
Application Note
Embedded SRAM Initialization Using External Serial
EEPROM

Introduction
Embedded SRAM blocks have become common in FPGA design. Since SRAM is a volatile memory type, the
stored data vanishes in the absence of power. When power is restored, the memory is empty. As many
applications operate on data stored in SRAM, it must be filled, or initialized, on power-up.

Actel ProASIC3/E, Axcelerator, ProASICPLUS, and ProASIC FPGA families support embedded SRAM blocks.
One method of initializing the on-chip SRAM blocks is to store the initialization data in an external non-
volatile EEPROM and transfer it to the internal SRAM blocks at power-up. This document offers an
efficient and low-cost solution for implementing this initialization method. Figure 1 on page 4 shows a
block diagram of the RAM initialization using external serial EEPROM. A reference design is provided that
can be used (shown as I2C Interface in Figure 1 on page 4) in all Actel FPGAs that contain embedded
memory blocks. The reference design is simulated, and the simulation files are also included in this
application note.

Embedded SRAM Blocks in Actel FPGAs
Table 1 lists several features of the SRAM blocks in various FPGA devices and clarifies their differences.

As illustrated in Table 1, there are variations in size and features of memory blocks for different FPGA
families. Although these variations may require changes for a specific implementation, they are not
significant enough to affect the fundamentals of the reference design. Therefore, a single reference
design targeting ProASICPLUS FPGAs is presented in this document. The effects of feature and size
variations are discussed in the "Instantiation of the Reference I2C Interface in the User Design" section on
page 5.

Serial EEPROM Devices
A serial EEPROM is used as the source of the initialization data for the following reasons: low cost and
small footprint. There are many vendors providing different types of serial EEPROM devices; however, the
majority of them have similar pins and functionality. The reference design in this application note
connects to serial EEPROM devices from Atmel that use the I2C interface protocol.

A serial EEPROM is usually configured into multiple pages of multiple bytes. For example, an Atmel
AT24C02A device contains 2k memory bits that are configured into 32 pages of eight bytes each.
Therefore, eight bits of address are required to address a particular memory location (containing a data
byte) within this device.

Table 1 • FPGA Embedded SRAM Features

FPGA Family Maximum SRAM Bits Variable-Aspect Ratio True Dual-Port

ProASIC3E 504k Yes Yes

ProASIC3 144k Yes Yes

Axcelerator 288k Yes No

ProASICPLUS 198k No No

ProASIC 63k No No

Note: For more information on embedded SRAM blocks, refer to each FPGA datasheet located on the Actel website
(www.actel.com).
September 2004 1
© 2004 Actel Corporation

www.actel.com
www.actel.com

Embedded SRAM Initialization Using External Serial EEPROM
Complete information about pin configuration, functionality, operating condition, and electrical
characteristics of Atmel Serial EEPROM devices is available at Atmel (www.atmel.com) or any other serial
EEPROM vendor’s website. The datasheet for the Atmel AT24C02A serial EEPROM used in this application
note is Two-Wire Serial EEPROM AT24C02A/04A/08A/16A.

RAM Initialization Reference Design
The reference design is described and analyzed in three sections. The first section discusses the
functionality, architecture, and operation basics of the design. The second section presents a VHDL code
that implements the RAM initialization design and demonstrates the functionality of the code by
illustrating the simulation results. The final section provides guidelines on how to instantiate, how to use
the reference design in user design, and how to connect the FPGA to the serial EEPROM.

Architecture and Functionality
This design implements an I2C master interface that will read data from an external EEPROM (AT24C02A)
at power-up to initialize a 256x8 internal SRAM block. When external logic signals for a Non-Volatile
Memory (NVM) write access, the block reads data from the external source and writes it to the specified
NVM address.

Clock Management
The reference design runs on a main clock input named CLK. As described in the AT24C02A datasheet, the
transitions on the SDA line of an EEPROM are only allowed while the SCK input is low; otherwise it will
cause a start or stop condition. Therefore, CLK is divided by two to provide an initialization clock. This
clock is called BTCK. The clock division allows the design to run on the fast clock (CLK) and data transfer is
easily coordinated with the active edges of the initialization clock (BTCK). Two clock outputs of the
reference design (ICLK and SCK) are derived from BTCK. SCK is the clock input to the serial EEPROM. SCK
follows BTCK except when the reference design is generating a start or stop condition. In these cases, the
SCK is kept high so that the transitions on the data line (SDA input to AT24C02A) can enter the EEPROM in
the start or stop condition. ICLK is the embedded SRAM initialization clock. Writing into the SRAM is
synchronized with the rising edge ICLK. ICLK is an inverted version of BTCK since the data transmission
from external EEPROM is synchronized to the falling edge of the clock.

State Machine
The heart of the design is a 9-stage state machine. The following are the state definitions:

0000 – reset state: generate a start bit and load 0xA0 command

0001 – send byte: load 0x00 address

0010 – send byte: generate a start bit and load 0xA1 command

0011 – send byte: clear byte count

0100 – receive byte: if byte count! = FF: acknowledge, count++, go to state 0100 else assert "nack"

0101 – stop: assert stop bit and loop until updt = 1; then generate a start bit and load 0xA0

0110 – send byte: send byte; if nack asserted go to 0101, else load write address

0111 – send byte: send write address, load write data

1000 – send byte: send write data and go to 0101

The state machine implemented in this design is actually a counter that starts at zero and counts up, then
jumps back to 0101 and counts up again, returning to zero only when global reset is asserted low.
2

www.atmel.com
http://www.atmel.com/dyn/resources/prod_documents/doc0976.pdf

Embedded SRAM Initialization Using External Serial EEPROM
Counters
The reference design tracks the number of bits and words received from external EEPROM using two
counters: BCNT and CCNT. BCNT is a 4-bit counter that increments in state 0100 (reading from RAM) with
the falling edge of CLK whenever BTCK is low. MSB of BCNT reaching a value of one indicates transfer of
eight bits. The counter is cleared whenever its MSB reaches a value of one. It then starts counting for the
next data word. The CCNT counts the number of data words received during power-up initialization (from
0x00 to 0xFF in this example). The CCNT output is also used as the embedded SRAM write address.

SRAM Interface Ports
Embedded SRAM blocks of the FPGA connect to the I2C interface design through the following ports:

• IENB: An output of the I2C interface, which acts as a write enable to the SRAM. This signal is driven
low (enabled) by the interface during each acknowledge step after receiving the eight bits of data
(one byte). This is because the embedded SRAM in this reference design is configured as a 256x8
block.

• IADDR: Directly extracted from CCNT output, connects to the write address of the SRAM block

• IDATA: Write data input to the SRAM.

• ICLK: The SRAM initialization clock

Acknowledge
Acknowledge is a handshaking process between the EEPROM and FPGA in different operations. During
the data read (initialization), the FPGA should send a value of zero on the data bus, after receiving eight
bits of data, to acknowledge the receipt of the byte. The EEPROM starts sending the next byte of data
after receiving the acknowledge signal. Also after each device addressing operation or write operation,
the EEPROM sends out a value of zero in order to confirm the receipt of data from the FPGA. During
operations in which the I2C interface (FPGA) needs to send the acknowledge signal (e.g., read), the
reference design places a value of zero on the data line (SDO) automatically after receiving eight bits of
data (checking BCNT). When the acknowledge signal is sent by EEPROM (e.g., device addressing), the I2C
checks the data bus (SDI) after receiving eight bits (ninth bit). If the data line is high during the ninth bit,
I2C activates the "not acknowledged" flag (NACK). If the state machine is in states 0000 to 0011, assertion
of NACK will cause the state machine to go back to 0000. In states 0100 or higher, the assertion of NACK
will cause the state machine to go to state 0101 (STOP) and wait for UPDT or RESET.

Status Output
INIT output of the reference design indicates the state of I2C. At power-up reset, it is asserted high to
indicate the start of initialization process. It remains high until the state machine enters state 0101 (STOP).
This will indicate the end of the initialization process and that the interface is available to write into the
EEPROM.

Writing into the EEPROM
The I2C initialization interface design features byte-write into the EEPROM. The reference design assumes
that the data to be written into the EEPROM is supplied by an external FIFO; however, it can be imported
from any source within the user design. The write process starts once INIT is low (state machine is in state
0101) and the UPDT input is asserted high. UADDR and UDATA are address and data inputs to be sent to
the EEPROM. The UENB output is used as an active low read enable to the external logic (e.g., FIFO). UENB
becomes active low in state 0111 when the I2C interface is finishing sending the write address to the
EEPROM. The user’s design should clear the UPDT control unless another address and data byte are ready
to be written into the EEPROM.
3

Embedded SRAM Initialization Using External Serial EEPROM
I2C Operation Flow Diagram
Figure 1 illustrates the flow diagram of the I2C interface design and summarizes all the procedures and
functionalities explained above.

Figure 1 • I2C Interface Design Flow Diagram

Load Address 0x00

Power On Reset

Generate Start Bit
Device Addressing
(Write)

Ninth Bit Ack?

YES

NO

Ninth Bit Ack?
NO

YES

Generate Start Bit
Device Addressing
(Read)

Ninth bit Ack?
NO

YES

Clear Byte Counter

 Receive 8 bits
 Acknowledge
 Byte Counter + 1

Byte Counter
= FF?

NO

YES

No Acknowledge
Generate Stop Bit

Updt = 1?
NO

YES

Generate start bit
Device Addressing
(Write)

NO

NO

Ninth bit Ack?

YES

Load Write Address

Ninth Bit Ack?

YES

Load Write Data
4

Embedded SRAM Initialization Using External Serial EEPROM
I2C Interface HDL Source
The design files on the Actel website provide both the VHDL and Verilog versions of the code for the I2C
interface reference design, called eeprom_interface. As mentioned earlier, the eeprom_interface design
targets an Atmel AT24C02A device and initializes a 256x8 embedded SRAM block in the FPGA.

Table 2 shows the utilization of the eeprom_interface design on three different Actel FPGAs.

A simple model1 has been developed to partially simulate the AT24C02A serial EEPROM behavior. This
model, along with a testbench, accompanies the eeprom_interface design for simulation purposes.

Instantiation of the Reference I2C Interface in the User Design
The eeprom_interface design presented in the previous section is used along with the rest of the user
design. Therefore, it should be instantiated in the top-level of the user’s design, connecting to embedded
SRAM blocks. This section provides guidelines on how to use eeprom_interface in an upper level design.

Connection to External EEPROM
The FPGA connects to the serial EEPROM via two main ports: SDI and SCK. Use of WP is optional; it can be
tied to ground. Please refer to Two-Wire Serial EEPROM AT24C02A/04A/08A/16A for more information.
The SCK input of the serial EEPROM connects directly to the SCK output of the eeprom_interface design.
The I/O standard used in the FPGA depends on the VCC value of the EEPROM device:

VIL: Between -0.6V to 0.3xVCC

VIH: Between 0.7xVCC to VCC + 0.5

The external serial EEPROM uses an SDA (bidirectional line) for data. The eeprom_interface has two ports,
one for each direction: SDI and SDO. The top-level design in the FPGA should connect these two ports to
the SDA of the EEPROM. The top-level of the user’s design must create an open-collector bidirectional
driver to connect to SDA. This is done using the following statements in the top-level HDL:

SDI <= SDA;

SDA <= '0' when (SDO = '0') else 'Z';

where SDA is the top-level port of the design connecting to the serial EEPROM.

In addition, the SDA line on the board must be pulled up to VCC. A high impedance value (Z) in the second
statement should be modified to high (H) during HDL simulation of the design to resemble the external
pull-up on the line.

Connection to Embedded SRAM Blocks
The reference design connects to the internal embedded SRAM via four ports: IENB, IADDR, IDATA, and
ICLK. The functionality of these ports is defined in previous sections. ProASIC3/E devices offer true dual-
port embedded SRAM blocks. Therefore, eeprom_interface SRAM interface ports can connect to one of
the ports while the user design accesses the other. The embedded SRAM blocks in Axcelerator and
ProASICPLUS FPGAs are two-port memory blocks offering one read and one write port. The
eeprom_interface should connect to the write port of SRAM during initialization. If the user’s design
needs to access the write port of the embedded SRAM block, a simple MUX arbiter should be
implemented, as shown in Figure 2 on page 6.

Table 2 • Utilization of I2C Reference Design in Actel FPGAs

Device AX250 APA150 A3P400

Utilization 2.89% 3.2% 1.94%

1. The AT24C02A model offered with this application note is not a complete model of this device. This model has not
been certified by Atmel, Actel, or any other vendor. This simulation model is intended to be used only to verify the
functionality of the I2C reference design in this application note.
5

http://www.atmel.com/dyn/resources/prod_documents/doc0976.pdf

Embedded SRAM Initialization Using External Serial EEPROM
If designers intend to build dual-port RAM blocks in ProASICPLUS or Axcelerator FPGAs using the
embedded SRAM blocks, guidelines are given in the following application notes located on the Actel
website: Implementing Multi-Port Memories in ProASICPLUS Devices and Implementing Multi-Port
Memories in Axcelerator Devices.

Timing Requirements
The commercial two-wire serial EEPROMs available in the market run on very low clock speeds (a few
hundred kilohertz to one megahertz). Therefore, the I2C interface design does not require strict timing
constraints to meet the required initialization speed. However, if the clock signals are not routed through
global networks they may be prone to a considerable amount of skew. Users should check for possibility
of hold time violations in the presence of clock skew.

Interfacing SRAM Blocks of Different Depth or Width
The target of the eeprom_interface design presented in this application note is a 256x8 SRAM block. If the
memory blocks in the user’s design are different, minor adjustments are required in the reference design.

Depth
If the depth of the SRAM block is different from 256, the size of the CCNT counter and IADDR must be
modified accordingly.

Width
The data transaction on the EEPROM side of the interface is consistently done in 9-bit (8-bits of data and
1-bit acknowledge) packets. Therefore, the size of BCNT should not be modified. SRAM blocks in
Axcelerator and ProASIC3/E devices offer a variable-aspect ratio. This feature facilitates the memory

Figure 2 • MUX Arbiter To Access Two-Port RAM

User Design

WADDR

WDATA

WEN

RCLK

RADDR

REN

RDATA

WCLK

DATA

UPD_NVM

ENB

ADDR

EEPROM

SDA

SCK

eeprom_interface

UPDT

UENB

UADDR

UDATA

SDI

SDO

SCK

CLK

RESET_N INIT

IADDR

IDATA

IENB

ICLK

0

1

0

1

0

1

0

1

RCLK

RADDR

REN

RDATA

WADDR

WDATA

WEN

WCLK

Embedded SRAM

FPGA
6

http://www.actel.com/documents/AX_Multi_Port_AN.pdf
http://www.actel.com/documents/AX_Multi_Port_AN.pdf
http://www.actel.com/documents/APA_MultiPort_AN.pdf

Embedded SRAM Initialization Using External Serial EEPROM
initialization when the memory width is other than 8-bit. If this feature is used, the write port of the RAM
should be set to a width of eight while the read port is configured according to the user’s design
requirements. However, if the variable-aspect ratio feature is not used or the target FPGA is a ProASICPLUS

device, then the eeprom_interface design should be modified accordingly. For example, if the target
SRAM is configured as a 256x16 block, the following modifications/adjustments will be required in order
to perform a complete initialization:

1. The external EEPROM should be at least 4k (512x8). Two consecutive memory locations store one
initialization word (16-bit). The first byte stores the upper half of the word and the second byte
stores the lower half.

2. Add an 8-bit MSB_REG register to the I2C code.

3. Set CCNT for the number of BYTES (in this example the CCNT should be nine bits wide).

4. Generate two write enables; the first one writes into the MSB_REG when CCNT(0) = 0, the second
one uses MSB_REG and SDATA (concatenation) to write into the memory at 16-bits wide when
CCNT(0) = 1.

5. With the above modifications, IENB and WRI can be removed from the I2C reference design code.

Conclusion
Volatile SRAM blocks, embedded within FPGAs, can be initialized after power-up using an external serial
EEPROM. This example application uses a minimum of two FPGA user I/Os to interface with the external
EEPROM. The external memory can also be updated (written into) by the FPGA if needed. This application
note presents an interface that can be instantiated into the user’s design, performing the initialization at
power-up. The reference design utilizes a very small portion of the FPGA logic for implementation and
does not affect the performance of the main design. The design in this document initializes a 256x8 SRAM
block but can be easily modified to support memory organizations of different width and depth.

References
Two-Wire Serial EEPROM AT24C02A/04A/08A/16A

http://www.atmel.com/dyn/resources/prod_documents/doc0976.pdf

Implementing Multi-Port Memories in ProASICPLUS Devices

http://www.actel.com/documents/APA_MultiPort_AN.pdf

Implementing Multi-Port Memories in Axcelerator Devices

http://www.actel.com/documents/AX_Multi_Port_AN.pdf
7

http://www.actel.com/documents/APA_MultiPort_AN.pdf
http://www.actel.com/documents/AX_Multi_Port_AN.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0976.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc0976.pdf
http://www.actel.com/documents/AX_Multi_Port_AN.pdf
http://www.actel.com/documents/APA_MultiPort_AN.pdf

http://www.actel.com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong

39th Floor, One Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852.227.35712
Fax +852.227.35999
51900081-0/09.04

	Embedded SRAM Initialization Using External Serial EEPROM
	Introduction
	Embedded SRAM Blocks in Actel FPGAs
	Table 1 . FPGA Embedded SRAM Features

	Serial EEPROM Devices
	RAM Initialization Reference Design
	Architecture and Functionality
	Figure 1 . I2C Interface Design Flow Diagram

	I2C Interface HDL Source
	Table 2 . Utilization of I2C Reference Design in Actel FPGAs

	Instantiation of the Reference I2C Interface in the User Design
	Figure 2 . MUX Arbiter To Access Two-Port RAM

	Conclusion
	References

