XMRs)

5. In proposed PSL descriptions

Path names are used for two purposes:

• As an informative identifier for a named entity

• To uniquely identify a named entity

It would be desirable to have a uniform syntax for all of these path names, while preserving
backward compatibility as much as is possible. Current proposals for VHPI and XMRs are
based on the path name syntax used in the 'path_name attribute. However, use of the colon char-
acter as a delimiter is problematic for PSL, which needs to deal with mixed VHDL/Verilog de-
scriptions. A similar problem may arise with other occurrences of path names in a mixed-
language design. Expanded names use the dot character as a delimiter, which is inconsistent
with the 'path_name attribute.

This proposal examines the forms of path name that are required in different contexts and sug-
gests a syntax that is uniform across those contexts. Consideration is also given to interopera-
bility with Verilog and mixed VHDL/Verilog designs.

2. Path Name Contexts
Three contexts for path names have been identified:

1. Library unit path names

This form of name identifes a named entity in an uninstantiated design unit that resides in a
library. The named entity may be the design unit itself, or a named entity nested within one
or more declarative regions.

2. Design hierarchy path names

This form of name identifies an instance of a named entity in the elaborated design hierar-
chy. The named entity may be the root design entity itself; or, recursively, a named entity
declared within the design entity, a named entity declared with a nested declarative region, a
named entity declared within an instance of a protected type, or a named entity declared
within a design entity bound to a component instantiation statement.

3. Wildcard path names
1

This form of name identifies zero or more instances of a named entity in the elaborated
design hierarchy. It consists of a head part that denotes a design entity in a library and a tail
part that denotes a path to an instance of a named entity in any instance of the design entity.

In addition to supporting these contexts, a name syntax should support specification of relative
path names, with the name of a declarative region or region instance giving the scope for inter-
pretation of the relative name.

2.1. Expanded names

Expanded names occur in context (1) and are used as unique identifiers of named entities. They
are relative path names, interpreted relative to the innermost visible occurrence of the first ele-
ment of the path name. For example, an expanded name A.B.C.D is interpreted by finding the
innermost visible occurrence of A, then treating B.C.D as a relative path from the region denot-
ed by A.

2.2. Path_name and Instance_name attributes

The 'path_name and 'instance_name attributes occur in context (2) and are used as informative
identifiers of named entities. They don't uniquely identify an instance of a named entity. There
are at least two forms of ambiguity. First, if a library containing a package in the design hierar-
chy has the same name as the root design entity, the 'path_name attributes for two named entities
can be the same. For example ":L:P:X" might be a named entity X in a package P in library L,
or a named entity X in a region P in the root design entity L. Second, for a named entity in a
subprogram, there is no way to distinguish between different instances occurring in different ac-
tivations of the subprogram. Similarly, for a named entity in a protected type body, there is no
way to distinguish between different instances occurring in different shared variables of the pro-
tected type.

2.3. VHPI name properties

The DefName property in the current VHPI proposal occurs in context (1) and is intended to
uniquely identify a named entity. It is of the form

@ <library_name>
. <primary_unit_name> [: <architecture_name> | body]
{ . <item_name> [<signature>] }

The combination of the leading '@' character and the use of '.' delimiters indicates that it is a
library unit path name.

The FullName property in the current VHPI proposal occurs in context (2) and is intended to
uniquely identify a named entity. It has various forms. If the named entity is statically elaborated
and occurs within an elaborated package, the path name is of the form

@ <library_name> :
<package_name> :
[<shared_variable_name> :]
[<item_name> [<signature>]]

The shared variable name is included if the named entity is elaborated as part of a shared vari-
able of protected type, where the shared variable is declared in the package.

If the named entity is statically elaborated and occurs within the design hierarchy other than in
a package, the path name is of the form
2

: <root_entity_name > :
{ <region_name> : }
[<item_name> [<signature>]]

Each <region_name> is the label of a statement (block, generate, process, component instanti-
ation) or shared variable of protected type in the hierarchy between the root and the named en-
tity. In the case of a for-generate, the <region_name> includes the value of the generate
parameter.

If the named entity is dynamically elaborated (ie, it is declared within a subprogram that is ac-
tivated), the path name is of the form

<ancestor_full_name> : { <subprogram_name> : }
[<item_name> [<signature>]]

where the <parent_full_name> is the hierachical path name to the process from which the sub-
program was called, and each <subprogram_name> is the name of a subprogam on the call
chain from the process to the named entity. This form of path by itself does not uniquely identify
a named entity, since it does not take account of overloaded versions of subprograms. The VHPI
specification allows for augmenting the subprogram names with signatures in a search path used
to locate a dynamically elaborated named entity.

For both the DefName and FullName properties, implicitly defined labels are used for unla-
belled statements whose labels are needed as path name elements. The labels are of the form
_Pn for process statements and _Ln for for-loop statements.

The VHPI name properties also provide for identifying an element of an array or record or a
slice of a record by appending an index, element name or range using the same syntax as VHDL
names. Indices and range bounds have to be literals.

2.4. XMR names

XMR names occur in context (2) and are intended to be a reference from one location in a design
hierarchy to a named entity elaborated in another part of the design hierarchy. They are limited
to references to statically elaborated objects of class signal, variable and constant (thus includ-
ing ports and generics).

The requirements for XMR names include both relative and absolute path names. In the case of
relative path names, there is a requirement for up-level references as well as references to named
entities lower in the design hierarchy than the location of the reference. There is a requirement
for reference to named items in elaborated packages.

2.5. PSL names

Erich to advise...

3. Abstract syntax for path names

3.1. Library unit path name

A library unit path name that needs to uniquely identify a named entity can be formed from the
following elements:
3

<library_name>
<primary_unit_name> [<secondary_unit_name>]
{ <item_name> [<signature>] }

The <library_name> is the logical name of the library containing the design unit. The
<primary_unit_name> is the either the simple name of the entity if the named entity is declared
in an entity declartion or architecture body, or the simple name of the package if the named en-
tity is declared in a package declaration or body. The <secondary_unit_name> is either the sim-
ple name of the architecture if the named entity is declared in an architecture body, or an
indicator of some sort if the named entity is declared in a package body. The sequence of item
names are names of nested declarative regions within which the named entity is declared. If any
of those is a subprogram, the signature is included. The simple name of the named entity (if the
named entity is other than the design unit itself) is the last item name in the sequence.

3.2. Design Hierarchy path name

A design hierachy path name that needs to uniquely identify an instance of a named entity must
include elements that identify parent region instances, whether those instances be statically or
dynamically elaborated.

For a statically elaborated named entity declared within a package, or instantiated as part of a
shared variable that is declared within a package, the elements in the path name are

<library_name>
<package_name>
[<region_name>]
[<item_name> [<signature>]]

The <library_name> is the logical name of the library containing the package, and the
<package_name> is the simple name of the package. The <region_name> is included if the
named entity is within a shared variable; in that case, the <region_name> is the simple name of
the shared variable. The simple name of the declared entity (if the named entity is other than the
package itself) is the <item_name> at the end of the path name.

For a statically elaborated named entity declared within a design entity, or instantiated as part
of a shared variable that is declared within a design entity, the elements of the path name are

<root_entity_name>
{ <region_name>}
[<item_name> [<signature>]]

Each <region_name> is the label of a statement (block, generate, process, component instanti-
ation), or simple name of a shared variable, in the hierarchy between the root and the named
entity. In the case of a for-generate statement, the <region_name> includes the value of the gen-
erate parameter. In the case of an unlabeled process statement, the <region_name> is a surrogate
identifier, unique in the region in which the process statement occurs, but deterministically gen-
erated so that the process can be identified. The simple name of the declared entity (if the named
entity is other than the root entity) is the <item_name> at the end of the path name.

For a dynamically elaborated named entity, a design hierarchy path only has validity for the life-
time of the named entity. At that time, there is a statically elaborated ancestor region from which
dynamic elaboration commenced. The ancestor region is either a statically elaborated declara-
tive region, if the subprogram is called as part of elaborating a declaration or an interface ele-
ment in a port map or generic map; or it is a process statement or equivalent, if the program is
4

called from a statement. In either case, the design hierarchy path name of the ancestor can be
used as a head part of the named entity’s path name to uniquely identify the site at which dy-
namic elaboration commenced. There can be at most one active site at a time for a given poten-
tial ancestor, since elaboration of a declarative region involves elaborating declarations in order,
and execution of statments in a process occurs sequentially.

For a given site in an ancestor, there may be multiple activations of the subprogram containg
the named entity (since subprograms may be recursive), so some indication destinquishing
among them is required. (In the VHPI FullName property, this is the call chain.)

Putting all of this together, the elements of the path name are

<ancestor_path_name> { <activation_indicator> }
[<item_name> [<signature>]]

Note that this is different from the 'path_name attribute, in which the path given leads to the de-
clarative region in which the subprogram is declared. The site at which dynamic elaboration
starts might be further nested within concurrent statements in that region (in which the subpro-
gram is visible), leading to a longer path to the dynamic elaboration site.

Considering the activation indicator, it would seem desirable to use the name of the subprogram
containing the named entity as part of the indicator, since that would help make the path name
intelligible to the human user. However, there may be several overloaded versions of the sub-
program name. Furthermore, there may be different subprograms with the same name and sig-
nature visible in different subprograms invoked in the call chain leading to the named entity.
Thus, in general, the full call chain of subprogram names with signatures included would be
needed as the activation indicator. At each level in the call chain, the subprogram name would
be interpreted as denoting the subprogram of the given name visible in the region of the subpro-
gram at the preceding level

For deeply nested call chains, this form of activiation indicator would become very cumber-
some. An alternative form is the numerical depth of the call chain. This was originally used in
the VHPI FullName property, but subsequently superceded by the chain of names.

In the case of a named entity dynamically elaborated from a protected type method, the subpro-
gram name used in the activation indicator would have to be the selected name of the method,
with the prefix being the name (possibly an expanded name) of the shared variable, visible at
the given level of the call chain, whose method is invoked. If this is seen asdifficult to imple-
ment or interpret, an alternative path name for named entities dynamically elaborated from pro-
tected type methods could use the path name of the shared variable as the ancestor full name,
since at most one method of that variable can be active at a time. The activation indicator would
then be the call chain (or call chain depth) starting from the activation of the method.

In order to support VHPI properties that refer to subelements, slices and attributes of named en-
tities, further forms of design hierarchy path name are needed.

For a subelement of an array, the elements of the path name are

<array_path_name> <index_value> { <index_value> }

where each <index_value> is a literal value, one per index range of the array, of the type of the
corresponding index type.

For a subelement of a record, the elements of the path name are

<record_path_name> <element_simple_name>
5

For a slice of an array, the elements of the path name are

<array_path_name> <left_bound_value> <direction> <right_bound_value>

For an attribute of a named entity, e.g., an implicit signal such as s'delayed(n), the elements of
the path name are

<prefix_path_name> <attribute_simple_name> { <actual_parameter_value> }

where <actual_parameter_value> elements may be included if the attribute is a function. Each
value is a literal value of the type of the correponding function parameter. Multiple parameters
are allowed in order to cater for VHDL-AMS attributes.

3.3. Wildcard path names

Erich to review and advise...

A wildcard path name can be formed from the following elements

<library_name>
<entity_name> [<architecture_name>]
{ <region_name>}
[<item_name> [<signature>]]

The is a hybrid of a library unit and a design hierachy path name, and matches zero or more in-
stances of a named entity in a design hierarchy. The <library_name> and <entity_name> spec-
ify an entity declaration; the wildcard path name only matches named entities for which the
specified entity declaration is an ancestor in the design hierachy. If the <architecture_name> is
included, matching is further constrained to require the design entity formed by the entity and
the architecture to be an ancestor.

The remainder of the path specifies a chain of containing regions in the design hierarchy down
to a named entity. The path matches any named entity whose simple name is the same as the
item name and which is contained in the specified chain of regions starting from an instance of
the specified design entity. If the chain of regions and the <item_name> is omitted, the path
matches just the design entity instance.

3.4. Relative path names

Relative path names can be constructed based on the abstract syntax for absolute path names. A
relative path name needs to be interpreted with respect to a reference location. The application
will determine whether the relative name is interpreted in the library unit context, design hier-
archy context or wildcard context. Specifically,

• Expanded names always relative, and are interpreted in the library context. The first ele-
ment of an expanded name denotes an enclosing declaration, based on scope and visibility
rules, and the remainder of the expanded name is interpreted relative to that declaration.

• VHPI relative path name search names are interpreted based on a context supplied to the
lookup function. That context is either a library unit or design hierarchy path name. The
search name is appended to the context name to form a complete path name.

• XMR relative path names are interpreted in the design hierarchy context. The relative name
is appended to the path name of the region in which the relative name occurs.

Steve: Is this right?
6

• PSL relative names are interpreted in the wildcard context.

Erich: Are there relative names in PSL? If so, what is the point of reference?

4. Concrete syntax
In developing a concrete syntax for path names, a number of issues need to be considered:

1. Distinction between absolute and relative names.

This can be done on the basis of presence or absence of a leading delimiter: presence of a
leading delimiter indicating an absolute name and absence indicating a relative name. VHPI
search path names take this approach.

Strawman: Use a leading delimiter for absolute names and no leading delimiter for relative
names.

2. Distinction between library unit and design hierarchy names.

VHPI as currently proposed makes the distinction based on the separator between path ele-
ments: ‘.’ for library unit names and ‘:’ for design hierarchy names. The distinction is
intended to mirror the use of ‘.’ for expanded names and ‘:’ for 'path_name attributes. The
scheme is complicated, however, by the use of ‘:’ as a delimiter for the secondary unit name
in a library unit path name.

An alternative could be to use different leading delimiters to make the distinction.

Strawman: Use a leading ‘.’ delimiter for absolute library unit path names.

3. For library unit names, choice of delimiters for secondary unit name and indicator for pack-
age body.

VHPI marks the secondary unit name by preceding it with a ‘:’ delimiter. For a package
body, the secondary unit name is the reserved word “body”.

In other places in VHDL that refer to an entity/architecture pair, the architecture name is
parenthesized and follows the entity name. This could be generalized to packages by using
the reserved word “body” in parentheses after the package name. An approach using this
form of delimiter would be natural for VHDL designers, and would avoid the overloaded
use of ‘:’ as a delimiter in the current VHPI path name formats.

Strawman: Use the parenthesized architecture simple name for architecture bodies, and the
reserved word “body” in parentheses for package bodies.

4. For design hierarchy names, distinction between package-based and entity-based names.

The 'path_name attribute currently makes no distinction, and this is a source of ambiguity.

VHPI uses a leading ‘:’ delimiter to indicate an entity-based name and ‘@’ to indicate a
package-based name. However, this is complicated by the use of ‘@’ for the leading delim-
iter in a library unit path name, irrespective of whether the design unit is a package or entity.

An alternative could be to use distinct leading delimiters, both of which are distinct from a
leading delimiter for library unit path names.

Strawman: Use a leading ‘:’ delimiter for entity-based design hierarchy path names, and a
leading ‘@’ delimiter for package-based design hierarchy path names.

5. Choice of separator.
7

As indicated above, VHPI uses ‘.’ for library unit names and ‘:’ for design hierachy names,
motivated by the separators used in expanded names and 'path_name attributes, respec-
tively.

The PSL committee currently uses ‘.’ for wildcard names (a form of design hierarchy name)
in order to avoid conflict with the use of ‘:’ for ranges in Verilog.

Strawman: To be determined, based on an analysis of the trade-off between interoperability
with Verilog/PSL and campatibility with legacy code using prototype VHPI implementa-
tions.

6. Choice of surrogate identifier for unlabelled process statements and loop statements.

VHPI currently specifies identifiers of the form _P0, _P1, etc, for processes within a given
declarative region, numbered in the same order as their occurrence in the region. Similarly,
identifiers of the form _L0, _L1, etc., are specified for loop statements in a statement part.

An alternative is to leave the form of surrogate unspecified (and hence, non-portable), and
encourage designers to label statements that they want to refer to in path names.

Strawman: Since VHPI specifies a surrogate scheme, adopt the same.

7. Choice of form for subprogram activation indicators.

Erich: Is the following so?

VHPI is the only place where this issue arises. Hence, the issue is not considered for path
names in general.

8. Choice of syntax for subelements, slices and attributes of named entities.

Erich: How is this dealt with in PSL?

In VHPI, VHDL syntax is adopted for these forms of names. The syntax for values is con-
strained to that of literals of the appropriate types.

Strawman: Adopt VHDL syntax, with values constrained to be literals of the appropriate
types.

9. Combatibility with Verilog and mixed-language designs.

The main aspect of this issue that has been raised to date is the choice of separator (see
above). Other issues are yet to be identified.

Strawman: To be determined, based on an analysis of the trade-off between interoperability
with Verilog/PSL and campatibility with legacy code using prototype VHPI implementa-
tions.

5. Examples
The purpose of this section is to illustrate the various forms of path names based on choices
made for concrete syntax.

To be completed as an exercise in use-case analysis...
8

	Draft Proposal for Unifying Path Names
	1. Introduction
	2. Path Name Contexts
	2.1. Expanded names
	2.2. Path_name and Instance_name attributes
	2.3. VHPI name properties
	2.4. XMR names
	2.5. PSL names

	3. Abstract syntax for path names
	3.1. Library unit path name
	3.2. Design Hierarchy path name
	3.3. Wildcard path names
	3.4. Relative path names

	4. Concrete syntax
	5. Examples

