
Application Note
Using Fusion RAM as Multipliers

Introduction
Multiplication is one of the more area intensive functions in FPGAs. Traditional multiplication techniques
use the digital equivalent of longhand multiplication. These techniques are basically shift-and-add
procedures, which usually result in many levels of logic and limit performance. Pipelining can help to
improve the clock performance of the multipliers in this case, at the cost of more area.

Most people multiply by individually multiplying digits and referring back to memorized multiplication
tables. A similar technique can be employed using the embedded memory on an FPGA. The result of using
the RAM as a lookup table multiplier incurs only the delay of the memory access and has the advantage of
not consuming a large number of user gates on the FPGA.

This document describes the three ways to use RAM blocks as multipliers:

• Basic single lookup table multiplier

• Partial product multiplier

• RAM-based constant coefficient multiplier

For the Fusion devices, the single lookup table approach can create a very fast but narrow, four-bit
multiplier. The partial product multiplier approach uses logic to reduce the amount of memory required, but
is slower than a pure lookup table. In fact, the pure logic multiplier implementation for the Fusion available
in the Actel SmartGen core generator can produce a multiplier that runs at a frequency comparable to the
partial product implementation, though the pure logic approach uses more core tiles. The constant
coefficient multiplier is the most efficient implementation, since it uses a minimum of additional logic gates
and still maintains the performance of the basic lookup table multiplier.

Basic Lookup Table (LUT) Based Multipliers
A basic LUT-based multiplier is simply a lookup table with the addresses arranged so that part of the
address is the multiplicand and the other part is the multiplier. The data width should be set to the sum of
the address width to accommodate the product.

Implementing a Basic LUT-Based Multiplier
In the case where a four-bit value is multiplied by a four-bit value, you will need a memory block that is
eight bits wide and 256 words deep. The first four bits of the address can be configured as the
multiplicand and the second four bits can be configured as the multiplier. The memory will store the
appropriate product values. To multiply the upper four bits by the lower four bits, feed both values into
the address and clock the memory. The appropriate product value will appear on the RAM output. A
diagram of this LUT-based multiplier implementation is shown in Figure 1 on page 2.

Since the memory block in Fusion is synchronous, this configuration will result in a synchronous multiplier,
whose clock frequency is only limited by the data access time of the memory.

While this approach is more efficient than implementing multipliers in gates, it can consume a large
amount of memory. The amount of memory required increases with the square of the bit width. The
example above demonstrates a 4 x 4 bit multiplier with 256 eight-bit words of storage required. For an 8 x
8 bit multiplier, 65,536 16-bit words must be stored using this technique.
November 2005 1
© 2005 Actel Corporation

Using Fusion RAM as Multipliers
Partial Product Multipliers
One way to mitigate the amount of memory required is to use partial product multiplication. This
technique combines the lookup table approach with elements of longhand multiplication. For example, to
multiply 24 x 43 = 1,032 using longhand, simplify the problem into the sum of four multiply functions and
three add functions (Figure 2).

(4 × 3 + ((2 × 3) × 10)) + (((4 × 4) + ((2 × 4) × 10)) × 10) = 1,032

EQ 1

Implementing a Partial Product Multiplier
In logic, this same technique can be used to reduce the amount of memory required to perform a multiply
function. Using a basic lookup table technique, an eight-bit by eight-bit multiply would require 128 kb of
storage. As shown in Figure 3 on page 3, using partial product multipliers, the same procedure can be
accomplished using 1 kb of storage.

In order to accomplish this in logic, using A as the multiplicand and B as the multiplier, take the lower four
bits of A and multiply it by the lower four bits of B using the lookup table technique. Then take the upper
four bits of A and multiply it by the lower four bits of B and shift the partial product result to the left by
four. Then add the two results together for the first part of the product.

For the second part of the product, multiply the lower four bits of A by the upper four bits of B. Then do
the same with the upper four bits of both A and B and shift this partial product value to the left by four.
Add the two values of the previous calculation and shift the whole result to the left by four.

Then add the first part of the product to the second part of the product for the final result.

Figure 1 • Basic Single LUT-Based Multiplier

Figure 2 • Partial Product Multiplier Techniques

Multiplicand[3:0]

Address[7:0] DataOut[7:0] Product[7:0]

Multiplier[3:0]

Clock Clock

RAM
8 bits wide

by 256 words
deep

24
X43

12
60

160
800

1,032

<
<

A
B

24
X43

12
60

160
800

1,032

<
<

A
B

< Shifted by 1
decimal place

24
X43

12
60

160
800

1,032

<
<

A
B

< Shifted by 1
decimal place

24
X43

12
60

160
800

1,032

<
<

A
B

< Shifted by 2
decimal places
2

Using Fusion RAM as Multipliers
While this technique is not as fast as implementing the entire multiply as a single memory element, it does
greatly reduce the amount of memory required at the expense of using more core tiles.

Constant Coefficient Multiplier
A third approach to using memory blocks as multipliers is employing a constant coefficient multiplier. In
many cases, especially in DSP applications, the multiplicand remains constant and only the multiplier
varies.

Implementing a Constant Coefficient Multiplier
In this approach, only the multiplier must be assigned to the address lines of the memory block. The
multiplicand is predetermined and the memory block is loaded with the appropriate product values
(Figure 4 on page 4). For example, given that the multiplicand is always 4/h, if the multiplier is B/h, when
that value is sent to the address of the memory block, it will return the stored value 2C/h.

This type of multiplier scales linearly with the width of the values being multiplied. While a basic lookup
table 8 x 8 multiplier uses one block of 65,536 x 16 bit words (128 kb) of storage, and the partial product
lookup table multiplier uses four blocks of 256 x 8 bit words (1 kb) the constant coefficient multiplier
requires one block of 256 x 16 bit words (0.5 kb) and does not incur the cost of the additional logic and
delay incurred by using the partial product multiplier.

Figure 3 • Partial Product Multiplier Logic Implementation

4 × 4

4 × 4

4 × 4

4 × 4

A[3:0]
4

B[3:0]
4

12

8

8

A[3:0]
4

B[7:4]
4

<<4

A[3:0]
4

B[7:4]
4

12

8

8

12 16

16

A[7:4]
4

B[7:4]
4

<<4

<<4
3

Using Fusion RAM as Multipliers
Performance and Utilization
Because of architectural variations, the effectiveness of each approach varies between device families.
Table 1 shows, for a 4 x 4 multiplier, the RAM-based multiplier is much faster than the equivalent Booth
multiplier provided by the SmartGen core generator. The Booth multiplier is an optimized multiplier that
reduces the number of stages required to perform the multiplication function. However, as we expand to
an 8 x 8 multiplier, the amount of memory required to implement the 8 x 8 multiplier in RAM is too large
to be practical, and the Booth multiplier provided by SmartGen performs as well as implementing a partial
product RAM multiplier. Also, as shown in Table 1, pipelining either the Booth multiplier or the partial
product multiplier increases the performance of both, and both implementations run at similar speeds.
However, a constant coefficient multiplier is clearly much faster than either implementation.

Utilization is another consideration for choosing a multiplier. If your design leaves you with unused RAM
cells, employing the unused RAM as multipliers can save core tiles. Table 1 shows the number of core tiles
required to implement each of the multipliers. Not counting the logic required to load the RAM cells, the
4 x 4 RAM multiplier requires only the RAM cell, and the eight-bit constant coefficient multiplier only
requires two cells. The partial product multiplier uses a third fewer tiles to implement than does the Booth
multiplier.

Figure 4 • Constant Coefficient Multiplier Logic

Table 1 • Performance and Utilization of Multiplier Variations

Multiplier Used
Performance

MHz

Utilization

Core Tiles RAM Blocks

4 x 4 RAM multiplier 293 0 1

4 x 4 Booth multiplier 98 79 0

4 x 4 pipelined Booth multiplier 158 92 0

8 x 8 Booth multiplier 68 305 0

8 x 8 Booth multiplier with 1 pipeline stage 102 344 0

8 x 8 Booth multiplier with 2 pipeline stage 123 386 0

8 x 8 Booth multiplier with 3 pipeline stage 120 431 0

8 x 8 partial product multiplier 63 196 4

8 x 8 partial product multiplier with pipelining 129 311 4

8 x 8 constant coefficient multiplier 281 2 1

Note: Timing numbers are based on worst-case, commercial numbers for an AFS600 in a–2 speed grade.

Address[7:0]Multiplier[7:0] DataOut[15:0] Product[15:0]

Clock Clock

RAM
8 bits wide

by 256 words
deep

The multiplicand is predetermined.
4

Using Fusion RAM as Multipliers
Constant Coefficient Multiplier Example
The constant coefficient multiplier is the most efficient implementation and will be the multiplier used in
this example. The RAM block must first be loaded with data in order to produce the correct product
values. Since the memory in the Fusion device has two ports, one port can be dedicated to reading the
data for multiply and the other can be dedicated to loading data. The data can either be loaded from
embedded Flash memory or from an external source, such as a microprocessor, using the logic within the
device, or through the JTAG port using the UJTAG feature. Refer to the Fusion Family of Mixed-Signal
FPGAs datasheet for more information.

The UJTAG feature allows you to interface with the internal array of the device through the JTAG ports.
This allows you to send signals through the JTAG port to your design. One of the uses of this feature is to
load data into RAM blocks. Refer to the Fusion RAM/FIFO Blocks application note for details on how to
load a RAM block using the UJTAG.

The example in Figure 5 uses logic within the device as a simple memory loader to preload the RAM for
use as a four-bit constant coefficient multiplier with a four-bit multiplicand value of E/h. "Appendix 1" on
page 7 includes the design files and the SmartGen generation screens for this example. The memory
loader is simply a counter that cycles through the addresses available, with an adder that increments the
product values and feeds them into a register file that passes the correct data for each address. Once the
loader is finished, the load signal is deasserted, and the RAM block is ready to be used as a multiplier.
Since the memory in the Fusion is synchronous, the multiplier acts as a synchronous multiplier.

Figure 5 • Constant Coefficient Multiplier Logic

Load Address

Load Port

Loader
Load Data

Address[7:0]

Multiply Port

Multiplier[7:0]

DataOut[15:0] Product[15:0]

Clock Clock

RAM
8 bits wide

by 256 words
deep
5

http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_SRAMFIFO_AN.pdf

Using Fusion RAM as Multipliers
Additional Considerations
While in many cases using RAM blocks as multipliers can save area, there is overhead required in using this
approach. The RAM block must be loaded with the correct values before they can be used as multipliers.
An interface to load and increment the RAM block can then load the data on power-up.

A second approach is using a multiplier or adder to generate values in the RAM block to be loaded
without having to have the values prestored. However, using either a multiplier or an adder to generate
the values takes additional logic and does require time to create and store the proper values.

If a microprocessor is available in the system, it can also be used to generate the proper values and load
them into the RAM blocks. This approach avoids the additional storage required by the first approach and
the logic overhead of the additional multiplier or adder in the second approach.

Conclusion
Using the Fusion memory as lookup tables can greatly increase the speed of functions that require
multiplication. Several techniques can be used, depending upon the widths and types of the values to be
multiplied. For applications where one of the values being multiplied remains constant, often found in
DSP functions, the constant coefficient multiplier is the fastest and the most efficient lookup table
multiplier.

Related Documents

Application Notes
Fusion SRAM/FIFO Blocks

http://www.actel.com/documents/Fusion_SRAMFIFO_AN.pdf

Datasheets
Fusion Family of Mixed-Signal FPGAs

http://www.actel.com/documents/Fusion_DS.pdf
6

http://www.actel.com/documents/Fusion_SRAMFIFO_AN.pdf
http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_DS.pdf
http://www.actel.com/documents/Fusion_SRAMFIFO_AN.pdf

Using Fusion RAM as Multipliers
Appendix 1

Design Example: 8-Bit Constant Coefficient Multiplier
The design implemented here is the example for the eight-bit constant coefficient multiplier described
above. This design includes a loading module that loads the proper product values into the RAM and
prepares it for use as a multiplier.

After briefly asserting the active low clear signal, bring clear and load signals high. Allow the clk to cycle
for 256 cycles in order to load the memory. When the memory is loaded, bring the load signal low in order
to allow the RAM to start functioning as a multiplier.

The mclk, used for multiplying, is independent of the clk signal, the loading clock. This allows the
multiplying clock to run at a different rate than the clock used to load the data.

Design Hierarchy
Multiply.vhd

Loader.vhd

Counter.vhd

Adder.vhd

Reg16.vhd

Ram16x8.vhd

Multiply
The multiply module combines the loader module, which loads the proper values for multiplying by E/h,
with the RAM module, which will act as the actual multiplier.

-- multiply.vhd

library IEEE;

use IEEE.std_logic_1164.all;

entity multiply is

 port(load, clr, clk, mclk : in std_logic;

 multiplier: in std_logic_vector (7 downto 0);

 product : out std_logic_vector (15 downto 0));

end multiply;

architecture structure of multiply is

 component loader

 port(enable, clr, clk : in std_logic;

 datal : out std_logic_vector (15 downto 0);

 addr : out std_logic_vector (7 downto 0));

 end component;

 component ram16x8

 port(DATA : in std_logic_vector(15 downto 0); PROD : out
7

Using Fusion RAM as Multipliers
 std_logic_vector(15 downto 0); LOAD_ADDR : in

 std_logic_vector(7 downto 0); MULT : in std_logic_vector(

 7 downto 0);LOAD_EN, MULT_EN, LOAD_CLK, MULT_CLK, RESET :

 in std_logic) ;

 end component;

 signal address : std_logic_vector (7 downto 0);

 signal dat : std_logic_vector (15 downto 0);

 signal mult_en : std_logic;

 begin

 MULT_EN <= load;

 load1 : loader

 port map (enable => load, clr => clr, clk => clk, datal => dat, addr => address);

 ram : ram16x8

 port map (DATA => dat, PROD => product, LOAD_ADDR => address, MULT => multiplier,

 LOAD_EN => load, MULT_EN => mult_en, LOAD_CLK => clk, MULT_CLK => mclk,
RESET => clr);

end structure;

Loader
The loader module accepts a clock, a clear, and an enable signal. It ties together the register, counter, and
adder. The adder performs the actual data loading for the RAM.

-- loader

library IEEE;

use IEEE.std_logic_1164.all;

entity loader is

 port(enable, clr, clk : in std_logic;

 datal : out std_logic_vector (15 downto 0);

 addr : out std_logic_vector (7 downto 0));

end loader;

architecture struct of loader is
8

Using Fusion RAM as Multipliers
 component counter

 port(Enable, Aclr, Clock : in std_logic; Q : out

 std_logic_vector(7 downto 0)) ;

 end component;

 component reg16

 port(Data : in std_logic_vector(15 downto 0);Enable, Aclr,

 Clock : in std_logic; Q : out std_logic_vector(15 downto 0

)) ;

 end component;

 component adder

 port(DataA : in std_logic_vector(15 downto 0); DataB : in

 std_logic_vector(15 downto 0); Sum : out std_logic_vector(

 15 downto 0)) ;

 end component;

 constant multiplicand : std_logic_vector := "0000000000001110";

 signal data, data2 : std_logic_vector (15 downto 0);

 begin

 count : counter

 port map (Enable => enable, Aclr => clr, Clock => clk, Q => addr);

 values : adder

 port map (DataA => data2, DataB => multiplicand, sum => data);

 reg : reg16

 port map (Data => data, Enable => enable, Aclr => clr, Clock => clk,

 Q => data2);

 datal <= data2;

 end struct;
9

Using Fusion RAM as Multipliers
Reg16
The reg16 register file is generated using SmartGen. The register file is a 16-bit parallel storage register
and is used to gate the values from the counter. It allows the values to be initially cleared. The register file
is generated using the parameters shown in Figure 6.

Figure 6 • Reg16
10

Using Fusion RAM as Multipliers
Adder
The adder component is a 16-bit adder that continually increments the values loaded into the RAM by a
value of E/h (Figure 7).

Figure 7 • Adder
11

Using Fusion RAM as Multipliers
Counter
The counter is an eight-bit counter that cycles through all the address values for the RAM. This counter is
also generated using SmartGen with the parameters shown in Figure 8.

Figure 8 • Counter
12

Using Fusion RAM as Multipliers
RAM16x8
The RAM16x8 is the memory block configuration used as the multiplier in this design. The memory block is
256 words deep with a pair of eight-bit addresses and 16-bit data buses (Figure 9).

Figure 9 • RAM16x8
13

Using Fusion RAM as Multipliers
Figure 10 shows the port map is used in order to make the signals more meaningful as a multiplier.

Figure 10 • Port Mapping Dialog
14

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan
www.jp.actel.com

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
www.actel.com.cn

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488

www.actel.com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
51900115-0/11.05

http://www.jp.actel.com
http://www.actel.com.cn
http://www.actel.com

	Using Fusion RAM as Multipliers
	Introduction
	Basic Lookup Table (LUT) Based Multipliers
	Implementing a Basic LUT-Based Multiplier
	Figure 1 . Basic Single LUT-Based Multiplier

	Partial Product Multipliers
	Figure 2 . Partial Product Multiplier Techniques

	Implementing a Partial Product Multiplier
	Figure 3 . Partial Product Multiplier Logic Implementation

	Constant Coefficient Multiplier
	Implementing a Constant Coefficient Multiplier
	Figure 4 . Constant Coefficient Multiplier Logic

	Performance and Utilization
	Table 1 . Performance and Utilization of Multiplier Variations

	Constant Coefficient Multiplier Example
	Figure 5 . Constant Coefficient Multiplier Logic

	Additional Considerations
	Conclusion
	Related Documents
	Application Notes
	Datasheets

	Appendix 1
	Design Example: 8-Bit Constant Coefficient Multiplier
	Figure 6 . Reg16
	Figure 7 . Adder
	Figure 8 . Counter
	Figure 9 . RAM16x8
	Figure 10 . Port Mapping Dialog

