
 1

 1

 2

 3

 4

 5

 6

 7

 8

VHPI Standard Specification 9

 10

 11

Draft 4.7 12

 13

Deleted: 6

 2

 1

VHPI STANDARD SPECIFICATION .. 1 2

DRAFT 4.6 .. 1 3

VHDL PROCEDURAL INTERFACE .. 13 4

1. OVERVIEW ... 13 5

1.1 SCOPE AND PURPOSE OF THE VHDL PROCEDURAL INTERFACE .. 13 6
1.1.1 VHDL Procedural interface requirements and guidelines ... 13 7

THE PLI SHOULD BE ANSI C COMPATIBLE. .. 14 8

THE WORKING GROUP WILL EVALUATE IF THE PLI INTERFACE SHOULD REQUIRE 9
VITAL SPECIFIC INFORMATION. .. 15 10

TBD.. 15 11

GUIDELINES... 15 12

THERE ARE 7 GUIDELINES.. 15 13

1.1.2 VHPI capability sets and conformance .. 15 14
1.2 INTERFACE NAMING CONVENTIONS .. 16 15
1.3 PROCEDURAL INTERFACE OVERVIEW.. 17 16

2. VHPI HANDLES.. 17 17

2.1 OBJECTS AND HANDLES... 17 18
2.2 HANDLE MANAGEMENT FUNCTIONS .. 18 19

2.2.1 Handle creation .. 18 20
2.2.2 Handle release.. 18 21
2.2.3 Handle comparison .. 18 22

2.3 LIFETIME OF OBJECTS AND HANDLES... 18 23
2.3.1 Object lifetime... 18 24
2.3.2 Handle lifetime ... 19 25
2.3.3 Invalid handles ... 19 26
2.3.4 Referential integrity.. 19 27

2.4 META HANDLES... 19 28
2.4.1 Iterator class... 20 29
2.4.2 Collection class .. 20 30

3. INTERFACE FUNCTION OVERVIEW... 22 31

3.1 INFORMATION ACCESS ROUTINES ... 22 32
3.1.1 Single relationship traversal function .. 22 33

EXAMPLE 1: UNNAMED RELATIONSHIPS .. 22 34

EXAMPLE 2: TAGGED RELATIONSHIPS... 23 35

3.1.2 Iteration functions and vhpi_handle_by_index .. 24 36

EXAMPLE:... 24 37

PLEASE REFER TO THE SCOPE CLASS DIAGRAM... 24 38

3.2 SIMPLE PROPERTY ACCESS FUNCTIONS.. 24 39
3.2.1 Integer or boolean properties... 24 40

PROCEDURAL INTERFACE REFERENCES: .. 25 41

ENUMERATION TYPE FOR THE INTEGER OR BOOLEAN PROPERTIES IS 42
VHPIINTPROPERTYT. ... 25 43

 3

ERRORS:.. 25 1

3.2.2 String properties... 25 2

.. 26 3

PROCEDURAL INTERFACE REFERENCES: .. 26 4

ENUMERATION TYPE FOR THE STRING PROPERTIES IS VHPISTRPROPERTYT. 27 5

SEE ANNEX B FOR DESCRIPTION OF EACH STRING PROPERTY. .. 27 6

ERRORS:.. 27 7

3.2.3 Real properties ... 27 8

PROCEDURAL INTERFACE REFERENCES: .. 27 9

ENUMERATION TYPE FOR THE REAL PROPERTIES IS VHPIREALPROPERTYT............... 27 10

3.2.4 Physical properties ... 27 11

PROCEDURAL INTERFACE REFERENCES: .. 27 12

ENUMERATION TYPE FOR THE PHYSICAL PROPERTIES IS VHPIPHYSPROPERTYT...... 27 13

ERRORS:.. 27 14

3.3 LOOK UP BY NAME... 27 15
3.4 VALUE MANIPULATION FUNCTIONS ... 28 16

3.4.1 Value access function ... 28 17
3.4.2 Value formatting function... 28 18
3.4.3 Value modification functions .. 28 19

3.5 FOREIGN MODEL SUPPORT.. 28 20
3.6 CALLBACKS... 28 21

3.6.1 Functions for registration, removing, disabling, enabling callbacks................................... 28 22
3.7 UTILITIES AND MISCELLANEOUS FUNCTIONS.. 29 23

3.7.1 Error checking.. 29 24
3.7.2 Printing to stdout and log files ... 29 25
3.7.3 Optional Save/Restart Support ... 29 26
3.7.4 Miscellaneous Functions .. 29 27

4. THE VHDL PLI INFORMATION MODEL... 30 28

4.1 FORMAL NOTATION ... 30 29

UML NOTATION QUICK REFERENCE.. 30 30

A CLASS .. 30 31

A MEMBER CLASS ... 30 32

ASSOCIATIONS ... 30 33

4.2 CLASSES OVERVIEW .. 31 34

(1) THE BASE CLASS IS THE TOP OF THE CLASS HIEARCHY... 33 35

(2) THE NULL CLASS DENOTES THE VHDL ELABORATED OR UNINSTANTIATED DESIGN.36
.. 33 37

ATTRSPEC... 34 38

STACKFRAME ... 34 39

CONDWAVEFORM.. 35 40

ASSOCELEM... 35 41

 4

4.3 STANDARD HIERARCHY PACKAGE (HIERARCHY CAPABILITY SET) ... 38 1
4.3.1 The region inheritance class diagram .. 38 2
4.3.2 The port class diagram... 39 3
4.3.3 The generics class diagram .. 40 4
4.3.4 The signals class diagram .. 41 5
4.3.5 The variable class diagram .. 42 6
4.3.6 The constant class diagram .. 43 7
4.3.7 The structural class diagram.. 44 8

4.4 STANDARD UNINSTANTIATED PACKAGE (POST ANALYSIS CAPABILITY SET)................................... 45 9
4.4.1 The design unit class diagram.. 45 10
4.4.2 The lexical scope diagram.. 45 11
4.4.3 The configuration declaration class diagram .. 46 12

4.5 THE STANDARD DECLARATION PACKAGE (HIERARCHY AND STATIC CAPABILITY SETS) 48 13
4.5.1 The declaration class inheritance diagram .. 48 14
4.5.2 The object class diagram.. 49 15
4.5.3 The composite object class diagram... 52 16
4.5.4 The alias declaration diagram ... 53 17
4.5.5 The group declaration diagram.. 55 18
4.5.6 The file inheritance diagram .. 55 19

4.6 THE STANDARD TYPE PACKAGE (STATIC ACCESS CAPABILITY SET).. 56 20
4.6.1 The type and subtype class diagram... 56 21
4.6.2 The type inheritance class diagram.. 58 22
4.6.3 The scalar type class diagram.. 60 23
4.6.4 The constraint class diagram ... 61 24

4.7 THE STANDARD SPECIFICATION PACKAGE (STATIC ACCESS CAPABILITY SET) 63 25
4.7.1 The attribute declaration and specification class diagram .. 63 26
4.7.2 The attribute specification associations ... 64 27
4.7.3 The disconnection specification class diagram .. 65 28
4.7.4 The specifications diagram... 65 29

4.8 THE STANDARD SUBPROGRAM PACKAGE (STATIC ACCESS AND DYNAMIC ELAB CAPABILITY SETS) 66 30
4.8.1 The subprogram declaration class diagram... 66 31
4.8.2 The subprogram call class diagram ... 67 32

4.9 THE STANDARD STATEMENT PACKAGE (STATIC ACCESS CAPABILITY SET)..................................... 69 33
4.9.1 The concurrent statement class diagram... 69 34
4.9.2 The structural statement class diagram.. 70 35
4.9.3 The generate statement class diagram ... 71 36
4.9.4 The sequential statement inheritance class diagram.. 73 37
4.9.5 The sequential case, if, wait and return statement class diagram.. 75 38
4.9.6 The sequential loop, exit and next statement diagram .. 76 39
4.9.7 The sequential variable assignment, assert and report statement diagram 76 40
4.9.8 The signal assignment statement class diagram... 78 41

4.10 THE STANDARD EXPRESSION PACKAGE.. 79 42
4.10.1 The expression inheritance diagram .. 79 43
4.10.2 The simple name class diagram.. 80 44
4.10.3 The attribute class diagram.. 81 45
4.10.4 The type conversion, aggregate class diagram .. 82 46
4.10.5 The name access class diagram.. 82 47
4.10.6 The literal class diagram.. 84 48

4.11 THE STANDARD CONNECTIVITY PACKAGE ... 85 49
4.11.1 The driver class diagram.. 85 50
4.11.2 The contributor inheritance diagram ... 86 51
4.11.3 The basic signal class diagram .. 86 52
4.11.4 The connectivity diagram ... 88 53
4.11.5 The loads class diagram... 89 54

4.12 THE STANDARD CALLBACK PACKAGE.. 90 55

Deleted: 68

Deleted: 68

Deleted: 69

Deleted: 70

Deleted: 72

Deleted: 73

Deleted: 74

Deleted: 74

Deleted: 76

Deleted: 77

Deleted: 77

Deleted: 78

Deleted: 79

Deleted: 80

Deleted: 80

Deleted: 82

Deleted: 83

Deleted: 83

Deleted: 84

Deleted: 84

Deleted: 86

Deleted: 87

Deleted: 88

 5

4.12.1 The callback statement class diagram.. 90 1
4.13 THE STANDARD ENGINE PACKAGE... 91 2

4.13.1 The simulator kernel class diagram ... 91 3
4.14 THE STANDARD FOREIGN MODELS PACKAGE ... 92 4

4.14.1 The foreign model class diagram ... 92 5
4.15 THE STANDARD META PACKAGE.. 93 6

4.15.1 The iterator diagram .. 93 7
4.15.2 The tool class diagram ... 93 8
4.15.3 The collection class diagram.. 94 9
4.15.4 The base inheritance class diagram ... 95 10

5. ACCESS TO THE UNINSTANTIATED MODEL... 96 11

5.1 SCOPE.. 96 12
5.2 VHPI APPLICATION CONTEXTS... 96 13
5.3 VHPI UNINSTANTIATED ACCESS .. 97 14

5.3.1 Uninstantiated Information Model ... 97 15
5.3.2 New additions ... 98 16
5.3.3 Expanded Names .. 99 17
5.3.4 Unsupported classes ... 99 18
5.3.5 Unsupported 1-to-1 relationships... 99 19
5.3.6 Unsupported 1-to-many relationships .. 100 20
5.3.7 Unsupported integer properties.. 100 21
5.3.8 Unsupported functions.. 100 22
5.3.9 vhpi_handle_by_name.. 101 23
5.3.10 Instantiated to uninstantiated model .. 101 24
5.3.11 Additional Comments ... 102 25

6. VHPI NAMES PROPERTIES, ACCESS BY NAME LOOKUP .. 102 26

6.1 VHPI NAME STRING PROPERTIES ... 102 27
6.1.1 Name Properties - Instantiated Information Model (design hierarchy access) 103 28
6.1.2 Other Name Properties... 124 29

6.2 ACCESS BY NAME LOOKUP .. 125 30
6.2.1 Instantiated Model Access(Design hierarchy).. 125 31
6.2.2 Uninstantiated Model Access (Library unit access) ... 126 32

7. FOREIGN MODELS INTERFACE... 128 33

7.1 THE PHASES OF EXECUTION OF A VHDL/VHPI MIXED DESIGN ... 128 34

REGISTRATION:.. 128 35

NOTES: ... 128 36

ELABORATION:... 129 37

INITIALIZATION:.. 129 38

SIMULATION RUNTIME EXECUTION: ... 129 39

TERMINATION: ... 129 40

SAVE, RESTART, RESET: .. 129 41

7.2 FOREIGN MODELS SPECIFICATION.. 130 42
7.2.1 Foreign attribute syntax ... 130 43

NOTES: ... 130 44

EXAMPLE:... 130 45

“VHPIDIRECT <LIBRARY_NAME> <EXECF_NAME>” ... 132 46

Deleted: 88

Deleted: 89

Deleted: 89

Deleted: 90

Deleted: 90

Deleted: 91

Deleted: 91

Deleted: 91

Deleted: 92

Deleted: 93

Deleted: 94

Deleted: 94

Deleted: 94

Deleted: 95

Deleted: 95

Deleted: 96

Deleted: 97

Deleted: 97

Deleted: 97

Deleted: 98

Deleted: 98

Deleted: 98

Deleted: 99

Deleted: 99

Deleted: 100

Deleted: 100

Deleted: 100

Deleted: 101

Deleted: 107

Deleted: 108

Deleted: 108

Deleted: 109

Deleted: 111

Deleted: 111

Deleted: 111

Deleted: 111

Deleted: 112

Deleted: 112

Deleted: 112

Deleted: 112

Deleted: 112

Deleted: 113

Deleted: 113

Deleted: 113

Deleted: 113

Deleted: 115

 6

WHERE <LIBRARY_NAME> AND <EXECF_NAME> CAN BE THE NULL TOKENS............. 132 1

THE FOREIGN ATTRIBUTE STRING MUST BE LOCALLY STATIC AND MUST BE A 2
STRING THAT STARTS WITH THE VHPIDIRECT KEYWORD. .. 132 3

7.3 REGISTRATION .. 132 4
7.3.1 Delivery and packaging of libraries of foreign VHPI models or applications................... 132 5

FOR A LIBRARY OF FOREIGN MODELS: .. 133 6

COMMENTS MAY BE INCLUDED IN THE FILE, EACH COMMENT LINE MUST START BY 7
A "--" CHARACTER. THE LIBRARY, MODEL, APPLICATION AND FUNCTION NAMES 8
MUST BE FORMED WITH GRAPHICAL CHARACTERS AND CAN BE EXTENDED 9
IDENTIFIERS. THE ELABORATION, EXECUTION AND BOOTSTRAP FUNCTION NAMES 10
SHOULD BE THE C SOURCE FUNCTION NAMES. ONE OR MORE SPACES CAN OCCUR 11
BETWEEN NAMES. THE NULL TOKEN SHOULD BE ENTERED IN THE PLACE OF A C 12
FUNCTION NAME IF NO FUNCTION NAME IS PROVIDED. IN THE CASE OF A NULL 13
EXECUTION_FCTN_NAME FOR A FOREIGN SUBPROGRAM, THE NAME OF THE 14
FUNCTION DEFAULTS TO THE NAME OF THE MODEL NAME. ... 133 15

IF SEVERAL BOOTSTRAP FUNCTIONS ARE ASSOCIATED WITH A LIBRARY, AN ENTRY 16
FOR EACH BOOTSTRAP FUNCTION MUST BE IN THE REGISTRY FILE. 133 17

EXAMPLE:... 133 18

REGISTRY_FILE CONTENTS EXAMPLE .. 133 19

7.3.2 Registration functions for foreign models and applications... 133 20

PROCEDURAL INTERFACE REFERENCES: .. 134 21

PROCEDURAL INTERFACE REFERENCES: .. 134 22

7.3.3 Registration and binding errors ... 135 23
7.3.4 Restrictions ... 135 24

7.4 ELABORATION OF FOREIGN MODELS.. 135 25
7.4.1 Elaboration of foreign architectures .. 135 26
7.4.2 Elaboration function... 135 27
7.4.3 Elaboration of foreign subprograms .. 135 28

NOTE: LRM MODIFICATIONS NEEDED PAGES 156, 157, 163.. 135 29

A FOREIGN FUNCTION CAN BE CALLED DURING ELABORATION PHASE TO INITIALIZE 30
DECLARED ITEMS. THE EXECF FUNCTION IS USED TO PROVIDE THE INITIAL VALUE 31
OF THE DECLARED OBJECT... 136 32

NOTE: LRM MODIFICATION NEEDED FOR ELABORATION OF DECLARED OBJECTS 33
INVOLVING FOREIGN FUNCTIONS. ... 136 34

7.5 SIMULATION RUN TIME EXECUTION ... 136 35
7.5.1 Simulation of foreign architectures .. 136 36
7.5.2 Initialization function ... 136 37
7.5.3 Simulation of foreign subprograms .. 136 38

WHEN A FOREIGN SUBPROGRAM CALL IS ENCOUNTERED DURING VHDL EXECUTION, 39
THE SIMULATION EXECUTION FUNCTION IS CALLED: THE CONTROL FLOW OF A 40
FOREIGN SUBPROGRAM CALL IS DETERMINED BY THE VHDL SIMULATION 41
SEMANTICS. ... 136 42

7.5.4 Execution function .. 136 43
7.5.5 Restrictions and errors ... 140 44

PROCEDURAL INTERFACE REFERENCES: .. 140 45

Deleted: 115

Deleted: 115

Deleted: 115

Deleted: 115

Deleted: 116

Deleted: 116

Deleted: 116

Deleted: 116

Deleted: 116

Deleted: 116

Deleted: 117

Deleted: 117

Deleted: 118

Deleted: 118

Deleted: 118

Deleted: 118

Deleted: 118

Deleted: 118

Deleted: 118

Deleted: 119

Deleted: 119

Deleted: 119

Deleted: 119

Deleted: 119

Deleted: 119

Deleted: 119

Deleted: 119

Deleted: 123

Deleted: 123

 7

7.6 CONTEXT PASSING MECHANISM... 140 1
7.6.1 Architecture instance.. 140 2
7.6.2 Subprogram Calls... 141 3

VHPI_PUT_VALUE() METHOD CAN BE APPLIED TO FORMAL PARAMETERS OF MODE 4
OUT OR INOUT; IT WILL UPDATE THE VALUE OR SCHEDULE A ZERO DELAY 5
TRANSACTION ON THE VHDL FORMAL PARAMETER DEPENDING ON THE FLAGS AND 6
CLASS OF THE PARAMETER. VHPI_SCHEDULE_TRANSACTION CAN BE APPLIED TO A 7
FORMAL SIGNAL PARAMETER OF MODE OUT OR INOUT... 142 8

NOTE: PAGE 20 AND 21 OF THE LRM HAS TO BE UPDATED WITH FOREIGN 9
SUBPROGRAMS... 142 10

PROCEDURAL INTERFACE REFERENCES: .. 142 11

7.7 SAVE, RESTART AND RESET .. 142 12
7.7.1 Saving foreign models .. 142 13

SEE EXAMPLE IN THE PROCEDURAL INTERFACE REFERENCE FOR VHPI_PUT_DATA().14
.. 143 15

7.7.2 Restarting foreign models... 143 16

SEE EXAMPLE IN THE PROCEDURAL INTERFACE REFERENCE FOR VHPI_GET_DATA().17
.. 144 18

7.7.3 Reset of foreign models state .. 144 19

2. THE SIMULATOR REMOVES ALL SCHEDULED TRANSACTIONS AND ALL USER 20
REGISTERED CALLBACKS WITH THE REQUIRED EXCEPTION OF VHPICBENDOFRESET 21
CALLBACKS. .. 145 22

3. RESET THE VHDL SIMULATION STATE TO THE BEGINNING OF INITIALIZATION, 23
TC = 0 NS, READY TO COMMENCE EXECUTION OF INITILIZATION PHASE 1.0.1 IN THE 24
ANNOTATED SIMULATION CYCLE. ... 145 25

4. EXECUTE ALL USER REGISTERED VHPICBENDOFRESET CALLBACKS, 26
OPPORTUNITY FOR A CLIENT APPLICATION TO REGISTER CALLBACKS. 145 27

5. INITIALIZATION PHASE STARTS AT 1.0.1 IN THE ANNOTATED SIMULATION CYCLE.28
 145 29

7.7.4 Save, restart and reset of VHPI applications ... 145 30
7.7.5 Getting the simulation save and restart location.. 145 31
7.7.6 Restrictions ... 146 32

PROCEDURAL INTERFACE REFERENCES: .. 146 33

8. CALLBACKS ... 147 34

8.1 CALLBACK OVERVIEW .. 147 35
8.2 CALLBACK VHPI FUNCTIONS.. 147 36

8.2.1 Registering callbacks.. 147 37
8.2.2 Disabling and enabling callbacks .. 148 38
8.2.3 Getting callback information.. 149 39
8.2.4 Removing callbacks .. 149 40

8.3 CALLBACK INFORMATION MODEL .. 149 41
8.3.1 Callback methods ... 150 42
8.3.2 Callback properties .. 150 43

8.4 CALLBACK SEMANTICS ... 151 44
8.4.1 The Annotated VHDL Simulation Cycle ... 151 45

1) .. 151 46

Deleted: 123

Deleted: 123

Deleted: 124

Deleted: 125

Deleted: 125

Deleted: 125

Deleted: 125

Deleted: 125

Deleted: 126

Deleted: 126

Deleted: 127

Deleted: 127

Deleted: 128

Deleted: 128

Deleted: 128

Deleted: 128

Deleted: 128

Deleted: 128

Deleted: 129

Deleted: 129

Deleted: 130

Deleted: 130

Deleted: 130

Deleted: 130

Deleted: 131

Deleted: 132

Deleted: 132

Deleted: 132

Deleted: 133

Deleted: 133

Deleted: 134

Deleted: 134

Deleted: 134

 8

1. SIMULATION CYCLE: ... 151 1

A).. 152 2

B).. 152 3

END OF TIME STEP: ... 153 4

8.4.2 Object Callbacks .. 154 5

NOTE: A FORCE OR RELEASE ACCOMPLISHED EITHER THROUGH VHPI_PUT_VALUE 6
WITH VHPIFORCE OR VHPIRELEASE FLAGS OR THROUGH A SIMULATOR FORCE OR 7
RELEASE COMMAND DO NOT TRIGGER VALUE CHANGE CALLBACKS........................... 155 8

8.4.3 Optional object callbacks ... 155 9
8.4.4 Foreign models specific callbacks.. 155 10
8.4.5 Statement callbacks .. 156 11
8.4.6 Time callbacks .. 158 12
8.4.7 Simulation phase callbacks .. 158 13
8.4.8 Action callbacks.. 160 14

ALL CALLBACK REASONS EXCEPT VHPICBQUIESCENCE AND VHPICBPLIERROR, 15
VHPIENTERINTERACTIVE, VHPIEXITINTERACTIVE, VHPISIGINTERRRUPT ARE ONE 16
TIME CALLBACKS. .. 160 17

8.4.9 Optional action callbacks... 162 18
8.5 SAVE/RESTART/RESET CALLBACKS .. 162 19
8.6 VHPICBSTARTOFRESET, VHPICBENDOFRESET... 163 20
8.7 CALLBACK FUNCTION EXECUTION... 163 21

PROCEDURAL INTERFACE REFERENCES: .. 164 22

ERRORS:.. 164 23

RESTRICTIONS: .. 164 24

9. VALUE ACCESS AND MODIFICATION ... 165 25

9.1 ACCESSING VHDL OBJECT VALUES .. 169 26
9.2 FORMATTING VHDL VALUES.. 170 27
9.3 UPDATING VHDL OBJECT VALUES.. 170 28

1. SUBCLASSES OF THE OBJDECL CLASS : VHPISIGDECLK, VHPIVARDECLK, 29
VHPIPORTDECLK, VHPIOUTPORTDECLK, VHPISIGPARAMDECLK, VHPIVARPARAMDECLK30
.. 170 31

PARAMETERS TO SUBPROGRAMS CAN BE MODIFIED ONLY IF THEIR MODE IS EITHER 32
VHPIOUT OR VHPIINOUT. ... 170 33

2. SUBCLASSES OF THE CLASS NAME : VHPIINDEXEDNAMEK, VHPISLICENAMEK, 34
VHPISELECTEDNAMEK, VHPIDEREFOBJK. ... 171 35

3. FUNCTION CALL HANDLES: VHPIFUNCCALLK .. 171 36

4. DRIVER HANDLES: VHPIDRIVERK .. 171 37

THE INTERFACE SUPPORTS FOUR DIFFERENT MODES OF UPDATING THE VALUES OF 38
SIGNALS AND PORTS, ... 174 39

THE FOLLOWING IS A DESCRIPTION OF THESE FLAGS,.. 174 40

9.4 SCHEDULING TRANSACTIONS ON SIGNAL DRIVERS .. 176 41

10. UTILITIES.. 180 42

10.1 GETTING CURRENT SIMULATION TIME ... 180 43

Deleted: 134

Deleted: 135

Deleted: 135

Deleted: 136

Deleted: 137

Deleted: 138

Deleted: 138

Deleted: 138

Deleted: 139

Deleted: 141

Deleted: 141

Deleted: 143

Deleted: 143

Deleted: 145

Deleted: 145

Deleted: 146

Deleted: 146

Deleted: 147

Deleted: 147

Deleted: 147

Deleted: 148

Deleted: 152

Deleted: 153

Deleted: 153

Deleted: 153

Deleted: 153

Deleted: 154

Deleted: 154

Deleted: 154

Deleted: 154

Deleted: 155

Deleted: 157

Deleted: 160

Deleted: 160

 9

PROCEDURAL INTERFACE REFERENCES: .. 180 1

10.2 PRINTING... 180 2
10.2.1 Printing to the stdout, log files, displaying messages... 180 3

10.3 ERROR CHECKING AND HANDLING... 180 4

VHPI: <VENDOR SPECIFIC ERRCODE>: <MESSAGE>... 181 5

10.4 TOOL CONTROL ... 181 6

THE VHPI FUNCTIONS VHPI_ASSERT(), VHPI_CONTROL() CAN BE CALLED TO AFFECT 7
THE EXECUTION CONTROL FLOW. ... 181 8

11. PROCEDURAL INTERFACE REFERENCE MANUAL... 182 9

11.1 VHPI_ASSERT() .. 182 10

EXAMPLE:... 182 11

11.2 VHPI_CHECK_ERROR()... 183 12

EXAMPLE 1:.. 184 13

/* CONTINUE VHPI CODE */... 184 14

/* EXAMINE AND DECIDE IF NEED TERMINATION */ ... 184 15

1 ENTITY TOP IS ... 184 16

2 END TOP; ... 184 17

3 ARCHITECTURE MY_VHDL OF TOP IS ... 184 18

4 CONSTANT VAL: INTEGER:= 0;.. 184 19

5 SIGNAL S1, S2, S3: BIT;... 184 20

6 BEGIN .. 184 21

7 U1: C_AND(S1, S2, S3); ... 184 22

8 PROCESS (S1) ... 184 23

9 VARIABLE VA: INTEGER:= VAL; ... 184 24

10 BEGIN.. 184 25

11 VA = MYFUNC(S1); .. 184 26

12 END PROCESS; ... 184 27

13 END MY_VHDL;.. 184 28

11.3 VHPI_COMPARE_HANDLES().. 186 29

EXAMPLE:... 186 30

11.4 VHPI_CONTROL() ... 187 31

EXAMPLE:... 187 32

11.5 VHPI_CREATE().. 189 33

EXAMPLE:... 189 34

11.6 VHPI_DISABLE_CB() .. 191 35
11.7 VHPI_ENABLE_CB() ... 192 36

EXAMPLE:... 192 37

Deleted: 161

Deleted: 161

Deleted: 161

Deleted: 161

Deleted: 162

Deleted: 162

Deleted: 162

Deleted: 163

Deleted: 163

Deleted: 163

Deleted: 164

Deleted: 165

Deleted: 165

Deleted: 165

Deleted: 165

Deleted: 165

Deleted: 165

Deleted: 165

Deleted: 165

Deleted: 165

Deleted: 165

Deleted: 165

Deleted: 165

Deleted: 165

Deleted: 165

Deleted: 165

Deleted: 165

Deleted: 167

Deleted: 167

Deleted: 168

Deleted: 168

Deleted: 170

Deleted: 170

Deleted: 172

Deleted: 173

Deleted: 173

 10

11.8 VHPI_FORMAT_VALUE... 193 1

EXAMPLE:... 194 2

11.9 VHPI_GET().. 195 3
11.10 VHPI_GET_CB_INFO() .. 196 4
11.11 VHPI_GET_DATA() ... 197 5

/* ALLOCATE MEMORY TO RECEIVE THE DATA THAT IS READ IN */ 198 6

11.12 VHPI_GET_FOREIGNF_INFO() ... 201 7
11.13 VHPI_GET_NEXT_TIME().. 203 8

EXAMPLE:... 203 9

11.14 VHPI_GET_PHYS().. 203 10
11.15 VHPI_GET_REAL().. 204 11
11.16 VHPI_GET_STR() .. 206 12

EXAMPLE:... 206 13

11.17 VHPI_GET_TIME() .. 208 14

EXAMPLE:... 208 15

11.18 VHPI_GET_VALUE() ... 211 16

EXAMPLE:... 212 17

EXAMPLE:... 212 18

IT IS NOT POSSIBLE TO FETCH DIRECTLY THE VALUE OF ANY OTHER EXPRESSION 19
SUCH AS AN AGGREGATE, TYPECONV OR FUNCTION CALL FOR EXAMPLE. 213 20

THESE CLASS KINDS HAVE AN OPERATION VHPI_GET_VALUE() IN THE OBJECT CLASS 21
DIAGRAM.. 214 22

TABLE 2: TIME VALUE STRUCTURE ... 217 23

TABLE 4: VALUE STRUCTURE.. 218 24

11.19 VHPI_HANDLE() ... 220 25
11.20 VHPI_HANDLE_BY_INDEX()... 221 26

EXAMPLE 1: (I024: FIX EXAMPLE SUBTYPE/BASETYPE CHANGES) 221 27

EXAMPLE 2:.. 222 28

EXAMPLE 3: (I025: FIX EXAMPLE) .. 222 29

THIS EXAMPLE SHOWS HOW TO GET A HANDLE TO A SUB-OBJECT OF A COMPOSITE 30
TYPE. .. 222 31

5, 6, 7, 8,.. 222 32

/* SUBELTHDL IS A HANDLE TO R.AR */ .. 223 33

11.21 VHPI_HANDLE_BY_NAME() ... 224 34

EXAMPLE:... 224 35

THIS FUNCTION FINDS A SIGNAL HANDLE GIVEN THE SIMPLE SIGNAL NAME............ 224 36

11.22 VHPI_ITERATOR() .. 226 37

EXAMPLE:... 226 38

11.23 VHPI_PROTECTED_CALL() ... 227 39

Deleted: 174

Deleted: 175

Deleted: 176

Deleted: 177

Deleted: 178

Deleted: 179

Deleted: 182

Deleted: 184

Deleted: 184

Deleted: 184

Deleted: 185

Deleted: 187

Deleted: 187

Deleted: 189

Deleted: 189

Deleted: 192

Deleted: 193

Deleted: 193

Deleted: 194

Deleted: 195

Deleted: 198

Deleted: 199

Deleted: 201

Deleted: 202

Deleted: 202

Deleted: 203

Deleted: 203

Deleted: 203

Deleted: 203

Deleted: 204

Deleted: 205

Deleted: 205

Deleted: 205

Deleted: 207

Deleted: 207

Deleted: 208

 11

EXAMPLE:... 227 1

11.24 VHPI_PRINTF() ... 230 2

EXAMPLE:... 230 3

FROM VHPI_USER.H.. 230 4

"À","Á","Â","Ã","Ä","Å","Æ","Ç",.. 231 5

HELLO & NUL & C128 & DEL .. 231 6

11.25 VHPI_PUT_DATA() ... 232 7

SEE ALSO THE EXAMPLE IN VHPI_GET_DATA() FOR THE DESCRIPTION OF THE 8
RESTART CALLBACK FUNCTION. .. 232 9

11.26 VHPI_PUT_VALUE() ... 234 10
11.27 VHPI_REGISTER_CB()... 236 11

EXAMPLE 1: REGISTER VALUE CHANGE CALLBACKS ON ALL SIGNALS IN THE DESIGN12
.. 237 13

11.28 VHPI_REGISTER_FOREIGNF() ... 238 14

THE FOLLOWING EXAMPLE ILLUSTRATES HOW A USER CAN DYNAMICALLY LINK 15
FOREIGN MODEL FUNCTION CALLBACKS. .. 239 16

EXAMPLE:... 239 17

EXAMPLE 2:.. 240 18

ERRORS: ... 240 19

11.29 VHPI_RELEASE_HANDLE() ... 241 20

EXAMPLE:... 241 21

11.30 VHPI_REMOVE_CB() .. 242 22

EXAMPLE:... 242 23

11.31 VHPI_SCAN() ... 243 24

EXAMPLE:... 243 25

11.32 VHPI_SCHEDULE_TRANSACTION() ... 244 26

THE VALUE POINTER COULD BE.. 244 27

NULL TRANSACTIONS CAN BE POSTED BY SETTING VALUEP TO A NULL POINTER.... 245 28

12. INTEROPERABILITY BETWEEN VPI AND VHPI.. 249 29

TABLE 1: CORRESPONDENCE BETWEEN VHPI AND VPI FUNCTIONS 249 30

13. ANNEX A (NORMATIVE) VHPI HEADER FILE.. 249 31

"À","Á","Â","Ã","Ä","Å","Æ","Ç",.. 268 32

14. ANNEX B: DESCRIPTION OF PROPERTIES ... 269 33

14.1 INTEGER PROPERTIES... 269 34
14.2 STRING PROPERTIES... 270 35
14.3 REAL PROPERTIES.. 272 36

15. ANNEX : ISSUES AND RESOLUTIONS ... 272 37

15.1 CREATION OF SIGNAL ATTRIBUTES WITH VHPI_CREATE... 272 38

Deleted: 208

Deleted: 211

Deleted: 211

Deleted: 211

Deleted: 212

Deleted: 212

Deleted: 213

Deleted: 213

Deleted: 215

Deleted: 217

Deleted: 218

Deleted: 219

Deleted: 220

Deleted: 220

Deleted: 221

Deleted: 221

Deleted: 222

Deleted: 222

Deleted: 223

Deleted: 223

Deleted: 224

Deleted: 224

Deleted: 225

Deleted: 225

Deleted: 226

Deleted: 230

Deleted: 230

Deleted: 230

Deleted: 249

Deleted: 250

Deleted: 250

Deleted: 251

Deleted: 253

Deleted: 253

Deleted: 253

 12

15.2 WHAT DOES A FOREIGN FUNCTION IS ALLOWED TO DO (CALLBACK, 1
VHPI_SCHEDULE_TRANSACTION …) ... 272 2
15.3 MODELING FOR WAIT IN SUBPROGRAMS.. 272 3

ACTION: JOHN: DOCUMENT ANALYSIS OF PROBLEMS ... 272 4

15.4 DEFAULT PROCESS IMPLIED BY A FOREIGN ARCHITECTURE ... 272 5
15.5 CANCELLING TRANSACTION AND RETURNING HANDLE TO A TRANSACTION BUNDLE. 272 6
15.6 CAN VHPI_PUT_VALUE BE CALLED DURING INITIALIZATION CYCLE? .. 272 7
15.7 ARE VHPISTARTOFSUBPCALL AND VHPIENDOFSUBPCALL REPETITIVE CALLBACKS.................. 272 8
15.8 ARE SAVE/RESTART AND RESET CALLBACKS REPETITIVE?... 272 9
15.9 REPRESENTATION OF REAL PHYSICAL LITERALS 2.5 NS ... 272 10
15.10 VHPILOGICVAL AND VHPILOGICVECVAL STANDARD FORMATS FOR LOGIC TYPES.................. 272 11
15.11 WHEN A SIGNAL OR A PORT IS FORCED, WHAT SHOULD VHPICONTRIBUTORS AND VHPIDRIVERS 12
RETURN? 273 13
15.12 RESTART SEQUENCE .. 273 14
15.13 RESET SEQUENCE .. 273 15
15.14 CBAFTERDELAY CALLBACK ... 273 16
15.15 CBSTARTOFPOSTPONED CALLBACK ... 273 17
15.16 VHPIDECL INHERITANCE CLASS ... 273 18
15.17 CAN VHPI_PUT_VALUE BE CALLED DURING INITIALIZATION CYCLE?....................................... 273 19
15.18 ACCESS TO THE COMPONENT DECLARATION FROM A COMPONENT INSTANCE STATEMENT 273 20
15.19 ACCESS TO THE SUBPROGRAM BODY FROM A SUBPROGRAM DECLARATION 273 21
15.20 WHEN CAN YOU APPLY VHPI_SCHEDULE TRANSACTION.. 274 22
15.21 COLLECTION OF DRIVERS .. 274 23
15.22 WHAT HAPPEN TO MATURE CALLBACKS ... 274 24
15.23 UNINSTANTIATED ACCESS: EXPANDED NAMES; ... 274 25
15.24 VHPI_HANDLE_BY_NAME RETURNING COLLECTIONS .. 275 26
15.25 ASSOCIATING ERRORS WITH VHPI CLIENTS ... 275 27
15.26 VHPIFULLNAME SAME AS ‘PATH_NAME PREDEFINED ATTRIBUTE STRING?.............................. 276 28
15.27 CREATION OF FOREIGN DRIVERS.. 277 29

16. ANNEX C: FORMAL TEXTUAL DEFINITION OF THE VHPI INFORMATION MODEL30
 277 31

Deleted: 253

Deleted: 253

Deleted: 253

Deleted: 253

Deleted: 253

Deleted: 253

Deleted: 253

Deleted: 253

Deleted: 253

Deleted: 253

Deleted: 254

Deleted: 254

Deleted: 254

Deleted: 254

Deleted: 254

Deleted: 254

Deleted: 254

Deleted: 254

Deleted: 254

Deleted: 255

Deleted: 255

Deleted: 255

Deleted: 255

Deleted: 256

Deleted: 256

Deleted: 257

Deleted: 258

Deleted: 258

 13

VHDL Procedural Interface 1

 2

1. Overview 3

1.1 Scope and Purpose of the VHDL Procedural Interface 4
Design a standard procedural interface for VHDL. The outcome should be a specification that is 5
implementor independant and which can be used on any VHDL compliant tool. 6
Supports the current standard version of VHDL and any past versions as needed. 7
The interface should define the semantics for a mixed language design and define the 8
elaboration/instantiation and access methodology during runtime of foreign models. 9
The interface provides a mechanism to interact, control and communicate with a VHDL compliant tool. 10
The interface is an ANSI C procedural interface, which guarantees C source code portability across all 11
tools compliant with the interface. Even though the interface defines symbolic constant values and C data 12
structures which are a step towards binary portability, C object code binary portability across same 13
harware/OS is not guaranteed. Vendors or application writers should document application binary interface 14
issues which would affect their integration or would not be compatible with their PLI implementation. 15
The interface provides a VHPI header file which defines the required VHPI access. The compliance with 16
the standard requires a vendor to preserve the VHPI standard file. This VHPI interface provides 17
extensibility for a vendor VHPI implementation 18

1.1.1 VHDL Procedural interface requirements and guidelines 19
There are 10 requirements: 20
 21
 #1 functionality: 22
The procedural interface functionality can be divided in 2 parts: the core functions and the utility functions. 23
core: The interface should provide core functionality that enables the development of applications such as: 24
• design traversals, netlisters, 25
• connectivity extractors, 26
• co-simulation, backplane interfaces, 27
• behavioral models, 28
• debugging environments, 29
• simulation testbench and verification, 30
• VHDL code profilers and coverage tools, 31
• VHDL decompilers, 32
• delay calculators. 33
 34
These various types of applications require different capabilities to be supported by the VHDL procedural 35
interface; they can be classified in 4 categories: 36
 37
1. access to static VHDL design data 38
2. access and modification of specific VHDL objects 39
3. simulation interaction and control 40
4. foreign model instantiation and intercommunication mechanism with VHDL design 41
 42
Class 1 functionality should provide access to the elaborated model. Complete (with the exception of 43
protected data see requirement # 2) behavioral and structural access is highly desirable for back end tools 44
such as synthesis tools, delay calculators design verification tools. If the procedural interface provides 45
complete access to the static design data it should be possible to decompile a design that was analyzed and 46
regenerate an equivalent VHDL description. Delay calculation and back annotation through VHPI is 47
considered as lower priority and is not addressed in this first version of the standard. Read access to 48

 14

generic values which specify delays are however possible with this version of the standard. There are 1
several reasons behind pushing out providing the delay calculation and annotation capabilities: 2
 3
1. No existing C interface has this capability, 4
2. SDF back annotation or proprietary delay calculation or back annotation tools have been used for 5

VHDL designs. 6
3. A group under the DASC is working on a new standard for delay calculation and annotation (DPC) 7

and will fullfill this need. http://www.vhdl.org/dpc 8
 9
Class 3 functionality should provide the ability to change values of VHDL objects during elaboration or 10
simulation.Valid objects that can be modified will be specified. 11
Class 3 functionality should provide simulation interaction such as the ability to schedule events and 12
transactions, query the simulation state and time queue and interrupt the simulation engine at defined times 13
or for various reasons. 14
 15
Class 4 functionality should provide a mechanism to elaborate foreign models with VHDL models. This 16
mechanism should specify how one can use a foreign model in a VHDL model and how the foreign model 17
should access and propagate values to and from the VHDL model. 18
 19
The interface should provide support for event-driven as well as for alternative algorithms for 20
simulation. 21
 22
Utilities: Core utility functions such as printing, displaying and comparison functions are necessary. The 23
interface should provide an error handling mechanism, strong error detection and a set of known error 24
codes that the user can reference. All of the PLI functions should give an indication of how and why they 25
fail if they fail. 26
 27
 #2 restricted access to protected data: 28
 29
VHDL does not defined a mechanism to specify protected source code. The access to protected models 30
should be restricted to the information that can be found in a model vendor library and what is necessary 31
for interfacing the library cells in the VHDL design. 32
 33
 #3 Memory management: 34
 35
The procedural interface sould provide functionality to allow the application to manage the lifetime of the 36
memory allocated by the PLI. 37
 38
 #4 Hide internal data representation: 39
 40
The application cannot make assumptions about the underlaying data implementation. It must use the 41
defined mechanisms for data manipulation. 42
 43
 #5 Portability: 44
 45
The PLI should be ANSI C compatible. 46
The mechanism that the PLI interface provides for integrating PLI applications or models should be easily 47
portable to major platforms, i.e. UNIX or NT. 48
 49
 50
 #6 Allowing multiple concurrent PLI applications: 51
 52
The PLI should support simultaneous use and parallel read-only access to the same data. Note:Parallel 53
modification (write access) to the same data may be indeterministic and may be implementation dependant. 54
The design solution may determine the outcome of this issue. 55

 15

 1
 2
 #7 VITAL: 3
 4
The working group will evaluate if the PLI interface should require VITAL specific information. 5
 6
 #8 Saving/Restoring: 7
 8
The PLI should support a mechanism to save and restore PLI application state; after a restore operation, the 9
VHDL compliant tool should be able to continue. 10
 11
 #9 Resetting a simulation state: 12
 13
For simulation tools, the PLI should provide a mechanism to reset to time 0 which is the time just after 14
simulation initialization. 15
 16
 #10 evaluate co-simulation requirements: 17
 18
TBD 19
 20
 Guidelines 21
There are 7 guidelines. 22
 23
#1 Do not preclude mixed signal VHDL. 24
 25
#2 Provide for smooth crossing of VHDL/Verilog domains 26
 27
#3 performance 28
The interface should provide fast access to data. In particular, when the interface functions are used for 29
communicating with a simulator, where speed is the most important thing. 30
 31
#4 capacity 32
The procedural interface should be able to handle large designs and should manage memory internally. 33
 34
#5 versioning 35
A mechanism should be provided to determine adequate version information for the PLI interface, the 36
simulator and relevant models. 37
 38
#6 Function, data type names should be intuitive and seem natural to somebody who knows VHDL. 39
 40
#7 The working group will evaluate relevant existing interfaces with the possibility of leveraging prior 41
work. 42
 43

1.1.2 VHPI capability sets and conformance 44
The standard define clusters of VHPI capability, a vendor may claim conformance to several VHPI 45
capabilities. The claim of conformance to a VHPI capability requires that a vendor provides a compliant 46
implementation to all the methods, properties and functions referred by that capability. 47
All vhpi functions defined by the standard should, if not implemented return an unimplemented error 48
message. 49
An integer property vhpiCapabilitiesP can be queried from the tool class to check the vendor supported 50
VHPI capabilities. There is an enumeration constant defined for every capability. 51
A tool which supports a given phase shal support the vhpiStartOf phase name and vhpiEndOf phase name 52
that phase. 53

 16

 1
 VHPI defines ten capabilities: 2
 . the hierarchy capability: access to elaborated regions, design units, object declarations, types and 3
subtypes. vhpi_handle_by_name, vhpi_get_value of declared objects. 4
This capability enumeration constant is vhpiProvidesHierarchy. 5
 6
 . the VHDL static access capability: complete post elaboration static access including statements, 7
expressions, access to values of declared items after elaboration (vhpi_get_value). 8
The capability enumeration constant is vhpiProvidesStaticAccess. It is a superset of the hierarchy set. It 9
requires the hierarchy capability. 10
 11
 . the connectivity capability: access to VHDL drivers and contributors, port connections. It also requires 12
the hierarchy capability. 13
The capability enumeration constant is vhpiProvidesConnectivity. 14
 15
 . the post analysis capability (uninstantiated VHDL access) allows traversal of statements, expressions, 16
design units, etc…This capability set provides VHPI access after VHDL analysis and traversal of specific 17
relationships from the instantiated model to the uninstantated model (section 5.8). Also provides 18
vhpi_get_value of objects which are initialized to locally static expressions and vhpi_handle_by_name in 19
the uninstantiated domain. 20
The capability enumeration constant is vhpiProvidesPostAnalysis. 21
 22
 . the basic foreign models capability: ability to create foreign architectures and subprograms 23
(vhpi_register_foreignf, vhpi_get_foreignf_info), foreign architecture and subprogram information model 24
access, specific foreign model callbacks, general callbacks, vhpi_get_value and vhpi_put_value. 25
The capability enumeration constant is vhpiProvidesForeignModel. It also requires the hierarchy capability. 26
 27
 . the advanced foreign models capablity: creation of foreign drivers and processes, scheduling of 28
transactions.to foreign drivers. 29
The capability enumeration constant is vhpiProvidesAdvancedForeignModel. It requires the basic foreign 30
model capability. 31
 32
 . the save/restart capability: save and restart of foreign models and applications, vhpi_put_data, 33
vhpi_get_data, callbacks for save and restart, vhpiIdP, vhpiSaveRestartLocationP. The capability 34
enumeration constant is vhpiProvidesSaveRestart. 35
 36
 . the reset capability: reset to time zero for foreign models and applications, callbacks for reset. 37
The capability enumeration constant is vhpiProvidesReset. 38
 . the debug and runtime simulation capability: vhpi_control, vhpi_get_time, vhpi_get_next_time, 39
vhpi_handle_by_name, access to the supported static information model, including at a minimum accessing 40
objects, reading and modification of object values, scheduling transactions to drivers, registering object 41
value change callbacks as well as time and action callbacks. 42
The capability enumeration constant is vhpiProvidesDebugRuntime. 43
 44
 . the dynamically elaborated capability: access to dynamically elaborated objects (VHDL subprograms, 45
for loops). The compliance set enumeration constant is vhpiProvidesDynamicElab. It requires the debug 46
and runtime simulation capability. 47
 48

1.2 Interface Naming Conventions 49
The VHDL Procedural Interface is denoted by the short name of VHPI which stands for the 50
VHDL Procedural Interface. 51
1. All standard functions, classes, types, relationship tag names, enumeration constants defined by the 52

interface starts by the prefix “vhpi”. 53

 17

2. The VHPI standard function names are lower case characters and have an underscore between each 1
word; all other names (classes, relationship tags, enumeration constant identifiers will have no 2
underscore and each word after the VHPI prefix will start by a upper case letter followed by lower 3
case letters for the remaining of the word. 4

3. All defined VHPI types will end in a capital T. 5
4. One to many relationship tag names have an s (lower case) at the end. 6
5. VHPI uses some short name conventions: for example decl for declaration, stmt for statement, conc for 7

concurrent, seq for sequential, subp for subprogram… 8
6. The VHPI class kind names end by the letter K. 9
7. The VHPI property names end by the letter P. 10

1.3 Procedural Interface Overview 11
 12
The VHDL procedural interface is based on: 13
• the definition of a VHDL information model that represents the static and dynamic VHDL data that is 14

accessible by the procedural interface, 15
• a small set of functions that operate on this model to access data, query about some particular piece of 16

information, modify data, interact with the tool that supports the model or provide utilities such as for 17
printing or checking errors for example… 18

 19
The VHDL PLI information model is based on an object-oriented representation of the VHDL post-20
elaborated and simulation data. It partitions the VHDL data into VHPI classes that are connected by 21
relationships. We use the same terminology that is used in object-oriented software design. A VHPI class 22
is a set of VHPI data types which share the same functional methods and properties. An instance of a class 23
is called an object. A class can have zero or more member classes. Member classes are said to be derived 24
from the class they belong to (the parent class). Member classes inherit the methods and properties of their 25
parent classes. The relations between a class and the rest of the information model are defined by the 26
information model and methods are available to traverse the external class links. There are basically three 27
classes of relationships: the one-to-one relationship, the one-to-many relationship and the many-to-many 28
relationship. 29
The first relationship describes the fact that given an object of a certain class, and given a destination class 30
type, at most one object of the destination class can be obtained. The second relationship describes the fact 31
that, given an object of a certain class, and a destination class type, there can be many reachable objects of 32
that target class. The third type of relationship specifies the fact that, given two or more objects of the same 33
or different class type, and given a destination class type, more than one object of that target class can be 34
obtained. VHPI functions are provided to traverse these relationships. These three classes of relations are 35
sufficient to describe the navigation throughout the VHPI information model. At present the VHPI 36
information model only uses the first and second classes of relationships. A class can also have properties 37
that generally describe inherent characteristics or attributes of that class. Property values can be queried 38
with some predefined VHPI functions. Other functions are provided to get or modify VHDL values; these 39
functions are only available from some classes of objects. Interaction between the VHPI interface and the 40
tool is achieved via callbacks. Finally, utility functions are provided for printing, checking errors for 41
example In summary, the procedural interface contains about thirty functions, from which less than ten are 42
used for accessing the complete VHDL information model. 43

2. VHPI Handles 44

2.1 Objects and handles 45
Object definition: The VHPI information model represents VHDL static and runtime data. In the VHPI 46
information model, there are static and dynamic objects represented as classes with associated properties 47
and methods. 48
 49
Handle definition: A handle is a reference to an object of the information model. 50

 18

The VHPI functions manipulate VHDL data at some abstraction level. The user only gets back handles 1
which basically are an abstract representation of some VHDL object such as for example, an instance, a 2
signal or a transaction. A handle is an opaque pointer to some VHDL object represented in the information 3
model. The handle identifies some static elaborated and/or dynamic runtime VHDL information, the VHPI 4
interface knows how to relate handles with the object they represent. Users cannot make an assumption 5
about the underlying internal representation of a handle. 6
The C type of the handle (vhpiHandleT) is predefined by the interface (typedef PLI_UINT32 7
*vhpiHandleT). The VHPI interface functions manipulate and create handles. A VHPI handle is used to 8
reference any VHDL object that is defined in the information model that is identifying static or dynamic 9
data. The VHPI interface defines a meta model that describes the mechanisms on how to access 10
information. In the meta model, any handle has one property called vhpiKindP that identifies the class of 11
which the VHPI handle is an instance. The class defines the type of VHDL information the handle points 12
to. For example, if a VHPI handle is a handle to a variable declaration, the kind property will return the 13
integer constant corresponding to the variable declaration class (#define vhpiVarDeclK <number>). The 14
interface predefines an integer kind for each leaf class of the information model. Depending on the handle 15
class, some relations (methods), properties (attributes) are available; these relations and properties are 16
described by the VHPI information model. VHPI interface functions only apply to the leaf classes. 17

2.2 Handle management functions 18
In this section, we describe how handles to objects denoted by the information model are allocated and 19
freed. 20

2.2.1 Handle creation 21
Handles are created by the VHPI interface navigation and creation functions. An interface implementation 22
may choose to share handles between various applications and to return the same handle each time the 23
same object is accessed. Handle creation can be optional for certain classes of objects such as callbacks 24
where the user is given the choice to request explicitly the creation of a handle. All access navigation 25
functions such as vhpi_iterator(), vhpi_scan(), vhpi_handle(), vhpi_handle_by_name() and 26
vhpi_handle_by_index(), (refer to chapter 3) create and return handles. Handles are owned by the VHPI 27
client application. 28

2.2.2 Handle release 29
All handles need to be explicitly released by the VHPI user. A function (vhpi_release_handle()) is 30
provided to request the release of a handle. If a handle is shared between VHPI applications, the release of 31
the handle may not be effective until all client applications have requested the handle release. After a 32
handle is released, no reference should be made to that handle. The user cannot assume that the handle still 33
exists neither that it refers to the same object. It is recommended that VHPI users release handles when 34
they are not needed. An iterator is automatically released by the VHPI interface at the end of the iteration. 35

2.2.3 Handle comparison 36
Two different handles may identify the same VHPI object. The interface provides a function to compare 37
two handles (vhpi_compare_handles()). This function will return true if the handles refer to the same 38
object, false otherwise. 39

2.3 Lifetime of objects and handles 40

2.3.1 Object lifetime 41
A static object comes into existence at a particular point in time in the tool's execution and lives until the 42
tool exits. When an object comes into existence, it is possible to obtain a handle to the object. For example, 43
a component instance in the design hierarchy is a static object that comes into existence sometime during 44
elaboration. 45
 46

 19

A dynamic object comes into existence and may cease to exist sometime later. They exist for as long they 1
are required or until they are removed. For example, subprogram's formal parameters are dynamically 2
elaborated when the subprogram is called and cease to exist when the subprogram completes and returns. 3
Transactions on drivers are created with waveforms and may be cancelled by future waveform edits. 4
Callbacks are created and removed by the VHPI user. 5

2.3.2 Handle lifetime 6
 7
A handle comes into existence when it is returned to the user. It lives until the user releases it. 8
There are various methods of navigating the VHPI information that create and return handles to the user, 9
e.g., vhpi_handle, vhpi_iterator, vhpi_create. The user releases a handle with vhpi_release_handle. 10
 11

2.3.3 Invalid handles 12
 13
When a handle to an object is obtained, a VHPI client may access through this handle some object 14
properties, access or modify the object runtime value (vhpi_get_value, vhpi_put_value) or navigate to 15
related objects. If the object is a dynamic object, it may cease to exist. A handle to a dynamic object that 16
no longer exists is called an invalid handle. The handle exists, the object doesn't. For any handle, a 17
boolean property is defined to check the validity of that handle (vhpiIsInvalidP). An invalid handle may 18
be released by a VHPI application (keeping invalid handles is not very useful). 19
 20
 21

2.3.4 Referential integrity 22
 23
With the above terminology, we can define the concept of referential integrity of handles. In this context, it 24
means that for as long as a handle exists, it is safe to reference it. You may use it in any VHPI function that 25
accepts a handle, and that function will attempt to perform its operation. Regardless whether that attempt is 26
legal in the information model or results in a VHPI runtime error, it will not cause the tool to crash. 27
 28
In particular, invalid handles have referential integrity. It may certainly be treated as an error if you 29
reference an invalid handle, depending on the particular type of handle and operation requested. 30
Handles to mature callbacks also have referential integrity. A handle to a mature callback has very little 31
value for a VHPI client: it cannot be re-enabled, and it cannot be discovered via traversal of the information model. 32
It should be deleted by the VHPI server,unless the client(user) has previously obtained a handle to the transaction. If 33
the client has a handle, he has ownership, albeit to something of marginal value. He can query some of its properties 34
and methods it or just waste the memory resource. It follows that, after all such handles are released with 35
vhpi_release_handle(), the mature callback should be deleted by the VHPI server. The VHPI server is free to waste 36
resources itself, but the point is, it has ownership of the callback memory. 37
 38
If a handle is released regardless how it is released either explicitly by the user or by the tool, it has no 39
longer referential integrity. If you reference a handle after you have released or after an iterator is 40
exhausted, it is an egregious error which can cause the tool to crash. It is similar to referencing freed 41
memory in a C program. 42
 43

2.4 Meta handles 44
The information model also defines meta classes. Meta classes do not represent any VHDL object. For 45
example iterator and collection classes (vhpiIteratorK and vhpiAnyCollectionK kinds) represent 46
respectively iteration lists and ordered collections of objects. Meta handles are subject to the same 47
referential integrity rules as other handles. 48

 20

2.4.1 Iterator class 1
Iterator handles are handles defined by the interface to access many objects of the same class type. Iterator 2
handles are used to traverse one-to-many relationships that connect classes. Iterator handles are slightly 3
different from non-meta handles in the sense that they cannot be shared between applications because they 4
hold the state of the current iteration. The vhpiKindP of an iterator handle is vhpiIteratorK. The iterator 5
class is a sub-class of the base class. An unique iterator handle is created by each call to vhpi_iterator. 6
vhpi_scan takes an iterator handle and can be used to return a handle to each iteration element. When there 7
is no more element to return, vhpi_scan returns a NULL handle. The iterator handle is released 8
automatically by the simulator at the end of the iteration. Reference to the iterator handle after the end of an 9
iteration is erroneous. It the iteration is not exhausted, the user should explicitly release the iterator handle 10
to avoid a memory leak. 11
Adding elements to an iteration while processing an iterator has unspecified behaviour. For example, while 12
iterating on callbacks, register a new callback, or while iterating over the members of a collection, add a 13
new member has unspecified behaviour. 14

2.4.2 Collection class 15
 The vhpiKindP of a collection handle is either a vhpiAnyCollectionK or a specialized collection of objects 16
of the same kind, for example a collection of drivers is vhpiDriverCollectionK. The collection class 17
represents a user-defined collection of VHPI objects. The collection contains an arbitrarily sized, ordered 18
set of VHPI objects. The collection may be created at any time, provided, of course the desired object 19
members exist at the time. The purpose of the class is for the organizational convenience of an application 20
or model. Atomic operations are defined on the collection class (see operations). The UML model defines a 21
oneToMany method to iterate over the members of the collection (vhpiMembers). Iterating on the members 22
of a collection handle only returns the valid handles. 23
 24

2.4.2.1 Construction of a collection object 25
 26
A collection object is created with vhpi_create. The first call provides a handle to the first object to be 27
added to the collection and returns a handle to the collection object: 28
 29
vphiHandleT myCollection; 30
myCollection = vhpi_create(vhpiAnyCollectionK, NULL, vhpiHandleT 31
anyObject); 32
 33
Objects may be added to the collection, one at a time, as follows: 34
 35
myCollection = vhpi_create(vhpAnyCollectionK, myCollection, vhpiHandleT 36
anotherObject); 37
 38
The return value is a handle to the modified collection object or NULL if an error occured. The original 39
collection object handle shall be passed as the second parameter, the handle to the object to be added to the 40
collection shall be passed as the third parameter. The ordering of the collection set corresponds to the 41
order in which objects are added to it. There is no restriction on when a collection may be created or when 42
objects may be added to an existing collection. 43
 44
NOTEs: 45
As is the case for all VHPI handles, a handle to a collection does not remain valid across process 46
boundaries that may exist in the architecture of a particular VHPI-compliant tool. 47
 48
Interleaving addition of elements to the collection while iterating over the members of the collection has 49
unspecified behaviour. 50
 51

 21

2.4.2.2 Collection Object Lifetime 1
 2
A collection exists from the time it is created until its handle is released. No navigation VHPI function ever 3
returns collection handles. It is the application/model responsibility to keep a handle to the collection 4
created. It is also its responsibility to release the collection handle when it is no longer needed. Releasing 5
the collection handle does not release the handles the collection contains. 6
 7

2.4.2.3 Referential Integrity 8
 9
With respect to a collection of dynamic objects, if a handle to one of the collection members is obtained by 10
iterating over the vhpiMembers relationship or accessed via vhpi_handle_by_index, it should always return 11
a handle that is safe to reference. It does not matter whether the handle to the object of interest was 12
released, this is a new handle obtained by accessing the collection member object. Moreover, if the 13
collection is a collection of dynamic objects (callbacks for example), it does not matter if the dynamic 14
object was removed or ceased to exist, the reference to it in the collection still exists in the same manner 15
that a callback handle kept by a user can be referenced even after the callback has been removed. 16
Another way of stating the expected behavior is that the referential integrity of a collection transitively 17
includes the referential integrity of a handle to any of its underlying objects. 18

2.4.2.4 Operations on a collection 19
 20
There is a powerful generality with a collection that is possible, but it is being used in only one narrow 21
context in the current VHPI specification. VHPI operations are defined on some classes of the information 22
model. A VHPI operation can be applied to a class which possesses that operation, the operation consists in 23
modifying/accessing some of the class internal data. Such operations are for example vhpi_put_value, 24
vhpi_get_value, vhpi_schedule_transaction, vhpi_register_cb… Operations operate on an object which 25
reference handle is passed as an argument to the VHPI operation. It is desirable in many contexts to apply 26
the same operation to a set of objects by a series of identical sequential operation calls where the reference 27
handle changes to point to a different object. It would be a very convenient shorthand to allow certain 28
VHPI operations to accept a handle to a collection. Such an operation would appear in the information 29
model as an operation defined on a collection, and you can think of its definition being a "delegated" 30
operation defined on the individual members of the collection. There is no supported use of collections in 31
this manner. 32
This is a also a mechanism that can be used when a series of operations on separate handles must be treated 33
as an atomic operation. A collection of driver handles that represent the sub-element drivers of a 34
composite unresolved signal may be used as the reference handle with vhpi_schedule_transaction to 35
schedule a composite transaction. This is the only context that is being proposed for a collection. 36
Property access or method navigation do not work by delegation: a common property of the elements of a 37
collection cannot be queried on a reference handle of the collection. 38

2.4.2.5 Error Handling 39
 40
An operation applied to a collection may have an error associated with one or members of the collection. 41
Such an operation will be recognized as a single error which may be reflected in the return value of 42
function as well as be accessible with vhpi_check_error. The correctness of use of an operation on a 43
collection is the transitive correctness of that operation on each member of the collection. Specific error 44
conditions are defined with the VHPI function that accepts a collection. 45
 46
Future Considerations 47
--------------------- 48
 49

 22

The formal information model may be extended with notation that reflects operations on an object that may 1
be delegated to collections of such objects. That notation will indicate that the collection must be a 2
homogenous set of objects of the kind that support the operation and its delegation. This will allow the 3
actual C binding of the operation to indicate that a collection handle or a object handle is allowed for this 4
function. The function reference may provide details of what kinds of collections are allowed. This detail 5
should be inferable from the formal information model as well. 6
 7
This concept of a collection may also extended to support other methods for collection construction. For 8
example, it may be reasonable to navigate an association that returns the collection of drivers of a 9
composite with a simple call to vhpi_handle. 10
 11

3. Interface function overview 12

3.1 Information Access Routines 13
The VHPI interface distinguishes two types of access: 14
• accessing a handle of some class type from a reference handle of a given class type; this is a single or 15

one-to-one relationship. 16
• accessing a list of handles of the same class type from a reference handle of a given class type; this is a 17

multiple or one-to-many relationship. 18
In order to perform these two classes of operations, the VHPI interface defines respectively two 19
mechanisms: 20
vhpi_handle() to traverse single relationships and vhpi_iterator() in conjunction with vhpi_scan() to 21
traverse multiple relationships. 22
 23
Note: A relationship is also called an association. 24
Please refer to section 4.1 for a description of the UML notation used by the diagrams in this chapter. 25

3.1.1 Single relationship traversal function 26
The interface provides one function vhpi_handle() to traverse one-to-one relationships between objects. 27
The one-to-one relationships are defined by the information model. A one-to-one relationship exists 28
between a reference (source) class and a target (destination) class if there is at most one handle of the 29
target class type that can be obtained by traversing this relationship. Given a reference handle of a VHPI 30
kind (refHdl), and given a VHPI class kind, the interface returns a handle of that destination VHPI class 31
reflecting the traversal of the relation (example 1). The single relationship can also be marked with a 32
relation name, which name should be used instead of the destination class type (example 2). Named 33
associations are used to disambiguate the relationship to traverse when it is possible to reach the same class 34
type from the same reference handle or to add specific semantic information. These relationship are said to 35
have a tag. The information model defines the set of one-to-one relationships. 36
 37
Example 1: unnamed relationships 38
From a vhpiCompInstStmtK reference handle, it is possible to access the design unit that is bound to the 39
component instance by following the relationship between a vhpiCompInstStmtK and the vhpiDesignUnit 40
class. 41
 42

 23

designInstUnit

designUnit

1

compInstStmt rootInst packInst

 1
 2
vhpiHandleT instHdl, duHdl; 3
void get_binding_info(instHdl) { 4
vhpiHandleT instHdl; 5
switch (vhpi_get(vhpiKindP, instHdl)) { 6
 case vhpiCompInstStmtK: 7
 case vhpiRootInstK: 8
 case vhpiPackInstK: 9
 duHdl = vhpi_handle(vhpiDesignUnit, instHdl); 10
 vhpi_printf (“design unit name %s”, vhpi_get_str(vhpiUnitNameP, 11
duHdl)); 12
 vhpi_printf(“in library %s\n”, vhpi_get_str(vhpiLibLogicalNameP, 13
duHdl)); 14
 15
 16
, 17
 break; 18
 default: 19
 break; 20
}/* end switch */ 21
}/* get_binding_info() */ 22
 23
Example 2: tagged relationships 24
From a vhpiWaitStmtK reference handle, it is possible to access the expression of the condition by 25
following the directed tagged relationship vhpiCondExpr. It is also possible to access the time out 26
expression by following the directed tagged relationship vhpiTimeOutExpr. 27
 28

waitStmt

expr

timeOutExpr0..1
expr

condExpr
0..1

 29
 30

 24

vhpiHandleT stmtHdl, condHdl, timeHdl; 1
if (vhpi_get(vhpiKindP, stmtHdl) == vhpiWaitStmtK) { 2
 condHdl = vhpi_handle(vhpiCondExpr, stmtHdl); 3
 timeHdl = vhpi_handle(vhpiTimeOutExpr, stmtHdl); 4
} 5
 6

3.1.2 Iteration functions and vhpi_handle_by_index 7
The interface provides a mechanism to traverse one-to-many relationships. These relationships are defined 8
by the information model. This is a two phase mechanism: first, an iterator handle for the class of objects 9
one wants to iterate on is created and initialized with the function vhpi_iterator(), second, a function 10
vhpi_scan() is provided to scan the list of handles designated by this iterator. The vhpi_scan() function 11
returns a handle for each of the objects of the requested iteration type in the iteration list. vhpi_iterator() 12
returns NULL if there is no element in the iteration list. The iteration list can be a dynamic list for 13
callbacks, or transaction iterations. The iteration reflects the current simulation state. Therefore handles to 14
dynamic data returned by vhpi_scan() may become invalid as simulation progresses. Callbacks can be 15
added or removed during simulation by either the VHDL simulator or by the VHPI functions such as 16
vhpi_register_cb(), vhpi_remove_cb(); transactions can be scheduled with vhpi_put_value() or 17
vhpi_schedule_transaction(). 18
 19
Note: Unless specified by the information model, an iteration does not define an order therefore user code 20
should not be dependent upon the order the handles are returned in order to be portable. 21
 22
Example: 23
Please refer to the scope class diagram. 24
 25
vhpiHandleT instHdl, instIter; 26
 27
/* get all sub-instances of a scope instance */ 28
instIter = vhpi_iterator(vhpiInternalRegions, instHdl); 29
if (instIter) 30
while (instHdl = vhpi_scan (instIter)){ 31
 vhpi_printf(“found instance %s\n”, vhpi_get_str(vhpiNameP, instHdl)); 32
} 33
 34
For any iteration which is qualified as “ordered” in the information model, it is possible to request a handle 35
to a specific object of that iteration by providing an index n. The function vhpi_handle_by_index() shall 36
take a reference handle which is the same as the one which would be passed to vhpi_iterator() and an index 37
n, and would return the handle which would have been returned by the nth vhpi_scan() call. 38

3.2 Simple property access functions 39
The interface provides functions to access class properties. There are several classes of properties: boolean 40
or integer properties, string properties, real or physical properties. The interface provides a function to 41
query about boolean or integer properties vhpi_get(), a function to retrieve the string value of a string 42
property vhpi_get_str(), a function to get the value of a real property vhpi_get_real() and a function to get 43
the value of a physical property vhpi_get_phys(). 44
These functions take a handle to an object, the property of interest and respectively return an integer, a 45
string, a real or a physical value. The details are given in the following paragraphs. 46

3.2.1 Integer or boolean properties 47
The function vhpi_get returns the value of an integer or boolean property. 48
(vhpiIntT) vhpi_get(vhpiIntPropertyT propertyTag, vhpiHandleT handle); 49
 50
propertyTag: is the tag name of the integer property. 51

 25

handle: is a handle to an object of the information that must possess this property 1
 2
returns: an integer constant corresponding to the value of the requested property for the given handle, 3
 vhpiUndefined if an error ocurred. 4
 5
vhpiIntPropertyT is an enumerated standard type of all the integer and boolean properties defined by the 6
interface. 7
vhpiIntT is a VHPI typedef; an implementation should define it to be able to represent the entire range of 8
VHDL integers. 9
#define vhpiUndefined -1 10
 11
For boolean properties we define: 12
#define vhpiTrue 1 13
#define vhpiFalse 0 14
 15
Specific values are defined for each integer property. For instance, vhpiModeP property can return the 16
following values vhpiInMode, vhpiOutMode, vhpiInoutMode, vhpiBufferMode, vhpiLinkageMode or 17
vhpiUndefined. 18
#define vhpiInMode 1001 19
#define vhpiOutMode 1002 20
#define vhpiInoutMode 1003 21
#define vhpiBufferemode 1004 22
#define vhpiLinkageMode 1005 23
 24
Since some integer properties may return negative values; for example the vhpiLeftBoundP or 25
vhpiRightBoundP of a negative range of an array, it may not be possible in all cases to determine that an 26
error occurred by looking at the returned values. In these rare cases, a possible error must be checked 27
according to the error checking mechanism. 28
 29
 30
Procedural Interface References: 31
See “vhpi_get_str()” to get a string property value. 32
See “vhpi_get_real()” to get a real property value. 33
See “vhpi_get_phys()” to get a physical property value. 34
 35
Enumeration type for the integer or boolean properties is vhpiIntPropertyT. 36
 37
Errors: 38
For most of the properties, a returned value of vhpiUndefined will indicate that an error occurred. 39

3.2.2 String properties 40
The function vhpi_get_str returns the value of a string property such as vhpiNameP, vhpiFullNameP... 41
The available string properties which can be queried with this function are listed by the vhpiStrPropertyT 42
enumeration type in the vhpi_user.h header file. 43
 44
const PLI_BYTE8 * vhpi_get_str(vhpiStrPropertyT propertyTag, vhpiHandleT handle); 45
 46
propertyTag: is the tag name of a string property. 47
handle : denotes a handle to an object which possess the string property. 48
 49
returns: a pointer to a static string buffer that has been filled up with the string value of the property 50
successfully retrieved or NULL on failure. 51
 52
Notes: 53

 26

1. The next call to vhpi_get_str will overwrite the previous string value. 1
2. Since VHDL identifiers can contain special and graphic characters, the user must be cautious when 2

using the C string library functions or C printf functions when manipulating VHDL strings for name 3
properties. The name property of an extended identifier contains the starting and ending \ character. 4

 5
. 6
 7
 8
Example: 9
 10
line 11
1 library lib; 12
2 use lib.p.all; 13
3 entity top is 14
4 postoned assert FALSE report “top level”; 15
5 end top; 16
6 17
7 architecture struct of top is 18
8 signal mySig : integer; 19
9 for cpu_1 use entity lib.e(a); 20
10 begin 21
11 Cpu_1 : mycpu; 22
12 process(MYSIG) 23
13 begin 24
14 wait for 1 ns; 25
15 end process; 26
16 end; 27
 28
For a handle to the root instance: 29
vhpiNameP = “:” 30
vhpiFullNameP = “:” 31
vhpiDefNameP = “work:top(struct)” 32
For a handle to the primary design unit (entity declaration) that is 33
bound to the root instance: 34
vhpiUnitNameP = “lib.top” 35
For a handle to the assert statement in the entity declaration: 36
vhpiNameP = “_0” 37
vhpiFullNameP = “:_0” 38
For a handle to the signal declaration in the architecture: 39
vhpiNameP = “mysig” 40
vhpiFullNameP = “:mysig” 41
vhpiCaseNameP = “mySig”; 42
vhpiFullCaseNameP = “:mySig” 43
For a handle to the component instance labelled cpu_1 : 44
vhpiNameP = “cpu_1” 45
vhpiCaseNameP: “Cpu_1” 46
vhpiFullNameP = “:cpu_1” 47
vhpiFullCaseNameP = “:Cpu_1” 48
vhpiDefNameP = “lib:e(a)” 49
For a handle to the process statement in the architecture body: 50
vhpiNameP = “_1” 51
vhpiFullNameP = “:_1” 52
For a handle to signal s declared in package P: 53
vhpiFullNameP = “:lib:p:s” 54
 55
Procedural Interface References: 56
See “vhpi_get()” to get an integer based property value. 57
See “vhpi_get_real()” to get a real property value. 58

 27

See “vhpi_get_phys()” to get a physical property value. 1
 2
Enumeration type for the string properties is vhpiStrPropertyT. 3
 4
See ANNEX B for description of each string property. 5
 6
Errors: 7
A NULL returned indicates that an error occurred. 8
The requested property does not apply to this object class kind. 9
Another property access function must be used for this property class. 10

3.2.3 Real properties 11
vhpi_get_real() will return a double, is only used to get the vhpiFloatLeftBound and vhpiFloatRightBound 12
of a floating range. The caller must use the error checking mechanism to determine if an error occurred. 13
 14
Procedural Interface References: 15
See “vhpi_get_str()” to get a string property value. 16
See “vhpi_get()” to get an integer based property value. 17
See “vhpi_get_phys()” to get a physical based property value. 18
 19
Enumeration type for the real properties is vhpiRealPropertyT 20

3.2.4 Physical properties 21
vhpi_get_phys() will return a vhpiPhysT structure. It is used to get the value of a physical property (for 22
example vhpiResolutionLimitP of the simulation or vhpiPhysLeftBound of a physical type). The value 23
returned is a two member structure. 24
 25
typedef struct vhpiPhysS { 26
 PLI_INT32 high; 27
 PLI_UINT32 low; 28
} vhpiPhysT; 29
 30
 31
Procedural Interface References: 32
See “vhpi_get_str()” to get a string property value. 33
See “vhpi_get()” to get an integer based property value. 34
See “vhpi_get_real()” to get a real based property value. 35
 36
Enumeration type for the physical properties is vhpiPhysPropertyT. 37
 38
Errors: 39
The requested property does not apply to this object class kind. 40
Another property access function must be used for this property class. 41

3.3 Look up by name 42
The interface provides a function to get a handle to an object in the VHDL design hierarchy by relative or 43
absolute name, vhpi_handle_by_name(). This function is operational in the post analysis, post elaboration 44
and runtime domains. This function returns a handle to any object which possesses the vhpiFullNameP 45
property. 46

 28

3.4 Value manipulation functions 1

3.4.1 Value access function 2
The interface provides a function to get the value of an object (vhpi_get_value). Only certain classes of 3
objects have a value that can be accessed with this function. Valid classes include VHPI handle kinds 4
denoting VHDL objects, VHDL names or literals. The standard requires vhpi_get_value to support the 5
access to values of locally static names only. Note that it is not possible to get the value of any complex 6
expression directly. Subprogram parameter values can only be fetched when the subprogram is executed. 7
The function gets the current value of the designated object, therefore default or initial values of VHDL 8
objects can be fetched at the beginning of simulation, thereafter the value of the object is the simulation 9
value at the present time. The vhpi_get_value function takes a handle to an object that possesses the 10
vhpi_get_value method, a pointer to a value structure that has been allocated by the user and fills up the 11
appropriate value field in the requested format. 12

3.4.2 Value formatting function 13
The interface provides a function to format a value (vhpi_format_value). This function takes as the first 14
parameter, the input VHPI value structure, and as the second parameter a VHPI value structure which 15
format field should be set to specify the new format in which the value must be formatted. 16

3.4.3 Value modification functions 17

3.4.3.1 Immediate update 18
The interface provides a function to immediately update the value of an object. Only certain classes of 19
objects can be modified with this function such as handles denoting signals or variables. VHPI classes of 20
objects that are valid for this function are marked in the information by having the vhpi_put_value method. 21
Different update modes are available: deposit, deposit and propagate, force until release, force propagate 22
with event, and release the value. 23

3.4.3.2 Value scheduling 24
The interface provides a function to schedule a transaction on a signal driver or collection of drivers 25
(vhpi_schedule_transaction()). This allows VHPI to participate in signal value update and resolution. 26
Different scheduling modes are available and mimic the inertial and transport mode. A delay can be 27
specified enabling to modify the future waveform of a signal. The function takes a handle to a driver or 28
collection, a value structure, a delay mode and an optional delay time value. 29
 30

3.5 Foreign Model Support 31
VHPI supports the creation of foreign architectures and foreign subprograms with semantics equivalent to 32
anything that can be written in VHDL directly. 33
VHPI supports registering foreign models procedurally with vhpi_register_foreignf() and querying 34
registration with vhpi_get_foreignf_info(). New drivers can be created with vhpi_create() and vhpi_assert() 35
emulates a VHDL report statement 36
 37

3.6 Callbacks 38

3.6.1 Functions for registration, removing, disabling, enabling callbacks 39
The interaction between the PLI models or applications and the tool is done via the callback mechanism. 40
The interface provides functions to register, remove, disable or enable callbacks. The interface provides a 41
rich set of callback reasons. 42

 29

VHPI supports accessing registered callbacks through an iteration mechanism. These can be the complete 1
set of callbacks registered or callbacks registered on signals, ports and so on. Multiple applications can 2
register these callbacks; when iterating on callbacks an application can get a hold of a callback registered 3
by another application. 4
 5

3.7 Utilities and Miscellaneous Functions 6
The VHPI functions discussed above cover the full range of information access for the uninstantiated, 7
instantiated, and runtime information models. There remains a small number of utility and miscellaneous 8
functions to complete the VHPI functional interface overview. 9

3.7.1 Error checking 10
VHPI calls can produce errors. There are two mechanisms in VHPI to handle them: 11

1) checking a global error status, 12
2) registering a callback on errror. 13
 14

The first mechanism requires calling vhpi_check_error() immediately after each VHPI function call to see 15
if the last VHPI function call queued an error. The second is by using an error callback mechanism, where 16
the callback function will be called whenever a VHPI call produces an error. However the drawback of this 17
last mechanism that VHPI does not keep track of which callbacks are registered for which application; 18
therefore a VHPI client may get a callback for an error it did not produce. It is necessary for that VHPI 19
client to recognize its own callbacks: the callback function called on error should be tied to the application 20
or model that produced that error. 21
Note: John would like to remove the callback on error as it is dysfunctional. 22

3.7.2 Printing to stdout and log files 23
 24
The function vhpi_printf() writes output to the output channel of the tool which invoked the VHPI 25
application. vhpi_printf() uses the same formatting capabilities as the C printf function vhpi_printf() does 26
not provide the capability to write to VHDL files. 27
 28

3.7.3 Optional Save/Restart Support 29
If the VHDL tool supports a save/restart operation, provisions must be made to save private data associated 30
with VHPI applications and foreign models and restore it later. Two routines, vhpi_put_data() and 31
vhpi_get_data(), support this functionality. 32
Francoise: Should we mention anything about reset even though it does not add any other interface 33
functions? 34

3.7.4 Miscellaneous Functions 35
vhpi_compare_handles() – checks if two handles refer to the same object. 36
vhpi_control() – provides some control capabilities over the tool, such as stopping or finishing 37
execution. 38
vhpi_get_time() – returns the current simulation time 39
vhpi_get_next_time() – returns the next simulation time at which some activity is scheduled 40
vhpi_protected_call() – executes operations on variables of a protected type 41
vhpi_release_handle() – releases resources associated with a handle 42

 43
 44

 30

4. The VHDL PLI information model 1

4.1 Formal notation 2
We use the standard Unified Modeling Language (UML) to formally express the VHPI information model. 3
UML is a graphical language to model object-oriented software design. It defines a rigorous notation and a 4
meta model of the notation (diagrams) that can be used to describe object-oriented software design. We use 5
the class diagram technique of UML to express the VHDL PLI information model. A class diagram 6
specifies the VHPI class types and the way they are connected together. In UML, class inheritance is 7
denoted by a hollow arrow directed towards the parent class. Relationships between classes are called 8
associations and are denoted by straight lines between classes. Associations have descriptive parameters 9
such as multiplicity, navigability and role names. 10
 11
UML notation quick reference 12
 13
A class 14
 15
A member class 16
 17
The link shows inheritance between a class and its derived classes. A derived class inherits properties and 18
operations from its parent classes. The hollow arrow points to the parent class. 19
 20
An expanded class shows two compartments, the first one displays the properties (attributes in Object 21
Oriented terminology) with their names and return type, the second one displays the operations (methods 22
in Object-Oriented terminology) that are defined within this class. Properties and operations inherited from 23
parent classes may not appear in the compartment boxes of the derived classes. 24
 25
Associations 26
 27
Associations are links between classes that represent their inter-relationships. 28
Navigability, multiplicity and role names can be used to further describe the relationship. 29
Navigability expresses the direction of access and is represented by an arrow. An association can be bi-30
directional in which case arrows may be shown at both ends. 31
Multiplicity expresses the type of relationship between the classes: singular (one, zero or one), multiple 32
(zero or more, one or more) and is represented by numbers at the end of the association to which it applies. 33
It can be one the following: 34
 35
 1 for access to one object handle 36
 0..1 for access to zero or one object handle 37
 * for access to zero or more object handles of the same class 38
 1..* for access to one or more object handles of the same class 39
 40
A role name is a tag name on one end of the association. It may be used to indicate more precisely the 41
relationship or to distinguish this relationship from another relationship that leads to an object of the same 42
class. In the example below, role-1 is the name of the relation that accesses an object of class-2 from an 43
object of class-1. The relationship it denotes is a singular relationship. 44
In the diagrams, we use the following convention: 45
 if a role name is not specified, the method name for accessing the object pointed by the arrow is the 46
target class name. 47
 48
class-1 accesses class-2, method name is role-1 49

 31

class-1 class-2

1

role-1

 1
scope class accesses decl class, method name is decls. 2

scope decl

*
 3

The VHPI iteration or one-to-many method is modeled by an association with a multiplicity of either zero 4
or more (*), or one or more (1..*) to indicate that the iteration may contain zero elements or will contain at 5
least one element. The direction or navigability indicates the class of the handles created by the iteration. In 6
the example above, we show that there is a one-to-many relationship between a scope class and a decl class. 7
A singular or one-to-one method will be represented by a navigable association with a multiplicity of one 8
(1) if the method should always return a handle of the destination class or a multiplicity of zero or one (0..1) 9
if the method may not return a handle. In the example above, the diagram shows a one-to-one relationship 10
that allows to traverse the association named “role-1” between a handle of class-1 and a handle of class-2. 11
Note that the diagrams only express the possible access flow; for example there is no method that allows to 12
get a handle of class-1 from a reference handle of class-2. 13
An iteration qualified as “ordered” indicates that the elements of the iteration are always returned in a 14
given order and that this order must be the same in all VHPI compliant implementations. If an iteration is 15
qualified as ordered, it also means that the vhpi_handle_by_index function is available on the reference 16
handle and can be used to return the nth element of the ordered iteration. 17

4.2 Classes overview 18
The information model is partitioned into a few UML packages, each package contains several class 19
diagrams which are related to a given capability. A class diagram shows the traversal relationships between 20
related classes. 21
• the standard hierarchy package includes class diagrams used to traverse VHDL design hierarchy, it 22

typically describes the hierarchy capability set, 23
• the standard design unit package includes class diagrams to VHDL design units, and the lexical scope 24

class diagram.. 25
• the standard declaration package includes class diagrams describing object declarations. 26
• the standard type package includes class diagrams describing types and subtypes. 27
• the standard spec package includes class diagrams describing attributes, disconnection, and 28

configuration specifications. 29
• the standard subprogram package includes class diagrams describing subprogram declarations and 30

subprogram call access. 31
• the standard statement package includes class diagrams describing concurrent and sequential 32

statements. 33
the 34
• the standard expression package includes class diagrams describing expressions. 35
• the standard connectivity package includes class diagrams describing the drivers and port connections 36

access. 37
• the standard engine package includes class diagrams describing tool access 38
• the standard callback package includes class diagrams describing callback access 39
• the standard foreignf package includes class diagrams describing access to to foreign models. 40
• the standard meta package includes class diagrams of the base class, iterator and collection classes. 41
class 42
The class hierarchy defined by the VHPI model is the following. Each indentation indicates that a lower 43
level in the hierarchy and that the indented class type denotes a child class of the immediately preceding 44
class. 45
(*) indicates a class that inherits from multiple ancestor classes. 46
All classes inherit from the vhpiBase class. 47

 32

The class “vhpiToolK” designates the simulator, elaborator or tool that is executing the VHDL model. 1

 33

The base and null classes are meta-classes; which means that they do 1
not belong to the information model of VHDL but are defined for modelling 2
the access. 3
(1) The base class is the top of the class hiearchy. 4
 It has 2 properties the vhpiKindP and vhpiKindStrP properties. 5
 All defined classes inherits from the base class. 6
 7
(2) The Null class denotes the VHDL elaborated or uninstantiated design. 8
 It is named the null class because a null pointer handles is used to refer to it. 9
 For example: vhpi_handle(vhpiRootInst, NULL) will return the top 10
 level instance of the current elaborated VHDL design. 11
 vhpi_get_phys(vhpiResolutionLimitP, NULL) returns the resolution. 12
 13
(*) denotes multiple inheritance for the class 14
(?) Do we need this class? 15
 16
Base (see note 1) 17
 Null (see note 2) 18
 Region 19
 EqProcessStmt(*) 20
 BlockStmt(*) 21
 GenerateStmt(*) 22
 DesignInstUnit 23
 CompInstStmt(*) 24
 RootInst 25
 PackInst 26
 SubpCall(*) 27
 ForLoopStmt(*) 28
 Decl 29
 TypeDecl(*) 30
 ScalarTypeDecl 31
 EnumTypeDecl 32
 IntegerTypeDecl 33
 FloatingTypeDecl 34
 PhysicalTypeDecl 35
 CompositeTypeDecl 36
 ArrayTypeDecl 37
 RecordTypeDecl 38
 FileTypeDecl 39
 AccessTypeDecl 40
 SubtypeDecl(*) 41
 SubpDecl 42
 FuncDecl 43
 ProcDecl 44
 AliasDecl 45
 AttrDecl 46
 ElemDecl 47
 UnitDecl 48
 ObjDecl 49
 FileDecl 50
 ConstDecl 51
 VarDecl 52
 SigDecl 53
 InterfaceDecl 54
 portDecl(*) 55

 34

 genericDecl 1
 ParamDecl 2
 ConstParamDecl 3
 SigParamDecl 4
 VarParamDecl 5
 FileParamDecl 6
 Subtype 7
 TypeMark (? Do we need this) 8
 SubTypeDecl(*) 9
 TypeDecl(*) 10
 SubtypeIndic 11
 Range 12
 IntRange 13
 FloatRange 14
 15
 AttrSpec 16
 DesignUnit 17
 PrimaryUnit 18
 EntityDecl 19
 PackDecl 20
 ConfigDecl 21
 SecondaryUnit 22
 ArchBody 23
 PackBody 24
 25
 StackFrame 26
 EqProcessStmt(*) 27
 SubpCall(*) 28
 FuncCall(*) 29
 ProcCallStmt(*) 30
 Signal 31
 PortDecl(*) 32
 SigDecl(*) 33
 SigParamDecl 34
 SelectedName 35
 IndexedName 36
 PredefAttrName(*) (predefined signal attribute) 37
 GuardSignal (? do we need it?) 38
 InterfaceElem 39
 Port 40
 Signal 41
 Conversion 42
 Expr 43

Source 44
 Driver 45
 FuncCall 46
 Port 47

Signal 48
 Conversion(*) 49
 Stmt 50
 ConcStmt 51
 EqProcessStmt(*) 52
 ProcessStmt 53
 ProcCallStmt(*) 54
 CondSigAssignStmt(*) 55

 35

 SelectSigAssignStmt(*) 1
 AssertStmt(*) 2
 CompInstStmt(*) 3
 GenerateStmt(*) 4
 ForGenerate 5
 IfGenerate 6
 BlockStmt(*) 7
 SeqStmt 8
 WaitStmt 9
 ReportStmt(*) 10
 AssertStmt(*) 11
 IfStmt 12
 CaseStmt 13
 LoopStmt 14
 ForLoopStmt 15
 WhileLoppStmt 16
 NextStmt 17
 VarAssignStmt 18
 SeqSigAssignStmt(*) 19
 NullStmt 20
 ExitStmt 21
 ReturnStmt 22
 ProcCallStmt(*) 23
 SigAssignStmt 24
 CondSigAssignStmt(*) 25
 SeqSigAssignStmt(*) 26
 SelectSigAssignStmt(*) 27
 28
 CondWaveform 29
 SelectWaveform 30
 WaveformElem 31
 Transaction 32
 Callback 33
 TimeQueue 34
 35
 AssocElem 36
 expr 37
 UnaryExpr 38
 BinaryExpr 39
 PrimaryExpr 40
 Operator 41
 Allocator 42
 Conversion(*) 43
 QualifiedExpr 44
 FuncCall(*) 45
 Aggregate 46
 Literal 47
 Name 48
 SimpName 49
 PrefixedName 50
 SelectedName 51
 DerefName 52
 IndexedName 53
 SliceName 54
 AttrName 55

 36

 UserAttrName 1
 PredefAttrName(*) 2
 IndexedAttrName 3
 SimpAttrName 4
 5
 6

 37

All traversal methods and properties defined by the information model if not implemented shall return a 1
non implemented error message. 2
 3
The information model is organized as a set of UML packages, each one containing one or more UML 4
class diagrams. A UML package is a logical directory containing class diagrams depicting related 5
functionality. 6
 7
 8

 38

4.3 Standard hierarchy package (hierarchy capability set) 1

4.3.1 The region inheritance class diagram 2
This access represented by this diagram is part of the hierarchy capability with the exceptions of: 3
 1) Access to a vhpiLoopStmt and vhpiSubpCall is only part of the dynamicElab capability. 4
 2) Iteration on vhpiStmts is part of the static access capability. 5
 3) The one to one relationship from a vhpiRootInstK class to a vhpiConfigDecl class is part of the post 6
analysis access capability set. 7

 8
 9
Note: 10
1. Iteration on internal regions may return any region kind except loopstmt and protectedType kinds. A 11

variable of a protectedType creates a protected type region. Upper region of a protected type shall 12
return the region of the variable declaration. The name of a protected type region is the name of the 13
variable. The fullname of a protected type region is the fullName of the variable. 14
vhpi_handle_by_name of such fullName shall return a handle to the variable. 15

 16
 17

Deleted: ¶

 39

Notes: 1
2. Iteration on internalRegions only return the elaborated regions. 2
3. Iteration on stmts return all statements, instantiated or uninstantiated. 3

4.3.2 The port class diagram 4
The access described by this diagram is part of the hierarchy capability. 5
The access described by this diagram is also part of the post analysis capability with the exception that a 6
vhpiRootInstK class of object may never be obtained in the post analysis domain. 7
 8
 9

 10

 40

4.3.3 The generics class diagram 1
 2

 3

 41

4.3.4 The signals class diagram 1

 2

 42

4.3.5 The variable class diagram 1
The access described by these diagrams is part of the static access and post analysis capabilities with the 2
exception of vhpi_put_value which is part of the debug and runtime capability. 3
In addition, vhpi_put_value on is also part of the basic foreign model capabilities. 4
vhpi_register_cb for varDecl is also part of the debug and runtime capabilities and basic foreign model 5
capabilities. 6
vhpi_protected_call() is also part of the debug and runtime capability. 7
 8

 9

 43

4.3.6 The constant class diagram 1

 2

 44

4.3.7 The structural class diagram 1
The access described by this diagram is part of the hierarchy capabilities. 2
 3

 4
 5
 6
Notes: 7
4. The iterations are specialized iterations of the vhpiInternalRegions iteration. In a pure VHDL design, 8

they are equivalent to iterating on vhpiInternalRegions and filtering a special kind of region. These 9
iterations are useful when traversing a mixed language design. (May be put an informative Annex on 10
use of VHPI and VPI when traversing mixed language designs.) 11

5. These iterations only return handles to elaborated regions. 12
 13

 45

4.4 Standard uninstantiated package (post analysis capability set) 1

4.4.1 The design unit class diagram 2
This diagram describes access which is part of the post analysis and static access capabilities. 3

 4
 5
 6
 7
 8
Note: 9
6. The iteration vhpiUses returns external declarations referenced by the design unit. 10
7. Access to the library declarations is not directly available but can be extrapolated from the uses 11

iterations. 12
 13

4.4.2 The lexical scope diagram 14
The access described by this diagram is also part of the post analysis capabilities. 15
. 16
 17

 46

 1
 2

4.4.3 The configuration declaration class diagram 3
The access described by this diagram is part of post analysis capability. 4

 47

 1
 2
Notes: 3
8. The iteration vhpiUses returns the external declarations referenced by the design unit. 4
9. If vhpiIsOpen or vhpiIsDefault is true, then vhpiEntityAspect, vhpiPortAssocs and vhpiGenericAssocs 5

shall return null. 6
10. The binding indication is obtained from the compConfig by traversing to the entityAspect. An entity 7

aspect can either be a entitydecl, a configdecl or an archBody. 8
11. vhpiInstNames returns “all”, or “others” or the list of the instance names as it appears in VHDL, 9

 48

4.5 The standard declaration package (hierarchy and static capability sets) 1

4.5.1 The declaration class inheritance diagram 2
The access described by this diagram is part of the static access and post analysis access capabilities. 3
 4

 5
Notes: 6
12. Iteration on vhpiDecls does not return implicit declarations. 7
 8
 9

 49

4.5.2 The object class diagram 1
The hierarchy capability includes the access described by this diagrams with the exception of getting 2
values and modifying object values, registering callbacks and protected calls. 3
The post analysis capability includes the access described by this diagrams with the exception of getting 4
values and modifying object values, registering callbacks and protected calls. 5
 6
 7
Deprecated: 8

 One-to-one relationship vhpiSubtype from objDecl to vhpiSubtypeIndicK 9
This method is deprecated in favor of the vhpiType one-to-one relationship which provides a more 10
direct and simplified way of obtaining the type of an object. The vhpiSubtypeIndicK kind is 11
deprecated. 12

 vhpiTypeMark class is renamed vhpiType. 13
The type of the object may be an implicit declared type which does not have a type name, hence the 14
renaming of vhpiTypeMark to vhpiType which does not imply that the type has a type name. The 15
rename of the method also provides a recursive way of traversing the type hierarchy. 16

 17
Deprecated diagram: 18
 19

 50

 1
 2
New Diagram: 3

 51

 1
 2
Notes: 3
13. If a variable is of a protected type (vhpiIsProtectedType property return TRUE), the 1-to-1 4

relationship vhpiProtectedType shall return the protected type region instance of this variable. The 5
protectedType name is the same as the name of the variable. 6

 7
14. If the variable is a shared variable of a protected type, access or modification of the values of the local 8

declarations of the variable protected type region shall be done through a vhpi_protected_call. 9
 10
 11
15. vhpi_get_value() can only return the name of the file which has been opened when applied to a 12

filedecl. 13
 14
16. The property vhpiAccessP can return either vhpiNoAccess or a combination of the bit flags vhpiRead, 15

vhpiWrite, vhiConnectivity. This property can be used to determine any tool restricted access on a 16
given object declaration. 17

Issue: is this property applicable to a filedecl? 18

 52

4.5.3 The composite object class diagram 1
The hierarchy capability includes the access described by this diagrams with the exception of getting 2
values and modifying object values. 3
 4

 5
 6
 7
 8
 9
Notes: 10
17. The vhpiDerefObj relationship returns NULL if the variable declaration or function call is not 11

instantiated. deref 12
Can I ask for the prefix?If it represents an actual memory location, prefix is undefined, how you get there 13
may have multiple paths? 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

 53

4.5.4 The alias declaration diagram 1
The access described by this diagram is part of the static access capability. 2
The access described by this diagram is part of the post analysis access capability. 3
Note: Size property and vhpi_get_value will return a value for a locally static expression, of object aliases. 4
 5
Note: Iteration on vhpiAliasDecls, attrDecls, BlockStmts, compInstStmts 6
 and sensitivities can only applied to the sub-class of the class 7
 region for which they be possible. 8
 9
Deprecated diagram with respect to the vhpiSubtype method: 10
 11
 12

 13
 14
New diagram: 15
 16

 17
 18

 54

Notes: 1
18. vhpi_get_value only applies to alias of objects or of names. 2
19. vhpiType returns a null handle for non-object aliases..It returns the resulting type of the alias as 3

defined by the rules in the VHDL LRM alias Declaration section. 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21

 55

4.5.5 The group declaration diagram 1
The access described by this diagram is part of the static access and post analysis capabilities. 2
 3

 4
 5
 6
 7

4.5.6 The file inheritance diagram 8

 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

 56

4.6 The standard type package (static access capability set) 1

4.6.1 The type and subtype class diagram 2
The access described by this diagram is part of the hierarchy access with the exception of access to the 3
attribute specifications. Access to attribute specification is part of the static access. 4
The access described by this diagram is also part of the post analysis capabilities. 5
Replace typemark with type, replace retrunTypeMark with ReturnType, remove subtypeIndic. Make type 6
class inherit from constraint 7
 8
Deprecated: 9

 vhpiTypeMark one-to-one relationship is renamed vhpiType, vhpiTypeMark class is renamed 10
vhpiType class. 11

 vhpiSubtypeIndicK class is deprecated 12
 vhpiSubtype class is deprecated 13
 vhpiIsAnonymous is deprecated 14

 15
Remove subtype class, move isUnconstrained to the type class. BaseType relationship 0..1 from type to 16
typedecl. BaseType always returns null from a typedecl. vhpiType always returns null from a typedecl. 17
Move IsComposite to class type. Move isImplicitDecl to type class. Remove isAnonymous 18
Move isScalar to the type class 19
 20
Deprecated diagram: 21

 22
New diagram: 23

 57

 1
 2
Ask a question to Peter on where to provide types examples in the LRM. 3
Notes: 4
20. The base type of a type is not the base type defined by the VHDL LRM but the user defined type. 5
21. The recursive vhpiType method ends at the base type. 6
22. The vhpiBaseType of a TypeDecl handle returns null. 7

 58

4.6.2 The type inheritance class diagram 1
The access described by this diagram is part of the hierarchy access and post analysis capabilities. 2
 3
Deprecated: 4
Replace subtype class with type class replace the tags valsutype with valtype, elemsubtype with elemtype 5
and subtype with type, 6
Remove isAnonynous 7
 8

 vhpiSubtype class is deprecated. 9
 The tagged relationships vhpiValSubtype, vhpiElemSubtype and vhpiSubtype are deprecated. 10
 vhpiIsAnonymous is deprecated. 11

 12
Deprecated diagram: 13

 14
 15
New diagram: 16
 17

 59

 1
 2
 3
Notes: 4
23. vhpiBaseType should return the user defined type or the predefined type definition. 5
 6

 7

 60

4.6.3 The scalar type class diagram 1
The access described by this diagram is part of the hierarchy access and post analysis capabilities. 2
 3
 4
 5

 6

 61

4.6.4 The constraint class diagram 1
The access described by this diagram is part of the static access (unless it is needed to traverse the subtype 2
to get the value of an object and in that case it should be part of the hierarchy capability) 3
The access described by this diagram is also part of the post analysis capabilities. 4
 5
Deprecated: 6

 vhpiSubtypeIndicK class is deprecated. 7
 8
Deprecated diagram: 9
 10

 11
New diagram: 12

 13
 14

 62

Notes: 1
 2
24. vhpiConstraint from a paramAttrName returns the range represented by the attribute ‘range or 3

‘reverse_range as described by the VHDL LRM. 4

 63

4.7 The standard specification package (static access capability set) 1

4.7.1 The attribute declaration and specification class diagram 2
The access described by this diagram is part of the static access and post analysis capabilities. 3
 4

 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22

 64

 1

4.7.2 The attribute specification associations 2
The access described by this diagram is part of the static access and post analysis capabilities. 3
 4

 5
 6
 7

 65

4.7.3 The disconnection specification class diagram 1
The access described by this diagram is part of the static access and post analysis capabilities. 2
 3

 4
 5
 6
 7
 8

4.7.4 The specifications diagram 9
The access described by this diagram is part of the static access and post analysis capabilities. 10
 11

 12

 66

 1

4.8 The standard subprogram package (static access and dynamic elab 2
capability sets) 3

4.8.1 The subprogram declaration class diagram 4
The access described by this diagram is part of the static access and post analysis capabilities. 5
The access described by this diagram is part of the basic foreign model capability. However if the 6
subpbody is a foreign model, iteration on statement, declarations and attribute declarations shall return 7
NULL. 8
 9

 10

 67

4.8.2 The subprogram call class diagram 1
The access described by this diagram is part of the basic foreign model capability. 2
The access described by this diagram is part of the dynamic elaboration access capability except for 3
vhpi_put_value on function calls. 4
The access described by this diagram is part of the static access capability with the exception of access to 5
and from stackFrames, vhpi_put_value of function calls and iteration on driven signals. 6
Iteration on driven signals is part of the connectivity capability. 7
 8

 9
 10
Notes: 11
25. Iteration on paramDecls from an instantiated subpCall (active) returns the formal parameters to which 12

the associations of the actuals are in effect 13
26. A subpCall is only a stackframe if the subpcall is instantiated 14
 15
27. Handles obtained from a stack frame which represents a protected type method of a shared variable do 16

not require a vhpi_protected_call as the lock has already been obtained by the subprogram executing. 17
 18
28. The property vhpiIsOperatorP is TRUE if a function call denotes an operator call. There are 3 19

categories of operators: predefined operators from the TEXTIO or STD package, built-in or 20
accelerated operators for example operators defined in the stdlogic or vital packages, user-defined 21
operators. 22

29. When applied to a subpCall handle, the property vhpiIsBuiltInP returns TRUE if the subpboday is 23
unavailable and has a private implementation. If the property return FALSE and the subpCall is a 24

Formatted: Bullets and Numbering

Deleted: ¶

 68

funcCall for which the property vhpiIsOperatorP is TRUE, the function call denotes a user defined 1
operator call. 2

 69

 1

4.9 The standard statement package (static access capability set) 2

4.9.1 The concurrent statement class diagram 3
The access described by this diagram is part of the static access capability. 4
Note: The iteration on sensitivity only applies to concurrent statements : concurrent assert statement, 5
concurrent signal assignment statement and concurrent procedure call statements. 6
Refactoring the eqProcessStmt with assertion/sigassign/procallstmt 7
Or add 6 classes concassert, concsigassign… 8
Note: 9
30. Explain what is the sensitivity (explicit or as inferred by the LRM). Union of the wait sensitivity? 10

Static sensitivity: list of the signals on the explicit sensitivity list. Return null for the processes having 11
wait stmts. 12

 13
 14
 15

 16
 17

Formatted: Bullets and Numbering

 70

4.9.2 The structural statement class diagram 1
The access described by this diagram is part of the static access capability except with the exception of 2
accessing the formal of an association element which is part of the connectivity capability. 3
 4
The access described by this diagram is part of the post analysis capability with the following exception: 5
 Access to the formal of an association element is part of the connectivity capability. 6
Notes: 7
31. If vhpiCompName returns null then the component instance statement is a direct instantiation, 8

otherwise if IsDefault is true, there is no component configuration, and the name of the bound entity is 9
the same as the name of the component, else if isDefault is false, there is either a component 10
configuration in the architecture containing this component instance or in a configuration declaration. 11

32. The position of an assocElem is the position of the formal in the interface list. 12
33. Formal is only accessible from an association element obtained from a direct component instance 13

statement. Local is only accessible from an association element obtained from a non direct component 14
instance statement. 15

 16
 17
 18
 19
 20

 21
 22
 23
 24
 25
 26
 27

Formatted: Bullets and Numbering

 71

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13

4.9.3 The generate statement class diagram 14
The access described by this diagram is part of the static access and post analysis capability. 15
 16
 17
 18
 19

 20
 21
Notes: 22
34. In the instantiated domain, if generate with condition expression evaluating to FALSE are not returned 23

as handle. In the uninstantiated domain, all generate statements are returned. For example, iteration on 24
stmts would return if generate with false condition. 25

35. In the instantiated domain a forGenerate handle is returned for each index. In the uninstantiated 26
domain, a single forGenerate is returned. 27

36. The vhpiCondExpr relationship returns NULL if the ifGenerate is instantiated (vhpiIsUninstantiatedP 28
property is FALSE) and an error is created. If the ifGenerate is uninstantiated, vhpiCondExpr returns 29
a expression handle. 30

37. The vhpiGenerateIndexP property returns the generate index value if the forGenerate is instantiated; 31
the property returns -1 and a error is created if the forGenerate is uninstantiated. 32

Formatted: Bullets and Numbering

 72

38. The relationships vhpiParamDecl and vhpiConstraint are only available from an uninstantiated 1
forGenerate handle. 2

Issue uninstantiated/instantiated representation: decide if an error is created and if the relation ship should 3
say 0..1 4
 5

 73

4.9.4 The concurrent signal assignments class diagram 1
The access described is part of the static access and post analysis capabilities. 2
 3
 4

 5

4.9.5 The sequential statement inheritance class diagram 6
 7
The access described by this diagram is part of the static access capability. 8
The access described by this diagram is part of the post analysis access capability with the exception of 9
accessing the region from a sequential statement. 10
 11
 12
 13

Deleted: capability.

Deleted: The access described by this
diagram is part of the post analysis access
capability with the exception of accessing
the region from a sequential statement.¶

 74

 1

 75

4.9.6 The sequential case, if, wait and return statement class diagram 1
The access described by this diagram is part of the static access and post analysis capabilities. 2
 3
Notes: 4
39. how branches are returned for an ifStmt, the iteration on branch from the ifStmt class will return the 5

branch of the if, then the branch of the elsif (if any) then the branch of the else (if any). 6
40. condExpr iteration from a branch of an ifStmt returns only one choice, condExpr from a caseStmt may 7

returm multiple choices. 8
 9
 10

 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24

Formatted: Bullets and Numbering

 76

 1
 2
 3
 4
 5
 6
 7
 8
 9

4.9.7 The sequential loop, exit and next statement diagram 10
The access described by this diagram is part of the static access and post analysis capabilities. 11

 12
Note: 13
41. LoopLabelNameP property shall return if there is no loop label name provided in the next statement. 14
 15
 16
 17

4.9.8 The sequential variable assignment, assert and report statement diagram 18
The access described by this diagram is part of the static access and post analysis capabilities. 19
 20
 21

Formatted: Bullets and Numbering

 77

 1

 78

4.9.9 The signal assignment statement class diagram 1
The access described by this diagram is part of the static access and post analysis 2
capabilities3

 4
Notes: 5
42. If the property vhpiIsUnaffected is TRUE, then vhpiValExpr and vhpiTimeExpr relationships shall 6

return a null handle. 7
43. The VHDL expression was the null transaction if the vhpiValExpr return a null handle and the 8

property vhpiIsUnaffected is FALSE. 9
 10

Formatted: Bullets and Numbering

 79

4.10 The standard expression package 1

4.10.1 The expression inheritance diagram 2
 3
 4
 5

 6
The access described by this diagram is part of the static access and post analysis capabilities except for 7
vhpi_put_value which is part of the debug and runtime and basic foreign capabilities. 8
vhpi_get_value and vhpi_put_value of dereference objects is only part of the debug and runtime 9
capabilities. 10
Issue: need to add access to indexedNames and selectedNames from a derefObj, do they return a derefObj? 11
 12
 13

 80

 1
Notes: 2
44. The iterations vhpiSelectedNames andvhpiIndexedNames are only available when the vhpiDerefObjK 3

is instantiated. The relationships vhpiSuffix, vhpiIndexExprs and vhpiPrefix are only available when 4
the vhpiDerefObjK is uninstantiated. vhpi_put_value() and vhpi_get_value() are only available when 5
the vhpiDerefObj is instantiated. 6

Issue: should we say return NULL if instantiated? Do we generate an error or warning? 7
45. The vhpiSuffix relationship return the simpleName vhpiAllK when accessing the “.all” suffix of a 8

vhpiDerefObjK. 9
46. The vhpiSelectedNameK class represents only selected names of a record as all other VHDL selected 10

names (package items selected names) have been resolved to their reference. 11
 12

4.10.2 The simple name class diagram 13
The access described by this diagram is part of the static access and post analysis capabilities. 14
 15

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 81

 1

 2
Note: 3
47. A simpleName is the vhpiAllK class when denoting the all suffix of a uninstantiated vhpiDerefObjK. 4
 5

4.10.3 The attribute class diagram 6
The access described by this diagram is part of the static access and post analysis capabilities. 7
 8
 9

 10

Formatted: Bullets and Numbering

 82

4.10.4 The type conversion, aggregate class diagram 1
The access described by these diagrams is part of the static access capability. 2
The access described by these diagrams is part of the post analysis access except for iteration on 3
indexednames, selectednames which is part of the static access capability. 4
Access to the derefObj is only part of the debug and runtime capability. 5

 6
 7

4.10.5 The name access class diagram 8
The access described by these diagrams is part of the static access capability. 9
The access described by these diagrams is part of the post analysis access except for iteration on 10
indexednames, selectednames which is part of the static access capability. 11
Access to the derefObj is only part of the debug and runtime capability. 12
Access to indexedNames, selectedName and derefObj is part of the advanced foreign model capabilities. 13
 14

 83

 1

 84

4.10.6 The literal class diagram 1
The access described by this diagram is part of the static access and post analysis capabilities. 2
 3
 4

 5
 6
 7
 8
Note: 9
48. The vhpiNullLiteralK class represents the null access value for any access type. 10
 11

Formatted: Bullets and Numbering

 85

4.11 The standard connectivity package 1

4.11.1 The driver class diagram 2
The access described by this diagram is part of connectivity access capability with the following exceptions: 3
 vhpi_schedule_transaction to a driver, iteration on transactions, vhpi_register_cb on a driver are part of 4
the debug and runtime capability. 5
 vhpi_create of a driver is part of the advanced foreign model capability (creation of a foreign driver). 6
 7

 8
 9

 10
Notes: 11
49. The iteration on transactions returns the future scheduled transactions for the driver. 12
50. Iteration on vhpiBasicSignals should return the basic signals as defined by the VHDL LRM. (John to 13

provide additional description) 14
51. If vhpiIsForeign is TRUE, the foreign driver may or may not have a process associated with it. 15

Formatted: Bullets and Numbering

 86

4.11.2 The contributor inheritance diagram 1
The access described by this diagram is part of the connectivity capability. 2
 3

 4
 5
 6
 7
 8
Notes: 9
52. Undriven signals or ports that are left opened may be assigned a globally static initial expression in 10

their declaration; the iteration on contributors from such handles will return the initial expression of 11
the declaration. If such objects do not have an explicit initial expression but takes its driving value 12
from the default value of its subtype, the iteration on contributor shall return NULL. An expression 13
can also be returned as a contributor if the INPUT, INOUT, or buffer port is associated with a 14
globally static expression. get a null handle back only if the expression is the default value. 15

 16
 17
 18
 19
 20

4.11.3 The basic signal class diagram 21
The access described by this diagram is part of the connectivity capability. 22
 23
 24

Formatted: Bullets and Numbering

 87

 1
 2
 3
Notes: 4
53. If the property vhpiIsBasicP is TRUE for a signal, it will be FALSE for any lower level subelement of 5

the signal. 6
Formatted: Bullets and Numbering

 88

4.11.4 The connectivity diagram 1
The access described by this diagram is part of the connectivity capability with the following exceptions: 2

vhpi_put_value and vhpi_register_cb on to OutPort are part of the basic foreign models and debug 3
and runtime capabilities. 4

 5
 6

 7
 8
Notes: 9
54. The vhpiOutPort and vhpiInPort relationships are only available for an INOUT port 10
55. Iteration on contributors are not allowed from a signal for which the vhpiIsBasicP property is FALSE. 11

Formatted: Bullets and Numbering

Deleted: Issue: no equivalent of
vpiPortInst for a signal (okay)¶

 89

4.11.5 The loads class diagram 1
The access described by this diagram is part of the connectivity capability. 2

3

 90

 1

4.12 The standard callback package 2

4.12.1 The callback statement class diagram 3
The access described by this diagram is part of the debug and runtime and basic foreign models capabilities. 4
 5
 6

 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23

 91

4.13 The standard engine package 1

4.13.1 The simulator kernel class diagram 2
The access described by this diagram is part of the debug and runtime capability. 3
 4

5

 92

 1

4.14 The standard foreign models package 2

4.14.1 The foreign model class diagram 3
The access described by this diagram is part of the basic foreign model capability. 4
 5

 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32

 93

4.15 The standard meta package 1

4.15.1 The iterator diagram 2
The access described by this diagram is part of the static access capability?? 3
 4
 5

 6
 7
 8

4.15.2 The tool class diagram 9
The access described by this diagram is part of ?. 10
 11

 12

 94

4.15.3 The collection class diagram 1
The access described by this diagram is part of the debug and runtime capability. 2
 3
 4

 5

 95

4.15.4 The base inheritance class diagram 1
The access described by this diagram is part of all capabilities. Not all classes may be supported. 2
 3

 4
 5
 6
 7

 96

5. Access to the Uninstantiated model 1

5.1 Scope 2
 3
This document describes the functional specification for providing VHDL uninstantiated access, that is the 4
VHPI model for accessing analyzed (non-elaborated) VHDL information. The access described in this 5
chapter is part of the post analysis capability set. 6
 7
In an analyzed VHDL model, the basic units are design units that reside in design libraries. A design unit is 8
one of: 9

1) entity declaration 10
2) architecture body 11
3) package declaration 12
4) package body, 13
5) configuration declaration. 14
 15

Access to an uninstantiated model is provided by referencing the library name and a design unit name. 16
 17
The objective is to be able to recreate the VHDL source file (not necessary to preserve the same statement 18
ordering as in the original source file). In particular, user should have access to component declarations, 19
component instantiations, formals/actuals, unconstrained array types, configuration specifications, 20
configuration body, etc... However, certain items processed during the analysis phase cannot be reverted 21
back. Examples of some of these are locally constant expressions, comments… 22
 23
Uninstantiated access is useful for tools that need access to the source VHDL via an API and do not need 24
access to the hierarchy or connectivity information. Examples of such tools are: design rule checkers, 25
coding style checkers and translators. 26

5.2 VHPI Application Contexts 27
 28
VHPI supports two information models: 29
 30

- the uninstantiated information model 31
 32
- the instantiated information model. 33

 34
Given the various phases of a tool: 35
 36
vhpiCbStartOfTool -> vhpiCbStartOfAnalysis-> vhpiCbEndOfAnalysis->vhpiCbStartOfElaboration-37
>vhpiCbEndOfElaboration->vhpiCbStartOfSimulation->vhpiCbEndOfSimulation->vhpiCbEndOfTool 38
 39
The uninstantiated information model is available for access from vhpiCbStartOfTool till 40
vhpiCbEndOfTool, while the instantiated information model is available for access from 41
vhpiCbStartOfElaborationStart till vhpiCbEndOfTool. Specify that the tool capability must include 42
vhpiProvidePostAnalysis. 43
 44
Note: Library browsing can be done at CbStartOfTool. 45
 46
Given a handle to an object in the uninstantiated information model, it is not possible to traverse a 47
relationship to get to a handle of an instantiated object. 48
 49

 97

The reverse is not true, that is, there are cases where from the instantiated information model, you can 1
traverse a relationship to get to an object in the uninstantiated information model. Section 5.3.1 enumerates 2
all such cases. 3
 4
For the instantiated information model, the context of operation for a VHPI application is the elaborated 5
design context. This context consists of: 6
 7

- the entire elaborated design including the top-level package instances. 8
 9

 10
So a VHPI program can get access to the instantiated information model in one of two ways: 11
 12

- by navigation from the NULL handle (get a handle to the root of the elaborated design, get 13
handles to package instances etc…) 14

 15
- get a handle to an elaborated object via vhpi_handle_by_name(). 16
 17

For the uninstantiated information model, a VHPI application only accesses uninstantiated information. 18
 19
So a VHPI program can get access to the uninstantiated information model in one of four ways: 20
 21

 22
- get a handle to a library (working library or other design libraries). 23
 24
- get a handle to an uninstantiated object via vhpi_handle_by_name(). 25
 26
- navigate from the instantiated to the uninstantiated model (see section 5.8). 27
 28

In this chapter, we describe the uninstantiated information model and access only. 29

5.3 VHPI Uninstantiated Access 30
 31
The VHDL procedural interface is defined by: 32
 33

the definition of a VHDL uninstantiated information model that represents the VHDL data that is 34
accessible by the procedural interface, 35

 36
a subset of the functions that operate on this model to access, modify, and interact with the data. 37
 38

The next sections define which subset of the VHPI information model is available, what additional new 39
information is available, and what are the functions that can legally be used in on the uninstantiated 40
information model. 41

5.3.1 Uninstantiated Information Model 42
 43
During VHDL analysis, design units described in a design file are analyzed and each successful analysis 44
results in the analyzed design unit data being placed in a design library. The VHPI uninstantiated data is 45
the data resulting from the analysis of a design unit. A design unit is comprised of use clauses (dependent 46
analyzed units or declarations) and a single library unit which is either an entity, an architecture, a package, 47
package body or configuration declaration. Design units have only uninstantiated data. Any data obtained 48
by traversing a relationship from a design unit handle will lead to uninstantiated data. Any data obtained by 49
traversing a relationship from a reference handle of uninstantiated data gives back handles to uninstantiated 50
data. 51
 52

 98

From the uninstantiated information model, no access to the instantiated information model is allowed. 1
Classes of objects which are not part of the uninstantiated information model are classes which denote 2
elaborated or runtime data. For example, a handle of the region class can never be obtained in the 3
uninstantiated model because it denotes an elaborated region instance. 4
 5
It is possible to obtain a handle to uninstantiated data in the following cases: 6
 7

1) When calling vhpi_handle_by_name() with the unit name of the design unit or with the string 8
returned by the vhpiDefNameP property. The handle obtained is of class vhpiEntityDeclK, 9
vhpiArchBodyK, vhpiPackDeclK, vhpiPackBodyK, vhpiConfigDeclK or a handle to 10
uninstantiated data. Revisit after chapter 6 review. 11
 12
2) When calling vhpi_handle_by_name() with the name of the library. Revisit after chapter 6 13

review 14
 15
3) When traversing a relationship from a handle of uninstantiated data. 16
 17
4) When applying the 1-to-many relationship vhpiLibraries to a NULL reference handle; this will 18

yield all the libraries made available to the tool. 19
 vhpi_iterate (vhpiLibraryDecls, NULL) 20
 (The association of the physical library to the logical library is tool-specific). 21

 22
5) When traversing a specific relationship from the instantiated information model. This set of 23

relationships is defined later in the document. 24
 25

In the uninstantiated information model, it is not possible to access information which pertain to 26
elaboration, connectivity or runtime. In addition, only handles to objects which have an existing reference 27
in the VHDL description can be obtained. For example it is not possible to iterate on vhpiIndexedNames 28
from a handle of a variable declaration which is of an array type. 29

5.3.2 New additions 30

5.3.2.1 Lexical Scope Class 31
 32
Given a handle to an uninstantiated declaration, the 1-to-1 method vhpiLexicalScope will return a handle to 33
the enclosing lexical scope of that declaration. The lexical scope relationship will return NULL for a 34
reference handle denoting a library declaration. 35
 36
The lexical scope relationship returns a handle of the lexical scope class which is one of the following 37
classes: 38

- sub-classes of the design unit class: vhpiEntityDeclK, vhpiArchBodyK, vhpiPackDeclK, 39
vhpiPackBodyK, vhpiConfigDeclK 40

 41
- some sub-classes of the class decl: vhpiFuncDeclK, vhpiProcDeclK, vhpiProtected-42

TypeDeclK, vhpiProtectedbodyK, vhpiCompDeclK, vhpiRecordTypeDeclK, 43
 44
- some sub-classes of the class stmt: vhpiBlockStmtK, vhpiLoopStmtK, vhpiForGen-45

erateStmtK, 46
 47
- a class of kind vhpiBlockConfigK, vhpiCompConfigK 48
 49

The vhpiLexicalScope class is only valid in the uninstantiated information model with a reference handle 50
to an uninstantiated declaration. Following is the class diagram for the lexical scope class: 51
 52

 99

Lexical Scope class diagram (see diagram 4.4.2) 1

 2

5.3.3 Expanded Names 3
Move this to the name class diagram. 4
In aVHDL source file, there may exist a number of out-of-scope references, called expanded names. 5
Examples of these are: 6

IEEE.NUMERIC_BIT.UNSIGNED 7
WORK.ALU(RTL) 8
MY_PACK.SIG_A 9
 10

VHPI does not provide full information about expanded names references. This has the drawback to not 11
being able for decompilation applications to exactly produce the original source. This is more efficient for 12
synthesis oriented applications and more inline with the information retained by analyzers. 13

5.3.4 Unsupported classes 14
 15
The following class kinds of vhpi handles are not supported in the uninstantiated information model: 16
 17

vhpiDriverK, 18
vhpiDriverCollectionK, 19
vhpiForeignfK, 20
vhpiInPortK, 21
vhpiOutPortK, 22
vhpiPackInstK, 23
vhpiProtectedTypeK, 24
vhpiRootInstK, 25
vhpiTransactionK. 26

5.3.5 Unsupported 1-to-1 relationships 27

The following 1-to-1 relationships are not valid in the uninstantiated information model: 28

Issue: missing association from the forGenerate and ifGenerate classes 29

vhpiBasicSignal, 30
vhpiContributor, 31
vhpiCurCallBack 32
vhpiCurEqProcess, 33
vhpiCurStackFrame, 34
vhpiDerefObj, 35
vhpiDownStack, 36
vhpiImmRegion, 37
vhpiInPort, 38
vhpiOutPort, 39
vhpiProtectedTypeBody, 40
vhpiRootInst, 41
vhpiUpStack, 42

 100

vhpiUpperRegion. 1

5.3.6 Unsupported 1-to-many relationships 2

The following 1-to-many relationships are not valid in the uninstantiated information model: 3

vhpiBasicSignals, 4
vhpiContributors, 5
vhpiCurRegion, 6
vhpiDrivenSigs, 7
vhpiDrivers, 8
vhpiForeignfs, 9
vhpiIndexedNames, 10
vhpiInternalRegions, 11
vhpiPackInsts, 12
vhpiSelectedNames, 13
vhpiSigAttrs, 14
vhpiTransactions. 15
 16

A vhpi error will be generated if the functions vhpi_handle() and vhpi_iterator() are used for a 17
uninstantiated handle and the iteration method or the 1-to-1 method is one of the invalid methods listed 18
above. In these cases, the functions will return a null handle. The vhpi error can be checked immediately 19
after the call to vhpi_handle() and vhpi_iterator() by calling vhpi_check_error(). 20

5.3.7 Unsupported integer properties 21

The following integer properties are not valid in the uninstantiated information model: 22

vhpiAccessP, (read, write, or no access at all) 23
vhpiForeignKindP, 24
vhpiFrameLevelP, 25
vhpiGenerateIndexP, 26
vhpiIsBasicP, 27
vhpiIsDefaultP, (binding of the component 28
instance is default binding) 29
vhpiIsForcedP, 30
vhpiIsForeignP, 31
vhpiIsOpenP, 32
, 33
vhpiLoopIndexP, 34
vhpiResolutionLimitP. 35
 36

A vhpi error will be generated if the functions vhpi_get() and vhpi_get_str() are used with an integer 37
/string property which is invalid in uninstantiated mode. The function vhpi_get() will return an unspecified 38
value and vhpi_get_str() will return null. The vhpi error can be checked immediately after the call to 39
vhpi_get() or vhpi_get_str() to check for error by calling vhpi_check_error(). 40

5.3.8 Unsupported functions 41
 42
The following vhpi functions are not valid in the uninstantiated information model: 43

Deleted: s

Deleted: Issue I019
(curEqProcess)

 101

 1
- vhpi_protected_call 2

 3
Value access and modifications: 4
- vhpi_get_value : will only returns values 5
for locally static expressions 6
- vhpi_put_value 7
- vhpi_schedule_transaction 8
 9
Simulation access and control function: 10
- vhpi_get_time 11
- vhpi_control 12
- vhpi_put_data 13
 14
Foreign function registration: 15
 16
- vhpi_register_foreignf 17
- vhpi_get_foreign_info 18
 19

Notes: 20
1. vhpi_handle_by_index (invalid when creating a handle to an indexedName or selectedName because the 21
iterations on indexedNames and selectedNames are illegal in uninstantiated access). 22
2. Callback functions: 23
- vhpi_register_cb 24
- vhpi_disable_cb, 25
- vhpi_enable_cb, 26
- vhpi_get_cb_info, 27
(Action callbacks are allowed, object and stmt callbacks cannot have uninstantiated handles. Time 28
callbacks are not allowed…). 29
3. vhpi_create is not allowed to create a driver or a processStmt handle. 30
 31
The use of functions which are not supported in the uninstantiated model will generate a runtime vhpi error. 32
The functions which return a handle or a status code will respectively return a null handle or the code for 33
failure. 34

5.3.9 vhpi_handle_by_name 35
 36
See section 6.2 37

5.3.10 Instantiated to uninstantiated model 38
Issue: mark these associations in the information model. 39
Issue: add associations from the information model which return uninstantiated handles. 40
 41
This section lists the list of legal relationships that can be used to cross from the instantiated information 42
model to the uninstantiated information model: 43
 44

1) vhpiCompInstStmtK to designUnit class 45
2) vhpiRootInstK to vhpiConfigDeclK 46
3) vhpiCompInstStmtK to vhpiConfigSpecK 47

 102

4) vhpiCompInstStmtK to vhpiCompDeclK 1
5) vhpi_handle_by_name passing the string of the vhpiDefNameP 2

property 3
6) subprogram 4
7) forloop 5

No other accesses shall be allowed. 6

5.3.11 Additional Comments 7
 8
 9
When iterating on statements in the uninstantiated model, you get handle to an if generate statement even if 10
the conditional expression is locally static (and false). On the contrary, in the instantiated model, an 11
ifGenerate statement whose condition is false will not be returned since it has not been elaborated. 12
 13
 14

6. VHPI names properties, Access by name lookup 15
 16
Move this paragraph as an introduction to chapters 4, 5, 6 17
VHPI provides two related but distinct formal information models. The instantiated design model is an 18
instance hierarchy, i.e., the root instance, its component and block instance hierarchy, etc., that results from 19
elaboration of a VHDL design. The uninstantiated information model is a library of design units 20
previously analyzed. The relationship between them is that during the elaboration phase, the analyzed 21
design units are instantiated into the instance hierarchy. After elaboration, instances in this hierarchy have 22
a relationship back to corresponding design units in a library; the structure and behaviour of an instance are 23
defined by the design units to which they are bound. If a VHPI tool claims to support post analysis 24
capability, it supports access to the uninstantiated information model. 25
 26
Many object classes in each information model have name properties, strings that convey naming 27
information to VHPI client applications. These are useful in referring to these objects in written output in 28
terms the end user can relate back to the original VHDL source. 29
 30
VHPI clients have a variety of mechanisms to obtain handles to objects in either information model. From 31
an initial handle, one may navigate to other handles. Alternatively, one may search for a handle by name. 32
The search string may be an absolute or relative path name. A search may be limited to a specific region or 33
design unit 34
 35
The next section identifies the name properties available in both the library and design information models. 36
After that, vhpi_handle_by_name functionality is defined. Open issues are identified and rationale 37
included, as appropriate. 38

6.1 VHPI Name String Properties 39
 40
The name string properties can be understood by examining the UML formal information model and using 41
the definitions below. Both the instantiated and library information model objects share some name 42
properties. To avoid confusion, their descriptions are repeated. 43
Issue: replace uninstantiated with library unit and instantiated with design hierarchy 44

Deleted: uninstantiated

 103

6.1.1 Name Properties - Instantiated Information Model (design hierarchy 1
access) 2
The instantiated information model includes everything that is constructed during VHDL elaboration phase 3
and can be broadly divided into the design instance hierarchy and the elaborated packages referenced by 4
the design. 5
 6
With respect to the UML of the design model, the named objects are primarily regions (see the region 7
inheritance class diagram) and decls (see the declaration class diagram). 8

6.1.1.1 vhpiNameP 9
This property returns the name of the designated object in unspecified case for basic identifiers (VHDL is 10
case insensitive) or case preserved for extended identifiers. Broken down by class: 11

6.1.1.1.1 decl - for a declared item, its identifier 12
 13
The vhpiNameP of a declaration is the declaration identifier name. The vhpiNameP of a subprogram 14
declaration (vhpiSubpDeclK) or subprogram body (vhpiSubpBodyK) is the subprogram identifier name. 15
The vhpiNameP of a vhpiLibraryDeclP is the library logical name. 16
 17
Issue: This is not equivalent to the ‘simple_name predefined attribute. For example, ‘simple_name is 18
guaranteed to return all lower case. Resolution : A name property equivalent to vhpiSimpleNameP was not 19
determined necessary. 20
Note: since an enumeration literal or subprogram can be overloaded, a property vhpiSignatureNameP can 21
return the parameter type profile string of the enumeration literal or subprogram. The vhpiNameP property 22
of an enumeration literal or subprogram shall return the simple name of the enumeration literal or 23
subprogram. For example for a enumeration literal named red and belonging to the enumeration type 24
“color_type”, the vhpiNameP property shall return “red” and the vhpiSignatureNameP shall return “return 25
color_type” in order to distinguish it from another enumeration literal of the same name belonging to 26
another enumeration type. 27
Issue: vhpiNameP property can be queried on a handle of an implicit declaration and returns the 28
declaration name. 29
 30
For example, guard signals have a simple name of “GUARD”. These can be found with 31
vhpi_handle_by_name. 32
The name property applied to implicitly defined operators (for example “+” from the the standard package) 33
follow the syntax for overloaded functions. The vhpiNameP of an operator declaration should include the 34
double quotes.. 35

6.1.1.1.2 compInstStmt – its instance label 36
For a vhpiCompInstStmtK reference handle, the vhpiNameP property returns the component instance 37
statement label. 38

6.1.1.1.3 rootInst – the entity name 39
For a vhpiRootInstK reference handle, the vhpiNameP property returns the entity name 40
(it was agreed for mixed language interoperability verilog returns the name of the top level module) 41

6.1.1.1.4 packInst - its package name 42

6.1.1.1.5 blockStmt - the block label 43

6.1.1.1.6 loopStmt – the loop label or an implicitly created label 44
<vhpiFullNameP of upperRegion>:<vhpiNameP of loopStmt> 45

Deleted: t

Deleted: should be

Deleted: [

Deleted:]

Deleted: This is consistent with the
syntax for an overloaded parameterless
function whose return type is color_type
(see section 5.2.1.11). This is how the
VHDL LRM describes enumeration
literals.¶

Deleted: Add vhpiSignatureNameP
property for vhpiSubpDecl and
vhpiEnumLiteralK ; reconcile with
vhpiFullName¶

Deleted: (reconcile with signatureName)

 104

See Rule 1 below for generating implicit loopStmt labels. 1
Because the loop stmt variable is dynamically elaborated, it is advanced functionality. If the VHPI server 2
conforms to “dynamically elaborated” capability, handles to loop variables may be obtained (See section 3
1.1.2 VHPI levels of capability). The vhpiNameP property of a loop variable would be its identifier. 4

6.1.1.1.7 generateStmt - the <label_name>[(generate index)] 5
There are two forms of generate, a conditional generate and an iterative generate. For a conditional 6
generate, the vhpiNameP is the label name. With an iterative generate stmt, each iteration replicates the 7
contents of the generate stmt, i.e., generates a block instance of its declarations and concurrent stmts. The 8
generate_index is the value of the for generate constant that defines the iteration. This implicit constant 9
declaration is defined with a discrete range, either an integer or enumerated type. For the purpose of the 10
vhpiNameP string, the value of the generate_parameter of an enumerated type will be given by the string 11
representation of the enumeration literal. 12

6.1.1.1.8 VHDL name 13
IndexedName, SelectedName, SliceName, derefObj, ParamAttrName, SimpAttrName, UserAttrName, 14
(see name class diagram) the VHDL string name equivalent to the object the name refers to. 15
It may not be returned as it appears in the VHDL source because a single handle may represent expressions 16
of the same object. 17
Example: s(1), s(1 + 0), s(c) where C is the integer constant 1, may have the same vhpiNameP of “s(1)” 18
 19
The name may be returned with or without case preserved depending if there is reference to an extended 20
identifier within the name. 21
 22
Example: selected name: “f.a”, indexed name: “r(j)”, “a.all”, “s’delayed”, “t’high”, “my_attribute”, etc… 23
 24
Note: a vhpiDerefObjK handle will only have a name if it refers to a VHDL source dereference name. 25
vhpiDerefObj handles which are obtained by way of applying the vhpiDerefObj method do not have a 26
name because they denote a memory location in the VHDL heap. 27

6.1.1.1.9 EqProcessStmt – the process label or implicitly generated label 28
See Rule 2 below for generating EqProcessStmt labels. An equivalent process statement is either a process 29
statement or one of the concurrent statements - procedure call, assertion, or signal assignment. 30

6.1.1.1.10 protectedType 31
 32
A vhpiProtectedTypeK handle represents the instantiated variable of a protected type. The vhpiNameP of a 33
vhpiProtectedTypeK handle is the name of the variable. The vhpiNameP of protected type declaration 34
vhpiProtectedTypeDeclK or vhpiProtectedTypeBodyK is the protected type identifier name 35

6.1.1.1.11 subpCall and stackFrames 36
a) name of a procedure call stmt: 37
When the procedure call statement is executed, a stack frame is created which represents the state of the 38
procedure call. For a concurrent procedure call, the vhpiNameP property shall return the explicit or 39
automatically generated name of the equivalent process representing the concurrent subpcall. 40
For a sequential procedure call the vhpiNameP property shall return name of the of the subprogram. The 41
vhpiNameP property returns the same strig value whether or not the procedure is active. 42
There is a special case when the procedure call denotes a method of a shared variable of a protected type; 43
in that case the vhpiNameP of the procedural call or function call should be: 44
<variable_name>.<vhpiNameP of the subpCall> 45
When an object of a protected type is used in VHDL, it is accessed through protected procedure and 46
function calls. Its name is defined consistently with subpCall objects. The procedure call name is 47
<variable_name>.<subp_name>(). 48

Deleted: T

Deleted: of a subpCall should be the

Deleted: concurrent or sequential

Deleted: When the procedure call is not
executing, the vhpiNamePame should
return the procedure declaration name.

Deleted: ¶

 105

 1
We should provide handles to concurrent procedure calls when traversing hierarchy. Access to concurrent 2
procedure calls should not be restricted by the VHPI server. Concurrent procedure calls are transformed in 3
their equivalent processes with sequential procedure calls. Dynamic elaboration applies to sequential 4
procedure calls. 5
 6
b) name of a function call 7
 A function call is an expression. 8
 The vhpiNameP of a function call is the name of the function declaration. Ex: "my_func". In the case of 9
a function call applied to a shared variable of a protected type, the name should include the shared variable 10
name: 11

6.1.1.2 vhpiSignatureNameP 12
This property is available for subpCall and enumLiteral. 13
The property returns a string which represent the signature of the subpCall or enumeration literal. An 14
enumeration literal is represented as a parameterless function call. 15
 16
[[<vhpiNameP of parameter type declaration>]{, <vhpiNameP of parameter type declaration>}][return 17
<vhpiNameP of return type>]] 18

6.1.1.2.1 Rule 1 - Naming of unlabelled loop statements: 19
 VHPI would generate a loop label which starts by the concatenation of the "_L" or “_l” string and an 20
integer which denotes the sequence appearance number of the loop statement in the VHDL source text of 21
the declared region. The numbering starts at 0 and increments by 1. For example the auto-generated 22
vhpiNameP of the first loop statement in process or postponed process would be “_L0”. Numbering of 23
loops is reset for each internal region. 24
Rationale: A loop variable is an important object to access by name. Because the label is optional, 25
‘path_name attribute can be ambiguous. The vhpiNameP property must produce reliable names that are 26
unique references to an object to support handle_by_name. Because the loop variable is dynamically 27
elaborated, look up by name of the loop variable is advanced functionality. The fullname of the loop 28
variable would include the process label, the explicit or automatically generated loop label and the loop 29
variable. 30
Example: 31
“Process_label:loop_label:loop_var” 32

6.1.1.2.2 Rule 2 - Naming of unlabelled equivalent processes: 33
VHPI would generate an equivalent process label name which starts with the concatenation of the "_P" or 34
“_p” string and an integer which denotes the sequence appearance number of the equivalent process in the 35
VHDL source text of the declared region. The numbering starts at 0 and increments by 1. For example the 36
auto-generated vhpiNameP of the first equivalent process statement in an entity declaration would be 37
“_p0”. Numbering of equivalent processes in the architecture follows the numbering sequence used for the 38
entity. The number used for the first process in the architecture will be either 0 if the entity did not contain 39
any unlabelled processes or n+1 where n is the number used for naming the last unlabelled equivalent 40
process of the entity. Numbering of processes is reset for each internal region (block, generate or 41
component statement). 42
 43
 example: "_P2"is the vhpiNameP of the second occurring process for this entity/architecture pair. 44
 note: _P2 is not a legal VHDL identifier (should be escaped) this ensures that this identifier is not used in 45
the rest of the design. 46
Rationale: Because the label is optional, ‘path_name attribute can be ambiguous. The vhpiNameP property 47
must produce reliable names that are unique references to an object to support vhpi_handle_by_name. 48

Deleted: I sent out an email to Paul and
Alex asking if the dynamic elaboration
was applying to concurrent procedure
calls.¶
Paul replied that concurrent

Deleted: ¶

Deleted: ¶

Deleted: <variable_name>.<vhpiNa
meP of the subpCall>

 106

6.1.1.3 vhpiCaseNameP 1
Returns the case preserved name of the declared identifier. 2
 3
I propose that vhpiNameP of implicit declarations returns the implicit declaration identifier (for example 4
for the guard signal, the operator name for an implicit operator etc... vhpiCaseNameP would return the 5
same as vhpiNameP for implicit declarations. 6
In the case of: 7
 - a declaration appearing in both the subprogram declaration and its body, 8
 - a subprogram declaration and its subprogram body, 9
 - an incomplete type and its full type, 10
 - a protectedTypeDeclaration and its body, 11
 - a package declaration and its body, 12
the vhpiCaseNameP shall return the case preserved name of the declaration in the subprogram declaration, 13
the incomplete type, the protectedType declaration or a package declaration. 14
Issue: check rational + specify new compliance capability for names 15

6.1.1.4 vhpiFullNameP 16
This is a string describing the path through the elaborated design hierarchy, from the top level entity or 17
package to this object. The string is defined in terms of the vhpiNameP property to produce a unique 18
reference to the given object. Objects which have the vhpiFullNameP property are explicit declarations, 19
sub-elements of these declared objects, or regions. 20
The vhpiFullNameP property returns a string that is often identical to X`PATH_NAME attribute, but will 21
differ because of ambiguities and features of the inherent in the VHDL LRM definition. 22
Since VHDL is case insensitive, the case of the vhpiFullNameP string is not specified unless there is an 23
extended identifier. 24
Note: vhpiFullCaseNameP should be used to retrieve the hierarchical name with case preserved characters 25
for the declared items only. 26

6.1.1.4.1 Elaborated design object :{<vhpiNameP>:}[vhpiNameP] 27
The vhpiFullNameP property should return the concatenation of the vhpiNameP strings of each instance or 28
item found on the hierarchy path. The character ‘:’ is used between two successive names returned by 29
vhpiNameP. 30
The vhpiFullNameP of an object declared in a subprogram would only be obtainable if the subprogram is 31
elaborated and consequently the object is elaborated too. Therefore the fullName of that object would 32
contain the vhpiNameP of the subprogram call as defined above. 33
Ex:The vhpiFullNameP of a variable A defined as a subprogram parameter, elaborated as part a 34
concurrent subprogram call, would be: 35
<vhpiFullNameP of the base eqProcessStmt representing the concProcCallStmt>::A 36
 37
The fullname of an to uninstantiated declarations is equivalent to the vhpiDefNameP (fullname in the 38
library information model). 39
 The vhpiFullNameP of the root instance is ":<entity_name>. This is sufficient to refer to a unique root, 40
VHDL 1993 and 2000 only allow one top-level design unitThis brings it inline with `path_name. It is also 41
the only way to deal with the stated goal of interoperability with Verilog and VHDL. 42
 43

 44
 45

6.1.1.4.2 Library declaration 46
The vhpiFullNameP of a vhpiLibraryDecl is: @<lib_logical_name> 47

6.1.1.4.3 Elaborated package object @<lib_logical_name>:<pack_name>[:vhpiNameP] 48

Deleted: ,

Deleted: For

Deleted: its full name

Deleted: <vhpiNameP of subpCall

Deleted: Issue: reconcile with

Deleted: applied

Deleted: => A declared item in a
function declaration does not have a
fullname as it is not elaborated¶

 107

The vhpiFullName for an object in an elaborated package instance returns a string that is nearly identical to 1
the `path_name attribute, but differs in order to resolve ambiguities in the VHDL LRM definition. 2
The leading : is replaced with an ‘@’ character to disambiguate a name reference to an elaborated design 3
object from a reference to a package object with the same name. For example, “work” can be both a 4
logical library name and the entity name of the design root. 5
Construction of full names for items elaborated in package instances is defined as follow: 6
@<lib_logical_name>:<pack_name>:<vhpiNameP of declared_item> 7
The declared_item_name is equivalent to the vhpiNameP property of the declared object. 8

6.1.1.4.4 subpCall 9
:<vhpiFullNameP of upperRegion of base eqprocess stmt>:<vhpiNameP of 10
subpCall>{:<vhpiNameP of subpCall>} 11
This would work for both concurrent and sequential procedure calls. 12
For concurrent procedure calls, the names would reduce to the name of the eqprocessstmt it corresponds to. 13
For sequential procedure calls, the name would be formed of the name of the enclosing eqprocessstmt, to 14
which would be appended the vhpiNameP of the procedure. 15

6.1.1.4.5 vhpiPathNameP 16
Rationale: provides an ability to write foreign models and application output consistent with the simulator. 17
This is a string describing the path through the elaborated design hierarchy, from the top level entity or 18
package to this object. The vhpiPathNameP is identical to the VHDL predefined attribute, ‘path_name, as 19
defined in the LRM 1076. A VHPI tool should guarantee that the same value will be used for `path_name 20
attribute during simulation. 21

6.1.1.4.6 vhpiInstanceNameP 22
The vhpiInstanceNameP is identical to the VHDL predefined attribute, `instance_name, as defined in the 23
LRM 1076. This is a string similar to `path_name, but includes the names of the entity and architecture 24
bound to each component instance in the path. (Same rational as 5.1.1.3.3). 25

6.1.1.4.7 vhpiCaseNameP 26
This property returns the case preserved string of the item declaration. The string returned will reflect 27
lower or upper case characters used in the identifier declaration. Note that for extended identifiers, or 28
unlabelled loop statements or equivalent processes, the vhpiCaseNameP string will be exactly the same as 29
the vhpiNameP string. 30

6.1.1.4.8 vhpiFullCaseNameP 31
The string returned is formed by the concatenation of each single vhpiCaseNameP string on the 32
hierarchical path to the designated object. The ‘:’character is the delimiter between each simple case name. 33

 34
Note: All these properties vhpiNameP, vhpiCaseNameP, vhpiFullNameP and vhpiFullCaseNameP 35
apply to the name class (see expression diagram) and region class. 36

6.1.1.4.9 vhpiDefNameP 37
This property returns the full name of the associated object in the uninstantiated information model; this 38
property is available for all objects which have a name. 39
vhpiDefNameP syntax use . separator and is defined in terms of vhpiUnitNameP, 40
Note: This property is available in both the elaborated model and uninstantiated model. 41

6.1.1.4.10 vhpiUnitNameP 42
This property is available in both the elaborated model and uninstantiated model. See uninstantiated model 43
properties for description. 44

 108

6.1.1.4.11 vhpiFileNameP 1
This property returns the physical file system path name of the VHDL source file where the item 2
designated by the handle appears. This property is applicable for every VHPI class kind that has a 3
vhpiLineNoP (line number property). Among these are: declared items, design units, etc... 4
Note: the VHPI specification does not imply the physical organization of a file system and makes no 5
normative reference to file system specifications. 6

6.1.1.5 Name Properties - Uninstantiated Information Model (Library unit 7
access) 8
The uninstantiated information model is a library of previously analyzed design units related to the current 9
execution of the underlying tool providing VHPI. During the elaboration phase, some of these analyzed 10
design units are instantiated into the hierarchy. After elaboration, instances in the design hierarchy have a 11
relationship to design units in a library, they are defined by them (see design unit class diagram 4.4.1). 12

6.1.1.6 The uninstantiated model 13
The UML diagrams shares object classes between the uninstantiated and instantiated model, but these 14
object classes are understood to have differences. See chapter on uninstantiated access to understand these 15
differences. Issue: How do we represent this in UML? 16
The design unit class in the unelaborated data model is unique and has a number of unique properties. 17
There are no regions in the instantiated model, but rather lexical scopes which affect some of the name 18
properties. 19

6.1.1.7 vhpiLibLogicalNameP - the logical name of the library in which the 20
design unit was compiled 21
This property returns the logical name of the library in which the design unit was analyzed. 22

6.1.1.8 vhpiLibPhysicalNameP - the physical name of the library 23
No interpretation implied by VHPI since that mapping is a tool issue, not an LRM issue. 24

6.1.1.9 vhpiUnitNameP: for design unit class 25
The name of the declared design unit in the VHDL source. This property is only applicable to the 26
designUnit class. The separator is the . character. 27
The name is returned in unspecified case for basic identifiers or case preserved for extended identifiers. 28
The vhpiUnitNameP of a design unit of the following class is: 29
 30
EntityDecl: lib_name.entity_name 31
Arch body: lib_name.entity_name:arch_name 32
PackDecl: lib_name.pack_name 33
Pack Body: lib_name.pack_name:BODY 34

note: all variations of upper and lower case letters for BODY are allowed. 35
Config: lib_name.config_name 36
 37
This property is allowed in the instantiated and uninstantiated design. 38

6.1.1.10 vhpiNameP – exists for declaration and name class and should 39
produce the same string as in the elaborated model. 40
The string returned conforms to and is the same as the string returned in the instantiated model with the 41
following exceptions: 42
For forGenerate, the vhpiNameP string returns the label without the index. 43

 109

For non locally static names, the vhpiNameP string may return a name that is different from the name in 1
the elaborated model. For example, the vhpiNameP of an indexedname when the index is globally static 2
may be S(gen) in the analyzed model but S(0) in the elaborated model. 3

6.1.1.11 vhpiFullNameP, vhpiDefNameP syntax: 4
@<vhpiUnitNameP>{.<vhpiNameP of the 5
vhpiLexicalScope>}[.<vhpiNameP>] 6
The vhpiFullNameP of an uninstantiated handle is identical to the string which would be returned by 7
vhpiDefNameP. This is a string describing the path through the analyzed design unit, from the library 8
through lexical scopes to this object. The string is defined in terms of the other properties to produce clear, 9
unique references to the object. 10
 11
 12

6.1.1.12 vhpiCaseNameP no change 13

6.1.1.13 vhpiDefCaseNameP – analogous to vhpiDefNameP but case 14
preserved 15
 16

6.1.1.14 vhpiFileNameP – no change 17

6.1.2 Other Name Properties 18
Other string properties are defined: 19

6.1.2.1 vhpiCompNameP for compInstStmt, compConfig 20
vhpiCompNameP returns the component name specified for a component instance statement or component 21
configuration or null if direct instantiation is used. 22

6.1.2.2 vhpiCompInstNameP for vhpiCompInstStmtK 23
Returns the string written in VHDL of either the configuration name, component name or entity 24
architecture name. The name string includes the library name either explicit or default. 25

6.1.2.3 vhpiLabelNameP for the stmt class 26
returns the label name if it exists for the statement or null. 27
 28

6.1.2.4 vhpiLoopLabelNameP for vhpiNextStmtK and vhpiExitStmtK 29
This property returns the label name of which to jump to or to exit from if the next or exit statement have 30
an explicit label; null otherwise 31
 32

6.1.2.5 vhpiLogicalNameP for vhpiFileDeclK class 33
This property returns the logical name which identifies an external file in the host file system which is 34
associated with the file declaration; otherwise null 35

6.2 Access by name lookup 36
The goal is to define vhpi_handle by name in terms of name string properties for consistency in user 37
interface input and output. The name properties have a clear definition in both information models. VHPI 38

Deleted: Francoise to complete:

 110

provides vhpi_handle_by_name function to obtain a handle to an object in either the instantiated or 1
uninstantiated information models. The latter capability is referred to as the post analysis capability in 2
section 1.1.2 for compliance. vhpi_handle_by_name is only allowed on classes of objects which possess 3
the vhpiFullNameP property. If a compliance capability requires access to a given class which has the 4
vhpiFullNameP property, it is also required that vhpi_handle_by_name be supported as well. 5
 6
The vhpi_handle_by_name function uses a case insensitive comparison of the search string to the 7
vhpiFullNameP value, except where a component of the name uses extended identifiers. That component 8
of the name will be compared with case sensitivity. 9
It may be possible to specify a name string that is ambiguous, i.e., that refers to more than one object. If 10
vhpi_handle_by_name detects ambiguity, it will return a NULL handle. If this is not detected, the object 11
handle returned will be the arbitrary choice of one such object. VHPI does not require detection of this 12
condition. 13
Implicit signal attributes cannot be returned by handle_by_name. In order to find the signal attributes 14
implicitly defined by a design on a given signal, use the vhpiSigAttrs iteration relationship. 15
 16

6.2.1 Instantiated Model Access(Design hierarchy) 17
The interface provides a vhpi_handle_by_name function, which given a reference scope handle and an 18
instantiated hierarchical name which identifies a given VHDL item, returns a handle to the designated item 19
if an item of that name exists in that scope. This function (vhpi_handle_by_name()) can only be used for 20
VHPI classes that possess the vhpiFullNameP property. 21
A scope reference handle of NULL denotes the top level of the design. The reference handle can be any of 22
the packages instances or root instance of the design hierarchy or any region handle in the entire design. 23
Any other type of handle to an instantiated model object is an illegal scope reference. 24
The vhpiFullNameP property is similar to the VHDL `path_name attribute, but has been extended to 25
prevent many of the ambiguous name references of `path_name. These ambiguities arise from region 26
labels that are optional and anomalies in the LRM concerning `path_name. For example, unlabelled 27
equivalent process and overloaded subprogram calls are disambiguated in vhpiFullNameP. 28
 29
vhpiFullNameP is defined for explicit and implicit declarations. 30
vhpi_handle_by_name() can be used with names denoting declarations, indexedNames, selectedNames, 31
attrNames denoting user defined attribute names, or signal valued attributes which denote signals 32
(predefined attributes which vhpiAttrKindP property return vhpiSignalK). 33
For slice names, vhpi_handle_by_name is only able to find handles for slices that are visible in the original 34
VHDL source. Indices if specified in the name, must only involve literals. 35
vhpi_handle_by_name of a vhpiFullname to a subprogram identifier name returns the subprogram 36
declaration (vhpiFuncDeclK or vhpiProcDeclK) except if there is a dynamically elaborated subprogram 37
call of the same name in the same region, in that case the subpCall shadows the subpDecl 38
Additionnally if the handle to look up denotes an enumeration literal that is overloaded, the 39
vhpiSignatureNameP property must be appended to the vhpiFullNameP of the enumeration literal in order 40
to return unambiguously a handle. 41
 42

6.2.1.1 Find by Absolute Path Name 43
The vhpi_handle_by_name function uses a case insensitive comparison of the search string to the 44
vhpiFullNameP value, except where a component of the name uses extended identifiers. That component 45
of the name will be compared with case sensitivity. 46
An absolute path name is indicated by a search string which begins with ‘:’ or ‘@’ (@ for elaborated 47
package references). The name provided must exactly match the vhpiFullNameP of an object, whose 48
handle will be returned. 49
The scope reference handle must be consistent with the search string, i.e., either be a NULL handle, the 50
handle of a region along the path to the desired object, or an elaborated package instance in which the 51
object can be found. 52

 111

The scope reference handle functions to narrow the domain of the search. For a region handle, the search 1
is restricted to the region, any of its internal region, or their sub regions. For an elaborated package, the 2
search is restricted to the package’s elaborated declarations. 3

6.2.1.2 Find by Relative Path Name 4
This is indicated by a search string which does not begin with a ‘:’ or ‘@’ character. The search string will 5
produce the same result as if the vhpiFullNameP of the scope reference handle was prepended to the search 6
string, formulating an absolute search. The scope reference handle shall not be null. 7
The scope reference handle effectively establishes the top most region or an elaborated package context 8
from which to search. There is no manner in which a relative name search will find an object above this 9
region or package. In particular, this is not a search that mimics VHDL name resolution, in which some 10
declarations outside an immediate region might be visible. 11

6.2.2 Uninstantiated Model Access (Library unit access) 12
Having access to the uninstantiated model in VHPI is a separate capability identified as the 13
“vhpiProvidesPostAnalysis” capability (see 1.1.2). The UML description and name properties provide the 14
framework for vhpi_handle_by_name working uniformly across both information models. 15
In the uninstantiated context, the vhpiFullNameP returns a string identical to the same string returned by 16
the vhpiDefNameP property. 17
Additionnally if the handle to look up denotes an enumeration literal or a subprogram call that is 18
overloaded, the vhpiSignatureNameP property must be appended to the vhpiFullNameP of the enumeration 19
literal or subpCall in order to return unambiguously a handle otherwise the specification of the returned 20
handle by vhpi_handle_by_name is not specified by the standard. 21
 22
 23
The string value of the vhpiDefNameP property passed to vhpi_handle_by_name returns a handle to a 24
post-analysis object. 25
 26

6.2.2.1 Find by Absolute Path Name 27
This is indicated by a search string which begins with‘@’. The name provided must match the 28
vhpiDefNameP of an object whose handle will be returned. 29
The vhpi_handle_by_name function uses a case insensitive comparison of the search string to the 30
vhpiDefNameP value, except where a component of the name uses extended identifiers;that component of 31
the name will be compared with case sensitivity. 32
The scope reference handle must be consistent with the search string, i.e., either be NULL, the handle of 33
the logical library along the path to the desired object, or the design unit containing the desired object. 34
The scope reference handle functions to narrow the domain of the search. For library access, it allows the 35
search to be restricted to a specific logical library or design unit. 36
A null scope reference handle indicates that the search is done over all the logical libraries known to the 37
tool. 38
 39

6.2.2.2 Find by Relative Path Name 40
This is indicated by a search string that is recognizable as a relative path, meaning it does not begin with a 41
‘@’. The search scope reference handle shall not be null. The search string will produce the same result as 42
if the vhpiDefNameP of the scope reference handle was prepended to the search string, formulating an 43
absolute search. 44

Deleted: .

 112

7. Foreign models interface 1
 2
This chapter describes how to interface VHPI/ANSI-C foreign models or applications with a VHDL tool. It 3
describes the specification, invocation and execution of foreign VHPI models and applications. This 4
chapter is organized as follows: 5
 - section 7.1: overall flow of execution of a mixed VHDL/VHPI foreign design, 6
 - section 7.2: VHDL specification of foreign models, 7
 - section 7.3: registration of VHPI foreign models and applications, 8
 - section 7.4 : elaboration of VHPI foreign models, 9
 - section 7.5: execution of VHPI foreign models and applications, 10
 - section 7.6: VHDL context passing 11
 - section 7.7: save, restart and reset of foreign models. 12

7.1 The phases of execution of a VHDL/VHPI mixed design 13
As defined by VHDL, there are two kinds of foreign models, architectures and subprograms which can 14
themselves be either functions or procedures. VHPI foreign models have a VHDL declaration and a 15
VHPI/ANSI-C behavior implementation. The VHDL declaration denotes the interface of the foreign model 16
and other local declarations: for a foreign entity/architecture, it includes the entity and architecture 17
declarative parts, and for a foreign subprogram, it includes the subprogram declaration (if present), or 18
subprogram specification (if no declaration). Note that a foreign subprogram does not need to have a 19
subprogram body. VHPI also provides the capability of invoking a foreign VHPI application at a given 20
point during a VHDL session such as analysis, elaboration or simulation. That application is an 21
autonomous VHPI program that can run concurrently with the simulation or can be called at a defined 22
point in time during a VHDL session. Typical third-party tool applications such as signal monitoring, 23
VHDL code profilers, hierarchy browsers can be developed and integrated as VHPI foreign applications. 24
 25
We distinguish several phases in the life of foreign models and applications: 26
1. Registration 27
2. Elaboration 28
3. Initialization 29
4. Simulation run-time execution 30
5. Termination 31
6. Save/restart or reset. 32
 33
The following paragraphs describe the different phases in details. All phases except for the registration and 34
save/restart/reset phases, refer to already known phases in a VHDL tool. 35
Registration: 36
Registration is the first stage of execution of a VHDL/VHPI session. VHDL tools must support a 37
registration mechanism for the VHPI foreign models and applications. The registration phase must occur 38
before the vhpiCbStartOfTool callback which is the first defined time point for callback registration. 39
Typically a developer of foreign models and applications would have to provide a C dynamic or static 40
library which contains the compiled code of the VHPI based models and applications and at least a 41
function to register the foreign models and applications into a VHDL session. After registration, the 42
foreign model and application behaviors are defined, that is, a given VHPI based implementation has been 43
associated with a foreign model or application. The required associations are defined in section 7.3. The 44
registration of a model or application records the association(s) between C behavior and a VHDL model 45
and does not necessarily do the symbol binding. The symbol binding may occur between the registration 46
phase and the phase when the symbol functions need to be used. For VHPI applications the symbols need 47
to be resolved before the vhpiCbStartOfTool callbacks. 48
 49
NOTES: 50
1 - The registration function or also called bootstrap function is the only required globally visible entry 51
point for registering a library of VHPI C models or a foreign application. 52

 113

2 - There is no predefined name for the bootstrap function. The name of the bootstrap function must be 1
supplied to the VHDL tool using an implementation defined mechanism. 2
3 - There is no predefined name for the foreign libraries. As a consequence, several libraries can be 3
registered in the same VHDL session. 4
4 - The tool has the flexibility to determine when the binding of the model name to the C functions occurs 5
(during registration or late during elaboration/simulation). The VHDL tool is free to register all the foreign 6
models included in a library at once, or to register them one at a time when the foreign model is 7
encountered during elaboration. However, the various C functions providing elaboration, initialization or 8
simulation of a foreign model need to be known at the execution of the given phase. 9
5 - A library of foreign models or a foreign application may have several bootstrap functions. 10
6 - The binding can occur anytime from the point of registration until the point of use. The point of use of 11
an application is immediately prior to the vhpiCbStartOfTool callback. 12
 13
Elaboration: 14
Elaboration consists of the creation of the model instances that are involved in a VHDL design. 15
Elaboration occurs after the model that is being elaborated has been registered and before simulation 16
initialization. The declarative parts of VHPI foreign architectures are statically elaborated while the formal 17
parameters of VHPI foreign subprograms are dynamically elaborated (there is no elaboration of the 18
subprogram declarative part). The elaboration of the foreign models including the elaboration of the 19
declarative and statement body parts is defined in section 7.4. It is an error if when elaborating of a foreign 20
model, the C function for the elaboration of the foreign model is not known or not found. Initial values 21
computed during the elaboration of an object declaration may involve the execution of a foreign function. 22
Creation of a VHPI process and driver may be done during elaboration of a foreign architecture. The initial 23
values of the ports of the foreign models or driving values of the VHPI drivers can be set with 24
vhpi_put_value by the elaboration function of a foreign architecture. 25
 26
Initialization: 27
Simulation initialization refers to the phase where signal driving and effective values are initially computed 28
and processes are executed for the first time. The computation of a signal effective or driving value may 29
involve the execution of a foreign function (resolution or conversion). The initialization function of each 30
foreign architecture gets called during the initialization phase. The simulation function of a foreign 31
subprogram may get called as a result of process execution. It is an error if the initialization function of a 32
foreign architecture or simulation C function of a foreign subprogram is not found at the initialization 33
phase if it needs to be executed. 34
 35
Simulation runtime execution: 36
Simulation consists of the execution of the previously elaborated and initialized design. The execution of 37
the foreign models or applications at appropriate times is accomplished through registration of callback 38
functions for various reasons. These callbacks are either dynamically registered as the simulation proceeds 39
or may have been registered during initialization. The control flow of a concurrent region defined by a 40
foreign architecture can be emulated by callbacks. 41
 42
Termination: 43
The termination phase is the last phase after which execution of other phases is not permitted. Termination 44
consists of going back to a clean state before exiting the present VHDL session. The termination of a 45
VHDL session can happen for several reasons (end of simulation, fatal error…). Termination is the last 46
stage of execution of a VHDL session. Termination involves calling the registered vhpiCbEndOfTool 47
callbacks. This callback reason gives the ability for foreign models and applications to take proper action 48
to free any allocated resources, close files and terminate cleanly. 49
 50
Save, Restart, Reset: 51
The mechanisms for saving, restoring or resetting foreign models are described in section 7.7. Foreign 52
models and applications have the capability to save, restart or reset their state. These operations occur at a 53
clean state of the simulation cycle: all scheduled events for that simulation cycle must be executed before 54
the operation takes place. 55

 114

 1
Informative note: Foreign models should not assume that the memory they allocate or the files they open 2
persist between any of these phases. In fact, any of these phases could belong to a different process. 3

7.2 Foreign models specification 4
 5
The string of a foreign attribute that is decorating a VHPI foreign architecture or subprogram follows a 6
VHPI standard syntax. There are two standard syntax: one which specifies an indirect binding of the 7
foreign model behaviours and another one which specifies a direct binding of the foreign model behaviours. 8

7.2.1 Foreign attribute syntax 9

7.2.1.1 Standard indirect binding mechanism 10
Foreign VHPI architectures: 11
 12
attribute FOREIGN of <architecture_name>: architecture is 13
 “VHPI <library_name> <model_name>” 14
Foreign VHPI procedures and functions: 15
 16
attribute FOREIGN of <subprogram_name[signature]>: procedure | function is “VHPI <library_name> 17
<model_name>” 18
1) The "VHPI" identifier indicates that this foreign model has a VHPI based implementation and that the 19

binding is a standard binding. 20
2) <library_name> is the logical name of the C library. The mapping to the physical library is 21

implementation dependent. 22
3) <model_name> identifies a VHPI based model implementation for a foreign architecture or 23

subprogram. 24
4) The foreign attribute string must be locally static and the string syntax must be as follows: 25
"VHPI {<space_character>} {graphic_character}{<space_character>} {graphic_character}" 26
 27
The space character can either be the space or the non breaking space character. 28
 29
<space_character> := SPACE | NBSP 30
 31
The string should start by VHPI keyword and should consists of two sets of graphic characters separated 32
by at least one space character. 33
VHDL LRM 1076-1993 modifications needed page 72 for foreign attribute specifications. 34
 35
NOTES: 36
- The analysis of the foreign string does not yield any interpretation of the value of the foreign string. 37
- The elaboration of the foreign attribute specification may involve some checking depending on a vendor 38
implementation (checking for the existence of the C library, and existence of the foreign model). 39
- The name of the C library containing the foreign models need not to be the same as the name of the 40
VHDL logical library which contains the VHDL component declarations and entity shell declarations of 41
the foreign model. In the example below, the VHDL library which contains the foreign model component 42
declarations is the VHDL library “foreignmodels” while the C foreign models implementation live in a C 43
shared library named foreignC.<platform dependent_suffix>. 44
 45
Example: 46
-- VHDL source file containing the specifications of foreign components 47
-- and subprograms 48
-- the package containing the declarations 49
 package packshell is 50
 component C_and 51

 115

 port(p1, p2: IN bit; p3: OUT: bit); 1
 end component; 2
 end package; 3
 4
 -- the foreign procedure and function declarations 5
 procedure myproc(signal f1: OUT bit ; constant f2: IN integer); 6
 attribute foreign of myproc: procedure is 7
 “VHPI foreignC myCproc”; 8
 function myfunc(signal f1: IN bit) return integer; 9
 attribute foreign of myfunc: function is 10
 “VHPI foreignC myCfunc”; 11
 12
end package packshell; 13
 14
-- VHDL source file containing the design units 15
-- the entity/architecture declarations of the foreign architecture. 16
entity C_and is 17
 port (p1, p2: IN bit; p3: OUT: bit); 18
 end C_and; 19
 20
 21
 architecture My_C_gate of C_and is 22
 -- foreign attribute 23
 attribute foreign of my_C_gate :architecture is 24
 "VHPI foreignC myCarch"; 25
 begin 26
 end architecture My_c_gate; 27
 28
 29
library foreignmodels; -- the VHDL library which contains the VHDL shell 30
 -- declarations for entity/architectures/ 31
 -- subprograms 32
use foreignmodels.packshell.all; -- use clause selecting a package in 33
 -- the library 34
 35
 entity top is 36
 end top; 37
 architecture my_vhdl of top is 38
 constant val: integer:= 0; 39
 signal s1, s2, s3: BIT; 40
 begin 41
 u1: C_and(s1, s2, s3); -- instantiation of a foreign VHPI model 42
C_and 43
 myproc(s1, val); -- concurrent foreign procedure call 44
 -- statement myproc; 45
 46
 process (s1) 47
 variable va: integer:= val; 48
 begin 49
 va = myfunc(s1); -- foreign function call myfunc 50
 end process; 51
 end my_vhdl; 52
 53

7.2.1.2 Standard Direct Binding mechanism 54
This binding mechanism accomplishes both the registration and binding of the foreign model. 55
A VHPI implementation may also provide direct binding to the C behavior by providing the C library and 56
function names for the foreign model in the foreign attribute string. 57

 116

In the case of foreign architectures, the string shall contain four tokens, each separated by one or more 1
SPACE characters. Escaped identifiers can be used as tokens to specify platform specific names. 2
 3
The first token shall be the keyword VHPIDIRECT. 4
The next token shall either be the NULL token or the name of the C library where the C functions 5
modeling the behaviour of the foreign model are defined. 6
The next token shall be the name of the C function modeling the elaboration of the foreign architecture or 7
NULL if none is required. 8
The next token shall be the name of the C function representing the initialization of the foreign architecture 9
or NULL if none is required. 10
The library name shall not have any suffix. 11
Note 1: The library name is is useful to distinguish C functions of the same name living in different C 12
libraries. If the library name is NULL, the search of the C functions is vendor specific. 13
 14
In the case of foreign subprograms, the string shall contain three tokens, each separated by one or more 15
SPACE characters. 16
The first token shall be the keyword VHPIDIRECT. 17
The next token shall either be the NULL token or the name of the C library where the C functions 18
modeling the behaviour of the foreign model are defined. 19
The next token shall either be the NULL token or the name of the C function modeling the execution of the 20
foreign subprogram. See Note 2. 21
 22
Note 2: If the NULL token is given in place of the name of the execf function of the foreign, the name of 23
the C function is assumed to be the name of the VHDL subprogram declaration in the case specified in the 24
VHDL file. 25
 26
 27
 28
 29
 30
Foreign VHPI architectures: 31
 32
attribute FOREIGN of <architecture_name>: architecture is 33
 “VHPIDIRECT <library_name> <elabf_name> <execf_name> ” 34
where <library_name> <elabf_name> or <execf_name> can be the NULL tokens. 35
 36
Foreign VHPI procedures and functions: 37
 38
attribute FOREIGN of <subprogram_name[signature]>: procedure | function is 39
 “VHPIDIRECT <library_name> <execf_name>” 40
 41
where <library_name> and <execf_name> can be the NULL tokens. 42
The foreign attribute string must be locally static and must be a string that starts with the VHPIDIRECT 43
keyword. 44
 45

7.3 Registration 46

7.3.1 Delivery and packaging of libraries of foreign VHPI models or applications 47
 48
The standard does not define how a foreign library name and its corresponding bootstrap function are 49
exchanged between a VHDL tool and a library developer. 50
The standard requires that models and applications be delivered packaged into either C dynamic (shared) 51
or static (archive) libraries. 52
 53

 117

Foreign models and applications can be registered through a tabular file. A tabular registry file shall be 1
provided when using the VHPI indirect foreign attribute syntax, 2
 3

7.3.1.1 Tabular registry format 4
 5
The tabular registration consists of providing a textual registry file which contains the registration 6
information of foreign models and applications in a standard defined format. Each line of the registry table 7
defines the registration of exactly one model or application or library of models. 8
The format of each line of the registry file is the following: 9
For a foreign architecture: 10
<library_name> <model_name> vhpiArchF <elab_fctn_name> | null <initialization_fctn_name> 11
For a foreign subprogram: 12
<library_name> <model_name> vhpiFuncF | vhpiProcF null <execution_fctn_name> | null 13
For a foreign application: 14
<library_name> <application_name> vhpiAppF <bootstrap_fctn_name> null 15
For a library of foreign models: 16
<library_name> null vhpiLibF <boostrap_fctn_name> null 17
 18
Comments may be included in the file, each comment line must start by a "--" character. The library, model, 19
application and function names must be formed with graphical characters and can be extended identifiers. 20
The elaboration, execution and bootstrap function names should be the C source function names. One or 21
more spaces can occur between names. The null token should be entered in the place of a C function name 22
if no function name is provided. In the case of a null execution_fctn_name for a foreign subprogram, the 23
name of the function defaults to the name of the model name. 24
If several bootstrap functions are associated with a library, an entry for each bootstrap function must be in 25
the registry file. 26
 27
Example: 28
Registry_file contents example 29
--<library_name> <model_name> <kind> <elab_fctn_name> <sim_fctn_name> 30
-- registration of a foreign architecture 31
myClib orgate vhpiArchF elab_gate init_gate 32
-- registration of a foreign function 33
myClib myfunc vhpiFuncF null sim_myfunc 34
-- registration of a foreign application 35
myCapp app1 vhpiAppF boot_myapp null 36
-- registration of a library of models 37
myClib null vhpiLibF bootlib null 38
 39
Example of a library of models function registration 40
void boot_lib 41
{ 42
 for each model in the library 43
 vhpi_register_foreignf() 44
} 45
 46
Note: The names, number of and locations of the registry files are not predefined by the standard. 47

7.3.2 Registration functions for foreign models and applications 48

7.3.2.1 Registration and binding of a foreign model 49
A bootstrap function which registers models of a library shall use the standard VHPI function 50
vhpi_register_foreignf(). This function is called during the registration phase for each foreign model and 51
provides information such as C function entry points for the various phases defined for this kind of foreign 52

 118

model. Different pieces of information are needed for a foreign architecture, procedure or function. A data 1
structure of type vhpiForeignDataT is filled with the necessary information by the caller (bootstrap 2
function). A pointer to that data structure is passed as an argument to vhpi_register_foreignf(). 3
 4
Note : The tabular registration of foreign architectures and subprograms should not use the function 5
vhpi_register_foreignf(), as all the pieces of information required are expected to be in the tabular 6
registration file. 7
Correct since it is a textual entry rather than a programmatical entry but the tool who is reading the tabular 8
form may use vhpi_register_foreignf() 9
 10
The registration of a foreign model corresponding to a foreign architecture should provide back to the 11
VHDL tool the following pieces of information: 12

- the library name, 13
- the model name, 14
- the model kind, 15

 - a function pointer to the elaboration function for the architecture statement part or null if there is 16
no user-defined elaboration, 17
 - a function pointer to the initialization execution function for the architecture statement part. 18
 19
The registration of a foreign model corresponding to a foreign procedure or function should provide back 20
to the VHDL tool the following pieces of information: 21

- the library name, 22
- the model name, 23
- the model kind, 24

 - a function pointer to the simulation function for the procedure or function body statement part. 25
 26
Procedural Interface References: 27
See “vhpi_register_foreignf()”. 28
See “vhpiForeignDataT”. 29
See “vhpi_get_foreignf_info()”. 30

7.3.2.2 Registration of foreign applications 31
Direct binding of foreign applications is unspecified by the standard. 32
The registration of a foreign application consists of executing the bootstrap function of the foreign 33
application at the registration phase. A VHDL tool must execute the bootstrap function of each VHPI 34
foreign application that is needed for a particular VHDL session. The standard only requires that the 35
developer of the application provides the library and the name of its bootstrap/registration function. The 36
function name should be a visible symbol of that library. It is left to the vendor and provider to determine 37
how the library is bound (for example dynamic, static linking or dynamic loading from command line 38
arguments). 39
Applications may be put in the tabular form which is the standard registration mechanism. If they are used 40
they must be bootstrapped before the vhpiCbStartOfTool callback. An implementation can define the way 41
a user may indicate if an application is used for that session. The boostrap function may register callbacks 42
as defined in chapter 8. 43
vhpi_register_foreignf() can also be used for registering an application. 44
The registration of a foreign application should provide back to the VHDL tool the following pieces of 45
information: 46

- the library name, 47
- the application name, 48
- the model kind, (in that case vhpiAppKind) 49
- a function pointer to the main function of the application program. 50

 51
Procedural Interface References: 52
See “vhpi_register_cb()” 53

 119

See “vhpiCbDataT”. 1
 2

7.3.3 Registration and binding errors 3
1. Library name and/or model name used by a foreign attribute is not found in the registry. 4
2. The library cannot be located. 5
3. The registered C functions cannot be bound. This applies to functions registered for applications, 6

libraries or models. 7

7.3.4 Restrictions 8
During the registration phase, the only part of the VHPI information model that can be accessed is the tool 9
class (including the tool class properties, methods and operations). Other operations allowed are calls to 10
vhpi_register_foreignf(), vhpi_get_foreignf_info() and vhpi_register_cb(), vhpi_get_cb_info(); registration 11
of callbacks is also restricted to reasons that do not require to provide handles to elaborated objects. Also 12
permitted are VHPI function calls to print (vhpi_printf()), check VHPI error vhpi_check_error(), and emit 13
an assertion vhpi_assert()). 14

7.4 Elaboration of foreign models 15

7.4.1 Elaboration of foreign architectures 16
The elaboration of foreign architectures involves the elaboration of the declarative part of the entity and 17
architecture. 18
Note: 156 and 157 of the VHDL LRM 1076-1993 need to be changed. The VHDL tool shall call the 19
optional elaboration function which was registered for the foreign architecture. 20

7.4.2 Elaboration function 21
The elaboration function of the architecture is called in place of the elaboration of the statement body part 22
of the foreign architecture. The prototype of the elabf function shall be identical to the prototype of 23
callback functions: 24
 25
 PLI_VOID elabf(const vhpiCbDataT * cbDataP); 26
 27
The elabf function is called with a pointer to a callback data structure of type vhpiCbDataT, the obj field 28
should be a handle to the architecture instance (vhpiCompInstStmtK or vhpiRootInstK). The reason code 29
shown by the cbDataP argument (type vhpiCbDataT *) of the elabf function shall be 30
“vhpiCbStartOfElaboration”. From the instance handle, information pertaining to this architecture instance 31
and its elaborated entity can be obtained: for example elaborated ports and generics of that instance The 32
region class diagram depicts the relationships that can be traversed; the access permitted is described below. 33
The elabf() function can: 34
- Access the current elaborated component instance and all its elaborated declarative part. 35
- Access the value of any of the instance declared items (including the generic propagated value) 36
- Create foreign drivers (vhpiDriverK) and foreign processes (vhpiProcessK) for that instance. 37
- Set the initial driving value of output ports and internal signals with vhpi_put_value(). 38

7.4.3 Elaboration of foreign subprograms 39
 40
The elaboration of foreign subprograms involves dynamic elaboration of the subprogram. The subprogram 41
formal parameters are elaborated when the subprogram call statement is encountered. No special 42
elaboration C function entry point is needed. The “elabf” function pointer of the registration for a foreign 43
subprogram shall be NULL. 44
Note: LRM modifications needed pages 156, 157, 163. 45

 120

A foreign function can be called during elaboration phase to initialize declared items. The execf function is 1
used to provide the initial value of the declared object. 2
Note: LRM modification needed for elaboration of declared objects involving foreign functions. 3

7.5 Simulation run time execution 4

7.5.1 Simulation of foreign architectures 5
 6
During non-postponed process execution phase of the simulation initialization, the initialization functions 7
of the foreign architectures are executed. This is the ONLY time the initialization function is invoked 8
automatically by the simulator. 9
 10

7.5.2 Initialization function 11
Architectures execution will be started once automatically at the simulation initialization phase by the 12
invocation of the “execf” function and must sustain themselves throughout the entire simulation session by 13
registering other C callback functions for simulation event reasons. The initialization function is specified 14
by the execf() function. The prototype of the execf function is identical to the prototype of callback 15
functions. 16
 17
 PLI_VOID execf(const struct vhpiCbDataS * cbDataP); 18
 19
The obj field of the cbDataP argument should be set to the handle of the architecture instance that is 20
initialized (vhpiCompInstStmtK, or vhpiRootInstK). The reason code of the “execf” function should be 21
vhpiCbStartOfInitialization. Memory allocated by the foreign architecture can be stored in the user_data 22
field of the cbDataP of future registered callback functions. 23
 24
The initialization function has access to the entire design, and has access to any VHPI function. There is no 25
restriction on what the initialization function can do except calling vhpi_register_foreignf (registering a 26
foreign model). 27
 28
Informative note: there is no further control-flow for this foreign architecture instance except for callbacks 29
that are registered during the initialization by the execf function. 30
 31

7.5.3 Simulation of foreign subprograms 32
 33
When a foreign subprogram call is encountered during VHDL execution, the simulation execution function 34
is called: the control flow of a foreign subprogram call is determined by the VHDL simulation semantics. 35
 36

7.5.4 Execution function 37
The simulation function for a foreign subprogram is specified by the execf function. The prototype of the 38
execution function is identical to the prototype of a callback function. 39
 40
 PLI_VOID execf(const vhpiCbDataT * data); 41
 42
The obj field of the callback data structure of type vhpiCbDataT should be a handle to the subprogram call 43
being executed (vhpiFuncCallK or vhpiProcCallStmtK). The reason code for a foreign subprogram call 44
should be: “vhpiCbStartOfSubpCall”. The user_data field has no defined value. 45
There is no restriction on what the execution function can do. Handles to dynamically elaborated objects 46
are only valid for the duration of the subprogram call. The user should not expect these handles to be valid 47

 121

after the subprogram call has returned, nor that these handles be the same ones the next time the same 1
subprogram call is executed. Note that the call-data context may be different for each subprogram call. 2
Some vendors may do static elaboration of concurrent subprogram class and therefore handles to objects 3
living in subprograms may be valid across subprogram calls. A property vhpiIsInvalidP is provided to 4
check the validity of a handle. 5
 6
Foreign functions must return a value. (). In order to set the return value of a function, the function call 7
handle is the handle that should be used to set a value through vhpi_put_value. If the function return type is 8
composite other than an array of scalars, then the users should iterate over the call handle to get to the level 9
of a scalar or an array of scalars in order to set the return value. In the case of the return type being an array 10
of scalars a single call to vhpi_put_value can be used to set the return value. The case of a function 11
returning an unconstrained array requires a different treatment as outlined in the following paragraphs. 12
 13
If the function returns an unconstrained array of scalars, then a single call to vhpi_put_value will suffice, in 14
order to set the values of all scalar subelements. Alternatively, the user can choose to set the number of 15
elements that the interface should expect in the return value, and then iterate over these elements using the 16
relation vhpiIndexedNames and set each of the scalars separately. The function call handle will be the 17
reference handle for this iteration. In order to achieve this, the first call to vhpi_put_value should use the 18
flag vhpiSizeConstraint, with the numElems field in the value stucture containing the number of elements 19
that the interface should expect. 20
 21
If the function returns an unconstrained array of composites, then the users are required to call 22
vhpi_put_value with the flag vhpiSizeConstraint and set numElems in the value structure to the number of 23
elements that the function will return. Subsequently, users can iterate over the subelements of the array 24
using the relationship vhpiIndexedNames on the function call handle and set the value of each subelement 25
separately. 26
 27
For all calls to vhpi_put_value that set function return values, the flag parameter can be either vhpiDeposit, 28
vhpiDepositPropagate, vhpiForce or vhpiForcePropagate. The semantics of setting the return value of the 29
function are all exactly the same irrespective of the flag used. The return value is available immediately 30
after the function return within the context of the expression that has the function call. If the function call is 31
on the right hand side of a signal assignment statement, then the return value will be used in scheduling a 32
transaction on that signal upon function return. The flag vhpiRelease has no effect when used with a 33
function call handle or on any of the subelements of a function call handle for composite return types. In 34
that case, an error should be generated. 35
 36
The VHPI interface will check that the number of elements passed using vhpiSizeConstraint with 37
vhpi_put_value matches the number of subelements that are actually set by the user with subsequent calls 38
to vhpi_put_value, the interface should issue a warning in case of a size mismatch. If the number of 39
elements returned by a function does not match the number of elements expected from the function within 40
the context of the call, a runtime size error will be issued by the tool. 41
 42
Calls to vhpi_put_value with vhpiSizeConstraint replace the previous size constraint for the specified 43
reference handle. For vector of scalars, setting an explicit constraint is not necessary as a call to 44
vhpi_put_value which supplies a vector of scalars will define an implicit constraint from the number of 45
elements in the vector. However if an explicit size constraint was previously set, it is an error if the implicit 46
constraint is different from that explicit size constaint. 47
 48
An example to illustrate the use model for functions returning unconstrained types. 49
 50
function foo(p1 : in std_logic; 51
 p2 : in std_logic) 52
 return std_logic_vector is 53
begin 54
end; 55

 122

 1
attribute foreign of foo:function is “VHPIDIRECT:mylib:fooC”; 2
 3
signal bar : std_logic_vector := foo(‘0’, ‘1’); 4
signal foobar : std_logic_vector(3 downto 0); 5
 6
P : process (clk, reset) 7
begin 8
 if (reset = ‘0’) then 9
 foobar <= “0000”; 10
 elsif (clk’event and clk = ‘1’) then 11
 foobar <= foo(‘1’, ‘0’); 12
 end if; 13
end process; 14
 15
In the first call to function foo, where it is the initialization expression for a signal declaration, the return 16
value can be any number of scalars. The range and direction of the constrained anonymous subtype of 17
signal bar will be determined by the implementation, while the size will come from the foreign 18
implementation of foo. In the second call to function foo, where it is used on the right hand side of a signal 19
assignment statement, the size has to be four. The constraints (3 downto 0) is assumed by the 20
implementation. In order to set the return value in either of the two calls to foo, the VHPI foreign function 21
can either use a single call to vhpi_put_value or use a vhpi_put_value with vhpiSizeConstraint and then 22
iterate over the scalar subelements and set them one at a time. 23
 24
function finit(p1 : in std_logic) 25
 return std_logic_vector is 26
begin 27
end; 28
 29
attribute foreign of finit:function is “VHPIDIRECT:mylib:finitC”; 30
 31
function foo(p1 : in std_logic) 32
 return std_logic_vector is 33
begin 34
end; 35
 36
attribute foreign of foo:function is “VHPIDIRECT:mylib:fooC”; 37
 38
signal bar : std_logic_vector := finit(‘1’); 39
signal foobar : std_logic_vector(3 downto 0); 40
 41
P : process (clk, reset) 42
begin 43
 if (reset = ‘0’) then 44
 foobar <= “0000”; 45
 elsif (clk’event and clk = ‘1’) then 46
 foobar <= foo(foobar(0)); 47
 end if; 48
end process; 49
 50
In the call to function finit, where it is the initialization expression for a signal declaration, the return value 51
can be any number of scalars. The range and direction of the constrained anonymous subtype of signal bar 52
will be determined by the implementation, while the size will come from the foreign implementation of 53
finit. In the call to function foo, where it is used on the right hand side of a signal assignment statement, the 54
size has to be four. The constraints (3 downto 0) is assumed by the implementation. In order to set the 55
return value, the VHPI foreign functions can either use a single call to vhpi_put_value or use a 56
vhpi_put_value with vhpiSizeConstraint and then iterate over the scalar subelements of the call handle and 57
set them one at a time. 58

 123

 1
void finitC(vhpiCbDataT* pCbData) 2
{ 3
 int i; 4
 vhpiValueT value; 5
 vhpiHandleT param; 6
 vhpiHandleT callHandle; 7
 vhpiHandleT subelement; 8
 9
 // get the call handle and the first and only parameter 10
 callHandle = pCbData->obj; 11
 param = vhpi_handle_by_index(vhpiParamDecls, 12
 callHandle, 0); 13
 14
 // get the value passed into this call 15
 value.format = vhpiEnumVal; 16
 vhpi_get_value(param, &value); 17
 vhpi_release_handle(param); 18
 19
 // set the size constraint to be eight, to indicate we intend 20
 // to return a vector of eight elements 21
 value.numElems = 8; 22
 vhpi_put_value(callHandle, &value, 23
 vhpiSizeConstraint); 24
 25
 // we don’t have to set anything in the value structure at this 26
 // point as we intend to use the value passed in as the value of 27
 // each subelement of the vector going out 28
 29
 // iterate over the subelements of the call handle and set each 30
 // of them 31
 for (i = 0; i < 8; i++) { 32
 subelement = vhpi_handle_by_index(vhpiParamDecls, 33
 callHandle, i); 34
 vhpi_put_value(subelement, &value, vhpiDeposit); 35
 } 36
} 37
 38
void fooC(vhpiCbDataT* pCbData) 39
{ 40
 int i; 41
 vhpiHandleT param; 42
 vhpiHandleT callHandle; 43
 vhpiValueT value; 44
 vhpiEnumT enumval; 45
 vhpiEnumT vector[4]; 46
 47
 // get call handle and the first parameter 48
 callHandle = pCbData->obj; 49
 param = vhpi_handle_by_index(vhpiParamDecls, 50
 callHandle, 0); 51
 52
 // get the value of the parameter 53
 value.format = vhpiEnumVal; 54
 vhpi_get_value(param, &value); 55
 vhpi_release_handle(param); 56
 57
 // we intend to return a four element vector where each scalar 58
 // subelement is the flipped version of what was passed in 59
 60

 124

 for (i = 0; i < 4; i++) 1
 vector[i] = (isStdLogicZero(value.value.enumval))? vhpi1 : vhpi0; 2
 3
 // set the return value in one shot 4
 value.format = vhpiEnumVecVal; 5
 value.value.enums = vector; 6
 value.numElems = 4; 7
 vhpi_put_value(callHandle, &value, vhpiDeposit); 8
} 9
 10

7.5.5 Restrictions and errors 11
Any VHPI function except vhpi_register_foreignf can be called by foreign subprograms and functions. 12
Scheduling a zero delay transaction with vhpi_schedule_transaction or vhpi_put_value should generate a 13
runtime error if called during postponed process phase. 14
Informative notes: Foreign function can reach and update out-of-scope objects. The behaviour of foreign 15
functions declared as pure is not checked or enforced by the VHDL tool. 16
 17
 18
Procedural Interface References: 19
See “vhpi_register_foreignf()” for registering foreign models. 20
See “vhpiForeignDataT” for passing foreign model information. 21
See “vhpi_put_value()”for setting the returned value of a foreign function call. 22
 23

7.6 Context passing mechanism 24
This section describes the mechanism by which interface and parameters are passed between the VHDL 25
and foreign-C functions, and for the case of foreign functions, how return values are passed back to the 26
VHDL tool. 27
 28
The foreign C-function prototypes bear no relationship to the number or types of parameters used in the 29
VHDL declaration, parameters are accessed indirectly through the VHPI traversal methods if used when 30
the call to the C run-time function is executed. 31
A handle to the architecture instance or subprogram call is passed as the obj field of the callback data 32
structure which is the single argument of each elabf or execf function. 33
VHPI access functions can be used on that handle. 34
 35
Some VHPI methods which can return foreign instances, subprogram calls or callbacks can be used to 36
transfer context between VHDL and C: 37
 38
vhpiCurRegion shall return the currently active executing region instance from which the foreign model 39
call derived. vhpiCurRegion can return a foreign architecture instance or the foreign function procedure 40
call being executed. 41

7.6.1 Architecture instance 42
The architecture instance handle is passed through the obj field of the cbDataT structure. During 43
elaboration, only access to the entity architecture elaborated items are allowed. 44
During initialization of the architecture behaviour, all VHPI access is allowed. During initialization, the 45
architecture installs its behaviour by registering future callbacks; memory allocated by the foreign 46
architecture instance can be stored in the user_data field of the callback data structure of the registered 47
callbacks. 48
 49

 125

7.6.2 Subprogram Calls 1
When the flow of execution of VHDL code encounters a foreign subprogram call, call instance (context) 2
information must be passed to the C-function implementation of the subprogram in order to perform the 3
desired behavior. Context information is passed in a pointer to a callback data structure of type 4
vhpiCbDataT. Information is provided as a handle to the VHDL subprogram call from which all necessary 5
context information such as formal parameters can be obtained. Available data access is described by the 6
class diagram for subprogram calls (refer 4.8.2). Because the subprogram call is an instance of a foreign 7
subprogram, some relationships such as iteration on the sequential statements, will return NULL. 8
Informative note: As a good programming rule, the foreign function code should access the formal 9
parameters of the VHDL declaration and not attempt to reach outside the VHDL subprogram scope. 10
 11
For foreign subprograms that are functions, a return value must be passed back to the caller. The VHPI 12
function vhpi_put_value() should be used to indicate the return value of the function call. It will be a run-13
time error if : 14
- the C function fails to return the value, 15
- the size indicated by vhpi_put_value with vhpiSizeConstraint flag does not match the size of the value set 16
by the subsequent vhpi_put_value calls (case of a foreign function returning an unconstrained array type), 17
- the value is the wrong size for the context of the call. 18
 19
VHDL formal parameters are accessed through handles by traversing the relationships depicted by the 20
class diagram of subprogram call. The VHDL passing mechanism for IN, INOUT and OUT parameters 21
applies also to foreign subprograms. 22
The VHDL language observes some special handling of parameters in respect to the parameters being of 23
mode IN, OUT or INOUT, as well as of class “constant”, “variable”, "signal" or "file". 24
 25
The VHDL LRM 1076-2001 defines the following mechanisms which are being amended by VHPI 26
1. Values of input parameters of class variable or constant are copied from the actual parameters to the 27
formal parameters at the beginning of the execution of the procedure or function. vhpi_get_value applied 28
to formal parameters of input or inout mode shall return the value of the actual parameter as set at the 29
beginning of the execution of the subprogram. 30
2. Values of the output parameters of class variable are copied from the formal parameters to the actual 31
parameters at the end of execution of the procedure. Values deposited on output or inout formal parameters 32
by vhpi_put_value are copied to the actual parameters at the end of the execution of the subprogram call. 33
 34
When a parameter is of class signal, a reference to the actual signal parameter is passed into the procedure. 35
This implies that changes made to the actual OUTSIDE of the procedure call will be reflected in the 36
formal, similarly, if the formal is modified, the actual will reflect that change. In particular, transactions 37
scheduled on a driver of the formal signal parameter of mode OUT are equivalent to transactions scheduled 38
on the actual signal and vice-versa. Transaction scheduling from the C foreign code is performed with the 39
function vhpi_schedule_transaction() or with vhpi_put_value (vhpiDepositPropagate or 40
vhpiForcePropagate) vhpi_put_value with the other flags (vhpiDeposit, vhpiForce) deposits or forces a 41
value on the actual signal. 42
 43
Parameters of class file are also passed by reference. The opening mode of the file may be specified 44
explicitly by the file declaration or be the default mode. VHPI access to a file parameter declaration is 45
defined by the information model. Any other operation on a file parameter declaration is undefined. 46
 47
Handles representing dynamic elaborated objects belonging to the subprogram call are only valid during 48
the subprogram call execution. The user should not assume that the objects refered by these handles exist 49
after the subprogram call completes neither that the same handles will be returned by the interface for the 50
same subprogram call later during simulation. These handles are only valid (methods properties and 51
operation can be obtained while the subprogram is active). 52
 53

 126

vhpi_get_value() method can be applied to formal parameters of mode IN or INOUT; this accesses the 1
value of the VHDL formal parameter. 2
vhpi_put_value() method can be applied to formal parameters of mode OUT or INOUT; it will update the 3
value or schedule a zero delay transaction on the VHDL formal parameter depending on the flags and class 4
of the parameter. vhpi_schedule_transaction can be applied to a formal signal parameter of mode OUT or 5
INOUT. 6
 7
Note: Page 20 and 21 of the LRM has to be updated with foreign subprograms. 8
Procedural Interface References: 9
See vhpi_get_value() to access the value of a formal parameter of mode IN. 10
See vhpi_put_value() to deposit a value into a formal parameter of mode OUT. 11
See vhpi_schedule_transaction() to schedule a new transaction to a signal formal parameter of mode OUT. 12
See “vhpi_register_cb()” to register callbacks. 13
See “vhpi_handle_by_index()” to access a given formal parameter handle in the ordered iteration formal 14
list. 15
 16

7.7 Save, Restart and Reset 17
 18
If the simulator supports save, restart and reset of a VHDL design then this capability can be extended to 19
enable the foreign models and applications to save their state, restore from a simulation checkpoint or reset 20
to time zero. In order to support this functionality, VHPI has defined save, restart and reset callback 21
reasons as well as VHPI functions to write to (vhpi_put_data()) and read from (vhpi_get_data()) a saved 22
checkpoint location. A foreign model/application that is interested in saving its state must register a 23
callback for save. VHPI provides two callback reasons for each save, restart or reset action. The 24
vhpiCbStartOfSave, vhpiCbStartOfRestart, vhpiCbStartOfReset callback functions are called respectively 25
at the beginning of a save, restart or reset operation, while the vhpiCbEndOfSave, vhpiCbEndOfRestart, 26
vhpiCbEndOfReset are called respectively at the end of the save, restart or reset operations. This is 27
provided as a convenience to the user so that actions that need to be serialized can be guaranteed to happen 28
in the correct order. 29
Note: A model does not need to register for both startOf and endOf reasons. 30
Foreign applications can also use the save/restart callbacks to save and restore their data from the 31
simulation save location (see 7.7.4). 32

7.7.1 Saving foreign models 33
The standard requires that a compliant VHPI implementation save at least the restart callbacks during a 34
save operation. This is so that when a restart operation is initiated all the models and applications that 35
saved data are given the opportunity to restore saved data through their restart callbacks. 36
The standard also allows implementations to save handles, callbacks and user data and restore all of these 37
with referential integrity. A tool vendor may indicate his capabilities to save and restore this information 38
through the vhpiAutomaticRestoreP property. This property is an integer valued set of flags which can be 39
queried from the tool class. The property expected values are vhpiRestoreAll, vhpiRestoreHandles, 40
vhpiRestoreCallbacks, and vhpiRestoreUserData. A return value of vhpiRestoreUserData for 41
vhpiAutomaticRestoreP implies that the tool will automatically save all user data in memory at the point of 42
save and restore all data back into memory with referential integrity at the point of restart. For each flag of 43
this property that is not set the user is responsible for saving necessary data to be able to recreate the state 44
of the simulation at restart. 45
 46
VHPI provides a function to write data in a save location: 47
 48
PLI_INT32 vhpi_put_data(PLI_INT32 id, PLI_VOID *dataLoc, PLI_INT32 numBytes) 49
 50
numBytes: the number of bytes to write out, must be greater than zero. 51
dataLoc: the address of the data to be saved. 52

 127

id: a unique identifier of the location of the saved data that is used to retrieve the data 1
 during a restart operation. A new id is obtained by calling vhpi_get(vhpiIdP, NULL). 2
returns: the number of bytes saved. 3
 4
The function will write “numBytes” of the data starting at “dataLoc” into a simulation save location. The 5
argument id identifies the saved foreign data set. This id determines how the data is written in the file. Data 6
from multiple calls with the same id MUST be stored by the simulator in a manner that allows the opposite 7
routine vhpi_get_data() to pull out the data of the same id in the order it was put in; data with different ids 8
can be retrieved in any order. 9
Note 1: This allows the restart operation to be independent of the order the foreign models were saved. 10
The function returns the number of bytes that were successfully saved. 11
Note 2: The caller is responsible for determining if the number of bytes written corresponds to the number 12
of bytes requested to be written. 13
 14
The behaviour of vhpi_put_data() is only defined when invoked from a callback function that was 15
registered for reason vhpiCbStartOfSave or vhpiCbEndOfSave. 16
There are no restrictions on: 17
 * how many times the vhpi_put_data() function can be called for a given id, 18
 * how many ids, a foreign model can create, 19
 * the order the foreign models put data into the saved location using different ids. 20
 21
It is an error if the id passed in is zero or is an unknown id for this simulation session. It is an error if 22
numBytes is equal to zero. 23
 24
See example in the procedural interface reference for vhpi_put_data(). 25
 26
 The property tag vhpiIdP is defined vhpi_get(vhpiIdP, NULL) will generate and return a unique id to the 27
caller. The id is unique for the simulation session. The id returned is different from zero. The id 28
corresponds to an area in a saved location. The id is then used by vhpi_put_data to indicate where to save 29
or by vhpi_get_data to indicate from where to restore data. vhpi_get(vhpiIdP, NULL) can only be called 30
during a save operation. vhpi_put_data() and vhpi_get_data() functions will check if the id passed in is a 31
legal id for this simulation session. 32
The id for a given foreign model or application should be different for each save operation of the same 33
simulation session allowing to save different simulation checkpoints. 34
 Can I use same id across different check points? 35
 36
 37

7.7.2 Restarting foreign models 38
 39
VHPI provides a function to read data from a saved location: 40
 41
PLI_INT32 vhpi_get_data(PLI_INT32 id, PLI_VOID *dataLoc, PLI_INT32 numBytes) 42
 43
numBytes: the number of bytes of data to retrieve, must be positive. 44
dataLoc: the address of the data in which to place the data read. 45
id: a unique identifier that is used to specify the location of the data to read from the 46
 saved file. Must be greater than zero. 47
 48
returns: the number of bytes retrieved. 49
 50
 51
The function will read “numBytes” from a simulation save location and place it at the address pointed by 52
dataLoc. The memory for dataLoc must have been properly allocated by the caller and must be sufficient to 53

 128

hold the data read. The first call for a given “id” will retrieve the data starting at what was placed into the 1
save location with the first call with the same id to vhpi_put_data(). The return value will be the number of 2
bytes retrieved. Each subsequent call will start retrieving the data where the last call left off for the given id. 3
The vhpi_get_data() function can ONLY be called from a callback function that was registered for reason 4
vhpiCbStartOfRestart or vhpiCbEndOfRestart. 5
Callbacks for both restart reasons must be registered by either the callback user functions of reasons 6
vhpiCbStartOfSave of vhpiCbEndOfSave. A compliant VHPI implementation will hence support a user’s 7
intent to pass any unique ID for a particular save operation to the associated restart callbacks, so that they 8
can faithfully restore saved data using one or both the restart callback reasons. Any type of data (for 9
example int, long, char) can be retrieved, but pointer links and structures may need to be manually rebuilt 10
on a restart. It will be a warning for the foreign model to retrieve more data than what was placed into the 11
simulation save location for a given id. If this happens, the dataLoc will be filled with the data that is left 12
for a given id and the remaining bytes will be filled with ‘\0’. It is acceptable for a foreign model to 13
retrieve with a given id less data that what was stored for that id. It is an error if the id passed in is zero or 14
an unknown id. 15
The vhpi_get_data() function MUST only be called from a callback routine that was registered for reason 16
vhpiCbStartOfRestart or vhpiCbEndOfRestart. 17
 18
See example in the procedural interface reference for vhpi_get_data(). 19
Clarify when the id is obtained and passed to the restart operation. Save/restart model with ids. Where is 20
the restart registered? Save is repetitive. 21
 22
 23
The restart sequence consists of 24
 25
1. The tool loads the saved model, 26
2. The tool executes the vhpiCbStartOfRestart callback functions, 27

The VHPI client application checks the restore capabilities of the tool by querying the 28
vhpiAutomaticRestoreP property.. Handles, callbacks and/or user data may not be restored by the tool: 29
automatic = vhpi_get(vhpiAutomaticRestoreP, toolH)) 30
The vhpiAutomaticRestoreP property returns an integer value which indicates what has been restored; 31
the defined standard integer values are defined by the enumeration type vhpiAutomaticRestoreT. 32

 Depending on what is not automatically restored by the tool, he client or application may need to re-33
register the foreign models callbacks during the restart operation (remap the function pointers to the C 34
functions), re obtain handles or rebuild its user data using vhpi_get_data(). 35

 36
3. The tool executes the vhpiCbEndOfRestart callback functions, 37
 38
4. T_c = T_s (time of the save). The tool starts simulation from the point of save. 39
 40
 41
typedef enum { 42
 vhpiRestoreAll = 7, 43
 vhpiRestoreUserData = 1, 44
 vhpiRestoreHandles = 2, 45
 vhpiRestoreCallbacks = 4, 46
} vhpiAutomaticRestoreT ; 47
 48
 49

7.7.3 Reset of foreign models state 50
 51
On a reset operation, after the vhpiCbStartOfReset callbacks have been executed, a compliant VHPI 52
implementation shall remove all callbacks with the exception of vhpiCbEndOfReset callbacks. The 53
removed callbacks will include those that were registered prior to simulation initialization. The 54

Formatted: Bullets and Numbering

Deleted: vhpiAutomaticRestoreT ¶

Deleted: ¶

 129

vhpiCbEndOfReset callback of a client or application will have to register all callbacks required to exist 1
during and after simulation initialization. 2
The reset operation winds the simulation time back to zero and to the beginning of initialization, 3
corresponding to step 1.0.1 in the annotated simulation cycle. Whenever a reset operation is initiated, a 4
compliant VHPI implementation will first execute all callbacks registered for reason vhpiCbStartOfReset. 5
The vhpiCbStartOfReset can be thought as “prepare for reset, clean up data structures, release any handle 6
which will become invalid after reset”. After te vhpiCbStartOfReset callbacks have executed, the current 7
simulation time will be rewound to zero, followed by the execution of all user registered 8
vhpiCbEndOfReset callbacks. The initialization phase corresponding to step 1.0.1 in the annotated 9
simulation cycle will then be initiated. No callbacks other than vhpiCbEndOfReset shall be remaining after 10
the simulation time has been reset to 0 due to a reset operation. This means that any callback registered by 11
the user before simulation initialization is not required by the standard to remain between or after 12
vhpiCbStartOfReset and vhpiCbEndOfReset callbacks are run. The callback reason vhpiCbStartOfReset is 13
provided to client applications as a point at which they can cleanup any memory that has been allocated or 14
any state dependent data in memory. The callback reason vhpiCbEndOfReset is provided to enable client 15
applications to re-register any callbacks that existed at the start of initialization, including any 16
vhpiCbStartOfInitialization callbacks before the simulator begins execution of the initialization phase. As 17
all foreign model initialization code is re-run as part of the simulation initialization phase, client code does 18
not need to do anything for reset, other than re registering any callbacks that were registered before 19
initialization or re-registering debug environmental callbacks. 20
 21
Note 1 : All callbacks that were registered during the course of simulation, starting at initialization phase 22
1.0.1 will be removed during reset. After all vhpiCbStartOfReset callbacks are run, a compliant simulator 23
will remove all callbacks, active, disabled or mature and all scheduled transactions will be anulled. 24
 25
All handles that pertain to static data are still valid after a reset. Handles to dynamically elaborated regions 26
become invalid at the reset. 27
 28
The reset sequence consists of: 29
1. Execute the vhpiCbStartOfReset callbacks, time = Tc (current time) 30

The client code is responsible for freeing the handles it requested, in particular handles which will 31
become invalid after the reset operation is completed (callback handles, transaction handles…) 32

2. The simulator removes all scheduled transactions and all user registered callbacks with the required 33
exception of vhpiCbEndOfReset callbacks. 34

3. Reset the VHDL simulation state to the beginning of initialization, Tc = 0 ns, ready to commence 35
execution of initilization phase 1.0.1 in the annotated simulation cycle. 36

4. Execute all user registered vhpiCbEndOfReset callbacks, opportunity for a client application to 37
register callbacks. 38

5. Initialization phase starts at 1.0.1 in the annotated simulation cycle. 39
 40

7.7.4 Save, restart and reset of VHPI applications 41
Applications can use the save/restart callbacks to save and restore their state. An application which uses the 42
VHPI save/restart mechanism must request ids. Application data will be saved in the simulation saved 43
location identified by the id. Applications can request several ids. The restart callback for the application 44
must communicate the id. 45
An application can register callbacks for vhpiStartOfReset and vhpiEndOfReset to reset its internal state 46
when the simulation gets reset to time 0 ns. 47

7.7.5 Getting the simulation save and restart location 48
A string property is defined to be able to get the name of the simulation saved location. 49
vhpi_get_str(vhpiSaveRestartLocationP, NULL) returns the physical name string of the saved or restart 50
location. The save or restart location is determined by the tool. This property returns null if the tool is not 51
in a save or restart phase. 52

 130

7.7.6 Restrictions 1
vhpi_put_data() can only be called from a callback routine that was registered for reason 2
vhpiCbStartOfSave or vhpiCbEndOfSave. 3
vhpi_get_data() and vhpi_get(vhpiIdP, NULL) can only be called from a callback routine that was 4
registered for reason vhpiCbStartOfRestart or vhpiCbEndOfRestart. 5
The user_data field of a callback data structure of reason vhpiCbStartOfRestart or vhpiCbEndOfRestart 6
cannot be a pointer into memory because the simulation executable can restart at a different process 7
address. The size of the user_data field for a restart callback is assumed to be an unsigned long. 8
The property vhpiSaveRestartLocationP returns a non null string when called during a save or restart 9
operation. 10
 11
Procedural Interface References: 12
See vhpi_put_data() to save data into a save location. 13
See vhpi_get_data() to retrieve data from a save location. 14
See “vhpi_register_cb()” to register save/restart and reset callbacks. 15
See “vhpi_get_str()”to access a string property. 16

 131

8. Callbacks 1
Callback is the mechanism used for communication between the VHPI/C code and the VHDL tool. 2
Typically the VHPI user code would register callbacks to happen for specific conditions. The VHPI 3
interface defines a set of reasons for the callback conditions. This chapter begins with an overview of the 4
callback mechanism. The VHPI functions that apply specifically to callbacks are discussed. Where 5
callbacks appear in the information model and what information can be obtained is explained. The 6
semantics of eack callback is then defined. Finally, the execution of a callback is discussed, including what 7
information is passed to it, and referential integrity considerations. 8

8.1 Callback Overview 9
A VHPI client application initially gains control at registration when its bootstrap function is called. 10
Similarly, a foreign model gains initial control when its elaboration and/or initialization function defined at 11
registration is called. Thereafter, VHPI allows an application or model to gain control at virtually all 12
semantically significant points during the execution of the tool. The client first registers a callback of the 13
desired kind, providing the function to be called and its relevant data. At the appropriate point, the 14
callback is said to be triggered and VHPI calls its callback function. Some types of callbacks may only be 15
called once, others repetitively. Callbacks are objects in the information model. A handle may be returned 16
at registration or obtained later by navigation. VHPI provides the ability to manage callbacks, including 17
disabling, enabling, or removing them. 18

8.2 Callback VHPI functions 19
Callbacks are objects in the VHPI information model. VHPI provides a few specfic functions to create, 20
obtain information, and manage them. 21

8.2.1 Registering callbacks 22
 23
vhpiHandleT vhpi_register_cb(vhpiCbDataT *cbdatap, PLI_UINT32 flags); 24
 25
The registration of callbacks can happen during analysis, elaboration, initialization or simulation run-time 26
execution. The caller can request to have a callback handle returned by the registration function by setting 27
the flag argument to vhpiReturnCb. The information model for a callback is discussed in the next section. 28
A callback has state: it is either enabled, disabled, or matured.The callback handle that is returned can be 29
checked to determine the callback state. An integer property vhpiStateP can be used to get the callback 30
state: a state could be either vhpiMature if the callback has occurred, vhpiDisable if the callback was 31
disabled, or vhpiEnable if the callback is still active. The callback registration is immediate upon the call to 32
vhpi_register_cb(). The callback is enabled by default but may be disabled at the installationregistration if 33
the callback registration flag (second argument) is set to vhpiDisableCb. The flag argument can be set to 34
both vhpiDisableCb and vhpiReturnCb. 35
 36
Ex: 37

cbHdl = vhpi_register_cb(&cbdata, vhpiDisableCb | vhpiReturnCb); 38
 39

The information to set up the callback is passed by the user through a data structure of type vhpiCbDataT 40
which must be allocated by the user. All memory for that structure must be allocated by the user, including 41
the vhpiTimeT and vhpiValueT structures if needed. The cbDatap contents are only used to convey 42
information to the VHPI server on the type of callback to register. The obj field of cbDatap may be set to a 43
handle; the client code is free to release that handle after the callback has been registered with no impact on 44
the callback registration. For certain time related callback reasons, the time data structure is needed to pass 45
the time of the callback to be created. For callback on value change, the value structure is needed to pass 46
the format in which the value of the object needs to be returned. The user allocated callback data structure 47
can be reused to register multiple callbacks. 48
 49

 132

 1
The callback data information is passed by the caller and must provide at least the following information: 2
 - the callback reason, 3
 - the callback function C pointer. 4
All other fields may or may not be filled up depending upon the callback reason (see sections Error! 5
Reference source not found., 8.4.6, 8.4.8). 6
 7
The callback registration is immediate upon the call to vhpi_register_cb().The cbDatap contents are only 8
used to convey information to the VHPI server on the type of callback to register. The user allocated 9
callback data structure can be immediately reused to register other callbacks. 10
 11
The following is the type definition of the 1st parameter passed to vhpi_register_cb: 12
 13
typedef struct vhpiCbDataS 14
{ 15
 int reason; /* callback reason */ 16
 void (*cb_rtn)(const struct vhpiCbDataS *cbdatap); /* callback 17
 routine */ 18
 vhpiHandleT obj; /* trigger object */ 19
 vhpiTimeT *time; /* callback time */ 20
 vhpiValueT *value; /* trigger object value */ 21
 void *user_data; /* pointer to user data to be 22
 passed to the callback 23
 function */ 24
} vhpiCbDataT; 25
 26
The specification of any callback is defined in this 1st parameter and must provide at least the following 27
information: 28
 - the callback reason, 29
 - the callback function C pointer. 30
All other fields may or may not be filled up depending upon the callback reason and user preference. If the 31
time and value fields are not null, they must indicate a valid format for the callback. The time value is 32
always representedin the base unit of the type TIME. The user_data field provides a mechanism to 33
associate any essential client information needed by the callback function when it is executed. It is never 34
examined or dereferenced by VHPI itself. It may be ignored or cast as a pointer to memory or any other 35
data value of equivalent size to a void* data type to suit the client’s purpose. 36
Further details of the CbDataS usage are discussed in 8.4 Callback Semantics. 37
 38

8.2.2 Disabling and enabling callbacks 39
 40
(PLI_INT32) vhpi_disable_cb(vhpiHandleT cbHdl); 41
 42
(PLI_INT32) vhpi_enable_cb(vhpiHandleT cbHdl); 43
 44
Any callback can be disabled and enabled respectively with vhpi_disable_cb() an d vhpi_enable_cb(). 45
When a callback is disabled and its trigger condition becomes true, the callback function shall not be called. 46
If it is a one time callback, its trigger condition can never become true again and its state is changed to 47
vphiMature. If it is a repetitive callback, it remains in the vhpiDisable state. Any callback in the 48
vhpiDisable state may be enabled, but a callback in the vhpiMature state can never be enabled. Repetitive 49
callbacks never mature. Note that re-enabling a repetitive callback does not change any of its specification, 50
only whether it is called or not when its trigger condition becomes true. For example, a 51
vhpiCbRepAfterDelay callback is called after a specific delay that starts when it is registered and repeats. 52
Disabling and enabling such a callback has no effect on the time it will next be triggered. 53
Both functions return 0 on success and 1 on failure. A status of 1 should be returned if the callback is: 54

 133

- being disabled, but is already disabled (vhpiDisable) 1
- being enabled, but is already enabled (vhpiEnable) 2
- or has already matured (vhpiMature). 3

The severity of this error condition is vhpiWarning, which may be obtained by calling vhpi_check_error(). 4
 can be used to determine the severity of the error. In that case it should be a vhpiWarning. 5
The following callback reasons are repetitive callbacks: vhpiCbValueChange, vhpiCbForce, 6
vhpiCbRelease, vhpiCbStmt, vhpiCbResume, vhpiCbSuspend, vhpiCbStartOfSubpCall, 7
vhpiCbEndOfSubpCall, vhpiCbTransaction, vhpiCbRepAfterDelay, vhpiCbRepNextTimeStep, 8
vhpiCbRepStartOfCycle, vhpiCbRepStartOfProcesses, vhpiCbRepEndOfProcesses, 9
vhpiCbRepStartOfPostponed, vhpiCbRepEndOfPostponed, vhpiCbRepEndOfTimeStep, 10
vhpiCbQuiescense, vhpiCbPLIError, vhpiCbEnterInteractive, vhpiCbExitInteractive. 11
 12
Note all the vhpiRep* calbacks are registered in a repeated manner for the same simulation cycle point as 13
their respective non repetitive callback reasons. vhpiCbRepAfterDelay callback causes the callback 14
function to be triggered after every elapsed simulation time equal to the delay specified in the time field. 15
If a vhpiCbRepAfterDelay callback is enabled after it was disabled, the callbacks will be re-enabled for the 16
times it was initially registered. The effect of disabling such a callback results in temporarily inhibiting it 17
from triggering, the effect of enabling this callback has the result to allow it to trigger again. 18
 19
 20

8.2.3 Getting callback information 21
 22
(PLI_INT32) vhpi_get_cb_info (vhpiHandleT cbhdl, vhpiCbDataT *cbData_p); 23
Given a callback handle cbhdl, the VHPI server will fill up a vhpiCbDataT structure that has been allocated 24
by the user with the equivalent original information which was passed by the user in the cbData structure 25
at the time of registration of that callback handle. All memory for the cbDatap structure must be allocated 26
by the user. This function can be called at any time by a VHPI application which holds a valid callback 27
handle. The validity of a handle has to do with referential integrity and not the state of the callback. 28
Information is available for any callback, whether is it enabled, disabled, or mature. The function returns 0 29
on success and 1 on failure. 30
 31

8.2.4 Removing callbacks 32
 33
(PLI_INT32) vhpi_remove_cb(vhpiHandleT cbHdl) 34
 35
Given a callback handle, this function will remove the callback; the callback will not occur anymore. It will 36
also free the callback handle, thus invalidating it. In contrast, just freeing the callback handle with 37
vhpi_release_handle() frees the memory associated with the callback handle but does not remove the 38
callback.In this later case, the callback will still be triggered according to its specification and an 39
equivalent callback handle can still be re-obtained by the callback access methods (see section 8.3.1) 40
depicted by the callback class diagram. The function returns 0 on success and 1 on failure. 41

8.3 Callback Information Model 42
 43
The callback UML class diagram in Chapter 4 illustrates the methods and properties that are available for 44
callbacks. A callback object is created when it is registered. A handle to it may be obtained at registration 45
or at a later time using the methods described below. The handle so obtained remains valid until released 46
by the user. The callback object itself exists until it is removed and there are no valid handles referencing 47
it. One time callback objects are removed automatically under certain conditions. 48

 134

8.3.1 Callback methods 1
 2
Iteration on vhpiCallbacks from the tool (designated by a NULL reference handle) will return handles for 3
all callbacks that are existing at the time of the query. It will return handles to callbacks that are either 4
enabled or disabled, but mature callbacks are not returned. The only way to have a valid handle to a mature 5
callback is to obtain the handle at registration or by iteration before the callback has matured. All callbacks 6
are returned by the iteration to the caller even if the caller did not register these callbacks. VHPI has no 7
concept of client identity that would allow otherwise. Given a callback handle, vhpi_get_cb_info can 8
obtain the cbDataS of the original registration, then the caller can filter out callbacks of interest by looking 9
at the function pointers or other information in the cbDataS. The preferred method of keeping track of 10
callbacks is to retain handles obtained at registration 11
Informative note: Looking at the function pointer address is the only way to recognize one’s own 12
callbacks, provided there is a way of comparing the address to the complete set of functions used to 13
register callbacks and no other applications have registered callbacks with those functions. No assumptions 14
can be made about the contents of the user_data field which may be null or not be a valid memory address. 15
 16
A one to one method (vhpiCurCallback) from a null reference handle will return the currently executing 17
callback handle or null. This will provide a new handle of kind vhpiCallbackK owned by the client. The 18
state of that handle will be enabled or matured. It can be used to immediately remove and/or releasethe 19
callback, disable it, or any other operation allowed on a valid callback handle. Note that if the goal is 20
register a one time callback that removes itself after it matures, the preferred method is never to obtain a 21
handle and let VHPI cleanup after callback execution. 22
Note: An elaboration, initialization or execution function is not a callback. vhpiCurCallback when called 23
from within an elaboration, initialization or execution function should return NULL. 24
 25
Iteration from an object declaration will return handles to callbacks of reason vhpiCbValueChange, 26
vhpiCbTransaction, vhpiCbForce, vhpiCbRelease that were registered with the obj field of the 27
vhpiCbDataT argument set to the object declaration handle. 28
 29
Iteration from a statement handle (concurrent or sequential) will return all vhpiCbStmt, vhpiCbResume and 30
vhpiCbSuspend, vhpiCbStartOfSubpCall, vhpiCbEndOfSubpCall reason callbacks registered for that 31
statement. 32
 33
Iteration from an indexedName or selectedName will return callbacks of reason vhpiCbValueChange, 34
vhpiCbTransaction, vhpiCbForce, vhpiCbRelease that have been registered for the object name indicated 35
by the handle in the obj field. 36
 37
Iterating from a driver handle will return all registered callbacks for reason vhpiCbTransaction and 38
vhpiCbValueChange for this driver. 39
 40

8.3.2 Callback properties 41
 42
There are two integer type callback properties that can be queried given a callback handle. 43
 vhpiReasonP: gets the callback reason 44
 vhpiStateP: returns the callback state either vhpiDisable, vhpiMature, or vhpiEnable. 45
A callback state is said to be “mature” if the callback has occurred at the time of the query. This means 46
specifically that if the vhpiStateP of the currently executing callback is obtained and it is a one time 47
callback, it will already be in the vhpiMatured state. Repetitive callbacks never mature. 48
The callback reason specifies when a callback is supposed to occur. 49
 50

 135

8.4 Callback Semantics 1
 2
This section defines all the specific kinds of callbacks for VHPI. They are described in categories of tool 3
phase, object, foreign model, stmt, time, simulation cycle, action, and save/restart/reset. These are 4
regarded as providing a basics set of callbacks for a client to gain control at all significant points during the 5
VHDL tool’s execution. Each callback is identified by a callback reason, which is provided at registration 6
along with any additional information required to fully specify the callback. The VHDL simulation cycle 7
is referenced in some callback definitions and is annotated with specific VHPI callback reasons to support 8
rigorous formal semantics. It is defined below before any discussion of individual callbacks. 9
 10

8.4.1 The Annotated VHDL Simulation Cycle 11
 12
There are references to the VHDL simulation cycle used to describe when some callbacks are triggered. 13
The VHDL simulation algorithm is presented below with modifications that describe when the various 14
VHPI callback reasons occur. 15
 16
0. Initialization phase: 17
1) 18
 1.0.1) VHPI: cbStartOfInitialization callbacks are run including the implicitly registered foreign 19
architectures callbacks (execf functions) 20
 1.0.2) VHPI: cbStartOfNextCycle callbacks are run. 21
 1.1.0) The driving value and the effective value of each explicitly declared signal are computed and the 22
current value of the signal is set to the effective value. This value is assumed to have been the value of the 23
signal for an infinite length of time prior to the start of simulation. 24
 25
2) 26
 2.1.0) The value of each implicit signal of the form S'Stable(T) or S'Quiet(T) is set to True. 27
 2.2.0) The value of each implicit signal of the form S'Delayed(T) is set to the initial value of its prefix, S. 28
 29
3) 30
 3.1.0) The value of each implicit GUARD signal is set to the result of evaluating the corresponding guard 31
expression. 32
 33
4) 34
 4.0.1) VHPI: cbStartOfProcesses callbacks are run. 35
 4.1.0) Each nonpostponed process in the model is executed until it suspends. 36
 4.1.1) VHPI: cbEndOfProcesses callbacks are run. 37
 38
5) 39
 5.0.1) VHPI: cbStartOfPostponed callbacks are run. 40
 5.1.0) Each postponed process in the model is executed until it suspends. 41
 42
6) 43
 6.1.0) The time of the next simulation cycle (which in this case is the first simulation cycle), Tn, is 44
calculated according to the rules of step f of the simulation cycle, below. 45
 6.1.1) VHPI: cbEndOfInitialization callbacks are run. A reset of the VHDL model would bring back the 46
model to immediately after this point in the simulation cycle. 47
 6.1.2) VHPI: cbStartOfSimulation callbacks are run. 48
 49
 50
1. Simulation cycle: 51
This marks the beginning of a time. The current time (T_c) has just advanced to the next time (T_n) where 52
events or actions are scheduled to occur. Signal effective values have not changed yet. 53

 136

a) 1
 a.1.0) The current time, T_c is set equal to T_n. 2
 a.1.1) VHPI: cbNextTimeStep callbacks are run except when simulation is complete according to the 3
 rules of step a.2.0. 4
 a.2.0) Simulation is complete when T_n = TIME'HIGH and there are no active drivers or process 5
 resumptions at T_n. 6
 a.2.1) VHPI: cbStartOfNextCycle callbacks are run. 7
 a.2.2) VHPI: cbAfterDelay callbacks are run. 8
b) 9
Signal update, resolution and propagation 10
The driving values of the signal drivers are computed by executing the transaction of their output 11
waveform relevant for that time. vhpiCbValueChange and vhpiCbTransaction callbacks on drivers happen 12
immediately when the driver has a value change or a transaction respectively. The basic signal effective 13
values are computed. Resolution functions are executed to compute resolved signal values. The driving 14
values of the basic signals are propagated through the port connections, conversion and resolution 15
functions. Non basic signal values are computed from the values of their sources. The effective signal 16
values are computed. The effective value of a signal becomes the new current value of that signal. A signal 17
is said to be active during the delta cycle if its new current value is different from the previous signal value. 18
If updating a signal causes the current value of that signal to change, then an event is generated for that 19
signal in that delta cycle. vhpiCbValueChange callbacks on signals occur during this phase b if that signal 20
had a value change. 21
 22
 b.1.0) Each active explicit signal in the model is updated. (Events may occur on signals as a result.) 23
 24
c) 25
 c.1.0) Each implicit signal in the model is updated. (Events may occur on signals as a result.) 26
 27
d) 28
Process execution 29
The events determined at the signal update cause the resumption of processes sensitive to that signal during 30
this delta simulation cycle. These processes execute and may cause new transactions on the signal drivers. 31
 32
 d.0.1) VHPI: cbStartOfProcesses, vhpiCb(Rep)TimeOut, vhpiCbSensitivity callbacks are run. 33

d.1.0) VHPI: cbResume callbacks are executed for the non postponed processes which are going to 34
 resume. cbResume callbacks occur before the process is executed. 35
 For each non postponed process P, if P is currently sensitive to a signal S and if an event has 36
 occurred on S in this simulation cycle, then P resumes. 37
 38

 d.1.1)VHPI: cbValueChange callbacks for variables occur immediately if the current process execution 39
 causes the variables to change value 40

 41
e) 42
 e.1.0) Each non postponed process that has resumed in the current simulation cycle is executed until it 43
 suspends. VHPI: cbSuspend callbacks are executed for the non postponed processes which were 44
 suspended. 45
 e.1.1) VHPI: cbEndofProcesses callbacks are run. 46
 47
f) 48
 f.1.0) The time of the next simulation cycle T_n is determined by 49
 setting it to the earliest of: 50
 1) TIME'HIGH 51
 2) The next time at which a driver becomes active, or 52
 3) The next time at which a process resumes. 53
 f.1.1) VHPI: If T_n != T_c cbLastKnownDeltaCycle callbacks are run and T_n is recalculated according 54
to the rules of step f.1.0. 55

 137

 f.2.0) If T_n = T_c, then the next simulation cycle (if any) will be a delta cycle. 1
 2
g) Postponed process execution 3
 The postponed processes are executed if this is the last delta simulation cycle for the time T_c. Postponed 4
processes are executed until they suspend. The execution of postponed processes should not cause any new 5
delta cycle. 6
 7
 g.1.0) If the next simulation cycle will be a delta cycle, the remainder of this step is skipped. {i.e. go to 8
 step a.2.0} 9
 g.1.1) Otherwise, VHPI: cbStartOfPostponed callbacks are run. 10

g.2.0) Each postponed process that has resumed but has not been executed since its last 11
 resumption is executed until it suspends. VHPI: cbResume callbacks are executed for the 12

postponed 13
 processes which are going to resume. cbResume callbacks occur before the process is executed. 14

 VHPI: cbSuspend callbacks are executed after the postponed process suspends. 15
g.2.1)VHPI: cbValueChange callbacks for a variable occur immediately if the current postponed process 16
 execution causes the variable to change value. 17

 g.3.0) T_n is recalculated acording to the rules of step f. 18
 g.3.1) It is an error if the execution of any postponed process causes a delta cycle to occur immediately 19
 after the current simulation cycle. 20
 21
h) 22
End of time step: 23
This phase follows the postponed process phase (if postponed processes exist) or the process execution 24
phase. It marks the end of the current time T_c, the next time T_n is different from T_c. 25
 h.1.0) VHPI: cbEndOfTimeStep callbacks are run. 26
 h.1.1) If there are active drivers or process resumptions at T_n, then the remainder of this cycle is 27
skipped, 28
 {i.e. go to step a.2.0}, 29
 Otherwise the simulation has reached a quiescent state that may be the end of simulation if then, 30
 go to i). 31
i) 32
Quiescence: 33
In this phase, simulation has reached a stable state. 34
 i.1.0) VHPI: cbQuiescence callbacks are run. This allows potentially foreign models or applications 35
 to further stimulate the design. 36
 i.1.2) T_n is recalculated according to the rules of step f. 37
 i.1.3) It is an error if the execution of any cbQuisecence callback causes a delta cycle to occur 38
 immediately after the current simulation cycle. 39
 i.1.1) If there are active drivers or process resumptions at T_n, then the remainder of this cycle 40
 is skipped, {i.e. go to step a.1.0} 41
 Otherwise this is the end of simulation, go to j) 42
j) 43
End of simulation: 44
 j.1.0) VHPI: cbEndOfSimulation callbacks are run. 45
 j.1.1) Simulation terminates. 46
 47
 48
The callback reason defines when the callback will happen. In the following section, when describing a 49
callback reason, we explain when the callback function triggers. For all callback registrations, the user 50
must allocate a callback data structure of type vhpiCbDataT and set the fields relevant for that callback 51
reason. For all callbacks, the reason and cb_rtn field (callback function pointer) must be set. If the time 52
and value fields are not nul, they must indicate a valid format for the callback. The time value is always 53
represented in the simulator precision. Additional settings are described for each callback reason. 54

 138

There are three main categories of callbacks: event, time and action callbacks. The various callbacks are 1
described below. 2

8.4.2 Object Callbacks 3
There are many kinds of objects in the VHPI information model, distinguished as having a runtime value. 4
The object callbacks return control to the client when a dynamic aspect of the object changes. 5
 6
All object callbacks are repetitive callbacks except for the optional foreign model timeout callback which 7
has both a non repetitive and repetitive callback reason. They remain in effect until they are removed by 8
calling vhpi_remove_cb(). 9
If at the registration of the callback, the value and time fields of the vhpiCbDataS structure are not null, 10
they indicate that the value of the object and the time of the change are requested to be provided when the 11
callback triggers. The value field is allocated by the user at the registration and is only used as an 12
indication to obtain a value in a specified format when the callback triggers. Only the format field of the 13
value structure must be set, there is no need to allocate a buffer for formats which require a buffer. The 14
time field of the cbDataS structure must be set to a non NULL value at the registration; this non NULL 15
value will not be dereferenced by the VHPI implementation. When the callback triggers, the entire cbDataS 16
structure of the callback function is allocated by the interface, including the time and value structures. The 17
value and time structures are filled up when the callback triggers with the value and time of the object 18
which caused the callback routine to be invoked. The cbDataS structure of the callback function is read-19
only for the user. 20
 21

8.4.2.1 vhpiCbValueChange 22
This callback reason tracks value changes of variables,signals (including the signal attributes delayed, 23
stable, quiet and transaction if they are referenced in the design) and drivers. These could be either full 24
objects, selected names, indexed names or drivers. The object kind can be vhpiSigDeclK, vhpiVarDeclK, 25
vhpiPortDeclK, vhpiSigParamDeclK, vhpiVarParamDeclK, vhpiIndexedNameK, vhpiSliceNameK, 26
vhpiSelectedNameK, vhpiDriverK, vhpiParamAttrNameK. For signals which are not OUT mode ports 27
(vhpiOutPortDeclK), the callback tracks signal effective value change. For OUT mode ports,drivers and 28
vhpiOutPortDeclK (out port of an inout port), the callback tracks the driving value. The callback on signal 29
value change will fire if an event is generated for that signal. Callback functions for value change of 30
signals and ,drivers and predefined signal attributes which define implicit signals such as 'delayed, 'stable, 31
'quiet and 'transaction may be executed during signal update and propagation up until but specifically 32
before cbStartOfProcesses callbacks are executed. For signal class objects, only one callback will occur for 33
the whole object even if more than one scalar element changes value in the same delta cycle. For variable 34
class objects, the callback triggers as soon as the variable changes value, therefore many callbacks for the 35
same variable object can be executed in the same delta cycle. Value change callbacks on variables, 36
typically occur during the process or postponed process execution phase whenever a variable is updated 37
during VHDL execution or with vhpi_put_value. 38
The registration of a value change callback consists in setting the obj field to the handle of the object 39
subject to the callback on value change. The caller may request that the value of the object resulting from 40
the value change and/or the time of the value change be returned in the callback data structure. If so, the 41
caller needs to allocate a value and time structures for the fields of the vhpiCbDataS structure. The time 42
and value structures specify the formats in which time and value of the object value change should be 43
given when the callback function executes (for valid formats see vhpi_get_value()). Otherwise if the value 44
and time of the value change callback are not requested, the value and time field pointers should be set to 45
NULL. These value and time structure are only an indication for the registration of the callback. When the 46
callback triggers, the callback, value and time structures are allocated by VHPI. 47
 48
Notes: Callback on value changes cannot be placed for aliases of objects. 49
 50

 139

8.4.2.2 vhpiCbForce 1
This callback reason triggers if a variable, signal, or part of a variable or signal was forced to a value. The 2
callback registration consists in setting the obj field to the handle of the object of interest. The caller can 3
also request to get the value of the object after the force, if so, the value field must point to the address of a 4
value structure that has been allocated by the caller. A valid format must be provided for the value. A 5
forced value may happen because of a call to the VHPI function vhpi_put_value(objHdl, &value, flags), 6
where the flag value is set to vhpiForce, vhpiForcePropagate or from a force simulator command. If the 7
obj field is null, then the callback should happen every time a force occurs on any object; when the 8
callback triggers, the obj field will contain the handle of the object that was forced. The differences 9
between the 2 types of forces are explained in section 9.3. For all objects, the callback triggers immediately 10
when the object is forced. 11
Note: Signal valued attributes cannot be forced. Guard signals can be forced. 12
ISSUE: Should we list kinds? Note that drivers cannot be forced?If only a slice of the object was forced, 13
return the entire object. 14

8.4.2.3 vhpiCbRelease 15
This callback reason triggers if a value release occurs to a variable or signal or sub-element thereof that 16
was previously forced. The callback registration consists in setting the obj field to the handle of the object 17
of interest. After the release has happened the value that was forced remains until it is overwritten by a new 18
update. Consequently the value that the caller may request to get will still be the forced value. A value 19
release may happen because of a call to the VHPI function vhpi_put_value(objHdl, &value, flags), where 20
the flag value is set to vhpiRelease, or from a simulator release command with the same semantics. If the 21
obj field is null, then the callback should happen every time a release occurs on any forced object; when 22
the callback triggers, the obj field will contain the handle of the object which force was released. A release 23
can be applied during any of the phases and the callback function triggers immediately. 24
 25
NOTE: A force or release accomplished either through vhpi_put_value with vhpiForce or vhpiRelease 26
flags or through a simulator force or release command does not trigger value change callbacks. 27

8.4.3 Optional object callbacks 28

8.4.3.1 vhpiCbTransaction 29
A callback registered for that reason triggers when a driver transaction matures or when a transaction 30
occurs on the signal. The driver value has been updated according to the transaction value. The obj field 31
should be set to a driver or signal handle. The value and time of the transaction can be requested to be 32
returned at the callback registration by providing pointers to user allocated value and time structures in the 33
value and time fields. The callback triggers during signal update and propagation before value change 34
callbacks for the signal. 35

8.4.4 Foreign models specific callbacks 36
 37

8.4.4.1 vhpiCbTimeOut 38
A callback registered for this reason triggers during the process execution phase when the simulation time specified in 39
the time field of the cbData structure has elapsed since the callback registration. The reason, cb_rtn and time fields are 40
the only required fields which need to be set at the callback registration. This callback is equivalent to a process 41
statement which would have two statements: the VHDL statements wait for time followed by the call to the callback 42
function cb_rtn. 43
vhpiCbTimeOut is the non repeated version of the callback. vhpiCbRepTimeOut is the repeated version 44
 vhpiCbTimeOut is a convenience that is equivalent to registering a cbAfterDelay timeout cbk which itself registers a 45
cbStartOfProcesses callback.It is possible to emulate a postponed process which has a time out by registering a time 46
out callback which itself registers a start of postponed callback. 47
 48

 140

8.4.4.2 vhpiCbSensitivity 1
A callback registered for this reason triggers during the process execution phase when an event occurred on any of the 2
signals indicated by the obj field. The obj field must be set to a single signal handle or to a collection of signals. If the 3
value field is not null, the cbData value.int field will indicate which signals in the collection had events. The set to 1 of 4
a specific bit of the value.intgs field will indicate the corresponding signals members in the collection in the obj field) 5
which. The value.intgs field is allocated by VHPI and is read only when the callback function executes. 6
If the time field is not null at the callback registration, when the callback triggers, the cbData time field should be set to 7
the current absolute simulation time. It is possible to emulate a postponed process which has a sensitivity by registering 8
a vhpiCbSensitivity callback which itself registers a vhpiCbStartOfPostponed callback. 9
It is a repeated callback. 10
Note: Due to the nature of postponed processes, the value you may obtain when the startOfPostponed 11
callback execute may not be the value which triggered the callback. 12

8.4.5 Statement callbacks 13
The vhpiCbStmt and vhpiCbResume and vhpiCbSuspend vhpiStartOfSubpCall and vhpiEndOfSubpCall 14
callbacks are repetitive callbacks. Other statement callbacks are one time only callbacks. The only fields in 15
the vhpiCbDataS structure that shall need to be set up by the user are the reason, obj, cb_rtn and 16
user_data (if desired) fields. When a statement callback occurs, the cb_rtn user routine is called and is 17
passed a pointer to a vhpiCbDataS structure, the reason, cb_rtn and user_data fields shall be set to the 18
reason, cb_rtn and user_data fields which were passed in at the callback registration and the obj field shall 19
be set to the original statement or another statement as detailed in the description of each specific callback 20
reason. 21
 22
 23

8.4.5.1 vhpiCbStmt 24
A callback registered for that reason triggers before a sequential statement executes. The callback 25
registration consists in setting the obj field to the handle of a sequential statement or to the handle of a 26
equivalent process statement. The parent scope of the sequential statement must be a static region 27
(concurrent statement) or a dynamically executing or suspended region (procedure or function call). The 28
statement handle must be an instantiated statement handle. In the case where the object handle is an 29
equivalent process statement, the callback will trigger when it is about to execute the concurrent statement. 30
When the callback triggers, the obj field is set to point to the sequential statement that is going to be 31
executed in the case of a process or procedure call statement. For other equivalent process statements, the 32
obj field remains the concurrent statement handle. No other fields except the obj and reason fields need to 33
be set. In particular, the time and value fields are ignored. The callback function executes during the 34
process or postponed process execution phases. The callback acts like a statement breakpoint. Note that an 35
optimized VHDL implementation may have effect on the order in which callbacks occur and may prevent 36
the registration of certain callbacks due to loss of the HDL source mapping. If a callback cannot be 37
registered, an error should be generated. The table below describes the behavior of cbStmt for all possible 38
statement kinds. 39
 40
vhpiWaitStmt
vhpiReportStmt
vhpiAssertStmt
vhpiVarAssignStmt
vhpiSimpleSigAssignStmt
vhpiNextStmt
vhpiExitStmt
vhpiReturnStmt

One callback occurs before the statement executes. For the wait and
assert statements, the callback occurs before the condition
expression is evaluated.

vhpiForLoop
vhpiWhileLoop
vhpiForeverLoop

For a vhpiForLoop statement, the callback should occur prior to a
new value be assigned to the loop parameter.
For a vhpiWhileLoop, the callback occurs prior to the evaluation of

 141

 the condition expression on every iteration of the loop.
For a vhpiForeverLoop, the callback occurs when the forever loop
statement is first encountered, and on every subsequent iteration of
the forever loop.

vhpiIfStmt
vhpiCaseStmt

There are two cases:
1) if the obj field is set to a handle to the if or case statement

(vhpiIfStmtK, vhpiCaseStmtK):
the callback will trigger before the condition expression of the
if stmt gets evaluated, or before the case expression of the case
statement gets evaluated

2) if the obj field is set to a handle to a branch (vhpiBranchK) of
the if stmt or case stmt:
the callback will trigger before the condition of the branch gets
evaluated for an if statement and before the first statement of
the branch of the case statement gets executed.

vhpiNullStmt This callback triggers just before the null stmt is executed.
vhpiProcCallStmt
vhpiProcessStmt

The callback occurs just before the sequential statement inside the
procedure call or process statement executes. When the callback
triggers, the obj field points to the handle of the sequential statement
that is going to be executed.

 1
 2

8.4.5.2 vhpiCbResume 3
A callback registered for that reason triggers before a process resumes execution. The callback registration 4
consists in setting the obj field to a process or concurrent procedure call. When the callback triggers, the 5
callback data argument of the callback function sets the obj field to the statement after the wait statement 6
from where the process resumes or is set to the first statement in the process statement, if the process has a 7
sensitivity list. The callback function executes during the process or postponed process execution phases. 8
 9

8.4.5.3 vhpiCbSuspend: 10
A callback registered for that reason triggers just before a process or procedure suspends. When the 11
callback triggers, the current region is the process about to be suspended. The callback registration consists 12
in setting the obj field to a process or concurrent procedure call. When the callback triggers, the obj field of 13
the callback data argument is set to a handle to the explicit wait statement if the process or procedure 14
suspends on a wait, otherwise it is set to the last statement of process or procedure call it was originally set 15
to. The current scope is still the process that is about to be suspended. The callback function executes 16
during the process or postponed process execution phases. 17
 18

8.4.5.4 vhpiCbStartOfSubpCall 19
A callback registered for that reason triggers when a subprogram call starts execution. The subprogram can 20
either be a concurrent or sequential call of a VHDL or foreign subprogram The callback registration 21
consists in setting the obj field to a handle to the subprogram call. A handle to the subprogram call can be 22
obtained by iterating on the sequential statements of a static region or dynamically executing region 23
(subprogram call within a subprogram). A handle to a subprogram call cannot be obtained if the parent 24
scope is not a static scope or an executing scope. When the callback function triggers, the subprogram 25
formal parameters have been elaborated and their values assigned from the actual associations. No fields 26
other than the obj and reason fields need to be set at the callback registration. The callback triggers 27
whenever this specific instance of that subprogram call is invoked. This is a repetitive callback for a 28
specific instance of that subprogram call. 29

 142

 1
 2

8.4.5.5 vhpiCbEndOfSubpCall 3
A callback registered for that reason triggers when the subprogram call indicated by the obj field has 4
completed execution. The subprogram can either be a concurrent or sequential call. The callback 5
registration consists in setting the obj field to a handle to the subprogram call. The callback triggers when 6
the subprogram call is about to return from execution. No fields other than the obj and reason fields need to 7
be set at the callback registration. The intention is with this callback to be able to intercept and overwrite 8
the returned value of the function call or the values of the out mode parameters of a procedure call before 9
these values take effect in the calling code. This is a repetitive callback for a specific instance of that 10
subprogram call. 11
 12

8.4.6 Time callbacks 13
There are one time and repetitive time callbacks. 14
For all time related callbacks, the only fields in the vhpiCbDataS structure that shall need to be set up by 15
the user are the reason, time, cb_rtn and user_data (if desired) fields. When a time callback occurs, the 16
cb_rtn user routine is called and is passed a pointer to a vhpiCbDataS structure, the reason, cb_rtn and 17
user_data fields shall be set to the reason, cb_rtn and user_data fields which were passed in at the 18
callback registration and the time field shall be set to the absolute current time. 19

8.4.6.1 vhpiCbAfterDelay 20
A callback registered for that reason triggers at the absolute time computed by adding the current 21
simulation time (at the registration Tr) plus the relative time delay (d) that is indicated by the time structure 22
when the callback is registered. The callback triggers even if there is no transaction scheduled at this time; 23
the callback function is executed at the beginning of the time step before values get updated and 24
transactions processed. The cbData structure passed to the user callback function will include a time 25
structure indicating the current simulation time. No fields other than the reason, cb_rtn and time fields need 26
to be provided at registration. The time value of the cbData filled by vhpi_get_cb_info should be the 27
relative time delay provided at the registration. All time values are given and interpreted in the simulator 28
time precision. 29
 30

8.4.6.2 vhpiCbRepAfterDelay 31
A callback registered for that reason causes the callback function to trigger at the current simulation time 32
plus the relative time delay that is indicated by the time structure at the callback registration and at all 33
subsequent intervals of that time delay value. If the current registration time is Tr, and a callback is 34
registered for a delay of d, callbacks will be triggered at Tr + d, Tr + 2d, … Tr + md. The callback triggers 35
even if there is no transaction scheduled at this time; the callback function is executed at the beginning of 36
the time step. If one disables the repetitive callback and re-enables it at time Tn, the callback will be 37
reinstalled to trigger at times Tr +d, Tr + 2d, Tr + md where for all m, Tr +md > Tn and where Tr is the 38
time the callback was registered, 39
The callback is on the same schedule as defined when it was registered so that disable/enable has no effect 40
on the schedule of the repetitive callback, except to temporarily inhibit it from triggering. 41
 42

8.4.7 Simulation phase callbacks 43
 44
For each type of callback, there is a single occurrence reason and a repetitive callback reason. If a phase 45
callback is registered while or after that phase executes, the callback will not be triggered until the next 46
time the tool executes that phase. 47

 143

The only fields in the vhpiCbDataS structure that shall need to be set up by the user are the reason, cb_rtn 1
and user_data (if desired) fields. Any other field setting will be ignored. When a simulation phase callback 2
occurs, the cb_rtn user routine is called and is passed a pointer to a vhpiCbDataS structure, the reason, 3
cb_rtn and user_data fields shall be set to the reason,, cb_rtn and user_data fields which were passed in at 4
the callback registration. 5
 6

8.4.7.1 vhpiCbNextTimeStep 7
A callback registered for that reason triggers at the beginning of the next time slice that has driver 8
transactions and/or a cbAfterDelay or cbRepAfterDelay callback registered and where Tn (next time at 9
which the callback triggers) is different from Tc (current time at which the callback is registered). The 10
callback triggers at the beginning of a time step: the simulation time has just advanced, and no signal 11
values have been updated yet. Immediate signal value modifications done by vhpi_put_value with 12
vhpiDepositPropagate or vhpiForcePropagate flags, or by vhpi_schedule_transaction with 0 delay will take 13
place in the first delta cycle of the time step if they are invoked by this callback function. 14
vhpiCbRepNextTimeStep is the repeated version. 15
 16

8.4.7.2 vhpiCbStartOfNextCycle 17
A callback registered for that reason triggers at the beginning of the next simulation delta cycle either for 18
the present time step or for the next time step if no more delta cycles are created for the current time step. 19
The callback function executes after vhpiCbNextTimeStep, before vhpiCbAfterDelay and before signal 20
update and propagation starts. 21
vhpiCbRepStartOfNextCycle is the repeated version. 22
 23

8.4.7.3 vhpiCbStartOfProcesses 24
A callback registered for that reason triggers just before VHDL non postponed processes start execution. 25
Zero delay transactions scheduled by the callback function at this point take place in the next simulation 26
delta cycle. 27
vhpiCbRepStartOfProcesses is the repeated version. 28
 29

8.4.7.4 vhpiCbEndOfProcesses 30
A callback registered for that reason triggers after all non postponed processes have executed for the 31
current delta cycle just before the next time Tn is computed. Zero delay transactions scheduled by the 32
callback function at this point take place in the next simulation delta cycle. 33
vhpiCbRepEndOfProcesses is the repeated version. 34
 35

8.4.7.5 vhpiCbLastKnownDeltaCycle 36
A callback registered for that reason triggers just before the postponed processes execute (before 37
vhpiCbStartOfPostponed but after vhpiCbEndOfProcesses of the last delta. This callback triggers when 38
there is no more delta cycles to execute in this time step,. Zero delay transactions may be done by the 39
callback and can create a new delta cycle for this time step. 40
vhpiCbRepLastDeltaCycle is the repeated version. 41
 42

8.4.7.6 vhpiCbStartOfPostponed 43
A callback registered for that reason triggers before the postponed processes execute and after 44
vhpiCbLastKnownDeltaCycle. No zero delay transactions may be done by the callback function because 45
this marks the end of all 0 delay delta cycles for this time step. An attempt to place zero delay transactions 46

 144

with vhpi_schedule_transaction() or with vhpi_put_value with modes of vhpiDepositPropagate or 1
vhpiForcePropagate should result in a runtime error. 2
vhpiCbRepStartOfPostponed is the repeated version. These callbacks occur even if there are no 3
postponed processes. 4
 5

8.4.7.7 vhpiCbEndOfTimeStep 6
A callback registered for that reason triggers at the end of the time step, the current time Tc has not 7
advanced yet to the next computed time Tn. No transaction may be done by the callback function because 8
this marks the end of a time step. . An attempt to place any transactions with vhpi_schedule_transaction() 9
or with vhpi_put_value with modes of vhpiDepositPropagate or vhpiForcePropagate should result in a 10
runtime error. 11
vhpiCbRepEndOfTimeStep is the repeated version. 12
 13

8.4.8 Action callbacks 14
The only fields in the vhpiCbDataS structure that shall need to be set up by the user are the reason, cb_rtn 15
and user_data (if desired) fields. When an action callback occurs, the cb_rtn user routine is called and is 16
passed a pointer to a vhpiCbDataS structure, the reason, cb_rtn and user_data fields shall be set to the 17
reason, cb_rtn and user_data fields which were passed in at the callback registration. If an action callback 18
is registered at a given point during the tool session and that point precludes that action to ever take place, 19
the tool is not required to detect such a situation. 20
 21
All callback reasons except vhpiCbQuiescence and vhpiCbPLIError, vhpiEnterInteractive, 22
vhpiExitInteractive, vhpiSigInterrrupt are one time callbacks. 23
 24

8.4.8.1 vhpiCbStartOfTool 25
A callback registered for that reason triggers when the tool starts its session, right after tool and VHPI 26
interface initialization. The registration phase for VHPI has completed and all bootstrap functions have 27
executed at this point. The tool class is accessible . Existing libraries and already analyzed models in those 28
libraries are available in the uninstantiated information model.A session informally refers to the entire time 29
a tool is executing. The only time any part of the VHPI information can be accessed is during a tool session. 30
A session is delimited by the vhpiCbStartOfTool and vhpiCbEndOfTool callbacks. 31
 32

8.4.8.2 vhpiCbEndOfTool 33
A callback registered for that reason triggers at the end of a tool session just before it exits. No access to 34
any part of the VHPI information model is possible in the callback function, but final cleanup of a client 35
application is possible including use of vhpi_printf(). All handles are invalid at this point and cannot be 36
referenced, even to be released. 37
 38

8.4.8.3 vhpiCbStartOfAnalysis 39
A callback registered for that reason triggers before analysis starts. The tool class is accessible. Existing 40
libraries and their previously analyzed models are available. 41
 42

8.4.8.4 vhpiCbEndOfAnalysis 43
A callback registered for that reason triggers at the end of the analysis phase. Access to post-analysis 44
information models of previously analyzed design units analyzed before or during this session is possible. 45
 46

 145

8.4.8.5 vhpiCbStartOfElaboration 1
A callback registered for that reason triggers before the start of elaboration of a VHDL design. The access 2
is the same as the one which is allowed for the cbEndOfAnalysis callback. In addition, this callback point 3
allows the registration of callbacks which may be triggered during elaboration such as cbStartOfSubpCall 4
of cbEndOfSubpCall. 5
ISSUE: I don’t agree with this at all. This is virtually no different than vhpiEndOfAnalysis, except it does 6
allow callbacks to be registered that may be triggered during elaboration for functions called in initializer 7
expressions. 8
Note: Elaboration function for foreign architectures also have the reason field of the cbData structure set to 9
vhpiCbStartOfElaboration; the access allowed in this circumstance is as defined in the foreign model 10
chapter. 11
 12

8.4.8.6 vhpiCbEndOfElaboration 13
A callback registered for that reason triggers at the end of the elaboration of a design. This provides a hook 14
for elaborator back end applications Access to the post-analysis and post-elaboration information models is 15
possible. Access to initial objects values determined by the elaboration of the object is possible and is the 16
initial value assigned to the object as defined by the VHDL LRM section 12.3.1.4. Generic and port values 17
at the end of elaboration are the ones determined by VHDL LRM 12 18
 19

8.4.8.7 vhpiCbStartOfInitialization 20
A callback registered for that reason executes at the beginning of initialization. Access to post-analysis, 21
post-elaboration and runtime information models is possible. Getting values has the same behaviour as 22
getting values at cbEndOfElaboration. Updating values and scheduling transactions has unspecified 23
behaviour. 24

8.4.8.8 vhpiCbEndOfInitialization 25
A callback registered for that reason executes at the end of initialization. Full Access to post-analysis, post-26
elaboration and runtime information models is possible. In particular getting values, updating values and 27
scheduling transactions on drivers and signals is possible. 28

8.4.8.9 vhpiCbStartOfSimulation 29
A callback registered for that reason triggers when simulation starts, after simulation initialization. No 30
other field settings are necessary for this type of callback. This callback occurs before any time or delta 31
cycle callbacks. Access to post-analysis, post-elaboration and runtime information models is possible. 32
Getting values, updating values and scheduling transactions is possible. 33
 34

8.4.8.10 vhpiCbQuiescense 35
A callback registered for that reason triggers when a simulation reaches a quiet state and no transactions 36
remain to be processed. The callback function can then schedule new non zero transactions with 37
vhpi_schedule_transaction() and keep the simulation going. No other field settings are necessary for this 38
type of callback. vhpiCbQuiescence shall occur before a vhpiCbEndOfSimulation callback. Access to post-39
analysis, post-elaboration and runtime information models is possible. 40
 41

8.4.8.11 vhpiCbEndOfSimulation 42
A callback registered for that reason triggers when a simulation is complete normally according to the 43
LRM. vhpi_control (vhpiFinish) will not cause a vhpiCbEndOfSimulation callback. If registered, a 44
vhpiCbEndOfTool may follow a vhpiCbEndOfSimulation callback. Access to post-analysis, post-45
elaboration and runtime information models is possible. Getting values is possible. 46

 146

 1

8.4.9 Optional action callbacks 2

8.4.9.1 vhpiCbPLIError 3
Remove that callback, useless. A callback registered for that reason triggers when a VHPI error occurred. 4
The callback function can then check the error. No other field settings are necessary for this type of 5
callback. The error may or may not be caused by the application which registered the callback. 6

8.4.9.2 vhpiEnterInteractive 7
A callback registered for that reason triggers when the VHDL tool stops and enter the interactive mode. No 8
other field settings are necessary. 9

8.4.9.3 vhpiExitInteractive 10
A callback registered for that reason triggers when the control is returned to the VHDL tool. No other field 11
settings are necessary. 12

8.4.9.4 vhpiCbSigInterrupt 13
A callback registered for that reason may be triggered for an implementation defined abnormal event 14
notification. No other field settings are necessary. 15

8.5 Save/Restart/Reset Callbacks 16
The reset and save callback are repetitive , restart callbacks are not. 17
No callbacks occur between a start of save and end of save or between a start of reset and an end of reset. 18
If the user interrupts the process during a save, then the data saved is not guaranteed to correspond to a 19
valid restart point. 20
ISSUE: Should we allow other callbacks to happen in between these pairs of callbacks? Can you receive an 21
interrupt callback? An error callback? Are both calls guaranteed to occur, unless the session is terminated? 22
 23
vhpiCbStartOfSave, vhpiCbEndOfSave 24
A callback registered for reasons vhpiCbStartOfSave or vhpiEndOfSave triggers when a save command is 25
processed by the tool. The vhpiCbStartOfSave callback occurs at the beginning of the saving of the VHPI 26
models while the vhpiCbEndOfSave callback occurs at the end of the save operation. A model may not 27
need to register for both callback reasons, but these two reasons are provided as a convenience to the user. 28
For example, the user can use the vhpiCbEndOfSave reason to prepare for continuing simulation: as a 29
consequence of saving data structures, the user may have to turn pointers of data structure into relocatable 30
addresses, then after saving them and before continuing simulation, these must be fixed in memory to 31
actual addresses. The fix up phase can be performed by the callback function registered for reason 32
vhpiCbEndOfSave. When vhpiCbEndOfSave is called, the client is assured that all model instances that 33
registered vhpiCbStartOfSave have been initially processed. Please refer to save and restart of foreign 34
models Chapter 7. These callbacks can be registered at any time during simulation but the save operation 35
and the save callbacks occur at a clean simulation state between simulation cycles (all scheduled events and 36
processes for a delta cycle have executed and all steps for the next delta simulation cycle have not executed 37
yet). The callback registration consists in setting the cb_rtn field to the callback routine to be called at the 38
start of save or at the end of save. The user_data field can be set to the private data to be saved. All other 39
fields are ignored. They are repetitive callbacks and remain until the end of the same simulation run or until 40
there is a reset or a restart. 41
If time is requested via vhpi_get_time() during the cbStartOfSave cbEndOfSave or cbStartOfRestart 42
callbacks, the time will be T_c from the previously completed simulation cycle. 43
 44
vhpiCbStartOfRestart, vhpiCbEndOfRestart 45

 147

A callback registered for reason vhpiCbStartOfRestart or vhpiCbEndOfRestart trigger when a restart 1
command is processed by the tool. Please refer to the save and restart section of the foreign models chapter 2
for more information on how these callbacks are used to restart foreign models or applications. The 3
vhpiCbStartOfRestart callback occurs at the beginning of the restart of the VHPI models while the 4
vhpiCbEndOfRestart callback occurs at the end of the restart operation. A model may not need to register 5
for both callback reasons, but these two reasons are provided as a convenience to the user. For example, 6
the user can use the first one to restore the foreign models private data and the vhpiCbEndOfRestart to re-7
register callbacks if necessary, since everything has been restored at this point. When vhpiCbEndOfRestart 8
is called, the client is assured that all model instances that registered vhpiCbStartOfRestart have been 9
initially processed. These callback registrations MUST happen during the save command in either of the 10
vhpiCbStartOfSave or vhpiCbEndOfSave callbacks. The reason for that is that some information needs to 11
be passed between the save action to the future restart action so that the foreign models can retrieve the 12
correct saved data from the saved file (see save and restart of foreign models in Chapter 7). The callback 13
registration consists in setting the cb_rtn field of the callback data structure to the callback function, the 14
reason field to the vhpiCbStartOfRestart or vhpiCbEndOfRestart reason and the user_data field to an id 15
identifying the location of the saved data. All other fields are ignored. That id is returned by the 16
vhpi_put_data() function which saves data in the save file (see foreign models chapter). They are not 17
repetitive callbacks. 18
If time is requested via vhpi_get_time() during the cbEndOfRestart callback, the time will be the time of 19
the saved data that is being restarted. 20
 21

8.6 vhpiCbStartOfReset, vhpiCbEndOfReset 22
A callback registered for reason vhpiCbStartOfReset or vhpiCbEndOfReset triggers when a reset command 23
is processed by the tool. The vhpiCbStartOfReset callback occurs at the beginning of the reset of the VHPI 24
models while the vhpiCbEndOfReset callback occurs at the end of the reset operation. A model may not 25
need to register for both callback reasons, but these two reasons are provided as a convenience to the user 26
so that the user can use the first one to reset the state of the foreign models private data and the 27
vhpiCbEndOfReset to set up new callbacks. The callback registration can happen at anytime during 28
simulation. The callback registration consists in setting the cb_rtn field to the function to be called, and the 29
callback reason to either vhpiCbStartOfReset and vhpiCbEndOfReset. When the vhpiCbEndOfReset 30
triggers the current simulation time is 0 ns. Please refer to the reset section under the foreign models 31
chapter for more information on the reset sequence. The execution of all vhpiCbEndOfReset callbacks is 32
followed by the initialization phase 1.0.1 in the annotated simulation cycle. Therefore, all foreign model 33
initialization code is re-executed as part of initialization. 34
If time is requested via vhpi_get_time() during the cbStartOfReset, the time returned will be T_c from the 35
previously completed simulation cycle. If time is requested via vhpi_get_time() during the cbEndOfReset, 36
the time will be time 0. 37
 38
Note: If simulation was restarted from time Tn, then reset sometime later, the current time after reset will 39
become time 0 and, not Tn. 40

8.7 Callback function execution 41
The callback function specified by cbDatap->cb_rtn() is called when the condition (reason, time etc…) 42
indicated by the callback registration becomes true and the callback is enabled A callback is said to be 43
triggered, and responds by calling the callback function.. 44
The callback function is called with a single argument. The argument (cbDatap) is a const pointer to a 45
vhpiCbDataS structure. This callback data structure is allocated by the VHPI server and is not the original 46
callback data structure that was passed by the user at the registration of the callback. The argument 47
cbDatap contains information about the callback and its current state.that caused the routine to be invoked. 48
The callback data structure contents should only be read by the client code and its contents including the 49
handle denoted by the obj field are only valid for the duration of the callback function call. The handle 50
provided is owned by the VHPI server and will not be the same handle provided by the user at the time of 51
the registration. The client code must not release that handle. 52

 148

During the callback routine execution, the access to the information model that is allowed is defined by the 1
semantics of the specific callback and the phase of execution of the tool . The callback routine is of return 2
type void. 3
The user_data field data may be provided at the registration of the callback, this field can be used to store 4
private data or handles for example. The user_data value at registration is returned in the cbDatap 5
parameter when the callback routine is executed.is preserved when the callback triggers. The user_data is 6
never referenced by the VHPI interface and its dereference is not required to be a valid memory address. 7
The user_data address will be constant for the life of the callback. The contents of that address can 8
however be changed by the client code 9
No memory allocated by the user is read or written to by VHPI when a callback executes. User memory 10
allocated at registration in a vhpiCbDataS is only read once when the callback is registered and is for 11
conveying intent and registering the callback. 12
 13
 14
Procedural Interface References: 15
See “vhpi_register_cb()” to register a callback. 16
See “vhpiCbDataT” for passing callback data information. 17
See “vhpi_get_cb_info()” to retrieve a callback. 18
See “vhpi_remove_cb()”to remove a callback. 19
See “vhpi_enable_cb()” to enable a callback. 20
See “vhpi_disable_cb()’ to disable a callback. 21
See “vhpi_put_value()” to force, release or update a value. 22
See “vhpi_get_value()” to query an object value in various formats. 23
 24
Errors: 25
 26
Restrictions: 27

 149

9. Value access and modification 1
 2
This chapter describes how to access and modify values. This is one of the capabilities required to claim a 3
compliance level of vhpiCapabilitiesP tovhpiProvidesForeignModel or vhpiProvidesDebugRuntime. This 4
chapter defines the interface functions and associated data structures. Classes of objects that support value 5
access will have a vhpi_get_value() operation defined (see information model), while those that support the 6
modification of values will have a vhpi_put_value() operation defined. Additionally a function 7
vhpi_schedule_transaction is defineded to schedule a transaction on a driver of a signal. In order to do 8
that, one must access the drivers of basic signals. If a signal is not a basic signal, one must first access its 9
basic signals according to the semantics described in Chapter ? on Connectivity. 10
 11
The value functions can be used directly on objects that are scalars or arrays of scalars. In order to access 12
values of composites that are more complex than an array of scalars, users are expected to traverse the 13
composite to the level of a scalar or an array of scalars before using the value functions defined by the 14
interface. 15
 16
The interface defines a value structure as the mechanism to pass values between a model or application and 17
the tool supporting the VHPI interface. The value structure and related types are defined as follows : 18
 19
typedef struct vhpiValueS 20
{ 21
 vhpiFormatT format; /* IN/OUT: (depending on format) value 22
 format */ 23
 int bufSize; /* IN: size in bytes of the buffer */ 24
 vhpiIntT numElems; /* IN/OUT: number of array elements in the 25
 value, 26
 undefined value for scalars */ 27
 vhpiPhysT unit; /* IN/OUT: physical position of the unit 28
 in which the physical value is 29
 expressed */ 30
 31
 union 32
 { 33
 vhpiEnumT enumv, *enumvs; /* OUT: enumeration */ 34
 vhpiIntT intg, *intgs; /* OUT: integer */ 35
 vhpiRealT real, *reals; /* OUT: floating point */ 36
 vhpiPhysT phys, *physs; /* OUT: physical */ 37
 vhpiTimeT time, *times; /* OUT: time */ 38
 char ch, *str; /* OUT:character or string */ 39
 void* ptr, *ptrs; /* OUT: simulator representation value or access 40
value */ 41
 } value; 42
 43
} vhpiValueT; 44
 45
The format values up to the vhpiRawDataVal format (included) are mandatory formats to be supported by 46
vhpi_get_value, vhpi_put_value and vhpi_schedule_transaction. The types of the objects for which they 47
can be used are described below. Other uses are undefined by the standard. 48
Implementations are free to enhance the set of supported formats. There is a standard defined format 49
mapping to the type of the object which is supported by the functions vhpi_get_value, vhpi_put_value, 50
vhpi_schedule_transaction. Other formats may be supported by the access value functionsand 51
vhpi_format_value but these formatting of values are not defined by the standard. 52
 53
typedef enum 54
{ 55

 150

 vhpiBinStrVal, 1
 vhpiOctStrVal, 2
 vhpiDecStrVal, 3
 vhpiHexStrVal, 4
 vhpiEnumVal, 5
 vhpiEnumVecVal, 6
 vhpiIntVal, 7
 vhpiIntVecVal, 8
 vhpiLogicVal, 9
 vhpiLogicVecVal, 10
 vhpiRealVal, 11
 vhpiRealVecVal, 12
 vhpiPhysVal, 13
 vhpiPhysVecVal, 14
 vhpiTimeVal, 15
 vhpiTimeVecVal, 16
 vhpiObjTypeVal, 17
 vhpiCharVal, 18
 vhpiStrVal, 19
 vhpiPtrVal, 20
 vhpiPtrVecVal, 21
 vhpiRawDataVal 22
 23
} vhpiFormatT; 24
 25
The definitions of vhpiEnumT, vhpiIntT, vhpiRealT, vhpiPhysT and vhpiTimeT are expected to be defined 26
by the simulation vendors with the following requirements mandated by the standard, 27
 28
• vhpiEnumT should be at least 32 bits wide 29
• vhpiIntT should be at least 32 bits wide 30
• vhpiRealT, vhpiPhysT and vhpiTimeT should be at least 64 bits wide 31
 32
he value data structure and any associated buffer to hold values of composites should be allocated and 33
managed by the users of the functions vhpi_get_value(), vhpi_put_value(), vhpi_schedule_transaction and 34
vhpi_format_value(). The following are the interpretations of the fields in the value structure, 35
 36
format 37
The format in which the data is desired (vhpi_get_value) or supplied (vhpi_put_value, 38
vhpi_schedule_transaction, vhpi_format_value). This should be specified by the users. There are format 39
tuples, one for scalars and the other for array of scalars, associated with the basic data types of enumeration, 40
integer, character, floating point, physical and time. For each mandatory format, there is a field in the value 41
union. The format vhpiStrVal can be used to retrieve values of objects of type string, enumeration type or 42
array of characters . The format vhpiObjTypeVal has been provided to obtain a value in its native form 43
without requiring the user to find out the type of the object. The interface will determine the most 44
appropriate format in this case and change the format field to reflect that format of representation of the 45
value, while returning the value. The format vhpiRawDataVal has been provided from a performance 46
standpoint, to enable implementations to return the simulator representation of the value. 47
 48
Note : Though time types are physical types, the standard makes a distinction in keeping with possible 49
future extensions requiring a representation for time different from physical types. 50
 51
bufSize 52
This field should be set by the user to the byte size of the user allocated value buffer and is required for 53
values of array types. The corresponding value field of the union should be set to point to the value buffer. 54
The interface will check if the buffer size is sufficient to hold the value and vhpi_get_value will return the 55
required size if it is not. Consequently the size in bytes required to represent a value will be returned by a 56
call to vhpi_get_value when setting bufSize to 0. The field bufsize is IN and is always set by the caller. 57

 151

 1
Note : For string values, the buffer has to be at least as large as the length of the string incremented by one 2
for string termination. The string value returned for objects of array of characters should not add 3
surrounding double quotes; a termination character \0 will be added at the end of the string value. The 4
numElems field will be set to be the real length of the character string (excluding the extra \0); The bufSize 5
should be set by the caller who allocates the buffer string to be filled up to the byte length of the string +1 6
(accounting for the \0). For all other array types , the buffer should be at least as large as the number of 7
elements in the array multiplied by the size of the element data type. 8
The above rules apply to any string value obtained with any string format (vhpiStrVal, vhpiBinStrVal, 9
vhpiHexStrVal and vhpiDecStrVal). 10
numElems 11
This field is used only for representing values of array types and should be set to the number of array 12
elements represented by the union value field of str, intgs, reals, times, physs or ptrs . For string types, it is 13
set to the string length including the termination character. For all scalar types, this value is undefined. 14
unit 15
This field is used for value representation of time or physical types; vhpi_get_value will set this field to the 16
physical position of the unit in which the returned value is represented for physical types. A physical value 17
represented in a vhpiValueT value structure is defined by the value.phys field and the unit field such that 18
the multiplication of value.phys by the unit field should provide the physical value scaled to the base unit 19
of its physical type. The unit field can be set by the user for obtaining a physical value in any physical 20
position of unit while using the VHPI function vhpi_format_value. vhpi_put_value should accept physical 21
values of any physical position representation. The VHPI property vhpiPhysPositionP can be applied to a 22
reference handle of a unit declaration (vhpiUnitDeclK) of a physical type to query the physical position of 23
that unit declaration. The function vhpi_get_phys should be used to query the vhpiPhysPositionP property. 24
The physical position of a physical literal of value integer 0 or floating point 0 is always 0. 25
If the unit is 1, the physical value(s) in value.phys(s) is(are) expressed in base units of the physical type. 26
value 27
This is defined to be a union, which contains the actual value of an object or expression. The following are 28
the fields within this union, 29
 30
1. enumv 31

This field should be used for the positional values of enumeration typed object. VHPI enumeration 32
define constants are defined for the standard logic, bit and boolean types. 33

2. enumvs 34
This is a pointer field and should be used for arrays of enumeration types. This field should be set to 35
point to a user allocated buffer. 36

3. intg 37
This field is used for values of integer typed objects. 38

4. intgs 39
This pointer field should be used for array of integers values. This field should be set to point to a user 40
allocated buffer. 41

5. real 42
This field should be used for values of floating point typed objects 43

6. reals 44
This field should be used for values of arrays of floating point. 45

7. phys 46
This field should be used for physical type values. 47

8. physs 48
This field should be used for values of arrays of physical types. 49

9. time 50
This field should be used for values of TIME typed objects 51

10. times 52
This field should be used for values of arrays of TIME type. 53

11. ch 54
This field should be used for values of character types. 55

 152

12. str 1
 This field should be used for values of string type and string formatting. The interface defines a 2
separate function, vhpi_format_value() for doing string value formatting for other typed objects. 3
(9.2Formatting VHDL values). 4
13. ptr 5
 This field should be used to get the simulator/tool representation of the value for any type 6
 (vhpiRawDataVal format) or to get the access value of a variable of an access type (vhpiPtrVal 7
format). 8
 The standard does not mandate any specific data representation, nor does it make it mandatory for 9
 vendors to publish their data representations. The lifetime of this value is unspecified by the standard. 10
14. ptrs 11
 This field should be used to get the access values for arrays of access type elements (vhpiPtrVecVal 12
 format). 13
 14
 15
There are various objects in the information model that carry values that can be accessed using the VHPI 16
value mechanism. The class kinds that support values operations are: 17
 18
1. All sub-classes of the objDecl class: vhpiConstDeclK, vhpiSigDeclK, vhpiFileDeclK, vhpiVarDeclK, 19
vhpiGenericDeclK, vhpiPortDeclK, vhpiSigParamDeclK, vhpiVarParamDeclK, vhpiConstParamDeclK, 20
vhpiFileParamDeclK 21
 22
Their value can be fetched if the object declaration has been elaborated and the property vhpiAccessP 23
allows reading of the object value (vhpiReadAccess bit is set) . If the value is fetched at the end of 24
elaboration, the value is the default (`left) or initial value from the initial expression of the object 25
declaration (as defined by the elaboration of the object). The value of a generic after elaboration will be the 26
value after generic propagation. During simulation, the value fetched is the value of the object at this 27
particular time. 28
 29
For a vhpiFileDeclK, the value is the logical name of the file. The value is of type string. The value is the 30
string value supplied in the declaration if present or the logical name the file was associated with during a 31
call to FILE_OPEN if the file was opened during simulation. If the file is not opened at the time of the 32
query, a warning is generated and the value structure is not filled with a value. In this case, vhpi_get_value 33
returns a negative value to indicate that the call failed. 34
 35
For shared variables of protected types, vhpi_get_value must be called through a vhpi_protected_call 36
which obtains a lock on the variable. For a variable of an access type, the access value can be fetched: the 37
access value is the address of the allocated object, the format to be used is vhpiPtrVal and vhpiPtrVecVal 38
for arrays of access type. The dereference value designated by the current access value of the variable can 39
be fetched from a handle to the dereference object (vhpiDerefObjK) which is obtained after applying the 40
vhpiDerefObj method to the variable handle. If the variable has an access value of 0 (null) it does not 41
designate an allocated object, in that case it is an error to apply the vhpiDerefObj method (dereferencing a 42
null pointer); the vhpiDerefObj method should return a null handle and an error should be generated. The 43
access value designates the created access object (just like a pointer). This is different from the value of the 44
object which can be fetched by dereferencing the object. The value of a dereference name (xyz.ALL) will 45
be the dereference value pointed by the object xyz. The handle kind of a dereference name is 46
vhpiDerefObjK. Values of dereference names can be fetched with the basic formats defined the value 47
structure: for example, a dereference value of a variable of type access to integer can be fetched with the 48
vhpiIntVal format. The default value of a variable of an access type is NULL (NULL pointer). The initial 49
access value of a variable with an initial expression will be the access value of the initial expression. A 50
dereference object (vhpiDerefObjK) has a value. 51
 52
For foreign subprogram calls, it is possible to get the actual values associated with the formal parameters if 53
the mode of this parameter is either IN or INOUT (value can be read). For signal subprogram parameters, 54
the value fetched is the effective value of the signal. In order to fetch the driving value, a handle to the 55

 153

driver must be obtained. Subprograms are dynamically elaborated therefore the values of their parameters 1
or declared items can only be fetched when the program is currently executing or is suspended. We provide 2
a method to get the current executing region (vhpiCurRegion) and a method to access the stack of an 3
equivalent process (vhpiCurStack see subprogram call class diagram). The user can only fetch the values of 4
parameters or declared items in a subprogram call if the subprogram call is either executing or is on the call 5
stack of the current executing process or subprogram, or is a suspended process or on the stack of a 6
suspended process. 7
 8
For port or signal declarations (vhpiPortDeclK, vhpiSigDeclK), the value fetched is the effective value. For 9
the in part of an inout port (vhpiInPortK), or for an inout mode port, the value fetched is the effective value; 10
for the out part of an inout port (vhpiOutPortK), the value fetched is the driving value. 11
 12
2. Any sub-class of the class name and class literal has a value (vhpiIndexedNameK, vhpiSliceNameK, 13
vhpiSelectedNameK, vhpiAttrNameK, vhpiDerefObjK). 14
 15
The mechanism is exactly the same for the name sub classes as for the sub classes of the objDecl class. It is 16
not possible to fetch directly the value of any other expression or function call. vhpi_get_value should 17
support getting values of locally static names; an implementation may optionally provide support for 18
globally static names. 19
There is the possibility of getting a value for handles of any of the sub-classes of class literal. The standard 20
defines a more convenient mechanism using properties for each sub-class of the class literal: vhpiIntValP 21
for class vhpiIntLiteralK, vhpiRealValP for class vhpiRealLiteralK, vhpiPhysValP for vhpiPhysLiteralK 22
and vhpiStrValP for classes vhpiStringLiteralK, vhpiBitStringLiteralK, vhpiCharLiteralK and 23
vhpiEnumLiteralK. 24
 25
3. Simulation objects: 26
A driver (vhpiDriverK)has a value which is its current driving value. This driving value can only be 27
fetched after simulation initialization phase has been completed. See PA046. The driving value of a driver 28
reflects the value of the last matured transaction. 29
 30
Values can be fetched after simulation initialization has completed in a simulation session, or after 31
elaboration in an elaboration session. 32

9.1 Accessing VHDL object values 33
 34
(PLI_INT32T) vhpi_get_value(vhpiHandleT refHdl, vhpiValueT* valuep) 35
 36
The interface defines a function vhpi_get_value for getting values. The first parameter, refHdl represents 37
the handle to the object of which the value is required. The second parameter is a user allocated value 38
structure. This structure should have the format field set by the user based on the VHDL type of the object 39
referenced by refHdl. For a description of the formats allowed for each VHDL basic type, see the value 40
structure description. 41
 42
For scalar type object values, the interface copies the value into one of the scalar fields in the value union 43
within the value structure. For arrays of scalars, the users should allocate a buffer large enough to hold the 44
value and place the pointer to this allocated buffer into an appropriate pointer field in the value union 45
within the value structure. The interface then copies the value into the allocated buffer. vhpi_get_value will 46
not return a partial value. 47
 48
Values can be accessed for all the classes of objects that possess values (that support the vhpi_get_value 49
operation in the information model), which includes the set of classes outlined in 9.1 above. 50

 154

9.2 Formatting VHDL values 1
A function vhpi_format_value is provided to change the representation of a value in a different format. 2
This function takes two value pointers, the first one is the input value, the second one is the output value. 3
The first value contains the value in a given format, the second value structure should have: 4

- the format field set to the requested format, 5
- the bufSize field set to size of the user allocated buffer (if formatting values requires the allocation of 6

a buffer), 7
- the unit field set to the physical unit position for time or physical type unit conversions. 8
- the union field which corresponds to the requested format set to point the user allocated buffer. 9
 10

This function can be used to format value into non native format representations as defined by the vendor 11
or to do unit scaling for time or physical types. If specified, handle to the type corresponding to the value.if 12
null it may limit the conversions which are possible. 13

9.3 Updating VHDL object values 14
 15
The class of objects that support runtime modification of values is a subset of the class of objects that 16
support fetching values. vhpi_put_value can be used during simulation to change the value of objects 17
which possess the vhpi_put_value operation or during elaboration to set the initial driving value of a 18
foreign driver, the initial value of signals, ports or shared variables of a foreign architecture or the return 19
value of a foreign function. See PA047.There are two types of update: deposit or force. Both can be 20
applied with or without propagation of the value. Five update flags are defined; vhpiDeposit, 21
vhpiDepositPropagate, vhpiForce, vhpiForcePropagate and vhpiRelease. Another flag vhpiSizeConstraint 22
is also available to set the constraint of an object of an unconstrained type. Propagation of the value is only 23
meaningful for signal class of objects. vhpiForcePropagate and vhpiDepositPropagate are identical to 24
respectively force and deposit for objects which do not belong to the signal class. 25
vhpi_put_value can be called at any point during initialization and simulation and additionally during 26
elaboration for setting the return value of foreign functions. 27
 28
The valid object classes for immediate update are: 29
1. Subclasses of the objDecl class : vhpiSigDeclK, vhpiVarDeclK, vhpiPortDeclK, vhpiOutPortDeclK, 30
vhpiSigParamDeclK, vhpiVarParamDeclK 31
 32
Objects of class vhpiConstDeclK and vhpiFileDeclK cannot be modified using vhpi_put_value . The 33
behaviour of vhpi_put_value on a vhpiGenericDeclK is unspecified by the standard. The exception to this 34
rule is with the use of VHDL functions that have a foreign C implementation. These functions can be used 35
in initialization expressions, and hence can be used indirectly to set the values of these classes of objects. 36
 37
Parameters to subprograms can be modified only if their mode is either vhpiOut or vhpiInOut. 38
 39
Immediate update can apply to GUARD signals. Direct update of implicit signals such as signal attributes 40
is not permitted. If an event is created for a signal, its implicit signals such as the signal attributes are 41
updated in the signal evaluation phase as a result of the corresponding signal being updated. Similarly 42
guarded signals assignments can be triggered as a result of the GUARD signal becoming true. 43
 44
Ports of all modes support modification of their value. For ports of mode vhpiOut and for vhpiOutPortlK 45
(out part of an inout port) and or signal parameter of mode vhpiOut or vhpiOutSigParamK (out part of an 46
INOUT sigPamDecl) this operation shall be equivalent to changing the port driving value. Similarly, 47
modification of the values of subprogram signal parameters which are of mode vhpiOut shall be equivalent 48
to changing the driving value of the actual. For port of other modes or vhpiInPortK (in part of an INOUT 49
port), or vhpiInSigParamK (in part of an INOUT sigParamDecl) or vhpiSigDeclK, the value that is 50
modified is the effective value. 51
 52

Formatted: Font: Italic

Deleted: only

Deleted: on a runtime model

 155

Immediate update on shared variable of protected types must be accomplished through a 1
vhpi_protected_call which acquires the lock on the variable, otherwise an error should be generated. The 2
behaviour of vhpi_put_value is unspecified for shared variables of non protected types. 3
 4
2. Subclasses of the class name : vhpiIndexedNameK, vhpiSliceNameK, vhpiSelectedNameK, 5
vhpiDerefObjK. 6
 7
vhpi_put_value shall not be used on prefixed names that are derived from vhpiConstDeclK as also 8
subclasses of the class vhpiLiteralK. 9
The rules and restrictions stated in paragraph 1 for object decls also stand for sub-elements of these objects. 10
 11
3. Function call handles: vhpiFuncCallK 12
 13
The return values of function calls can be set by depositing a value on the function call object handle. 14
Setting the return value for foreign functions is required by the standard. Setting the return value with 15
vhpi_put_value of VHDL functions (overriding the returned VHDL value) is a legitimate vendor extension 16
which is not defined by the standard. 17
If the return type of a function call is a composite type more complex than an array of scalars, the caller 18
shall iterate over the sub-elements of the return type and call vhpi_put_value on each of these. The 19
iterations on indexedNames and selectedNames are ordered iterations defined by the aggregate rule in the 20
VHDL LRM 1076-2001. 21
Setting the return value of an unconstrained function shall be done by first calling vhpi_put_value to set the 22
number of elements of the unconstrained function return parameter. The numElems field of the value data 23
structure shall be set to the total number of elements of the returned array type. The values of the other 24
fields of the value structure are unspecified. The flag parameter of vhpi_put_value shall be set to 25
vhpiSizeConstraint. Then a second call to vhpi_put_value will modify the returned value by passing the 26
actual value to be returned. A runtime error shall be generated if the size of the value in the second 27
vhpi_put_value call does not match the size specified in the previous vhpi_put_value call. Same 28
mechanism applies if a function returns a record type which one of the record elements is an unconstrained 29
array. 30
From a subprogram call handle, users can traverse the call stack and access subprogram variables. The 31
values of these variables can be modified. All local variables that are on the call stacks of the currently 32
executing process or subprograms can also be modified. 33
 34
4. Driver handles: vhpiDriverK 35
 36
Drivers can have their current driving value read but and updated with respectively vhpi_get_value and 37
vhpi_put_value. An additional function vhpi_schedule_transaction provides the functionality comparable 38
to a VHDL simple signal assignment statement: the function can schedule a transaction with zero or non 39
zero delay, a mode of transport or inertial and a optional pulse rejection limit. 40
The semantics of the update flags: 41
 42
The modification of variable values and returned values of function calls always takes immediate effect. 43
For a variable, the flags vhpiDepositPropagate, and vhpiForcePropagate have the same effect as 44
respectively the vhpiDeposit and vhpiForce flags. For a function call, vhpiDepositPropagate, 45
vhpiForcePropagate and vhpiForce have the same effect as vhpiDeposit. vhpiRelease has no effect on 46
function call handles. The behavior of vhpi_put_value with the vhpiForce flag is unspecified for shared 47
variables of non protected types. For shared variables of protected type, any immediate update must be 48
done through a vhpi_protected_call, an error should be generated if an immediate update is attempted 49
outside of a vhpi_protected_call. The modification of signal and port values has special semantics and are 50
described in the following paragraphs. The terms signal and port are used to denote the general class of 51
objects which are either signal or port declarations or the out side of inout port declarations, or sub-element 52
of these. All modes can be applied to update the value of a port or signal kind of object. 53
 54
The interface supports four different modes of updating the values of signals and ports, 55

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Deleted: not written

Deleted: . In order to change the current
driving value of a driver, the mechanism
is indirect through the use of the interface
function vhpi_schedule_transaction.¶

 156

 1
1. Depositing a value without propagation for the current cycle 2
2. Depositing a value with propagation for the current cycle 3
3. Forcing a value without propagation until release 4
4. Forcing a value with propagation until release 5
 6
The following enumeration type defines the set of flags that can be used while updating the values of 7
signals and ports 8
 9
typedef enum 10
{ 11
 vhpiDeposit, 12
 vhpiDepositPropagate, 13
 vhpiForce, 14
 vhpiForcePropagate, 15
 vhpiRelease, 16
 vhpiSizeConstraint 17
 18
} vhpiPutValueModeT; 19
 20
The following is a description of these flags, 21
 22
vhpiDeposit 23
 24

• The value is deposited but not placed on hold. There is no propagation through the signal network. 25
If this happens at the beginning of a cycle or during network propagation (after a.1.0 but before d.0.1), 26
the value could be overwritten through VHDL signal update or network propagation. 27
• If this happens after network propagation and before process execution (after c.1.0 but before 28
d.1.0), all readers of this signal will see the new value for the current cycle but the signal network may 29
be inconsistent. 30
• If the value is deposited during process execution (after d.0.1), there is no guarantee on whether 31
all readers will see the same value in the current cycle. This last feature is non-portable. 32
 33

vhpiDepositPropagate 34
 35

The value is deposited with propagation. The value is not placed on hold. This form of update will be 36
effective for the current cycle alone and can be done with the following semantics in the various 37
phases of a given simulation cycle, 38
 39
Beginning of a cycle (after a.1.0 but before b.1.0) 40

In this case the value is deposited and propagated in the same cycle. 41
Callback reasons that can be used to stop at the beginning of a cycle are : 42

• vhpiCbNextTimeStep (a.1.1) 43
• vhpiCbStartOfNextCycle (a.2.1) 44
• vhpiCbAfterDelay (a.2.2) 45

 46
During or after network propagation but before VHDL process execution (after a.2.2 but before d.1.0) 47

In this case VHPI will introduce a new delta cycle, in which the value change with 48
propagation takes effect. The value is not changed for the current delta cycle. 49
 50
Callback reasons that can be used to get to this part of the simulation cycle : 51

• vhpiCbValueChange (after a.2.2 but before d.0.1) 52
• vhpiCbStartOfProcesses (foreign models execute) (d.0.1) 53

 54
During non-postponed process execution (after d.0.1 but before f.1.0) 55

 157

The interface introduces a new delta cycle, within which the value is updated with 1
propagation. The value is not changed for the current cycle. 2
Callback reasons that can be used to get to this part of the simulation cycle : 3

• vhpiCbResume (after d.0.1 but before d.1.0) 4
• vhpiCbStmt (after d.0.1 and before d.1.0 but after vhpiCbResume) 5
• vhpiCbSuspend (during e.1.0 and before e.1.1) 6
• vhpiEndOfProcesses (e.1.1) 7
• vhpiCbLastKnownDeltaCycle (f.1.1) 8

 9
During and after postponed process execution (after g.1.0 through the rest of the simulation cycle) 10

It is an error to deposit a value with propagation at this stage. This stage includes postponed 11
process execution. 12
Callback reasons that can be used to get to this part of the simulation cycle : 13

• vhpiCbStartOfPostponed (g.1.1) 14
• vhpiCbEndOfTimeStep (h) 15
• vhpiCbQuiescence (after h) 16

 17
vhpiForce 18

 19
• The signal or port value is forced and placed on hold until release. There is no propagation. 20
VHDL signal updates or network propagation cannot overwrite the value. The value will remain on 21
hold, until released using vhpi_put_value with the vhpiRelease flag. Another force can be applied on 22
an already forced value. 23
• If this happens before process execution (before d.1.0), all readers of the signals or ports will see 24
the forced value. 25
• If this happens during process execution, not all readers of the signal or port are guaranteed to see 26
the new value. This mode of usage will be non-portable. 27

 28
vhpiForcePropagate 29

 30
This flag can be used to achieve the same effect as vhpiDepositPropagate, with the added consequence 31
of the value being placed on hold, until the user releases the hold using the vhpiRelease flag. VHDL 32
signal updates or propagation will not overwrite the value as the value is put on hold with the force. 33
Another force can be applied on an already forced value, which replaces the previously forced value 34
 35
The semantics with respect to the various phases of a simulation cycle are precisely the same as with 36
vhpiDepositPropagate. 37

 38
Immediate update with vhpiDepositPropagate or vhpiDeposit during network propagation has an 39
indeterminate result and is not portable. Immediate update with vhpiForce or vhpiForcePropagate have a 40
determinate result for the signal that is forced but the network may be inconsistent with respect to the 41
model. 42
 43

• The integer property vhpiIsForcedP can be used to query if the object value is forced. 44
 45
vhpiRelease 46

 47
• This flag can be used to release the hold placed by a force. An object value value can be placed on 48
hold using one of vhpiForce or vhpiForcePropagate. The hold can be released using vhpiRelease. 49
After the value has been released, the object value can be updated through VHDL signal update or 50
network propagation (it does not revert to the value prior to the force). 51
• vhpiRelease has only the effect of releasing the value of objects for which the vhpiProperty 52
vhpiIsForcedP is TRUE. 53

 158

• The pointer to the value structure valuep is not required when vhpi_put_value if called with the 1
vhpiRelease flag. If a non null valuep pointer is provided, it will be ignored. 2
 3

vhpiSizeConstraint 4
 5
• vhpi_put_value can be used with this mode to set the constraint of the reference handle if the type 6
of the reference handle is unconstrained. A subsequent call to vhpi_put_value will update the value of 7
the reference handle. An error should be generated if the size constraint indicated by the first call does 8
not match the size of the value in the second vhpi_put_value call. 9
 10

It should be noted that VHDL subprograms that have a VHPI foreign attribute can be executed at any point 11
in a simulation cycle, which implies that the users will have access to values and can update values 12
virtually at any point during signal update, network propagation and process execution. The semantics 13
described under the various flags apply for these instances of value modification. 14
 15
Further, any value change callbacks registered on signals, ports will be triggered when the user updates 16
their value and creates an event using either vhpiDepositPropagate or vhpiForcePropagate. Using 17
vhpiDeposit or vhpiForce on signal and ports will not involve triggering of any value change callbacks. 18
Also, callbacks registered on signals and ports with reason vhpiCbForce will be triggered when the signal 19
or port is forced using the interface. Similarly, all callbacks registered on signals and ports with reason 20
vhpiCbRelease will be triggered when the signal or port is released using the vhpiRelease mode through 21
the interface. Value change callbacks for variable trigger whenever the value of the variable has changed. 22
 23
A deposit value has no effect if the object is forced. A forced signal can be forced to a new value, the last 24
force takes effect. A release has no effect other than on a forced object. 25
vhpiCbForce or vhpiCbRelease callbacks trigger only if the force or release occurs. 26
informative note: a warning may be generated by an implementation if vhpi_put_value has no effect. 27
 28
If vhpi_put_value detects a range constraint violation between the value and the target object, 29
vhpi_put_value shall generate an error for range constraint violation if such a case is detected; that error 30
can be checked immediately by calling vhpi_check_error. 31
informative note: the detection may occur later and be reported in an error cbk. 32
 33

9.4 Scheduling transactions on signal drivers 34
(PLI_INT32T) vhpi_schedule_transaction(vhpiHandleT refHdl, 35
 vhpiValueT* valuep, PLI_INT32T numValues, vhpiTimeT* 36
delayp, 37
 PLI_UINT32 delayMode, vhpiTimeT* pulseRejp) 38
 39
The interface provides a capability to schedule transactions on drivers. The function to use is 40
vhpi_schedule_transaction, which has the above signature. The following are the parameters that should be 41
passed to this function, 42
 43
1. refHdl 44

This is a VHPI handle that represents an object that supports value scheduling. 45
2. valuep 46

This is a pointer to a single value structure or an array of value structures. 47
3. numValues 48

This field is used to specify the number of values that are being passed through the value structure 49
pointer, valuep. 50

4. delayp 51
This is the delay, always with respect to the current simulation time, that will be used in processing the 52
scheduling operation. 53

Formatted: Bullets and Numbering

Formatted: Indent: Left: 0.25"

 159

5. delayMode 1
This represents the delay mode, which could be one of vhpiInertial or vhpiTransport. 2

6. pulseRejp 3
This is a pulse rejection limit that can be specified. If the desire is to have an inertial delay without a 4
pulse rejection limit, this field should be set to null. 5

 6
The reference handle should be either a handle to a driver, of type vhpiDriverK, a handle to a VHPI driver 7
collection, of type vhpiDriverCollectionK. 8
 9
The drivers returned by the interface will always be drivers to basic signals. A basic signal is either a scalar 10
signal or a resolved composite typed signal. A collection of drivers to basic signals can be constructed 11
using the VHPI call vhpi_create and used to schedule updates collectively to all the drivers in the 12
collection. A collection of drivers can be created only for the same unresolved composite typed signal. 13
Drivers driving parts of different signals cannot be placed in the same driver collection. 14
 15
For a driver to a scalar signal, a single value structure should be passed with the format set to indicate a 16
scalar value. For collections of drivers or for a composite driver, the following rules, based on the type of 17
the driven signal, should be used to associate value structures with driver transaction values for scheduling, 18
 19
• When the type of a signal is an unresolved array of scalars, a collection of drivers can be created to 20

one or more of the scalar sub-signals, when the type of a signal is a resolved array of scalars, a single 21
composite driver handle should be used to schedule a transaction. In either cases, a single value 22
structure should be passed with a format being a vector format, with an allocated value buffer having 23
as many scalar values as the number of scalars. In the case of a driver collection, the numElems field 24
of the value structure should be equal to the numMembers property of the collection and in the case of 25
a composite driver, it should be equal to the number of scalars. The numValues parameter should 26
always be 1. 27

• When the type of a signal is either an array of composites or a record, an array of value structures 28
should be passed, whether we have a single composite driver or a collection of drivers. The value 29
structures should be passed at the coarsest granularity possible. This implies that for all subsignals of 30
the composite signal, which are arrays of scalars, the value has to be passed as a vector for all the 31
scalars. For all other subsignals, the same rule should be used recursively, down the type hierarchy. 32
All value structures passed can only be either values to scalars or arrays of scalars. 33

 34
The following table describes the relationship between signal subtypes, drivers, and the value structures 35
required to be passed. 36
 37
 38
 39
 40
Signal subtype Driver or Collection

handle that can be
used to schedule
transactions.
Note: it is possible to not get
any drivers if the signal is
not driven

Example Number
of value
structure
s

Description of
value structures

Unresolved scalar 0..1 scalar driver
• A scalar driver

handle.

BIT 1 Single value
structure with the
format set to an
appropriate scalar
format.

 160

Resolved scalar * scalar drivers.
A scalar driver handle.

STD_LOGIC 1 Single value
structure.
• Scalar format

and value for
a driver
handle

STD_LOGIC_VECTOR 1 Single value
structure.
• Scalar format

for a single
driver handle

• Vector format
for a
collection of
driver handles

RECORD WITH N
SCALAR FIELDS

N N value structures
with scalar
formats, one per
field

Unresolved
composite

Resolved
composite

0..1 driver for each
basic signal in the
composite signal.
• A driver handle to

one of the basic
signals

• A collection of
drivers to one or
more basic
signals.

* composite drivers
• A composite

driver handle.
 RECORD WITH N

SCALARS AND M
VECTORS OF
SCALARS

M+N Array of value
structures,
• N value

structures
with scalar
formats, one
per scalar
field.

• M value
structures
with vector
formats, one
per vector
field.

 1
The layout of value structures passed adhere to the following rules: 2
 3
1. For all composite drivers, the value structures passed in should be in the same order as the declaration 4

order in the typemark of the resolved subtype. 5
2. For all collections of drivers, the value structures passed in should be in the same order as the 6

sequence in which drivers were added to the collection, with Rule 1 applying, whenever we find a 7
driver for a resolved composite in the collection. Can we have a collection of collection of drivers? 8

 9
The vhpiCbTransaction callback reason is provided to be able to access the time/value pair of a transaction. 10
The callback is registered on the driver or signal handle and triggers when a transaction matures. 11

 161

A single value structure cannot be used to get the current driving value of a driver collection or a 1
composite driver which is not an array of scalars. The only mechanism is to iterate over all the individual 2
drivers and get their values. 3
 4
A driver or a set of drivers can be disconnected with vhpi_schedule_transaction(), by posting a NULL 5
transaction. The drivers involved in a request to disconnect using vhpi_schedule_transaction should be 6
drivers corresponding to guarded signals assigned by sequential signal assignments. Using 7
vhpi_schedule_transaction to post a NULL transaction to other type of drivers is undefined by the standard. 8
Vendors may choose to extend the functionality defined by the standard by allowing scheduling of NULL 9
transactions on drivers corresponding to guarded concurrent signal assignment statements to guarded 10
signals. In this case the behavior of the driver on posting a NULL transaction will be specified by the 11
vendor tool. 12
Issue on disconnecting guarded signals. 13
 14
Any guarded signal which is disconnected using vhpi_schedule_transaction can be reconnected, either 15
using vhpi_schedule_transaction, by posting a non-NULL transaction, as with a valid set of value 16
structures, or through VHDL, when a guard expression becomes TRUE and a non-NULL signal 17
assignment takes effect. 18
 19
At a given point in time, there can be only one active disconnection scheduled for a driver through VHPI 20
or VHDL?. 21
 22
The disconnection of drivers can also be done using vhpi_schedule_transaction on procedure OUT mode 23
signal parameters, as long as the actual is a guarded signal (why guarded signals). The same restrictions as 24
noted above apply in this case as well. 25
 26
A transaction scheduled with zero delay will take effect in the next delta cycle. Such zero delay 27
transactions can be posted: 28
 a) during non-postponed process execution 29
 b) in a vhpi callback function which was registered for reasons: 30
 i) vhpiStartOfProcesses 31
 ii) vhpiCbStmt, 32
 iii) vhpiCbResume 33
 iv) vhpiCbSuspend 34
 v) vhpiCbSensitivity 35
 vi) vhpiCbTimeOut 36
 vii) vhpiCbRepTimeOut 37
 viii) vhpiEndOfProcesses 38
 ix) vhpiLastKnownDeltaCycle 39
It shall be an error to post zero delay transactions at any other time. vhpi_schedule_transaction for non 40
zero delay transaction can be called at any of a) and b) and additionally during postponed process 41
execution. 42

10. Utilities 43

10.1 Getting current simulation time 44
 45
(PLI_VOID) vhpi_get_time(vhpiTimeT * time_p, long *cycles_p) 46
 47
This function shall get the current simulation time. The caller must allocate a structure of type vhpiTimeT 48
and pass a pointer to this structure to the function. The time will be returned in the simulation time 49
precision. If the users require the conversion of the returned time value in other units, they should use the 50
interface function vhpi_format_value. The simulator time unit precision can be retrieved with the property 51
vhpiPrecisionP. This property returns the physical position of the unit of the standard TIME type which 52

 162

represents the minimum time unit precision of the tool (simulator). This property can be also used to 1
interpret the unit in which time values are returned in callback time fields. 2
 3
If the time_p parameter is set to NULL, then this function returns the absolute number of simulation cycles 4
from start of simulation, through the second parameter. 5
 6
If the time_p parameter is not NULL, then this function returns the current simulation time through time_p 7
and the relative number of delta cycles that have been executed within the current simulation time step 8
through the second parameter. 9
 10
If the second parameter is NULL, then the relative or absolute delta cycle information is not returned. 11
Further, the second parameter if non NULL, should be the address of an integer type at least 64 bits wide. 12
 13
Procedural Interface References: 14
Use “vhpi_get_phys(vhpiPrecisionP, NULL)” to access the simulator precision of TIME values. 15
See vhpi_user.h file for the constant value definitions of the type and unit field. 16

10.2 Printing 17

10.2.1 Printing to the stdout, log files, displaying messages 18
 19
(PLI_INT32T)vhpi_printf(const PLIBYTE8 * *format,…); 20
 21
This function allows a VHPI application to send messages to the output files defined by the tool. 22

10.3 Error checking and handling 23
(PLI_INT32T) vhpi_check_error(vhpiErrorInfoT *errorp); 24
 25
This function can be called to determine if the last previous VHPI function call had an error. It can either 26
check if an error occurred or retrieve detailed error information. vhpi_check_error() takes an argument 27
(pointer to error structure) and returns 0 if no error, or 1 if an error occurred. 28
If the parameter errorp is non null and if the previous VHPI call generated an error, the error information 29
structure pointed out by errorp will be filled up on the return with the last error information. The error 30
information structure must be allocated by the caller. 31
If 0 is returned, the error information structure field are meaningless. The message string is a static string 32
buffer which contains the formatted error message. The error message is only valid until the the next VHPI 33
function call. 34
File and line information are optional fields that can indicate for example the foreign model instance which 35
caused the error, or the VHDL item from where an error originated. (see example in the functional 36
reference). The error information is NOT persistent. The internal error information structure is static. 37
 38
A tool flag could enable or disable the display of all VHPI errors to STDERR, STDOUT or LOG file. The 39
configuration of which files to send the VHPI errors should be specified at the initialization 40
(bootstrap/registration phase) of the VHPI interface. Need for a special function ? (Refer to section 41
8.4Printing messages). 42
 43
 Filtering of some errors can be performed via the registration of an error handler callback function. Such a 44
callback must be registered for reason vhpiCbPLIError. (Refer to the callback chapter). 45
 46
NOTE: Error messages may be printed to STDERR or LOG file. The number of errors displayed is not 47
related to how many calls to vhpi_check_error() are in the code but to the number of errors generated by 48
VHPI function calls that are not filtered out by the error handler. 49
 50

 163

vhpi_check_error() allows the user to check for VHPI errors and eventually take actions regarding certain 1
types of error. 2
The error information structure is used for building the error message that can be printed to the screen and 3
log file and is used by the vhpi_check_error() function. 4
Such an error message could look like: 5
VHPI: <vendor specific ERRCODE>: <message> 6
 [<file> <line>] 7

10.4 Tool control 8
The VHPI functions vhpi_assert(), vhpi_control() can be called to affect the execution control flow. 9

 164

11. Procedural Interface Reference manual 1

11.1 vhpi_assert() 2
 3
 4

vhpi_assert()
Synopsis: Raise an assertion
Syntax: vhpi_assert(severity, formatmsg, …)

Type Description
Returns: int 0 on success, 1 on failure

Type Name Description
Arguments: vhpiSeverityT severity The severity of the assertion
 const PLI_BYTE8 * formatms

g
The assertion message

 5
vhpi_assert() shall be equivalent to the execution of a VHDL report statement. The function shall return 0 6
on success and 1 on failure. The function takes a variable number of arguments. The first argument, 7
severity, shall be a value corresponding to one of the VHDL severity levels: vhpiNote, vhpiWarning, 8
vhpiError, vhpiFailure. The second argument, formatmsg,is the formatted assertion string that gets printed. 9
The formatted string shall use the same formats as the C printf functions. It is possible that a vhpi_assert() 10
call causes the simulation to stop in the same way that a VHDL assert statement would do. 11
 12
Example: 13
 14
int check_clock_signal(scopeHdl) 15
vhpiHandleT scopeHdl; /* a handle to a scope */ 16
{ 17
vhpiHandleT clkHdl; 18
vhpiValueT value; 19
 20
/* look up for a VHDL object of name clk at the scope instance */ 21
/* get a handle to the clk named object */ 22
 23
clkHdl = vhpi_handle_by_name(“clk”, scopeHdl); 24
if (!clkHdl) return 1; 25
value.format = vhpiLogicVal; 26
vhpi_get_value(clkHdl, &value); 27
if (value.logic == vhpiBit0) { 28
 vhpi_assert(vhpiError, “clock not high: %d”, value.logic); 29
 return 1; 30
} 31
return 0; 32

 165

 1

11.2 vhpi_check_error() 2

vhpi_check_error()

Synopsis: Retrieves information about a VHPI function error

Syntax: vhpi_check_error(errp)
Type Description

Returns: int 0 if no error, non zero if an error had occurred.

Type Name Description
Arguments: vhpiErrorInfoT * errp NULL or pointer to a structure containing error

information
Related
functions:

See each VHPI function for related standard or vendor specific error codes.

 3
 4
vhpi_check_error () shall check if the last previous call to a VHPI function had caused an error. The 5
function shall return 0 if no error occurred or non zero if an error had happened. If the error detailed 6
information is not needed, NULL can be passed to the function. If the errp is non null, the error 7
information structure to which it points to will be filled up with the error information. The error 8
information structure must be allocated by the caller. 9
If 0 is returned (no error was detected), all field values are meaningless. The severity field indicates the 10
severify level of the error. The message field is a pointer to a static buffer of the formatted error message. 11
This error message string may be overwritten by subsequent calls to vhpi_check_error(). The str field can 12
be used for various purposes: either to put a mnemonic string abbreviation of the error, or the name of the 13
vendor product where the error originated. The file and line fields are optional fields and respectively 14
indicate the VHDL file name and line number corresponding to a VHPI handle from where the error 15
originated. In the case where the file and line number cannot be provided, these fields should respectively 16
be set to null and -1. 17
 18
 19

typedef struct vhpiErrorInfoS {

 vhpiSeverityT severity;/* the severity level of the error */
 char *message; /* the error message string */
 char *str; /* vendor specific string */
 char *file; /* Name of the VHDL file where the VHPI
 error originated */
 int line; /* line number in the VHDL file of the
 item related to the error */
} vhpiErrorInfoT;

 20

typedef enum {
 vhpiNote = 1,
 vhpiWarning = 2,
 vhpiError = 3,
 vhpiFailure = 4,
 vhpiSystem = 5,
 vhpiInternal = 6

 166

} vhpiSeverityT ;
 1
Example 1: 2
 3
vhpiErrorInfoT err; 4
 5
if (!vhpi_check_error(&err)) 6
 /* continue VHPI code */ 7
else switch (err->severity) 8
 { 9
 case vhpiError: 10
 case vhpiFailure: 11
 case vhpiInternal: 12
 return; 13
 case vhpiSystem: 14
 if (errno == …) 15
 return; 16
 default: 17
 /* examine and decide if need termination */ 18
 ... 19
 } 20
Example 2: 21
 22
1 entity top is 23
2 end top; 24
3 architecture my_vhdl of top is 25
4 constant val: integer:= 0; 26
5 signal s1, s2, s3: BIT; 27
6 begin 28
7 u1: C_and(s1, s2, s3); 29
8 process (s1) 30
9 variable va: integer:= val; 31
10 begin 32
11 va = myfunc(s1); 33
12 end process; 34
13 end my_vhdl; 35
 36
/* hdl is a handle to the root instance */ 37
void traverse_hierarchy(hdl) 38
vhpiHandleT hdl; 39
{ 40
vhpiHandleT subHdl, itr, duHdl; 41
vhpiErrorInfoT err; 42
 43
itr = vhpi_iterator(vhpiInternalRegions, hdl); 44
/* if error code is > 0 do not continue */ 45
if (vhpi_check_error(NULL)) return; 46
 47
if (itr) 48
while (subHdl = vhpi_scan(itr)) { 49
 duHdl = vhpi_handle(vhpiDesignUnit, subHdl) 50
 if (vhpi_check_error(&err) > 0) 51
 { 52
 if (err->severity > vhpiWarning) 53
 if (err->file != NULL) 54
 vhpi_printf("An error occurred during call to 55
 traverse_hierarchy 56
 at filename %s line %d\n", 57
 err->file, err->line); 58

 167

 else 1
 vhpi_printf("An error occurred during call to 2
 traverse_hierarchy\n"); 3
 return; 4
 } 5
 switch (vhpi_get(vhpiKindP, subHdl)) { 6
 ... 7
 } 8
} 9
} 10
 11
The following error will be generated and displayed because the internal 12
region of a process kind does not have a 1-to-1 method to the bound 13
designUnit. 14
 15
An error occurred during call to traverse_hierarchy at file myvhdl.vhd 16
line 8 17
 18
 19

 168

11.3 vhpi_compare_handles() 1
 2
 3

vhpi_compare_handles()
Synopsis: Compare two handles to determine if they reference the same object
Syntax: vhpi_compare_handles(hdl1, hdl2)

Type Description
Returns: int 1 if the two handles refer to the same object, 0 otherwise

Type Name Description
Arguments: vhpiHandleT hdl1 Handle to an object
 vhpiHandleT hdl2 Handle to an object
 4
vhpi_compare_handles () allows to determine if two handles are equivalent. Handle equivalence cannot be 5
done with the C ‘==’ comparison operator. 6
 7
Example: 8
 9
vhpiHandleT find_clock_signal(scopeHdl) 10
vhpiHandleT scopeHdl; /* a handle to a scope */ 11
{ 12
vhpiHandleT sigHdl, clkHdl, itrHdl; 13
int found = 0; 14
 15
/* look up for a VHDL object of name clk at the scope instance */ 16
/* get a handle to the clk named object */ 17
 18
clkHdl = vhpi_handle_by_name(“clk”, scopeHdl); 19
itrHdl = vhpi_iterate(vhpiSigDecl, scopeHdl); 20
while (sigHdl = vhpi_scan(itrHdl)) { 21

if (vhpi_compare_handles(sigHdl, clkHdl)) 22
{ 23
 found = 1; 24
 break; 25
} 26
else vhpi_release_handle(sigHdl); 27

} 28
vhpi_release_handle(itrHdl); 29
if found 30
 return(sigHdl); 31
else return(NULL); 32

 169

 1

11.4 vhpi_control() 2
 3

vhpi_control()
Synopsis: Send a control request to the tool
Syntax: vhpi_control(command, …)

Type Description
Returns: int 0 on success, 1 on failure

Type Name Description
Arguments: int command The command request
 - varargs Variable number of command specific arguments
 4
 5
vhpi_control () provides some control capabilities over the tool. The argument command specifies the 6
command request. The following command constant values are defined by the standard: vhpiStop, 7
vhpiFinish and vhpiReset. A tool may also define some specific commands and define additional 8
command constants which require some command specific arguments specified as varargs. Such 9
commands can be used to pass information from VHPI user function to the tool. 10
All commands are queued and executed at a "safe point" by the tool. 11
I030: Francoise provide more precise definition of the safe point. 12
vhpiFinish should not cause the tool to return to the host environment but rather cause the tool to reach the 13
vhpiEndOfSimulation point. 14
 15
If multiple calls to vhpi_control are made in sequence, they should be all queued. 16
Further the standard commands reset, stop and finish are executed in the order they were queued. 17
Other vendors commands may be queued (some may not require queueing) and the order is unspecified in 18
the order in which they are executed by the tool. (Basically it is left to the tool to decide what to do on its 19
vendor specific commands). 20
 21
If the argument value is set to vhpiStop, after returning from the VHPI user code, the simulator will stop. 22
 23
If the argument value is set to vhpiFinish, it would request the simulation to finish the execution of all 24
scheduled events in the current delta cycle but not to exit. The C user function continues execution even 25
after the vhpi_control() until it returns control to the simulator. 26
 27
If the argument value is set to vhpiReset, upon return of the VHPI user function,the simulator will execute 28
the sequence of actions to go back to simulation time zero. The sequence of actions is defined in the 29
standard draft section 7. The sequence of events gives the possibility for a foreign model to clean up its 30
allocated memory and reinitialize its data structures for example in the callback function for reason 31
vhpiCbStartOfReset). The design is not re-elaborated. 32
 33
 34
Example: 35
 36
void user_app() 37
{ 38
 39
/* Application traverse hierarchy */ 40
... 41
/* Application collect information */ 42
... 43
vhpi_control(vhpiFinish); 44

 170

} 1
 2

 171

11.5 vhpi_create() 1
 2

vhpi_create()
Synopsis: Create a vhpiProcessStmtK or a vhpiDriverK for a vhpi foreign model or a

vhpiDriverCollectionK or a vhpiAnyCollectionK
Syntax: vhpi_create(kind, refHdl, processHdl)

Type Description
Returns: vhpiHandleT A vhpiDriverK or vhpiProcessStmtK or vhpiDriverCollection handle

on success, null on failure.
Type Name Description

vhpiClassKindT kind Class kind of the handle to be created
vhpiHandleT refHdl Handle to a basic signal or to a foreign architecture

Arguments:

vhpiHandleT processHdl Handle to a vhpiProcessStmtK or null
Related
functions:

 3
vhpi_create () shall be used to create a vhpiDriverK of a VHDL basic signal to drive a VHDL signal from 4
a VHPI foreign model, or to create a vhpiProcessStmtK within a vhpi foreign model, or to create a 5
collection of drivers. This function should only be called during elaboration of a foreign model for creating 6
drivers and processes. There is no restriction on when creation of collections can occur.The first argument, 7
kind, specifies the kind of handle to be created (vhpiDriverK, vhpiProcessStmtK or vhpiDriverCollectionK). 8
If kind is set to vhpiDriverK, the function creates and returns a driver for the basic signal/process pair 9
respectively denoted by the handles refHdl and processHdl. If kind is set to vhpiProcessk, the function 10
creates and returns a vhpiProcessStmtK for the foreign architecture denoted by the handle refHdl, the last 11
parameter is set to null. For creation of collections, the reference handle must be null for the first time the 12
collection handle is created or must be the collection handle for the subsequent calls when a driver handle 13
is appended to the collection. The third parameter handle can either be a driver handle or a collection 14
handle. The function returns a handle of the requested kind on success and null on failure. 15
Note: Interleaving addition of elements to the collection while iterating over the members has unspecified 16
behaviour. 17
 18
 19
Example: 20
 21
void create_vhpi_driver(archHdl) 22
vhpiHandleT archHdl; /* handle to a foreign architecture */ 23
{ 24
vhpiHandleT drivHdl, sigItr, sigHdl, processHdl; 25
vhpiHandleT arr_driv[MAX_DRIVERS]; 26
int i = 0; 27
 28
 if (!vhpi_get(vhpiIsForeignP, archHdl)) 29
 return; 30
 /* create a VHPI process */ 31
 processHdl = vhpi_create(vhpiProcessK, archHdl, NULL); 32
 /* iterate on the signals declared in the architecture and create a 33
 VHPI driver and process for each of them */ 34
 sigItr = vhpi_iterator(vhpiSigDecls, archHdl); 35
 if (!sigItr) return; 36
 while (sigHdl = vhpi_scan(sigItr)) { 37
 drivHdl = vhpi_create(vhpiDriverK, sigHdl, processdl); 38
 arr_driv[i] = drivHdl; 39
 i++; 40
 } 41

 172

} 1
Issue I 20: Francoise fix example below 2
 3
void create_vhpi_collection(sigHdl) 4
vhpiHandleT sigHdl; /* handle to a signal */ 5
{ 6
vhpiHandleT itBasic, basicH, itDriver, driverH; 7
vhpiHandleT h = NULL; 8
 9
 itBasic = vhpi_iterate(vhpiBasicSignals, sigHdl); 10
 while (basicH = vhpi_scan(itBasic)) { 11
 itDriver = vhpi_iterator(vhpiDrivers, basicH) 12
 while (driverH = vhpi_scan(itDriver) { 13
 14
 h = vhpi_create((vhpiDriverCollectionK, h, driverH); 15
 } 16
 } 17
} 18
 19
 20

 173

11.6 vhpi_disable_cb() 1
 2

vhpi_disable_cb()

Synopsis: Disable a callback that was registered using vhpi_register_cb().

Syntax: vhpi_disable_cb(cbHdl)
Type Description

Returns: int 0 on success, 1 on failure.

Type Name Description
Arguments: vhpiHandleT cbHdl A callback handle of kind vhpiCallbackK
Related
functions:

Use vhpi_enable_cb() to re-enable the callback

 3
vhpi_disable_cb () shall be used to disable a callback that was registered using vhpi_register_cb(). The 4
argument to this function should be a handle to the callback. The function returns 0 on success and 1on 5
failure. 6

 174

 1

11.7 vhpi_enable_cb() 2
 3

vhpi_enable_cb()

Synopsis: Enable a callback that was registered using vhpi_register_cb().

Syntax: vhpi_enable_cb(cbHdl)
Type Description

Returns: int 0 on success, 1 on failure.

Type Name Description
Arguments: vhpiHandleT cbHdl A callback handle of kind vhpiCallbackK
Related
functions:

Use vhpi_disable_cb() to disable a callback

 4
vhpi_enable_cb () shall be used to re-enable a callback that was disabled. The callback was disabled at the 5
registration with the flags set to vhpiDisable or was disabled by a call to vhpi_disable_cb (). The argument 6
to this function should be a handle to the callback. The function returns 0 on success and 1 on failure. 7
 8
Example: 9
 10
void find_cbks() 11
{ 12
vhpiHandleT cbHdl, cbItr; 13
vhpiStateT cbState; 14
 15
/* iterate on the registered callbacks and re-enabled the disabled ones 16
*/ 17
 18
cbItr = vhpi_iterator(vhpiCallbacks, objHdl); 19
if (!cbItr) return; 20
while (cbHdl = vhpi_scan(cbItr)) { 21
 cbState = vhpi_get(vhpiStateP, cbHdl); 22
 if (cbState == vhpiDisable) 23
 vhpi_enable_cb(cbHdl); 24
} 25
} 26

 175

11.8 vhpi_format_value 1
 2
 3

vhpi_format_value()

Synopsis: Format a value into another format representation

Syntax: vhpi_format_value(valueInP, valueOutp)
Type Description

Returns: int 0 on success, non 0 on failure

Type Name Description
Arguments: const vhpiValueT * valuep Pointer to the input value

 vhpiValueT * valuep Pointer to the output value

Related
functions:

Use vhpi_get_value to get an object value
Use vhpi_get_time() to get the current simulation time

 4
 5
vhpi_format_value() shall change the representation of a value to a requested format. This function takes 6
two value pointers, the first one is the original value, the second one is the output value. The first value 7
contains the value in a given format, the second value structure should have: 8

- the format field set to the requested format, 9
- the bufSize field set to size of the user allocated buffer (if formatting values of array type), 10
- the unit field set to the physical unit position for time or physical type unit conversions if formatting 11

time or physical values, 12
- the union field which corresponds to the requested format set to point the user allocated value. 13
 14

Both input and output value and value buffers shall be allocated by the caller. This function shall be used 15
to format value into non native format representations or to do unit conversions for time or physical types. 16
The input value may have been obtained by vhpi_get_value, or be a value returned by a callback on value 17
change. 18
The interface does not define the legal format conversions. 19
 20
The function returns 0 on success and non zero on failure to get the value. In case the buffer size of the 21
output value (valuep->bufSize) allocated by the user is insufficient, vhpi_format_value returns a positive 22
value which indicates the required buffer size in bytes for the converted value. If a negative value is 23
returned, an error occurred and can be checked immediately after the vhpi_format_value() call by calling 24
vhpi_check_error(). An error is generated if the size of the buffer is not sufficient. 25
 26
 The following errors are possible: 27
 - Either of the value pointers is NULL. 28
 - Bad format specified: the given format is inappropriate for the format of the input value, or has not been 29
set. For example, if the input format is vhpiCharVal, the requested format cannot be vhpiRealVal. 30
 - Overflow: the value does not fit, for example requesting the value of a real as an integer may result in an 31
overflow. The value is returned but truncated. 32
 33
The value structure (see table in vhpi_get_value) must have been allocated by the user. The format field 34
must have been set by the user. The space to hold the value should be allocated by the user and the bufSize 35
field to the size of the allocated buffer.. 36

 176

On the successful operation, the corresponding union field of the output value will be set by 1
vhpi_format_value. 2
 3
For time or physical values the unit field must be set to the physical position of the unit of representation of 4
the value (1 being the base unit for physical types). 5
 6
 7
Example: 8
 /* converting a real value to an integer value */ 9
 struct vhpiValueS value, newValue; 10
 vhpiValueT *valuep, *newValuep; 11
 struct vhpiErrInfoS errInfo; 12
 13
 valuep = &value; 14
 newValuep = &newValue; 15
 value.format = vhpiRealVal; 16
 17
 if (vhpi_get_value(objHdl, valuep)) 18
 vhpi_check_error(&errInfo); 19
 newValue.format = vhpiIntVal; 20
 if (vhpi_format_value(valueP, newValuep)) 21
 vhpi_check_error(&errInfo); 22
 23
/* converting a time value from vhpiFs unit(precision of the simulator) 24
to vhpiNs unit */ 25
 26
 value.format = vhpiTimeVal; 27
 vhpi_get_value(objHdl, valuep); 28
 29
 newValue.unit = 1000000; /* physical position of ns */ 30
 newValue.format = vhpiTimeVal; 31
 if (vhpi_format_value(valuep, newValuep)) 32
 vhpi_check_error(&errInfo); 33
 34
 35

 177

11.9 vhpi_get() 1
 2

vhpi_get()

Synopsis: Get the value of an integer based property of an object

Syntax: vhpi_get(prop, hdl)
Type Description

Returns: vhpiIntT Value of the property

Type Name Description
Arguments: vhpiIntPropertyT prop An enumerated integer property constant

representing the property of an object for
which to obtain the value

 vhpiHandleT hdl Handle to an object

Related
functions:

Use vhpi_get_str() to get string valued properties.
Use vhpi_get_real to get real valued properties.

 3
 4
vhpi_get() shall return the value of an object property of type vhpiIntPropertyT. For properties that are 5
boolean properties (have 2 possible values 1 for true and 0 for false. Some properties such as vhpiSizeP 6
may return any integer, while some other properties return a defined value; for such properties (example 7
vhpiModeP), the VHPI header file predefines the integer value to be returned. 8
 9
 10

 178

 1
 2

11.10 vhpi_get_cb_info() 3
 4

vhpi_get_cb_info()

Synopsis: Retrieve information about a callback registered with vhpi_register_cb()

Syntax: vhpi_get_cb_info(hdl, cbDatap)
Type Description

Returns: PLI_INT32 0 on success, 1 on failure

Type Name Description
Arguments: vhpiHandleT hdl Handle to the callback

 vhpiCbDataT cbDatap Pointer to a structure containing callback
information.

Related
functions:

Use vhpi_register_cb() to register a callback.

 5
 6
vhpi_get_cb_info() shall be used to retrieve callback information for a registered callback. The 7
information is returned in a data structure that shall be allocated by the caller. The caller only allocates the 8
vhpiCbDataS structure. 9
The cbDatap argument should point to a vhpiCbDataT structure defined by the VHPI standard header file. 10
The data structure fields are described in section 8.2.1 describing vhpi_register_cb(). The cbData 11
argument memory must be allocated by the caller. The first argument should be a handle to the callback of 12
kind vhpiCallbackK. The callback information returned is equivalent to the callback data information that 13
was passed at the registration of the callback. If the callback was a time callback and therefore time 14
information was supplied, vhpi_get_cb_info must convey back this information by setting the time field of 15
the vhpiCbDataS structure to point to a time structure allocated by the VHPI interface which contains 16
similar information to the registration call. 17
 18
 19

typedef struct vhpiCbDataS {
 int reason; /* the reason of the callback */
 (void) (*cbf)(const struct vhpiCbDataS *);/* the callback
 function
 pointer */
 vhpiHandleT obj; /* a handle to an object */
 vhpiTimeT *time; /* a time */
 vhpiValueT *value; /* a value */

 void *user_data; /* user data information */

} vhpiCbDataT, *vhpiCbDatap;

 20

 179

11.11 vhpi_get_data() 1
 2

vhpi_get_data()

Synopsis: Retrieve data from a saved location.

Syntax: vhpi_get_data(int id, void *dataLoc, int numBytes)
Type Description

Returns: PLI_INT32 the number of bytes read, 0 on error

Type Name Description
Arguments: PLI_INT32 id an identifier denoting a position in a saved location
 PLI_VOID * dataLoc the address in which to put the data read
 PLI_INT32 numBytes the requested number of bytes to read
Related
functions:

Use vhpi_put_data to store data in a saved location

 3
vhpi_get_data() shall be used to retrieve “numBytes” of data for a given “id” from a saved file. The data is 4
placed at the address pointed to by “dataLoc”. The memory pointed to by dataLoc must have been properly 5
allocated by the caller. The first call for a given “id” will retrieve “numBytes” of data starting at was placed 6
into the save location with the first call to vhpi_put_data() for the same “id”. The returned value is the 7
number of bytes that were read. The user is responsible to check if the number of bytes read in is equal to 8
the number of bytes requested. Each subsequent call with the same id will start retrieving data where the 9
last call left off. 10
It is acceptable for an application to read in less bytes than what was stored for a given id with 11
vhpi_put_data(), a warning should be issued. In this case, the dataLoc address is filled up with the data 12
left for the given id and the remaining bytes will be filled up with ‘\0’. The return value shall be the actual 13
number of bytes retrieved. 14
 15
vhpi_get_data() can only be called from a callback routine which was registered for reason 16
vhpiCbStartOfRestart or vhpiCbEndOfRestart. Such callbacks must have been registered during the 17
vhpiCbStartOfSave or vhpiCbEndofSave execution. The reason is that the restart callback information (in 18
particular the ids) must be saved in the simulation save location. A good way to record the id of an 19
application is to pass it in the user_data field of the callback data of reason vhpiCbStartOfRestart or 20
vhpiCbEndOfRestart. The size of the user_data field is a pointer to char which is enough to contain an int. 21
 22
 23
Example: A consumer routine which retrieves stored data from a save location. 24
See also the example in vhpi_put_data() for how this restart callback was registered. 25
 26
/* type definitions for private data structures to save used by the 27
foreign models or applications */ 28
struct myStruct{ 29
 struct myStruct *next; 30
 int d1; 31
 int d2; 32
} 33
void consumer_restart(vhpiCbDataT *cbDatap) 34
{ 35
 int status; 36
 int cnt = 0; 37
 struct myStruct *wrk; 38
 int dataSize = 0; 39

 180

 /* get the id for this restart callback */ 1
 int id = (int) cbDatap->user_data; 2
 /* get the number of structures */ 3
 status = vhpi_get_data(id, (char *)&cnt, sizeof(int)); 4
 if (status != sizeof(int)) 5
 vhpi_assert(vhpiError, “Data read is not an int %d\n”, status); 6
 /* allocate memory to receive the data that is read in */ 7
 firstWrk = calloc(cnt, sizeof(struct myStruct)); 8
 9
 /* retrieve the data for the first structure */ 10
 dataSize = cnt * sizeof(struct myStruct); 11
 status = vhpi_get_data(id, (char *)wrk, dataSize); 12
 if (status != dataSize) 13
 vhpi_assert(vhpiError, “ cannot read %d data structures\n”, cnt); 14
 15
 /* fix up the next pointers in the link list: 16
 recreate the linked list */ 17
 for (wrk = firstWrk; cnt >0; cnt--) 18
 { 19
 wrk->next = wrk++; 20
 wrk = wrk->next; 21
 } 22
} /* end of consumer_restart */ 23

 181

 182

 183

11.12 vhpi_get_foreignf_info() 1
 2

vhpi_get_foreignf_info()

Synopsis: Retrieve information about a foreign model or application functions

Syntax: vhpi_get_foreignf_info(hdl, foreignDatap)
Type Description

Returns: PLI_INT32 0 on success, 1 on failure

Type Name Description
Arguments: vhpiHandleT hdl Handle to the foreign architecture, procedure,

function or application
 vhpiForeignDataT foreignDatap Pointer to a structure containing model

information.
Related
functions:

Use vhpi_register_foreignf() to register foreign model and application elaboration and
execution functions.
Use the iteration function vhpiForeignfs to get the foreign models and applications
registered in a tool session.
Use vhpi_get_cb_info() to retrieve information about a registered callback.

 3
 4
vhpi_get_foreignf_info() shall be used to retrieve foreign function information for foreign models and 5
applications. The information is returned in a data structure that shall be allocated by the caller. On the 6
return, the foreignDatap data structure is populated with the function pointers of the foreign model if bound, 7
the kind of foreign model (vhpiArchF, vhpiProcF, vhpiFuncF, or vhpiAppF) and the library and model 8
string names. The populated information is read only and the lifetime of the strings is unspecified. 9
The foreignDatap argument should point to a vhpiForeignDataT structure defined by the VHPI standard 10
header file. The data structure fields are described in section 11.28 vhpi_register_foreignf(). The 11
foreignData argument memory must be allocated by the caller. The first argument should be a handle to a 12
foreign model. The handle kind is vhpiForeignfK (refer to the foreign model class diagram). 13
vhpi_get_foreignf_info() does not force any function binding; it shall return the function pointers if the 14
model has been bound to its C behaviour or null if not bound yet. A warning should be issued that the 15
foreign model has not been bound yet. 16
 17
 18
 19

typedef struct vhpiForeignDataS {
 vhpiForeignT kind;/* the foreign model class kind:
 vhpi[ArchF,ProcF,FuncF, AppF]K */
 char *libraryName;/* the library name that appears in the
 VHDL foreign attribute string */
 char *modelName; /* the model name that appears in the
 VHDL foreign attribute string PA28*/
 void (*elabf)(const vhpiCbDataT *);
 /* the callback function pointer for
 elaboration of foreign architecture */
 void (*execf)(const vhpiCbDataT *);
 /* the callback function pointer for
 initialization/simulation execution of
 foreign architecture, procedure,
 function or application */

 184

} vhpiForeignDataT, *vhpiForeignDatap;

 1

 185

11.13 vhpi_get_next_time() 1
 2

vhpi_get_next_time()

Synopsis: Retrieve the next simulation time when some activity is scheduled

Syntax: vhpi_get_next_time(time_p)
Type Description

Returns: int 0 on success, vhpiNoActivity if nothing is scheduled, non zero on
other errors

Type Name Description
Arguments: vhpiTimeT * time_p A pointer to a time structure containing the

next time information

Related
functions:

Use vhpi_get_phys(vhpiPrecisionP, NULL) to get the TIME value precision.
Use vhpi_get_phys(vhpiTimeUnitP, NULL) to get the simulator time unit.
Use vhpi_get_time() to get the current simulation time.

 3
 4
vhpi_get_next_time() shall return the next active time if this function is called during postponed process 5
or end of time phase and the current time when called in any other phase. The function returns 0 when 6
there is a next scheduled time, and the time argument provides the absolute time value for the next event. f 7
no event is scheduled, the time low and high fields should be both set to represent the value of Time'HIGH 8
and the function should return vhpiNoActivity (defined to be the constant 1). If there is any error during 9
the execution of this function, the function returns a non zero value (other than vhpiNoActivity), the time 10
value is unspecified. This function can be called at the end of time step or at end of initialization. 11
 12
Example: 13
 14
vhpiTimeT time; 15
 16
switch (vhpi_get_next_time(&time)) 17
{ 18
 case vhpiNoActivity: 19
 vhpi_printf("simulation is over, %d %d\n"); 20
 break; 21
 case 0: 22
 vhpi_printf(“time = %d %d\n”, time.high, time.low); 23
 break; 24
 default: 25
 vhpi_check_error(&errInfo); 26
 break; 27
} 28
 29
 30

11.14 vhpi_get_phys() 31
 32

vhpi_get_phys()

Synopsis: Get the value of a physical property of an object

Syntax: vhpi_get_phys(prop, hdl)

 186

Type Description
Returns: vhpiPhysT Value of a physical property

Type Name Description
Arguments: vhpiPhysPropertyT prop An enumerated physical property constant

representing the property of an object for
which to obtain the value

 vhpiHandleT hdl Handle to an object

Related
functions:

Use vhpi_get() to get integer valued properties.
Use vhpi_get_str to get string valued properties.

 1
 2
vhpi_get_phys() shall return the value of an object property of type vhpiPhysPropertyT. The value is 3
returned as a vhpiPhysT. The returned value is unspecified in case of an error. 4
 5
Example: 6
 7
vhpiHandleT type; /* a physical type declaration */; 8
vhpiHandleT range = vhpi_handle(vhpiConstraint, type); 9
vhpiPhysT phys = {0,0}; 10
 11
phys = vhpi_get_phys(vhpiPhysRightBoundP, range)); 12
vhpi_printf(“ right bound of physical type is %d %d \n”, phys.low, 13
phys.high); 14
 15

11.15 vhpi_get_real() 16
 17

vhpi_get_real()

Synopsis: Get the value of a real property of an object

Syntax: vhpi_get_real(prop, hdl)
Type Description

Returns: vhpiRealT Value of a real property

Type Name Description
Arguments: vhpiRealPropertyT prop An enumerated real property constant

representing the property of an object for
which to obtain the value

 vhpiHandleT hdl Handle to an object

Related
functions:

Use vhpi_get() to get integer valued properties.
Use vhpi_get_str to get string valued properties.

 18
 19
vhpi_get_real() shall return the value of an object property of type vhpiRealPropertyT. The value is 20
returned as a vhpiRealT. The return value is unspecified in case of an error. 21
 22
Example: 23
 24

 187

vhpiHandleT type; /* a float type declaration */; 1
vhpiHandleT range = vhpi_handle(vhpiConstraint, type); 2
 3
vhpi_printf(“ right bound of floating type is %f\n”, 4
vhpi_get_real(vhpiFloatRightBoundP, range)); 5
 6
 7

 188

11.16 vhpi_get_str() 1
 2

vhpi_get_str()

Synopsis: Get the value of a string property of an object

Syntax: vhpi_get_str(prop, hdl)
Type Description

Returns: const PLI_BYTE8 * Pointer to a character string that represents the property value

Type Name Description
Arguments: vhpiStrPropertyT prop An enumerated string property constant

representing the property of an object for
which to obtain the value

 vhpiHandleT hdl Handle to an object

Related
functions:

Use vhpi_get() to get integer valued properties.
Use vhpi_get_real to get real valued properties.

 3
 4
vhpi_get_str() shall return the value of an object property of type vhpiStrPropertyT. The next call to 5
vhpi_get_str() may override the previous string value returned by the prior vhpi_get_str() call, therefore if 6
the string is to be used after this call, the string should be copied by the user to another location. The 7
function returns NULL on error. 8
 9
Example: 10
 11
char name[MAX_LENGTH]; 12
vhpiHandleT inst = vhpi_handle_by_name(“:u1”, NULL); 13
 14
strcpy(name, vhpi_get_str(vhpiDefNameP, inst)); 15
vhpi_printf(“instance u1 is a %s\n”, name); 16
 17

 189

 1

 190

11.17 vhpi_get_time() 1
 2

vhpi_get_time()

Synopsis: Retrieve the current simulation time

Syntax: vhpi_get_time(time_p, cycles_p)
Type Description

Returns: void

Type Name Description
Arguments: vhpiTimeT * time_p A pointer to a time structure containing time

information
 long * cycles_p The number of relative or absolute delta

cycles.
Related
functions:

Use vhpi_get_phys(vhpiPrecisionP, NULL) to get the simulator precision.
Use vhpi_get_phys(vhpiSimTimeUnitP, NULL) to get the simulator time unit.

 3
 4
vhpi_get_time() shall return the current simulation time. The time value is returned using in the format 5
specified in the time structure. The caller must allocate the time structure. The time is returned in the base 6
unit of type time. In order to get the time in an different unit or format the vhpi_format_value() function 7
shall be used. 8
 9
If time_p is not NULL and cycles_p is not NULL, the time_p argument is set to the current simulation time 10
Tc, the cycles_p argument is set to the current number of delta cycles from the beginning of that time step . 11
A delta cycle is counted even if not completed. If the time_p argument is NULL, the cycles_p argument is 12
set to the the absolute number of simulation cycles executed from the beginning of simulation. Cycles_p 13
should be a pointer to long. The time is the current time, and the current number of delta cycles even if the 14
time step or current delta is not completed yet. 15
 16
 17
 18

typedef struct vhpiTimeS {
 vhpiInt high;
 vhpiInt low;

} vhpiTimeT;

Issue Francoise: vhpiTimeS structure differs from header files. 19
 20
Example: 21
 22
vhpiTimeT time; 23
 24
vhpi_get_time(&time, NULL); 25
vhpi_printf(“time = %d %d\n”, time.high, time.low); 26
 27

 191

 1

 192

 193

11.18 vhpi_get_value() 1
 2
 3

vhpi_get_value()

Synopsis: Get the value of an object or name, driver or transaction

Syntax: vhpi_get_value(objHdl, valuep)
Type Description

Returns: PLI_INT32 0 on sucess, non 0 on failure to get the value

Type Name Description
Arguments: vhpiHandleT objHdl Handle to an object which has a value

 vhpiValueT * valuep Pointer to a value

Related
functions:

Use vhpi_put_value() to set an object to a value.
Use vhpi_schedule_transaction to update the waveform of a signal driver.

 4
 5
vhpi_get_value() shall get the value of an object or expression wich possess a value. Classes of objects 6
which have a value have the vhpi_get_value operation (see class diagrams). The function takes 2 7
arguments: objHdl, handle to the object to get the value from, valuep, pointer to a value structure that 8
contains information on how to format the value. The function returns 0 on success and non zero on failure 9
to get the value. In case the buffer size of the value (in valuep->bufSize) allocated by the user is 10
insufficient, vhpi_get_value returns a positive value which indicates the required buffer size in bytes for 11
the value. If a negative value is returned, an error occurred and can be checked immediately after the 12
vhpi_get_value() call by calling vhpi_check_error(). Also an error if a buffer is provided and the size of 13
the buffer is not sufficient. 14
 15
 The following errors are possible: 16
 - This is not a valid object to get a value from: the object does not carry a value or the object handle is 17
NULL. 18
 - Bad format specified: the given format is inappropriate for the subtype of the object, or has not been set. 19
 - Overflow: the value does not fit, for example requesting the value of a real as an integer may result in an 20
overflow. The value is returned but truncated. 21
 - Value is unavailable: the simulator has made some performance optimizations that makes this object and 22
value unaccessible. 23
 24
The value structure (see table 4) must have been allocated by the user. The format field must have been set 25
by the user. The space to hold the value should be allocated by the user and the bufSize field to the size of 26
the allocated buffer.. 27
On the successful operation, the corresponding union value field will be set by vhpi_get_value (see table 4). 28
 29
Values of objects of physical type are returned in base units with the unit field set to 1. Values of physical 30
literals are returned in the units of the literal. 31
 32
In case where the format is set by the user to vhpiObjTypeVal, the returned value will be returned in the 33
most appropriate format for the type of the object. On the return, the interface will set the format field. 34
Table 5 specifies which format will be chosen for each VHDL basic type. 35
 36

 194

vhpi_get_value() can retrieve the value of VHDL scalar types, value of access types, and arrays of scalars. 1
In order to get values of complex types which do not fall in these categories, VHPI provides methods to: 2
 - iterate on the sub-element fields of an object of a record type with the method vhpiSelectedNames. 3
 - iterate on the sub-element index of an object of an array type with the method vhpiIndexedNames. 4
 - access the dereferenced object from a variable object of an access type with the one-to-one method 5
vhpiDerefObj. 6
 7
Given a reference handle of the object of a composite type, it is possible to iterate through each record field 8
or array element and for each handle of the iterator, call vhpi_get_value() to get the value of that sub-9
element. The iteration methods are respectively vhpiSelectedNames, and vhpiIndexedNames. 10
 vhpi_iterate(vhpiSelectedNames, compObjHdl) 11
 vhpi_iterate(vhpiIndexedNames, compObjHdl) 12
These methods return an ordered list of elements. 13
In case of values of multi-dimensional arrays, each returned handle represents an element in that array. If 14
the array has 3 dimensions r, c, t, each handle returned can be represented by the 3 indices in r_indx, 15
c_indx and t_indx. The elements are returned by varying the index of the last index constraint first. For 16
each index range, the variation starts by the left index to the right index, independently of the direction of 17
the range. 18
 19
Example: 20
 type array (1 to 2), (4 to 6), (8 downto 7) of integers; 21
iterating on the array elements will return the elements represented by the following: 22
 (1,4,8) (1,4,7) (1,5,8) (1,5,7) (1,6,8) (1,6,7) 23
 (2,4,8) (2,4,7) (2,5,8) (2,5,7) (2,6,8) (2,6,7) 24
 25
In the case of arrays of arrays, each returned handle represents an element in the base array. 26
Example: 27
 type arr_of_arr (1 to 2) of bit_vector(1 to 16); 28
 signal s: arr_of_arr; 29
 vhpi_iterate(vhpiIndexedNames, sHdl); // sHdl is a handle to signal s; 30
The iteration function will return handles to s(1) and s(2) which are vectors of 16 bits each. The kind of 31
these handles is vhpiIndexedNameK. The value of each handle will be the value of the 16 bit vector it refers 32
to. 33
 34
In the case of an object of a record type, iterating through the record fields should return the selected object 35
fields in the order they are declared. The kind of these handles is vhpiSelectedNameK. The value of such a 36
handle will be the value of the selected field of the object. The vhpiSelectedNames iteration method can 37
only be called on an object which type is a record type. The vhpiIndexedNames iteration method can only 38
be called on an object which type is an array type. 39
The reference handle kinds passed to the vhpiSelectedNames and vhpiIndexedNames iteration methods can 40
either be members of the objDecl class or of the name class. 41
These 2 methods allow to walk through any complex composite VHDL object. 42
 43
The 1-to-1 method vhpiDerefObj allows to access the dereference allocated object which is designated by 44
the access value of the variable. The reference handle must denote a vhpiVarDeclK kind of handle or a 45
sub-element of a variable which is of an access type. The handle returned by this method is of kind 46
vhpiDerefObjK. This class is a sub-class of the class name and inherits the properties and methods of the 47
class name. In particular, the vhpiNameP property, vhpiSizeP (size in scalars of the dereferenced object), 48
the vhpi_get_value() operation. A dereference object has no simple name according to the LRM page 45, 49
therefore the vhpiNameP should return NULL and an error should be generated (Issue I002). The 50
dereference object has a subtype which is the subtype of the accessed value. As a consequence, from a 51
derefObject which is of a composite, the iteration methods vhpiIndexedNames and vhpiSelectedNames may 52
be allowed as well as the vhpiDerefObj method if the access value is again of an access type. In the same 53
way, from an vhpiIndexedNameK or vhpiSelectedNameK, if the object designated is of an access type, the 54
vhpiDerefObj method is allowed. 55

 195

 1
Handle kinds that have a value are: 2
 1. all sub-classes of the objDecl class: vhpiConstDeclK, vhpiSigDeclK, vhpiFileDeclK, vhpiVarDeclK, 3
vhpiGenericDeclK, vhpiPortDeclK, vhpiSigParamDeclK, vhpiVarParamDeclK, vhpiConstParamDeclK, 4
vhpiFileParamDeclK 5
 6
Their value can be fetched if the object declaration has been elaborated. If the value is fetched at the end of 7
elaboration, the value is the default (’left) or initial value of the object provided in the 8
declaration. The value of a generic after elaboration will be the value after generic propagation. 9
During simulation, the value fetched is the value of the object at this particular time. 10
 11
For a vhpiFileDeclK, the value is the logical name of the file. The value is of type string. The value is the 12
string value supplied in the declaration if present or the logical name the file was associated with during a 13
call to FILE_OPEN if the file was opened during simulation. If the file is not opened at the time of the 14
query the value str field is set to NULL and an error is generated. 15
 16
For a variable of an access type, the access value can be fetched with the format vhpiPtrVal: the access 17
value is the address of the allocated object. The dereference value designated by the current access value of 18
the variable can be fetched from a handle of the dereference object (vhpiDerefObjK) which is obtained 19
after applying the vhpiDerefObj method to the variable handle. If the variable has an access value of 0 (null) 20
it does not designate an allocated object. In that case it is an error to apply the vhpiDerefObj method 21
(Dereferencing a null pointer); the vhpiDerefObj method should return a null handle and an error should be 22
generated. 23
The access value designates the created object (just like a pointer). This is different from the value of the 24
object which can be fetched by dereferencing the object. The value of a dereference name (xyz.ALL) will 25
be the dereference value pointed by the object xyz. The handle kind of a dereference name is 26
vhpiDerefObjK. The default value of a variable of an access type is NULL (NULL pointer). The initial 27
access value of a variable with an initial expression will be the access value of the initial expression. 28
A dereference object (vhpiDerefObjK) has a value which can be obtained with vhpi_get_value and the 29
format field set to a format applicable to the basic type corresponding to the dereference value. For 30
example, for a dereference value of a variable of access to integer, the format should be set to vhpiIntVal, 31
and the handle denoting the dereference object. 32
For foreign subprogram calls, it is possible to get the actual values associated with the formal parameters. 33
Subprograms are dynamically elaborated therefore the values of their parameters or declared items can 34
only be fetched when the program is currently executing or is suspended. 35
We provide a method to get the current equivalent process and a method to access the stack of an 36
equivalent process (see subprogram call class diagram). The user can only fetch the values of parameters or 37
declared items if the subprogram call is either the current executing process or is on the call stack of the 38
current executing process or is a suspended process or on the stack of a suspended process. 39
 40
Subprogram parameter values can only be fetched when the subprogram is executed because they come to 41
existence dynamically. In order to get a value for either a parameter or a declared item within that 42
subprogram, the static as well as dynamic info must be provided (stack frame level). 43
 44
2. any sub-class of the class name has a value (vhpiIndexedNameK, vhpiSliceNameK, vhpiSelectedNameK, 45
vhpiAttrNameK). 46
There is the possibility of getting a value for handles of any of the sub-classes of class literal using 47
vhpi_get_value Another approach is to use the properties defined for each of the literal sub-classes, which 48
do not require allocation of a value buffer. We defined different properties for each sub-classes: 49
vhpiIntValP for class vhpiIntLiteralK, vhpiRealValP for class vhpiRealLiteralK, and vhpiStrValP for 50
classes vhpiStringLiteralK, vhpiBitStringLiteralK, vhpiCharLiteralK and vhpiEnumLiteralK. 51
 52
It is not possible to fetch directly the value of any other expression such as an aggregate, typeConv or 53
function call for example. 54
 55

 196

3. Simulation objects: 1
A driver (vhpiDriverK) has a value which is its current driving value. This driving value can only be 2
fetched after simulation initialization phase has been completed. 3
The value of a transaction object handle (vhpiTransactionK) can also be fetched during a simulation 4
session. 5
 6
Values can be fetched after simulation initialization has completed in a simulation session, or after 7
elaboration in an elaboration session. (Francoise: Does this apply to simulation objects? Or to all objects 8
which have a value?) 9
 10
These class kinds have an operation vhpi_get_value() in the object class diagram. 11
 12
 13
Examples:The following function get_object_value() shows how to obtain value of array type, record and 14
scalar types. As written, the function is able to get the value of the signals “bit3” and “rec1”. The default 15
cases of the switch statements need to be completed to be able to get values of objects of any type. 16
 17
type bit3 is array (1 to 3) of std_logic; 18
 19
type myrecord is record 20
 i: integer; 21
 r: real; 22
 b3: bit3; 23
end record; 24
 25
-- array of records: my_recarray 26
type my_recarray is array (0 to 2) of myrecord; 27
-- multi-dimension: array 2 dimensions of time values 28
type my_2dim is array (0 to 2, 1 to 3) of time; 29
 30
type word is array of (1 to 8) of bits; 31
-- array of array 32
type mem is array (1 to 4) of word; 33
 34
signal bits : bit3 := (std0, std1, stdu); 35
signal rec1 : myrecord := (34, 2.0, (STD0, STD0, STD0)); 36
signal rec2 : my_recarray := ((34, 2.0, (others =>STD0)), (35, 3.0, 37
(others => STD1))); 38
signal arr2dim : my_2dim := ((0 ns, 1 ns, 2 ns), (3 ns, 4 ns, 5 ns), (6 39
ns, 7 ns, 8 ns)); 40
signal arrofarr : mem := ("0000_0000", "0000_0001", "0000_0010", 41
"0000_0011"); 42
 43
 44
void get_object_value(vhpiHandleT sigHdl) 45
{ 46
vhpiHandleT elemHdl, baseHdl; 47
struct vhpiValueS value; 48
vhpiValueT * valuep = &value; 49
int size; 50
char *buffer = NULL; 51
 52
/* access the value of signal sigHdl*/ 53
 54
value.bufSize = 0 55
value->value = NULL; 56
size = vhpi_get_value(sigHdl, valuep); 57
 58

 197

if (size > value.bufSize) { 1
 buffer = malloc (sizeof(size)); 2
 value.bufsize = size; 3
} 4
 5
baseHdl = vhpi_handle(sigHld, vhpiBaseType); 6
switch (vhpi_get(vhpiKindP, baseHdl)) { 7
case vhpiArrayTypeDeclK: 8
{ 9
 elemHdl = vhpi_handle(vhpiElemType, baseHdl); 10
 switch (vhpi_get(vhpiKindP, elemHdl)) 11
 { 12
 case vhpiIntTypeDeclK: 13
 value.format = vhpiIntVecVal; 14
 value.intgs = buffer; 15
 vhpi_get_value(sigHdl, &value); 16
 for (value.elemScalars, value.intgs; value.elemScalars=0; 17
 value.elemScalars--, (value.intgs)++) 18
 vhpi_printf("%s [%d] = %d \n", 19
 vhpi_get_str(sigHdl, vhpiName), 20
 value.elemScalars, value.intgs); 21
 break; 22
 case vhpiEnumTypeDeclK: 23
 if (!strcmp(vhpi_get_str(vhpiCaseNameP, elemHdl) == "CHARACTER")) 24
 { 25
 26
 value.format = vhpiStrVal; 27
 value.str = buffer; 28
 vhpi_get_value(sigHdl, &value); 29
 vhpi_printf("%s = %s\n", vhpi_get_str(vhpiName, SigHdl), 30
value.str); 31
 } 32
 else { 33
 value.format = vhpiEnumVecVal; 34
 value.enumvs = buffer; 35
 vhpi_get_value(sigHdl, &value); 36
 for (value.elemScalars, value.enumvs; value.elemScalars=0; 37
 value.elemScalars--, (value.enumvs)++) 38
 vhpi_printf("%s [%d] = %d \n", 39
 vhpi_get_str(sigHdl, vhpiName), 40
 value.elemScalars, value.enumvs); 41
 } 42
 break; 43
 case vhpiPhysTypeDeclK: 44
 45
 if (!strcmp(vhpi_get_str(vhpiCaseNameP, elemHdl) == "TIME")) 46
 { 47
 value.format = vhpiTimeVecVal; 48
 value.times = buffer; 49
 vhpi_get_value(sigHdl, &value); 50
 51
 for (value.elemScalars, value.times; value.elemScalars=0; 52
 value.elemScalars--, (value.times)++) 53
 vhpi_printf("%s [%d] = %d %d\n", 54
 vhpi_get_str(sigHdl, vhpiName), 55
 value.elemScalars, (value.times).high, 56
 (value.times).low); 57
 58
 } 59
 else { 60

 198

 value.format = vhpiPhysVecVal; 1
 value.physs = buffer; 2
 vhpi_get_value(sigHdl, &value); 3
 4
 for (value.elemScalars, value.physs; value.elemScalars=0; 5
 value.elemScalars--, (value.physs)++) 6
 vhpi_printf("%s [%d] = %d %d\n", 7
 vhpi_get_str(sigHdl, vhpiName), 8
 value.elemScalars, 9
 (value.physs).high, 10
 (value.physs).low); 11
 } 12
 13
 break; 14
 case vhpiFloatTypeDeclK: 15
 { 16
 value.format = vhpRealVecVal; 17
 value.reals = buffer; 18
 vhpi_get_value(sigHdl, &value); 19
 20
 for (value.elemScalars, value.reals; value.elemScalars=0; 21
 value.elemScalars--, (value.reals)++) 22
 vhpi_printf("%s [%d] = %f\n", 23
 vhpi_get_str(sigHdl, vhpiName), 24
 value.elemScalars, value.reals); 25
 } 26
 27
 break; 28
 default: 29
 vhpi_printf("need to decompose the element subtype: 30
 array of %s\n", 31
 vhpi_get_str(vhpiKindStrP, elemHdl));; 32
 33
 } /* end switch on elemHdl */ 34
 } 35
 break; 36
 case vhpiRecordTypeDeclK: 37
 { 38
 vhpiHandleT memberH, iterH; 39
 iterH = vhpi_iterator(vhpiMembers, sigHdl); 40
 while (memberH = vhpi_scan(iterH)) 41
 { 42
 get_object_value(memberH); 43
 } 44
 } 45
 break; 46
 case vhpiIntTypeDeclK: 47
 { 48
 value.format = vhpiIntVal; 49
 vhpi_get_value(sigHdl, valuep); 50
 vhpi_printf("%s = %d \n", 51
 vhpi_get_str(sigHdl, vhpiName), 52
 value.intg); 53
 } 54
 break; 55
 case vhpiEnumTypeDeclK: 56
 { 57
 value.format = vhpiEnumVal; 58
 vhpi_get_value(sigHdl, valuep); 59
 vhpi_printf("%s = %d \n", 60

 199

 vhpi_get_str(sigHdl, vhpiName), 1
 value.enumv); 2
 } 3
 4
 break; 5
 case vhpiFloatTypeDeclK: 6
 { 7
 value.format = vhpiRealVal; 8
 vhpi_get_value(sigHdl, valuep); 9
 vhpi_printf("%s = %d \n", 10
 vhpi_get_str(sigHdl, vhpiName), 11
 value.real); 12
 } 13
 14
 break; 15
 default: 16
 vhpi_printf("not implemented: %s\n", 17
 vhpi_get_str(vhpiKindStrP, baseHdl)); 18
 } /* end switch on baseHdl */ 19
} /* end get_object_value */ 20
 21
 22
 23
 24
We have a specialized time structure to be used for time values. 25
The physical structure should be used for any other physical types. 26
 27

/* time value structure */

typedef struct vhpiTimeS {
 vhpiInt high;
 vhpiInt low;

} vhpiTimeT;

 28
Table 2: Time value structure 29

 30
/* time unit values */ 31
 32
#define vhpiFS -15 /* femto second */ 33
#define vhpiPS -12 /* pico second */ 34
#define vhpiNS -9 /* nano second */ 35
#define vhpiUS -6 /* micro second */ 36
#define vhpiMS -3 /* milli second */ 37
#define vhpiS 0 /* second */ 38
#define vhpiMN 1 /* minute */ 39
#define vhpiHR 2 /* hour */ 40
 41

/* physical value structure */

typedef struct vhpiPhysS {
 vhpiInt high;
 vhpiInt low;
} vhpiPhysT;

Table 3: Physical value structure 42

 200

 1
 2
 3

/* value structure */
typedef struct vhpiValueS
{
 vhpiFormatT format; /* IN/OUT: (depending on format) value
 format */
 int bufSize; /* IN: size in bytes of the buffer */
 vhpiIntT numElems; /* OUT: number of array elements in the
value,
 undefined value for scalars */
 vhpiPhysT unit; /* IN/OUT: physical position of the unit
representation for the value */

 union
 {
 vhpiEnumT enumv, *enumvs; /* OUT: enumeration */
 vhpiIntT intg, *intgs; /* OUT: integer */
 vhpiRealT real, *reals; /* OUT: floating point */
 vhpiPhysT phys, *physs; /* OUT: physical */
 vhpiTimeT time, *times; /* OUT: time */
 char ch, *str; /* OUT:character or string */
 void* ptr, ptrs; /* OUT: simulator representation value
 or access value */
 } value;

} vhpiValueT;

 4
Table 4: Value structure 5

 6
/* value formats */ 7
#define vhpiBinStrVal 1 8
#define vhpiOctStrVal 2 9
#define vhpiDecStrVal 3 10
#define vhpiHexStrVal 4 11
#define vhpiEnumVal 5 12
#define vhpiIntVal 6 13
#define vhpiLogicVal 7 14
#define vhpiRealVal 8 15
#define vhpiStrVal 9 16
#define vhpiCharVal 10 17
#define vhpiTimeVal 11 18
#define vhpiPhysVal 12 19
#define vhpiObjTypeVal 13 20
#define vhpiPtrVal 14 21
#define vhpiEnumVecVal 15 22
#define vhpiIntVecVal 16 23
#define vhpiLogicVecVal 17 24
#define vhpiRealVecVal 18 25
#define vhpiTimeVecVal 19 26
#define vhpiPhysVecVal 20 27
#define vhpiPtrVecVal 21 28
#define vhpiRawDataVal 22 29
 30
/* IEEE STD_LOGIC and STD_U_LOGIC values */ 31
#define vhpiU 0 /* uninitialized */ 32

 201

#define vhpiX 1 /* unknown */ 1
#define vhpi0 2 /* forcing 0 */ 2
#define vhpi1 3 /* forcing 1 */ 3
#define vhpiZ 4 /* high impedance */ 4
#define vhpiW 5 /* weak unknown */ 5
#define vhpiL 6 /* weak 0 */ 6
#define vhpiH 7 /* weak 1 */ 7
#define vhpiDontCare 8 /* don't care */ 8
 9
/* std BIT values */ 10
#define vhpiBit0 0 11
#define vhpiBit1 1 12
 13
VHDL base type Format of returned value
INTEGER vhpiIntVal
ENUMERATION vhpiEnumVal
CHARACTER vhpiCharVal
BIT vhpiEnumVal
BOOLEAN vhpiEnumVal
SEVERITY_LEVEL vhpiEnumVal
FILE_OPEN_KIND vhpiEnumVal
FILE_OPEN_STATUS vhpiEnumVal
STD_LOGIC STD_U_LOGIC vhpiLogicVal
PHYSICAL vhpiPhysVal
TIME vhpiTimeVal
STRING vhpiStrVal
CHARACTER vhpiCharVal
FLOATING POINT vhpiRealVal
REAL vhpiRealVal
ACCESS vhpiPtrVal
ARRAY of * vhpi*VecVal
RECORD vhpiRawDataVal
 14

Table 5: vhpiObjTypeVal returned formats 15

 202

 1

11.19 vhpi_handle() 2
 3
 4

vhpi_handle()
Synopsis: Return the destination handle of a one-to-one relationship
Syntax: vhpi_handle(oneRel, refHdl)

Type Description
Returns: vhpiHandleT returns the target handle or NULL.

Type Name Description
Arguments:

vhpiOneToOne
T

 oneRel An integer constant denoting the one-to-one
relationship to traverse

 vhpiHandleT refHdl Handle to the reference object of the relationship
 5
vhpi_handle () shall be used to traverse either: 6

1. a one-to-one unamed directed relationship that exists between an object denoted by refHdl and an 7
object of type oneRel. 8

2. a one-to-one tagged directed relationship that exists between two classes. 9
 10
If the multiplicity of the association is 0..1, it is possible to not obtain a handle by traversing that 11
relationship and the function vhpi_handle() will return NULL. 12
If the multiplicity of the association is 1, the traversal of the relationship should always return a handle. 13
 14
Example: The following code shows the traversal of several one-to-one relationships. The relationships are 15
illustrated by the class scope diagram. 16
 17
vhpiHandleT get_instance_info(scopeHdl) 18
vhpiHandleT scopeHdl; /* a handle to a scope */ 19
{ 20
vhpiHandleT upScopeHdl, duHdl; 21
 22
 /* escalade the hierarchy one level */ 23
 /* traverse a tagged relationship */ 24
 upScopeHdl = vhpi_handle(vhpiUpperRegion, scopeHdl); 25
 if (vhpi_get(vhpiKindP, upScopeHdl) == vhpiCompInstStmtK) 26
 { /* traverse a unamed relationship */ 27
 duHdl = vhpi_handle(vhpiDesignUnit, upScopeHdl); 28
 return(duHdl); 29
 } 30
 else return(NULL); 31
}/* end get_instance_info() */ 32

 203

 1

11.20 vhpi_handle_by_index() 2
 3

vhpi_handle_by_index()

Synopsis: Get a handle to an object using an index position in a parent object.

Syntax: vhpi_handle_by_index(itRel, parentHdl, index)
Type Description

Returns: vhpiHandleT A handle to an object.

Type Name Description
Arguments: vhpiOneToManyT itRel an ordered iteration relationship tag
 vhpiHandleT parentHdl the handle to the object from which to obtain the

indexed handle.
 PLI_INT32 index index position of the object for which to obtain a

handle for.
Related
functions:

Use vhpi_iterator and vhpi_scan() to get each element of the parent handle

 4
vhpi_handle_by_index() shall be used to get a handle to an object based on the index number of that 5
object within a parent object. The parent object must bear an ordered iteration relationship to the indexed 6
object (vhpiIndexedNames) or an integer property denoting the number of elements in the iteration (called 7
vhpiNumParamsP for vhpiParamDecls iteration, vhpiNumGensP for the vhpiGenDecls iteration, 8
vhpiNumPorts for the vhpiPortDecls iteration for example. Such ordered relationships exist for example 9
between an object of type array and its sub-elements, a subprogram call and its formal parameters, a object 10
of type record and its fields, a variable or a derefobj of an access type to an array or record and its sub-11
Dereference objects (I0023: do we allow shortcut iterations on indexednames and selected names from a 12
variable of an access type?). The first argument must denote an ordered iteration relationship. These 13
ordered iteration relationships are marked “ordered” on the information model. The ordered iterations can 14
also be traversed with the vhpi_iterator() and vhpi_scan() functions. 15
vhpi_handle_by_index(itRel, parentHdl, index) returns the handle that would have been returned by 16
creating an iterator of the relationship denoted by itRel, and scanning for index + 1 times. 17
 18
Example 1: (I024: fix example subtype/basetype changes) 19
 20
vhpiHandleT find_indexed_constraint(parentHdl, index) 21
vhpiHandleT parentHdl; /* a handle to a object */ 22
int index; /* the index position of the object to obtain */ 23
 24
{ 25
 vhpiHandleT subtypeHdl,typeHdl, subHdl; 26
 27
 subtypeHdl = vhpi_handle(vhpiType, parentHdl); 28
 typeHdl = vhpi_handle(vhpiBaseType, subtypeHdl); 29
 if (vhpi_get(vhpiIsCompositeP, typeHdl)) 30
 { /* get the given indexed array element or indexed record field 31
 of the parent object */ 32
 if (vhpi_get(vhpiKindP, typeHdl) == vhpiArrayTypeDeclK)) 33

 subHdl = vhpi_handle_by_index(vhpiConstraints,parentHdl, 34
 index); 35

 else if (vhpi_get(vhpiKindP, typeHdl) == vhpiRecordTypeDeclK)) 36
 subHdl = vhpi_handle_by_index(vhpiRecordElems,parentHdl, 37

 204

 index); 1
 2

 return subHdl; 3
 } 4
 else return NULL; 5
} 6
 7
Example 2: 8
This example shows how to access a formal parameter by index position from a subprogram call handle. 9
This is useful for accessing values of VHDL formal parameters from a foreign subprogram C function 10
implementation. Formal parameter declarations define an order in the interface parameter list. 11
 12
void exec_proc(cbDatap) 13
vhpiCbDataT cbDatap; /* the call-data structure of the C foreign 14
 function implementation of a VHDL 15
subprogram 16
 behavior.*/ 17
 18
{ 19
 20
 vhpiHandleT subpCallHdl, formal1, formalIt; 21
 int val = 0; 22
 vhpiValueT value; 23
 24
 value.format = vhpiIntVal; 25
 value.value->integer = &val; 26
 procCallHdl = cbDatap->obj; 27
 28
 /* get a handle to the first formal parameter of the 29
 subprogram call */ 30
 formal1 = vhpi_handle_by_index(vhpiParamDecls, subpCallHdl, 0); 31
 32
 switch(vhpi_get(vhpiModeP, formal1)) 33
 { 34
 case vhpiIN: 35
 vhpi_get_value(formal1, &value); 36
 break; 37
 case vhpiOUT: 38
 vhpi_put_value(formal1, &value); 39
 break; 40
 default: 41
 break; 42
 } 43
 44
Example 3: (I025: fix example) 45
This example shows how to get a handle to a sub-object of a composite type. 46
 47
type myrecord is record 48
 I: integer; 49
 B: bit; 50
 AR: array (2 to 4); 51
end record; 52
type myrecord_ptr is access to myrecord; 53
type mybit_vector_ptr is access to bit_vector; 54
 55
variable A: array (2 to 5) of bit := ('1', '0', '1', '0'); 56
variable M: array ((2 to 5), (3 to 5)) of integer:= (1, 2, 3, 4, 57
 5, 6, 7, 8, 58
 9,10,11,12); 59

 205

variable R: myrecord := (9, '0', B"111"); 1
variable R_p: myrecord_ptr; 2
variable BV_p: mybit_vector_ptr; 3
 4
/* if Ahdl is an handle to variable A */ 5
hdl = vhpi_handle_by_index(vhpiIndexedNames, Ahdl, 0) 6
/* returns a handle to A(2) */ 7
/* if Mhdl is an handle to variable M */ 8
hdl = vhpi_handle_by_index(vhpiIndexedNames, Mhdl, 0) 9
/* returns a handle to M(2,3) */ 10
/* if Rhdl is an handle to variable R */ 11
hdl = vhpi_handle_by_index(vhpiSelectedNames, Rhdl, 0) 12
/* returns a handle to R.I */ 13
/* if Rhdl is an handle to variable R */ 14
subeltHdl = vhpi_handle_by_index(vhpiSelectedNames, Rhdl, 2) 15
/* subeltHdl is a handle to R.AR */ 16
hdl = vhpi_handle_by_index(vhpiIndexedNames, subeltHdl, 2) 17
/* hdl is a handle to R.AR(4} */ 18
/* if BV_phdl is an handle to variable BV_p */ 19
hdl = vhpi_handle_by_index(vhpiIndexedNames, BV_phdl, 0) 20
/* returns a handle to BV_p(0)*/ 21
 22
/* if R_phdl is an handle to variable R_p */ 23
hdl = vhpi_handle_by_index(vhpiSelectedNames, R_phdl, 0) 24
/* returns a handle to R_p.I */ 25
 26
 27
 28
 29

 206

11.21 vhpi_handle_by_name() 1
 2
 3

vhpi_handle_by_name()

Synopsis: Returns a handle to the named item if found in the search scope.

Syntax: vhpi_handle_by_name(name, refHdl)
Type Description

Returns: vhpiHandleT A handle on success, NULL if no objects of the given name exists.

Type Name Description
Arguments: const

PLI_BYTE8 *
name A character string or a pointer to a string containing the

full, partial or simple name of an object.

 vhpiHandleT refHdl Handle to a reference search region or scope handle or
NULL

Related
functions:

Use vhpi_get_str() to get the name (vhpiNameP) or full name (vhpiFullNameP) of an
object

 4
vhpi_handle_by_name () shall return a handle to an object that matches the given name. This function can 5
be only applied to objects having the vhpiFullNameP property. Francoise: why not the name property ? Is 6
there any object which has the fullname property but not the name property?. The name can be the full 7
hierarchical name or a partial hierarchical name of an elaborated object or uninstantiated object. If refHdl is 8
NULL, the name shall be searched for from the top level of the hierarchy (vhpiRootInstK) or from the 9
packages instantiated in the design (vhpiPackInstK handles) or from the library context if the 10
vhpiFullNameP denotes a full uninstantiated name (vhpiFullNameP is the same as vhpiDefNameP in the 11
uninstantiated context). If refHdl is not NULL, name shall be searched from the declarative instantiated 12
region or uninstantiated scope designated by the refHdl handle. The function cannot be applied to handles 13
of anonymous types (do we have handles to anonymous types?). For overloaded subprograms or 14
enumeration literals, the name must include the parameter result profile. In this case the name must follow 15
the following syntax: 16
<subp_name> | <enum_literal> ({param_type, } [:return_type]) 17
The return type is only necessary for functions and enumeration literals. 18
vhpi_handle_by_name() will return null if the name is ambiguous or if it cannot find the object of that 19
name. 20
 21
 22
Example: 23
This function finds a signal handle given the simple signal name. 24
vhpiHandleT findsignal(sigName) 25
 26
char *sigName;/* the signal name */ 27
{ 28
 vhpiHandleT subitr, hdl, subhdl, sigHdl; 29
 /* first search the signal in the design hierarchy, starting at the 30
root instance level and recursively descending into the sub-instances 31
*/ 32
 itr = vhpi_handle(vhpiRootInst, NULL); 33
 if (itr) { 34
 35
 sigHdl = vhpi_handle_by_name(sigName, hdl); 36
 if (sigHdl) 37

 207

 return sigHdl; 1
 else { 2
 subitr = vhpi_iterator(vhpiInternalRegions, hdl); 3
 if (subitr) 4
 while (subhdl = vhpi_scan(subitr)) { 5
 sigHdl = vhpi_handle_by_name(sigName, subhdl); 6
 if (sigHdl) 7
 return sigHdl; 8
 } 9
 } 10
 } 11
 itr = vhpi_iterator(vhpiPackInsts, NULL); 12
 if (itr) 13
 while (hdl = vhpi_scan(itr)) { 14
 sigHdl = vhpi_handle_by_name(sigName, hdl)); 15
 if (sigHdl) 16
 return sigHdl; 17
 } 18
 return NULL; 19
} 20

 208

11.22 vhpi_iterator() 1
 2
 3

vhpi_iterator()

Synopsis: Create an iterator handle to the reference handle which has a a one-to-many relationship
and initialize it to point to the first element of the iteration

Syntax: vhpi_iterator(iterType, refHdl)
Type Description

Returns: vhpiHandleT An initialized iterator handle on success, NULL if no objects of type
iterType exists.

Type Name Description
Arguments:

vhpiOneToMany
T

 iterType An integer constant representing the iteration type

 vhpiHandleT refHdl Handle to the reference handle
Related
functions:

Use vhpi_scan() to get each element of the iteration

 4
vhpi_iterator () shall be used to traverse one-to-many relationships which are indicated by arrows with a 5
multiplicity of * or 1..* in the information model. This function creates and initializes an iterator handle, 6
whose type is vhpiIteratorK and which can be used by the vhpi_scan() function to scan through each 7
object of type type which is in a multiple association with the reference object refHdl. If there are no 8
objects of type type associated with the reference handle, then the vhpi_iterator() shall return NULL. A 9
NULL can be expected for one-to-many relationships that are marked with a multiplicity of * (zero or more) 10
in the information model. The iterator handle is automatically released at the end of an iteration when there 11
is no more elements to be returned by vhpi_scan. Reference to the iterator handle after the end of an 12
iteration is erroneous. The iterator handle should be explicitly released with vhpi_release_handle if the 13
iteration has not been exhausted in order to avoid a memory leak. 14
 15
Example: 16
void find_signals(scopeHdl) 17
vhpiHandleT scopeHdl; /* a handle to a scope */ 18
{ 19
vhpiHandleT sigHdl,itrHdl; 20
 21
/* find all signals in that scope and print their names */ 22
 23
itrHdl = vhpi_iterator(vhpiSigDecl, scopeHdl); 24
if (!itrHdl) return; 25
while (sigHdl = vhpi_scan(itrHdl)) { 26

vhpi_printf(“Found signal %s\n”, vhpi_get_str(vhpiNameP, sigHdl)); 27
} 28

Deleted: ¶

Deleted: vhpiHandleT

Deleted: int found = 0;¶

 209

11.23 vhpi_protected_call() 1
 2

vhpi_protected_call()

Synopsis: Executes an operation on a shared variable of a protected type

Syntax: vhpi_protected_call(varHdl, userFct, userData)
Type Description

Returns: PLI_INT32 Returns 0 on success, non zero on failure.

Type Name Description
Arguments: vhpiHandleT varHdl A handle to a shared variable declaration of a

protected type
 vhpiUserFctT userFct The user function pointer to be called during

the protected access
 PLI_VOID * userData The user data to be passed to the user function

Related
functions:

typedef PLI_INT32 (*vhpiUserFctT)();
The prototype of the user function should be:
 PLI_INT32 userFct(vhpiHandleT varHdl, PLI_VOID *userData)
 varHdl: reference handle of the vhpi_protected_call function.
 userData: user data to be passed to the userFct, can be NULL.

 3
 4
vhpi_protected_call() shall be used to perform an operation to a shared variable of a protected type. The 5
function guarantees atomicity of the operation by performing a lock on the variable passed as a reference 6
handle. 7
 8
vhpi_protected_call() should acquire a lock on the shared protected type variable passed as a reference 9
handle, varHdl, execute the user function passed as a second argument, userFct, then release the lock on 10
the protected variable handle. vhpi_protected call() returns 0 on success and non zero on failure. 11
 12
The lock performed is equivalent to the lock defined in the VHDL LRM 1076-2001. The kind of the 13
reference handle that is passed to vhpi_protected_call should only be a handle denoting a shared variable 14
declaration of a protected type. Handles and access to local objects defined in the protected type body 15
associated with a shared variable can be performed within the user function where a variable lock has been 16
acquired. If vhpi_protected_call fails to obtain a lock, it shall return a status of failure. vhpi_protected_call 17
allows correct locking semantics of shared variable. If read or write access to a shared variable of a 18
protected type is not made within a call to vhpi_protected_call(), the results may be erroneous. 19
 20
Francoise: redo the example to access a private data declaration of the variable. 21
 22
Example: 23
 24
#include <stdio.h> 25
#include vhpi_user.h 26
 27
/* user function which is called on the protected variable handle */ 28
int Myfunc(vhpiHandleT protectedVarDeclHdl, void* ClientData) 29
{ 30
 #define FAIL -1; 31
 int status=0; 32

 210

 vhpiHandleT resultH; 1
 2
 MyData* Data=(MyData*)ClientData; 3
/* result is a private variable declaration for the protected type */ 4
 resultH = vhpi_handle_by_name(“result”, protectedVarDeclHdl); 5
 if (!resultH) 6
 return(FAIL); 7
 8
 /* access the current value of result */ 9
 status = vhpi_get_value(result, Data->Value); 10
 if (status) 11
 { 12
 vhpi_printf("error in reading protected variable\n"); 13
 return (status); 14
 } 15
 switch(Data->Op) 16
 { 17
 case op1 : op1CB(Data->Value);break; 18
 case 19
 case 20
 default: Bombout(); 21
 } 22
 /* set result to a new value */ 23
 status = vhpi_put_value(resultH, Data->Value, vhpiDeposit); 24
 25
 /* do some more error checking */ 26
 if (status) 27
 vhpi_printf("error in writing to protected variable\n"); 28
 29
 return status; 30
} 31
 32
/* the proposed function for controlling protected variables access 33
This function is implemented by the VHDL simulator and VHPI interface */ 34
 35
int vhpi_protected_call(36
 vhpiHandleT protectedVarDeclHdl, 37
 int (*Myfunc)(vhpiHandleT protectedVarDeclHdl,void* ClientData), 38
 void* ClientData) 39
{ 40
 41
 int status; 42
 43
 /* acquire the lock on the protected variable */ 44
 int Lock = internal_getlock(protectedVarDeclHdl); 45
 /* do some error checking to determine if the lock was */ 46
 /* obtained ok */ 47
 48
 /* then executes the user function passed in */ 49
 status = Myfunc(protectedVarDeclHdl, ClientData); 50
 51
 /* release up the lock */ 52
 internal_releaselock(Lock); 53
 54
 /* return the user function status */ 55
 return status; 56
 57
} 58
 59
 60

 211

/* in user code */ 1
 2
int op1CB(int value) 3
{ 4
 … 5
} 6
 7
main (argc, argv) 8
{ 9
/* get a handle to the protected variable declaration named "Foo" */ 10
vhpiHandleT protectedvarDeclHdl = vhpi_handle_by_name("Foo", NULL); 11
 12
MyData Data; 13
int status = 0; 14
 15
 Data.Op = op1; 16
 Data.Size = 100; 17
 bzero(Data.Value, Data.Size); 18
 19
 status = vhpi_protected_call(protectedVarDeclHdl,Myfunc,Data); 20
 21
 if (status) 22
 vhpi_printf("Unable to perform operation op1 23
 with protected variable Foo\n"); 24
} 25

 212

11.24 vhpi_printf() 1
 2

vhpi_printf()

Synopsis: Write to whatever files were defined by the tool to be the message display files (for
example stdout, simulator log files)

Syntax: vhpi_printf(format, …)
Type Description

Returns: PLI_INT32 The number of characters written

Type Name Description
Arguments: const PLI_BYTE8 * format A format string

 … args Arguments for the formatted string

Related
functions:

VHPI_GET_PRINTABLESTRCODE()
vhpi_is_printable_char()

 3
 4
vhpi_printf shall write to the files that were defined by the tool to receive output messages. Such files 5
could be stdout, the tool log file for example… The format string shall use the same formats as the C printf. 6
The function shall return the number of characters printed or EOF (-1) if an error occurred. 7
In order to print the VHDL non graphic characters that can be found in VHDL string literals or value of 8
type VHDL string, VHPI provides a macro VHPI_GET_PRINTABLE_STRINGCODE to get the string 9
corresponding to the enumerated character value defined in the standard VHDL character type set. A 10
function to test if a character is a graphic or non graphic character is also providedvhpi_is_printable(). 11
The example below shows how to print a VHDL string which may contain non graphic characters using 12
the macro and table look up included in the vhpi_user.h file. 13
 14
Example: 15
From vhpi_user.h 16
#include <stdio.h> 17
 18
static PLI_BYTE8* VHPICharCodes[256]={ 19
"NUL", "SOH", "STX", "ETX", "EOT", "ENQ","ACK", "BEL" , 20
"BS", "HT", "LF", "VT", "FF", "CR", "SO" , "SI", 21
"DLE", "DC1", "DC2", "DC3", "DC4","NAK", "SYN" , "ETB", 22
 "CAN", "EM", "SUB", "ESC", "FSP", "GSP", "RSP" , "USP", 23
 " ","!","\"","#","$","%","&","", 24
"(",")","*","+",",","-",".","/", 25
"0","1","2","3","4","5","6","7", 26
"8","9",":",";","<","=",">","?", 27
"@","A","B","C","D","E","F","G", 28
"H","I","J","K","L","M","N","O", 29
"P","Q","R","S","T","U","V","W", 30
"X","Y","Z","[","\\","]","^","_", 31
"`","a","b","c","d","e","f","g", 32
"h","i","j","k","l","m","n","o", 33
"p","q","r","s","t","u","v","w", 34
"x","y","z","{","|","}","~","DEL", 35
"C128", "C129", "C130","C131","C132","C133","C134","C135", 36
"C136", "C137", "C138","C139","C140","C141","C142","C143", 37
"C144", "C145", "C146","C147","C148","C149","C150","C151", 38

 213

"C152", "C153", "C154","C155","C156","C157","C158","C159", 1
" ","¡","¢","£","¤","¥","¦","§", 2
"¨","©","ª","«","¬","-","®","¯", 3
"°","±","²","³","´","µ","¶","·", 4
"¸","¹","º","»","¼","½","¾","¿", 5
"À","Á","Â","Ã","Ä","Å","Æ","Ç", 6
"È","É","Ê","Ë","Ì","Í","Î","Ï", 7
"Ð","Ñ","Ò","Ó","Ô","Õ","Ö","×", 8
"Ø","Ù","Ú","Û","Ü","Ý","Þ","ß", 9
"à","á","â","ã","ä","å","æ","ç", 10
"è","é","ê","ë","ì","í","î","ï", 11
"ð","ñ","ò","ó","ô","õ","ö","÷", 12
"ø","ù","ú","û","ü","ý","þ","ÿ" }; 13
 14
#define VHPI_GET_PRINTABLE_STRINGCODE(ch) VHPICharCodes[PLI_UBYTE8 ch] 15
 16
PLI_INT32 vhpi_is_printable(PLI_BYTE8 ch) 17
{ 18
unsigned char uch = (unsigned char)ch; 19
 20
 if (uch < 31) return 0; 21
 if (uch < 127) return 1; 22
 if (uch == 127) return 0; 23
 if (uch < 160) return 0; 24
 return 1; 25
} 26
 27
User code: 28
int PrintMyNastyVHDLString(char* VHDLString, int Length) 29
{ 30
int i; 31
unsigned char ch; 32
int needcomma=0; 33
 for (i=0; i<Length; i++) 34
 { 35
 ch = (unsigned char)VHDLString[i]; 36
 if (vhpi_is_printable(ch)) 37
 { 38
 vhpi_printf("%c", ch); 39
 needcomma=1; 40
 } 41
 else 42
 { 43
 if (needcomma) printf(","); 44
 vhpi_printf("%s", 45
VHPI_GET_PRINTABLE_STRINGCODE(ch)); 46
 if (i!=(Length-1)) vhpi_printf(","); 47
 needcomma=0; 48
 } 49
 } 50
 return 0; 51
} 52
The output of that program to the screen for the following input string literal: 53
HELLO & NUL & C128 & DEL 54
is 55
 HELLO,NUL,C128,DEL 56
 57

 214

11.25 vhpi_put_data() 1
 2

vhpi_put_data()

Synopsis: Save data to a simulation save location.

Syntax: vhpi_put_data(PLI_INT32 id, PLI_VOID *dataLoc, PLI_INT32 numBytes)
Type Description

Returns: PLI_INT32 the number of bytes saved or 0 on error

Type Name Description
Arguments: PLI_INT32 id an identifier denoting a position in a saved location
 PLI_VOID * dataLoc the address of the data to be saved.
 PLI_INT32 numBytes the number of bytes to write out.
Related
functions:

Use vhpi_get_data() to read data from a saved location
Use vhpi_get(vhpiIdP, NULL) to get a new unique id.

 3
vhpi_put_data() shall be used to store “numBytes” of data located at “dataLoc” into a simulation saved 4
location. The return value will be the number of bytes successfully saved. Id is a unique identifier for the 5
simulation session that denotes a reserved area in the simulation save location. vhpi_get(vhpiIdP, NULL) 6
shall be used to obtain a new unique identifier. The returned unique id denotes an index position that is 7
used to refer to a reserved area in a simulation save location. This function shall be called during the save 8
operation. The id returned is a non null integer. Each call to vhpi_get(vhpiIdP, NULL) will generate a new 9
id. 10
 11
 12
There is no restriction on: 13
 * how many times vhpi_put_data() can be called with the same “id”, 14
 * how many “id”s a foreign model or an application creates, 15
 * the order foreign models or applications store data using different “id”s. 16
 17
The data from multiple calls to vhpi_put_data() with the same “id” must be stored by the simulator in a 18
way that the opposite routine vhpi_get_data(), for the same id, will retrieve data in the order it was put 19
in the save location . This allows the vhpi_get_data() function to pull the data stored in the save file 20
from different “ids” corresponding to different save location index positions. 21

vhpi_put_data() can only be called from a callback routine which was registered for reason 22
vhpiCbStartOfSave or vhpiCbEndOfSave. 23
 24
Example: A consumer routine which saves data to a simulation save location and registers callback to 25
restore the data. 26
 27
See also the example in vhpi_get_data() for the description of the restart callback function. 28
 29
/* type definitions for private data structures to save used by the 30
foreign models or applications */ 31
struct myStruct{ 32
 struct myStruct *next; 33
 int d1; 34
 int d2; 35
} 36
void consumer_save(vhpiCbDataT *cbDatap) 37
{ 38
 char *data; 39
 vhpiCbDataS cbData; /* a cbData structure */ 40

 215

 int cnt = 0; 1
 struct myStruct *wrk; 2
 vhpiHandleT cbHdl; /* a callback handle */ 3
 int id =0; 4
 int savedBytesCount = 0; 5
 /* get the number of structures */ 6
 wrk = firstWrk; 7
 while (wrk) 8
 { 9
 cnt++; 10
 wrk = wrk->next; 11
 } 12
 /* request an id */ 13
 id = vhpi_get(vhpiIdP, NULL); 14
 /* save the number of data structures */ 15
 savedBytesCount = vhpi_put_data(id, (char*)&cnt, sizeof(int); 16
 /* reinitialize wrk pointer to point to the first structure */ 17
 /* save the different data structures, the restart routine will have 18
 to fix the pointers */ 19
 while (wrk) 20
 { 21
 savedBytesCount += = vhpi_put_data(id, (char *)wrk, sizeof(struct 22
myStruct)); 23
 wrk = wrk->next; 24
 } 25
 /* check if everything has been saved */ 26
 assert(savedBytesCount == 4 + cnt * (sizeof(struct myStruct))); 27
 /* now register the callback for restart and pass the id to retrieve 28
 the data, the user_data field of the callback data structure is 29
 one easy way to pass the id to the restart operation */ 30
 cbData.user_data = (void *)id; 31
 cbData.reason = vhpiCbStartOfRestart; 32
 cbData.cb_rtn = consumer_restart; /* see example in vhpi_get_data() 33
 * for the description of 34
 * consumer_restart 35
 */ 36
 vhpi_register_cb(&cbData, vhpiNoReturn); 37
} /* end of consumer_save */ 38
 39

 216

11.26 vhpi_put_value() 1
 2
 3
 4

vhpi_put_value()

Synopsis: Update the value of an object, name or foreign function returned value

Syntax: vhpi_put_value(objHdl, valuep, flags)
Type Description

Returns: PLI_INT32 0 on sucess, non 0 on failure to change the value

Type Name Description
Arguments: vhpiHandleT objHdl Handle to an object of which the value can be

changed
 vhpiValueT * valuep Pointer to a value

 PLI_UINT32 flags Flags values defined in the enumeration type
vhpiPutValueModeT

Related
functions:

Use vhpi_get_value() to get an object to a value.
Use vhpi_schedule_transaction to update the waveform of a signal driver.

 5
 6
vhpi_put_value() shall update the value of an object. Classes to which this operation can be applied are 7
either sub-classes of the class ObjDecl, Name or foreign function call. The function takes 3 arguments: 8
objHdl, handle to the object to which the value update will be applied, valuep, pointer to a value structure 9
that describes the value. The function returns 0 on success and non zero on failure to apply the value. The 10
update can be done in several ways, the third parameter, flags, indicate which kind of immediate update is 11
requested. 12
If the flag parameter is set to: 13
vhpiDeposit: the value is immediately applied with no force, no propagation, no event creation 14
 no signal value change callbacks trigger; variable value change callbacks trigger 15
 only readers of that object will see the new value. 16
 17
vhpiDepositPropagate: 18
 value is immediately applied, propagated only for this cycle. 19
 may create an event or remove an event, signal value change callback may trigger if signal effective 20
 value is changed; variable value change callbacks trigger. 21
 22
vhpiForce: (until release) 23

no propagation, no VHDL net can overwritethat value readers can see the value, no value change 24
callbacks trigger. 25

 Force callbacks trigger if the object value is forced. 26
 27
vhpiForcePropagate 28
 value is forced, propagated, can create or remove an event 29
 Signal value change callbacks trigger if an event occurs on the signal. 30

 Force callbacks trigger if the object value is forced. 31
 32
vhpiRelease 33
 The previous forced value is released, if the object was not forced, this has no effect. The value of 34

Formatted: Indent: Left: 0.5"

Deleted:

Deleted:

 217

the object is then left to the network updation. The pointer to the value structure valuep is not 1
required when vhpi_put_value if called with the vhpiRelease flag. If a non null valuep pointer is 2
provided, it will be ignored. 3

 Release callbacks trigger if the object changed from a state of forced to released. 4
 5
The property vhpiIsForcedP is true for an object that is being forced with vhpi_put_value() and the flag 6
parameter was vhpiForce or vhpiForcePropagate. 7
 8
The semantics related to modes and classes of the VHDL formal parameter interface declarations are 9
carried on by foreign subprograms. Runtime errors should be generated if the VHDL rules are violated by 10
the foreign C code; for example, one should not call vhpi_put_value() on a handle to a IN formal parameter, 11
or try to get the value of an OUT formal parameter by calling vhpi_get_value(). 12
 13
vhpiSizeConstraint 14
 vhpi_put_value can be used to set the returned value of a foreign function call. If the function return 15
 type is unconstrained, a preliminary call to vhpi_put_value with a flag argument set to 16
 vhpiSizeConstraint will set the constraint of the returned value, the numElems field of the value 17
 parameter shall be set to the size of the constraint. The first argument must be a handle to the function 18
 call. The second call to vhpi_put_value will actually pass the value to be returned. The flag argument 19
 should be set to vhpiDeposit. If vhpi_put_value is used to provide the value of an unconstrained type 20
 object, it must first be called with vhpiSizeConstraint prior to setting the value. 21

Formatted: Indent: First line: 0.5"

 218

 1

11.27 vhpi_register_cb() 2
 3

vhpi_register_cb()

Synopsis: Register a callback function for a specific reason

Syntax: vhpi_register_cb(cbDatap, flags)
Type Description

Returns: vhpiHandleT A handle to the callback object or NULL

Type Name Description
Arguments: vhpiCbDataT * cbDatap Pointer to a structure with data about which

and when callback should occur and data to be
passed.

 PLI_UINT32 flags defined constant value flags: vhpiDisableCb
and vhpiReturnCb

Related
functions:

Use vhpi_remove_cb() to remove the callback.
Use vhpi_get_cb_info to get information about the given callback handle

 4
 5
vhpi_register_cb() shall be used to register a callback for a specific reason. The reason is the condition of 6
occurrence of the callback. 7
The cbDatap argument should point to a vhpiCbDataS structure that is defined in the VHPI standard 8
header file. This data structure is allocated by the caller and should contain information about the callback 9
to be registered. Depending on the reason, some fields of the vhpiCbDataS structure must be provided 10
(refer to chapter 8). The obj field of cbDatap may be set to a handle; the client code is free to release that 11
handle after the callback has been registered with no impact on the callback registration. If the flags field is 12
set to vhpiReturnCb, the registration function shall return a callback handle, otherwise it shall return NULL. 13
The callback can be set to a disabled state at the registration if the flags field is set to vhpiDisableCb. 14
 15
Note: It is useful for a client application which disables the callback at the registration to also set the flags 16
field to vhpiReturnCb so that it can retain the callback handle to enable it at a future time. Alternatively the 17
client application can use the vhpiCallbacks iteration method in conjunction with the query property 18
vhpiStateP to find the disabled callbacks. 19
 20
When the callback function cb_rtn(const struct vhpiCbDataS *cbDatap) triggers, the cbDatap is allocated 21
by the VHPI server and is a read only data structure. The contents of the cbDatap passed in the callback 22
function are equivalent to the content of the cbDatap structure which was passed at the callback registration 23
to vhpi_register_cb(). Specifically if the obj field is set to a handle, it may not be the same handle which 24
was set at the time of the registration. The entire cbDatap structure and its contents (including the handle) 25
are owned by the VHPI server and are not guaranteed to be valid outside the callback function scope. In 26
particular the client code shall not release the handle pointed by the obj field. 27
 28

typedef struct vhpiCbDataS {
 int reason; /* the reason of the callback */
 (void) (*cb_rtn)(const struct vhpiCbDataS *); /* the
 callbackfunction pointer */
 vhpiHandleT obj; /* a handle to an object */
 vhpiTimeT *time; /* a time */

 219

 vhpiValueT *value; /* a value */
 void *user_data; /* user data information */

} vhpiCbDataT, *vhpiCbDatap;

 1
 2
 3
Example 1: Register value change callbacks on all signals in the design 4
 5
/* the callback function */ 6
void vcl_trigger(cbDatap) 7
const vhpiCbDataT *cbDatap; 8
{ 9
char *sigName; 10
int toggleCount = (int)(cbDatap->user_data); 11
 12
 cbDatap->user_data = (char *)(++toggleCount); 13
 sigName= vhpi_get_str(vhpiFullNameP, cbDatap->obj); 14
 vhpi_printf(“Signal %s changed value %d, at time %d\n”, sigName, 15
 cbDatap->value.int, cbDatap->time.low); 16
 return; 17
} 18
static void monitorSignals(instHdl); /* this is the name of the 19

function which registers signal 20
value change callbacks */ 21

vhpiHandleT instHdl; /* a handle to an instance */ 22
{ 23
 /* monitors all signals in this instance */ 24
static vhpiCbDataT cbData; 25
vhpiValueT value; 26
vhpiTimeT time; 27
int flags; 28
 29
 value.format = vhpiIntVal; 30
 cbData.reason = vhpiCbValueChange; 31
 cbData.cb_rtn = vcl_trigger; 32
 cbData.value = &value; cbData.time = &time; 33
 cbData.user_data = 0; 34
 flags = 0; /* do not return a callback handle and do not disable the 35
callback at registration */ 36
/* register the callback function */ 37
 sigIt = vhpi_iterator(vhpiSigDecls, instHdl); 38
 if(!sigIt) return; 39
 while(sigHdl = vhpi_scan(sigIt)) 40
 { 41
 cbData.obj = sigHdl; 42
 vhpi_register_cb(&cbData, flags); 43
 } 44
 45
} 46

 220

11.28 vhpi_register_foreignf() 1
 2

vhpi_register_foreignf()

Synopsis: Register foreign architecture/procedure/function/application related functions

Syntax: vhpi_register_foreignf(foreignDatap)
Type Description

Returns: vhpiHandleT A handle to the callback object.

Type Name Description
Arguments: vhpiForeignDataT * foreignDatap Pointer to a structure with data about which

and when elab and execution functions should
occur and data to be passed.

Related
functions:

Use vhpi_register_cb() to register other reason callbacks for simulation events.
Use vhpi_get_foreignf_info() to get information about which functions were registered for
a particular model.

 3
 4
vhpi_register_foreignf () shall be used to register foreign C functions for foreign architecture elaboration 5
and initialization, procedure, function or application execution. The functions registered correspond to the 6
C behaviour to invoke when a foreign architecture is encountered during elaboration of the VHDL code or 7
when a foreign architecture, procedure, function or application is executed during simulation of the VHDL 8
design. 9
The foreignDatap argument should point to a vhpiForeignDataT structure that is defined in the VHPI 10
standard header file. This data structure contains information about the elaboration or execution functions. 11
 12

typedef struct vhpiForeignDataS {
 vhpiForeignT kind;/* the foreign model class kind:
 vhpi[Arch,Proc,Func]F */
 char *libraryName;/* the library name that appears in the
 VHDL foreign attribute string */
 char *modelName; /* the model name that appears in the
 VHDL foreign attribute string or
 application name PA 28*/
 void (*elabf)(const vhpiCbDataT *);
 /* the callback function pointer for
 elaboration of foreign architecture */
 void (*execf)(const vhpiCbDataT *);
 /* the callback function pointer for
 initialization/simulation execution of
 foreign architecture, procedure,
 function or application */
} vhpiForeignDataT, *vhpiForeignDatap;

 13
This data structure contains the mapping between a given foreign model and the C functions which 14
implement the foreign model behaviour. The data is described below: 15
 16
The kind field should register the foreign model to be an architecture, a procedure, a function or an 17
application. The kind field value should be one of the following enumeration constants: vhpiArchF, 18
vhpiProcF, vhpiFuncF, vhpiAppF. 19

 221

The libraryName and modelName are respectively the library logical name and model name that are found 1
in the VHPI foreign attribute string for foreign architecture and subprograms and the library and 2
application names for a foreign application. 3
 4
The elabf and execf fields should be pointers to the user-defined functions. 5
The function pointed by the elabf field will be invoked during elaboration of the foreign model. The 6
function pointed by the execf field will be invoked during simulation initialization and/or execution of the 7
foreign model or application. For foreign architectures, the execf function call occurs once during 8
simulation initialization. For foreign procedures or functions, the execf function call occurs each time the 9
VHDL corresponding procedure or function is invoked during simulation. For a foreign application, the 10
execf function is called once before vhpiCbStartOfTool if the tool has determined that this application must 11
be activated in this session. The determination of which applications must be activated is tool specific. 12
 13
vhpi_register_foreignf() returns a handle to the model registered functions. The handle is of type 14
vhpiForeignfK. The function vhpi_get_foreignf_info() shall be used to retrieve the foreign model 15
information that was registered for a given foreign model or application. The VHPI method vhpiForeignfs 16
can be used to iterate over all the registered foreign models and applications in a given tool session; the 17
reference handle passed in should be null. 18
 19
The following example illustrates how a user can dynamically link foreign model function callbacks. 20
 21
Example: 22
 23
void dynlink(foreignName, libName) 24
char * foreignName; /* name of the foreign model to link in */ 25
char * libName; /* logical name of the C dynamic library where the 26
 model resides */ 27
{ 28
 static vhpiForeignDataT archData = {vhpiArchF}; 29
 char dynLibName[MAX_STR_LENGTH]; 30
 char platform[6]; 31
 char extension[3]; 32
 char fname[MAX_STR_LENGTH]; 33
 char elabfname[MAX_STR_LENGTH]; 34
 char execfname[MAX_STR_LENGTH]; 35

 36
 37
 sprintf(platform, getenv(“SYSTYPE”)); 38
 if (!strcmp(platform, “SUNOS”)) 39
 strcpy(extension, “so”); 40
 else if (!strcmp(platform, “HP-UX”)) 41
 strcpy(extension, “sl”); 42
 43
 sprintf(dynLibName, “%s.%s”, libName, extension); 44
 sprintf(fname, “%s”, foreignName); 45
 sprintf(elabfname, “elab_%s”, foreignName); 46
 sprintf(execfname, “sim_%s”, foreignName); 47
 archData->libraryName = libname; 48
 archData->modelName = fName; 49
 /* find the function pointer addresses */ 50
 archData->elabf = (void(*)()) dynlookup(dynLibName, elabfName); 51
 archData->execf = (void(*)()) dynlookup(dynLibName, execfName); 52
 53
 vhpi_register_foreignf(&archData); 54
} 55
 56

 222

This next example illustrates how to write a bootstrap function for a library of models. This bootstrap 1
function can be called just after the VHDL tool (elaborator or simulator) has been invoked. It registers all 2
the models defined in the C library at once. One way of writing this bootstrap function is to have an 3
internal library table of vhpiForeignDataS structures. An entry in that table corresponds to a C model in 4
the library, then the bootstrap function just needs to iterate through the entries in that table, and for each 5
entry, call vhpi_register_foreignf(). The developer of the library has also the possibility to separate the 6
registration of his models into several bootstrap functions. 7
 8
Example 2: 9
extern void register_my_C_models(); /* this is the name of the bootstrap 10
 function that must be the ONLY 11
 visible symbol of the C library. 12
 */ 13
void register_my_C_models() 14
{ 15
 static vhpiForeignDataT foreignDataArray[] = { 16
 {vhpiArchF, "lib1", “C_AND_gate”, “elab_and”, “sim_and”}, 17
 {vhpiFuncF, "lib1", “addbits”, 0, “ADD”}, 18
 {vhpiProcF, "lib1", “verify”, 0, “verify”}, 19
 0 20
 }; 21
/* start by the first entry in the array of the foreign data structures 22
*/ 23
vhpiForeignDatap foreignDatap = &(foreignDataArray[0]); 24
 25
/* iterate and register every entry in the table */ 26
while (*foreignDatap) 27
 vhpi_register_foreignf(foreignDatap++); 28
} 29
 30
Errors: 31
The registration of a foreign model fails: 32

- if the required information is not present, 33
 - if the library name/model name pair is not unique.34

 223

 1

11.29 vhpi_release_handle() 2
 3

vhpi_release_handle()
Synopsis: Release handle reference, free any memory allocated for this handle
Syntax: vhpi_release_handle(hdl)

Type Description
Returns: PLI_INT32 0 on success, 1 on failure

Type Name Description
Arguments: vhpiHandleT hdl Handle to an object
 4
vhpi_release_handle() can be used by an application to tell the VHPI interface that it does not intend to 5
reference and use the passed handle any more. Some implementations may free the memory that they had 6
allocated to construct this handle in the case where the handle does not refer to an internal simulation or 7
elaboration internal object. This function can be used for handles obtained from the navigation functions, 8
callback registration, transaction scheduling. The function returns 0 on success and 1on failure. 9
 10
Example: 11
 12
vhpiHandleT rootHdl, itrHdl; 13
 14
rootHdl = vhpi_handle(vhpiRootInst, null); 15
itrHdl = vhpi_iterator(vhpiInternalRegions, rootHdl); 16
if (itrHdl) { 17
 while (instHdl = vhpi_scan(itrHdl)) { 18

 vhpi_printf(“found sub-scope %s\n”, 19
 vhpi_get_str (vhpiName, instHdl)); 20

 } 21
} 22
itrHdl = vhpi_iterator(vhpiInternalRegions, rootHdl); 23
if (itrHdl) { 24
 while (instHdl = vhpi_scan(itrHdl)) { 25
 if (vhpi_get(vhpiKindP, instHdl) == vhpiBlockStmtK) 26

 break; 27
 /* free this instance handle */ 28
 vhpi_release_handle(instHdl); 29

 } 30
} 31

 224

11.30 vhpi_remove_cb() 1
 2

vhpi_remove_cb()

Synopsis: Remove a callback that was registered using vhpi_register_cb().

Syntax: vhpi_remove_cb(cbHdl)
Type Description

Returns: PLI_INT32 0 on success, 1 on failure.

Type Name Description
Arguments: vhpiHandleT cbHdl A callback handle of kind vhpiCallbackK
Related
functions:

Use vhpi_register_cb() to register a callback

 3
vhpi_remove_cb () shall be used to remove a callback that was registered using vhpi_register_cb(). The 4
argument to this function should be a handle to the callback. The function returns 0 on success and 1 on 5
failure. After the callback has been removed, the callback handle becomes invalid (the interface implicitly 6
free the memory that was allocated for the callback including the callback handle). 7
 8
Example: 9
 10
int find_cbk(objHdl) 11
vhpiHandleT objHdl; /* a handle to an object */ 12
{ 13
vhpiHandleT cbHdl, cbItr; 14
vhpiCbDataT cbdata; 15
int found = 0; 16
 17
/* find a specific callback on value change that was registered for that 18
object and remove it */ 19
 20
cbItr = vhpi_iterator(vhpiCallbacks, objHdl); 21
if (!cbItr) return; 22
while (cbHdl = vhpi_scan(cbItr)) { 23
 vhpi_get_cb_info(cbHdl, &cbdata); 24
 if (cbdata.user_data == 2) { 25
 vhpi_remove_cb(cbHdl); 26
 found = 1; 27
 vhpi_release_handle(cbItr); /* free the iterator */ 28
 break; 29
 } 30
} 31
return(found); 32
} 33
 34

 225

11.31 vhpi_scan() 1
 2
 3

vhpi_scan()

Synopsis: Scan the VHDL model for objects in a one-to-many relationship with the reference handle
indicated by the iterator handle

Syntax: vhpi_scan(iterHdl)
Type Description

Returns: vhpiHandleT A handle on success, NULL if no objects of the type and reference
handle indicated by the iterator exists.

Type Name Description
Arguments: vhpiHandleT iterHdl An iterator handle created by vhpi_iterator()
Related
functions:

Use vhpi_iterator() to get an iterator handle

 4
vhpi_scan () shall be used to obtain handles to objects that are in a one-to-many relationship with the 5
reference handle indicated by the iterator handle passed in. The vhpi_scan() function returns NULL when 6
there is no more handle that comply to the iterator. The iterator handle is automatically released at the end 7
of the iteration. References to the iterator after the end of an iteration are erroneous. If the iteration is not 8
exhausted, the user should explicitly release the iterator to avoid a memory leak. 9
 10
Example: 11
 12
void find_signals(scopeHdl) 13
vhpiHandleT scopeHdl; /* a handle to a scope */ 14
{ 15
vhpiHandleT sigHdl,itrHdl; 16
 17
/* find all signals in that scope and print their names */ 18
 19
itrHdl = vhpi_iterator(vhpiSigDecl, scopeHdl); 20
if (!itrHdl) return; 21
 while (sigHdl = vhpi_scan(itrHdl)) { 22

 vhpi_printf(“Found signal %s\n”, vhpi_get_str(vhpiNameP, sigHdl)); 23
 /* done with handle */; 24
 vhpi_release_handle(sigHdl); 25

 } 26
} 27

Deleted: hpiHandleT

Deleted: int found = 0;¶

 226

 1

11.32 vhpi_schedule_transaction() 2
 3

vhpi_schedule_transaction()

Synopsis: Schedule transactions on drivers

Syntax: vhpi_schedule_transaction(hdl, valuep, numValues, delayp, delayMode, pulseRefp)
Type Description

Returns:
PLI_INT32

0 on success, non zero on failure.

Type Name Description
Arguments: vhpiHandleT hdl A handle to a driver or a drivercollection if routine

is used to schedule a transaction
 vhpiValueT ** valuep Array of pointer to values for the driver transaction
 PLI_UINT32 numValues Number of values in valuep
 vhpiTimeT * delayp Relative time delay for the transaction
 PLI_UINT32 delayMode Delay mode to apply
 vhpiTimeT * pulseRejp Pulse rejection limit for inertial mode
Related
functions:

Use vhpi_put_value to change the effective value of a signal.

 4
vhpi_schedule_transaction() shall be used to schedule a transaction on a driver. The function can only be 5
called during process execution phase. The transaction can be scheduled with zero or non-zero delay and 6
with inertial or transport mode. To schedule a value on a driver requires to get a handle to a driver, hdl, of 7
the signal, specify a value pointer, valuep, the number of values, numValues, a delay, delayp and delay 8
mode, delayMode. 9
The delay modes that are supported are vhpiInertial and vhpiTransport. In the case of inertial delays, 10
a user could specify an additional optional parameter, the pulse rejection limit that should be passed in 11
pulseRej argument. 12
The value pointer could be 13
 1. a pointer to a single value in the case of a scalar driver or a composite driver 14
 2. a pointer to several values in the case of a composite driver. 15
There is no correspondance between the number of drivers in the driverCollection and the number of 16
values structures passed in. 17
Note: scheduling transaction for drivers of composite type not resolved at the composite level, such as bit 18
vectors, standard logic vectors, record types must be done by scheduling individual transactions on each 19
scalar driver (see example 1) or by scheduling a transaction on a collection composed of these drivers. 20
 21
Transaction for driver of signals resolved at the composite level must be scheduled at once; the user must 22
allocate as many as value structures that are necessary for scheduling a transaction on the composite. The 23
format and corresponding union value field must be set for each value structure. The space for holding 24
each individual value (value union field of each individual vhpiValueS structure) must be allocated by the 25
user in accordance with the chosen format. The next argument, numValues, indicates how many values are 26
provided by valuep. 27
In general there will not be any VHPI check that all values have been actually allocated and set but the 28
simulator may issue an error for case 2 if the composite driver is not assigned as a whole. 29
There will be a check that the specified format is allowed. 30
The array of values follows the order defined by the LRM for array or record aggregates. 31
 32

 227

The format of the specified value must be appropriate with the VHDL type of the driver as defined in 1
chapter 9. For example, if the driver type is standard logic, the format cannot be vhpiRealVal. 2
Runtime type errors shall occur if the provided value is not within the range of the driver subtype. The 3
execution of a vhpi_schedule_transaction involves runtime constraint type checking but does not 4
guarantee that the operation had no effect. 5
 6
The pulse rejection limit is specified by a time structure. If the simulator is VHDL’87 compliant, it may 7
ignore the pulse rejection limit. The VHPI interface should warn the application that this pulse time 8
rejection is being ignored. 9
 10
NULL transactions can be posted by setting valuep to a NULL pointer. 11
 12
The specified delay is a relative delay and is specified by using the time structure vhpiTimeS to providing a 13
64 bits value. 14
Francoise: Since all time value are always expressed in terms of the resolution limit, how can it be possible 15
to indicate a time value smaller than the resolution limit?The delay value is truncated if smaller than the 16
VHDL simulator resolution limit. The delay value must be legal as if it were the delay value of a VHDL 17
signal assignment. 18
Zero delay transactions are specified by setting the low and high fields of the time structure to 0. 19
 20
Scheduling a 0 delay transaction is only allowed during non postponed process execution and any callback 21
which occur during the non postponed process execution phase: 22
 i) vhpiCb(Rep)StartOfProcesses 23
 ii) vhpiCb(Rep)TimeOut 24
 iii) vhpiCbSensitivity 25
 iv) vhpiCbStmt, 26
 v) vhpiCbResume 27
 vi) vhpiCbSuspend 28
 vii) vhpiStartOfSubpCall 29
 viii) vhpiEndOfSubpCall 30
 ix) vhpiCb(Rep)LastKnownDeltaCycle 31
 x) vhpiCb(Rep)EndOfProcesses 32
 33
 Non-zero delay transactions can be scheduled during non postponed and postponed process execution and 34
any callback which occur during the non postponed and postponed process execution phase: 35
 i) vhpiCb(Rep)StartOfProcesses 36
 ii) vhpiCb(Rep)EndOfProcesses 37
 iii) vhpiCb(Rep)TimeOut 38
 iv) vhpiCbSensitivity 39
 v) vhpiCbStmt, 40
 vi) vhpiCbResume 41
 vii) vhpiCbSuspend 42
 viii) vhpiStartOfSubpCall 43
 ix) vhpiEndOfSubpCall 44
 x) vhpiCb(Rep)LastKnownDeltaCycle 45
 xi) vhpiCb(Rep)StartOfPostponed 46
 x) vhpiCb(Rep)EndOfPostponed 47
 48
Non-zero delay transaction scheduling must occur before vhpiCbEndOfTimeStep, effectively before the 49
next time is computed. Scheduling a transaction at any other phase has no effect and may generate an error. 50
All zero delay transactions will be scheduled for the next delta cycle and all other delay transactions will be 51
scheduled for the time that corresponds to the current simulation time added to the specified relative delay. 52
 53
Example 1: Recursive function which schedules a transaction on a signal. 54

 228

The code of this function is incomplete: the case describes un unresolved record with a bit and a bit vector 1
members. 2
. 3
Iteration on vhpiSelectedNames obtain a handle to each record member. For the scalar bit field, schedule a 4
transaction on the single scalar driver. For the bit vector field, iterate on vhpiIndexedNames to get a handle 5
to each bit element of the bit vector field, then use the driver iteration to obtain a driver of each bit element. 6
Create a collection of the drivers and then schedule a bit vector value transaction on the collection. 7
 8
 9
Type R is Record 10
 B : BIT; 11
 BARR : BIT_VECTOR (0 to 7); 12
end record; 13
 14
signal S : R; 15
 16
int schedule_transaction_value(sigHdl) 17
vhpiHandleT sigHdl; /* a handle to a signal */ 18
 19
{ 20
 vhpiHandleT baseTypeHdl, driverIt, driverHdl; 21
 22
 char *name; 23
 vhpiValueS value; 24
 vhpiTimeS delay; 25
 26
 delay.low = 1000;/* delay is 1 ns */ 27
 delay.high = 0; 28
 29
 baseTypeHdl = vhpi_handle(vhpiBaseType, sigHdl); 30
 31
 /* check the signal type */ 32
 switch (vhpi_get(vhpiKindP, baseTypeHdl)) 33
 { 34
 casevhpiRecordTypeDeclK : 35
 { 36
 vhpiHandleT itsel, selh; 37
 if (!vhpi_get(vhpiIsResolved, sigHdl) 38
 { /* signal not resolved at the composite level */ 39
 itsel = vhpi_iterator(vhpiSelectedNames, sigHdl); 40
 while (selh = vhpi_scan(itsel)) 41
 schedule_transaction_value(selh); 42
 } 43
 else 44
 { 45
 vhpi_printf(“unimplemented\n”); 46
 return -1; 47
 } 48
 } 49
 break; 50
 51
 case vhpiArrayTypeDeclK: 52
 { /* get the element subtype */ 53
 vhpiHandleT eltSubtypeHdl, bitIt, bitHdl, 54
 vhpiHandleT colHdl = NULL; 55
 int countdrivs = 0; 56
 57
 if (vhpi_get(vhpiIsResolved, sigHdl)) 58
 { 59

 229

 vhpi_printf(“unimplemented\n”); 1
 return -1; 2
 } 3
 /* signal not resolved at the composite level */ 4
 elemSubtypeHdl = vhpi_handle(vhpiElemType, baseTypeDecl); 5
 baseTypeHdl = vhpiHandle(vhpiBaseType, elemSubtypeHdl); 6
 name = vhpi_get_str(vhpiNameP, baseTypeHdl); 7
 if (!strncmp(name, “BIT”)) 8
 { 9
 bitIt = vhpi_iterator(vhpiIndexedNames, sigHdl); 10
 while (bitHdl = vhpi_scan(bitIt)) 11
 { 12
 assert (vhpi_get(vhpiIsBasicP, bitHdl) == vhpiTrue); 13
 driverIt = vhpi_iterator(vhpiDrivers, bitHdl); 14
 while (driverHdl = vhpi_scan(driverIt)) 15
 { 16
 countdrivs++; 17
 colHdl = vhpi_create(vhpiDriverCollectionK, colHdl, 18
driverHdl); 19
 } 20
 } 21
 value.format = vhpiLogicVecVal; 22
 value.numElems = countDrivs; 23
 while (countdrivs) 24
 { 25
 value.value.logics++ = vhpiBit0; 26
 countdrivs--; 27
 } 28
 vhpi_schedule_transaction(colHdl, &value, 1, 29
 &delay, vhpiInertial, 0); 30
 31
 } 32
 else 33
 { 34
 vhpi_printf(“unimplemented\n”); 35
 return -1; 36
 } 37
 } 38
 break; 39
 case vhpiEnumTypeDeclK: 40
 { 41
 name = vhpi_get_str(vhpiNameP, baseTypeHdl); 42
 if (!strncmp(name, “BIT”)) 43
 { 44
 value.format = vhpiLogicVal; 45
 value.logic = vhpiBit0; 46
 47
 assert (vhpi_get(vhpiIsBasicP, sigHdl) == vhpiTrue); 48
 driverIt = vhpi_iterator(vhpiDrivers, sigHdl); 49
 while (driverHdl = vhpi_scan(driverIt)) 50
 countdrivs++; 51

 assert (countDrivs == 1); 52
 vhpi_schedule_transaction(driverHdl, &value, 1, 53
 &delay, vhpiInertial, 0); 54
 55
 } 56
 else 57
 { 58
 vhpi_printf(“unimplemented\n”); 59
 return -1; 60

 230

 } 1
 } 2
 break; 3
 default: 4
 vhpi_printf(“unimplemented\n”); 5
 return (-1); 6
 break; 7
 } 8
} 9
 10
The VHPI interface should report an error if: 11
1. A negative relative delay is provided 12
 Issue: if the times structure only contains UINT, it is not possible to specify a negative value. 13
2. The value given is not compatible with the signal base type. 14
3. The driver handle used to schedule an update is NULL. 15
4. The pulse rejection limit is greater than the inertial delay that is provided. 16
5. A zero delay transaction is attempted to be scheduled within the postponed process execution phase. 17
6. The handle passed in does not denote a driver. 18
 19
 20

 231

12. Interoperability between VPI and VHPI 1
 2

Function Category

Function Purpose

VHPI function

VPI function

Utilities Checks/returns error info vhpi_check_error() vpi_chk_error()

 Send control ommands to the
simulator

vhpi_control vpi_control

 Compares handles vhpi_compare_handles() vpi_compare_objects()
 Deallocates handle vhpi_release_handle() vpi_free_object()
 Get current simulation time vhpi_get_time() vpi_get_time()
 Returns invocation information NA (see tool class) vpi_get_vlog_info()
 Closes mcd channels NA vpi_mcd_close()
 Open mcd channels NA vpi_mcd_open()
 Flush NA vpi_flush()
 Flush mcd channels NA vpi_mcd_flush()
 Performs like C printf vhpi_printf() vpi_printf()
Navigation access Follows a singular relationship vhpi_handle() vpi_handle()
 Follows an iteration relationship vhpi_iterator() vpi_iterate()
 Gets next handle iteration element vhpi_scan() vpi_scan()
 Obtains a handle from a name

reference
vhpi_handle_by_name() vpi_handle_by_name()

 Obtains a handle to an indexed
element

vhpi_handle_by_index() vpi_handle_by_index()

 Obtains a handle to a multi-index
element

vhpi_handle_by_index() vpi_handle_by_multi_index()

 Obtains a handle to multi handles vhpi_handle_multi() vpi_handle_multi()

Property access Returns value of integer property vhpi_get() vpi_get()
 Returns value of string property vhpi_get_str() vpi_get_str()
 Returns value of a physical property vhpi_get_phys NA

 Returns value of real property vhpi_get_real() NA

Value access and
modifications

Gets the value of an object vhpi_get_value() vpi_get_value()

 Forces or schedules a zero delay
value on an object
Schedule a future or zero delay
transaction

vhpi_put_value()

vhpi_schedule_transaction(
)

vpi_put_value()

vpi_put_value()

 Get a delay value NA vpi_get_delays()

 Protected type access vhpi_protected_call() NA

 Modify a delay value NA vpi_put_delays()

Callbacks Registers a callback vhpi_register_cb() vpi_register_cb()
 Removes a callback vhpi_remove_cb vpi_remove_cb()
 Enables a callback vhpi_enable_cb() vpi_enable_cb()
 Disables a callback vhpi_disable_cb() vpi_disable_cb()
 Gets callback info vhpi_get_cb_info() vpi_get_cb_info()
C Foreign function Registers a foreign function vhpi_register_foreignf() vpi_register_systf()
 Gets foreign function info vhpi_get_foreignf_info() vpi_get_systf_info()
 Create a new elaborated object vhpi_create() vpi_create()
 Save data in a file vhpi_put_data() vpi_put_userdata()
 Restore data from file vhpi_get_data()() vpi_put_userdata()

 3

Table 1: Correspondence between VHPI and VPI functions 4

 5
 6

13. Annex A (normative) VHPI header file 7
 8

 232

The header file should be included by any application intending to use VHPI. This header file should be 1
provided by tool vendors supporting the VHPI interface. 2
The range of values from of 1000 to 2000 are RESERVED by the standard. 3
Vendors are allowed to provide additional functionality (other than the one defined by the standard) and 4
incorporate it in the header. This can be done by defining the following macros. 5
 6
Note: INT_AMS * macros are place holders for VHPI ams extensions. 7
 8
 9
/* define internal macros for VHPI internal functionality */ 10
#ifndef VHPI_INTERNAL_H 11
#define INT_CLASSES 12
#define INT_AMS_CLASSES 13
#define INT_ONE_METHODS 14
#define INT_AMS_ONE_METHODS 15
#define INT_MANY_METHODS 16
#define INT_AMS_MANY_METHODS 17
#define INT_INT_PROPERTIES 18
#define INT_AMS_INT_PROPERTIES 19
#define INT_STR_PROPERTIES 20
#define INT_AMS_STR_PROPERTIES 21
#define INT_REAL_PROPERTIES 22
#define INT_AMS_REAL_PROPERTIES 23
#define INT_PHYS_PROPERTIES 24
#define INT_AMS_PHYS_PROPERTIES 25
#define INT_VAL_FORMATS 26
#define INT_AMS_VAL_FORMATS 27
#define INT_ATTR 28
#define INT_AMS_ATTR 29
#define INT_PROTOTYPES 30
#endif 31
 32
/* 33
 * |---| 34
 * | | 35
 * | This is the VHPI header file | 36
 * | | 37
 * | | 38
 * | | 39
 * | FOR CONFORMANCE WITH THE VHPI STANDARD, A VHPI APPLICATION | 40
 * | OR PROGRAM MUST REFERENCE THIS HEADER FILE | 41
 * | Its contents can be modified to include vendor extensions. | 42
 * | | 43
 * |---| 44
 */ 45
 46
/*** File vhpi_user.h ***/ 47
/*** This file describe the procedural interface to access VHDL 48
 compiled, instantiated and run-time data. It is derived from 49
 the UML model. ***/ 50
 51
#ifndef VHPI_USER_H 52
#define VHPI_USER_H 53
 54
#ifdef __cplusplus 55
extern "C" { 56
#endif 57
 58

 233

/*--1
-----*/ 2
/*--------------------------- Portability Help -------------------------3
-----*/ 4
/*--5
-----*/ 6
 7
/* Sized variables */ 8
#ifndef PLI_TYPES 9
#define PLI_TYPES 10
typedef int PLI_INT32; 11
typedef unsigned int PLI_UINT32; 12
typedef short PLI_INT16; 13
typedef unsigned short PLI_UINT16; 14
typedef char PLI_BYTE8; 15
typedef unsigned char PLI_UBYTE8; 16
#endif 17
 18
typedef void PLI_VOID; 19
 20
/* Use to export a symbol */ 21
#if WIN32 22
#ifndef PLI_DLLISPEC 23
#define PLI_DLLISPEC __declspec(dllimport) 24
#define VHPI_USER_DEFINED_DLLISPEC 1 25
#endif 26
#else 27
#ifndef PLI_DLLISPEC 28
#define PLI_DLLISPEC 29
#endif 30
#endif 31
 32
/* Use to import a symbol */ 33
#if WIN32 34
#ifndef PLI_DLLESPEC 35
#define PLI_DLLESPEC __declspec(dllexport) 36
#define VHPI_USER_DEFINED_DLLESPEC 1 37
#endif 38
#else 39
#ifndef PLI_DLLESPEC 40
#define PLI_DLLESPEC 41
#endif 42
#endif 43
 44
/* Use to mark a function as external */ 45
#ifndef PLI_EXTERN 46
#define PLI_EXTERN 47
#endif 48
 49
/* Use to mark a variable as external */ 50
#ifndef PLI_VEXTERN 51
#define PLI_VEXTERN extern 52
#endif 53
 54
#ifndef PLI_PROTOTYPES 55
#define PLI_PROTOTYPES 56
#define PROTO_PARAMS(params) params 57
/* object is defined imported by the application */ 58
#define XXTERN PLI_EXTERN PLI_DLLISPEC 59
/* object is exported by the application */ 60

 234

#define EETERN PLI_EXTERN PLI_DLLESPEC 1
#endif 2
 3
/* define internal macros for VHPI internal functionality */ 4
#ifndef VHPI_INTERNAL_H 5
#define INT_CLASSES 6
#define INT_AMS_CLASSES 7
#define INT_ONE_METHODS 8
#define INT_AMS_ONE_METHODS 9
#define INT_MANY_METHODS 10
#define INT_AMS_MANY_METHODS 11
#define INT_INT_PROPERTIES 12
#define INT_AMS_INT_PROPERTIES 13
#define INT_STR_PROPERTIES 14
#define INT_AMS_STR_PROPERTIES 15
#define INT_REAL_PROPERTIES 16
#define INT_AMS_REAL_PROPERTIES 17
#define INT_PHYS_PROPERTIES 18
#define INT_AMS_PHYS_PROPERTIES 19
#define INT_VAL_FORMATS 20
#define INT_AMS_VAL_FORMATS 21
#define INT_ATTR 22
#define INT_AMS_ATTR 23
#define INT_PROTOTYPES 24
#endif 25
 26
/* basic typedefs */ 27
#ifndef VHPI_TYPES 28
#define VHPI_TYPES 29
typedef PLI_UINT32 *vhpiHandleT; 30
typedef PLI_UINT32 vhpiEnumT; 31
typedef PLI_UINT32 vhpiIntT; 32
typedef char vhpiCharT; 33
typedef double vhpiRealT; 34
typedef struct vhpiPhysS 35
{ 36
 PLI_INT32 high; 37
 PLI_UINT32 low; 38
} vhpiPhysT; 39
 40
/********************** time structure ****************************/ 41
typedef struct vhpiTimeS 42
{ 43
 PLI_UINT32 high; 44
 PLI_UINT32 low; 45
} vhpiTimeT; 46
 47
/********************** value structure **************************/ 48
 49
/* value formats */ 50
typedef enum { 51
 vhpiBinStrVal = 1, /* do not move */ 52
 vhpiOctStrVal = 2, /* do not move */ 53
 vhpiDecStrVal = 3, /* do not move */ 54
 vhpiHexStrVal = 4, /* do not move */ 55
 vhpiEnumVal = 5, 56
 vhpiIntVal = 6, 57
 vhpiLogicVal = 7, 58
 vhpiRealVal = 8, 59
 vhpiStrVal = 9, 60

 235

 vhpiCharVal = 10, 1
 vhpiTimeVal = 11, 2
 vhpiPhysVal = 12 , 3
 vhpiObjTypeVal = 13, 4
 vhpiPtrVal = 14, 5
 vhpiEnumVecVal = 15, 6
 vhpiIntVecVal = 16, 7
 vhpiLogicVecVal = 17, 8
 vhpiRealVecVal = 18, 9
 vhpiTimeVecVal = 19, 10
 vhpiPhysVecVal = 20, 11
 vhpiPtrVecVal = 21, 12
 vhpiRawDataVal = 22 13
 14
 INT_VAL_FORMATS 15
 INT_AMS_VAL_FORMATS 16
 17
} vhpiFormatT; 18
 19
/* value structure */ 20
typedef struct vhpiValueS 21
{ 22
 vhpiFormatT format; /* vhpi[Char,[Bin,Oct,Dec,Hex]Str, 23
 Enum, Logic,Int,Real,Phys,Time,Ptr, 24
 EnumVec,LogicVec,IntVect,RealVec,PhysVec25
,TimeVec, 26
 PtrVec,ObjType,RawData]Val */ 27
 PLI_UINT32 bufSize; /* the size in bytes of the value buffer; this is 28
set 29
 by the user */ 30
 PLI_INT32 numElems; 31
 /* different meanings depending on the format: 32
 vhpiStrVal, vhpi{Bin...}StrVal: size of string 33
 array type values: number of array elements 34
 scalar type values: undefined 35
 */ 36
 37
 vhpiPhysT unit; /* changed to vhpiPhysT in charles */ 38
 union 39
 { 40
 vhpiEnumT enumv, *enumvs; 41
 vhpiIntT intg, *intgs; 42
 vhpiRealT real, *reals; 43
 vhpiPhysT phys, *physs; 44
 vhpiTimeT time, *times; 45
 vhpiCharT ch, *str; 46
 void *ptr, **ptrs; 47
 } value; 48
} vhpiValueT; 49
 50
#endif 51
 52
/* Following are the constant definitions. They are divided into 53
 three major areas: 54
 55
 1) object types 56
 57
 2) access methods 58
 59
 3) properties 60

 236

 1
*/ 2
#define vhpiUndefined 1000 3
 4
/*************** OBJECT KINDS *******************/ 5
typedef enum { 6
 vhpiAccessTypeDeclK = 1001, 7
 vhpiAggregateK = 1002, 8
 vhpiAliasDeclK = 1003, 9
 vhpiAllK = 1004, 10
 vhpiAllocatorK = 1005, 11
 vhpiAnyCollectionK = 1006, 12
 vhpiArchBodyK = 1007, 13
 vhpiArgvK = 1008, 14
 vhpiArrayTypeDeclK = 1009, 15
 vhpiAssertStmtK = 1010, 16
 vhpiAssocElemK = 1011, 17
 vhpiAttrDeclK = 1012, 18
 vhpiAttrSpecK = 1013, 19
 vhpiBinaryExprK = 1014, 20
 vhpiBitStringLiteralK = 1015, 21
 vhpiBlockConfigK = 1016, 22
 vhpiBlockStmtK = 1017, 23
 vhpiBranchK = 1018, 24
 vhpiCallbackK = 1019, 25
 vhpiCaseStmtK = 1020, 26
 vhpiCharLiteralK = 1021, 27
 vhpiCompConfigK = 1022, 28
 vhpiCompDeclK = 1023, 29
 vhpiCompInstStmtK = 1024, 30
 vhpiCondSigAssignStmtK = 1025, 31
 vhpiCondWaveformK = 1026, 32
 vhpiConfigDeclK = 1027, 33
 vhpiConstDeclK = 1028, 34
 vhpiConstParamDeclK = 1029, 35
 vhpiConvFuncK = 1030, 36
 vhpiDerefObjK = 1031, 37
 vhpiDisconnectSpecK = 1032, 38
 vhpiDriverK = 1033, 39
 vhpiDriverCollectionK = 1034, 40
 vhpiElemAssocK = 1035, 41
 vhpiElemDeclK = 1036, 42
 vhpiEntityClassEntryK = 1037, 43
 vhpiEntityDeclK = 1038, 44
 vhpiEnumLiteralK = 1039, 45
 vhpiEnumRangeK = 1040, /* new in ldv40 */ 46
 vhpiEnumTypeDeclK = 1041, 47
 vhpiExitStmtK = 1042, 48
 vhpiFileDeclK = 1043, 49
 vhpiFileParamDeclK = 1044, 50
 vhpiFileTypeDeclK = 1045, 51
 vhpiFloatRangeK = 1046, 52
 vhpiFloatTypeDeclK = 1047, 53
 vhpiForGenerateK = 1048, 54
 vhpiForLoopK = 1049, 55
 vhpiForeignfK = 1050, 56
 vhpiFuncCallK = 1051, 57
 vhpiFuncDeclK = 1052, 58
 vhpiGenericDeclK = 1053, 59
 vhpiGroupDeclK = 1054, 60

 237

 vhpiGroupTempDeclK = 1055, 1
 vhpiIfGenerateK = 1056, 2
 vhpiIfStmtK = 1057, 3
 vhpiInPortK = 1058, 4
 vhpiIndexedNameK = 1059, 5
 vhpiIntLiteralK = 1060, 6
 vhpiIntRangeK = 1061, 7
 vhpiIntTypeDeclK = 1062, 8
 vhpiIteratorK = 1063, 9
 vhpiLibraryDeclK = 1064, 10
 vhpiLoopStmtK = 1065, 11
 vhpiNextStmtK = 1066, 12
 vhpiNullLiteralK = 1067, 13
 vhpiNullStmtK = 1068, 14
 vhpiOperatorK = 1069, 15
 vhpiOthersK = 1070, 16
 vhpiOutPortK = 1071, 17
 vhpiPackBodyK = 1072, 18
 vhpiPackDeclK = 1073, 19
 vhpiPackInstK = 1074, 20
 vhpiParamAttrNameK = 1075, 21
 vhpiPhysLiteralK = 1076, 22
 vhpiPhysRangeK = 1077, 23
 vhpiPhysTypeDeclK = 1078, 24
 vhpiPortDeclK = 1079, 25
 vhpiProcCallStmtK = 1080, 26
 vhpiProcDeclK = 1081, 27
 vhpiProcessStmtK = 1082, 28
 vhpiProtectedTypeK = 1083, 29
 vhpiProtectedTypeBodyK = 1084, 30
 vhpiProtectedTypeDeclK = 1085, 31
 vhpiRealLiteralK = 1086, 32
 vhpiRecordTypeDeclK = 1087, 33
 vhpiReportStmtK = 1088, 34
 vhpiReturnStmtK = 1089, 35
 vhpiRootInstK = 1090, 36
 vhpiSelectSigAssignStmtK = 1091, 37
 vhpiSelectWaveformK = 1092, 38
 vhpiSelectedNameK = 1093, 39
 vhpiSigDeclK = 1094, 40
 vhpiSigParamDeclK = 1095, 41
 vhpiSimpAttrNameK = 1096, 42
 vhpiSimpleSigAssignStmtK = 1097, 43
 vhpiSliceNameK = 1098, 44
 vhpiStringLiteralK = 1099, 45
 vhpiSubpBodyK = 1100, 46
 vhpiSubtypeDeclK = 1101, 47
 vhpiSubtypeIndicK = 1102, 48
 vhpiToolK = 1103, 49
 vhpiTransactionK = 1104, 50
 vhpiTypeConvK = 1105, 51
 vhpiUnaryExprK = 1106, 52
 vhpiUnitDeclK = 1107, 53
 vhpiUserAttrNameK = 1108, 54
 vhpiVarAssignStmtK = 1109, 55
 vhpiVarDeclK = 1110, 56
 vhpiVarParamDeclK = 1111, 57
 vhpiWaitStmtK = 1112, 58
 vhpiWaveformElemK = 1113, 59
 vhpiWhileLoopK = 1114 60

 238

 1
 INT_CLASSES 2
 INT_AMS_CLASSES 3
} vhpiClassKindT; 4
 5
/************** methods used to traverse 1 to 1 relationships 6
*******************/ 7
typedef enum { 8
 vhpiAbstractLiteral = 1301, 9
 vhpiActual = 1302, 10
 vhpiAll = 1303, 11
 vhpiAttrDecl = 1304, 12
 vhpiAttrSpec = 1305, 13
 vhpiBaseType = 1306, 14
 vhpiBaseUnit = 1307, 15
 vhpiBasicSignal = 1308, 16
 vhpiBlockConfig = 1309, 17
 vhpiCaseExpr = 1310, 18
 vhpiCondExpr = 1311, 19
 vhpiConfigDecl = 1312, 20
 vhpiConfigSpec = 1313, 21
 vhpiConstraint = 1314, 22
 vhpiContributor = 1315, 23
 vhpiCurCallback = 1316, 24
 vhpiCurEqProcess = 1317, 25
 vhpiCurStackFrame = 1318, 26
 vhpiDerefObj = 1319, 27
 vhpiDecl = 1320, 28
 vhpiDesignUnit = 1321, 29
 vhpiDownStack = 1322, 30
 vhpiElemSubtype = 1323, 31
 vhpiEntityAspect = 1324, 32
 vhpiEntityDecl = 1325, 33
 vhpiEqProcessStmt = 1326, 34
 vhpiExpr = 1327, 35
 vhpiFormal = 1328, 36
 vhpiFuncDecl = 1329, 37
 vhpiGroupTempDecl = 1330, 38
 vhpiGuardExpr = 1331, 39
 vhpiGuardSig = 1332, 40
 vhpiImmRegion = 1333, 41
 vhpiInPort = 1334, 42
 vhpiInitExpr = 1335, 43
 vhpiIterScheme = 1336, 44
 vhpiLeftExpr = 1337, 45
 vhpiLexicalScope = 1338, 46
 vhpiLhsExpr = 1339, 47
 vhpiLocal = 1340, 48
 vhpiLogicalExpr = 1341, 49
 vhpiName = 1342, 50
 vhpiOperator = 1343, 51
 vhpiOthers = 1344, 52
 vhpiOutPort = 1345, 53
 vhpiParamDecl = 1346, 54
 vhpiParamExpr = 1347, 55
 vhpiParent = 1348, 56
 vhpiPhysLiteral = 1349, 57
 vhpiPrefix = 1350, 58
 vhpiPrimaryUnit = 1351, 59
 vhpiProtectedTypeBody = 1352, 60

 239

 vhpiProtectedTypeDecl = 1353, 1
 vhpiRejectTime = 1354, 2
 vhpiReportExpr = 1355, 3
 vhpiResolFunc = 1356, 4
 vhpiReturnExpr = 1357, 5
 vhpiReturnTypeMark = 1358, 6
 vhpiRhsExpr = 1359, 7
 vhpiRightExpr = 1360, 8
 vhpiRootInst = 1361, 9
 vhpiSelectExpr = 1362, 10
 vhpiSeverityExpr = 1363, 11
 vhpiSimpleName = 1364, 12
 vhpiSubpBody = 1365, 13
 vhpiSubpDecl = 1366, 14
 vhpiSubtype = 1367, 15
 vhpiSuffix = 1368, 16
 vhpiTimeExpr = 1369, 17
 vhpiTimeOutExpr = 1370, 18
 vhpiTool = 1371, 19
 vhpiType = 1372 20
 vhpiTypeMark = 1373, 21
 vhpiUnitDecl = 1374, 22
 vhpiUpStack = 1375, 23
 vhpiUpperRegion = 1376, 24
 vhpiUse = 1377, 25
 vhpiValExpr = 1378, 26
 vhpiValSubtype = 1379 27
 28
 INT_ONE_METHODS 29
 INT_AMS_ONE_METHODS 30
 31
} vhpiOneToOneT; 32
 33
/************** methods used to traverse 1 to many relationships 34
*******************/ 35
typedef enum { 36
 vhpiAliasDecls = 1501, 37
 vhpiArgvs = 1502, 38
 vhpiAttrDecls = 1503, 39
 vhpiAttrSpecs = 1504, 40
 vhpiBasicSignals = 1505, 41
 vhpiBlockStmts = 1506, 42
 vhpiBranchs = 1507, 43
 vhpiCallbacks = 1508, 44
 vhpiChoices = 1509, 45
 vhpiCompInstStmts = 1510, 46
 vhpiCondExprs = 1511, 47
 vhpiCondWaveforms = 1512, 48
 vhpiConfigItems = 1513, 49
 vhpiConfigSpecs = 1514, 50
 vhpiConstDecls = 1515, 51
 vhpiConstraints = 1516, 52
 vhpiContributors = 1517, 53
 vhpiCurRegions = 1518, Issue I019 54
 vhpiDecls = 1519, 55
 vhpiDepUnits = 1520, 56
 vhpiDesignUnits = 1521, 57
 vhpiDrivenSigs = 1522, 58
 vhpiDrivers = 1523, 59
 vhpiElemAssocs = 1524, 60

 240

 vhpiEntityClassEntrys = 1525, 1
 vhpiEntityDesignators = 1526, 2
 vhpiEnumLiterals = 1527, 3
 vhpiForeignfs = 1528, 4
 vhpiGenericAssocs = 1529, 5
 vhpiGenericDecls = 1530, 6
 vhpiIndexExprs = 1531, 7
 vhpiIndexedNames = 1532, 8
 vhpiInternalRegions = 1533, 9
 vhpiMembers = 1534, 10
 vhpiPackInsts = 1535, 11
 vhpiParamAssocs = 1536, 12
 vhpiParamDecls = 1537, 13
 vhpiPortAssocs = 1538, 14
 vhpiPortDecls = 1539, 15
 vhpiRecordElems = 1540, 16
 vhpiSelectWaveforms = 1541, 17
 vhpiSelectedNames = 1542, 18
 vhpiSensitivitys = 1543, 19
 vhpiSeqStmts = 1544, 20
 vhpiSigAttrs = 1545, 21
 vhpiSigDecls = 1546, 22
 vhpiSigNames = 1547, 23
 vhpiSignals = 1548, 24
 vhpiSpecNames = 1549, 25
 vhpiSpecs = 1550, 26
 vhpiStmts = 1551, /* vhpiTargets removed in 4.0 */ 27
 vhpiTransactions = 1552, 28
 vhpiTypeMarks = 1553, 29
 vhpiUnitDecls = 1554, 30
 vhpiUses = 1555, 31
 vhpiVarDecls = 1556, 32
 vhpiWaveformElems = 1557 33
 34
 INT_MANY_METHODS 35
 INT_AMS_MANY_METHODS 36
 37
} vhpiOneToManyT; 38
 39
/****************** PROPERTIES *******************/ 40
/******* INTEGER or BOOLEAN PROPERTIES **********/ 41
typedef enum { 42
 vhpiAccessP = 1001, 43
 vhpiArgcP = 1002, 44
 vhpiAttrKindP = 1003, 45
 vhpiBaseIndexP = 1004, 46
 vhpiBeginLineNoP = 1005, 47
 vhpiEndLineNoP = 1006, 48
 vhpiEntityClassP = 1007, 49
 vhpiForeignKindP = 1008, 50
 vhpiFrameLevelP = 1009, 51
 vhpiGenerateIndexP = 1010, 52
 vhpiIntValP = 1011, 53
 vhpiIsAnonymousP = 1012, 54
 vhpiIsBasicP = 1013, 55
 vhpiIsCompositeP = 1014, 56
 vhpiIsDefaultP = 1015, 57
 vhpiIsDeferredP = 1016, 58
 vhpiIsDiscreteP = 1017, 59
 vhpiIsForcedP = 1018, 60

 241

 vhpiIsForeignP = 1019, 1
 vhpiIsGuardedP = 1020, 2
 vhpiIsImplicitDeclP = 1021, 3
 vhpiIsInvalidP = 1022, 4
 vhpiIsLocalP = 1023, 5
 vhpiIsNamedP = 1024, 6
 vhpiIsNullP = 1025, 7
 vhpiIsOpenP = 1026, 8
 vhpiIsPLIP = 1027, 9
 vhpiIsPassiveP = 1028, 10
 vhpiIsPostponedP = 1029, 11
 vhpiIsProtectedTypeP = 1030, 12
 vhpiIsPureP = 1031, 13
 vhpiIsResolvedP = 1032, 14
 vhpiIsScalarP = 1033, 15
 vhpiIsSeqStmtP = 1034, 16
 vhpiIsSharedP = 1035, 17
 vhpiIsTransportP = 1036, 18
 vhpiIsUnaffectedP = 1037, 19
 vhpiIsUnconstrainedP = 1038, 20
 vhpiIsUninstantiatedP = 1039, 21
 vhpiIsUpP = 1040, 22
 vhpiIsVitalP = 1041, 23
 vhpiIteratorTypeP = 1042, 24
 vhpiKindP = 1042, -- change all numbers 25
 vhpiLeftBoundP = 1043, 26
 vhpiLevelP = 1044, 27
 vhpiLineNoP = 1045, 28
 vhpiLineOffsetP = 1046, 29
 vhpiLoopIndexP = 1047, 30
 vhpiModeP = 1048, 31
 vhpiNumDimensionsP = 1049, 32
 vhpiNumFieldsP = 1050, 33
 vhpiNumGensP = 1051, 34
 vhpiNumLiteralsP = 1052, 35
 vhpiNumMembersP = 1053, 36
 vhpiNumParamsP = 1054, 37
 vhpiNumPortsP = 1055, 38
 vhpiOpenModeP = 1056, 39
 vhpiPhaseP = 1057, 40
 vhpiPositionP = 1058, 41
 vhpiPredefAttrP = 1059, 42
 vhpiProtectedLevelP = 1060, 43
 vhpiReasonP = 1061, 44
 vhpiRightBoundP = 1062, 45
 vhpiSigKindP = 1063, 46
 vhpiSizeP = 1064, 47
 vhpiStartLineNoP = 1065, 48
 vhpiStateP = 1066, 49
 vhpiStaticnessP = 1067, 50
 vhpiVHDLversionP = 1068, 51
 vhpiIdP = 1069, 52
 53
 /* MIXED_LANG_PROPERTY */ 54
 vhpiLanguageP = 1200 55
 INT_INT_PROPERTIES 56
 INT_AMS_INT_PROPERTIES 57
 58
} vhpiIntPropertyT; 59
 60

 242

/******* STRING PROPERTIES **********/ 1
typedef enum { 2
 vhpiCaseNameP = 1301, 3
 vhpiCompNameP = 1302, 4
 vhpiDefNameP = 1303, 5
 vhpiFileNameP = 1304, 6
 vhpiFullCaseNameP = 1305, 7
 vhpiFullNameP = 1306, 8
 vhpiKindStrP = 1307, 9
 vhpiLabelNameP = 1308, 10
 vhpiLibLogicalNameP = 1309, 11
 vhpiLibPhysicalNameP = 1310, 12
 vhpiLogicalNameP = 1311, 13
 vhpiLoopLabelNameP = 1312, 14
 vhpiNameP = 1313, 15
 vhpiOpNameP = 1314, 16
 vhpiStrValP = 1315, 17
 vhpiToolVersionP = 1316, 18
 vhpiUnitNameP = 1317, 19
 vhpiSaveRestartLocationP = 1318, 20
 21
 /* MIXED LANG PROPERTIES */ 22
 vhpiFullVlogNameP = 1500, 23
 vhpiFullVHDLNameP = 1501, 24
 vhpiFullLSNameP = 1502, 25
 vhpiFullLSCaseNameP = 1503 26
 27
 INT_STR_PROPERTIES 28
 INT_AMS_STR_PROPERTIES 29
 30
} vhpiStrPropertyT; 31
/******* REAL PROPERTIES **********/ 32
typedef enum { 33
 vhpiFloatLeftBoundP = 1601, 34
 vhpiFloatRightBoundP = 1602, 35
 vhpiRealValP = 1603 36
 37
 INT_REAL_PROPERTIES 38
 INT_AMS_REAL_PROPERTIES 39
 40
} vhpiRealPropertyT; 41
 42
/******* PHYSICAL PROPERTIES **********/ 43
typedef enum { 44
 vhpiPhysLeftBoundP = 1651, 45
 vhpiPhysPositionP = 1652, 46
 vhpiPhysRightBoundP = 1653, 47
 vhpiPhysValP = 1654, 48
 vhpiPrecisionP = 1655, 49
 vhpiSimTimeUnitP = 1656 50
 51
 INT_PHYS_PROPERTIES 52
 INT_AMS_PHYS_PROPERTIES 53
 54
} vhpiPhysPropertyT; 55
 56
/******************* PROPERTY VALUES ************************/ 57
 58
/* vhpiOpenModeP */ 59
#define vhpiInOpen 1001 60

 243

#define vhpiOutOpen 1002 1
#define vhpiReadOpen 1003 2
#define vhpiWriteOpen 1004 3
#define vhpiAppendOpen 1005 4
 5
/* vhpiModeP */ 6
#define vhpiInMode 1001 7
#define vhpiOutMode 1002 8
#define vhpiInoutMode 1003 9
#define vhpiBufferMode 1004 10
#define vhpiLinkageMode 1005 11
 12
/* vhpiSigKindP */ 13
#define vhpiRegister 1001 14
#define vhpiBus 1002 15
#define vhpiNormal 1003 16
 17
/* vhpiStaticnessP */ 18
#define vhpiLocallyStatic 1001 19
#define vhpiGloballyStatic 1002 20
#define vhpiDynamic 1003 21
 22
/* vhpiPredefAttrP */ 23
#define vhpiActivePA 1001 24
#define vhpiAscendingPA 1002 25
#define vhpiBasePA 1003 26
#define vhpiDelayedPA 1004 27
#define vhpiDrivingPA 1005 28
#define vhpiDriving_valuePA 1006 29
#define vhpiEventPA 1007 30
#define vhpiHighPA 1008 31
#define vhpiImagePA 1009 32
#define vhpiInstance_namePA 1010 33
#define vhpiLast_activePA 1011 34
#define vhpiLast_eventPA 1012 35
#define vhpiLast_valuePA 1013 36
#define vhpiLeftPA 1014 37
#define vhpiLeftofPA 1015 38
#define vhpiLengthPA 1016 39
#define vhpiLowPA 1017 40
#define vhpiPath_namePA 1018 41
#define vhpiPosPA 1019 42
#define vhpiPredPA 1020 43
#define vhpiQuietPA 1021 44
#define vhpiRangePA 1022 45
#define vhpiReverse_rangePA 1023 46
#define vhpiRightPA 1024 47
#define vhpiRightofPA 1025 48
#define vhpiSimple_namePA 1026 49
#define vhpiStablePA 1027 50
#define vhpiSuccPA 1028 51
#define vhpiTransactionPA 1029 52
#define vhpiValPA 1030 53
#define vhpiValuePA 1031 54
 55
/* vhpiAttrKindP */ 56
typedef enum { 57
 vhpiFunctionAK = 1, 58
 vhpiRangeAK = 2, 59
 vhpiSignalAK = 3, 60

 244

 vhpiTypeAK = 4, 1
 vhpiValueAK = 5 2
 INT_ATTR 3
 INT_AMS_ATTR 4
} vhpiAttrKindT; 5
 6
/* vhpiEntityClassP */ 7
#define vhpiEntityEC 1001 8
#define vhpiArchitectureEC 1002 9
#define vhpiConfigurationEC 1003 10
#define vhpiProcedureEC 1004 11
#define vhpiFunctionEC 1005 12
#define vhpiPackageEC 1006 13
#define vhpiTypeEC 1007 14
#define vhpiSubtypeEC 1008 15
#define vhpiConstantEC 1009 16
#define vhpiSignalEC 1010 17
#define vhpiVariableEC 1011 18
#define vhpiComponentEC 1012 19
#define vhpiLabelEC 1013 20
#define vhpiLiteralEC 1014 21
#define vhpiUnitsEC 1015 22
#define vhpiFileEC 1016 23
#define vhpiGroupEC 1017 24
 25
/* vhpiAccessP */ 26
#define vhpiRead 1 27
#define vhpiWrite 2 28
#define vhpiConnectivity 4 29
#define vhpiNoAccess 8 30
 31
/* value for vhpiStateP property for callbacks */ 32
typedef enum { 33
 vhpiEnable, 34
 vhpiDisable, 35
 vhpiMature /* callback has occured */ 36
} vhpiStateT; 37
 38
/* MIXED LANGUAGE PROPERTY VALUES */ 39
/* vhpiLanguageP */ 40
#define vhpiVHDL 1001 41
#define vhpiVerilog 1002 42
 43
/* the following enumeration types are used only for vhpiSimTimeUnitP 44
and vhpiPrecisionP property and for setting the unit field of the value 45
structure; they represent the physical position of a given 46
VHDL time unit */ 47
/* time unit physical position values {high, low} */ 48
PLI_VEXTERN PLI_DLLISPEC const vhpiPhysT vhpiFS; 49
PLI_VEXTERN PLI_DLLISPEC const vhpiPhysT vhpiPS; 50
PLI_VEXTERN PLI_DLLISPEC const vhpiPhysT vhpiNS; 51
PLI_VEXTERN PLI_DLLISPEC const vhpiPhysT vhpiUS; 52
PLI_VEXTERN PLI_DLLISPEC const vhpiPhysT vhpiMS; 53
PLI_VEXTERN PLI_DLLISPEC const vhpiPhysT vhpiS; 54
PLI_VEXTERN PLI_DLLISPEC const vhpiPhysT vhpiMN; 55
PLI_VEXTERN PLI_DLLISPEC const vhpiPhysT vhpiHR; 56
 57
/********************** delay structures **************************/ 58
/* removed ; postponed to next version of the standard */ 59
 60

 245

/* IEEE std_logic values */ 1
#define vhpiU 0 /* uninitialized */ 2
#define vhpiX 1 /* unknown */ 3
#define vhpi0 2 /* forcing 0 */ 4
#define vhpi1 3 /* forcing 1 */ 5
#define vhpiZ 4 /* high impedance */ 6
#define vhpiW 5 /* weak unknown */ 7
#define vhpiL 6 /* weak 0 */ 8
#define vhpiH 7 /* weak 1 */ 9
#define vhpiDontCare 8 /* don't care */ 10
 11
/* IEEE std bit values */ 12
#define vhpibit0 0 /* bit 0 */ 13
#define vhpibit1 1 /* bit 1 */ 14
 15
/* IEEE std boolean values */ 16
#define vhpiFalse 0 /* false */ 17
#define vhpiTrue 1 /* true */ 18
 19
/************** vhpiPhaseP property values *************/ 20
typedef enum { 21
 vhpiRegistrationPhase = 1, 22
 vhpiAnalysisPhase = 2, 23
 vhpiElaborationPhase = 3, 24
 vhpiInitializationPhase = 4, 25
 vhpiSimulationPhase = 5, 26
 vhpiTerminationPhase = 6, 27
 vhpiSavePhase = 7, 28
 vhpiRestartPhase = 8, 29
 vhpiResetPhase = 9 30
} vhpiPhaseT ; 31
/**************** PLI error information structure ****************/ 32
 33
typedef enum { 34
 vhpiNote = 1, /* same as vpiNotice */ 35
 vhpiWarning = 2, /* same as vpiWarning */ 36
 vhpiError = 3, /* same as vpiError */ 37
 vhpiFailure = 6, /* keep it like that for interoperability 38
with VPI */ 39
 vhpiSystem = 4, /* same as vpiSystem */ 40
 vhpiInternal = 5 /* same as vpiInternal */ 41
} vhpiSeverityT; 42
 43
typedef struct vhpiErrorInfoS 44
{ 45
 vhpiSeverityT severity; 46
 PLI_BYTE8 *message; 47
 PLI_BYTE8 *str; 48
 PLI_BYTE8 *file; /* Name of the VHDL file where the VHPI error 49
 originated */ 50
 PLI_INT32 line; /* Line number in the VHDL file */ 51
} vhpiErrorInfoT; 52
 53
/********************* callback structures ************************/ 54
/* callback user data structure */ 55
 56
typedef struct vhpiCbDataS 57
{ 58
 PLI_INT32 reason; /* callback reason */ 59
 PLI_VOID (*cb_rtn) (const struct vhpiCbDataS *); /* call routine */ 60

 246

 vhpiHandleT obj; /* trigger object */ 1
 vhpiTimeT *time; /* callback time */ 2
 vhpiValueT *value; /* trigger object value */ 3
 PLI_VOID *user_data; /* pointer to user data to be passed to 4
the 5
 callback function */ 6
} vhpiCbDataT; 7
 8
/**************************** CALLBACK REASONS 9
****************************/ 10
/*************************** Simulation object related 11
***********************/ 12
/* These are repetitive callbacks */ 13
#define vhpiCbValueChange 1001 14
#define vhpiCbForce 1002 15
#define vhpiCbRelease 1003 16
#define vhpiCbTransaction 1004 /* optional callback reason */ 17
 18
/****************************** Statement related 19
****************************/ 20
/* These are repetitive callbacks */ 21
#define vhpiCbStmt 1005 22
#define vhpiCbResume 1006 /* ganges */ 23
#define vhpiCbSuspend 1007 /* ganges */ 24
/* issue: one time or repetitive callbacks */ 25
#define vhpiCbStartOfSubpCall 1008 /* ganges */ 26
#define vhpiCbEndOfSubpCall 1009 /* ganges */ 27
 28
/****************************** Time related 29
******************************/ 30
/* the Rep callback reasons are the repeated versions of the callbacks 31
*/ 32
 33
#define vhpiCbAfterDelay 1010 34
#define vhpiCbRepAfterDelay 1011 35
/*************************** Simulation cycle phase related 36
*****************/ 37
#define vhpiCbNextTimeStep 1012 38
#define vhpiCbRepNextTimeStep 1013 39
#define vhpiCbStartOfNextCycle 1014 40
#define vhpiCbRepStartOfNextCycle 1015 41
#define vhpiCbStartOfProcesses 1016 /* new in charles */ 42
#define vhpiCbRepStartOfProcesses 1017 /* new in ldv 3.3 */ 43
#define vhpiCbEndOfProcesses 1018 /* ganges */ 44
#define vhpiCbRepEndOfProcesses 1019 /* new ldv 3.3 */ 45
#define vhpiCbLastKnownDeltaCycle 1020 /* new in ldv 3.3 */ 46
#define vhpiCbRepLastKnownDeltaCycle 1021 /* new in ldv 3.3 */ 47
#define vhpiCbStartOfPostponed 1022 /* ganges */ 48
#define vhpiCbRepStartOfPostponed 1023 /* new in ldv 3.3 */ 49
#define vhpiCbEndOfTimeStep 1024 /* ganges */ 50
#define vhpiCbRepEndOfTimeStep 1025 /* new in ldv 3.3 */ 51
 52
/***************************** Action related 53
*****************************/ 54
/* these are one time callback unless otherwise noted */ 55
#define vhpiCbStartOfTool 1026 /* new in charles */ 56
#define vhpiCbEndOfTool 1027 /* new in charles */ 57
#define vhpiCbStartOfAnalysis 1028 /* new in charles */ 58
#define vhpiCbEndOfAnalysis 1029 /* new in charles */ 59
 60

 247

#define vhpiCbStartOfElaboration 1030 /* new in charles */ 1
#define vhpiCbEndOfElaboration 1031 /* name was cbkEndOfElaboration 2
in tiber */ 3
#define vhpiCbStartOfInitialization 1032 /* Name change in charles */ 4
#define vhpiCbEndOfInitialization 1033 /* new in ldv 3.3 */ 5
#define vhpiCbStartOfSimulation 1034 6
#define vhpiCbEndOfSimulation 1035 7
#define vhpiCbQuiescense 1036 /* repetitive */ 8
#define vhpiCbPLIError 1037 /* repetitive */ 9
#define vhpiCbStartOfSave 1038 10
#define vhpiCbkEndOfSave 1039 11
#define vhpiCbStartOfRestart 1040 12
#define vhpiCbEndOfRestart 1041 13
#define vhpiCbStartOfReset 1042 14
#define vhpiCbEndOfReset 1043 15
#define vhpiCbEnterInteractive 1044 /* repetitive */ 16
#define vhpiCbExitInteractive 1045 /* repetitive */ 17
#define vhpiCbSigInterrupt 1046 /* repetitive */ 18
 19
/* Foreign model callbacks */ 20
#define vhpiCbTimeOut 1047 /* non repetitive */ 21
#define vhpiCbRepTimeOut 1048 /* repetitive */ 22
#define vhpiCbSensitivity 1049 /* repetitive */ 23
 24
/**************************** CALLBACK FLAGS 25
******************************/ 26
#define vhpiReturnCb 0x00000001 27
#define vhpiDisableCb 0x00000010 28
 29
/************** vhpiAutomaticRestoreP property values *************/ 30
typedef enum { 31
 vhpiRestoreAll = 1, 32
 vhpiRestoreUserData = 2, 33
 vhpiRestoreHandles = 4, 34
 vhpiRestoreCallbacks = 8, 35
} vhpiAutomaticRestoreT ; 36
 37
 38
/******************** FUNCTION DECLARATIONS *********************/ 39
XXTERN PLI_INT32 vhpi_assert PROTO_PARAMS((vhpiSeverityT severity, 40
PLI_BYTE8 *formatmsg,…)); 41
/* callback related */ 42
 43
XXTERN vhpiHandleT vhpi_register_cb PROTO_PARAMS((vhpiCbDataT 44
*cb_data_p, PLI_UINT32 flags)); 45
XXTERN PLI_INT32 vhpi_remove_cb PROTO_PARAMS((vhpiHandleT 46
cb_obj)); 47
XXTERN PLI_INT32 vhpi_disable_cb PROTO_PARAMS((vhpiHandleT 48
cb_obj)); 49
XXTERN PLI_INT32 vhpi_enable_cb PROTO_PARAMS((vhpiHandleT 50
cb_obj)); 51
XXTERN PLI_INT32 vhpi_get_cb_info PROTO_PARAMS((vhpiHandleT 52
object, vhpiCbDataT *cb_data_p)); 53
 54
/* for obtaining handles */ 55
XXTERN vhpiHandleT vhpi_handle_by_name PROTO_PARAMS((const PLI_BYTE8 56
*name, vhpiHandleT scope)); 57
 58
XXTERN vhpiHandleT vhpi_handle_by_index PROTO_PARAMS((vhpiOneToManyT 59
itRel, vhpiHandleT parent, PLI_INT32 indx)); 60

 248

 1
/* for traversing relationships */ 2
XXTERN vhpiHandleT vhpi_handle PROTO_PARAMS((vhpiOneToOneT 3
type, vhpiHandleT referenceHandle)); 4
XXTERN vhpiHandleT vhpi_iterator PROTO_PARAMS((vhpiOneToManyT 5
type, vhpiHandleT referenceHandle)); 6
XXTERN vhpiHandleT vhpi_scan PROTO_PARAMS((vhpiHandleT 7
iterator)); 8
 9
/* for processsing properties */ 10
XXTERN 11
PLI_INT32 vhpi_get PROTO_PARAMS((vhpiIntPropertyT 12
property, vhpiHandleT object)); 13
XXTERN const PLI_BYTE8 14
* vhpi_get_str PROTO_PARAMS((vhpiStrPropertyT property, 15
vhpiHandleT object)); 16
XXTERN 17
vhpiRealT vhpi_get_real PROTO_PARAMS((vhpiRealPropertyT 18
property, vhpiHandleT object)); 19
/* vhpi_get_phys new in charles */ 20
XXTERN 21
vhpiPhysT vhpi_get_phys PROTO_PARAMS((vhpiPhysPropertyT 22
property, vhpiHandleT object)); 23
 24
/* for access to protected types: new in ganges */ 25
typedef int (*vhpiUserFctT)(); 26
XXTERN PLI_INT32 vhpi_protected_call PROTO_PARAMS((vhpiHandleT varHdl, 27
vhpiUserFctT userFct, PLI_VOID *userData)); 28
 29
/* value processing */ 30
XXTERN PLI_INT32 vhpi_get_value PROTO_PARAMS((vhpiHandleT 31
expr, vhpiValueT *value_p)); 32
XXTERN PLI_INT32 vhpi_put_value PROTO_PARAMS((vhpiHandleT object, 33
vhpiValueT *value_p, PLI_UINT32 flags)); 34
 35
/* vhpi_put_value flags */ 36
typedef enum { 37
 vhpiDeposit, 38
 vhpiDepositPropagate, 39
 vhpiForce, 40
 vhpiForcePropagate, 41
 vhpiRelease, 42
 vhpiSizeConstraint 43
} vhpiPutValueModeT; 44
 45
XXTERN PLI_INT32 vhpi_schedule_transaction PROTO_PARAMS((vhpiHandleT 46
drivHdl, vhpiValueT *value_p, PLI_INT32 numValues, vhpiTimeT 47
*delayp,PLI_UINT32 delayMode, vhpiTimeT * pulseRejp)); 48
typedef enum { 49
 vhpiInertial, 50
 vhpiTransport 51
} vhpidelayModeT; 52
 53
XXTERN PLI_INT32 vhpi_format_value PROTO_PARAMS((const 54
vhpiValueT *in_value_p, vhpiValueT *out_value_p)); 55
 56
/* time processing */ 57
/* the current simulation time is retrieved */ 58

 249

XXTERN 1
void vhpi_get_time PROTO_PARAMS((vhpiTimeT *time_p, long 2
*cycles)); 3
/* The next active time */ 4
#define vhpiNoActivity -1 5
XXTERN 6
PLI_INT32 vhpi_get_next_time PROTO_PARAMS((vhpiTimeT *ti7
me_p)); 8
 9
/* simulation control */ 10
typedef enum { 11
 vhpiStop, 12
 vhpiFinish, 13
 vhpiReset 14
} vhpiSimControlT; 15
 16
XXTERN PLI_INT32 vhpi_sim_control PROTO_PARAMS((vhpiSimControlT 17
command, 18
 ...)); 19
/* I/O routine */ 20
XXTERN PLI_INT32 vhpi_printf PROTO_PARAMS((const 21
PLI_BYTE8 *format,...)); 22
 23
/* utilities to print VHDL strings */ 24
 25
static PLI_INT32 vhpi_is_printable(PLI_BYTE8 ch) 26
{ 27
unsigned char uch = (unsigned char)ch; 28
 29
 if (uch < 31) return 0; 30
 if (uch < 127) return 1; 31
 if (uch == 127) return 0; 32
 if (uch < 160) return 0; 33
 return 1; 34
} 35
 36
 37
static const PLI_UBYTE8* VHPICharCodes[256]={ 38
"NUL", "SOH", "STX", "ETX", "EOT", "ENQ","ACK", "BEL" , 39
"BS", "HT", "LF", "VT", "FF", "CR", "SO" , "SI", 40
"DLE", "DC1", "DC2", "DC3", "DC4","NAK", "SYN" , "ETB", 41
 "CAN", "EM", "SUB", "ESC", "FSP", "GSP", "RSP" , "USP", 42
 " ","!","\"","#","$","%","&","", 43
"(",")","*","+",",","-",".","/", 44
"0","1","2","3","4","5","6","7", 45
"8","9",":",";","<","=",">","?", 46
"@","A","B","C","D","E","F","G", 47
"H","I","J","K","L","M","N","O", 48
"P","Q","R","S","T","U","V","W", 49
"X","Y","Z","[","\\","]","^","_", 50
"`","a","b","c","d","e","f","g", 51
"h","i","j","k","l","m","n","o", 52
"p","q","r","s","t","u","v","w", 53
"x","y","z","{","|","}","~","DEL", 54
"C128", "C129", "C130","C131","C132","C133","C134","C135", 55
"C136", "C137", "C138","C139","C140","C141","C142","C143", 56
"C144", "C145", "C146","C147","C148","C149","C150","C151", 57
"C152", "C153", "C154","C155","C156","C157","C158","C159", 58
" ","¡","¢","£","¤","¥","¦","§", 59
"¨","©","ª","«","¬","-","®","¯", 60

 250

"°","±","²","³","´","µ","¶","·", 1
"¸","¹","º","»","¼","½","¾","¿", 2
"À","Á","Â","Ã","Ä","Å","Æ","Ç", 3
"È","É","Ê","Ë","Ì","Í","Î","Ï", 4
"Ð","Ñ","Ò","Ó","Ô","Õ","Ö","×", 5
"Ø","Ù","Ú","Û","Ü","Ý","Þ","ß", 6
"à","á","â","ã","ä","å","æ","ç", 7
"è","é","ê","ë","ì","í","î","ï", 8
"ð","ñ","ò","ó","ô","õ","ö","÷", 9
"ø","ù","ú","û","ü","ý","þ","ÿ" }; 10
 11
#define VHPI_GET_PRINTABLE_STRINGCODE(ch) VHPICharCodes[PLI_UBYTE8 ch] 12
 13
 14
/* utility routines */ 15
XXTERN PLI_INT32 vhpi_compare_handles PROTO_PARAMS((vhpiHandleT 16
handle1, vhpiHandleT handle2)); 17
XXTERN 18
PLI_INT32 vhpi_check_error PROTO_PARAMS((vhpiErrorInfoT 19
*error_info_p)); 20
/* name change was vhpi_free_handle in charles */ 21
XXTERN 22
PLI_INT32 vhpi_release_handle PROTO_PARAMS((vhpiHandleT 23
object)); 24
 25
/* creation functions */ 26
XXTERN vhpiHandleT vhpi_create PROTO_PARAMS((vhpiClassKindT kind, 27
vhpiHandleT handle1, vhpiHandleT handle2)); 28
 29
/* Foreign model data structures and functions */ 30
typedef enum { 31
 vhpiArchF, 32
 vhpiFuncF, 33
 vhpiProcF, 34
 vhpiLibF, 35
 vhpiAppF 36
} vhpiForeignT; 37
 38
typedef struct vhpiForeignDataS { 39
 vhpiForeignT kind; 40
 PLI_BYTE8 * libraryName; 41
 PLI_BYTE8 * modelName; 42
 PLI_VOID (*elabf)(const struct vhpiCbDataS *cb_data_p); 43
 PLI_VOID (*execf)(const struct vhpiCbDataS *cb_data_p); 44
} vhpiForeignDataT; 45
 46
XXTERN vhpiHandleT vhpi_register_foreignf PROTO_PARAMS((vhpiForeignDataT 47
*foreignDatap)); 48
XXTERN int vhpi_get_foreign_info PROTO_PARAMS((vhpiHandleT hdl, 49
vhpiForeignDataT *foreignDatap)); 50
/* for saving and restoring foreign models data */ 51
XXTERN PLI_INT32 vhpi_get_data PROTO_PARAMS((PLI_INT32 id, PLI_VOID * 52
dataLoc, PLI_INT32 numBytes)); 53
XXTERN PLI_INT32 vhpi_put_data PROTO_PARAMS((PLI_INT32 id, PLI_VOID * 54
dataLoc, PLI_INT32 numBytes)); 55
 56
/* internal function prototypes from vhpi_internal.h */ 57
INT_PROTOTYPES 58
 59

 251

/**************************** GLOBAL VARIABLES 1
****************************/ 2
typedef PLI_VOID (*vhpiBootstrapFctT)(); 3
 4
extern PLI_DLLESPEC vhpiBootstrapFctT *vhpiBootstrapArray[]; /* array of 5
function pointers, */ 6
 /* last pointer 7
should be null */ 8
 9
#undef PLI_EXTERN 10
#undef PLI_VEXTERN 11
 12
#ifdef VHPI_USER_DEFINED_DLLISPEC 13
#undef VHPI_USER_DEFINED_DLLISPEC 14
#undef PLI_DLLISPEC 15
#endif 16
#ifdef VHPI_USER_DEFINED_DLLESPEC 17
#undef VHPI_USER_DEFINED_DLLESPEC 18
#undef PLI_DLLESPEC 19
#endif 20
 21
#ifdef PLI_PROTOTYPES 22
#undef PLI_PROTOTYPES 23
#undef PROTO_PARAMS 24
#undef XXTERN 25
#undef EETERN 26
#endif 27
 28
#ifdef __cplusplus 29
} 30
#endif 31
 32
#endif /* VHPI_USER_H */ 33
 34
 35

14. ANNEX B: Description of properties 36

14.1 Integer properties 37
vhpiLineNoP: 38
 returns the line number in the source file of the item designated by the handle. 39
 For a vhpiRootInstK: the line number of the architecture identifier. 40
 For a vhpiPackInst, the line number of the package identifier of the package body. 41
 For all the other region derived classes, the line number of the first word which starts the region instance. 42
 For the decl class, the line number of the declared identifier 43
 44
vhpiLineOffsetP: 45
 returns the character offset from the beginning of the line of the designated item 46
Note: Not all classes that have the line number property (vhpiLineNoP) have the line offset 47
 property 48
 49
vhpiStartLineNoP: Applies only to the design unit class, returns the line number in the source where the 50
design unit starts (includes the line number of the library and use clauses) 51
 52
vhpiEndLineNoP: returns the line number of the end keyword in the VHDL text source. 53
 54
vhpiBeginLineNoP: returns the line number of the begin keyword in the VHDL text source. 55

 252

14.2 String properties 1
 2
vhpiNameP: 3
 This property returns the name of the designated object in unspecified case for basic identifiers (VHDL is 4
case insensitive) or case preserved for extended identifiers: 5
 for a declared item, the declared identifier, 6
 for a component instance statement, block stmt: the label instance name, 7
 for a generate statement, the <label_name>(generate index) 8
 for a process stmt, the label of the process if specified or a created process label name (see rule 9
below), 10
 for a VHDL name (see name class diagram) the VHDL string name as it appears in the VHDL text 11
source with or without case preserved depending if there is reference to an extended identifier within the 12
name. 13
 Example: selected name: “f.a”, indexed name: “r(j)” 14
Naming of unlabelled equivalent processes: 15
 the VHPI would generate an equivalent process label name which starts by the concatenation of the "_P" 16
or “_p” string and an integer which denotes the sequence appearance number of the equivalent process in 17
the VHDL source text of the declared region. The numbering starts at 0 and increments by 1. For example 18
the auto-generated vhpiNameP of the first equivalent process statement in an entity declaration would be 19
“_p0”. Numbering of equivalent processes in the architecture follows the numbering sequence used for the 20
entity. The number used for the first process in the architecture will be either 0 if the entity did not contain 21
any unlabelled processes or n+1 where n is the number used for naming the last unlabelled equivalent 22
process of the entity. Numbering of processes is reset for each internal region (block, generate or 23
component statement). 24
 25
 example: "_2" is the vhpiNameP of the second occurring process for this entity/architecture pair. 26
 note: _2 is not a legal VHDL identifier (should be escaped) this ensures that this identifier is not used in 27
the rest of the design. 28
 29
vhpiFullNameP: 30
The vhpiFullNameP property should return the concatenation of the vhpiNameP strings of each instance or 31
item found on the hierarchy path. 32
The character : is used between 2 successive names returned by vhpiNameP. 33
The vhpiFullNameP property provides a non-ambiguous, simplest and easiest way to name a "named 34
entity" (in the VHDL sense) which belongs to a VHDL design. 35
The vhpiFullNameP property returns a string that is different from the strings returned by the standard 36
attributes 'PATH_NAME and 'INSTANCE_NAME. 37
 38
The vhpiFullNameP of the root instance is ":". This is sufficient to refer to a unique root, VHDL 93 and 98 39
only allow one top level design unit. If multiple top level units were going to be defined in future versions 40
of the language, we could allow the hierarchical name to specify which tree of the design hierarchy the 41
name has to be searched from. 42
 43
example of full names when multiple roots are allowed 44
@<entity_name>(<arch_name>):<instance_name>... 45
Notes: 46
 1) both the entity and architecture names are necessary to identify the root. 47
 2) entity_name(arch_name) is optional if the design has only one top design unit but required if multiple 48
roots. 49
 50
Construction of full names for items declared in packages is defined as follow: 51
@<lib_logical_name>:<pack_name>:<declared_item_name> 52
 53

 253

Since VHDL is case insensitive, the case of the vhpiFullNameP string is not specified unless there is an 1
extended identifier. 2
Note: vhpiFullCaseName should be used to retrieve the hierarchical name with case preserved characters 3
for the declared items. 4
 5
vhpiCaseNameP: 6
 This property returns the case preserved string of the item declaration. The string returned will reflect 7
lower or upper case characters used in the identifier declaration. Note that for extended identifiers, or 8
unlabelled equivalent processes, the vhpiCaseNameP string will be exactly the same as the vhpiNameP 9
string. 10
 11
vhpiFullCaseNameP: 12
 The string returned is formed by the concatenation of each single vhpiCaseNameP string on the 13
hierarchical path to the designated object. The ‘:’character is the delimitor between each simple case name. 14
 15
 16
Note: all these properties vhpiNameP, vhpiCaseNameP, vhpiFullNameP and vhpiFullCaseNameP apply to 17
the name class (see primary expression diagram). 18
 19
 20
vhpiDefNameP: 21
The returned string name identifies the path to the declared thing in the library. 22
This property only applies to the region class and returns in unspecified case unless it is an extended 23
identifier a string which identifies the library path name of the declared item which is bound to the 24
designated region. 25
 26
for block, generate or component instance statement 27
<lib_logical_name>:<entity_name>(<arch_name>) 28
for a package instance: 29
<lib_logical_name>:<pack_name> 30
for a subprogram call depending where the subprogram definition is 31
<lib_logical_name>:<entity_name>(<arch_name>):<subprogram_name> 32
or 33
<lib_logical_name>:<pack_name>:<subprogram_name> 34
 35
for a process stmt declared in an entity: 36
<lib_logical_name>:<entity_name>:<process_label_name> 37
for a process declared in an architecture: 38
<lib_logical_name>:<entity_name>(arch_name):<process_label_name> 39
 40
Note: If the process is unlabelled, a process_label_name is constructed according to the rule mentioned in 41
the vhpiNameP description. 42
 43
vhpiUnitName: 44
The name of the declared design unit in the VHDL source. This property is ONLY applicable to the 45
designUnit class. 46
The name is returned in unspecified case for basic identifiers or case-preserved for extended identifiers. 47
The unitName of a design unit of the following class is: 48
EntityDecl: lib_name.entity_name 49
Arch body: lib_name.entity_name:arch_name 50
PackDecl: lib_name.pack_name 51
Pack Body: lib_name.pack_name:BODY 52
note: all variations of upper and lower case letters for BODY are allowed. 53
Config: lib_name.config_name 54
 55

 254

vhpiFileNameP 1
 Physical file system path name of the VHDL source file where the item designated by the handle appears. 2
Property is applicable for every VHPI class kind that has a vhpiLineNoP (line number property). Among 3
these are declared items, design units for example. 4
 5

14.3 Real properties 6

15. Annex : issues and resolutions 7

15.1 Creation of signal attributes with vhpi_create 8
Resolution: Cannot create signal attributes with vhpi_create 9

15.2 What does a foreign function is allowed to do (callback, 10
vhpi_schedule_transaction …) 11
Resolution: No restriction on which callbacks can a foreign subprogram register. 12

15.3 Modeling for wait in subprograms 13
1) Open issue on restriction of foreign procedures to be non blocking, with dependency on elaboration of 14

declarative parts of subprograms. There is a problem with foreign subprograms registering callbacks. 15
Issue to be resolved in conjunction with elaboration of foreign subprograms declaration.part 16
Action: John: document analysis of problems 17
 Francoise: Investigate what current interfaces allow :OMI, NCSIM-CIF, FLI/ do we know of 18
any models that needs this functionality, what are the current limitations. 19
 20
Resolution: None of the current VHDL procedural interfaces support this functionality; nobody has 21
requested it. Seems a high cost for specification and implementation. 22

15.4 Default process implied by a foreign architecture 23
Resolution: no default implicit process. 24

15.5 cancelling transaction and returning handle to a transaction bundle. 25
Resolution: removed from the standard, no use 26

15.6 Can vhpi_put_value be called during initialization cycle? 27

15.7 Are vhpiStartOfSubpCall and vhpiEndOfSubpCall repetitive callbacks 28
Resolved 1/18/01 YES repetitive and for a specific instance of the subprogram call 29
 30

15.8 Are save/restart and reset callbacks repetitive? 31
Resolution: Save are repetitive until the end of simulation or a reset or restart command. Restart are not. 32
Reset are repetitive. Contradiction with the fact we say that at the reset all callbacks are removed. 33

15.9 Representation of real physical literals 2.5 ns 34
 Resolved: physical literal diagram 35

15.10 VhpiLogicVal and vhpiLogicVecval standard formats for logic types 36
Resolved: added to the standard 37

 255

15.11 When a signal or a port is forced, what should vhpiContributors and 1
vhpiDrivers return? 2
Resolved: should still return all the contributors and drivers 3

15.12 Restart sequence 4
Do we need to call again all the bootstrap functions? Including the application bootstrap? 5
(probably not since they should have register a restart callback which will be called at restart. 6
Unless requested explicitly at the tool invocation, the bootstrap functions or dynamically loaded library 7
will be processed. 8
 9
Resolution: application should be saved/restart aware (no need to bootstrap them again). 10
Restart sequence has been approved 11
 12

15.13 Reset sequence 13
Which callbacks are removed? 14

15.14 CbAfterDelay callback 15
callback cbAfterDelay what is the behaviour is delay is 0 ? 16

15.15 CbStartOfPostponed callback 17
callback cbStartOfPostponed is a phase callback and should occur whether or 18
 not there is any postponed process waking up? 19
 20

15.16 vhpiDecl inheritance class 21
Is missing vhpiDesignUnit. vhpiUses returns declarations refered by the use clause. 22

15.17 Can vhpi_put_value be called during initialization cycle? 23
Vish: Yes. We in fact use it during initialization. There is a problem with this though. We could discuss 24
this at our meeting. The problem is that the deposit should take effect immediately, as there is no concept 25
of the next delta cycle. What we do is that we do signal propagation only for all such updates. This is a 26
very useful feature, that we use with a flag that we call vhpiForceImmediate (which I think should really be 27
vhpiDepositImmediate, that does just the propagation without queuing processes for execution) 28
 29

15.18 Access to the component declaration from a component instance 30
statement 31
Currently only the component declaration name is available for a component instance statement. 32
It is useful to be able to get to the real component declaration as this component declaration contain local 33
ports and generics with modes and intiial expressions… A lint HDL tool may want to process some checks 34
on the component declaration. This component declaration may be declared in a package or in the 35
architecture which contains the component instance statement, this makes it difficult for an application to 36
find the matching the component declaration which was used for the component instance statement. I 37
propose we add a VHPI one to one method to return the component declaration. 38
 39

15.19 Access to the subprogram body from a subprogram declaration 40
 41

 256

Currently the VHPI information model allows to go from a subpCall to its subpBody and from the 1
subpbody to its supDecl; this is not sufficient. It is not possible to go from a subpDecl to its subpBody. 2
Francoise to check the LRM to see if multiple subpBody can be associated with one subpDecl. 3
 4

15.20 When can you apply vhpi_schedule transaction 5
 6
Issue: We need to define when in the simulation cycle the cbAfterDelay and cbNextTimeStep callback 7
occurs: if these calback occur after transaction have been processed, when will the 8
vhpi_schedule_transaction take effect. Should vhpi_schedule transaction only allowed during process 9
execution? Any other phase would be undefined behaviour 10
Discussion: 11
cancelling transaction does not seem to be useful, it will be removed from the standard. Same effect can be 12
obtained by calling vhpi_schedule_transaction (and doing transaction preemption). 13
 14
Vish pointed out that allowing 0 delay transaction at NextTimeStep or CbAfterDelay callbacks may be non 15
portable across simulators. Some simulators may schedule the transaction in the current delta cycle, some 16
may create a new delta cycle. 17
Resolutrion: We decided to only allow to schedule a 0 delay transaction during process executation and 18
cbLastKnownDeltaCycle, which will cause a new delta cycle to be created if the transaction generates an 19
event. non-zero delay transactions can be scheduled at any time before 20
cbEndOfTimeStep, effectively before the next time is computed. 21
 22

15.21 Collection of drivers 23
 24
Can you create collection of drivers for drivers of same signal , different processes 25
 26

15.22 What happen to Mature callbacks 27
 28
Mature callbacks should be handled consistent with the principlesof resource ownership for VHPI clients. 29
When a callback matures, there 30
is no value to it except for query. It cannot be re-enabled, and it cannot 31
be discovered via traversal of the information model. It should be deleted 32
by the VHPI server,unless the client(user) has previously obtained a handle 33
to the transaction. If the client has a handle, he has ownership, albeit to 34
something of marginal value. He can query it or just waste the memory 35
resource. It follows that, after all such handles are released, the 36
mature transaction should be deleted. The VHPI server is free to waste 37
resources itself, but the point is, it has ownership of the transaction. 38
 39

15.23 Uninstantiated access: expanded names; 40
The following statements were not approved by the committee. 41
 42
The uninstantiated model should store an additional property, IsExpanded, on the SelectedName class 43
indicating whether it is an expanded name in the source file. 44
 45
ISSUE: How to support this? FM is of the opinion that we should have a different class (OutOfModuleRef) 46
with Name and LineNo and a method vhpi_oomr_decl() that will get you to the object’s declaration by 47
crossing the design unit. JB: It needs to be a derived object off name since any object, operator, procedure 48
name, type name, etc. can be an out-of-module reference. 49

 257

 1
After discussion, the resolution was to treat expanded names to declarations in other design unit the same 2
way as names declared in the current design unit. This has the drawback to not being able for 3
decompilation applications to exactly produce the original source. This is more efficient for synthesis 4
oriented applications and more inline with the information retained by analyzers. 5
 6

15.24 vhpi_handle_by_name returning collections 7
Description:A conceivable extension of handle_by_name is the support of regular expressions returning 8
collections of handles. 9
Rationale: This is a powerful convenience function that can be built from current VHPI capabilities. It 10
sets the requirements for compliance too high for the first version of the spec. 11
Resolution: This is out of the scope of VHPI. 12
 13

15.25 Associating Errors with VHPI Clients 14
 15
Description: There are methods of handling errors that occur during the use of VHPI, 16
but there are situations where VHPI cannot determine which of multiple VHPI client applications or 17
models caused a particular error. If one registers a callback on error, for example, VHPI will trigger it 18
when an error occurs, regardless of what caused it. A desirable improvement is to call only the client that 19
both caused the error and registered for such a callback. The problem is, there is no method to associate 20
errors with a particular client, nor does VHPI maintain an association between client and its callbacks that 21
would support this type of improvement. 22
 23
There is a related problem, a corrolary that says if you obtain a handle to a callback by navigating the 24
information model, there is no straightforward way to examine it to see if it was your application that 25
registered it. Both these problems are barriers to friendly VHPI applications that can 26
peacefully coexist with each other. 27
 28
Solution proposed: 29
One proposal to resolve it is to provide a mechanism that defines a unique client identity that can be 30
associated with callbacks and, in general, with executing VHPI code. Since callbacks are the principle 31
means by which a VHPI client's code gains control, VHPI has a means to track which client appears to be 32
executing when it encounters an error. This is not a solid proposal yet, and questions remain whether this 33
mechanism will fail to have a correct association in some important cases. 34
 35
The basic idea is to have a vhpi_client_registration function that takes a string argument representing the 36
name of the client and return a unique integer id each time it is called. This id is then provided with any 37
callback registration made by the client. First, given a callback handle, the client can get the callback info 38
and recognize its own unique id. Secondly, when VHPI dispatches a callback, it can "know" which client 39
is running. Using that information, it can provide it as another part of the error structure when a errors are 40
checked, it can choose to only call error callbacks that have been registered by that client, etc. We can 41
certainly allow the notion of an anonymous client with a well known id (say "0"), and the unknown client 42
whose id does not have a name associated with it. We can even allow an error callback to register for 43
"any" 44
client in a meaningful way. 45
 46
Something to note is that it is not mandatory that a client have unique client id and this is not a means of 47
securely isolating one application from another. It is meant as a practical way of writing more friendly 48
VHPI applications. In order to enforce the use of a unique client id, one would have to require it to call any 49
API function except the registration call itself. Worse, it may difficult in some simulator architectures for 50
VHPI to know which client's code is executing in some cases. It is undesirable to require that VHPI clearly 51
know which client caused a particular error. It is only generally required to know that the last vhpi 52

 258

function call was responsible at this time. If there is a circumstance where the error is not detectable until 1
after possibly many VHPI calls have occured, the simulator may only know that some prior VHPI action 2
led to the error condition. 3
Such cases are not intended to be covered by this proposal. 4
 5
Resolution: At a minimum, the difficulty with using the error callback mechanism and possibly identifying 6
your own callbacks must be stated in the spec. There is no desire to make a complete VHPI client server 7
model or require client ids as arguments to each vhpi function. 8
 9

15.26 vhpiFullName same as ‘path_name predefined attribute string? 10
 11
Issue: The vhpiFullNameP property is not returning the same string as either ‘path_name or 12
‘instance_name 13
 14
The vhpiFullNameP property is intended to be an improvement on `path_name attribute of the language. It 15
is meant to be minimal in string length. The idea behind minimizing the string length includes conserving 16
real estate in user interfaces, printed reports. Choices like using `path_name vs. `instance_name as a 17
starting point and eliminating the rootInst entity name derive from this goal. 18
 19
It is reasonable to expect that a user will obtain names using both VHPI properties and the predefined 20
VHDL attributes and provide them as input to VHPI-based applications or functions. With the 21
vhpiFullNameP property, well-defined standard behavior can be expected of vhpi_handle_by_name. With 22
the predefined attributes, under most conditions, a well-defined behavior will also occur if vhpiFullNameP 23
is defined to be as consistent as possible to `path_name. 24
Not Handling Redundant Information In Lookups 25
 26
VHPI could support another name property that is analogous to X`INSTANCE_NAME. The additional 27
information (i.e., the @e(a)) is redundant information for the search and increases its cost. We propose 28
that the information be accepted and verified in the search algorithm. 29
It is forward looking to consider this in the future, as VHDL requires that the instantiation label be unique 30
within a scope but not all HDLs do. 31
 32
Resolution: vhpiFullNameP property will have a different string than the predefined attributes to resolve 33
ambiguities and to minimize the string length to be used for looking up the object of that name with 34
vhpi_handle_by_name. We would provide two additional properties: vhpiInstanceNameP and 35
vhpiPathNameP so that foreign models and applications can provide similar output similar as to the 36
simulator using the ‘instance_name and’path_name attributes. 37
 38
Issue: Pathological Cases of Ambiguity 39
VHDL syntax leaves room in its particular choice of namespaces and keywords for certain pathological 40
problems. One of them is that the root entity name and a library logical name may be the same in some 41
pathologically difficult elaborated design. Entity names like work, IEEE, etc. pose no conflict, even 42
though those are also well known logical library names. The impact of this is that the first part of 43
‘path_name may refer to the root instance entity name or a logical library and you cannot distinguish 44
between them. 45
 46
I regard this as a pathological (vs. practical) problem in which a number of solutions are rationale. 47
 48
1) You can define a search order and return the first one found (solution hides names in a predictable 49
manner). 50
 51
2) You can also search the entire space, verify the name is a duplicate, and diagnose the problem as an 52
ambiguous reference. 53

 259

 1
3) You can allow or require an extended syntax to qualify whether you mean the packInst or the root 2
instance. For example, you could require:e(a) to disambiguate and always attempt to search the packInsts 3
before the root inst. Probably this is acceptable 4
 5
Resolution: always precede a library name or package name by a @ 6
 7
 8
There is another minor pathological problem, that of multiple logical libraries referring to the same 9
physical library. VHPI should not make any statement that referring to an object through 2 or more logical 10
library names in any way preserves that this is the same object. 11
 12

15.27 Creation of foreign drivers 13
Requirement: Testbench tools need to be able to participate to the resolved value of signals, for that they 14
need to be able to create their own drivers of the signal they are interestd in. Testbench tools often apply 15
several different test sequence to a design, and may want to driver different signals each time. The test 16
pattern if often generated after inspection and analysis of the design. 17
 18
Issue: Elaboration phase creation of foreign drivers is too late. 19
When and how can we create foreign drivers? 20

16. ANNEX C: Formal textual definition of the VHPI information 21
model 22
 23
Class abstractLiteral 24
 25
Superclasses: literal 26
 27
{ 28
 intLiteral 29
 realLiteral 30
} 31
 32
--- 33
 34
Class accessTypeDecl 35
 36
Superclasses: typeDecl 37
 38
one-to-one relationships: 39
 mult 1 subtype<-ValSubtype 40
--- 41
 42
Class aggregate 43
 44
Superclasses: primaryExpr 45
 46
Iteration relationships: 47
it mult 1..* elemAssoc<-elemAssoc 48
--- 49
 50
Class aliasDecl 51
 52

 260

Description: 1
This class represents alias declarations. 2
In case of non alias objects which are not character literals, the vhpiSizeP 3
property will return -1; the operation vhpi_get_value will return 0 because 4
the alias has no value. 5
 6
Superclasses: decl, simpleName 7
 8
Attributes: 9
p int -Size 10
 size in scalars of a value of the object 11
 12
one-to-one relationships: 13
 mult 0..1 subtypeIndic<-Subtype 14
 mult 1 name<-name returns the aliased object or range. Name can itself be an alias. 15
Operations: 16
#vhpi_get_value(handle: vhpiHandle, value: vhpi_value_p) : int 17
 get the value of the object designated by the alias 18
 19
--- 20
 21
Class allLiteral 22
 23
Superclasses: entityDesignator 24
 25
--- 26
 27
Class allocator 28
 29
Description: 30
an allocator 31
new subtypeIndication [expr] 32
 33
Superclasses: primaryExpr 34
 35
one-to-one relationships: 36
 mult 1 subtypeIndic<-ValSubtype the subtype indication for the value accessed; 37
this subtype indication should be the subtype used for the allocation (new subtype_indication) 38
 mult 0..1 expr<-InitExpr the initial expression if specified by the allocator operation 39
--- 40
 41
Class anyCollection 42
 43
Description: 44
A collection of any handle. No constraints on the members of the 45
collection. 46
 47
Superclasses: collection, base 48
 49
--- 50
 51
Class archBody 52
 53
Superclasses: secondaryUnit, entityAspect 54
 55
Attributes: 56

 261

p bool -IsForeign 1
 2
Iteration relationships: 3
it mult * stmt<-stmt 4
it mult * configItem<-ConfigSpecs 5
--- 6
 7
Class argv 8
 9
Description: 10
A command line argument string separated by white spaces passed 11
to the tool. 12
This class mimics an element of the array of argv parameters that would 13
be passed to a C main routine. 14
A vendor is not required to give access to all the arguments passed on the 15
command line of the tool. 16
 17
Superclasses: base 18
 19
Attributes: 20
p string -StrVal 21
 The string value of the argument as found on the command line 22
p bool -IsPLI 23
 True if the argument is an argument which concerns VHPI. This is either for 24
 VHPI interface to process and take some action or for a VHPI application to 25
 process. 26
 This property allows an application to test if itshould process this command 27
 line argument. Command line arguments have no special syntax for VHPI. 28
 29
p int -Argc 30
 number of argvs 31
 32
Operations: 33
-vhpi_handle_by_index(itRel: vhpiOneToManyT, handle: vhpiHandleT, index: int) : vhpiHandleT 34
 35
--- 36
 37
Class arrayTypeDecl 38
 39
Superclasses: compositeTypeDecl 40
 41
Attributes: 42
p int -NumDimensions 43
 number of the dimensions of the array 44
p bool -IsAnonymous 45
 anonymous types have a simple name of $anonymous 46
 47
one-to-one relationships: 48
 mult 1 subtype<-ElemSubtype 49
Iteration relationships: 50
it mult 1..* constraint<-constraint 51
--- 52
 53
Class assertStmt 54
 55
Superclasses: seqStmt, eqProcessStmt 56

 262

 1
one-to-one relationships: 2
 mult 1 expr<-CondExpr 3
 mult 0..1 expr<-ReportExpr 4
 mult 0..1 expr<-SeverityExpr 5
--- 6
 7
Class assocElem 8
 9
Superclasses: base 10
 11
Attributes: 12
p int -Position 13
 position of the formal in the interface list 14
p bool -IsOpen 15
 association has the OPEN keyword 16
p bool -IsNamed 17
 returns True if this is a named association, false if 18
 positional 19
 20
one-to-one relationships: 21
 mult 0..1 interfaceElt<-Local 22
 mult 0..1 interfaceElt<-Actual 23
 mult 0..1 interfaceElt<-Formal 24
--- 25
 26
Class attrDecl 27
 28
Superclasses: decl 29
 30
one-to-one relationships: 31
 mult 1 typeMark<-Subtype 32
--- 33
 34
Class attrName 35
 36
Superclasses: name 37
 38
{ 39
 userAttrName 40
 predefAttrName 41
} 42
 43
one-to-one relationships: 44
 mult 1 entityDesignator<-Prefix 45
--- 46
 47
Class attrSpec 48
 49
Superclasses: spec 50
 51
one-to-one relationships: 52
 mult 1 expr<-expr 53
 mult 1 attrDecl<-attrDecl 54
Iteration relationships: 55
it mult * pragma<-pragma internal 56

 263

it mult 1..* entityDesignator<-entityDesignator 1
--- 2
 3
Class base 4
 5
Description: 6
Base class, 7
all other classes are derived from the base class. 8
all derived classes inherit the kind attribute 9
 10
{ 11
 region 12
 entityDesignator 13
 entityClassEntry 14
 subtype 15
 range 16
 protectedTypeBody 17
 stackFrame 18
 assocElem 19
 branch 20
 choice 21
 waveformElem 22
 condWaveform 23
 selectWaveform 24
 iterScheme 25
 transaction 26
 contributor 27
 interfaceElt 28
 basicSignal 29
 inPort 30
 outPort 31
 prefix 32
 elemAssoc 33
 callback 34
 foreignf 35
 entityAspect 36
 pragma 37
 tool 38
 argv 39
 reference 40
 spec 41
 iterator 42
 collection 43
 driverCollection 44
 anyCollection 45
} 46
 47
Attributes: 48
p int -Kind 49
 associates an integer constant (identifier) to each leaf class 50
p string -KindStr 51
p bool -IsInvalid 52
 True if the handle is invalid: the object which the handle refers to ceases to 53
 exist either because the object was dynamically elaborated, 54
 or by virtue of a user action (removing a callback or transaction or because 55
 the transaction matures. 56

 264

 If a handle is invalid, this is the only property that can be accessed. No 1
 other access is possible. 2
p bool -IsUninstantiated 3
 If this property is TRUE then the handle represent uninstantiated VHDL data. 4
 This means that the data 5
 represented by this handle is pre elaboration (post-analysis) and does not 6
 contain any post 7
 elaboration information. In particular 8
 it is not possible to walk the instantiated design hierarchy from this handle 9
 or to get the value of this 10
 handle if that value can only be determined after elaboration. (may have a 11
 full name to be defined later in the uninstantiated access spec). 12
 If this property is FALSE, the handle represent post-elaboration VHDL data 13
 and full access to the VHPI instantiated (post-elaboration) model is allowed. 14
 15
--- 16
 17
Class basicSignal 18
 19
Description: 20
a basic signal according to the LRM definition page 165, 21
The basic property is true for the classes derived from a basicSignal 22
The vhpiEntityClassP property shall return vhpiSignalEC for a basic signal 23
handle kind. 24
 25
Superclasses: base 26
 27
{ 28
 sigDecl 29
 portDecl 30
 selectedName 31
 indexedName 32
 sliceName 33
} 34
 35
Attributes: 36
p bool -IsBasic 37
 is it a basic signal? 38
 Explicit Guard signals can be basic signals; implicit guard signals cannot 39
 be. 40
 a slice is basic only if it denotes a an indexedName basic signal (slice is 41
 size 1) or if it denotes the entire slice of a resolved composite basic 42
 signal. 43
p bool -IsResolved 44
 The basic signal is resolved if if a resolution function 45
 is associated with the declaration of that signal or in the declaration of 46
 the subtype of that signal (page 27 VHDL lrm 1076-93). A signal can be 47
 resolved at the sub-element subtype level. 48
 49
 50
Iteration relationships: 51
it mult * driver<-driver returns the drivers for the basic signal. 52
note: a signal attribute is not a basic signal therefore you cannot iterate on drivers from a signal 53
attribute. VHPI should generate an error. 54
it mult * contributor<-contributor 55
it mult * contributor<-contributor 56

 265

--- 1
 2
Class binaryExpr 3
 4
Superclasses: expr 5
 6
one-to-one relationships: 7
 mult 1 operator 8
<-operator 9
 10
 mult 1 expr<-LeftExpr 11
 mult 1 expr<-RightExpr 12
--- 13
 14
Class bitStringLiteral 15
 16
Superclasses: literal 17
 18
Attributes: 19
p string -StrVal 20
 The string value of the literal as it appears in the VHDL 21
 22
--- 23
 24
Class blockConfig 25
 26
Superclasses: configItem, lexicalScope 27
 28
Iteration relationships: 29
it mult * decl<-Uses The uses clauses within the blockConfig 30
it mult * configItem<-configItem list of the configuration items within the blockConfig 31
--- 32
 33
Class blockStmt 34
 35
Description: 36
a block statement instance 37
 38
Superclasses: concStmt, lexicalScope, region 39
 40
Attributes: 41
p int -BeginLineNo 42
 the line number of the begin keyword 43
p int -EndLineNo 44
 the linenumber of the end keyword 45
p bool -IsGuarded 46
p int -NumGens 47
 number of generic declarations 48
p int -NumPorts 49
 number of port declarations 50
 51
one-to-one relationships: 52
 mult 0..1 sigDecl<-GuardSig if the block is guarded, returns the GUARD signal declaration 53
(implicit or explicit) 54
 mult 0..1 expr<-GuardExpr 55
Iteration relationships: 56

 266

it mult * spec<-spec The specifications defined in the block declarative region (may return 1
attribute, disconnection or configuration specifications) 2
it mult * sigDecl<-sigDecl 3
it mult * portDecl<-portDecl 4
it mult * genericDecl<-genericDecl 5
it mult * constDecl<-constDecl 6
it mult * compInstStmt<-compInstStmt 7
it mult * compInstStmt<-compInstStmt 8
it mult * blockStmt<-blockStmt 9
it mult * attrSpec<-attrSpec 10
it mult * attrDecl<-attrDecl 11
it mult * attrDecl<-attrDecl 12
it mult * assocElem<-PortAssocs 13
it mult * assocElem<-GenericAssocs 14
it mult * aliasDecl<-aliasDecl 15
it mult * aliasDecl<-aliasDecl 16
Operations: 17
-vhpi_handle_by_index(itRel: vhpiOneToManyT, handle: vhpiHandleT, index: int) : vhpiHandleT 18
 19
--- 20
 21
Class branch 22
 23
Superclasses: base 24
 25
Attributes: 26
p int -LineNo 27
 line number of the branch 28
p int -LineOffset 29
p string -FileName 30
 31
Iteration relationships: 32
it mult * seqStmt<-seqStmt 33
it mult * choice<-CondExpr 34
--- 35
 36
Class callback 37
 38
Superclasses: base 39
 40
Attributes: 41
p int -Reason 42
p int -State 43
 either vhpiDisable, vhpiEnable, vhpiMature 44
 45
Operations: 46
-vhpi_get_cb_info(cbHdl: handle) : vhpiCbDataT*; 47
-vhpi_remove_cb(cbHdl: handle) : int; 48
-vhpi_enable_cb(cbHdl: handle) : int; 49
-vhpi_disable_cb(cbHdl: handle) : int; 50
 51
--- 52
 53
Class caseStmt 54
 55
Superclasses: seqStmt 56

 267

 1
one-to-one relationships: 2
 mult 1 expr<-CaseExpr 3
Iteration relationships: 4
it mult 1..* branch<-branch 5
--- 6
 7
Class charLiteral 8
 9
Description: 10
This is a character literal of the standard CHARACTER type or 11
one of its subtype. 12
 13
 14
Superclasses: literal, decl 15
 16
Attributes: 17
p int -Position 18
p string -StrVal 19
 The string value of the literal as it appears in the VHDL: 20
 examples: '0' for literal of type char 21
 NUL for literal nul 22
 23
--- 24
 25
Class choice 26
 27
Description: 28
A choice can either be an expression or a range denoted by a predefined 29
range attribute or a integer/enumerated range 30
 31
Superclasses: base 32
 33
{ 34
 constraint 35
 expr 36
 othersLiteral 37
} 38
 39
--- 40
 41
Class collection 42
 43
Description: 44
a user-defined heterogeneous collection of objects 45
 46
Superclasses: base 47
 48
{ 49
 uniformCollection 50
 anyCollection 51
} 52
 53
Attributes: 54
p int -NumMembers 55
 number of members in the collection 56

 268

 1
Iteration relationships: 2
it mult * base<-Members iteration method returns the element of the collection 3
Operations: 4
-vhpi_handle_by_index(itRel: vhpiOneToManyT, handle: vhpiHandleT, index: int) : vhpiHandleT 5
-vhpi_create(handleKind: classKind, refHdl: vhpiHandle, hdltoadd: vhpiHandle) : vhpiHandle 6
 used to return an ordered collection of handles composed of the refHdl and the 7
 hdltoadd 8
 9
--- 10
 11
Class compConfig 12
 13
Superclasses: configItem, lexicalScope, spec 14
 15
Attributes: 16
p bool -IsOpen 17
 The component configuration is opened: the entity aspect is "use OPEN" no port 18
 map or generic map 19
 should be provided 20
p bool -IsDefault 21
 the component configuration uses default binding 22
p string -CompName 23
 the component declaration name it applies to 24
 25
one-to-one relationships: 26
 mult 0..1 blockConfig<-blockConfig 27
Iteration relationships: 28
it mult * assocElem<-PortAssocs the port map aspect 29
it mult * assocElem<-GenericAssocs the generic map aspect 30
--- 31
 32
Class compDecl 33
 34
Superclasses: decl, lexicalScope 35
 36
Attributes: 37
p int -NumGens 38
p int -NumPorts 39
 40
Iteration relationships: 41
it mult * portDecl<-portDecl 42
it mult * genericDecl<-genericDecl 43
it mult * attrSpec<-attrSpec 44
--- 45
 46
Class compInstStmt 47
 48
Description: 49
a component instance statement instance 50
 51
Superclasses: designInstUnit, concStmt 52
 53
Attributes: 54
p bool -IsOpen 55
 the binding of the component instance is opened which means that the 56

 269

 component instance is not bound to an architecture/entity pair. 1
p bool -IsDefault 2
 The binding of the component instance uses default 3
 binding. 4
p string -CompName 5
 the component specification name or null if direct instantiation was used 6
p int -NumGens 7
 number of generic declarations 8
p int -NumPorts 9
 number of port declarations 10
 11
one-to-one relationships: 12
 mult 0..1 configItem<-ConfigSpec The optional configuration specification for that component 13
instance which may be specified in the architecture body, or the config spec information if the 14
component instance is a direct instantiation. 15
 mult 0..1 compDecl<-compDecl internal return the component declaration or NULL if direct 16
instantiation 17
Iteration relationships: 18
it mult * varDecl<-varDecl 19
it mult * sigDecl<-sigDecl 20
it mult * portDecl<-portDecl 21
it mult * genericDecl<-genericDecl 22
it mult * constDecl<-constDecl 23
it mult * compInstStmt<-compInstStmt 24
it mult * blockStmt<-blockStmt 25
it mult * assocElem<-PortAssocs 26
it mult * assocElem<-GenericAssocs 27
Operations: 28
-vhpi_handle_by_index(itRel: vhpiOneToManyT, handle: vhpiHandleT, index: int) : vhpiHandleT 29
 30
--- 31
 32
Class compositeTypeDecl 33
 34
Superclasses: typeDecl 35
 36
{ 37
 arrayTypeDecl 38
 recordTypeDecl 39
} 40
 41
--- 42
 43
Class concStmt 44
 45
Superclasses: stmt 46
 47
{ 48
 generateStmt 49
 blockStmt 50
 compInstStmt 51
 eqProcessStmt 52
} 53
 54
--- 55
 56

 270

Class condSigAssignStmt 1
 2
Superclasses: sigAssignStmt 3
 4
Iteration relationships: 5
it mult 1..* condWaveform<-condWaveform 6
--- 7
 8
Class condWaveform 9
 10
Superclasses: base 11
 12
Attributes: 13
p int -LineNo 14
 line number of the waveform 15
p string -FileName 16
 17
one-to-one relationships: 18
 mult 1 expr<-CondExpr 19
Iteration relationships: 20
it mult 1..* waveformElem<-waveformElem 21
--- 22
 23
Class configDecl 24
 25
Superclasses: primaryUnit, entityAspect 26
 27
one-to-one relationships: 28
 mult 1 entityDecl<-entityDecl the entity Declaration this configuration refers to 29
 mult 1 blockConfig<-blockConfig 30
--- 31
 32
Class configItem 33
 34
{ 35
 blockConfig 36
 compConfig 37
} 38
 39
one-to-one relationships: 40
 mult 1 entityAspect<-entityAspect 41
Iteration relationships: 42
it mult * entityDesignator<-SpecNames The iteration specNames will return null when the config 43
item is for a direct component instance statement. 44
--- 45
 46
Class constDecl 47
 48
Description: 49
a constant declaration 50
 51
Superclasses: objDecl, constant 52
 53
Attributes: 54
p bool -IsDeferred 55
 56

 271

one-to-one relationships: 1
 mult 0..1 expr<-InitExpr 2
Iteration relationships: 3
it mult * selectedName<-selectedName 4
it mult * indexedName<-indexedName 5
--- 6
 7
Class constParamDecl 8
 9
Superclasses: paramDecl, constant 10
 11
Attributes: 12
p modeT -Mode 13
 mode can only be vhpiIn 14
 15
--- 16
 17
Class constant 18
 19
Superclasses: interfaceElt 20
 21
{ 22
 constDecl 23
 constParamDecl 24
 selectedName 25
 indexedName 26
} 27
 28
--- 29
 30
Class constraint 31
 32
Description: 33
a constrait can either be range,or a subtype indication or the 'range or 34
'reverse_range attribute 35
 36
Superclasses: choice 37
 38
{ 39
 subtypeIndic 40
 range 41
 predefAttrName 42
} 43
 44
--- 45
 46
Class contributor 47
 48
Description: 49
a contributor to the value of a signal. A contributor can be a driver, a source 50
(port of a block with which the signal is associated), a conversion function 51
applied to a port which is connected to the signal, a type conversion, a static 52
expression, or a composite collection of sources. 53
Contributors to the IN value or to the OUT value of a port can be acquired. 54
note: a contributor can be a signal attribute 'active, 'quiet or 'transaction or 55
'delayed. 56

 272

note: Iteration on contributors from the signal attributes handle should return 1
NULL and an error. 2
iteration on contributor from an implicit GUARD signal should return the guard 3
expression. Iteration on contributors from an explicit GUARD should return the 4
contributor of that GUARD. 5
 6
Superclasses: base 7
 8
{ 9
 driver 10
 port 11
 signal 12
 convFunc 13
 expr 14
} 15
 16
--- 17
 18
Class convFunc 19
 20
Superclasses: interfaceElt, contributor 21
 22
one-to-one relationships: 23
 mult 1 interfaceElt<-Actual 24
 mult 1 funcDecl<-funcDecl 25
 mult 1 contributor<-contributor 26
--- 27
 28
Class derefObj 29
 30
Description: 31
A vhpiDerefObjK handle represents the object designated by an access 32
value of a variable. A vhpiDerefObjK handle kind can be obtained by: 33
 - applying the vhpiDerefObj method to a variable of an access type if 34
 the access value of that variable is not null 35
 - by accessing an expression which is a name denoting an object 36
 designated by an access value, such names have a suffix of .ALL 37
 - by applying the vhpiDerefObj method to an object of kind 38
 vhpiAllocatorK 39
 40
Superclasses: prefixedName 41
 42
Operations: 43
-vhpi_put_value(handle: vhpiHandleT, value: vhpiValueT *, flags: vhpiPutValueModeT) : int 44
#vhpi_get_value(handle: vhpiHandle, value: vhpi_value_p) : int 45
 46
--- 47
 48
metaclass Class decl 49
 50
Description: 51
a declaration 52
 53
Superclasses: entityDesignator, reference 54
 55
{ 56

 273

 objDecl 1
 aliasDecl 2
 attrDecl 3
 groupDecl 4
 compDecl 5
 groupTempDecl 6
 libraryDecl 7
 typeDecl 8
 subtypeDecl 9
 unitDecl 10
 elemDecl 11
 subpBody 12
 subpDecl 13
 enumLiteral 14
 charLiteral 15
} 16
 17
Attributes: 18
p string -Name 19
 the declaration name, unspecified case 20
 if basic identifier or case - preserved if extended identifier 21
 If the declaration denotes an anonymous type then the vhpiNameP property 22
 returns "$anonymous" 23
p string -CaseName 24
 The case sensitive name of the declared item, Same restrictions as for 25
 vhpiNameP. 26
p string -FullName 27
 full hierarchical from the top of the hierarchy.The path name is given in 28
 unspecified case for basic identifiers and case-preserved for extended 29
 identifiers. 30
 FullName properties does not apply to libraryDecl class 31
 Note: a local port or generic does not have a fullName. 32
 Issue: do subpdecl and subpbody have fullName 33
p string -FullCaseName 34
 Case preserved full name 35
 FullCaseNameP property does not apply to libraryDecl class. 36
 note: a local component port or generic does not have a full name 37
p string -FileName 38
 pathname of the source file where that declaration 39
 appears 40
p int -LineNo 41
 line number where the declared identifier for the declared item appears in the 42
 source 43
p int -LineOffset 44
 The character offset in the source file of the definition name of the 45
 declaration 46
p bool -IsImplicitDecl 47
 Returns true for implicit constant, signals, functions 48
 and procedure declarations. 49
 For example: 50
 this property returns true for GUARD signals of 51
 blocks, for loop parameter and generate parameter, for implicit functions such 52
 as OPEN, NEW, ... 53
 54
one-to-one relationships: 55
 mult 0..1 region<-ImmRegion vhpiDecls returns all declarations of class vhpiDecl in the 56

 274

instance 1
vhpiImmRegion for a local ports/generics should 2
return null as the component declaration is not a 3
region. 4
 mult 0..1 lexicalScope<-lexicalScope The lexical scope of a library declaration should return 5
null. For all other declarations, it should return the immediate scope where the delcaration is defi 6
ned. 7
Iteration relationships: 8
it mult * pragma<-pragma internal 9
--- 10
 11
Class designInstUnit 12
 13
Superclasses: region 14
 15
{ 16
 rootInst 17
 packInst 18
 compInstStmt 19
} 20
 21
one-to-one relationships: 22
 mult 1 designUnit<-designUnit 23
Iteration relationships: 24
it mult * attrSpec<-attrSpec 25
it mult * attrDecl<-attrDecl 26
it mult * attrDecl<-attrDecl 27
it mult * aliasDecl<-aliasDecl 28
it mult * aliasDecl<-aliasDecl 29
--- 30
 31
Class designUnit 32
 33
Description: 34
an analyzed library unit (primary or secondary unit) 35
 36
Superclasses: entityDesignator, lexicalScope 37
 38
{ 39
 primaryUnit 40
 secondaryUnit 41
} 42
 43
Attributes: 44
p string -LibLogicalName 45
 the library logical name where that design unit can be found 46
p string -LibPhysicalName 47
 the physical name of the library where that design unit has been compiled 48
p int -StartLineNo 49
 the line number in the source where that library unit starts (includes the 50
 line number of the library 51
 and use clauses) 52
p int -EndLineNo 53
 the line number in the source where that described library unit ends 54
p string -FileName 55
 pathName of the source filename where that library unit was described 56

 275

p string -UnitName 1
 name of the declared design unit in the VHDL source 2
 name is unspecified case for basic identifiers or case-preserved for extended 3
 identifiers The unitName of a design unit of the following class is: 4
 EntityDecl: lib_name.entity_name 5
 Arch body: lib_name.entity_name:arch_name 6
 PackDecl: lib_name.pack_name 7
 Pack Body: lib_name.pack_name:BODY 8
 Config: lib_name.config_name 9
p string -Name 10
 The identifier name of the declared design unit 11
p protectKindT -ProtectedLevel 12
 the level of protection of that design unit, 0 for complete visibility, 1 for 13
 interface cell visibility (ports, generics, cell name, ...), 2 ... 14
 15
p string -CaseName 16
 17
Iteration relationships: 18
it mult * spec<-spec The specifications defined in the design unit 19
For an archBody, there could be attrSpecs, disconnections or config specs) 20
 for an entity or package declaration , it could be attribute or disconecttion specs. 21
For a configDecl the specifications defined in the 22
configuration declarative part (only attribute specifications) 23
For a packBody, no specifications at all 24
it mult * pragma<-pragma internal 25
it mult 1..* designUnit<-DepUnits returns the dependent design units 26
it mult * decl<-Uses returns the declarations imported by a use clause that are referenced by the 27
design unit 28
it mult * decl<-decl the declarations (all kinds of the vhpiDecl class) within the library unit not 29
including the 30
design unit itself 31
--- 32
 33
Class disconnectSpec 34
 35
Superclasses: spec 36
 37
one-to-one relationships: 38
 mult 1 typeMark<-typeMark 39
 mult 0..1 othersLiteral<-othersLiteral 40
 mult 1 expr<-TimeExpr 41
 mult 0..1 allLiteral<-allLiteral 42
Iteration relationships: 43
it mult * signal<-Signals 44
it mult * pragma<-pragma internal 45
--- 46
 47
Class driver 48
 49
Superclasses: contributor 50
 51
Attributes: 52
p int -State 53
 the driver state for the current simulation cycle: active, or disconnected, or 54
 quiet, undefined. 55
 Can be queried any time during a delta cycle before or after the driver 56

 276

 transaction matures. 1
 This is an advanced property 2
p bool -IsPLI 3
 is this a PLI created driver? 4
p int -Size 5
 driver size in bytes? 6
p accessT -Access 7
 read, write or no access at all to the driver 8
 9
one-to-one relationships: 10
 mult 1 eqProcessStmt<-eqProcessStmt 11
 mult 1 basicSignal<-basicSignal returns the drivers for the basic signal. 12
note: a signal attribute is not a basic signal therefore you cannot iterate on drivers from a signal 13
attribute. VHPI should generate an error. 14
Iteration relationships: 15
it mult * transaction<-transaction 16
Operations: 17
-vhpi_schedule_transaction(drvhdl: vhpiHandleT, value: vhpiValueT *, delay: vhpiTimeT *, 18
delayMode: int, pulseRej: vhpiTimeT *, flags: int) : vhpiHandleT 19
-vhpi_get_value(handle: vhpiHandle, value: vhpi_value_p) : int 20
 returns the current value of the driver 21
-vhpi_create(kind: int, basicSignal: vhpiHandle, process: vhpiHandle) : vhpiHandle 22
-vhpi_register_cb(cbdatap: vhpiCbDataT *, int flags: <unnamed>) : vhpiHandleT; 23
 24
--- 25
 26
Class driverCollection 27
 28
Description: 29
A collection of driver handles. 30
All drivers must belong to the same signal and the same process. 31
 32
Superclasses: uniformCollection, base 33
 34
Operations: 35
-vhpi_schedule_transaction(hdl: vhpiHandle, values: vhpiValueT *, delay: vhpiTimeT, pulserej: 36
vhpiTimeT, flags: int) : vhpiHandle 37
 The value is scheduled on the drivers of the collection.The value is 38
 interpreted with respect to the order of the drivers in the collection. 39
 40
--- 41
 42
Class elemAssoc 43
 44
Superclasses: base 45
 46
Attributes: 47
p bool -IsNamed 48
 True if it is named association, false if positional 49
 50
one-to-one relationships: 51
 mult 1 expr<-expr 52
Iteration relationships: 53
it mult * choice<-choice 54
--- 55
 56

 277

Class elemDecl 1
 2
Superclasses: decl 3
 4
Attributes: 5
p int -Position 6
 position number of the declaration in the records, starts at 0 7
 8
one-to-one relationships: 9
 mult 1 subtype<-ElemSubtype 10
--- 11
 12
Class entityAspect 13
 14
Superclasses: base 15
 16
{ 17
 archBody 18
 entityDecl 19
 configDecl 20
} 21
 22
--- 23
 24
Class entityClassEntry 25
 26
Superclasses: base 27
 28
Attributes: 29
p vhpiEntityClassT -EntityClass 30
p bool -IsUnconstrained 31
 true if range is unconstrained, false otherwise 32
 33
--- 34
 35
Class entityDecl 36
 37
Superclasses: primaryUnit, entityAspect 38
 39
Attributes: 40
p int -NumGens 41
p int -NumPorts 42
 43
Iteration relationships: 44
it mult * stmt<-stmt 45
it mult * portDecl<-portDecl Should this be an ordered iteration for uninstantiated access? 46
it mult * genericDecl<-genericDecl Should this be an ordered iteration for uninstantiated access? 47
--- 48
 49
Class entityDesignator 50
 51
Superclasses: base 52
 53
{ 54
 decl 55
 designUnit 56

 278

 stmt 1
 name 2
 literal 3
 othersLiteral 4
 allLiteral 5
} 6
 7
Attributes: 8
p vhpiEntityClassT -EntityClass 9
 the entity class enumeration values can be: 10
 vhpi[Entity,Architecture, Configuration,Procedure, 11
 Function,Package,Type,Subtype,Constant,Signal,Variable,Literal,Units,File, 12
 Group, Component, Label]EC 13
 If the entity designator is the others or all literal, the entity class will 14
 be the entity class of the entities denoted by others or all. In case of an 15
 entity designator for a disconnection specification, the entityClass is 16
 vhpiSignalEC. 17
 For name class, property returns the class of the name 18
 as defined by the LRM page 71 A name entity class 19
 can either be a procedure, signal, variable, group, function, variable, 20
 literal, file, constant. 21
 For unlabelled statements, return vhpiUndefined. 22
 23
--- 24
 25
Class enumLiteral 26
 27
Superclasses: literal, decl 28
 29
Attributes: 30
p int -Position 31
p string -StrVal 32
 The string value of the literal as it appears in the VHDL 33
 34
--- 35
 36
Class enumRange 37
 38
Description: 39
An enumeration range 40
 41
Superclasses: range 42
 43
Attributes: 44
p int -LeftBound 45
 The left bound value of the range or -1 if unconstrained 46
p int -RightBound 47
 the right bound value of the range or -1 if unconstrained 48
 49
--- 50
 51
Class enumTypeDecl 52
 53
Superclasses: scalarTypeDecl 54
 55
Attributes: 56

 279

p int -NumLiterals 1
 number of enumeration literals 2
 3
Iteration relationships: 4
it mult 1..* enumLiteral<-enumLiteral 5
--- 6
 7
Class eqProcessStmt 8
 9
Description: 10
an equivalent process statement instance 11
 12
Superclasses: concStmt, stackFrame, region 13
 14
{ 15
 procCallStmt 16
 processStmt 17
 assertStmt 18
 sigAssignStmt 19
} 20
 21
Attributes: 22
p bool -IsPostponed 23
 returns 1 if this is a postponed equivalent process 0 otherwise 24
 25
one-to-one relationships: 26
 mult 1 stackFrame<-CurStackFrame returns the current executing or suspended stack frame, 27
could be the process itself 28
Iteration relationships: 29
it mult * name<-Sensitivity 30
it mult * driver<-driver 31
--- 32
 33
Class exitStmt 34
 35
Superclasses: seqStmt 36
 37
Attributes: 38
p string -LoopLabelName 39
 The name of the loop label 40
 41
one-to-one relationships: 42
 mult 0..1 expr<-CondExpr 43
--- 44
 45
Class expr 46
 47
Superclasses: choice, interfaceElt, contributor 48
 49
{ 50
 primaryExpr 51
 binaryExpr 52
 unaryExpr 53
} 54
 55
one-to-one relationships: 56

 280

 mult 1 typeDecl<-typeDecl internal returns the type of an expression 1
 mult 1 subtype<-subtype returns the subtype of the expression. 2
the returned subtype can either be a subtype indication or a typeMark this allows VHPI to not 3
create unnecessary handles for subtype indications when the subtype indication is the same as 4
the type declaration. 5
--- 6
 7
Class file 8
 9
Superclasses: interfaceElt 10
 11
{ 12
 fileDecl 13
 fileParamDecl 14
} 15
 16
--- 17
 18
Class fileDecl 19
 20
Superclasses: objDecl, file 21
 22
Attributes: 23
p openModeT -OpenMode 24
 For VHDL 93: 25
 -> In instantiated mode, the open mode of the file declaration either 26
 WRITE_MORE, READ_MODE, APPEND_MODE. 27
 -> In uninstantiated mode the open mode property may return vhpiUndefined (if 28
 not open mode is specified or if the open mode expression is not a locally 29
 static expression). 30
 31
 In VHDL 87, in instantiated access, 32
 the OPEN_MODE is either vhpiInMode or vhpiOutMode. 33
 in vhdl 87, in uninstantiated access the vhpiOpenModeP property may return 34
 vhpiInMode or vhpiOutMode. The default mode if the open mode is unspecified is 35
 vhpiInMode. 36
p string -LogicalName 37
 The file logical name if opened, or null if not opened. 38
 39
one-to-one relationships: 40
 mult 0..1 expr<-LogicalExpr Returns the expression providing the logical name of the file 41
declaration if the open information is provided 42
--- 43
 44
Class fileParamDecl 45
 46
Superclasses: file, paramDecl 47
 48
--- 49
 50
Class fileTypeDecl 51
 52
Superclasses: typeDecl 53
 54
one-to-one relationships: 55
 mult 1 subtype<-ValSubtype 56

 281

--- 1
 2
Class floatRange 3
 4
Superclasses: range 5
 6
Attributes: 7
p real -FloatLeftBound 8
 the float left bound of the range 9
p real -FloatRightBound 10
 the float right bound of the range 11
 12
--- 13
 14
Class floatTypeDecl 15
 16
Superclasses: scalarTypeDecl 17
 18
one-to-one relationships: 19
 mult 0..1 constraint<-constraint 20
--- 21
 22
Class forGenerate 23
 24
Superclasses: generateStmt 25
 26
Attributes: 27
p int -GenerateIndex 28
 29
one-to-one relationships: 30
 mult 1 constraint<-constraint the range of the generate parameter either a predefined attribute 31
range or an integer/enumerated range, or a subtype indication 32
 mult 1 constDecl<-ParamDecl 33
Iteration relationships: 34
it mult * attrSpec<-attrSpec 35
--- 36
 37
Class forLoop 38
 39
Description: 40
A for loop statement 41
 42
Superclasses: iterScheme 43
 44
Attributes: 45
p int -LoopIndex 46
 the loop index integer value (or position of the enumeration literal if 47
 enumerated type) if the loop is 48
 executing, -1 if the region has not been elaborated 49
 (is not executing). 50
 51
one-to-one relationships: 52
 mult 1 constraint<-constraint The range of the for loop either a predefined attribute range, or an 53
integer range. 54
 mult 1 constDecl<-ParamDecl returns the parameter implicit declaration, or NULL if the 55
loop has not been elaborated 56

 282

--- 1
 2
Class foreignf 3
 4
Superclasses: base 5
 6
Attributes: 7
p vhpiForeignT; -ForeignKind 8
 returns the kind of foreign model one of: vhpiArchF, vhpiProcF or vhpiFuncF 9
 10
Operations: 11
-vhpi_get_foreignf_info(vhpiHandleT: hdl, vhpiForeignDataT*: foreigndatap) : int 12
 13
--- 14
 15
Class funcCall 16
 17
Superclasses: subpCall, primaryExpr, prefix 18
 19
one-to-one relationships: 20
 mult 0..1 derefObj<-DerefObj 21
Iteration relationships: 22
it mult * selectedName<-selectedName 23
it mult * indexedName<-indexedName 24
Operations: 25
-vhpi_put_value(handle: vhpiHandleT, value: vhpiValueT *, flags: vhpiPutValueModeT) : int 26
 Mandatory for foreign function call, will set the return value of the foreign 27
 function call, 28
 legitimate vendor extension for VHDL function, not specified by the standard 29
 If the function return type is a composite type which is not an array of 30
 scalars, then individual vhpi_put_value class must be made to set each of the 31
 sub-elements. 32
 33
--- 34
 35
Class funcDecl 36
 37
Description: 38
a function declaration 39
 40
Superclasses: subpDecl 41
 42
Attributes: 43
p bool -IsPure 44
 45
one-to-one relationships: 46
 mult 1 typeMark<-ReturnTypeMark 47
--- 48
 49
Class generateStmt 50
 51
Description: 52
a generate statement instance 53
 54
Superclasses: concStmt, region 55
 56

 283

{ 1
 ifGenerate 2
 forGenerate 3
} 4
 5
Attributes: 6
p int -BeginLineNo 7
 the line number of the begin keyword 8
p int -EndLineNo 9
 the linenumber of the end keyword 10
 11
Iteration relationships: 12
it mult * varDecl<-varDecl 13
it mult * spec<-spec The specifications defined in the generate stmt declarative region (may 14
return attribute, disconnection, configuration specifications) 15
it mult * sigDecl<-sigDecl 16
it mult * constDecl<-constDecl 17
it mult * compInstStmt<-compInstStmt 18
it mult * blockStmt<-blockStmt 19
it mult * aliasDecl<-aliasDecl 20
--- 21
 22
Class generic 23
 24
Superclasses: interfaceElt 25
 26
{ 27
 genericDecl 28
 selectedName 29
 indexedName 30
} 31
 32
--- 33
 34
Class genericDecl 35
 36
Description: 37
The following methods/properties are not allowed on local generics: 38
vhpiFullNameP? 39
 40
Superclasses: interfaceDecl, generic 41
 42
Attributes: 43
p bool -IsVital 44
p modeT -Mode 45
 mode can only be vhpiIn 46
p bool -IsLocal 47
 true if this is local component generic declaration 48
 49
--- 50
 51
Class groupDecl 52
 53
Superclasses: decl 54
 55
one-to-one relationships: 56

 284

 mult 1 groupTempDecl<-groupTempDecl 1
Iteration relationships: 2
it mult 1..* entityDesignator<-entityDesignator 3
it mult * attrSpec<-attrSpec 4
--- 5
 6
Class groupTempDecl 7
 8
Superclasses: decl 9
 10
Iteration relationships: 11
it mult * entityClassEntry<-entityClassEntry 12
--- 13
 14
Class ifGenerate 15
 16
Superclasses: generateStmt 17
 18
one-to-one relationships: 19
 mult 1 expr<-CondExpr 20
--- 21
 22
Class ifStmt 23
 24
Superclasses: seqStmt 25
 26
Iteration relationships: 27
it mult 1..* branch<-branch 28
--- 29
 30
Class inPort 31
 32
Superclasses: base 33
 34
Iteration relationships: 35
it mult * basicSignal<-basicSignal 36
Operations: 37
#vhpi_get_value(handle: vhpiHandle, value: vhpi_value_p) : int 38
 get the IN value of the port (effective value) 39
-vhpi_register_cb(cbdatap: vhpiCbDataT *, int flags: <unnamed>) : vhpiHandleT; 40
 41
--- 42
 43
Class indexedName 44
 45
Superclasses: prefixedName, port, basicSignal, variable, signal, generic, constant 46
 47
Attributes: 48
p int -BaseIndex 49
 returns the offset of the indexedname to the base of the entire declaration. 50
 The first indexedname of the declared object has an offset of 0. The returned 51
 value of this property can be passed to vhpi_handle_by_index to create the 52
 same indexedname handle. 53
 54
Iteration relationships: 55
it mult * expr<-IndexExprs This iteration should be supported for handles which denote real 56

 285

VHDL references which appear in the source code. 1
This iteration returns NULL in other cases. 2
Operations: 3
#vhpi_get_value(handle: vhpiHandle, value: vhpi_value_p) : bool 4
#vhpi_put_value(handle: vhpiHandle, value: vhpi_value_p, flags: vhpiPutValueModeT) : bool 5
 6
--- 7
 8
Class intLiteral 9
 10
Superclasses: abstractLiteral 11
 12
Attributes: 13
p int -IntVal 14
 The integer value of the literal 15
 16
--- 17
 18
Class intRange 19
 20
Description: 21
an integer bounded range 22
 23
Superclasses: range 24
 25
Attributes: 26
p int -LeftBound 27
 The left value of the range, or -1 if range null or unconstrained 28
p int -RightBound 29
 the right value of the range or -1 if range null or unconstrained 30
 31
--- 32
 33
Class intTypeDecl 34
 35
Superclasses: scalarTypeDecl 36
 37
one-to-one relationships: 38
 mult 0..1 constraint<-constraint 39
--- 40
 41
Class interfaceDecl 42
 43
Description: 44
an interface declaration 45
 46
Superclasses: objDecl 47
 48
{ 49
 genericDecl 50
 portDecl 51
 paramDecl 52
} 53
 54
Attributes: 55
p int -Position 56

 286

 the position of the interface declaration in the interface list, index starts 1
 at 0. 2
 3
one-to-one relationships: 4
 mult 0..1 expr<-InitExpr returns the signal attributes which have been referenced in the VHDL 5
source or which may have been created some other way (gui command or vhpi_create function) 6
--- 7
 8
Class interfaceElt 9
 10
Superclasses: base 11
 12
{ 13
 variable 14
 generic 15
 constant 16
 file 17
 port 18
 signal 19
 convFunc 20
 expr 21
} 22
 23
--- 24
 25
Class iterScheme 26
 27
Superclasses: base 28
 29
{ 30
 forLoop 31
 whileLoop 32
} 33
 34
--- 35
 36
Class iterator 37
 38
Superclasses: base 39
 40
--- 41
 42
Class lexicalScope 43
 44
{ 45
 designUnit 46
 blockStmt 47
 compDecl 48
 recordTypeDecl 49
 protectedTypeDecl 50
 protectedTypeBody 51
 subpBody 52
 subpDecl 53
 loopStmt 54
 blockConfig 55
 compConfig 56

 287

} 1
 2
--- 3
 4
Class libraryDecl 5
 6
Description: 7
a library declaration. A library ony has a name, line, offset properties 8
 9
 10
Superclasses: decl 11
 12
Iteration relationships: 13
it mult * designUnit<-designUnit 14
--- 15
 16
Class literal 17
 18
Superclasses: primaryExpr, entityDesignator 19
 20
{ 21
 enumLiteral 22
 physLiteral 23
 stringLiteral 24
 bitStringLiteral 25
 charLiteral 26
 nullLiteral 27
 abstractLiteral 28
} 29
 30
Iteration relationships: 31
it mult * attrSpec<-attrSpec 32
Operations: 33
vhpi_get_value(hdl: vhpiHandleT, value: vhpiValueT *) : int 34
 get the current value of the literal. 35
 The value of a physical literal is retrieved with the unit field set to the 36
 physical position of the unit in which the physical literal is expressed. 37
 38
--- 39
 40
Class loopStmt 41
 42
Superclasses: seqStmt, region, lexicalScope 43
 44
one-to-one relationships: 45
 mult 0..1 iterScheme<-iterScheme 46
Iteration relationships: 47
it mult * attrSpec<-attrSpec 48
--- 49
 50
Class name 51
 52
Superclasses: primaryExpr, reference, prefix, entityDesignator 53
 54
{ 55
 prefixedName 56

 288

 attrName 1
 simpleName 2
} 3
 4
Attributes: 5
p string -Name 6
p string -FullName 7
p string -CaseName 8
p string -FullCaseName 9
p int -Size 10
 size in scalars of the name 11
 This property should be supported for locally static names. An implementation 12
 may optionally support 13
 globally static names. 14
 size of scalar variables of access types is 1. 15
 size of the null literal which represents the null access value is 1. 16
 17
one-to-one relationships: 18
 mult 1 derefObj<-DerefObj This relationship is not allowed from a sub-class of the class 19
predefAttrName 20
Iteration relationships: 21
it mult * selectedName<-selectedName This relationship is not allowed from a sub-class of the 22
class predefAttrName. 23
it mult * indexedName<-indexedName This relationship is not allowed from a sub-class of the 24
class predefAttrName 25
Operations: 26
vhpi_get_value(hdl: vhpiHandleT, value: vhpiValueT *) : bool 27
 get the current value of the named thing. The vhpi_get_value should be 28
 supported for locally static names. Implementations may provide support for 29
 globally static names as well. 30
 31
--- 32
 33
Class nextStmt 34
 35
Superclasses: seqStmt 36
 37
Attributes: 38
p string -LoopLabelName 39
 the name of the loop label 40
 41
one-to-one relationships: 42
 mult 0..1 expr<-CondExpr 43
--- 44
 45
Class null 46
 47
Description: 48
This represents a null handle. This is not a class. 49
 50
one-to-one relationships: 51
 mult 1 tool<-tool 52
 mult 1 rootInst<-rootInst 53
 mult 1 eqProcessStmt<-CurEqProcess 54
 mult 0..1 callback<-CurCallback Returns the currenly executing callback if any 55
Iteration relationships: 56

 289

it mult * vpidesign<-vpidesign internal 1
it mult * region<-CurRegions the currently executing region instances 2
it mult * packInst<-packInst Iteration on package instances will return all package body instances 3
used in the design. It also returns the standard package declaration. 4
it mult * foreignf<-foreignf returns the foreign models which have been registered for this tool 5
session 6
it mult * callback<-callback returns all callbacks (including the disabled, freed but not removed, 7
matured). 8
Operations: 9
-vhpi_get_time(timep: vhpiTimeT *, cyclesp: vhpiInt64T *) : void 10
 computes the current simulation time and relative or absolute delta cycles 11
-vhpi_get_next_time(timep: vhpiTimeT *) : vhpiIntT 12
 computes the next simulatrion time when some activity is scheduled, 13
 14
--- 15
 16
Class nullLiteral 17
 18
Description: 19
The literal represented by the VHDL keyword "null". 20
 21
Superclasses: literal 22
 23
--- 24
 25
Class nullStmt 26
 27
Superclasses: seqStmt 28
 29
--- 30
 31
Class objDecl 32
 33
Description: 34
an object declaration 35
 36
Superclasses: decl, simpleName 37
 38
{ 39
 sigDecl 40
 varDecl 41
 interfaceDecl 42
 fileDecl 43
 constDecl 44
} 45
 46
Attributes: 47
p int -Size 48
 size in scalars of a value of the object 49
p accessT -Access 50
 The access of the object: vhpiNoAccess, vhpiRead, vhpiWrite, vhpiConnectivity 51
 (must be defined as bit flags). 52
 If the file is not opened, vhpiNo Access. 53
 If the file i sopened for read mode, vhpiRead 54
 If the file is opened for write or append mode, vhpiWrite 55
 56

 290

one-to-one relationships: 1
 mult 1 typeDecl<-BaseType 2
 mult 1 subtypeIndic<-Subtype 3
Iteration relationships: 4
it mult * attrSpec<-attrSpec 5
Operations: 6
#vhpi_get_value(handle: vhpiHandle, value: vhpi_value_p) : int 7
 get the current value of the object 8
 The value of a file declaration should be the logical name of the opened file. 9
 The value should be nul if the file is not opened. 10
 11
 12
--- 13
 14
Class operator 15
 16
 17
Superclasses: primaryExpr 18
 19
Attributes: 20
p string -OpName 21
 22
one-to-one relationships: 23
 mult 1 decl<-decl 24
--- 25
 26
Class othersLiteral 27
 28
Superclasses: choice, entityDesignator 29
 30
--- 31
 32
Class outPort 33
 34
Superclasses: base 35
 36
Iteration relationships: 37
it mult * basicSignal<-basicSignal 38
Operations: 39
#vhpi_get_value(handle: vhpiHandle, value: vhpi_value_p) : int 40
 get the OUT value of the port (driving value) 41
#vhpi_put_value(handle: vhpiHandleT, value: vhpiValueT *, flags: vhpiPutValueModeT) : int 42
-vhpi_register_cb(cbdatap: vhpiCbDataT *, int flags: <unnamed>) : vhpiHandleT; 43
 44
--- 45
 46
Class packBody 47
 48
Superclasses: secondaryUnit 49
 50
--- 51
 52
Class packDecl 53
 54
Superclasses: primaryUnit 55
 56

 291

--- 1
 2
Class packInst 3
 4
Description: 5
represent an elaborated package that we call package instance (usually package 6
declaration/body pair) exceptions are for example the package standard that only 7
has a package declaration 8
 9
Superclasses: designInstUnit 10
 11
one-to-one relationships: 12
 mult 1 vpidesign<-vpidesign internal 13
 mult 1 null<-UpperRegion Iteration on package instances will return all package body 14
instances used in the design. It also returns the standard package declaration. 15
Iteration relationships: 16
it mult * varDecl<-varDecl 17
it mult * sigDecl<-sigDecl 18
it mult * constDecl<-constDecl 19
--- 20
 21
Class paramAttrName 22
 23
Superclasses: predefAttrName 24
 25
one-to-one relationships: 26
 mult 0..1 expr<-ParamExpr 27
--- 28
 29
Class paramDecl 30
 31
Description: 32
a sub-program formal parameter declaration 33
 34
Superclasses: interfaceDecl 35
 36
{ 37
 fileParamDecl 38
 sigParamDecl 39
 varParamDecl 40
 constParamDecl 41
} 42
 43
--- 44
 45
Class physLiteral 46
 47
Superclasses: literal 48
 49
Attributes: 50
p phys -PhysVal 51
 The physical value of the physical literal expressed in the base unit of its 52
 physical type 53
p phys -PhysPosition 54
 The position number of the physical literal as defined by the LRM page 37 line 55
 175 56

 292

 1
one-to-one relationships: 2
 mult 1 unitDecl<-unitDecl 3
 mult 1 abstractLiteral<-abstractLiteral 4
--- 5
 6
Class physRange 7
 8
Superclasses: range 9
 10
Attributes: 11
p phys -PhysLeftBound 12
 The left bound of the physical range 13
p phys -PhysRightBound 14
 15
--- 16
 17
Class physTypeDecl 18
 19
Superclasses: scalarTypeDecl 20
 21
one-to-one relationships: 22
 mult 1 unitDecl<-BaseUnit 23
 mult 0..1 constraint<-constraint 24
Iteration relationships: 25
it mult 1..* unitDecl<-unitDecl 26
--- 27
 28
Class port 29
 30
Description: 31
A port is either a port declaration or sub-part thereof or a predefined implicit 32
signal attribute ('delayed, 'quiet, 'stable, 'transaction) 33
 34
Superclasses: interfaceElt, contributor 35
 36
{ 37
 portDecl 38
 selectedName 39
 indexedName 40
 predefAttrName 41
} 42
 43
Attributes: 44
p bool -IsForced 45
 true if the object has been externally forced by either 46
 vhpi_put_value or some other way. 47
 false otherwise 48
 49
one-to-one relationships: 50
 mult 0..1 outPort<-outPort 51
 mult 0..1 interfaceElt<-Actual 52
 mult 0..1 inPort<-inPort 53
Iteration relationships: 54
it mult * callback<-callback 55
it mult * basicSignal<-basicSignal 56

 293

--- 1
 2
Class portDecl 3
 4
Description: 5
The following methods/properties are not allowed on a local port: 6
 7
 8
Superclasses: basicSignal, port, interfaceDecl 9
 10
Attributes: 11
p sigKindT -SigKind 12
 vhpiBus or vhpiNormal 13
p bool -IsGuarded 14
p bool -IsOpen 15
p modeT -Mode 16
 mode is either vhpiIn, vhpiOut, vhpiInout, vhpiBuffer or vhpiLinkage 17
 only signal/port class can be buffer or linkage mode. 18
 A buffer signal can only have one source 19
p bool -IsLocal 20
 true if this a local component port 21
 22
one-to-one relationships: 23
 mult 0..1 funcDecl<-ResolFunc returns a handle to the resolution function if if a resolution 24
function is associated with the declaration of that port or in the declaration of the port of that 25
signal (page 27 VHDL lrm 1076-93) 26
 27
Iteration relationships: 28
it mult * selectedName<-selectedName 29
it mult * predefAttrName<-SigAttrs returns the signal attributes which are referenced in the VHDL 30
source or which have been created some other way (gui or vhpi_create function) 31
it mult * indexedName<-indexedName 32
it mult * basicSignal<-basicSignal 33
Operations: 34
-vhpi_put_value(handle: vhpiHandleT; value: vhpiValueT *; flags: vhpiPutValueModeT) : int 35
-vhpi_register_cb(cbdatap: vhpiCbDataT *, int flags: <unnamed>) : vhpiHandleT; 36
 37
--- 38
 39
internal Class pragma 40
 41
Superclasses: base 42
 43
Attributes: 44
p string -Name 45
 the pragma name 46
 ex " translate_on", "resolution_method" etc... as it appears in the VHDL 47
 source 48
p string -StrVal 49
 returns the pragma string value or null if no 50
 string is supplied after the pragma name. 51
 For example a pragma value string would be null for 52
 "translate_on", or would be the entity name, or port name following the 53
 pragmas "map_to_entity" or "return_port_name" 54
 Pragmas which have a value string are pragmas of resolution function,built in 55
 functions or subprograms. 56

 294

 1
--- 2
 3
Class predefAttrName 4
 5
Superclasses: attrName, constraint, signal, port 6
 7
{ 8
 paramAttrName 9
 simpAttrName 10
} 11
 12
Attributes: 13
p int -PredefAttr 14
 The predefined attribute (one of the values 15
 {vhpiStablePA, vhpiQuietPA...) 16
p int -AttrKind 17
 the attribute kind either value, function, type, range or signal attribute 18
 vhpiValueAK, vhpiFunctionAK, vhpiTypeAK, vhpiRangeAK 19
 20
--- 21
 22
Class prefix 23
 24
Superclasses: base 25
 26
{ 27
 funcCall 28
 name 29
} 30
 31
--- 32
 33
Class prefixedName 34
 35
Superclasses: name 36
 37
{ 38
 derefObj 39
 selectedName 40
 indexedName 41
 sliceName 42
} 43
 44
one-to-one relationships: 45
 mult 1 simpleName<-simpleName I think this method returns the declared name 46
of the prefixed name 47
 mult 1 prefix<-prefix The vhpiPrefix method should be supported for handles 48
which denote real VHDL references encountered in the VHDL source, not handles created by 49
iteration 50
such as indexedNames, selectednames, basicSignals, 51
contributors etc... In the case of fake handles, the vhpiPrefix method should return NULL and a 52
vhpi error. 53
--- 54
 55
Class primaryExpr 56

 295

 1
Superclasses: expr 2
 3
{ 4
 funcCall 5
 name 6
 operator 7
 8
 literal 9
 aggregate 10
 typeConv 11
 allocator 12
} 13
 14
Attributes: 15
p int -Staticness 16
 returns vhpiLocallyStatic, vhpiGloballyStatic or vhpiDynamic 17
 18
--- 19
 20
Class primaryUnit 21
 22
Superclasses: designUnit 23
 24
{ 25
 entityDecl 26
 packDecl 27
 configDecl 28
} 29
 30
--- 31
 32
Class procCallStmt 33
 34
Description: 35
a procedure call statement 36
 37
Superclasses: seqStmt, subpCall, eqProcessStmt 38
 39
Attributes: 40
p bool -IsPassive 41
 true if no signal assignments appear in the procedure body 42
 43
Iteration relationships: 44
it mult * sigDecl<-DrivenSigs 45
--- 46
 47
Class procDecl 48
 49
Description: 50
a procedure declaration 51
 52
Superclasses: subpDecl 53
 54
--- 55
 56

 296

Class processStmt 1
 2
Description: 3
a process statement 4
 5
Superclasses: eqProcessStmt 6
 7
Attributes: 8
p bool -IsPassive 9
 process is passive: does not contain any signal assignments 10
p int -BeginLineNo 11
 line where the begin keyword appears 12
p int -EndLineNo 13
 line number where the end keyword appears 14
p bool -IsForeign 15
 16
Iteration relationships: 17
it mult * varDecl<-varDecl 18
it mult * spec<-spec returns the specifications (only attribute specifications) defined in the 19
process declarative region 20
it mult * constDecl<-constDecl 21
it mult * attrSpec<-attrSpec 22
it mult * attrDecl<-attrDecl 23
it mult * attrDecl<-attrDecl 24
it mult * aliasDecl<-aliasDecl 25
it mult * aliasDecl<-aliasDecl 26
--- 27
 28
Class protectedType 29
 30
Description: 31
region formed by both the protected type declaration and body 32
 33
Superclasses: region 34
 35
one-to-one relationships: 36
 mult 1 protectedTypeDecl<-protectedTypeDecl 37
--- 38
 39
Class protectedTypeBody 40
 41
Superclasses: base, lexicalScope 42
 43
Attributes: 44
p string -Name 45
 the protected body name (same as the protected type declaration name 46
p string -CaseName 47
 the case preserved name of the protected body 48
p int -LineNo 49
 the line number where the protected type body name appears 50
p int -LineOffset 51
 the line offset for the first character of the protected body identifier name 52
 53
one-to-one relationships: 54
 mult 1 protectedTypeDecl<-protectedTypeDecl 55
--- 56

 297

 1
Class protectedTypeDecl 2
 3
Superclasses: typeDecl, lexicalScope 4
 5
Attributes: 6
p int -EndLineNo 7
 8
one-to-one relationships: 9
 mult 1 protectedTypeBody<-protectedTypeBody 10
--- 11
 12
Class range 13
 14
Description: 15
a range either integer, float range or a predefined attribute denoting a range 16
('range or 'reverse_range attributes) 17
 18
Superclasses: base, constraint 19
 20
{ 21
 intRange 22
 floatRange 23
 physRange 24
 enumRange 25
} 26
 27
Attributes: 28
p bool -IsDiscrete 29
p bool -IsUp 30
p bool -IsNull 31
 it is a null range 32
p bool -IsUnconstrained 33
 true if range is unconstrained, false otherwise 34
p int -Staticness 35
 returns vhpiLocallyStatic, vhpiGloballyStatic, or vhpiDynamic 36
 37
one-to-one relationships: 38
 mult 0..1 expr<-LeftExpr returns the leftExpr or NULL if range is unconstrained 39
also generates an error if range is unconstrained 40
 mult 0..1 expr<-RightExpr return the right expression of the range or null if range 41
is unconstrained; generates an error if range is unconstrained 42
--- 43
 44
Class realLiteral 45
 46
Superclasses: abstractLiteral 47
 48
Attributes: 49
p real -RealVal 50
 The real value of the literal 51
 52
--- 53
 54
Class recordTypeDecl 55
 56

 298

Superclasses: compositeTypeDecl, lexicalScope 1
 2
Attributes: 3
p int -NumFields 4
 number of fields in the record 5
 6
Iteration relationships: 7
it mult 1..* elemDecl<-RecordElems 8
--- 9
 10
internal Class reference 11
 12
Description: 13
The referenced item 14
 15
Superclasses: base 16
 17
{ 18
 decl 19
 region 20
 region 21
 subpBody 22
 subpCall 23
 name 24
} 25
 26
--- 27
 28
Class region 29
 30
Description: 31
Class representing a VHDL scope in an elaborated model 32
A component instance statement that is unbound is still considered as 33
a scope. A for generate for which the range is NULL or an if generate for which 34
the condition is false is not considered as a scope 35
 36
Superclasses: base, reference, reference 37
 38
{ 39
 designInstUnit 40
 generateStmt 41
 blockStmt 42
 protectedType 43
 subpCall 44
 eqProcessStmt 45
 loopStmt 46
} 47
 48
Attributes: 49
p string -FullName 50
 full hierarchical statically instantiated name of the scope. 51
 A for loop stmt is a dynamically elaborated region which has no fullname. 52
 A sequential subprogram call is not a region and has no fullname. 53
 A concurrent subprogram call is a region and has a fullname. 54
 A function call is an expression and has no full name. 55
 The name is returned in unspecified case characters unless it applies to names 56

 299

 of extended identifiers for which the case is preserved. 1
 It is the absolute path to the scope containing 2
 instance name (but no binding information as defined 3
 in the instanceName VHDL attribute) 4
 This property can only aply to objects living in a VHDL scope. 5
 6
 It starts by a ":" which denotes the top of the hierarchy followed by all the 7
 different scope instances to that scope. Each scope is separated by a ":". 8
 A scope name is either: 9
 a package body name, 10
 an instance name (instance label, generate index), 11
 a concurrent statement implicit or explicit label.. 12
p string -FullCaseName 13
 Full hierarchical instantiated case sensitive name of the region. Same 14
 restrictions as for vhpiFullNameP. 15
 The case is the case of the identifier declaring the region. 16
p string -Name 17
 simple name of the static region instance 18
 A for loop stmt is a dynamically elaborated region and has no name. A 19
 sequential subprogram call is not a region and has no name. a concurrent 20
 procedure call 21
 is a region and has a name: the explicit or implicit label name. a function 22
 call is an expression and has no name. 23
 This is the name (unspecified case) for basic region identifiers or the 24
 case-preserved name for extended identifiers. 25
 This name is: 26
 for a component instance, the instance label name (ex. u1) 27
 for a generate instance, the generate label name with the index (ex. g(1)) 28
 for a block instance, the block instance label (ex. b_lab) 29
 for a process instance,a created process label name (ex: _P<num> or _p<num> 30
 where num is an integer corresponding to the sequence number of the equivalent 31
 process appearing in the VHDL text source. num starts at 0 and increments by 32
 1. Numbering of unlabelled equivalent processes starts at the entity. 33
 for a rootInst: : 34
 for a package instance, the package body name 35
 (ex: pack1) 36
 for a subprogram call instance, the subprogram declaration name (ex: fp) 37
p string -CaseName 38
 The case sensitive name of the declared region. Same as the vhpiNameP for 39
 extended identifiers or unlabelled eqprocesses. Same restrictions as for 40
 vhpiNameP. 41
p string -DefName 42
 name which identifies the path to the declared thing 43
 in the library that is bound to this scope. 44
 For a designInstUnit, it is the 45
 lib_name:entity_name(arch_name), 46
 for a subprogram, it is: 47
 lib_name:entity_name(arch_name):subprogram_name 48
 if the subprogram is declared in an architecture 49
 lib_name:pack_body_name:subprogram_name 50
 if the subprogram body is declared in a package body 51
 for a processInst it is: 52
 lib_name:entity_name(arch_name):eq_process_label_name 53
 Each of the names is either unspecified for basic 54
 identifiers or case-preserved for extended identifiers. 55
 For unlabelled processes , it is the name generated by the VHPI interface 56

 300

 "_P<int>" or "_p<int>". 1
 2
p string -FileName 3
 pathname of the source file where that scope instance was found during 4
 analysis 5
p int -LineNo 6
 line number where the scope instance starts: 7
 for a subpCall, the line number of the subprogram call, 8
 for a rootInst, the line number of the definition of the architecture body it 9
 is bound to, 10
 for a packInst, the line number of the package body 11
 for a compInst, the line number of the component instance, 12
 for a generate instance, the line number of the generate statement, 13
 for a block instance, the line number where the block statement starts in the 14
 source 15
 for a eqProcessStmt, the line number of the equivalent process statement. 16
 For all kinds of regions, the line number should be the line number for that 17
 region. 18
p int -LineOffset 19
 The character offset in the source file of the definition 20
 name of the scope (architecture name or package body name) 21
p : domainT #Domain 22
 returns whether or not the region is digital, analog or mixed (vhpiDigital, 23
 vhpiAnalog or vhpiMixedSignal) 24
 25
one-to-one relationships: 26
 mult 1 region<-UpperRegion Internal regions return the elaborated regions including: 27
 - equivalent processes, 28
 - structural concurrent statements. 29
 - dynamically elaborated regions (for loop stmts and 30
 subpCall). 31
However support of dynamically elaborated regions is not included in the compliance level of 32
hierarchy traversal. 33
 34
UpperRegion: returns the higher enclosing structural instance or NULL if the reference handle is 35
a rootinst or a packinst. 36
Iteration relationships: 37
it mult * stmt<-stmt 38
it mult * region<-InternalRegions Internal regions return the elaborated regions including: 39
 - equivalent processes, 40
 - structural concurrent statements. 41
 - dynamically elaborated regions (for loop stmts and 42
 subpCall). 43
However support of dynamically elaborated regions is not included in the compliance level of 44
hierarchy traversal. 45
 46
UpperRegion: returns the higher enclosing structural instance or NULL if the reference handle is 47
a rootinst or a packinst. 48
it mult * objDecl<-objDecl internal 49
it mult * decl<-decl vhpiDecls returns all declarations of clas vhpiDecl in the 50
instance 51
vhpiImmRegion for a local ports/generics should 52
return null as the component declaration is not a 53
region. 54
it mult * attrSpec<-attrSpec the attribute specifications attributing that region 55
(not the ones defined within that region) 56

 301

it mult * attrDecl<-attrDecl 1
it mult * aliasDecl<-aliasDecl 2
--- 3
 4
Class reportStmt 5
 6
Superclasses: seqStmt 7
 8
one-to-one relationships: 9
 mult 0..1 expr<-SeverityExpr 10
 mult 1 expr<-ReportExpr 11
--- 12
 13
Class returnStmt 14
 15
Superclasses: seqStmt 16
 17
one-to-one relationships: 18
 mult 0..1 expr<-ReturnExpr 19
--- 20
 21
Class rootInst 22
 23
Description: 24
represents the root of the instantiated design hierarchy (top level instance) 25
 26
Superclasses: designInstUnit 27
 28
Attributes: 29
p int -NumGens 30
 number of generic declarations 31
p int -NumPorts 32
 number of port declarations 33
 34
one-to-one relationships: 35
 mult 1 vpidesign<-vpidesign internal 36
 mult 1 null<-UpperRegion 37
 mult 0..1 configDecl<-configDecl returns a null handle if default configuration applied 38
Iteration relationships: 39
it mult * varDecl<-varDecl 40
it mult * sigDecl<-sigDecl 41
it mult * portDecl<-portDecl 42
it mult * genericDecl<-genericDecl 43
it mult * constDecl<-constDecl 44
it mult * compInstStmt<-compInstStmt 45
it mult * blockStmt<-blockStmt 46
it mult * assocElem<-PortAssocs 47
it mult * assocElem<-GenericAssocs 48
Operations: 49
-vhpi_handle_by_index(itRel: vhpiOneToManyT, handle: vhpiHandleT, index: int) : vhpiHandleT 50
 51
--- 52
 53
Class scalarTypeDecl 54
 55
Superclasses: typeDecl 56

 302

 1
{ 2
 enumTypeDecl 3
 intTypeDecl 4
 floatTypeDecl 5
 physTypeDecl 6
} 7
 8
Attributes: 9
p bool -IsAnonymous 10
 Anonymous types have a simple name of $anonymous 11
 12
--- 13
 14
Class secondaryUnit 15
 16
Superclasses: designUnit 17
 18
{ 19
 archBody 20
 packBody 21
} 22
 23
one-to-one relationships: 24
 mult 1 primaryUnit<-primaryUnit 25
--- 26
 27
Class selectSigAssignStmt 28
 29
Superclasses: sigAssignStmt 30
 31
one-to-one relationships: 32
 mult 1 expr<-SelectExpr 33
Iteration relationships: 34
it mult 1..* selectWaveform<-selectWaveform 35
--- 36
 37
Class selectWaveform 38
 39
Superclasses: base 40
 41
Attributes: 42
p int -LineNo 43
 line number of the waveform 44
p string -FileName 45
 46
Iteration relationships: 47
it mult 1..* waveformElem<-waveformElem 48
it mult 1..* choice<-choice 49
--- 50
 51
Class selectedName 52
 53
Superclasses: prefixedName, port, basicSignal, variable, signal, generic, constant 54
 55
one-to-one relationships: 56

 303

 mult 1 simpleName<-Suffix 1
Operations: 2
#vhpi_get_value(handle: vhpiHandle, value: vhpi_value_p) : int 3
#vhpi_put_value(handle: vhpiHandle, value: vhpiValueT *, flags: vhpiPutValueModeT) : int 4
 5
--- 6
 7
Class seqStmt 8
 9
Superclasses: stmt 10
 11
{ 12
 procCallStmt 13
 assertStmt 14
 waitStmt 15
 reportStmt 16
 ifStmt 17
 caseStmt 18
 loopStmt 19
 nextStmt 20
 returnStmt 21
 exitStmt 22
 nullStmt 23
 varAssignStmt 24
 simpleSigAssignStmt 25
} 26
 27
one-to-one relationships: 28
 mult 1 stmt<-Parent 29
 mult 1 region<-ImmRegion 30
--- 31
 32
Class sigAssignStmt 33
 34
Superclasses: eqProcessStmt 35
 36
{ 37
 condSigAssignStmt 38
 selectSigAssignStmt 39
 simpleSigAssignStmt 40
} 41
 42
Attributes: 43
p bool -IsTransport 44
p bool -IsGuarded 45
 46
one-to-one relationships: 47
 mult 0..1 sigDecl<-GuardSig If the signal assign statement is guarded by a guard signal, then 48
returns the explicit or implicit guard signal declaration, otherwise returns null 49
 mult 1 expr<-LhsExpr 50
 mult 0..1 expr<-RejectTime 51
--- 52
 53
Class sigDecl 54
 55
Description: 56

 304

a signal declaration 1
 2
Superclasses: objDecl, basicSignal, signal 3
 4
Attributes: 5
p bool -IsGuarded 6
 the signal declares a guard signal of the signal kind indicated in the 7
 declaration 8
p sigKindT -SigKind 9
 signal kind register, bus or normal for signals, 10
 bus or normal for ports. 11
 12
one-to-one relationships: 13
 mult 0..1 funcDecl<-ResolFunc returns the resolution function handle if a resolution function is 14
used to calculate the effective value of that signal: A resolution function handle will be returned if 15
the signal declaration contains a resolution function or of the subtype declaration of that signal 16
contains a resolution function. 17
 mult 0..1 expr<-InitExpr 18
Iteration relationships: 19
it mult * selectedName<-selectedName 20
it mult * predefAttrName<-SigAttrs 21
it mult * indexedName<-indexedName 22
it mult * basicSignal<-basicSignal returns the basic signal as defined page 165 of the VHDL LRM 23
lines 485- 490. 24
Note: an implicit GUARD signal is not a basic signal. 25
 an explicit GUARD may have at most one basic 26
 signal. 27
 signal attributes are not basic signals. 28
Operations: 29
-vhpi_put_value(handle: vhpiHandleT value: vhpiValueT * flags: int) : int 30
 deposit a value as a force for this cycle or force until release, creates an 31
 event if requested 32
-vhpi_register_cb(cbdatap: vhpiCbDataT *, int flags: <unnamed>) : vhpiHandleT; 33
 34
--- 35
 36
Class sigParamDecl 37
 38
Superclasses: paramDecl, signal 39
 40
Attributes: 41
p bool -IsGuarded 42
p bool -IsResolved 43
p modeT -Mode 44
 mode is either vhpiIn, vhpiOut, vhpiInout, vhpiBuffer or vhpiLinkage 45
 only signal class can be buffer or linkage mode. 46
 A buffer signal can only have one source 47
 48
one-to-one relationships: 49
 mult 0..1 funcDecl<-ResolFunc 50
Operations: 51
-vhpi_put_value(handle: vhpiHandleT, value: vhpiValueT *, flags: vhpiPutValueModeT) : int 52
 53
--- 54
 55
Class signal 56

 305

 1
Description: 2
A signal can either be: 3
 a signal declaration or sub-part thereof, a predefined implicit signal 4
attribute ('delayed, 'stable, 'quiet, 'transaction) or a signal parameter 5
declaration. 6
 7
Superclasses: contributor, interfaceElt 8
 9
{ 10
 sigDecl 11
 sigParamDecl 12
 selectedName 13
 indexedName 14
 predefAttrName 15
} 16
 17
Attributes: 18
p bool -IsForced 19
 true if the object has been externally forced by either 20
 vhpi_put_value or some other way. 21
 false otherwise 22
 23
Iteration relationships: 24
it mult * callback<-callback 25
it mult * basicSignal<-basicSignal 26
--- 27
 28
Class simpAttrName 29
 30
Superclasses: predefAttrName 31
 32
--- 33
 34
Class simpleName 35
 36
Superclasses: name 37
 38
{ 39
 objDecl 40
 aliasDecl 41
} 42
 43
--- 44
 45
Class simpleSigAssignStmt 46
 47
Superclasses: seqStmt, sigAssignStmt 48
 49
Iteration relationships: 50
it mult 1..* waveformElem<-waveformElem 51
--- 52
 53
Class sliceName 54
 55
Superclasses: prefixedName, basicSignal 56

 306

 1
one-to-one relationships: 2
 mult 1 constraint<-constraint A slice range can be a discrete subtype indication or a range 3
--- 4
 5
Class spec 6
 7
Superclasses: base 8
 9
{ 10
 compConfig 11
 disconnectSpec 12
 attrSpec 13
} 14
 15
one-to-one relationships: 16
 mult 1 lexicalScope<-lexicalScope 17
--- 18
 19
Class stackFrame 20
 21
Superclasses: base 22
 23
{ 24
 subpCall 25
 eqProcessStmt 26
} 27
 28
Attributes: 29
p int -FrameLevel 30
 returns the stack frame level of this subprogram call. 31
 0 for lowest, -1 if unknown (subprogram not 32
 dynamically executing or inlined). 33
 34
one-to-one relationships: 35
 mult 0..1 subpCall<-DownStack moving up and down stack frames, 36
vhpiDownStack returns null if no more stack frame 37
vhpiUpStack returns null if this no more stack frame 38
--- 39
 40
Class stmt 41
 42
Description: 43
a sequential or concurrent statement 44
 45
Superclasses: entityDesignator 46
 47
{ 48
 concStmt 49
 seqStmt 50
} 51
 52
Attributes: 53
p int -LineNo 54
 the line number of the concurrent or sequential statement. 55
p string -FileName 56

 307

p string -LabelName 1
 The optional label name of the statement, null string if none. 2
 vhpiLabelNameP property for a for generate statement does not include the 3
 index of the for generate). 4
 5
 6
p bool -IsSeqStmt 7
 returns true if the stmt is a sequential stmt, false otherwise 8
 9
Iteration relationships: 10
it mult * pragma<-pragma internal 11
it mult * callback<-callback 12
it mult * attrSpec<-attrSpec The attribute specifications which are associated with the label of 13
that statement. 14
--- 15
 16
Class stringLiteral 17
 18
Superclasses: literal 19
 20
Attributes: 21
p string -StrVal 22
 The string value of the literal as it appears in the VHDL 23
 24
--- 25
 26
Class subpBody 27
 28
Description: 29
A subprogram body with its subprogram specification 30
 31
Superclasses: reference, decl, lexicalScope 32
 33
Attributes: 34
p bool -IsForeign 35
p int -BeginLineNo 36
 the line number of the begin keyword 37
p int -EndLineNo 38
 the line number of the end keyword 39
 40
one-to-one relationships: 41
 mult 1 subpDecl<-subpDecl returns the subprogram specification of the subprogram body 42
Iteration relationships: 43
it mult * stmt<-stmt returns explicit sequential statements from the subpDecl 44
it mult * spec<-spec returns the specification defined in the subprogram declaration (only 45
Attribute specifications) 46
it mult * decl<-decl returns explicit declarations from the subpDecl 47
it mult * attrSpec<-attrSpec Returns the attribute specifications for that subprogram declaration 48
--- 49
 50
Class subpCall 51
 52
Superclasses: reference, region, stackFrame 53
 54
{ 55
 funcCall 56

 308

 procCallStmt 1
} 2
 3
Attributes: 4
p int -NumParams 5
 6
one-to-one relationships: 7
 mult 1 subpBody<-subpBody 8
 mult 1 stackFrame<-CurStackFrame returns the current executing or suspended stack frame 9
or null. 10
 mult 0..1 stackFrame<-UpStack moving up and down stack frames, 11
vhpiDownStack returns null if no more stack frame 12
vhpiUpStack returns null if this no more stack frame 13
Iteration relationships: 14
it mult * varDecl<-varDecl 15
it mult * paramDecl<-paramDecl iteration over the dynamically elaborated formals 16
(instantiated data) different from the paramDecl obtained 17
from a subpDecl handle 18
it mult * constDecl<-constDecl 19
it mult * assocElem<-ParamAssocs iteration over the parameter association as they appear 20
in the VHDL source it is not an ordered iteration 21
Operations: 22
-vhpi_handle_by_index(itRel: vhpiOneToManyT, handle: vhpiHandleT, index: int) : vhpiHandleT 23
 24
--- 25
 26
Class subpDecl 27
 28
Description: 29
The subprogram declaration either found alone as a declaration or 30
as the subprogram specification of a subprogram body. 31
 32
Superclasses: decl, lexicalScope 33
 34
{ 35
 funcDecl 36
 procDecl 37
} 38
 39
Attributes: 40
p int -NumParams 41
 the number of formal parameters in the subprogram 42
 declaration includes the return parameter for 43
 function declarations 44
 45
one-to-one relationships: 46
 mult 1 subpBody<-subpBody internal 47
Iteration relationships: 48
it mult * typeMark<-typeMark The signature of the subprogram either implicit or explicit 49
it mult * paramDecl<-paramDecl 50
it mult * paramDecl<-paramDecl iteration over uninstantiated parameter declarations 51
Operations: 52
-vhpi_handle_by_index(itRel: vhpiOneToManyT, handle: vhpiHandleT, index: int) : vhpiHandleT 53
 returns the handle which corresponds to the index 54
 for the given iteration for the reference handle 55
 56

 309

--- 1
 2
Class subtype 3
 4
Description: 5
a created subtype 6
 7
Superclasses: base 8
 9
{ 10
 subtypeIndic 11
 typeMark 12
} 13
 14
Attributes: 15
p bool -IsUnconstrained 16
 The subtype is unconstrained 17
 18
one-to-one relationships: 19
 mult 1 typeDecl<-BaseType 20
--- 21
 22
Class subtypeDecl 23
 24
Description: 25
a subtype declaration 26
 27
Superclasses: decl, typeMark 28
 29
Attributes: 30
p bool #IsResolved 31
 32
one-to-one relationships: 33
 mult 1 typeMark<-typeMark 34
 mult 0..1 funcDecl<-ResolFunc returns a resolution function handle only if a resolution function 35
is present in the subtype declaration. 36
Iteration relationships: 37
it mult * constraint<-constraint 38
it mult * attrSpec<-attrSpec 39
--- 40
 41
Class subtypeIndic 42
 43
Superclasses: subtype, constraint 44
 45
Attributes: 46
p bool #IsResolved 47
 if the subtype indication has a resolution function associated with it. 48
 49
one-to-one relationships: 50
 mult 1 typeMark<-typeMark 51
 mult 0..1 funcDecl<-ResolFunc returns a resolution function handle only if a resolution function 52
is present in the subtype indication 53
Iteration relationships: 54
it mult * constraint<-constraint 55
--- 56

 310

 1
Class tool 2
 3
Description: 4
This represents the tool with which the VHPI application or models are 5
interacting; such a tool is an elaborator or a simulator which provides the VHPI 6
interface. 7
 8
Superclasses: base 9
 10
Attributes: 11
p string -Name 12
 The tool vendor name: executable name which 13
 implements the VHPI interface. 14
p int -Level 15
 the VHDL conformance level: 16
 0 : no VHPI support available 17
 1: VHPI level 1 18
 2: VHPI level 2 19
 3: advanced VHPI capabilities 20
p int -VHDLversion 21
 The language VHDL version the tool is complaint with: 87, 93 or 99 22
p physT -SimTimeUnit 23
 The simulator tool time unit 24
p physT -Precision 25
 The simulator precision for representing TIME values. 26
p PhaseT -Phase 27
 the phase : vhpiRegistrationPhase, vhpiAnalysisPhase, vhpiInitializationPhase, 28
 vhpiElaborationPhase vhpiSimulationPhase, 29
 vhpiTerminationPhase, vhpiSavePhase, vhpiRestartPhase, vhpiResetPhase 30
p string -ToolVersion 31
 The tool release version number 32
 33
Iteration relationships: 34
it mult * argv<-argv Iteration returns the argv[] command line arguments passed to the tool 35
invocation in the order they were passed. 36
--- 37
 38
Class transaction 39
 40
Superclasses: base 41
 42
Attributes: 43
p bool -IsNull 44
 45
Operations: 46
-vhpi_get_value(handle: vhpiHandle, value: vhpi_value_p) : int 47
-vhpi_get_time(handle: vhpiHandle, time: vhpi_time_p) : bool 48
 49
--- 50
 51
Class typeConv 52
 53
Superclasses: primaryExpr 54
 55
one-to-one relationships: 56

 311

 mult 1 expr<-expr returns the expression that is the object of the conversion 1
--- 2
 3
Class typeDecl 4
 5
Superclasses: typeMark, decl 6
 7
{ 8
 fileTypeDecl 9
 scalarTypeDecl 10
 compositeTypeDecl 11
 accessTypeDecl 12
 protectedTypeDecl 13
} 14
 15
Attributes: 16
p bool #IsScalar 17
p bool #IsComposite 18
 19
Iteration relationships: 20
it mult * attrSpec<-attrSpec 21
--- 22
 23
Class typeMark 24
 25
Description: 26
A type mark name that originated from a subtype declaration or type declaration 27
 28
Superclasses: subtype 29
 30
{ 31
 typeDecl 32
 subtypeDecl 33
} 34
 35
--- 36
 37
Class unaryExpr 38
 39
Superclasses: expr 40
 41
one-to-one relationships: 42
 mult 1 operator 43
<-operator 44
 45
 mult 1 expr<-expr 46
--- 47
 48
Class uniformCollection 49
 50
Description: 51
an homogeneous collection of handles. All handles gathered in this collection 52
are of the same kind, or a collection of handles of this 53
kind. 54
 55
 56

 312

Superclasses: collection 1
 2
{ 3
 driverCollection 4
} 5
 6
--- 7
 8
Class unitDecl 9
 10
Description: 11
a unit declaration 12
 13
Superclasses: decl 14
 15
Attributes: 16
p phys -PhysPosition 17
 the position number of this unit 18
 19
one-to-one relationships: 20
 mult 1 physLiteral<-physLiteral 21
--- 22
 23
Class userAttrName 24
 25
Superclasses: attrName 26
 27
one-to-one relationships: 28
 mult 1 attrSpec<-attrSpec returns the attribute specification which defines the value 29
of the userAttrName. 30
--- 31
 32
Class varAssignStmt 33
 34
Superclasses: seqStmt 35
 36
one-to-one relationships: 37
 mult 1 expr<-LhsExpr 38
 mult 1 expr<-RhsExpr 39
--- 40
 41
Class varDecl 42
 43
Description: 44
a variable declaration 45
 46
Superclasses: objDecl, variable 47
 48
Attributes: 49
p bool -IsShared 50
p bool -IsProtectedType 51
 The variable has a protected type 52
 53
one-to-one relationships: 54
 mult 0..1 expr<-InitExpr 55
 mult 1 derefObj<-DerefObj method only from a variable of an access type 56

 313

Iteration relationships: 1
it mult * selectedName<-selectedName 2
it mult * indexedName<-indexedName 3
Operations: 4
-vhpi_put_value(handle: vhpiHandleT, value: vhpiValueT *, flags: vhpiPutValueModeT) : int 5
-vhpi_protected_call(varHdl: vhpiHandleT, userfct: vhpiUserFctT, user_data: void *) 6
-vhpi_register_cb(cbdatap: vhpiCbDataT *, int flags: <unnamed>) : vhpiHandleT; 7
 8
--- 9
 10
Class varParamDecl 11
 12
Superclasses: paramDecl, variable 13
 14
Attributes: 15
p modeT -Mode 16
 mode can be vhpiIn, vhpiOut, vhpiInOut 17
 18
Operations: 19
-vhpi_put_value(handle: vhpiHandle, value: vhpi_value_p, flags: vhpiPutValueModeT) : int 20
 21
--- 22
 23
Class variable 24
 25
Superclasses: interfaceElt 26
 27
{ 28
 varDecl 29
 varParamDecl 30
 selectedName 31
 indexedName 32
} 33
 34
Attributes: 35
p bool -IsForced 36
 true if the object has been externally forced by either 37
 vhpi_put_value or some other way. 38
 false otherwise 39
 40
Iteration relationships: 41
it mult * callback<-callback 42
--- 43
 44
Class waitStmt 45
 46
Superclasses: seqStmt 47
 48
one-to-one relationships: 49
 mult 0..1 expr<-CondExpr 50
 mult 0..1 expr<-TimeOutExpr 51
Iteration relationships: 52
it mult * name<-SigNames 53
--- 54
 55
Class waveformElem 56

 314

 1
Superclasses: base 2
 3
Attributes: 4
p bool -IsUnaffected 5
 true if the waveforms is the unaffected keyword. 6
 if true then valExpr and timeExpr methods return null; 7
 always false for sequential signal assignments 8
 9
one-to-one relationships: 10
 mult 0..1 expr<-TimeExpr 11
 mult 0..1 expr<-ValExpr 12
--- 13
 14
Class whileLoop 15
 16
Superclasses: iterScheme 17
 18
one-to-one relationships: 19
 mult 1 expr<-CondExpr 20
--- 21

